101
|
Ullrich S, Guigó R. Dynamic changes in intron retention are tightly associated with regulation of splicing factors and proliferative activity during B-cell development. Nucleic Acids Res 2020; 48:1327-1340. [PMID: 31879760 PMCID: PMC7026658 DOI: 10.1093/nar/gkz1180] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 12/02/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022] Open
Abstract
Intron retention (IR) has been proposed to modulate the delay between transcription and translation. Here, we provide an exhaustive characterization of IR in differentiated white blood cells from both the myeloid and lymphoid lineage where we observed highest levels of IR in monocytes and B-cells, in addition to previously reported granulocytes. During B-cell differentiation, we found an increase in IR from the bone marrow precursors to cells residing in secondary lymphoid organs. B-cells that undergo affinity maturation to become antibody producing plasma cells steadily decrease retention. In general, we found an inverse relationship between global IR levels and both the proliferative state of cells, and the global levels of expression of splicing factors. IR dynamics during B-cell differentiation appear to be conserved between human and mouse, suggesting that IR plays an important biological role, evolutionary conserved, during blood cell differentiation. By correlating the expression of non-core splicing factors with global IR levels, and analyzing RNA binding protein knockdown and eCLIP data, we identify a few splicing factors likely playing an evolutionary conserved role in IR regulation. Our work provides new insights into the role of IR during hematopoiesis, and on the main factors involved in regulating IR.
Collapse
Affiliation(s)
- Sebastian Ullrich
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain
| |
Collapse
|
102
|
Fujita KI, Ishizuka T, Mitsukawa M, Kurata M, Masuda S. Regulating Divergent Transcriptomes through mRNA Splicing and Its Modulation Using Various Small Compounds. Int J Mol Sci 2020; 21:ijms21062026. [PMID: 32188117 PMCID: PMC7139312 DOI: 10.3390/ijms21062026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/14/2022] Open
Abstract
Human transcriptomes are more divergent than genes and contribute to the sophistication of life. This divergence is derived from various isoforms arising from alternative splicing. In addition, alternative splicing regulated by spliceosomal factors and RNA structures, such as the RNA G-quadruplex, is important not only for isoform diversity but also for regulating gene expression. Therefore, abnormal splicing leads to serious diseases such as cancer and neurodegenerative disorders. In the first part of this review, we describe the regulation of divergent transcriptomes using alternative mRNA splicing. In the second part, we present the relationship between the disruption of splicing and diseases. Recently, various compounds with splicing inhibitor activity were established. These splicing inhibitors are recognized as a biological tool to investigate the molecular mechanism of splicing and as a potential therapeutic agent for cancer treatment. Food-derived compounds with similar functions were found and are expected to exhibit anticancer effects. In the final part, we describe the compounds that modulate the messenger RNA (mRNA) splicing process and their availability for basic research and future clinical potential.
Collapse
|
103
|
Broseus L, Ritchie W. Challenges in detecting and quantifying intron retention from next generation sequencing data. Comput Struct Biotechnol J 2020; 18:501-508. [PMID: 32206209 PMCID: PMC7078297 DOI: 10.1016/j.csbj.2020.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/29/2019] [Accepted: 02/15/2020] [Indexed: 12/17/2022] Open
Abstract
Intron retention (IR) occurs when an intron is transcribed into pre-mRNA and remains in the final mRNA. An increasing body of literature has demonstrated a major role for IR in numerous biological functions and in disease. Here we give an overview of the different computational approaches for detecting IR events from sequencing data. We show that these are based on different biological and computational assumptions that may lead to dramatically different results. We describe the various approaches for mitigating errors in detecting intron retention and for discovering IR signatures between different conditions.
Collapse
|
104
|
Ninomiya K, Adachi S, Natsume T, Iwakiri J, Terai G, Asai K, Hirose T. LncRNA-dependent nuclear stress bodies promote intron retention through SR protein phosphorylation. EMBO J 2020; 39:e102729. [PMID: 31782550 PMCID: PMC6996502 DOI: 10.15252/embj.2019102729] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/17/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022] Open
Abstract
A number of long noncoding RNAs (lncRNAs) are induced in response to specific stresses to construct membrane-less nuclear bodies; however, their function remains poorly understood. Here, we report the role of nuclear stress bodies (nSBs) formed on highly repetitive satellite III (HSATIII) lncRNAs derived from primate-specific satellite III repeats upon thermal stress exposure. A transcriptomic analysis revealed that depletion of HSATIII lncRNAs, resulting in elimination of nSBs, promoted splicing of 533 retained introns during thermal stress recovery. A HSATIII-Comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS) analysis identified multiple splicing factors in nSBs, including serine and arginine-rich pre-mRNA splicing factors (SRSFs), the phosphorylation states of which affect splicing patterns. SRSFs are rapidly de-phosphorylated upon thermal stress exposure. During stress recovery, CDC like kinase 1 (CLK1) was recruited to nSBs and accelerated the re-phosphorylation of SRSF9, thereby promoting target intron retention. Our findings suggest that HSATIII-dependent nSBs serve as a conditional platform for phosphorylation of SRSFs by CLK1 to promote the rapid adaptation of gene expression through intron retention following thermal stress exposure.
Collapse
Grants
- JP26113002 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP16H06279 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP17H03630 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP17K19335 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP19K06478 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- Tokyo Biochemical Research Foundation (TBRF)
- Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- Tokyo Biochemical Research Foundation (TBRF)
Collapse
Affiliation(s)
| | - Shungo Adachi
- Molecular Profiling Research CenterNational Institute for Advanced Industrial Science and Technology (AIST)TokyoJapan
| | - Tohru Natsume
- Molecular Profiling Research CenterNational Institute for Advanced Industrial Science and Technology (AIST)TokyoJapan
| | - Junichi Iwakiri
- Graduate School of Frontier SciencesUniversity of TokyoKashiwaJapan
| | - Goro Terai
- Graduate School of Frontier SciencesUniversity of TokyoKashiwaJapan
| | - Kiyoshi Asai
- Graduate School of Frontier SciencesUniversity of TokyoKashiwaJapan
| | - Tetsuro Hirose
- Institute for Genetic MedicineHokkaido UniversitySapporoJapan
| |
Collapse
|
105
|
Burke EE, Chenoweth JG, Shin JH, Collado-Torres L, Kim SK, Micali N, Wang Y, Colantuoni C, Straub RE, Hoeppner DJ, Chen HY, Sellers A, Shibbani K, Hamersky GR, Diaz Bustamante M, Phan BN, Ulrich WS, Valencia C, Jaishankar A, Price AJ, Rajpurohit A, Semick SA, Bürli RW, Barrow JC, Hiler DJ, Page SC, Martinowich K, Hyde TM, Kleinman JE, Berman KF, Apud JA, Cross AJ, Brandon NJ, Weinberger DR, Maher BJ, McKay RDG, Jaffe AE. Dissecting transcriptomic signatures of neuronal differentiation and maturation using iPSCs. Nat Commun 2020; 11:462. [PMID: 31974374 PMCID: PMC6978526 DOI: 10.1038/s41467-019-14266-z] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 12/23/2019] [Indexed: 01/02/2023] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) are a powerful model of neural differentiation and maturation. We present a hiPSC transcriptomics resource on corticogenesis from 5 iPSC donor and 13 subclonal lines across 9 time points over 5 broad conditions: self-renewal, early neuronal differentiation, neural precursor cells (NPCs), assembled rosettes, and differentiated neuronal cells. We identify widespread changes in the expression of both individual features and global patterns of transcription. We next demonstrate that co-culturing human NPCs with rodent astrocytes results in mutually synergistic maturation, and that cell type-specific expression data can be extracted using only sequencing read alignments without cell sorting. We lastly adapt a previously generated RNA deconvolution approach to single-cell expression data to estimate the relative neuronal maturity of iPSC-derived neuronal cultures and human brain tissue. Using many public datasets, we demonstrate neuronal cultures are maturationally heterogeneous but contain subsets of neurons more mature than previously observed.
Collapse
Affiliation(s)
- Emily E Burke
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | | | - Joo Heon Shin
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | | | - Suel-Kee Kim
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Nicola Micali
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Yanhong Wang
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | | | | | | | - Huei-Ying Chen
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Alana Sellers
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Kamel Shibbani
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | | | | | - BaDoi N Phan
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | | | | | | | - Amanda J Price
- Lieber Institute for Brain Development, Baltimore, MD, USA.,McKusick Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | | | - Roland W Bürli
- Neuroscience, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - James C Barrow
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Daniel J Hiler
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | | | - Keri Martinowich
- Lieber Institute for Brain Development, Baltimore, MD, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Baltimore, MD, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Baltimore, MD, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Karen F Berman
- Clinical and Translational Neuroscience Branch, NIMH Intramural Research Program, Bethesda, MD, USA
| | - Jose A Apud
- Clinical and Translational Neuroscience Branch, NIMH Intramural Research Program, Bethesda, MD, USA
| | - Alan J Cross
- Neuroscience, IMED Biotech Unit, AstraZeneca, Boston, MA, USA
| | | | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, MD, USA.,McKusick Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Brady J Maher
- Lieber Institute for Brain Development, Baltimore, MD, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Andrew E Jaffe
- Lieber Institute for Brain Development, Baltimore, MD, USA. .,McKusick Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA. .,Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA. .,Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA. .,Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA. .,Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
106
|
Hezroni H, Perry RBT, Ulitsky I. Long Noncoding RNAs in Development and Regeneration of the Neural Lineage. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2020; 84:165-177. [PMID: 31900326 DOI: 10.1101/sqb.2019.84.039347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Long noncoding RNAs (lncRNAs) are gathering increasing attention toward their roles in different biological systems. In mammals, the richest repertoires of lncRNAs are expressed in the brain and in the testis, and the diversity of lncRNAs in the nervous system is thought to be related to the diversity and the complexity of its cell types. Supporting this notion, many lncRNAs are differentially expressed between different regions of the brain or in particular cell types, and many lncRNAs are dynamically expressed during embryonic or postnatal neurogenesis. Less is known about the functions of these genes, if any, but they are increasingly implicated in diverse processes in health and disease. Here, we review the current knowledge about the roles and importance of lncRNAs in the central and peripheral nervous systems and discuss the specific niches within gene regulatory networks that might be preferentially occupied by lncRNAs.
Collapse
Affiliation(s)
- Hadas Hezroni
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rotem Ben Tov Perry
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
107
|
Affiliation(s)
- Chin-Tong Ong
- Temasek Life Sciences Laboratory, Department of Biological Sciences, National University of Singapore, Singapore
| | - Swarnaseetha Adusumalli
- Temasek Life Sciences Laboratory, Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
108
|
Price AJ, Hwang T, Tao R, Burke EE, Rajpurohit A, Shin JH, Hyde TM, Kleinman JE, Jaffe AE, Weinberger DR. Characterizing the nuclear and cytoplasmic transcriptomes in developing and mature human cortex uncovers new insight into psychiatric disease gene regulation. Genome Res 2020; 30:1-11. [PMID: 31852722 PMCID: PMC6961577 DOI: 10.1101/gr.250217.119] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 12/16/2019] [Indexed: 12/24/2022]
Abstract
Transcriptome compartmentalization by the nuclear membrane provides both stochastic and functional buffering of transcript activity in the cytoplasm, and has recently been implicated in neurodegenerative disease processes. Although many mechanisms regulating transcript compartmentalization are also prevalent in brain development, the extent to which subcellular localization differs as the brain matures has yet to be addressed. To characterize the nuclear and cytoplasmic transcriptomes during brain development, we sequenced both RNA fractions from homogenate prenatal and adult human postmortem cortex using poly(A)+ and Ribo-Zero library preparation methods. We find that while many genes are differentially expressed by fraction and developmental expression changes are similarly detectable in nuclear and cytoplasmic RNA, the compartmented transcriptomes become more distinct as the brain matures, perhaps reflecting increased utilization of nuclear retention as a regulatory strategy in adult brain. We examined potential mechanisms of this developmental divergence including alternative splicing, RNA editing, nuclear pore composition, RNA-binding protein motif enrichment, and RNA secondary structure. Intron retention is associated with greater nuclear abundance in a subset of transcripts, as is enrichment for several splicing factor binding motifs. Finally, we examined disease association with fraction-regulated gene sets and found nuclear-enriched genes were also preferentially enriched in gene sets associated with neurodevelopmental psychiatric disorders. These results suggest that although gene-level expression is globally comparable between fractions, nuclear retention of transcripts may play an underappreciated role in developmental regulation of gene expression in brain, particularly in genes whose dysregulation is related to neuropsychiatric disorders.
Collapse
Affiliation(s)
- Amanda J Price
- Lieber Institute for Brain Development, Baltimore, Maryland 21205, USA
- McKusick Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Taeyoung Hwang
- Lieber Institute for Brain Development, Baltimore, Maryland 21205, USA
| | - Ran Tao
- Lieber Institute for Brain Development, Baltimore, Maryland 21205, USA
| | - Emily E Burke
- Lieber Institute for Brain Development, Baltimore, Maryland 21205, USA
| | | | - Joo Heon Shin
- Lieber Institute for Brain Development, Baltimore, Maryland 21205, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Baltimore, Maryland 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Baltimore, Maryland 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Andrew E Jaffe
- Lieber Institute for Brain Development, Baltimore, Maryland 21205, USA
- McKusick Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, Maryland 21205, USA
- McKusick Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
109
|
Garland W, Jensen TH. Nuclear sorting of RNA. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1572. [PMID: 31713323 DOI: 10.1002/wrna.1572] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 12/27/2022]
Abstract
The majority of the mammalian genome is transcribed by RNA polymerase II, yielding a vast amount of noncoding RNA (ncRNA) in addition to the standard production of mRNA. The typical nuclear biogenesis of mRNA relies on the tightly controlled coupling of co- and post-transcriptional processing events, which ultimately results in the export of transcripts into the cytoplasm. These processes are subject to surveillance by nuclear RNA decay pathways to prevent the export of aberrant, or otherwise "non-optimal," transcripts. However, unlike mRNA, many long ncRNAs are nuclear retained and those that maintain enduring functions must employ precautions to evade decay. Proper sorting and localization of RNA is therefore an essential activity in eukaryotic cells and the formation of ribonucleoprotein complexes during early stages of RNA synthesis is central to deciding such transcript fate. This review details our current understanding of the pathways and factors that direct RNAs towards a particular destiny and how transcripts combat the adverse conditions of the nucleus. This article is categorized under: RNA Export and Localization > Nuclear Export/Import RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- William Garland
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C., Denmark
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C., Denmark
| |
Collapse
|
110
|
Maita H, Nakagawa S. What is the switch for coupling transcription and splicing? RNA Polymerase II C‐terminal domain phosphorylation, phase separation and beyond. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1574. [DOI: 10.1002/wrna.1574] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 01/12/2023]
Affiliation(s)
- Hiroshi Maita
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences Hokkaido University Sapporo Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences Hokkaido University Sapporo Japan
| |
Collapse
|
111
|
Fernandez-Albert J, Lipinski M, Lopez-Cascales MT, Rowley MJ, Martin-Gonzalez AM, Del Blanco B, Corces VG, Barco A. Immediate and deferred epigenomic signatures of in vivo neuronal activation in mouse hippocampus. Nat Neurosci 2019; 22:1718-1730. [PMID: 31501571 PMCID: PMC6875776 DOI: 10.1038/s41593-019-0476-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/23/2019] [Indexed: 11/08/2022]
Abstract
Activity-driven transcription plays an important role in many brain processes, including those underlying memory and epilepsy. Here we combine genetic tagging of nuclei and ribosomes with RNA sequencing, chromatin immunoprecipitation with sequencing, assay for transposase-accessible chromatin using sequencing and Hi-C to investigate transcriptional and chromatin changes occurring in mouse hippocampal excitatory neurons at different time points after synchronous activation during seizure and sparse activation by novel context exploration. The transcriptional burst is associated with an increase in chromatin accessibility of activity-regulated genes and enhancers, de novo binding of activity-regulated transcription factors, augmented promoter-enhancer interactions and the formation of gene loops that bring together the transcription start site and transcription termination site of induced genes and may sustain the fast reloading of RNA polymerase complexes. Some chromatin occupancy changes and interactions, particularly those driven by AP1, remain long after neuronal activation and could underlie the changes in neuronal responsiveness and circuit connectivity observed in these neuroplasticity paradigms, perhaps thereby contributing to metaplasticity in the adult brain.
Collapse
Affiliation(s)
- Jordi Fernandez-Albert
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Sant Joan d'Alacant, Alicante, Spain
| | - Michal Lipinski
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Sant Joan d'Alacant, Alicante, Spain
| | - María T Lopez-Cascales
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Sant Joan d'Alacant, Alicante, Spain
| | - M Jordan Rowley
- Department of Biology, Emory University, Atlanta, GA, USA
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ana M Martin-Gonzalez
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Sant Joan d'Alacant, Alicante, Spain
- Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | - Beatriz Del Blanco
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Sant Joan d'Alacant, Alicante, Spain
| | | | - Angel Barco
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Sant Joan d'Alacant, Alicante, Spain.
| |
Collapse
|
112
|
Zheng H, Chen S, Wang X, Xie J, Tian J, Wang F. Intron Retained Bioluminescence Reporter for Real-Time Imaging of Pre-mRNA Splicing in Living Subjects. Anal Chem 2019; 91:12392-12398. [DOI: 10.1021/acs.analchem.9b02935] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Haifeng Zheng
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an 710071, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Si Chen
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an 710071, China
| | - Xinan Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an 710071, China
| | - Jinrong Xie
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an 710071, China
| | - Jie Tian
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an 710071, China
- CAS Key Laboratory of Molecular Imaging, Institute of Automation Chinese Academy of Sciences, Beijing 100190, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing 100190, China
| | - Fu Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an 710071, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
113
|
Olthof AM, Hyatt KC, Kanadia RN. Minor intron splicing revisited: identification of new minor intron-containing genes and tissue-dependent retention and alternative splicing of minor introns. BMC Genomics 2019; 20:686. [PMID: 31470809 PMCID: PMC6717393 DOI: 10.1186/s12864-019-6046-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Mutations in minor spliceosome components such as U12 snRNA (cerebellar ataxia) and U4atac snRNA (microcephalic osteodysplastic primordial dwarfism type 1 (MOPD1)) result in tissue-specific symptoms. Given that the minor spliceosome is ubiquitously expressed, we hypothesized that these restricted phenotypes might be caused by the tissue-specific regulation of the minor spliceosome targets, i.e. minor intron-containing genes (MIGs). The current model of inefficient splicing is thought to apply to the regulation of the ~ 500 MIGs identified in the U12DB. However this database was created more than 10 years ago. Therefore, we first wanted to revisit the classification of minor introns in light of the most recent reference genome. We then sought to address specificity of MIG expression, minor intron retention, and alternative splicing (AS) across mouse and human tissues. RESULTS We employed position-weight matrices to obtain a comprehensive updated list of minor introns, consisting of 722 mouse and 770 human minor introns. These can be found in the Minor Intron DataBase (MIDB). Besides identification of 99% of the minor introns found in the U12DB, we also discovered ~ 150 new MIGs. We then analyzed the RNAseq data from eleven different mouse tissues, which revealed tissue-specific MIG expression and minor intron retention. Additionally, many minor introns were efficiently spliced compared to their flanking major introns. Finally, we identified several novel AS events across minor introns in both mouse and human, which were also tissue-dependent. Bioinformatics analysis revealed that several of the AS events could result in the production of novel tissue-specific proteins. Moreover, like the major introns, we found that these AS events were more prevalent in long minor introns, while retention was favoured in shorter introns. CONCLUSION Here we show that minor intron splicing and AS across minor introns is a highly organised process that might be regulated in coordination with the major spliceosome in a tissue-specific manner. We have provided a framework to further study the impact of the minor spliceosome and the regulation of MIG expression. These findings may shed light on the mechanism underlying tissue-specific phenotypes in diseases associated with minor spliceosome inactivation. MIDB can be accessed at https://midb.pnb.uconn.edu .
Collapse
Affiliation(s)
- Anouk M. Olthof
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269 USA
| | - Katery C. Hyatt
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269 USA
| | - Rahul N. Kanadia
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269 USA
- Institute of Systems Genomics, University of Connecticut, Storrs, CT 06269 USA
| |
Collapse
|
114
|
Corsini NS, Peer AM, Moeseneder P, Roiuk M, Burkard TR, Theussl HC, Moll I, Knoblich JA. Coordinated Control of mRNA and rRNA Processing Controls Embryonic Stem Cell Pluripotency and Differentiation. Cell Stem Cell 2019; 22:543-558.e12. [PMID: 29625069 DOI: 10.1016/j.stem.2018.03.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 01/05/2018] [Accepted: 03/07/2018] [Indexed: 12/23/2022]
Abstract
Stem cell-specific transcriptional networks are well known to control pluripotency, but constitutive cellular processes such as mRNA splicing and protein synthesis can add complex layers of regulation with poorly understood effects on cell-fate decisions. Here, we show that the RNA binding protein HTATSF1 controls embryonic stem cell differentiation by regulating multiple aspects of RNA processing during ribosome biogenesis. HTATSF1, in a complex with splicing factor SF3B1, controls intron removal from ribosomal protein transcripts and regulates ribosomal RNA transcription and processing, thereby controlling 60S ribosomal abundance and protein synthesis. HTATSF1-dependent protein synthesis is essential for naive pre-implantation epiblast to transition into post-implantation epiblast, a stage with transiently low protein synthesis, and further differentiation toward neuroectoderm. Together, these results identify coordinated regulation of ribosomal RNA and protein synthesis by HTATSF1 and show that this essential mechanism controls protein synthesis during early mammalian embryogenesis.
Collapse
Affiliation(s)
- Nina S Corsini
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Angela M Peer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Paul Moeseneder
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Mykola Roiuk
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Thomas R Burkard
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria; Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Hans-Christian Theussl
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria; Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Isabella Moll
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Juergen A Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
115
|
Hansen MMK, Weinberger LS. Post-Transcriptional Noise Control. Bioessays 2019; 41:e1900044. [PMID: 31222776 PMCID: PMC6637019 DOI: 10.1002/bies.201900044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/22/2019] [Indexed: 01/01/2023]
Abstract
Recent evidence indicates that transcriptional bursts are intrinsically amplified by messenger RNA cytoplasmic processing to generate large stochastic fluctuations in protein levels. These fluctuations can be exploited by cells to enable probabilistic bet-hedging decisions. But large fluctuations in gene expression can also destabilize cell-fate commitment. Thus, it is unclear if cells temporally switch from high to low noise, and what mechanisms enable this switch. Here, the discovery of a post-transcriptional mechanism that attenuates noise in HIV is reviewed. Early in its life cycle, HIV amplifies transcriptional fluctuations to probabilistically select alternate fates, whereas at late times, HIV utilizes a post-transcriptional feedback mechanism to commit to a specific fate. Reanalyzing various reported post-transcriptional negative feedback architectures reveals that they attenuate noise more efficiently than classic transcriptional autorepression, leading to the derivation of an assay to detect post-transcriptional motifs. It is hypothesized that coupling transcriptional and post-transcriptional autoregulation enables efficient temporal noise control to benefit developmental bet-hedging decisions.
Collapse
Affiliation(s)
- Maike M. K. Hansen
- Gladstone|UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Leor S. Weinberger
- Gladstone|UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
116
|
Adusumalli S, Ngian Z, Lin W, Benoukraf T, Ong C. Increased intron retention is a post-transcriptional signature associated with progressive aging and Alzheimer's disease. Aging Cell 2019; 18:e12928. [PMID: 30868713 PMCID: PMC6516162 DOI: 10.1111/acel.12928] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/18/2018] [Indexed: 12/23/2022] Open
Abstract
Intron retention (IR) by alternative splicing is a conserved regulatory mechanism that can affect gene expression and protein function during adult development and age-onset diseases. However, it remains unclear whether IR undergoes spatial or temporal changes during different stages of aging or neurodegeneration like Alzheimer's disease (AD). By profiling the transcriptome of Drosophila head cells at different ages, we observed a significant increase in IR events for many genes during aging. Differential IR affects distinct biological functions at different ages and occurs at several AD-associated genes in older adults. The increased nucleosome occupancy at the differentially retained introns in young animals suggests that it may regulate the level of IR during aging. Notably, an increase in the number of IR events was also observed in healthy older mouse and human brain tissues, as well as in the cerebellum and frontal cortex from independent AD cohorts. Genes with differential IR shared many common features, including shorter intron length, no perturbation in their mRNA level, and enrichment for biological functions that are associated with mRNA processing and proteostasis. The differentially retained introns identified in AD frontal cortex have higher GC content, with many of their mRNA transcripts showing an altered level of protein expression compared to control samples. Taken together, our results suggest that an increased IR is an conserved signature that is associated with aging. By affecting pathways involved in mRNA and protein homeostasis, changes of IR pattern during aging may regulate the transition from healthy to pathological state in late-onset sporadic AD.
Collapse
Affiliation(s)
- Swarnaseetha Adusumalli
- Temasek Life Sciences Laboratory National University of Singapore Singapore
- Department of Biological Sciences National University of Singapore Singapore
| | - Zhen‐Kai Ngian
- Temasek Life Sciences Laboratory National University of Singapore Singapore
| | - Wei‐Qi Lin
- Temasek Life Sciences Laboratory National University of Singapore Singapore
| | - Touati Benoukraf
- Cancer Science Institute of Singapore National University of Singapore Singapore
- Discipline of Genetics, Faculty of Medicine Memorial University of Newfoundland St. John’s Newfoundland and Labrador Canada
| | - Chin‐Tong Ong
- Temasek Life Sciences Laboratory National University of Singapore Singapore
- Department of Biological Sciences National University of Singapore Singapore
| |
Collapse
|
117
|
RNA-binding proteins in hematopoiesis and hematological malignancy. Blood 2019; 133:2365-2373. [PMID: 30967369 PMCID: PMC6716123 DOI: 10.1182/blood-2018-10-839985] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/07/2019] [Indexed: 02/02/2023] Open
Abstract
RNA-binding proteins (RBPs) regulate fundamental processes, such as differentiation and self-renewal, by enabling the dynamic control of protein abundance or isoforms or through the regulation of noncoding RNA. RBPs are increasingly appreciated as being essential for normal hematopoiesis, and they are understood to play fundamental roles in hematological malignancies by acting as oncogenes or tumor suppressors. Alternative splicing has been shown to play roles in the development of specific hematopoietic lineages, and sequence-specific mutations in RBPs lead to dysregulated splicing in myeloid and lymphoid leukemias. RBPs that regulate translation contribute to the development and function of hematological lineages, act as nodes for the action of multiple signaling pathways, and contribute to hematological malignancies. These insights broaden our mechanistic understanding of the molecular regulation of hematopoiesis and offer opportunities to develop disease biomarkers and new therapeutic modalities.
Collapse
|
118
|
Viphakone N, Sudbery I, Griffith L, Heath CG, Sims D, Wilson SA. Co-transcriptional Loading of RNA Export Factors Shapes the Human Transcriptome. Mol Cell 2019; 75:310-323.e8. [PMID: 31104896 PMCID: PMC6675937 DOI: 10.1016/j.molcel.2019.04.034] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 02/25/2019] [Accepted: 04/29/2019] [Indexed: 11/29/2022]
Abstract
During gene expression, RNA export factors are mainly known for driving nucleo-cytoplasmic transport. While early studies suggested that the exon junction complex (EJC) provides a binding platform for them, subsequent work proposed that they are only recruited by the cap binding complex to the 5′ end of RNAs, as part of TREX. Using iCLIP, we show that the export receptor Nxf1 and two TREX subunits, Alyref and Chtop, are recruited to the whole mRNA co-transcriptionally via splicing but before 3′ end processing. Consequently, Alyref alters splicing decisions and Chtop regulates alternative polyadenylation. Alyref is recruited to the 5′ end of RNAs by CBC, and our data reveal subsequent binding to RNAs near EJCs. We demonstrate that eIF4A3 stimulates Alyref deposition not only on spliced RNAs close to EJC sites but also on single-exon transcripts. Our study reveals mechanistic insights into the co-transcriptional recruitment of mRNA export factors and how this shapes the human transcriptome. 5′ cap binding complex CBC acts as a transient landing pad for Alyref Alyref is deposited upstream of the exon-exon junction next to the EJC Alyref can be deposited on introns and regulate splicing Chtop is mainly deposited on 3′ UTRs and influences poly(A) site choices
Collapse
Affiliation(s)
- Nicolas Viphakone
- Sheffield Institute For Nucleic Acids (SInFoNiA) and Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK.
| | - Ian Sudbery
- Sheffield Institute For Nucleic Acids (SInFoNiA) and Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Llywelyn Griffith
- Sheffield Institute For Nucleic Acids (SInFoNiA) and Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Catherine G Heath
- Sheffield Institute For Nucleic Acids (SInFoNiA) and Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - David Sims
- MRC Computational Genomics Analysis and Training Programme (CGAT), MRC Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, OX3 9DS UK
| | - Stuart A Wilson
- Sheffield Institute For Nucleic Acids (SInFoNiA) and Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
119
|
Zuckerman B, Ulitsky I. Predictive models of subcellular localization of long RNAs. RNA (NEW YORK, N.Y.) 2019; 25:557-572. [PMID: 30745363 PMCID: PMC6467007 DOI: 10.1261/rna.068288.118] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 02/07/2019] [Indexed: 05/14/2023]
Abstract
Export to the cytoplasm is a key regulatory junction for both protein-coding mRNAs and long noncoding RNAs (lncRNAs), and cytoplasmic enrichment varies dramatically both within and between those groups. We used a new computational approach and RNA-seq data from human and mouse cells to quantify the genome-wide association between cytoplasmic/nuclear ratios of both gene groups and various factors, including expression levels, splicing efficiency, gene architecture, chromatin marks, and sequence elements. Splicing efficiency emerged as the main predictive factor, explaining up to a third of the variability in localization. Combination with other features allowed predictive models that could explain up to 45% of the variance for protein-coding genes and up to 34% for lncRNAs. Factors associated with localization were similar between lncRNAs and mRNAs with some important differences. Readily accessible features can thus be used to predict RNA localization.
Collapse
Affiliation(s)
- Binyamin Zuckerman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
120
|
Giannopoulou AF, Konstantakou EG, Velentzas AD, Avgeris SN, Avgeris M, Papandreou NC, Zoi I, Filippa V, Katarachia S, Lampidonis AD, Prombona A, Syntichaki P, Piperi C, Basdra EK, Iconomidou V, Papadavid E, Anastasiadou E, Papassideri IS, Papavassiliou AG, Voutsinas GE, Scorilas A, Stravopodis DJ. Gene-Specific Intron Retention Serves as Molecular Signature that Distinguishes Melanoma from Non-Melanoma Cancer Cells in Greek Patients. Int J Mol Sci 2019; 20:937. [PMID: 30795533 PMCID: PMC6412294 DOI: 10.3390/ijms20040937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Skin cancer represents the most common human malignancy, and it includes BCC, SCC, and melanoma. Since melanoma is one of the most aggressive types of cancer, we have herein attempted to develop a gene-specific intron retention signature that can distinguish BCC and SCC from melanoma biopsy tumors. METHODS Intron retention events were examined through RT-sqPCR protocols, using total RNA preparations derived from BCC, SCC, and melanoma Greek biopsy specimens. Intron-hosted miRNA species and their target transcripts were predicted via the miRbase and miRDB bioinformatics platforms, respectively. Ιntronic ORFs were recognized through the ORF Finder application. Generation and visualization of protein interactomes were achieved by the IntAct and Cytoscape softwares, while tertiary protein structures were produced by using the I-TASSER online server. RESULTS c-MYC and Sestrin-1 genes proved to undergo intron retention specifically in melanoma. Interaction maps of proteins encoded by genes being potentially targeted by retained intron-accommodated miRNAs were generated and SRPX2 was additionally delivered to our melanoma-specific signature. Novel ORFs were identified in MCT4 and Sestrin-1 introns, with potentially critical roles in melanoma development. CONCLUSIONS The property of c-MYC, Sestrin-1, and SRPX2 genes to retain specific introns could be clinically used to molecularly differentiate non-melanoma from melanoma tumors.
Collapse
Affiliation(s)
- Aikaterini F Giannopoulou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Eumorphia G Konstantakou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Athanassios D Velentzas
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Socratis N Avgeris
- Laboratory of Molecular Carcinogenesis and Rare Disease Genetics, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", 15310 Athens, Greece.
| | - Margaritis Avgeris
- Section of Biochemistry and Molecular Biology, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Nikos C Papandreou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Ilianna Zoi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Vicky Filippa
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece.
| | - Stamatia Katarachia
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Antonis D Lampidonis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Anastasia Prombona
- Laboratory of Chronobiology, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", 15310 Athens, Greece.
| | - Popi Syntichaki
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece.
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Efthimia K Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Vassiliki Iconomidou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Evangelia Papadavid
- 2nd Department of Dermatology and Venereology, Medical School, National and Kapodistrian University of Athens, "Attikon" University Hospital, 12462 Athens, Greece.
| | - Ema Anastasiadou
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece.
| | - Issidora S Papassideri
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Gerassimos E Voutsinas
- Laboratory of Molecular Carcinogenesis and Rare Disease Genetics, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", 15310 Athens, Greece.
| | - Andreas Scorilas
- Section of Biochemistry and Molecular Biology, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Dimitrios J Stravopodis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| |
Collapse
|
121
|
Saito Y, Yuan Y, Zucker-Scharff I, Fak JJ, Jereb S, Tajima Y, Licatalosi DD, Darnell RB. Differential NOVA2-Mediated Splicing in Excitatory and Inhibitory Neurons Regulates Cortical Development and Cerebellar Function. Neuron 2019; 101:707-720.e5. [PMID: 30638744 DOI: 10.1016/j.neuron.2018.12.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 09/25/2018] [Accepted: 12/12/2018] [Indexed: 01/13/2023]
Abstract
RNA-binding proteins (RBPs) regulate genetic diversity, but the degree to which they do so in individual cell types in vivo is unknown. We developed NOVA2 cTag-crosslinking and immunoprecipitation (CLIP) to generate functional RBP-RNA maps from different neuronal populations in the mouse brain. Combining cell type datasets from Nova2-cTag and Nova2 conditional knockout mice revealed differential NOVA2 regulatory actions on alternative splicing (AS) on the same transcripts expressed in different neurons. This includes functional differences in transcripts expressed in cortical and cerebellar excitatory versus inhibitory neurons, where we find NOVA2 is required for, respectively, development of laminar structure, motor coordination, and synapse formation. We also find that NOVA2-regulated AS is coupled to NOVA2 regulation of intron retention in hundreds of transcripts, which can sequester the trans-acting splicing factor PTBP2. In summary, cTag-CLIP complements single-cell RNA sequencing (RNA-seq) studies by providing a means for understanding RNA regulation of functional cell diversity.
Collapse
Affiliation(s)
- Yuhki Saito
- Laboratory of Molecular Neuro-oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | - Yuan Yuan
- Laboratory of Molecular Neuro-oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Ilana Zucker-Scharff
- Laboratory of Molecular Neuro-oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - John J Fak
- Laboratory of Molecular Neuro-oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Saša Jereb
- Laboratory of Molecular Neuro-oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Yoko Tajima
- Laboratory of Molecular Neuro-oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Donny D Licatalosi
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Robert B Darnell
- Laboratory of Molecular Neuro-oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
122
|
Klein JR. Novel Splicing of Immune System Thyroid Stimulating Hormone β-Subunit-Genetic Regulation and Biological Importance. Front Endocrinol (Lausanne) 2019; 10:44. [PMID: 30804891 PMCID: PMC6371030 DOI: 10.3389/fendo.2019.00044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/18/2019] [Indexed: 12/29/2022] Open
Abstract
Thyroid stimulating hormone (TSH), a glycoprotein hormone produced by the anterior pituitary, controls the production of thyroxine (T4) and triiodothyronine (T3) in the thyroid. TSH is also known to be produced by the cells of the immune system; however, the physiological importance of that to the organism is unclear. We identified an alternatively-spliced form of TSHβ that is present in both humans and mice. The TSHβ splice variant (TSHβv), although produced at low levels by the pituitary, is the primary form made by hematopoietic cells in the bone marrow, and by peripheral leukocytes. Recent studies have linked TSHβv functionally to a number of health-related conditions, including enhanced host responses to infection and protection against osteoporosis. However, TSHβv also has been associated with autoimmune thyroiditis in humans. Yet to be identified is the process by which the TSHβv isoform is produced. Here, a set of genetic steps is laid out through which human TSHβv is generated using splicing events that result in a novel transcript in which exon 2 is deleted, exon 3 is retained, and the 3' end of intron 2 codes for a signal peptide of the TSHβv polypeptide.
Collapse
|
123
|
Bakken TE, Hodge RD, Miller JA, Yao Z, Nguyen TN, Aevermann B, Barkan E, Bertagnolli D, Casper T, Dee N, Garren E, Goldy J, Graybuck LT, Kroll M, Lasken RS, Lathia K, Parry S, Rimorin C, Scheuermann RH, Schork NJ, Shehata SI, Tieu M, Phillips JW, Bernard A, Smith KA, Zeng H, Lein ES, Tasic B. Single-nucleus and single-cell transcriptomes compared in matched cortical cell types. PLoS One 2018; 13:e0209648. [PMID: 30586455 PMCID: PMC6306246 DOI: 10.1371/journal.pone.0209648] [Citation(s) in RCA: 358] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 12/10/2018] [Indexed: 12/21/2022] Open
Abstract
Transcriptomic profiling of complex tissues by single-nucleus RNA-sequencing (snRNA-seq) affords some advantages over single-cell RNA-sequencing (scRNA-seq). snRNA-seq provides less biased cellular coverage, does not appear to suffer cell isolation-based transcriptional artifacts, and can be applied to archived frozen specimens. We used well-matched snRNA-seq and scRNA-seq datasets from mouse visual cortex to compare cell type detection. Although more transcripts are detected in individual whole cells (~11,000 genes) than nuclei (~7,000 genes), we demonstrate that closely related neuronal cell types can be similarly discriminated with both methods if intronic sequences are included in snRNA-seq analysis. We estimate that the nuclear proportion of total cellular mRNA varies from 20% to over 50% for large and small pyramidal neurons, respectively. Together, these results illustrate the high information content of nuclear RNA for characterization of cellular diversity in brain tissues.
Collapse
Affiliation(s)
- Trygve E. Bakken
- Allen Institute for Brain Science, Seattle, WA, United States of America
| | - Rebecca D. Hodge
- Allen Institute for Brain Science, Seattle, WA, United States of America
| | - Jeremy A. Miller
- Allen Institute for Brain Science, Seattle, WA, United States of America
| | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA, United States of America
| | - Thuc Nghi Nguyen
- Allen Institute for Brain Science, Seattle, WA, United States of America
| | - Brian Aevermann
- J. Craig Venter Institute, La Jolla, CA, United States of America
| | - Eliza Barkan
- Allen Institute for Brain Science, Seattle, WA, United States of America
| | - Darren Bertagnolli
- Allen Institute for Brain Science, Seattle, WA, United States of America
| | - Tamara Casper
- Allen Institute for Brain Science, Seattle, WA, United States of America
| | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA, United States of America
| | - Emma Garren
- Allen Institute for Brain Science, Seattle, WA, United States of America
| | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA, United States of America
| | - Lucas T. Graybuck
- Allen Institute for Brain Science, Seattle, WA, United States of America
| | - Matthew Kroll
- Allen Institute for Brain Science, Seattle, WA, United States of America
| | - Roger S. Lasken
- J. Craig Venter Institute, La Jolla, CA, United States of America
| | - Kanan Lathia
- Allen Institute for Brain Science, Seattle, WA, United States of America
| | - Sheana Parry
- Allen Institute for Brain Science, Seattle, WA, United States of America
| | - Christine Rimorin
- Allen Institute for Brain Science, Seattle, WA, United States of America
| | | | | | - Soraya I. Shehata
- Allen Institute for Brain Science, Seattle, WA, United States of America
| | - Michael Tieu
- Allen Institute for Brain Science, Seattle, WA, United States of America
| | - John W. Phillips
- Allen Institute for Brain Science, Seattle, WA, United States of America
| | - Amy Bernard
- Allen Institute for Brain Science, Seattle, WA, United States of America
| | - Kimberly A. Smith
- Allen Institute for Brain Science, Seattle, WA, United States of America
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, United States of America
| | - Ed S. Lein
- Allen Institute for Brain Science, Seattle, WA, United States of America
| | - Bosiljka Tasic
- Allen Institute for Brain Science, Seattle, WA, United States of America
- * E-mail:
| |
Collapse
|
124
|
Wolfe SA, Farris SP, Mayfield JE, Heaney CF, Erickson EK, Harris RA, Mayfield RD, Raab-Graham KF. Ethanol and a rapid-acting antidepressant produce overlapping changes in exon expression in the synaptic transcriptome. Neuropharmacology 2018; 146:289-299. [PMID: 30419244 DOI: 10.1016/j.neuropharm.2018.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 10/03/2018] [Accepted: 11/07/2018] [Indexed: 01/02/2023]
Abstract
Alcohol use disorder (AUD) and major depressive disorder (MDD) are prevalent, debilitating, and highly comorbid disorders. The molecular changes that underlie their comorbidity are beginning to emerge. For example, recent evidence showed that acute ethanol exposure produces rapid antidepressant-like biochemical and behavioral responses. Both ethanol and fast-acting antidepressants block N-methyl-D-aspartate receptor (NMDAR) activity, leading to synaptic changes and long-lasting antidepressant-like behavioral effects. We used RNA sequencing to analyze changes in the synaptic transcriptome after acute treatment with ethanol or the NMDAR antagonist, Ro 25-6981. Ethanol and Ro 25-6981 induced differential, independent changes in gene expression. In contrast with gene-level expression, ethanol and Ro 25-6981 produced overlapping changes in exons, as measured by analysis of differentially expressed exons (DEEs). A prominent overlap in genes with DEEs indicated that changes in exon usage were important for both ethanol and Ro 25-6981 action. Structural modeling provided evidence that ethanol-induced exon expression in the NMDAR1 amino-terminal domain could induce conformational changes and thus alter NMDAR function. These findings suggest that the rapid antidepressant effects of ethanol and NMDAR antagonists reported previously may depend on synaptic exon usage rather than gene expression.
Collapse
Affiliation(s)
- Sarah A Wolfe
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, 92037, United States
| | - Sean P Farris
- Waggoner Center for Alcohol and Addiction Research, Department of Neuroscience, University of Texas at Austin, 2500 Speedway, Austin, TX, 78712, United States
| | - Joshua E Mayfield
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway, Austin, TX, 78712, United States
| | - Chelcie F Heaney
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC, 27157-1083, United States
| | - Emma K Erickson
- Waggoner Center for Alcohol and Addiction Research, Department of Neuroscience, University of Texas at Austin, 2500 Speedway, Austin, TX, 78712, United States
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, Department of Neuroscience, University of Texas at Austin, 2500 Speedway, Austin, TX, 78712, United States
| | - R Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, Department of Neuroscience, University of Texas at Austin, 2500 Speedway, Austin, TX, 78712, United States
| | - Kimberly F Raab-Graham
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC, 27157-1083, United States.
| |
Collapse
|
125
|
Mao M, Hu Y, Yang Y, Qian Y, Wei H, Fan W, Yang Y, Li X, Wang Z. Modeling and Predicting the Activities of Trans-Acting Splicing Factors with Machine Learning. Cell Syst 2018; 7:510-520.e4. [PMID: 30414922 DOI: 10.1016/j.cels.2018.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 05/10/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023]
Abstract
Alternative splicing (AS) is generally regulated by trans-splicing factors that specifically bind to cis-elements in pre-mRNAs. The human genome encodes ∼1,500 RNA binding proteins (RBPs) that potentially regulate AS, yet their functions remain largely unknown. To explore their potential activities, we fused the putative functional domains of RBPs to a sequence-specific RNA-binding domain and systemically analyzed how these engineered factors affect splicing. We discovered that ∼80% of low-complexity domains in endogenous RBPs displayed distinct context-dependent activities in regulating splicing, indicating that AS is under more extensive regulation than previously expected. We developed a machine learning approach to classify and predict the activities of RBPs based on their sequence compositions and further validated this model using endogenous RBPs and synthetic polypeptides. These results represent a systematic inspection, modeling, prediction, and validation of how RBP sequences affect their activities in controlling splicing, paving the way for de novo engineering of artificial splicing factors.
Collapse
Affiliation(s)
- Miaowei Mao
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Yue Hu
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yun Yang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yajie Qian
- Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Huanhuan Wei
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Fan
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Yi Yang
- Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoling Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Zefeng Wang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
126
|
Quesnel-Vallières M, Weatheritt RJ, Cordes SP, Blencowe BJ. Autism spectrum disorder: insights into convergent mechanisms from transcriptomics. Nat Rev Genet 2018; 20:51-63. [DOI: 10.1038/s41576-018-0066-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
127
|
Palazzo AF, Lee ES. Sequence Determinants for Nuclear Retention and Cytoplasmic Export of mRNAs and lncRNAs. Front Genet 2018; 9:440. [PMID: 30386371 PMCID: PMC6199362 DOI: 10.3389/fgene.2018.00440] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/14/2018] [Indexed: 11/26/2022] Open
Abstract
Eukaryotes are divided into two major compartments: the nucleus where RNA is synthesized and processed, and the cytoplasm, where mRNA is translated into proteins. Although many different RNAs are made, only a subset is allowed access to the cytoplasm, primarily RNAs involved in protein synthesis (mRNA, tRNA, and rRNA). In contrast, nuclear retained transcripts are mostly long non-coding RNAs (lncRNAs) whose role in cell physiology has been a source of much investigation in the past few years. In addition, it is likely that many non-functional RNAs, which arise by spurious transcription and misprocessing of functional RNAs, are also retained in the nucleus and degraded. In this review, the main sequence features that dictate whether any particular mRNA or lncRNA is a substrate for retention in the nucleus, or export to the cytoplasm, are discussed. Although nuclear export is promoted by RNA-splicing due to the fact that the spliceosome can help recruit export factors to the mature RNA, nuclear export does not require splicing. Indeed, most stable unspliced transcripts are well exported and associate with these same export factors in a splicing-independent manner. In contrast, nuclear retention is promoted by specialized cis-elements found in certain RNAs. This new understanding of the determinants of nuclear retention and cytoplasmic export provides a deeper understanding of how information flow is regulated in eukaryotic cells. Ultimately these processes promote the evolution of complexity in eukaryotes by shaping the genomic content through constructive neutral evolution.
Collapse
|
128
|
Dhamija S, Menon MB. Non-coding transcript variants of protein-coding genes - what are they good for? RNA Biol 2018; 15:1025-1031. [PMID: 30146915 DOI: 10.1080/15476286.2018.1511675] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The total number of protein-coding genes in the human genome is not significantly higher than those in much simpler eukaryotes, despite a general increase in genome size proportionate to the organismal complexity. The large non-coding transcriptome and extensive differential splicing, are increasingly being accepted as the factors contributing to the complex mammalian physiology and architecture. Recent studies reveal additional layers of functional complexity: some long non-coding RNAs have been re-defined as micropeptide or microprotein encoding transcripts, and in turn some protein-coding RNAs are bifunctional and display also non-coding functions. Moreover, several protein-coding genes express long non-coding RNA splice-forms and generate circular RNAs in addition to their canonical mRNA transcripts, revoking the strict definition of a gene as coding or non-coding. In this mini review, we discuss the current understanding of these hybrid genes and their possible roles and relevance.
Collapse
Affiliation(s)
- Sonam Dhamija
- a Division of Cancer Research, Department of Thoracic Surgery , Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg , Freiburg , Germany.,b Division of RNA Biology & Cancer , German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Manoj B Menon
- c Institute of Cell Biochemistry , Hannover Medical School , Hannover , Germany
| |
Collapse
|
129
|
Parra M, Booth BW, Weiszmann R, Yee B, Yeo GW, Brown JB, Celniker SE, Conboy JG. An important class of intron retention events in human erythroblasts is regulated by cryptic exons proposed to function as splicing decoys. RNA (NEW YORK, N.Y.) 2018; 24:1255-1265. [PMID: 29959282 PMCID: PMC6097662 DOI: 10.1261/rna.066951.118] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
During terminal erythropoiesis, the splicing machinery in differentiating erythroblasts executes a robust intron retention (IR) program that impacts expression of hundreds of genes. We studied IR mechanisms in the SF3B1 splicing factor gene, which expresses ∼50% of its transcripts in late erythroblasts as a nuclear isoform that retains intron 4. RNA-seq analysis of nonsense-mediated decay (NMD)-inhibited cells revealed previously undescribed splice junctions, rare or not detected in normal cells, that connect constitutive exons 4 and 5 to highly conserved cryptic cassette exons within the intron. Minigene splicing reporter assays showed that these cassettes promote IR. Genome-wide analysis of splice junction reads demonstrated that cryptic noncoding cassettes are much more common in large (>1 kb) retained introns than they are in small retained introns or in nonretained introns. Functional assays showed that heterologous cassettes can promote retention of intron 4 in the SF3B1 splicing reporter. Although many of these cryptic exons were spliced inefficiently, they exhibited substantial binding of U2AF1 and U2AF2 adjacent to their splice acceptor sites. We propose that these exons function as decoys that engage the intron-terminal splice sites, thereby blocking cross-intron interactions required for excision. Developmental regulation of decoy function underlies a major component of the erythroblast IR program.
Collapse
Affiliation(s)
- Marilyn Parra
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Ben W Booth
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Richard Weiszmann
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Brian Yee
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92037, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92037, USA
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - James B Brown
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Susan E Celniker
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - John G Conboy
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
130
|
Abstract
During erythropoiesis, hematopoietic stem and progenitor cells transition to erythroblasts en route to terminal differentiation into enucleated red blood cells. Transcriptome-wide changes underlie distinct morphological and functional characteristics at each cell division during this process. Many studies of gene expression have historically been carried out in erythroblasts, and the biogenesis of β-globin mRNA—the most highly expressed transcript in erythroblasts—was the focus of many seminal studies on the mechanisms of pre-mRNA splicing. We now understand that pre-mRNA splicing plays an important role in shaping the transcriptome of developing erythroblasts. Recent advances have provided insight into the role of alternative splicing and intron retention as important regulatory mechanisms of erythropoiesis. However, dysregulation of splicing during erythropoiesis is also a cause of several hematological diseases, including β-thalassemia and myelodysplastic syndromes. With a growing understanding of the role that splicing plays in these diseases, we are well poised to develop gene-editing treatments. In this review, we focus on changes in the developing erythroblast transcriptome caused by alternative splicing, the molecular basis of splicing-related blood diseases, and therapeutic advances in disease treatment using CRISPR/Cas9 gene editing.
Collapse
Affiliation(s)
- Kirsten A Reimer
- Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, 06520, USA
| | - Karla M Neugebauer
- Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, 06520, USA
| |
Collapse
|
131
|
Andreassi C, Crerar H, Riccio A. Post-transcriptional Processing of mRNA in Neurons: The Vestiges of the RNA World Drive Transcriptome Diversity. Front Mol Neurosci 2018; 11:304. [PMID: 30210293 PMCID: PMC6121099 DOI: 10.3389/fnmol.2018.00304] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/09/2018] [Indexed: 12/17/2022] Open
Abstract
Neurons are morphologically complex cells that rely on the compartmentalization of protein expression to develop and maintain their extraordinary cytoarchitecture. This formidable task is achieved, at least in part, by targeting mRNA to subcellular compartments where they are rapidly translated. mRNA transcripts are the conveyor of genetic information from DNA to the translational machinery, however, they are also endowed with additional functions linked to both the coding sequence (open reading frame, or ORF) and the flanking 5′ and 3′ untranslated regions (UTRs), that may harbor coding-independent functions. In this review, we will highlight recent evidences supporting new coding-dependent and -independent functions of mRNA and discuss how nuclear and cytoplasmic post-transcriptional modifications of mRNA contribute to localization and translation in mammalian cells with specific emphasis on neurons. We also describe recently developed techniques that can be employed to study RNA dynamics at subcellular level in eukaryotic cells in developing and regenerating neurons.
Collapse
Affiliation(s)
- Catia Andreassi
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Hamish Crerar
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Antonella Riccio
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| |
Collapse
|
132
|
Furlanis E, Scheiffele P. Regulation of Neuronal Differentiation, Function, and Plasticity by Alternative Splicing. Annu Rev Cell Dev Biol 2018; 34:451-469. [PMID: 30028642 DOI: 10.1146/annurev-cellbio-100617-062826] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Posttranscriptional mechanisms provide powerful means to expand the coding power of genomes. In nervous systems, alternative splicing has emerged as a fundamental mechanism not only for the diversification of protein isoforms but also for the spatiotemporal control of transcripts. Thus, alternative splicing programs play instructive roles in the development of neuronal cell type-specific properties, neuronal growth, self-recognition, synapse specification, and neuronal network function. Here we discuss the most recent genome-wide efforts on mapping RNA codes and RNA-binding proteins for neuronal alternative splicing regulation. We illustrate how alternative splicing shapes key steps of neuronal development, neuronal maturation, and synaptic properties. Finally, we highlight efforts to dissect the spatiotemporal dynamics of alternative splicing and their potential contribution to neuronal plasticity and the mature nervous system.
Collapse
|
133
|
Calixto CPG, Guo W, James AB, Tzioutziou NA, Entizne JC, Panter PE, Knight H, Nimmo HG, Zhang R, Brown JWS. Rapid and Dynamic Alternative Splicing Impacts the Arabidopsis Cold Response Transcriptome. THE PLANT CELL 2018; 30:1424-1444. [PMID: 29764987 DOI: 10.1101/251876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/20/2018] [Accepted: 05/10/2018] [Indexed: 05/20/2023]
Abstract
Plants have adapted to tolerate and survive constantly changing environmental conditions by reprogramming gene expression The dynamics of the contribution of alternative splicing (AS) to stress responses are unknown. RNA-sequencing of a time-series of Arabidopsis thaliana plants exposed to cold determines the timing of significant AS changes. This shows a massive and rapid AS response with coincident waves of transcriptional and AS activity occurring in the first few hours of temperature reduction and further AS throughout the cold. In particular, hundreds of genes showed changes in expression due to rapidly occurring AS in response to cold ("early AS" genes); these included numerous novel cold-responsive transcription factors and splicing factors/RNA binding proteins regulated only by AS. The speed and sensitivity to small temperature changes of AS of some of these genes suggest that fine-tuning expression via AS pathways contributes to the thermo-plasticity of expression. Four early AS splicing regulatory genes have been shown previously to be required for freezing tolerance and acclimation; we provide evidence of a fifth gene, U2B"-LIKE Such factors likely drive cascades of AS of downstream genes that, alongside transcription, modulate transcriptome reprogramming that together govern the physiological and survival responses of plants to low temperature.
Collapse
Affiliation(s)
- Cristiane P G Calixto
- Plant Sciences Division, School of Life Sciences, University of Dundee, Dundee DD2 5DA, United Kingdom
| | - Wenbin Guo
- Plant Sciences Division, School of Life Sciences, University of Dundee, Dundee DD2 5DA, United Kingdom
- Information and Computational Sciences, The James Hutton Institute, Dundee DD2 5DA, United Kingdom
| | - Allan B James
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Nikoleta A Tzioutziou
- Plant Sciences Division, School of Life Sciences, University of Dundee, Dundee DD2 5DA, United Kingdom
| | - Juan Carlos Entizne
- Plant Sciences Division, School of Life Sciences, University of Dundee, Dundee DD2 5DA, United Kingdom
- Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, United Kingdom
| | - Paige E Panter
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Heather Knight
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Hugh G Nimmo
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Runxuan Zhang
- Information and Computational Sciences, The James Hutton Institute, Dundee DD2 5DA, United Kingdom
| | - John W S Brown
- Plant Sciences Division, School of Life Sciences, University of Dundee, Dundee DD2 5DA, United Kingdom
- Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, United Kingdom
| |
Collapse
|
134
|
Wang T, Cai Q, Yang WJ, Fan HH, Yi JF, Xu F. MicroRNA-219 alleviates glutamate-induced neurotoxicity in cultured hippocampal neurons by targeting calmodulin-dependent protein kinase II gamma. Neural Regen Res 2018; 13:1216-1224. [PMID: 30028330 PMCID: PMC6065221 DOI: 10.4103/1673-5374.235059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2017] [Indexed: 12/18/2022] Open
Abstract
Septic encephalopathy is a frequent complication of sepsis, but there are few studies examining the role of microRNAs (miRs) in its pathogenesis. In this study, a miR-219 mimic was transfected into rat hippocampal neurons to model miR-219 overexpression. A protective effect of miR-219 was observed for glutamate-induced neurotoxicity of rat hippocampal neurons, and an underlying mechanism involving calmodulin-dependent protein kinase II γ (CaMKIIγ) was demonstrated. miR-219 and CaMKIIγ mRNA expression induced by glutamate in hippocampal neurons was determined by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). After neurons were transfected with miR-219 mimic, effects on cell viability and apoptosis were measured by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry. In addition, a luciferase reporter gene system was used to confirm CaMKIIγ as a target gene of miR-219. Western blot assay and rescue experiments were also utilized to detect CaMKIIγ expression and further verify that miR-219 in hippocampal neurons exerted its effect through regulation of CaMKIIγ. MTT assay and qRT-PCR results revealed obvious decreases in cell viability and miR-219 expression after glutamate stimulation, while CaMKIIγ mRNA expression was increased. MTT, flow cytometry, and caspase-3 activity assays showed that miR-219 overexpression could elevate glutamate-induced cell viability, and reduce cell apoptosis and caspase-3 activity. Moreover, luciferase CaMKIIγ-reporter activity was remarkably decreased by co-transfection with miR-219 mimic, and the results of a rescue experiment showed that CaMKIIγ overexpression could reverse the biological effects of miR-219. Collectively, these findings verify that miR-219 expression was decreased in glutamate-induced neurons, CaMKIIγ was a target gene of miR-219, and miR-219 alleviated glutamate-induced neuronal excitotoxicity by negatively controlling CaMKIIγ expression.
Collapse
Affiliation(s)
- Ting Wang
- Department of Emergency, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Department of Emergency, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Qun Cai
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Wen-Jie Yang
- Medical College of Nantong University, Nantong, Jiangsu Province, China
| | - Hai-Hua Fan
- Medical College of Nantong University, Nantong, Jiangsu Province, China
| | - Jian-Feng Yi
- Medical College of Nantong University, Nantong, Jiangsu Province, China
| | - Feng Xu
- Department of Emergency, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
135
|
Luisier R, Tyzack GE, Hall CE, Mitchell JS, Devine H, Taha DM, Malik B, Meyer I, Greensmith L, Newcombe J, Ule J, Luscombe NM, Patani R. Intron retention and nuclear loss of SFPQ are molecular hallmarks of ALS. Nat Commun 2018; 9:2010. [PMID: 29789581 PMCID: PMC5964114 DOI: 10.1038/s41467-018-04373-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 04/20/2018] [Indexed: 01/08/2023] Open
Abstract
Mutations causing amyotrophic lateral sclerosis (ALS) strongly implicate ubiquitously expressed regulators of RNA processing. To understand the molecular impact of ALS-causing mutations on neuronal development and disease, we analysed transcriptomes during in vitro differentiation of motor neurons (MNs) from human control and patient-specific VCP mutant induced-pluripotent stem cells (iPSCs). We identify increased intron retention (IR) as a dominant feature of the splicing programme during early neural differentiation. Importantly, IR occurs prematurely in VCP mutant cultures compared with control counterparts. These aberrant IR events are also seen in independent RNAseq data sets from SOD1- and FUS-mutant MNs. The most significant IR is seen in the SFPQ transcript. The SFPQ protein binds extensively to its retained intron, exhibits lower nuclear abundance in VCP mutant cultures and is lost from nuclei of MNs in mouse models and human sporadic ALS. Collectively, we demonstrate SFPQ IR and nuclear loss as molecular hallmarks of familial and sporadic ALS.
Collapse
Affiliation(s)
| | - Giulia E Tyzack
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Claire E Hall
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Jamie S Mitchell
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Helen Devine
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Doaa M Taha
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Bilal Malik
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Ione Meyer
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Linda Greensmith
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Jia Newcombe
- Department of Neuroinflammation, UCL Institute of Neurology, Queen Square, London, WC1N 1PJ, UK
| | - Jernej Ule
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Nicholas M Luscombe
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- UCL Genetics Institute, University College London, Gower Street, London, WC1E 6BT, UK.
- Okinawa Institute of Science & Technology Graduate University, Okinawa, 904-0495, Japan.
| | - Rickie Patani
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
136
|
Activity-dependent aberrations in gene expression and alternative splicing in a mouse model of Rett syndrome. Proc Natl Acad Sci U S A 2018; 115:E5363-E5372. [PMID: 29769330 DOI: 10.1073/pnas.1722546115] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder that affects about 1 in 10,000 female live births. The underlying cause of RTT is mutations in the X-linked gene, methyl-CpG-binding protein 2 (MECP2); however, the molecular mechanism by which these mutations mediate the RTT neuropathology remains enigmatic. Specifically, although MeCP2 is known to act as a transcriptional repressor, analyses of the RTT brain at steady-state conditions detected numerous differentially expressed genes, while the changes in transcript levels were mostly subtle. Here we reveal an aberrant global pattern of gene expression, characterized predominantly by higher levels of expression of activity-dependent genes, and anomalous alternative splicing events, specifically in response to neuronal activity in a mouse model for RTT. Notably, the specific splicing modalities of intron retention and exon skipping displayed a significant bias toward increased retained introns and skipped exons, respectively, in the RTT brain compared with the WT brain. Furthermore, these aberrations occur in conjunction with higher seizure susceptibility in response to neuronal activity in RTT mice. Our findings advance the concept that normal MeCP2 functioning is required for fine-tuning the robust and immediate changes in gene transcription and for proper regulation of alternative splicing induced in response to neuronal stimulation.
Collapse
|
137
|
Hansen MMK, Wen WY, Ingerman E, Razooky BS, Thompson CE, Dar RD, Chin CW, Simpson ML, Weinberger LS. A Post-Transcriptional Feedback Mechanism for Noise Suppression and Fate Stabilization. Cell 2018; 173:1609-1621.e15. [PMID: 29754821 PMCID: PMC6044448 DOI: 10.1016/j.cell.2018.04.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/19/2018] [Accepted: 04/03/2018] [Indexed: 11/25/2022]
Abstract
Diverse biological systems utilize fluctuations ("noise") in gene expression to drive lineage-commitment decisions. However, once a commitment is made, noise becomes detrimental to reliable function, and the mechanisms enabling post-commitment noise suppression are unclear. Here, we find that architectural constraints on noise suppression are overcome to stabilize fate commitment. Using single-molecule and time-lapse imaging, we find that-after a noise-driven event-human immunodeficiency virus (HIV) strongly attenuates expression noise through a non-transcriptional negative-feedback circuit. Feedback is established through a serial cascade of post-transcriptional splicing, whereby proteins generated from spliced mRNAs auto-deplete their own precursor unspliced mRNAs. Strikingly, this auto-depletion circuitry minimizes noise to stabilize HIV's commitment decision, and a noise-suppression molecule promotes stabilization. This feedback mechanism for noise suppression suggests a functional role for delayed splicing in other systems and may represent a generalizable architecture of diverse homeostatic signaling circuits.
Collapse
Affiliation(s)
- Maike M K Hansen
- Gladstone
- UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Winnie Y Wen
- Gladstone
- UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elena Ingerman
- Gladstone
- UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Brandon S Razooky
- Gladstone
- UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Cassandra E Thompson
- Gladstone
- UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Roy D Dar
- Gladstone
- UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Charles W Chin
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; The Bredesen Center, University of Tennessee, Knoxville, TN 37996, USA
| | - Michael L Simpson
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; The Bredesen Center, University of Tennessee, Knoxville, TN 37996, USA
| | - Leor S Weinberger
- Gladstone
- UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
138
|
Schatton A, Mendoza E, Grube K, Scharff C. FoxP in bees: A comparative study on the developmental and adult expression pattern in three bee species considering isoforms and circuitry. J Comp Neurol 2018. [PMID: 29536541 DOI: 10.1002/cne.24430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mutations in the transcription factors FOXP1, FOXP2, and FOXP4 affect human cognition, including language. The FoxP gene locus is evolutionarily ancient and highly conserved in its DNA-binding domain. In Drosophila melanogaster FoxP has been implicated in courtship behavior, decision making, and specific types of motor-learning. Because honeybees (Apis mellifera, Am) excel at navigation and symbolic dance communication, they are a particularly suitable insect species to investigate a potential link between neural FoxP expression and cognition. We characterized two AmFoxP isoforms and mapped their expression in the brain during development and in adult foragers. Using a custom-made antiserum and in situ hybridization, we describe 11 AmFoxP expressing neuron populations. FoxP was expressed in equivalent patterns in two other representatives of Apidae; a closely related dwarf bee and a bumblebee species. Neural tracing revealed that the largest FoxP expressing neuron cluster in honeybees projects into a posterior tract that connects the optic lobe to the posterior lateral protocerebrum, predicting a function in visual processing. Our data provide an entry point for future experiments assessing the function of FoxP in eusocial Hymenoptera.
Collapse
Affiliation(s)
- Adriana Schatton
- Institute for Animal Behavior, Freie Universität Berlin, Berlin, 14195, Germany
| | - Ezequiel Mendoza
- Institute for Animal Behavior, Freie Universität Berlin, Berlin, 14195, Germany
| | - Kathrin Grube
- Institute for Animal Behavior, Freie Universität Berlin, Berlin, 14195, Germany
| | - Constance Scharff
- Institute for Animal Behavior, Freie Universität Berlin, Berlin, 14195, Germany
| |
Collapse
|
139
|
Intron retention induced by microsatellite expansions as a disease biomarker. Proc Natl Acad Sci U S A 2018; 115:4234-4239. [PMID: 29610297 DOI: 10.1073/pnas.1716617115] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Expansions of simple sequence repeats, or microsatellites, have been linked to ∼30 neurological-neuromuscular diseases. While these expansions occur in coding and noncoding regions, microsatellite sequence and repeat length diversity is more prominent in introns with eight different trinucleotide to hexanucleotide repeats, causing hereditary diseases such as myotonic dystrophy type 2 (DM2), Fuchs endothelial corneal dystrophy (FECD), and C9orf72 amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD). Here, we test the hypothesis that these GC-rich intronic microsatellite expansions selectively trigger host intron retention (IR). Using DM2, FECD, and C9-ALS/FTD as examples, we demonstrate that retention is readily detectable in affected tissues and peripheral blood lymphocytes and conclude that IR screening constitutes a rapid and inexpensive biomarker for intronic repeat expansion disease.
Collapse
|
140
|
Rekosh D, Hammarskjold ML. Intron retention in viruses and cellular genes: Detention, border controls and passports. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1470. [PMID: 29508942 DOI: 10.1002/wrna.1470] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/04/2018] [Accepted: 01/24/2018] [Indexed: 02/06/2023]
Abstract
Intron retention (IR), where one or more introns remain in the RNA after splicing, was long thought to be rare in mammalian cells, albeit common in plants and some viruses. Largely due to the development of better methods for RNA analysis, it has now been recognized that IR is much more common than previously thought and that this mechanism is likely to play an important role in mammalian gene regulation. To date, most publications and reviews about IR have described the resulting mRNAs as "dead end" products, with no direct consequence for the proteome. However, there are also many reports of mRNAs with retained introns giving rise to alternative protein isoforms. Although this was originally revealed in viral systems, there are now numerous examples of bona fide cellular proteins that are translated from mRNAs with retained introns. These new isoforms have sometimes been shown to have important regulatory functions. In this review, we highlight recent developments in this area and the research on viruses that led the way to the realization of the many ways in which mRNAs with retained introns can be regulated. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing RNA Export and Localization > Nuclear Export/Import RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- David Rekosh
- The Myles H. Thaler Center for AIDS and Human Retrovirus Research and the Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia.,Department of Microbiology, University of Venda, Thohoyandou, South Africa
| | - Marie-Louise Hammarskjold
- The Myles H. Thaler Center for AIDS and Human Retrovirus Research and the Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia.,Department of Microbiology, University of Venda, Thohoyandou, South Africa
| |
Collapse
|
141
|
Vanichkina DP, Schmitz U, Wong JJL, Rasko JE. Challenges in defining the role of intron retention in normal biology and disease. Semin Cell Dev Biol 2018; 75:40-49. [DOI: 10.1016/j.semcdb.2017.07.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/19/2017] [Accepted: 07/19/2017] [Indexed: 10/19/2022]
|
142
|
Su CH, D D, Tarn WY. Alternative Splicing in Neurogenesis and Brain Development. Front Mol Biosci 2018; 5:12. [PMID: 29484299 PMCID: PMC5816070 DOI: 10.3389/fmolb.2018.00012] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/25/2018] [Indexed: 12/20/2022] Open
Abstract
Alternative splicing of precursor mRNA is an important mechanism that increases transcriptomic and proteomic diversity and also post-transcriptionally regulates mRNA levels. Alternative splicing occurs at high frequency in brain tissues and contributes to every step of nervous system development, including cell-fate decisions, neuronal migration, axon guidance, and synaptogenesis. Genetic manipulation and RNA sequencing have provided insights into the molecular mechanisms underlying the effects of alternative splicing in stem cell self-renewal and neuronal fate specification. Timely expression and perhaps post-translational modification of neuron-specific splicing regulators play important roles in neuronal development. Alternative splicing of many key transcription regulators or epigenetic factors reprograms the transcriptome and hence contributes to stem cell fate determination. During neuronal differentiation, alternative splicing also modulates signaling activity, centriolar dynamics, and metabolic pathways. Moreover, alternative splicing impacts cortical lamination and neuronal development and function. In this review, we focus on recent progress toward understanding the contributions of alternative splicing to neurogenesis and brain development, which has shed light on how splicing defects may cause brain disorders and diseases.
Collapse
Affiliation(s)
- Chun-Hao Su
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Dhananjaya D
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Woan-Yuh Tarn
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| |
Collapse
|
143
|
The Y Chromosome Modulates Splicing and Sex-Biased Intron Retention Rates in Drosophila. Genetics 2017; 208:1057-1067. [PMID: 29263027 DOI: 10.1534/genetics.117.300637] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/18/2017] [Indexed: 01/01/2023] Open
Abstract
The Drosophila Y chromosome is a 40-Mb segment of mostly repetitive DNA; it harbors a handful of protein-coding genes and a disproportionate amount of satellite repeats, transposable elements, and multicopy DNA arrays. Intron retention (IR) is a type of alternative splicing (AS) event by which one or more introns remain within the mature transcript. IR recently emerged as a deliberate cellular mechanism to modulate gene expression levels and has been implicated in multiple biological processes. However, the extent of sex differences in IR and the contribution of the Y chromosome to the modulation of AS and IR rates has not been addressed. Here we showed pervasive IR in the fruit fly Drosophila melanogaster with thousands of novel IR events, hundreds of which displayed extensive sex bias. The data also revealed an unsuspected role for the Y chromosome in the modulation of AS and IR. The majority of sex-biased IR events introduced premature termination codons and the magnitude of sex bias was associated with gene expression differences between the sexes. Surprisingly, an extra Y chromosome in males (X^YY genotype) or the presence of a Y chromosome in females (X^XY genotype) significantly modulated IR and recapitulated natural differences in IR between the sexes. Our results highlight the significance of sex-biased IR in tuning sex differences and the role of the Y chromosome as a source of variable IR rates between the sexes. Modulation of splicing and IR rates across the genome represent new and unexpected outcomes of the Drosophila Y chromosome.
Collapse
|
144
|
Wegener M, Müller-McNicoll M. Nuclear retention of mRNAs - quality control, gene regulation and human disease. Semin Cell Dev Biol 2017; 79:131-142. [PMID: 29102717 DOI: 10.1016/j.semcdb.2017.11.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 12/21/2022]
Abstract
Nuclear retention of incompletely spliced or mature mRNAs emerges as a novel, previously underappreciated layer of gene regulation, which enables the cell to rapidly respond to stress, viral infection, differentiation cues or changing environmental conditions. Focusing on mammalian cells, we discuss recent insights into the mechanisms and functions of nuclear retention, describe retention-promoting features in protein-coding transcripts and propose mechanisms for their regulated release into the cytoplasm. Moreover, we discuss examples of how aberrant nuclear retention of mRNAs may lead to human diseases.
Collapse
Affiliation(s)
- Marius Wegener
- RNA Regulation Group, Cluster of Excellence 'Macromolecular Complexes', Goethe University Frankfurt, Institute of Cell Biology and Neuroscience, Max-von-Laue-Str. 13, 60438 Frankfurt/Main, Germany
| | - Michaela Müller-McNicoll
- RNA Regulation Group, Cluster of Excellence 'Macromolecular Complexes', Goethe University Frankfurt, Institute of Cell Biology and Neuroscience, Max-von-Laue-Str. 13, 60438 Frankfurt/Main, Germany.
| |
Collapse
|
145
|
Schmitz U, Pinello N, Jia F, Alasmari S, Ritchie W, Keightley MC, Shini S, Lieschke GJ, Wong JJL, Rasko JEJ. Intron retention enhances gene regulatory complexity in vertebrates. Genome Biol 2017; 18:216. [PMID: 29141666 PMCID: PMC5688624 DOI: 10.1186/s13059-017-1339-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 10/13/2017] [Indexed: 01/22/2023] Open
Abstract
Background While intron retention (IR) is now widely accepted as an important mechanism of mammalian gene expression control, it remains the least studied form of alternative splicing. To delineate conserved features of IR, we performed an exhaustive phylogenetic analysis in a highly purified and functionally defined cell type comprising neutrophilic granulocytes from five vertebrate species spanning 430 million years of evolution. Results Our RNA-sequencing-based analysis suggests that IR increases gene regulatory complexity, which is indicated by a strong anti-correlation between the number of genes affected by IR and the number of protein-coding genes in the genome of individual species. Our results confirm that IR affects many orthologous or functionally related genes in granulocytes. Further analysis uncovers new and unanticipated conserved characteristics of intron-retaining transcripts. We find that intron-retaining genes are transcriptionally co-regulated from bidirectional promoters. Intron-retaining genes have significantly longer 3′ UTR sequences, with a corresponding increase in microRNA binding sites, some of which include highly conserved sequence motifs. This suggests that intron-retaining genes are highly regulated post-transcriptionally. Conclusions Our study provides unique insights concerning the role of IR as a robust and evolutionarily conserved mechanism of gene expression regulation. Our findings enhance our understanding of gene regulatory complexity by adding another contributor to evolutionary adaptation. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1339-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ulf Schmitz
- Gene & Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, 2050, NSW, Australia.,Sydney Medical School, University of Sydney, Camperdown, 2050, NSW, Australia
| | - Natalia Pinello
- Gene & Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, 2050, NSW, Australia.,Sydney Medical School, University of Sydney, Camperdown, 2050, NSW, Australia.,Gene Regulation in Cancer Laboratory, Centenary Institute, University of Sydney, Camperdown, 2050, NSW, Australia
| | - Fangzhi Jia
- Gene & Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, 2050, NSW, Australia.,Sydney Medical School, University of Sydney, Camperdown, 2050, NSW, Australia
| | - Sultan Alasmari
- Australian Regenerative Medicine Institute, Monash University, Clayton, 3800, VIC, Australia
| | | | | | - Shaniko Shini
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Graham J Lieschke
- Australian Regenerative Medicine Institute, Monash University, Clayton, 3800, VIC, Australia
| | - Justin J-L Wong
- Gene & Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, 2050, NSW, Australia.,Sydney Medical School, University of Sydney, Camperdown, 2050, NSW, Australia.,Gene Regulation in Cancer Laboratory, Centenary Institute, University of Sydney, Camperdown, 2050, NSW, Australia
| | - John E J Rasko
- Gene & Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, 2050, NSW, Australia. .,Sydney Medical School, University of Sydney, Camperdown, 2050, NSW, Australia. .,Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, 2050, NSW, Australia. .,, Locked Bag 6, Newtown, NSW, 2042, Australia.
| |
Collapse
|
146
|
Johnson B, Zhao Y, Fasolino M, Lamonica J, Kim Y, Georgakilas G, Wood K, Bu D, Cui Y, Goffin D, Vahedi G, Kim T, Zhou Z. Biotin tagging of MeCP2 in mice reveals contextual insights into the Rett syndrome transcriptome. Nat Med 2017; 23:1203-1214. [PMID: 28920956 PMCID: PMC5630512 DOI: 10.1038/nm.4406] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 08/18/2017] [Indexed: 12/12/2022]
Abstract
Mutations in MECP2 cause Rett syndrome (RTT), an X-linked neurological disorder characterized by regressive loss of neurodevelopmental milestones and acquired psychomotor deficits. However, the cellular heterogeneity of the brain impedes an understanding of how MECP2 mutations contribute to RTT. Here we developed a Cre-inducible method for cell-type-specific biotin tagging of MeCP2 in mice. Combining this approach with an allelic series of knock-in mice carrying frequent RTT-associated mutations (encoding T158M and R106W) enabled the selective profiling of RTT-associated nuclear transcriptomes in excitatory and inhibitory cortical neurons. We found that most gene-expression changes were largely specific to each RTT-associated mutation and cell type. Lowly expressed cell-type-enriched genes were preferentially disrupted by MeCP2 mutations, with upregulated and downregulated genes reflecting distinct functional categories. Subcellular RNA analysis in MeCP2-mutant neurons further revealed reductions in the nascent transcription of long genes and uncovered widespread post-transcriptional compensation at the cellular level. Finally, we overcame X-linked cellular mosaicism in female RTT models and identified distinct gene-expression changes between neighboring wild-type and mutant neurons, providing contextual insights into RTT etiology that support personalized therapeutic interventions.
Collapse
Affiliation(s)
- B.S. Johnson
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Y.T. Zhao
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - M. Fasolino
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - J.M. Lamonica
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Y.J. Kim
- Department of Biological Sciences and Center for Systems Biology, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - G. Georgakilas
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - K.H. Wood
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - D. Bu
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Y. Cui
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - D. Goffin
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - G. Vahedi
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - T.H. Kim
- Department of Biological Sciences and Center for Systems Biology, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Z. Zhou
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
147
|
Tapial J, Ha KCH, Sterne-Weiler T, Gohr A, Braunschweig U, Hermoso-Pulido A, Quesnel-Vallières M, Permanyer J, Sodaei R, Marquez Y, Cozzuto L, Wang X, Gómez-Velázquez M, Rayon T, Manzanares M, Ponomarenko J, Blencowe BJ, Irimia M. An atlas of alternative splicing profiles and functional associations reveals new regulatory programs and genes that simultaneously express multiple major isoforms. Genome Res 2017; 27:1759-1768. [PMID: 28855263 PMCID: PMC5630039 DOI: 10.1101/gr.220962.117] [Citation(s) in RCA: 279] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 08/09/2017] [Indexed: 12/29/2022]
Abstract
Alternative splicing (AS) generates remarkable regulatory and proteomic complexity in metazoans. However, the functions of most AS events are not known, and programs of regulated splicing remain to be identified. To address these challenges, we describe the Vertebrate Alternative Splicing and Transcription Database (VastDB), the largest resource of genome-wide, quantitative profiles of AS events assembled to date. VastDB provides readily accessible quantitative information on the inclusion levels and functional associations of AS events detected in RNA-seq data from diverse vertebrate cell and tissue types, as well as developmental stages. The VastDB profiles reveal extensive new intergenic and intragenic regulatory relationships among different classes of AS and previously unknown and conserved landscapes of tissue-regulated exons. Contrary to recent reports concluding that nearly all human genes express a single major isoform, VastDB provides evidence that at least 48% of multiexonic protein-coding genes express multiple splice variants that are highly regulated in a cell/tissue-specific manner, and that >18% of genes simultaneously express multiple major isoforms across diverse cell and tissue types. Isoforms encoded by the latter set of genes are generally coexpressed in the same cells and are often engaged by translating ribosomes. Moreover, they are encoded by genes that are significantly enriched in functions associated with transcriptional control, implying they may have an important and wide-ranging role in controlling cellular activities. VastDB thus provides an unprecedented resource for investigations of AS function and regulation.
Collapse
Affiliation(s)
- Javier Tapial
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Kevin C H Ha
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | | | - André Gohr
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | | | - Antonio Hermoso-Pulido
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Mathieu Quesnel-Vallières
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Jon Permanyer
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Reza Sodaei
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Yamile Marquez
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Luca Cozzuto
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Xinchen Wang
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Melisa Gómez-Velázquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Teresa Rayon
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Miguel Manzanares
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Julia Ponomarenko
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | | | - Manuel Irimia
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| |
Collapse
|
148
|
Regulated Intron Removal Integrates Motivational State and Experience. Cell 2017; 169:836-848.e15. [PMID: 28525754 DOI: 10.1016/j.cell.2017.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/23/2017] [Accepted: 05/01/2017] [Indexed: 11/23/2022]
Abstract
Myriad experiences produce transient memory, yet, contingent on the internal state of the organism and the saliency of the experience, only some memories persist over time. How experience and internal state influence the duration of memory at the molecular level remains unknown. A self-assembled aggregated state of Drosophila Orb2A protein is required specifically for long-lasting memory. We report that in the adult fly brain the mRNA encoding Orb2A protein exists in an unspliced non-protein-coding form. The convergence of experience and internal drive transiently increases the spliced protein-coding Orb2A mRNA. A screen identified pasilla, the fly ortholog of mammalian Nova-1/2, as a mediator of Orb2A mRNA processing. A single-nucleotide substitution in the intronic region that reduces Pasilla binding and intron removal selectively impairs long-term memory. We posit that pasilla-mediated processing of unspliced Orb2A mRNA integrates experience and internal state to control Orb2A protein abundance and long-term memory formation.
Collapse
|
149
|
Tozzi A, Peters JF, Fingelkurts AA, Fingelkurts AA, Marijuán PC. Brain projective reality: Novel clothes for the emperor: Reply to comments on "Topodynamics of metastable brains" by Arturo Tozzi et al. Phys Life Rev 2017; 21:46-55. [PMID: 28687437 DOI: 10.1016/j.plrev.2017.06.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 06/16/2017] [Indexed: 11/26/2022]
Affiliation(s)
- Arturo Tozzi
- Center for Nonlinear Science, University of North Texas, 1155 Union Circle, #311427 Denton, TX 76203-5017, USA.
| | - James F Peters
- Department of Electrical and Computer Engineering, University of Manitoba, 75A Chancellor's Circle, Winnipeg, MB R3T 5V6, Canada; Department of Mathematics, Adıyaman University, 02040 Adıyaman, Turkey.
| | | | | | - Pedro C Marijuán
- Bioinformation Group, Aragon Institute of Health Science (IACS), Aragon Health Research Institute (IIS Aragon), Zaragoza, 50009, Spain.
| |
Collapse
|
150
|
Beyond proteome diversity: alternative splicing as a regulator of neuronal transcript dynamics. Curr Opin Neurobiol 2017; 45:162-168. [PMID: 28609697 DOI: 10.1016/j.conb.2017.05.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/07/2017] [Accepted: 05/14/2017] [Indexed: 12/21/2022]
Abstract
Brain development and function are governed by tightly controlled gene expression programs. Transcriptional repertoires in neurons are highly specific to developmental stage, neuronal cell type and can undergo rapid changes upon neuronal stimulation. Dedicated molecular mechanisms are required to achieve such fine-tuned regulation. In addition to transcriptional programs, post-transcriptional processes and notably alternative splicing substantially contribute to the elaboration of neuronal gene expression. While alternative splicing has been viewed primarily as a means for expanding proteome diversity, it emerges to also be a major regulator of transcript levels and dynamics. In this review we will describe some of the principal alternative splicing-linked mechanisms that control neuronal transcriptomes and discuss their implications for the central nervous system.
Collapse
|