101
|
Sun Q, van de Lisdonk D, Ferrer M, Gegenhuber B, Wu M, Tollkuhn J, Janowitz T, Li B. Area postrema neurons mediate interleukin-6 function in cancer-associated cachexia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523716. [PMID: 36711916 PMCID: PMC9882141 DOI: 10.1101/2023.01.12.523716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Interleukin-6 (IL-6) has been long considered a key player in cancer-associated cachexia 1-15 . It is believed that sustained elevation of IL-6 production during cancer progression causes brain dysfunctions, which ultimately result in cachexia 16-20 . However, how peripheral IL-6 influences the brain remains poorly understood. Here we show that neurons in the area postrema (AP), a circumventricular structure in the hindbrain, mediate the function of IL-6 in cancer-associated cachexia in mice. We found that circulating IL-6 can rapidly enter the AP and activate AP neurons. Peripheral tumor, known to increase circulating IL-6 1-5,15,18,21-23 , leads to elevated IL-6 and neuronal hyperactivity in the AP, and causes potentiated excitatory synaptic transmission onto AP neurons. Remarkably, neutralization of IL-6 in the brain of tumor-bearing mice with an IL-6 antibody prevents cachexia, reduces the hyperactivity in an AP network, and markedly prolongs lifespan. Furthermore, suppression of Il6ra , the gene encoding IL-6 receptor, specifically in AP neurons with CRISPR/dCas9 interference achieves similar effects. Silencing of Gfral-expressing AP neurons also ameliorates the cancer-associated cachectic phenotypes and AP network hyperactivity. Our study identifies a central mechanism underlying the function of peripheral IL-6, which may serve as a target for treating cancer-associated cachexia.
Collapse
|
102
|
Boer GA, Hay DL, Tups A. Obesity pharmacotherapy: incretin action in the central nervous system. Trends Pharmacol Sci 2023; 44:50-63. [PMID: 36462999 DOI: 10.1016/j.tips.2022.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 12/02/2022]
Abstract
The prevalence of obesity is rising, creating an urgent need for efficacious therapies. Recent clinical trials show that tirzepatide, a dual agonist of receptors for the incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), yields more weight loss than selective GLP-1 receptor (GLP-1R) agonists. Incretin receptors in the central nervous system (CNS) may contribute to these effects. Yet exactly how each receptor regulates body weight from within the CNS is not clearly understood. It remains especially unclear how GIP receptor (GIPR) signalling contributes to the effects of tirzepatide because both stimulation and inhibition of CNS GIPRs yield weight loss in preclinical models. We summarise current knowledge on CNS incretin receptor pharmacology to provide insight into the potential mechanisms of action of dual GIPR/GLP-1R agonists, with tirzepatide as the exemplar. In addition, we discuss recent developments in incretin-based dual- and tri-agonism for inducing weight loss in obese individuals.
Collapse
Affiliation(s)
- Geke Aline Boer
- Centre for Neuroendocrinology, Department of Physiology, University of Otago, Otago, New Zealand
| | - Debbie L Hay
- Department of Pharmacology and Toxicology, University of Otago, Otago, New Zealand; Maurice Wilkins Centre, Auckland, New Zealand
| | - Alexander Tups
- Centre for Neuroendocrinology, Department of Physiology, University of Otago, Otago, New Zealand; Maurice Wilkins Centre, Auckland, New Zealand.
| |
Collapse
|
103
|
Huang J, Xu Q, Li Y, He X, Guo Y, Sun X. Activation of Calcium-Sensing Receptor in the Area Postrema Inhibits Food Intake via Glutamatergic and GABAergic Signaling Pathways. Mol Nutr Food Res 2022; 66:e2200245. [PMID: 36281915 DOI: 10.1002/mnfr.202200245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/07/2022] [Indexed: 01/18/2023]
Abstract
SCOPE A high-protein diet has become a popular way to lose weight. Calcium-sensing receptor (CaSR) is activated by amino acids in addition to calcium ions. CaSR shows dense expression in the area postrema (AP), which participates in feeding regulation. The effect of CaSR in the AP on food intake and the potential mechanism involved is investigated. METHODS AND RESULTS Male C57BL/6 mice are used to observe the effect of R568 (agonist of CaSR) on food intake. Enzyme-linked immunosorbent assay, immunofluorescence staining, and chemogenetics are used to explore the neural signaling involved. CaSR activation in the AP inhibited acute feeding; R568 increases the content of glutamate and γ-aminobutyric acid (GABA) in the AP, whereas only glutamatergic neurons mediate the effect of R568. GABA-A receptor and ionic glutamate receptor (N-methyl-D-aspartate receptor [NMDAR]) in the paraventricular nucleus of hypothalamus (PVN) are involved in the effect of R568. Promotion of oxytocin (OT) synthesis in the PVN also participates in the effect of R568, and this mechanism is mediated by NMDAR in the PVN. CONCLUSION CaSR activation in the AP suppresses feeding, and AP-PVN glutamatergic and GABAergic signaling pathways are involved.
Collapse
Affiliation(s)
- Jinfang Huang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, 266071, China
| | - Qian Xu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, 266071, China
| | - Yuhang Li
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, 266071, China
| | - Xiaoman He
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, 266071, China
| | - Yajie Guo
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, 266071, China
| | - Xiangrong Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, 266071, China
| |
Collapse
|
104
|
Xia Y, Cui K, Alonso A, Lowenstein ED, Hernandez-Miranda LR. Transcription factors regulating the specification of brainstem respiratory neurons. Front Mol Neurosci 2022; 15:1072475. [PMID: 36523603 PMCID: PMC9745097 DOI: 10.3389/fnmol.2022.1072475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/14/2022] [Indexed: 11/12/2023] Open
Abstract
Breathing (or respiration) is an unconscious and complex motor behavior which neuronal drive emerges from the brainstem. In simplistic terms, respiratory motor activity comprises two phases, inspiration (uptake of oxygen, O2) and expiration (release of carbon dioxide, CO2). Breathing is not rigid, but instead highly adaptable to external and internal physiological demands of the organism. The neurons that generate, monitor, and adjust breathing patterns locate to two major brainstem structures, the pons and medulla oblongata. Extensive research over the last three decades has begun to identify the developmental origins of most brainstem neurons that control different aspects of breathing. This research has also elucidated the transcriptional control that secures the specification of brainstem respiratory neurons. In this review, we aim to summarize our current knowledge on the transcriptional regulation that operates during the specification of respiratory neurons, and we will highlight the cell lineages that contribute to the central respiratory circuit. Lastly, we will discuss on genetic disturbances altering transcription factor regulation and their impact in hypoventilation disorders in humans.
Collapse
Affiliation(s)
- Yiling Xia
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ke Cui
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Antonia Alonso
- Functional Genoarchitecture and Neurobiology Groups, Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Elijah D. Lowenstein
- Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Luis R. Hernandez-Miranda
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
105
|
Xie Z, Zhang X, Zhao M, Huo L, Huang M, Li D, Zhang S, Cheng X, Gu H, Zhang C, Zhan C, Wang F, Shang C, Cao P. The gut-to-brain axis for toxin-induced defensive responses. Cell 2022; 185:4298-4316.e21. [PMID: 36323317 DOI: 10.1016/j.cell.2022.10.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/16/2022] [Accepted: 09/30/2022] [Indexed: 11/11/2022]
Abstract
After ingestion of toxin-contaminated food, the brain initiates a series of defensive responses (e.g., nausea, retching, and vomiting). How the brain detects ingested toxin and coordinates diverse defensive responses remains poorly understood. Here, we developed a mouse-based paradigm to study defensive responses induced by bacterial toxins. Using this paradigm, we identified a set of molecularly defined gut-to-brain and brain circuits that jointly mediate toxin-induced defensive responses. The gut-to-brain circuit consists of a subset of Htr3a+ vagal sensory neurons that transmit toxin-related signals from intestinal enterochromaffin cells to Tac1+ neurons in the dorsal vagal complex (DVC). Tac1+ DVC neurons drive retching-like behavior and conditioned flavor avoidance via divergent projections to the rostral ventral respiratory group and lateral parabrachial nucleus, respectively. Manipulating these circuits also interferes with defensive responses induced by the chemotherapeutic drug doxorubicin. These results suggest that food poisoning and chemotherapy recruit similar circuit modules to initiate defensive responses.
Collapse
Affiliation(s)
- Zhiyong Xie
- National Institute of Biological Sciences, Beijing, China; Department of Psychological Medicine, Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| | - Xianying Zhang
- National Institute of Biological Sciences, Beijing, China; College of Life Sciences, Beijing Normal University, Beijing, China
| | - Miao Zhao
- National Institute of Biological Sciences, Beijing, China
| | - Lifang Huo
- Innovation Center for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Meizhu Huang
- National Institute of Biological Sciences, Beijing, China; Innovation Center for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Dapeng Li
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | | | - Xinyu Cheng
- National Institute of Biological Sciences, Beijing, China
| | - Huating Gu
- National Institute of Biological Sciences, Beijing, China
| | - Chen Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Cheng Zhan
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Fengchao Wang
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| | - Congping Shang
- Innovation Center for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.
| | - Peng Cao
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
106
|
Chen JY, Palmiter RD. A gut-retching discovery. Cell 2022; 185:4249-4251. [PMID: 36368302 DOI: 10.1016/j.cell.2022.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022]
Abstract
In this issue of Cell, Xie et al. identify a gut-to-brain pathway that triggers retching after toxic food ingestion or emetic agent administration. Their results shed light on how peripheral signals reach the brain to orchestrate appropriate behavioral responses and facilitate learning to prevent repeated ingestion of harmful substances.
Collapse
Affiliation(s)
- Jane Y Chen
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle, WA 98199, USA
| | - Richard D Palmiter
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle, WA 98199, USA.
| |
Collapse
|
107
|
Chen W, Zhao Y, Dai Y, Nie K. Gastrointestinal inflammation plays a critical role in chemotherapy-induced nausea and vomiting. Eur J Pharmacol 2022; 936:175379. [PMID: 36356927 DOI: 10.1016/j.ejphar.2022.175379] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
|
108
|
Pauli JL, Chen JY, Basiri ML, Park S, Carter ME, Sanz E, McKnight GS, Stuber GD, Palmiter RD. Molecular and anatomical characterization of parabrachial neurons and their axonal projections. eLife 2022; 11:e81868. [PMID: 36317965 PMCID: PMC9668336 DOI: 10.7554/elife.81868] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/31/2022] [Indexed: 11/07/2022] Open
Abstract
The parabrachial nucleus (PBN) is a major hub that receives sensory information from both internal and external environments. Specific populations of PBN neurons are involved in behaviors including food and water intake, nociceptive responses, breathing regulation, as well as learning and responding appropriately to threatening stimuli. However, it is unclear how many PBN neuron populations exist and how different behaviors may be encoded by unique signaling molecules or receptors. Here we provide a repository of data on the molecular identity, spatial location, and projection patterns of dozens of PBN neuron subclusters. Using single-cell RNA sequencing, we identified 21 subclusters of neurons in the PBN and neighboring regions. Multiplexed in situ hybridization showed many of these subclusters are enriched within specific PBN subregions with scattered cells in several other regions. We also provide detailed visualization of the axonal projections from 21 Cre-driver lines of mice. These results are all publicly available for download and provide a foundation for further interrogation of PBN functions and connections.
Collapse
Affiliation(s)
- Jordan L Pauli
- Department of Biochemistry, Howard Hughes Medical Institute, University of WashingtonSeattleUnited States
| | - Jane Y Chen
- Department of Biochemistry, Howard Hughes Medical Institute, University of WashingtonSeattleUnited States
| | - Marcus L Basiri
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, University of WashingtonSeattleUnited States
- Department of Pharmacology, University of WashingtonSeattleUnited States
| | - Sekun Park
- Department of Biochemistry, Howard Hughes Medical Institute, University of WashingtonSeattleUnited States
| | - Matthew E Carter
- Department of Biochemistry, Howard Hughes Medical Institute, University of WashingtonSeattleUnited States
| | - Elisenda Sanz
- Department of Pharmacology, University of WashingtonSeattleUnited States
| | - G Stanley McKnight
- Department of Pharmacology, University of WashingtonSeattleUnited States
| | - Garret D Stuber
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, University of WashingtonSeattleUnited States
- Department of Pharmacology, University of WashingtonSeattleUnited States
| | - Richard D Palmiter
- Department of Biochemistry, Howard Hughes Medical Institute, University of WashingtonSeattleUnited States
| |
Collapse
|
109
|
Miyata S. Glial functions in the blood-brain communication at the circumventricular organs. Front Neurosci 2022; 16:991779. [PMID: 36278020 PMCID: PMC9583022 DOI: 10.3389/fnins.2022.991779] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
The circumventricular organs (CVOs) are located around the brain ventricles, lack a blood-brain barrier (BBB) and sense blood-derived molecules. This review discusses recent advances in the importance of CVO functions, especially glial cells transferring periphery inflammation signals to the brain. The CVOs show size-limited vascular permeability, allowing the passage of molecules with molecular weight <10,000. This indicates that the lack of an endothelial cell barrier does not mean the free movement of blood-derived molecules into the CVO parenchyma. Astrocytes and tanycytes constitute a dense barrier at the distal CVO subdivision, preventing the free diffusion of blood-derived molecules into neighboring brain regions. Tanycytes in the CVOs mediate communication between cerebrospinal fluid and brain parenchyma via transcytosis. Microglia and macrophages of the CVOs are essential for transmitting peripheral information to other brain regions via toll-like receptor 2 (TLR2). Inhibition of TLR2 signaling or depletion of microglia and macrophages in the brain eliminates TLR2-dependent inflammatory responses. In contrast to TLR2, astrocytes and tanycytes in the CVOs of the brain are crucial for initiating lipopolysaccharide (LPS)-induced inflammatory responses via TLR4. Depletion of microglia and macrophages augments LPS-induced fever and chronic sickness responses. Microglia and macrophages in the CVOs are continuously activated, even under normal physiological conditions, as they exhibit activated morphology and express the M1/M2 marker proteins. Moreover, the microglial proliferation occurs in various regions, such as the hypothalamus, medulla oblongata, and telencephalon, with a marked increase in the CVOs, due to low-dose LPS administration, and after high-dose LPS administration, proliferation is seen in most brain regions, except for the cerebral cortex and hippocampus. A transient increase in the microglial population is beneficial during LPS-induced inflammation for attenuating sickness response. Transient receptor potential receptor vanilloid 1 expressed in astrocytes and tanycytes of the CVOs is responsible for thermoregulation upon exposure to a warm environment less than 37°C. Alternatively, Nax expressed in astrocytes and tanycytes of the CVOs is crucial for maintaining body fluid homeostasis. Thus, recent findings indicate that glial cells in the brain CVOs are essential for initiating neuroinflammatory responses and maintaining body fluid and thermal homeostasis.
Collapse
|
110
|
Infection, Learning, and Memory: Focus on Immune Activation and Aversive Conditioning. Neurosci Biobehav Rev 2022; 142:104898. [PMID: 36183862 DOI: 10.1016/j.neubiorev.2022.104898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
Abstract
Here we review the effects of immune activation primarily via lipopolysaccharide (LPS), a cell wall component of Gram-negative bacteria, on hippocampal and non-hippocampal-dependent learning and memory. Rodent studies have found that LPS alters both the acquisition and consolidation of aversive learning and memory, such as those evoking evolutionarily adaptive responses like fear and disgust. The inhibitory effects of LPS on the acquisition and consolidation of contextual fear memory are discussed. LPS-induced alterations in the acquisition of taste and place-related conditioned disgust memory within bottle preference tasks and taste reactivity tests (taste-related), in addition to conditioned context avoidance tasks and the anticipatory nausea paradigm (place-related), are highlighted. Further, conditioned disgust memory consolidation may also be influenced by LPS-induced effects. Growing evidence suggests a central role of immune activation, especially pro-inflammatory cytokine activity, in eliciting the effects described here. Understanding how infection-induced immune activation alters learning and memory is increasingly important as bacterial and viral infections are found to present a risk of learning and memory impairment.
Collapse
|
111
|
Brainstem ADCYAP1 + neurons control multiple aspects of sickness behaviour. Nature 2022; 609:761-771. [PMID: 36071158 PMCID: PMC9492535 DOI: 10.1038/s41586-022-05161-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 07/28/2022] [Indexed: 01/30/2023]
Abstract
Infections induce a set of pleiotropic responses in animals, including anorexia, adipsia, lethargy and changes in temperature, collectively termed sickness behaviours1. Although these responses have been shown to be adaptive, the underlying neural mechanisms have not been elucidated2–4. Here we use of a set of unbiased methodologies to show that a specific subpopulation of neurons in the brainstem can control the diverse responses to a bacterial endotoxin (lipopolysaccharide (LPS)) that potently induces sickness behaviour. Whole-brain activity mapping revealed that subsets of neurons in the nucleus of the solitary tract (NTS) and the area postrema (AP) acutely express FOS after LPS treatment, and we found that subsequent reactivation of these specific neurons in FOS2A-iCreERT2 (also known as TRAP2) mice replicates the behavioural and thermal component of sickness. In addition, inhibition of LPS-activated neurons diminished all of the behavioural responses to LPS. Single-nucleus RNA sequencing of the NTS–AP was used to identify LPS-activated neural populations, and we found that activation of ADCYAP1+ neurons in the NTS–AP fully recapitulates the responses elicited by LPS. Furthermore, inhibition of these neurons significantly diminished the anorexia, adipsia and locomotor cessation seen after LPS injection. Together these studies map the pleiotropic effects of LPS to a neural population that is both necessary and sufficient for canonical elements of the sickness response, thus establishing a critical link between the brain and the response to infection. A studying using a set of unbiased methodologies shows that a specific subpopulation of neurons in the brainstem can regulate the diverse responses to a bacterial endotoxin that induces sickness behaviours.
Collapse
|
112
|
Zhang T, Perkins MH, Chang H, Han W, de Araujo IE. An inter-organ neural circuit for appetite suppression. Cell 2022; 185:2478-2494.e28. [PMID: 35662413 PMCID: PMC9433108 DOI: 10.1016/j.cell.2022.05.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/31/2022] [Accepted: 05/09/2022] [Indexed: 02/03/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) is a signal peptide released from enteroendocrine cells of the lower intestine. GLP-1 exerts anorectic and antimotility actions that protect the body against nutrient malabsorption. However, little is known about how intestinal GLP-1 affects distant organs despite rapid enzymatic inactivation. We show that intestinal GLP-1 inhibits gastric emptying and eating via intestinofugal neurons, a subclass of myenteric neurons that project to abdominal sympathetic ganglia. Remarkably, cell-specific ablation of intestinofugal neurons eliminated intestinal GLP-1 effects, and their chemical activation functioned as a GLP-1 mimetic. GLP-1 sensing by intestinofugal neurons then engaged a sympatho-gastro-spinal-reticular-hypothalamic pathway that links abnormal stomach distension to craniofacial programs for food rejection. Within this pathway, cell-specific activation of discrete neuronal populations caused systemic GLP-1-like effects. These molecularly identified, delimited enteric circuits may be targeted to ameliorate the abdominal bloating and loss of appetite typical of gastric motility disorders.
Collapse
Affiliation(s)
- Tong Zhang
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA,Department of Colorectal Surgery, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, Guangdong 510180, China,Jinan University, Guangzhou, Guangdong 510632, China
| | - Matthew H. Perkins
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Hao Chang
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Wenfei Han
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA,Correspondence: (W.H.), (I.E.d.A.)
| | - Ivan E. de Araujo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA,Artificial Intelligence and Emerging Technologies in Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA,Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA,Lead contact,Correspondence: (W.H.), (I.E.d.A.)
| |
Collapse
|
113
|
Cheng W, Gordian D, Ludwig MQ, Pers TH, Seeley RJ, Myers MG. Hindbrain circuits in the control of eating behaviour and energy balance. Nat Metab 2022; 4:826-835. [PMID: 35879458 DOI: 10.1038/s42255-022-00606-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/13/2022] [Indexed: 01/15/2023]
Abstract
Body weight and adiposity represent biologically controlled parameters that are influenced by a combination of genetic, developmental and environmental variables. Although the hypothalamus plays a crucial role in matching caloric intake with energy expenditure to achieve a stable body weight, it is now recognized that neuronal circuits in the hindbrain not only serve to produce nausea and to terminate feeding in response to food consumption or during pathological states, but also contribute to the long-term control of body weight. Additionally, recent work has identified hindbrain neurons that are capable of suppressing food intake without producing aversive responses like those associated with nausea. Here we review recent advances in our understanding of the hindbrain neurons that control feeding, particularly those located in the area postrema and the nucleus tractus solitarius. We frame this information in the context of new atlases of hindbrain neuronal populations and develop a model of the hindbrain circuits that control food intake and energy balance, suggesting important areas for additional research.
Collapse
Affiliation(s)
- Wenwen Cheng
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Desiree Gordian
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
| | - Mette Q Ludwig
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Tune H Pers
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Martin G Myers
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA.
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
114
|
Stone BT, Lin JY, Mahmood A, Sanford AJ, Katz DB. LiCl-induced sickness modulates rat gustatory cortical responses. PLoS Biol 2022; 20:e3001537. [PMID: 35877759 PMCID: PMC9352195 DOI: 10.1371/journal.pbio.3001537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 08/04/2022] [Accepted: 06/29/2022] [Indexed: 11/19/2022] Open
Abstract
Gustatory cortex (GC), a structure deeply involved in the making of consumption decisions, presumably performs this function by integrating information about taste, experiences, and internal states related to the animal's health, such as illness. Here, we investigated this assertion, examining whether illness is represented in GC activity, and how this representation impacts taste responses and behavior. We recorded GC single-neuron activity and local field potentials (LFPs) from healthy rats and rats made ill (via LiCl injection). We show (consistent with the extant literature) that the onset of illness-related behaviors arises contemporaneously with alterations in 7 to 12 Hz LFP power at approximately 12 min following injection. This process was accompanied by reductions in single-neuron taste response magnitudes and discriminability, and with enhancements in palatability-relatedness-a result reflecting the collapse of responses toward a simple "good-bad" code visible in the entire sample, but focused on a specific subset of GC neurons. Overall, our data show that a state (illness) that profoundly reduces consumption changes basic properties of the sensory cortical response to tastes, in a manner that can easily explain illness' impact on consumption.
Collapse
Affiliation(s)
- Bradly T. Stone
- Graduate Program in Neuroscience, Brandeis University, Waltham, Massachusetts, United States of America
| | - Jian-You Lin
- Department of Psychology, Neuroscience Program, and Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts, United States of America
| | - Abuzar Mahmood
- Graduate Program in Neuroscience, Brandeis University, Waltham, Massachusetts, United States of America
| | - Alden J. Sanford
- Department of Psychology, Neuroscience Program, and Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts, United States of America
| | - Donald B. Katz
- Graduate Program in Neuroscience, Brandeis University, Waltham, Massachusetts, United States of America
- Department of Psychology, Neuroscience Program, and Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts, United States of America
| |
Collapse
|
115
|
Smith C, Patterson-Cross R, Woodward O, Lewis J, Chiarugi D, Merkle F, Gribble F, Reimann F, Adriaenssens A. A comparative transcriptomic analysis of glucagon-like peptide-1 receptor- and glucose-dependent insulinotropic polypeptide receptor-expressing cells in the hypothalamus. Appetite 2022; 174:106022. [PMID: 35430298 PMCID: PMC7614381 DOI: 10.1016/j.appet.2022.106022] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The hypothalamus is a key region of the brain implicated in homeostatic regulation, and is an integral centre for the control of feeding behaviour. Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretin hormones with potent glucoregulatory function through engagement of their respective cognate receptors, GLP-1R and GIPR. Recent evidence indicates that there is a synergistic effect of combining GIP- and GLP-1-based pharmacology on appetite and body weight. The mechanisms underlying the enhanced weight loss exhibited by GIPR/GLP-1R co-agonism are unknown. Gipr and Glp1r are expressed in the hypothalamus in both rodents and humans. To better understand incretin receptor-expressing cell populations, we compared the cell types and expression profiles of Gipr- and Glp1r-expressing hypothalamic cells using single-cell RNA sequencing. METHODS Using Glp1r-Cre or Gipr-Cre transgenic mouse lines, fluorescent reporters were introduced into either Glp1r- or Gipr-expressing cells, respectively, upon crossing with a ROSA26-EYFP reporter strain. From the hypothalami of these mice, fluorescent Glp1rEYFP+ or GiprEYFP+ cells were FACS-purified and sequenced using single-cell RNA sequencing. Transcriptomic analysis provided a survey of both non-neuronal and neuronal cells, and comparisons between Glp1rEYFP+ and GiprEYFP + populations were made. RESULTS A total of 14,091 Glp1rEYFP+ and GiprEYFP+ cells were isolated, sequenced and taken forward for bioinformatic analysis. Both Glp1rEYFP+ and GiprEYFP+ hypothalamic populations were transcriptomically highly heterogeneous, representing vascular cell types, oligodendrocytes, astrocytes, microglia, and neurons. The majority of GiprEYFP+ cells were non-neuronal, whereas the Glp1rEYFP+ population was evenly split between neuronal and non-neuronal cell types. Both Glp1rEYFP+ and GiprEYFP+ oligodendrocytes express markers for mature, myelin-forming oligodendrocytes. While mural cells are represented in both Glp1rEYFP+ and GiprEYFP+ populations, Glp1rEYFP+ mural cells are largely smooth muscle cells, while the majority of GiprEYFP+ mural cells are pericytes. The co-expression of regional markers indicate that clusters of Glp1rEYFP+ and GiprEYFP+ neurons have been isolated from the arcuate, ventromedial, lateral, tuberal, suprachiasmatic, and premammillary nuclei of the hypothalamus. CONCLUSIONS We have provided a detailed comparison of Glp1r and Gipr cells of the hypothalamus with single-cell resolution. This resource will provide mechanistic insight into how engaging Gipr- and Glp1r-expressing cells of the hypothalamus may result in changes in feeding behaviour and energy balance.
Collapse
Affiliation(s)
- Christopher Smith
- Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Ryan Patterson-Cross
- Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Orla Woodward
- Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Jo Lewis
- Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Davide Chiarugi
- Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Florian Merkle
- Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Fiona Gribble
- Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Frank Reimann
- Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| | - Alice Adriaenssens
- Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| |
Collapse
|
116
|
Samms RJ, Cosgrove R, Snider BM, Furber EC, Droz BA, Briere DA, Dunbar J, Dogra M, Alsina-Fernandez J, Borner T, De Jonghe BC, Hayes MR, Coskun T, Sloop KW, Emmerson PJ, Ai M. GIPR Agonism Inhibits PYY-Induced Nausea-Like Behavior. Diabetes 2022; 71:1410-1423. [PMID: 35499381 PMCID: PMC9233244 DOI: 10.2337/db21-0848] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/29/2022] [Indexed: 12/01/2022]
Abstract
The induction of nausea and emesis is a major barrier to maximizing the weight loss profile of obesity medications, and therefore, identifying mechanisms that improve tolerability could result in added therapeutic benefit. The development of peptide YY (PYY)-based approaches to treat obesity are no exception, as PYY receptor agonism is often accompanied by nausea and vomiting. Here, we sought to determine whether glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) agonism reduces PYY-induced nausea-like behavior in mice. We found that central and peripheral administration of a GIPR agonist reduced conditioned taste avoidance (CTA) without affecting hypophagia mediated by a PYY analog. The receptors for GIP and PYY (Gipr and Npy2r) were found to be expressed by the same neurons in the area postrema (AP), a brainstem nucleus involved in detecting aversive stimuli. Peripheral administration of a GIPR agonist induced neuronal activation (cFos) in the AP. Further, whole-brain cFos analyses indicated that PYY-induced CTA was associated with augmented neuronal activity in the parabrachial nucleus (PBN), a brainstem nucleus that relays aversive/emetic signals to brain regions that control feeding behavior. Importantly, GIPR agonism reduced PYY-mediated neuronal activity in the PBN, providing a potential mechanistic explanation for how GIPR agonist treatment reduces PYY-induced nausea-like behavior. Together, the results of our study indicate a novel mechanism by which GIP-based therapeutics may have benefit in improving the tolerability of weight loss agents.
Collapse
Affiliation(s)
- Ricardo J. Samms
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN
- Corresponding authors: Ricardo J. Samms, , and Minrong Ai,
| | - Richard Cosgrove
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN
| | - Brandy M. Snider
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN
| | - Ellen C. Furber
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN
| | - Brian A. Droz
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN
| | - Daniel A. Briere
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN
| | - James Dunbar
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN
| | - Mridula Dogra
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN
| | | | - Tito Borner
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA
| | - Bart C. De Jonghe
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA
| | - Matthew R. Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA
| | - Tamer Coskun
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN
| | - Kyle W. Sloop
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN
| | - Paul J. Emmerson
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN
| | - Minrong Ai
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN
- Corresponding authors: Ricardo J. Samms, , and Minrong Ai,
| |
Collapse
|
117
|
Bellusci L, Garcia DuBar SN, Kuah M, Castellano D, Muralidaran V, Jones E, Rozeboom AM, Gillis RA, Vicini S, Sahibzada N. Interactions between Brainstem Neurons That Regulate the Motility to the Stomach. J Neurosci 2022; 42:5212-5228. [PMID: 35610046 PMCID: PMC9236295 DOI: 10.1523/jneurosci.0419-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/04/2022] [Accepted: 05/16/2022] [Indexed: 12/31/2022] Open
Abstract
Activity in the dorsal vagal complex (DVC) is essential to gastric motility regulation. We and others have previously shown that this activity is greatly influenced by local GABAergic signaling, primarily because of somatostatin (SST)-expressing GABAergic neurons. To further understand the network dynamics associated with gastric motility control in the DVC, we focused on another neuron prominently distributed in this complex, neuropeptide-Y (NPY) neurons. However, the effect of these neurons on gastric motility remains unknown. Here, we investigate the anatomic and functional characteristics of the NPY neurons in the nucleus tractus solitarius (NTS) and their interactions with SST neurons using transgenic mice of both sexes. We sought to determine whether NPY neurons influence the activity of gastric-projecting neurons, synaptically interact with SST neurons, and affect end-organ function. Our results using combined neuroanatomy and optogenetic in vitro and in vivo show that NPY neurons are part of the gastric vagal circuit as they are trans-synaptically labeled by a viral tracer from the gastric antrum, are primarily excitatory as optogenetic activation of these neurons evoke EPSCs in gastric-antrum-projecting neurons, are functionally coupled to each other and reciprocally connected to SST neurons, whose stimulation has a potent inhibitory effect on the action potential firing of the NPY neurons, and affect gastric tone and motility as reflected by their robust optogenetic response in vivo. These findings indicate that interacting NPY and SST neurons are integral to the network that controls vagal transmission to the stomach.SIGNIFICANCE STATEMENT The brainstem neurons in the dorsal nuclear complex are essential for regulating vagus nerve activity that affects the stomach via tone and motility. Two distinct nonoverlapping populations of predominantly excitatory NPY neurons and predominantly inhibitory SST neurons form reciprocal connections with each other in the NTS and with premotor neurons in the dorsal motor nucleus of the vagus to control gastric mechanics. Light activation and inhibition of NTS NPY neurons increased and decreased gastric motility, respectively, whereas both activation and inhibition of NTS SST neurons enhanced gastric motility.
Collapse
Affiliation(s)
| | | | | | | | | | - Elizabeth Jones
- Pathology, Georgetown University Medical Center, Washington, DC 20007
| | - Aaron M Rozeboom
- Pathology, Georgetown University Medical Center, Washington, DC 20007
| | | | | | | |
Collapse
|
118
|
Zhang C, Vincelette LK, Reimann F, Liberles SD. A brainstem circuit for nausea suppression. Cell Rep 2022; 39:110953. [PMID: 35705049 PMCID: PMC9260880 DOI: 10.1016/j.celrep.2022.110953] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/08/2022] [Accepted: 05/23/2022] [Indexed: 11/03/2022] Open
Abstract
Nausea is a discomforting sensation of gut malaise that remains a major clinical challenge. Several visceral poisons induce nausea through the area postrema, a sensory circumventricular organ that detects bloodborne factors. Here, we use genetic approaches based on an area postrema cell atlas to reveal inhibitory neurons that counteract nausea-associated poison responses. The gut hormone glucose insulinotropic peptide (GIP) activates area postrema inhibitory neurons that project locally and elicit inhibitory currents in nausea-promoting excitatory neurons through γ-aminobutyric acid (GABA) receptors. Moreover, GIP blocks behavioral responses to poisons in wild-type mice, with protection eliminated by targeted area postrema neuron ablation. These findings provide insights into the basic organization of nausea-associated brainstem circuits and reveal that area postrema inhibitory neurons are an effective pharmacological target for nausea intervention.
Collapse
Affiliation(s)
- Chuchu Zhang
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Lindsay K Vincelette
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Frank Reimann
- Wellcome Trust - MRC Institute of Metabolic Science, Metabolic Research Laboratories, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Stephen D Liberles
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
119
|
Emetic Response to T-2 Toxin Correspond to Secretion of Glucagon-like Peptide-17–36 Amide and Glucose-Dependent Insulinotropic Polypeptide. Toxins (Basel) 2022; 14:toxins14060389. [PMID: 35737050 PMCID: PMC9228683 DOI: 10.3390/toxins14060389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
The T-2 toxin, a major secondary metabolite of Fusarium Gramineae, is considered a great risk to humans and animals due to its toxicity, such as inducing emesis. The mechanism of emesis is a complex signal involving an imbalance of hormones and neurotransmitters, as well as activity of visceral afferent neurons. The T-2 toxin has been proven to induce emesis and possess the capacity to elevate expressions of intestinal hormones glucagon-like peptide-17–36 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), both of which are important emetic factors. In addition, the activation of calcium-sensitive receptor (CaSR) and transient receptor potential (TRP) channels are engaged in intestinal hormone release. However, it is unknown whether hormones GLP-1 and GIP mediate T-2 toxin-induced emetic response through activating CaSR and TRP channels. To further assess the mechanism of T-2 toxin-induced emesis, we studied the hypothesis that T-2 toxin-caused emetic response and intestinal hormones GLP-1 and GIP released in mink are associated with activating calcium transduction. Following oral gavage and intraperitoneal injection T-2 toxin, emetic responses were observed in a dose-dependent manner, which notably corresponded to the secretion of GLP-1 and GIP, and were suppressed by pretreatment with respective antagonist Exending9–39 and Pro3GIP. Additional research found that NPS-2143 (NPS) and ruthenium red (RR), respective antagonists of CaSR and TRP channels, dramatically inhibited both T-2 toxin-induced emesis response and the expression of plasma GLP-1 and GIP. According to these data, we observed that T-2 toxin-induced emetic response corresponds to secretion of GLP-1 and GIP via calcium transduction.
Collapse
|
120
|
Ghidewon M, Wald H, McKnight AD, De Jonghe BC, Breen DM, Alhadeff AL, Borner T, Grill HJ. Growth differentiation factor 15 (GDF15) and semaglutide inhibit food intake and body weight through largely distinct, additive mechanisms. Diabetes Obes Metab 2022; 24:1010-1020. [PMID: 35129264 PMCID: PMC9796095 DOI: 10.1111/dom.14663] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/16/2022] [Accepted: 01/30/2022] [Indexed: 12/31/2022]
Abstract
AIMS To evaluate whether the potent hypophagic and weight-suppressive effects of growth differentiation factor-15 (GDF15) and semaglutide combined would be a more efficacious antiobesity treatment than either treatment alone by examining whether the neural and behavioural mechanisms contributing to their anorectic effects were common or disparate. MATERIALS/METHODS Three mechanisms were investigated to determine how GDF15 and semaglutide induce anorexia: the potentiation of the intake suppression by gastrointestinal satiation signals; the reduction in motivation to feed; and the induction of visceral malaise. We then compared the effects of short-term, combined GDF15 and semaglutide treatment on weight loss to the individual treatments. Rat pharmaco-behavioural experiments assessed whether GDF15 or semaglutide added to the satiating effects of orally gavaged food and exogenous cholecystokinin (CCK). A progressive ratio operant paradigm was used to examine whether GDF15 or semaglutide reduced feeding motivation. Pica behaviour (ie, kaolin intake) and conditioned affective food aversion testing were used to evaluate visceral malaise. Additionally, fibre photometry studies were conducted in agouti-related protein (AgRP)-Cre mice to examine whether GDF15 or semaglutide, alone or in combination with CCK, modulate calcium signalling in hypothalamic AgRP neurons. RESULTS Semaglutide reduced food intake by amplifying the feeding-inhibitory effect of CCK or ingested food, inhibited the activity of AgRP neurons when combined with CCK, reduced feeding motivation and induced malaise. GDF15 induced visceral malaise but, strikingly, did not affect feeding motivation, the satiating effect of ingested food or CCK signal processing. Combined GDF15 and semaglutide treatment produced greater food intake and body weight suppression than did either treatment alone, without enhancing malaise. CONCLUSIONS GDF15 and semaglutide reduce food intake and body weight through largely distinct processes that produce greater weight loss and feeding suppression when combined.
Collapse
Affiliation(s)
- M. Ghidewon
- Institute of Diabetes, Obesity and Metabolism and School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania
| | - H.S. Wald
- Institute of Diabetes, Obesity and Metabolism and School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
| | - A. D. McKnight
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania
- Monell Chemical Senses Center, Philadelphia, Pennsylvania
| | - B. C. De Jonghe
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - D. M. Breen
- Internal Medicine Research Unit, Pfizer Global R&D, Cambridge, Massachusetts
| | - A. L. Alhadeff
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania
- Monell Chemical Senses Center, Philadelphia, Pennsylvania
| | - T. Borner
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - H. J. Grill
- Institute of Diabetes, Obesity and Metabolism and School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
121
|
Dumont C, Li G, Castel J, Luquet S, Gangarossa G. Hindbrain catecholaminergic inputs to the paraventricular thalamus scale feeding and metabolic efficiency in stress-related contexts. J Physiol 2022; 600:2877-2895. [PMID: 35648134 DOI: 10.1113/jp282996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/28/2022] [Indexed: 11/08/2022] Open
Abstract
The regulation of food intake and energy balance relies on the dynamic integration of exteroceptive and interoceptive signals monitoring nutritional, metabolic, cognitive, and emotional states. The paraventricular thalamus (PVT) is a central hub that, by integrating sensory, metabolic, and emotional states, may contribute to the regulation of feeding and homeostatic/allostatic processes. However, the underlying PVT circuits still remain elusive. Here, we aimed at unravelling the role of catecholaminergic (CA) inputs to the PVT in scaling feeding and metabolic efficiency. First, using region-specific retrograde disruption of CA projections, we show that PVT CA inputs mainly arise from the hindbrain, notably the locus coeruleus (LC) and the nucleus tractus solitarius. Second, taking advantage of integrative calorimetric measurements of metabolic efficiency, we reveal that CA inputs to the PVT scale adaptive feeding and metabolic responses in environmental, behavioural, physiological, and metabolic stress-like contexts. Third, we show that hindbrainTH →PVT inputs contribute to modulating the activity of PVT as well as lateral and dorsomedial hypothalamic neurons. In conclusion, the present study, by assessing the key role of CA inputs to the PVT in scaling homeostatic/allostatic regulations of feeding patterns, reveals the integrative and converging hindbrainTH →PVT paths that contribute to whole-body metabolic adaptations in stress-like contexts. KEY POINTS: The paraventricular thalamus (PVT) is known to receive projections from the hindbrain. Here, we confirm and further extend current knowledge on the existence of hindbrainTH →PVT catecholaminergic inputs, notably from the locus coeruleus and the nucleus tractus solitarius, with the nucleus tractus solitarius representing the main source. Disruption of hindbrainTH →PVT inputs contributes to the modulation of PVT neuron activity. HindbrainTH →PVT inputs scale feeding strategies in environmental, behavioural, physiological, and metabolic stress-like contexts. HindbrainTH →PVT inputs participate in regulating metabolic efficiency and nutrient partitioning in stress-like contexts. HindbrainTH →PVT inputs, directly and/or indirectly, contribute to modulating the downstream activity of lateral and dorsomedial hypothalamic neurons.
Collapse
Affiliation(s)
- Clarisse Dumont
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Guangping Li
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Julien Castel
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Serge Luquet
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Giuseppe Gangarossa
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| |
Collapse
|
122
|
Konno D, Sugino S, Shibata TF, Misawa K, Imamura-Kawasawa Y, Suzuki J, Kido K, Nagasaki M, Yamauchi M. Antiemetic effects of baclofen in a shrew model of postoperative nausea and vomiting: Whole-transcriptome analysis in the nucleus of the solitary tract. CNS Neurosci Ther 2022; 28:922-931. [PMID: 35238164 PMCID: PMC9062569 DOI: 10.1111/cns.13823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 11/28/2022] Open
Abstract
Aims The molecular genetic mechanisms underlying postoperative nausea and vomiting (PONV) in the brain have not been fully elucidated. This study aimed to determine the changes in whole transcriptome in the nucleus of the solitary tract (NTS) in an animal model of PONV, to screen a drug candidate and to elucidate the molecular genetic mechanisms of PONV development. Methods Twenty‐one female musk shrews were assigned into three groups: the Surgery group (shrew PONV model, n = 9), the Sham group (n = 6), and the Naïve group (n = 6). In behavioral studies, the main outcome was the number of emetic episodes. In genetic experiments, changes in the transcriptome in the NTS were measured. In a separate study, 12 shrews were used to verify the candidate mechanism underlying PONV. Results A median of six emetic episodes occurred in both the Sham and Surgery groups. Whole‐transcriptome analysis indicated the inhibition of the GABAB receptor‐mediated signaling pathway in the PONV model. Baclofen (GABAB receptor agonist) administration eliminated emetic behaviors in the shrew PONV model. Conclusions Our findings suggest that the GABAB receptor‐mediated signaling pathway is involved in emesis and that baclofen may be a novel therapeutic or prophylactic agent for PONV.
Collapse
Affiliation(s)
- Daisuke Konno
- Department of Anesthesiology and Perioperative Medicine, Tohoku University School of Medicine, Sendai, Japan.,Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, Sendai, Japan
| | - Shigekazu Sugino
- Department of Anesthesiology and Perioperative Medicine, Tohoku University School of Medicine, Sendai, Japan
| | - Tomoko F Shibata
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, Sendai, Japan
| | - Kazuharu Misawa
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, Sendai, Japan.,Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuka Imamura-Kawasawa
- Department of Pharmacology, Biochemistry and Molecular Biology, Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, USA
| | - Jun Suzuki
- Department of Anesthesiology and Perioperative Medicine, Tohoku University School of Medicine, Sendai, Japan
| | - Kanta Kido
- Department of Anesthesiology, Kanagawa Dental University Graduate School of Dentistry, Yokosuka, Japan
| | - Masao Nagasaki
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, Sendai, Japan.,Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Masanori Yamauchi
- Department of Anesthesiology and Perioperative Medicine, Tohoku University School of Medicine, Sendai, Japan
| |
Collapse
|
123
|
Guccio N, Gribble FM, Reimann F. Glucose-Dependent Insulinotropic Polypeptide-A Postprandial Hormone with Unharnessed Metabolic Potential. Annu Rev Nutr 2022; 42:21-44. [PMID: 35609956 DOI: 10.1146/annurev-nutr-062320-113625] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) is released from the upper small intestine in response to food intake and contributes to the postprandial control of nutrient disposition, including of sugars and fats. Long neglected as a potential therapeutic target, the GIPR axis has received increasing interest recently, with the emerging data demonstrating the metabolically favorable outcomes of adding GIPR agonism to GLP-1 receptor agonists in people with type 2 diabetes and obesity. This review examines the physiology of the GIP axis, from the mechanisms underlying GIP secretion from the intestine to its action on target tissues and therapeutic development. Expected final online publication date for the Annual Review of Nutrition, Volume 42 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Nunzio Guccio
- MRC Metabolic Diseases Unit, Wellcome Trust/MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom; ,
| | - Fiona M Gribble
- MRC Metabolic Diseases Unit, Wellcome Trust/MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom; ,
| | - Frank Reimann
- MRC Metabolic Diseases Unit, Wellcome Trust/MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom; ,
| |
Collapse
|
124
|
Vagena E, Crneta J, Engström P, He L, Yulyaningsih E, Korpel NL, Cheang RT, Bachor TP, Huang A, Michel G, Attal K, Berrios DI, Valdearcos M, Koliwad SK, Olson DP, Yi CX, Xu AW. ASB4 modulates central melanocortinergic neurons and calcitonin signaling to control satiety and glucose homeostasis. Sci Signal 2022; 15:eabj8204. [PMID: 35536884 DOI: 10.1126/scisignal.abj8204] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Variants in the gene encoding ankyrin repeat and SOCS box-containing 4 (ASB4) are linked to human obesity. Here, we characterized the pathways underlying the metabolic functions of ASB4. Hypothalamic Asb4 expression was suppressed by fasting in wild-type mice but not in mice deficient in AgRP, which encodes Agouti-related protein (AgRP), an appetite-stimulating hormone, suggesting that ASB4 is a negative target of AgRP. Many ASB4 neurons in the brain were adjacent to AgRP terminals, and feeding induced by AgRP neuronal activation was disrupted in Asb4-deficient mice. Acute knockdown of Asb4 in the brain caused marked hyperphagia due to increased meal size, and Asb4 deficiency led to increased meal size and food intake at the onset of refeeding, when very large meals were consumed. Asb4-deficient mice were resistant to the meal-terminating effects of exogenously administered calcitonin and showed decreased neuronal expression of Calcr, which encodes the calcitonin receptor. Pro-opiomelanocortin (POMC) neurons in the arcuate nucleus in mice are involved in glucose homeostasis, and Asb4 deficiency specifically in POMC neurons resulted in glucose intolerance that was independent of obesity. Furthermore, individuals with type 2 diabetes showed reduced ASB4 abundance in the infundibular nuclei, the human equivalent of the arcuate nucleus. Together, our results indicate that ASB4 acts in the brain to improve glucose homeostasis and to induce satiety after substantial meals, particularly those after food deprivation.
Collapse
Affiliation(s)
- Eirini Vagena
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jasmina Crneta
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Pauline Engström
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Li He
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ernie Yulyaningsih
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nikita L Korpel
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Meibergdreef 9, Amsterdam 1105 AZ, Netherlands
| | - Rachel T Cheang
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tomas P Bachor
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alyssa Huang
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Guillermina Michel
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kush Attal
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David I Berrios
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Martin Valdearcos
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Suneil K Koliwad
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David P Olson
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI 48109, USA
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Meibergdreef 9, Amsterdam 1105 AZ, Netherlands
| | - Allison W Xu
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
125
|
Sun L, Pan X, Li H, Zhang X, Zhao X, Zhang L, Zhang L. Odor-Induced Vomiting Is Combinatorially Triggered by Palp Olfactory Receptor Neurons That Project to the Lobus Glomerulatus in Locust Brain. Front Physiol 2022; 13:855522. [PMID: 35514359 PMCID: PMC9065551 DOI: 10.3389/fphys.2022.855522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/17/2022] [Indexed: 01/26/2023] Open
Abstract
Although vomiting is commonly recognized as a protective reaction in response to toxic stimuli, the elaborate sensory processes and necessary molecular components are not fully clear, which is due to a lack of appropriate experimental animal models. Vomiting reflex to volatile chemicals renders locust one candidate for vomiting model. Here, we identified a panel of chemical cues that evoked evident vomiting in locust nymphs and demonstrated the selected combinatorial coding strategy that palps but not antennae olfactory receptor neurons (ORNs) employed. Specifically, knocking down individual palp odorant receptors (ORs) such as OR17, OR21, and OR22 attenuated the vomiting intensity evoked by E-2-hexenal and hexanal, while suppression of OR12 and OR22 augmented vomiting to E-2-hexenal and 2-hexanone, respectively. Furthermore, dual-RNAi treatment against OR17 or OR21 together with OR22 resulted in a much lower response intensity than that of individual OR suppression. Furthermore, OR12 was revealed in palp sensilla basiconica (pb) subtype 3 to tune the neuronal decaying activity to E-2-hexenal. Finally, anterograde labeling indicated that palp ORNs primarily projected into the lobus glomerulatus (LG), and the projection neurons (PNs) in the LG further projected into the accessary calyx (ACA). Together, the establishment of an olfaction-inducible vomiting model in locusts deepens the understanding of olfactory coding logics and provides an opportunity to clarify the neural basis underlying animal vomiting.
Collapse
Affiliation(s)
- Liyuan Sun
- Department of Entomology, China Agricultural University, Beijing, China
| | - Xueqin Pan
- Department of Entomology, China Agricultural University, Beijing, China
| | - Hongwei Li
- Institute of Plant Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Xinyang Zhang
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Xincheng Zhao
- Department of Entomology, Henan Agricultural University, Zhengzhou, China
| | - Liwei Zhang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Long Zhang
- Department of Entomology, China Agricultural University, Beijing, China
- Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
126
|
Prescott SL, Liberles SD. Internal senses of the vagus nerve. Neuron 2022; 110:579-599. [PMID: 35051375 PMCID: PMC8857038 DOI: 10.1016/j.neuron.2021.12.020] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/30/2021] [Accepted: 12/11/2021] [Indexed: 12/16/2022]
Abstract
The vagus nerve is an indispensable body-brain connection that controls vital aspects of autonomic physiology like breathing, heart rate, blood pressure, and gut motility, reflexes like coughing and swallowing, and survival behaviors like feeding, drinking, and sickness responses. Classical physiological studies and recent molecular/genetic approaches have revealed a tremendous diversity of vagal sensory neuron types that innervate different internal organs, with many cell types remaining poorly understood. Here, we review the state of knowledge related to vagal sensory neurons that innervate the respiratory, cardiovascular, and digestive systems. We focus on cell types and their response properties, physiological/behavioral roles, engaged neural circuits and, when possible, sensory receptors. We are only beginning to understand the signal transduction mechanisms used by vagal sensory neurons and upstream sentinel cells, and future studies are needed to advance the field of interoception to the level of mechanistic understanding previously achieved for our external senses.
Collapse
|
127
|
Lutz TA. Creating the amylin story. Appetite 2022; 172:105965. [DOI: 10.1016/j.appet.2022.105965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 02/07/2023]
|
128
|
Liu C, Zhao G, Qiao D, Wang L, He Y, Zhao M, Fan Y, Jiang E. Emerging Progress in Nausea and Vomiting of Pregnancy and Hyperemesis Gravidarum: Challenges and Opportunities. Front Med (Lausanne) 2022; 8:809270. [PMID: 35083256 PMCID: PMC8785858 DOI: 10.3389/fmed.2021.809270] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/17/2021] [Indexed: 12/16/2022] Open
Abstract
Nausea and vomiting of pregnancy (NVP) is a common condition that affects up to 70% of pregnant women. Hyperemesis gravidarum (HG) is considered the serious form of NVP, which is reported in 0.3–10.8% of pregnant women. NVP has a relatively benign course, but HG can be linked with some poor maternal, fetal, and offspring outcomes. The exact causes of NVP and HG are unknown, but various factors have been hypothesized to be associated with pathogenesis. With the advance of precision medicine and molecular biology, some genetic factors such as growth/differentiation factor 15 (GDF15) have become therapeutic targets. In our review, we summarize the historical hypotheses of the pathogenesis of NVP and HG including hormonal factors, Helicobacter pylori, gastrointestinal dysmotility, placenta-related factors, psychosocial factors, and new factors identified by genetics. We also highlight some approaches to the management of NVP and HG, including pharmacological treatment, complementary treatment, and some supporting treatments. Looking to the future, progress in understanding NVP and HG may reduce the adverse outcomes and improve the maternal quality of life during pregnancy.
Collapse
Affiliation(s)
- Chuan Liu
- School of Medicine, Henan University, Kaifeng, China
| | - Guo Zhao
- School of Medicine, Henan University, Kaifeng, China
| | - Danni Qiao
- School of Medicine, Henan University, Kaifeng, China
| | - Lintao Wang
- Department of Neurology, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Yeling He
- School of Medicine, Henan University, Kaifeng, China
| | - Mingge Zhao
- School of Life Sciences, Henan University, Kaifeng, China
| | - Yuanyuan Fan
- School of Life Sciences, Henan University, Kaifeng, China
| | - Enshe Jiang
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| |
Collapse
|
129
|
Systemic administration of monosodium glutamate induces sexually dimorphic headache- and nausea-like behaviours in rats. Pain 2022; 163:1838-1853. [DOI: 10.1097/j.pain.0000000000002592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 12/17/2021] [Indexed: 11/26/2022]
|
130
|
Glial Modulation of Energy Balance: The Dorsal Vagal Complex Is No Exception. Int J Mol Sci 2022; 23:ijms23020960. [PMID: 35055143 PMCID: PMC8779587 DOI: 10.3390/ijms23020960] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
The avoidance of being overweight or obese is a daily challenge for a growing number of people. The growing proportion of people suffering from a nutritional imbalance in many parts of the world exemplifies this challenge and emphasizes the need for a better understanding of the mechanisms that regulate nutritional balance. Until recently, research on the central regulation of food intake primarily focused on neuronal signaling, with little attention paid to the role of glial cells. Over the last few decades, our understanding of glial cells has changed dramatically. These cells are increasingly regarded as important neuronal partners, contributing not just to cerebral homeostasis, but also to cerebral signaling. Our understanding of the central regulation of energy balance is part of this (r)evolution. Evidence is accumulating that glial cells play a dynamic role in the modulation of energy balance. In the present review, we summarize recent data indicating that the multifaceted glial compartment of the brainstem dorsal vagal complex (DVC) should be considered in research aimed at identifying feeding-related processes operating at this level.
Collapse
|
131
|
Reiner BC, Crist RC, Borner T, Doyle RP, Hayes MR, De Jonghe BC. Single nuclei RNA sequencing of the rat AP and NTS following GDF15 treatment. Mol Metab 2021; 56:101422. [PMID: 34942400 PMCID: PMC8749158 DOI: 10.1016/j.molmet.2021.101422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/30/2021] [Accepted: 12/16/2021] [Indexed: 12/04/2022] Open
Abstract
Objective Growth differentiation factor 15 (GDF15) is known to play a role in feeding, nausea, and body weight, with action through the GFRAL-RET receptor complex in the area postrema (AP) and nucleus tractus solitarius (NTS). To further elucidate the underlying cell type-specific molecular mechanisms downstream of GDF15 signaling, we used a single nuclei RNA sequencing (snRNAseq) approach to profile AP and NTS cellular subtype-specific transcriptomes after systemic GDF15 treatment. Methods AP and NTS micropunches were used for snRNAseq from Sprague Dawley rats 6 h following GDF15 or saline injection, and Seurat was used to identify cellular subtypes and cell type-specific alterations in gene expression that were due to the direct and secondary effects of systemic GDF15 treatment. Results Using the transcriptome profile of ∼35,000 individual AP/NTS nuclei, we identified 19 transcriptomically distinct cellular subtypes, including a single population Gfral and Ret positive excitatory neurons, representing the primary site of action for GDF15. A total of ∼600 cell type-specific differential expression events were identified in neurons and glia, including the identification of transcriptome alterations specific to the direct effects of GDF15 in the Gfral-Ret positive excitatory neurons and shared transcriptome alterations across neuronal and glial cell types. Downstream analyses identified shared and cell type-specific alterations in signaling pathways and upstream regulatory mechanisms of the observed transcriptome alterations. Conclusions These data provide a considerable advance in our understanding of AP and NTS cell type-specific molecular mechanisms associated with GDF15 signaling. The identified cellular subtype-specific regulatory mechanism and signaling pathways likely represent important targets for future pharmacotherapies. GDF15 directly alters transcription in Gfral- and Ret-positive excitatory neurons. GDF15 indirectly alters transcription in other neuronal and glial populations. Cell type-specific expression changes identify regulatory and signaling mechanisms.
Collapse
Affiliation(s)
- Benjamin C Reiner
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| | - Richard C Crist
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Tito Borner
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania 19104; Department of Biobehavioral Health Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Robert P Doyle
- Syracuse University, Department of Chemistry, 111 College Place, Syracuse, New York 13244
| | - Matthew R Hayes
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania 19104; Department of Biobehavioral Health Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Bart C De Jonghe
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania 19104; Department of Biobehavioral Health Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
132
|
Costa A, Ai M, Nunn N, Culotta I, Hunter J, Boudjadja MB, Valencia-Torres L, Aviello G, Hodson DJ, Snider BM, Coskun T, Emmerson PJ, Luckman SM, D'Agostino G. Anorectic and aversive effects of GLP-1 receptor agonism are mediated by brainstem cholecystokinin neurons, and modulated by GIP receptor activation. Mol Metab 2021; 55:101407. [PMID: 34844019 PMCID: PMC8689241 DOI: 10.1016/j.molmet.2021.101407] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 02/07/2023] Open
Abstract
Objective Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are effective medications to reduce appetite and body weight. These actions are centrally mediated; however, the neuronal substrates involved are poorly understood. Methods We employed a combination of neuroanatomical, genetic, and behavioral approaches in the mouse to investigate the involvement of caudal brainstem cholecystokinin-expressing neurons in the effect of the GLP-1RA exendin-4. We further confirmed key neuroanatomical findings in the non-human primate brain. Results We found that cholecystokinin-expressing neurons in the caudal brainstem are required for the anorectic and body weight-lowering effects of GLP-1RAs and for the induction of GLP-1RA-induced conditioned taste avoidance. We further show that, while cholecystokinin-expressing neurons are not a direct target for glucose-dependent insulinotropic peptide (GIP), GIP receptor activation results in a reduced recruitment of these GLP-1RA-responsive neurons and a selective reduction of conditioned taste avoidance. Conclusions In addition to disclosing a neuronal population required for the full appetite- and body weight-lowering effect of GLP-1RAs, our data also provide a novel framework for understanding and ameliorating GLP-1RA-induced nausea — a major factor for withdrawal from treatment. CCKAP/NTS neurons are required for the full anorectic and body weight-lowering effect of GLP-1 receptor agonists. GLP-1 receptor agonists promote the formation of conditioned taste avoidance by activating CCKAP/NTS neurons. CCKAP/NTS neurons are not activated in response to GIP receptor agonists. GIP receptor agonists reduce GLP-1 receptor agonist-induced neuronal responses in the caudal brainstem. GIP receptor agonists reduce GLP-1 receptor agonist-induced conditioned taste avoidance.
Collapse
Affiliation(s)
- Alessia Costa
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Minrong Ai
- Lilly Research Laboratories, Eli Lilly & Company, Indianapolis, IN, United States.
| | - Nicolas Nunn
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Isabella Culotta
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jenna Hunter
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Mehdi Boutagouga Boudjadja
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | | | - Gabriella Aviello
- The Rowett Institute, University of Aberdeen, Aberdeen, UK; Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - David J Hodson
- Institute of Metabolism and Systems Research University of Birmingham &Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Brandy M Snider
- Lilly Research Laboratories, Eli Lilly & Company, Indianapolis, IN, United States
| | - Tamer Coskun
- Lilly Research Laboratories, Eli Lilly & Company, Indianapolis, IN, United States
| | - Paul J Emmerson
- Lilly Research Laboratories, Eli Lilly & Company, Indianapolis, IN, United States
| | - Simon M Luckman
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Giuseppe D'Agostino
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; The Rowett Institute, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
133
|
The Role of GDF15 as a Myomitokine. Cells 2021; 10:cells10112990. [PMID: 34831213 PMCID: PMC8616340 DOI: 10.3390/cells10112990] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 02/07/2023] Open
Abstract
Growth differentiation factor 15 (GDF15) is a cytokine best known for affecting systemic energy metabolism through its anorectic action. GDF15 expression and secretion from various organs and tissues is induced in different physiological and pathophysiological states, often linked to mitochondrial stress, leading to highly variable circulating GDF15 levels. In skeletal muscle and the heart, the basal expression of GDF15 is very low compared to other organs, but GDF15 expression and secretion can be induced in various stress conditions, such as intense exercise and acute myocardial infarction, respectively. GDF15 is thus considered as a myokine and cardiokine. GFRAL, the exclusive receptor for GDF15, is expressed in hindbrain neurons and activation of the GDF15–GFRAL pathway is linked to an increased sympathetic outflow and possibly an activation of the hypothalamic-pituitary-adrenal (HPA) stress axis. There is also evidence for peripheral, direct effects of GDF15 on adipose tissue lipolysis and possible autocrine cardiac effects. Metabolic and behavioral outcomes of GDF15 signaling can be beneficial or detrimental, likely depending on the magnitude and duration of the GDF15 signal. This is especially apparent for GDF15 production in muscle, which can be induced both by exercise and by muscle disease states such as sarcopenia and mitochondrial myopathy.
Collapse
|
134
|
Borner T, Geisler CE, Fortin SM, Cosgrove R, Alsina-Fernandez J, Dogra M, Doebley S, Sanchez-Navarro MJ, Leon RM, Gaisinsky J, White A, Bamezai A, Ghidewon MY, Grill HJ, Crist RC, Reiner BC, Ai M, Samms RJ, De Jonghe BC, Hayes MR. GIP Receptor Agonism Attenuates GLP-1 Receptor Agonist-Induced Nausea and Emesis in Preclinical Models. Diabetes 2021; 70:2545-2553. [PMID: 34380697 PMCID: PMC8564411 DOI: 10.2337/db21-0459] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/06/2021] [Indexed: 12/05/2022]
Abstract
Glucagon-like peptide 1 receptor (GLP-1R) agonists decrease body weight and improve glycemic control in obesity and diabetes. Patient compliance and maximal efficacy of GLP-1 therapeutics are limited by adverse side effects, including nausea and emesis. In three different species (i.e., mice, rats, and musk shrews), we show that glucose-dependent insulinotropic polypeptide receptor (GIPR) signaling blocks emesis and attenuates illness behaviors elicited by GLP-1R activation, while maintaining reduced food intake, body weight loss, and improved glucose tolerance. The area postrema and nucleus tractus solitarius (AP/NTS) of the hindbrain are required for food intake and body weight suppression by GLP-1R ligands and processing of emetic stimuli. Using single-nuclei RNA sequencing, we identified the cellular phenotypes of AP/NTS cells expressing GIPR and GLP-1R on distinct populations of inhibitory and excitatory neurons, with the greatest expression of GIPR in γ-aminobutyric acid-ergic neurons. This work suggests that combinatorial pharmaceutical targeting of GLP-1R and GIPR will increase efficacy in treating obesity and diabetes by reducing nausea and vomiting.
Collapse
Affiliation(s)
- Tito Borner
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
- Department of Biobehavioral Health Sciences, University of Pennsylvania, Philadelphia, PA
| | | | - Samantha M Fortin
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - Richard Cosgrove
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | | | - Mridula Dogra
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Sarah Doebley
- Department of Biobehavioral Health Sciences, University of Pennsylvania, Philadelphia, PA
| | | | - Rosa M Leon
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - Jane Gaisinsky
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - Arianna White
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - Ankur Bamezai
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | | | - Harvey J Grill
- Department of Psychology, University of Pennsylvania, Philadelphia, PA
| | - Richard C Crist
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - Benjamin C Reiner
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - Minrong Ai
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Ricardo J Samms
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Bart C De Jonghe
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
- Department of Biobehavioral Health Sciences, University of Pennsylvania, Philadelphia, PA
| | - Matthew R Hayes
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
- Department of Biobehavioral Health Sciences, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
135
|
Hayes MR, Borner T, De Jonghe BC. The Role of GIP in the Regulation of GLP-1 Satiety and Nausea. Diabetes 2021; 70:1956-1961. [PMID: 34176783 PMCID: PMC8576421 DOI: 10.2337/dbi21-0004] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/01/2021] [Indexed: 11/18/2022]
Abstract
Gastric inhibitory peptide (GIP) is best known for its role as an incretin hormone in control of blood glucose concentrations. As a classic satiation signal, however, the literature illustrates a mixed picture of GIP involvement with an at best weak anorectic response profile being reported for GIP receptor (GIPR) signaling. Not surprisingly, the pursuit of exploiting the GIP system as a therapeutic target for diabetes and obesity has fallen behind that of the other gastrointestinal-derived incretin, glucagon-like peptide 1 (GLP-1). However, recent discoveries highlighted here support potential therapeutic advantages of combinatorial therapies targeting GIP and GLP-1 systems together, with perhaps the most surprising finding that GIPR agonism may have antiemetic properties. As nausea and vomiting are the most common side effects of all existing GLP-1 pharmacotherapies, the ability for GIP agonism to reduce GLP-1-induced illness behaviors but retain (if not enhance) weight loss and glycemic control may offer a new era in the treatment of obesity and diabetes.
Collapse
Affiliation(s)
- Matthew R Hayes
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
- Department of Biobehavioral Health Sciences, University of Pennsylvania, Philadelphia, PA
| | - Tito Borner
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
- Department of Biobehavioral Health Sciences, University of Pennsylvania, Philadelphia, PA
| | - Bart C De Jonghe
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
- Department of Biobehavioral Health Sciences, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
136
|
Ludwig MQ, Todorov PV, Egerod KL, Olson DP, Pers TH. Single-Cell Mapping of GLP-1 and GIP Receptor Expression in the Dorsal Vagal Complex. Diabetes 2021; 70:1945-1955. [PMID: 34176785 PMCID: PMC8576419 DOI: 10.2337/dbi21-0003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/08/2021] [Indexed: 11/13/2022]
Abstract
The dorsal vagal complex (DVC) in the hindbrain, composed of the area postrema, nucleus of the solitary tract, and dorsal motor nucleus of the vagus, plays a critical role in modulating satiety. The incretins glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) act directly in the brain to modulate feeding, and receptors for both are expressed in the DVC. Given the impressive clinical responses to pharmacologic manipulation of incretin signaling, understanding the central mechanisms by which incretins alter metabolism and energy balance is of critical importance. Here, we review recent single-cell approaches used to detect molecular signatures of GLP-1 and GIP receptor-expressing cells in the DVC. In addition, we discuss how current advancements in single-cell transcriptomics, epigenetics, spatial transcriptomics, and circuit mapping techniques have the potential to further characterize incretin receptor circuits in the hindbrain.
Collapse
Affiliation(s)
- Mette Q Ludwig
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Petar V Todorov
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Kristoffer L Egerod
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - David P Olson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
- Division of Pediatric Endocrinology, Department of Pediatrics, Michigan Medicine, Ann Arbor, MI
| | - Tune H Pers
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
137
|
Samms RJ, Sloop KW, Gribble FM, Reimann F, Adriaenssens AE. GIPR Function in the Central Nervous System: Implications and Novel Perspectives for GIP-Based Therapies in Treating Metabolic Disorders. Diabetes 2021; 70:1938-1944. [PMID: 34176786 PMCID: PMC8576420 DOI: 10.2337/dbi21-0002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022]
Abstract
During the past decade, pharmaceutical engineering of unimolecular agents has revealed the therapeutic potential of glucose-dependent insulinotropic polypeptide receptor (GIPR) agonism. From this work, one of the most intriguing findings is that engagement of GIPR enhances the weight loss profile of glucagon-like peptide 1 (GLP-1)-based therapeutics. Consequently, this pharmacological approach, in combination with novel Gipr mouse models, has provided evidence indicating that activation of GIPR in certain areas of the brain that regulate energy balance is required for the synergistic weight loss of dual GIPR and GLP-1 receptor (GLP-1R) agonism. This has led to significant interest in understanding how GIPR activity in the brain functions to reduce caloric intake, induce negative energy balance, and drive weight loss. Herein, we review key findings in this field and provide a novel perspective explaining how GIP may act in the brain to affect energy balance both alone and in concert with GLP-1R agonism.
Collapse
Affiliation(s)
- Ricardo J Samms
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Kyle W Sloop
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Fiona M Gribble
- Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, U.K
| | - Frank Reimann
- Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, U.K
| | - Alice E Adriaenssens
- Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, U.K.
| |
Collapse
|
138
|
Trapp S, Brierley DI. Brain GLP-1 and the regulation of food intake: GLP-1 action in the brain and its implications for GLP-1 receptor agonists in obesity treatment. Br J Pharmacol 2021; 179:557-570. [PMID: 34323288 PMCID: PMC8820179 DOI: 10.1111/bph.15638] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/22/2021] [Accepted: 07/03/2021] [Indexed: 12/19/2022] Open
Abstract
This review considers the similarities and differences between the physiological systems regulated by gut-derived and neuronally produced glucagon-like peptide 1 (GLP-1). It addresses the questions of whether peripheral and central GLP-1 sources constitute separate, linked or redundant systems and whether the brain GLP-1 system consists of disparate sections or is a homogenous entity. This review also explores the implications of the answers to these questions for the use of GLP-1 receptor agonists as anti-obesity drugs.
Collapse
Affiliation(s)
- Stefan Trapp
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Daniel I Brierley
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
139
|
Borgmann D, Ciglieri E, Biglari N, Brandt C, Cremer AL, Backes H, Tittgemeyer M, Wunderlich FT, Brüning JC, Fenselau H. Gut-brain communication by distinct sensory neurons differently controls feeding and glucose metabolism. Cell Metab 2021; 33:1466-1482.e7. [PMID: 34043943 PMCID: PMC8280952 DOI: 10.1016/j.cmet.2021.05.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 02/23/2021] [Accepted: 05/03/2021] [Indexed: 01/26/2023]
Abstract
Sensory neurons relay gut-derived signals to the brain, yet the molecular and functional organization of distinct populations remains unclear. Here, we employed intersectional genetic manipulations to probe the feeding and glucoregulatory function of distinct sensory neurons. We reconstruct the gut innervation patterns of numerous molecularly defined vagal and spinal afferents and identify their downstream brain targets. Bidirectional chemogenetic manipulations, coupled with behavioral and circuit mapping analysis, demonstrated that gut-innervating, glucagon-like peptide 1 receptor (GLP1R)-expressing vagal afferents relay anorexigenic signals to parabrachial nucleus neurons that control meal termination. Moreover, GLP1R vagal afferent activation improves glucose tolerance, and their inhibition elevates blood glucose levels independent of food intake. In contrast, gut-innervating, GPR65-expressing vagal afferent stimulation increases hepatic glucose production and activates parabrachial neurons that control normoglycemia, but they are dispensable for feeding regulation. Thus, distinct gut-innervating sensory neurons differentially control feeding and glucoregulatory neurocircuits and may provide specific targets for metabolic control.
Collapse
Affiliation(s)
- Diba Borgmann
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Translational Neurocircuitry Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Anatomy II, Neuroanatomy, University Hospital Cologne, Joseph-Stelzmann Str. 9, 50937 Cologne, Germany
| | - Elisa Ciglieri
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50937 Cologne, Germany
| | - Nasim Biglari
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Strasse 50, 50931 Cologne, Germany
| | - Claus Brandt
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Strasse 50, 50931 Cologne, Germany
| | - Anna Lena Cremer
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Strasse 50, 50931 Cologne, Germany
| | - Heiko Backes
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Strasse 50, 50931 Cologne, Germany
| | - Marc Tittgemeyer
- Translational Neurocircuitry Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, Cologne 50931, Germany
| | - F Thomas Wunderlich
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50937 Cologne, Germany; Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Strasse 50, 50931 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, Cologne 50931, Germany; Center of Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Straße 21, 50931 Cologne, Germany
| | - Jens C Brüning
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50937 Cologne, Germany; Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Strasse 50, 50931 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, Cologne 50931, Germany; Center of Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Straße 21, 50931 Cologne, Germany
| | - Henning Fenselau
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50937 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, Cologne 50931, Germany.
| |
Collapse
|
140
|
Myers MG, Affinati AH, Richardson N, Schwartz MW. Central nervous system regulation of organismal energy and glucose homeostasis. Nat Metab 2021; 3:737-750. [PMID: 34158655 DOI: 10.1038/s42255-021-00408-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/12/2021] [Indexed: 02/05/2023]
Abstract
Growing evidence implicates the brain in the regulation of both immediate fuel availability (for example, circulating glucose) and long-term energy stores (that is, adipose tissue mass). Rather than viewing the adipose tissue and glucose control systems separately, we suggest that the brain systems that control them are components of a larger, highly integrated, 'fuel homeostasis' control system. This conceptual framework, along with new insights into the organization and function of distinct neuronal systems, provides a context within which to understand how metabolic homeostasis is achieved in both basal and postprandial states. We also review evidence that dysfunction of the central fuel homeostasis system contributes to the close association between obesity and type 2 diabetes, with the goal of identifying more effective treatment options for these common metabolic disorders.
Collapse
Affiliation(s)
- Martin G Myers
- Departments of Medicine and Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Alison H Affinati
- Departments of Medicine and Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Nicole Richardson
- UW Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Michael W Schwartz
- UW Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
141
|
Williams DL. The diverse effects of brain glucagon-like peptide 1 receptors on ingestive behaviour. Br J Pharmacol 2021; 179:571-583. [PMID: 33990944 DOI: 10.1111/bph.15535] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/12/2021] [Accepted: 05/07/2021] [Indexed: 12/31/2022] Open
Abstract
Glucagon-like peptide 1 (GLP-1) is well known as a gut hormone and also acts as a neuropeptide, produced in a discrete population of caudal brainstem neurons that project widely throughout the brain. GLP-1 receptors are expressed in many brain areas of relevance to energy balance, and stimulation of these receptors at many of these sites potently suppresses food intake. This review surveys the current evidence for effects mediated by GLP-1 receptors on feeding behaviour at a wide array of brain sites and discusses behavioural and neurophysiological mechanisms for the effects identified thus far. Taken together, it is clear that GLP-1 receptor activity in the brain can influence feeding by diverse means, including mediation of gastrointestinal satiation and/or satiety signalling, suppression of motivation for food reward, induction of nausea and mediation of restraint stress-induced hypophagia, but many questions about the organization of this system remain.
Collapse
Affiliation(s)
- Diana L Williams
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
142
|
James DM, Davidson EA, Yanes J, Moshiree B, Dallman JE. The Gut-Brain-Microbiome Axis and Its Link to Autism: Emerging Insights and the Potential of Zebrafish Models. Front Cell Dev Biol 2021; 9:662916. [PMID: 33937265 PMCID: PMC8081961 DOI: 10.3389/fcell.2021.662916] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/15/2021] [Indexed: 12/22/2022] Open
Abstract
Research involving autism spectrum disorder (ASD) most frequently focuses on its key diagnostic criteria: restricted interests and repetitive behaviors, altered sensory perception, and communication impairments. These core criteria, however, are often accompanied by numerous comorbidities, many of which result in severe negative impacts on quality of life, including seizures, epilepsy, sleep disturbance, hypotonia, and GI distress. While ASD is a clinically heterogeneous disorder, gastrointestinal (GI) distress is among the most prevalent co-occurring symptom complex, manifesting in upward of 70% of all individuals with ASD. Consistent with this high prevalence, over a dozen family foundations that represent genetically distinct, molecularly defined forms of ASD have identified GI symptoms as an understudied area with significant negative impacts on quality of life for both individuals and their caregivers. Moreover, GI symptoms are also correlated with more pronounced irritability, social withdrawal, stereotypy, hyperactivity, and sleep disturbances, suggesting that they may exacerbate the defining behavioral symptoms of ASD. Despite these facts (and to the detriment of the community), GI distress remains largely unaddressed by ASD research and is frequently regarded as a symptomatic outcome rather than a potential contributory factor to the behavioral symptoms. Allowing for examination of both ASD's impact on the central nervous system (CNS) as well as its impact on the GI tract and the associated microbiome, the zebrafish has recently emerged as a powerful tool to study ASD. This is in no small part due to the advantages zebrafish present as a model system: their precocious development, their small transparent larval form, and their parallels with humans in genetics and physiology. While ASD research centered on the CNS has leveraged these advantages, there has been a critical lack of GI-centric ASD research in zebrafish models, making a holistic view of the gut-brain-microbiome axis incomplete. Similarly, high-throughput ASD drug screens have recently been developed but primarily focus on CNS and behavioral impacts while potential GI impacts have not been investigated. In this review, we aim to explore the great promise of the zebrafish model for elucidating the roles of the gut-brain-microbiome axis in ASD.
Collapse
Affiliation(s)
- David M. James
- Department of Biology, University of Miami, Coral Gables, FL, United States
| | | | - Julio Yanes
- Department of Biology, University of Miami, Coral Gables, FL, United States
| | - Baharak Moshiree
- Department of Gastroenterology and Hepatology, Atrium Health, Charlotte, NC, United States
| | - Julia E. Dallman
- Department of Biology, University of Miami, Coral Gables, FL, United States
| |
Collapse
|
143
|
Richards P, Thornberry NA, Pinto S. The gut-brain axis: Identifying new therapeutic approaches for type 2 diabetes, obesity, and related disorders. Mol Metab 2021; 46:101175. [PMID: 33548501 PMCID: PMC8085592 DOI: 10.1016/j.molmet.2021.101175] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The gut-brain axis, which mediates bidirectional communication between the gastrointestinal system and central nervous system (CNS), plays a fundamental role in multiple areas of physiology including regulating appetite, metabolism, and gastrointestinal function. The biology of the gut-brain axis is central to the efficacy of glucagon-like peptide-1 (GLP-1)-based therapies, which are now leading treatments for type 2 diabetes (T2DM) and obesity. This success and research to suggest a much broader role of gut-brain circuits in physiology and disease has led to increasing interest in targeting such circuits to discover new therapeutics. However, our current knowledge of this biology is limited, largely because the scientific tools have not been available to enable a detailed mechanistic understanding of gut-brain communication. SCOPE OF REVIEW In this review, we provide an overview of the current understanding of how sensory information from the gastrointestinal system is communicated to the central nervous system, with an emphasis on circuits involved in regulating feeding and metabolism. We then describe how recent technologies are enabling a better understanding of this system at a molecular level and how this information is leading to novel insights into gut-brain communication. We also discuss current therapeutic approaches that leverage the gut-brain axis to treat diabetes, obesity, and related disorders and describe potential novel approaches that have been enabled by recent advances in the field. MAJOR CONCLUSIONS The gut-brain axis is intimately involved in regulating glucose homeostasis and appetite, and this system plays a key role in mediating the efficacy of therapeutics that have had a major impact on treating T2DM and obesity. Research into the gut-brain axis has historically largely focused on studying individual components in this system, but new technologies are now enabling a better understanding of how signals from these components are orchestrated to regulate metabolism. While this work reveals a complexity of signaling even greater than previously appreciated, new insights are already being leveraged to explore fundamentally new approaches to treating metabolic diseases.
Collapse
Affiliation(s)
- Paul Richards
- Kallyope, Inc., 430 East 29th, Street, New York, NY, 10016, USA.
| | | | - Shirly Pinto
- Kallyope, Inc., 430 East 29th, Street, New York, NY, 10016, USA.
| |
Collapse
|
144
|
Han W, de Araujo IE. Nausea and the Brain: The Chemoreceptor Trigger Zone Enters the Molecular Age. Neuron 2021; 109:391-393. [PMID: 33539771 DOI: 10.1016/j.neuron.2021.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Area postrema in brainstem has long been known to trigger emesis by detecting blood-borne toxins and pathogens. In this issue, Zhang and colleagues provide a single-cell molecular atlas of this region, opening new possibilities for harnessing its neurons in vivo.
Collapse
Affiliation(s)
- Wenfei Han
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ivan E de Araujo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Pharmacology and Therapeutics Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
145
|
Gautron L. The Phantom Satiation Hypothesis of Bariatric Surgery. Front Neurosci 2021; 15:626085. [PMID: 33597843 PMCID: PMC7882491 DOI: 10.3389/fnins.2021.626085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/06/2021] [Indexed: 01/26/2023] Open
Abstract
The excitation of vagal mechanoreceptors located in the stomach wall directly contributes to satiation. Thus, a loss of gastric innervation would normally be expected to result in abrogated satiation, hyperphagia, and unwanted weight gain. While Roux-en-Y-gastric bypass (RYGB) inevitably results in gastric denervation, paradoxically, bypassed subjects continue to experience satiation. Inspired by the literature in neurology on phantom limbs, I propose a new hypothesis in which damage to the stomach innervation during RYGB, including its vagal supply, leads to large-scale maladaptive changes in viscerosensory nerves and connected brain circuits. As a result, satiation may continue to arise, sometimes at exaggerated levels, even in subjects with a denervated or truncated stomach. The same maladaptive changes may also contribute to dysautonomia, unexplained pain, and new emotional responses to eating. I further revisit the metabolic benefits of bariatric surgery, with an emphasis on RYGB, in the light of this phantom satiation hypothesis.
Collapse
Affiliation(s)
- Laurent Gautron
- Department of Internal Medicine, Center for Hypothalamic Research, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
146
|
Wean JB, Smith BN. Fibroblast Growth Factor 19 Increases the Excitability of Pre-Motor Glutamatergic Dorsal Vagal Complex Neurons From Hyperglycemic Mice. Front Endocrinol (Lausanne) 2021; 12:765359. [PMID: 34858337 PMCID: PMC8632226 DOI: 10.3389/fendo.2021.765359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/26/2021] [Indexed: 01/14/2023] Open
Abstract
Intracerebroventricular administration of the protein hormone fibroblast growth factor 19 (FGF19) to the hindbrain produces potent antidiabetic effects in hyperglycemic mice that are likely mediated through a vagal parasympathetic mechanism. FGF19 increases the synaptic excitability of parasympathetic motor neurons in the dorsal motor nucleus of the vagus (DMV) from hyperglycemic, but not normoglycemic, mice but the source of this synaptic input is unknown. Neurons in the area postrema (AP) and nucleus tractus solitarius (NTS) express high levels of FGF receptors and exert glutamatergic control over the DMV. This study tested the hypothesis that FGF19 increases glutamate release in the DMV by increasing the activity of glutamatergic AP and NTS neurons in hyperglycemic mice. Glutamate photoactivation experiments confirmed that FGF19 increases synaptic glutamate release from AP and NTS neurons that connect to the DMV in hyperglycemic, but not normoglycemic mice. Contrary to expectations, FGF19 produced a mixed effect on intrinsic membrane properties in the NTS with a trend towards inhibition, suggesting that another mechanism was responsible for the observed effects on glutamate release in the DMV. Consistent with the hypothesis, FGF19 increased action potential-dependent glutamate release in the NTS in hyperglycemic mice only. Finally, glutamate photoactivation experiments confirmed that FGF19 increases the activity of glutamatergic AP neurons that project to the NTS in hyperglycemic mice. Together, these results support the hypothesis that FGF19 increases glutamate release from AP and NTS neurons that project to the DMV in hyperglycemic mice. FGF19 therefore modifies the local vago-vagal reflex circuitry at several points. Additionally, since the AP and NTS communicate with several other metabolic regulatory nuclei in the brain, FGF19 in the hindbrain may alter neuroendocrine and behavioral aspects of metabolism, in addition to changes in parasympathetic output.
Collapse
Affiliation(s)
- Jordan B. Wean
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Bret N. Smith
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, United States
- *Correspondence: Bret N. Smith,
| |
Collapse
|