101
|
Neumann S, Hüser L, Ondreka K, Auler N, Haverkamp S. Cell type-specific bipolar cell input to ganglion cells in the mouse retina. Neuroscience 2016; 316:420-32. [PMID: 26751712 DOI: 10.1016/j.neuroscience.2015.12.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 12/21/2015] [Accepted: 12/30/2015] [Indexed: 10/22/2022]
Abstract
Many distinct ganglion cell types, which are the output elements of the retina, were found to encode for specific features of a visual scene such as contrast, color information or movement. The detailed composition of retinal circuits leading to this tuning of retinal ganglion cells, however, is apart from some prominent examples, largely unknown. Here we aimed to investigate if ganglion cell types in the mouse retina receive selective input from specific bipolar cell types or if they sample their synaptic input non-selectively from all bipolar cell types stratifying within their dendritic tree. To address this question we took an anatomical approach and immunolabeled retinae of two transgenic mouse lines (GFP-O and JAM-B) with markers for ribbon synapses and type 2 bipolar cells. We morphologically identified all green fluorescent protein (GFP)-expressing ganglion cell types, which co-stratified with type 2 bipolar cells and assessed the total number of bipolar input synapses and the proportion of synapses deriving from type 2 bipolar cells. Only JAM-B ganglion cells received synaptic input preferentially from bipolar cell types other than type 2 bipolar cells whereas the other analyzed ganglion cell types sampled their bipolar input most likely from all bipolar cell terminals within their dendritic arbor.
Collapse
Affiliation(s)
- S Neumann
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - L Hüser
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - K Ondreka
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - N Auler
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - S Haverkamp
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany.
| |
Collapse
|
102
|
Wahl DJ, Jian Y, Bonora S, Zawadzki RJ, Sarunic MV. Wavefront sensorless adaptive optics fluorescence biomicroscope for in vivo retinal imaging in mice. BIOMEDICAL OPTICS EXPRESS 2016; 7:1-12. [PMID: 26819812 PMCID: PMC4722895 DOI: 10.1364/boe.7.000001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/15/2015] [Accepted: 10/21/2015] [Indexed: 05/18/2023]
Abstract
Cellular-resolution in vivo fluorescence imaging is a valuable tool for longitudinal studies of retinal function in vision research. Wavefront sensorless adaptive optics (WSAO) is a developing technology that enables high-resolution imaging of the mouse retina. In place of the conventional method of using a Shack-Hartmann wavefront sensor to measure the aberrations directly, WSAO uses an image quality metric and a search algorithm to drive the shape of the adaptive element (i.e. deformable mirror). WSAO is a robust approach to AO and it is compatible with a compact, low-cost lens-based system. In this report, we demonstrated a hill-climbing algorithm for WSAO with a variable focus lens and deformable mirror for non-invasive in vivo imaging of EGFP (enhanced green fluorescent protein) labelled ganglion cells and microglia cells in the mouse retina.
Collapse
Affiliation(s)
- Daniel J. Wahl
- Engineering Science, Simon Fraser University, Burnaby BC, V5A 1S6 Canada
- These authors contributed equally to this work
| | - Yifan Jian
- Engineering Science, Simon Fraser University, Burnaby BC, V5A 1S6 Canada
- These authors contributed equally to this work
| | - Stefano Bonora
- CNR-Institute for Photonics and Nanotechnology, Via Trasea 7, 35131, Padova, Italy
- Hilase project, Institute of Physics AS CR v.v.i., Na Slovance 2, 18221, Prague, Czech Republic
| | - Robert J. Zawadzki
- UC Davis RISE Small Animal Ocular Imaging Facility, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616 USA
- Vision Science and Advanced Retinal Imaging Laboratory (VSRI), Department of Ophthalmology & Vision Science, University of California Davis, Sacramento, CA 95817 USA
| | - Marinko V. Sarunic
- Engineering Science, Simon Fraser University, Burnaby BC, V5A 1S6 Canada
| |
Collapse
|
103
|
Berry RH, Qu J, John SWM, Howell GR, Jakobs TC. Synapse Loss and Dendrite Remodeling in a Mouse Model of Glaucoma. PLoS One 2015; 10:e0144341. [PMID: 26637126 PMCID: PMC4670161 DOI: 10.1371/journal.pone.0144341] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 11/17/2015] [Indexed: 01/05/2023] Open
Abstract
It has been hypothesized that synaptic pruning precedes retinal ganglion cell degeneration in glaucoma, causing early dysfunction to retinal ganglion cells. To begin to assess this, we studied the excitatory synaptic inputs to individual ganglion cells in normal mouse retinas and in retinas with ganglion cell degeneration from glaucoma (DBA/2J), or following an optic nerve crush. Excitatory synapses were labeled by AAV2-mediated transfection of ganglion cells with PSD-95-GFP. After both insults the linear density of synaptic inputs to ganglion cells decreased. In parallel, the dendritic arbors lost complexity. We did not observe any cells that had lost dendritic synaptic input while preserving a normal or near-normal morphology. Within the temporal limits of these observations, dendritic remodeling and synapse pruning thus appear to occur near-simultaneously.
Collapse
Affiliation(s)
- Ryan H. Berry
- Harvard Medical School, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, United States of America
| | - Juan Qu
- Harvard Medical School, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, United States of America
| | - Simon W. M. John
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, United States of America
- The Howard Hughes Medical Institute, The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, United States of America
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, United States of America
| | - Gareth R. Howell
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, United States of America
- * E-mail: (TJ); (GH)
| | - Tatjana C. Jakobs
- Harvard Medical School, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, United States of America
- * E-mail: (TJ); (GH)
| |
Collapse
|
104
|
Dhande OS, Stafford BK, Lim JHA, Huberman AD. Contributions of Retinal Ganglion Cells to Subcortical Visual Processing and Behaviors. Annu Rev Vis Sci 2015; 1:291-328. [PMID: 28532372 DOI: 10.1146/annurev-vision-082114-035502] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Every aspect of visual perception and behavior is built from the neural activity of retinal ganglion cells (RGCs), the output neurons of the eye. Here, we review progress toward understanding the many types of RGCs that communicate visual signals to the brain, along with the subcortical brain regions that use those signals to build and respond to representations of the outside world. We emphasize recent progress in the use of mouse genetics, viral circuit tracing, and behavioral psychophysics to define and map the various RGCs and their associated networks. We also address questions about the homology of RGC types in mice and other species including nonhuman primates and humans. Finally, we propose a framework for understanding RGC typology and for highlighting the relationship between RGC type-specific circuitry and the processing stations in the brain that support and give rise to the perception of sight.
Collapse
Affiliation(s)
- Onkar S Dhande
- Neurosciences Department, Neurobiology Section in the Division of Biological Sciences, and Department of Ophthalmology, University of California, San Diego, La Jolla, California 92093; ,
| | - Benjamin K Stafford
- Neurosciences Department, Neurobiology Section in the Division of Biological Sciences, and Department of Ophthalmology, University of California, San Diego, La Jolla, California 92093; ,
| | - Jung-Hwan A Lim
- Neurosciences Department, Neurobiology Section in the Division of Biological Sciences, and Department of Ophthalmology, University of California, San Diego, La Jolla, California 92093; ,
| | - Andrew D Huberman
- Neurosciences Department, Neurobiology Section in the Division of Biological Sciences, and Department of Ophthalmology, University of California, San Diego, La Jolla, California 92093; ,
| |
Collapse
|
105
|
|
106
|
Stradleigh TW, Ishida AT. Fixation strategies for retinal immunohistochemistry. Prog Retin Eye Res 2015; 48:181-202. [PMID: 25892361 PMCID: PMC4543575 DOI: 10.1016/j.preteyeres.2015.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/06/2015] [Accepted: 04/06/2015] [Indexed: 10/23/2022]
Abstract
Immunohistochemical and ex vivo anatomical studies have provided many glimpses of the variety, distribution, and signaling components of vertebrate retinal neurons. The beauty of numerous images published to date, and the qualitative and quantitative information they provide, indicate that these approaches are fundamentally useful. However, obtaining these images entailed tissue handling and exposure to chemical solutions that differ from normal extracellular fluid in composition, temperature, and osmolarity. Because the differences are large enough to alter intercellular and intracellular signaling in neurons, and because retinae are susceptible to crush, shear, and fray, it is natural to wonder if immunohistochemical and anatomical methods disturb or damage the cells they are designed to examine. Tissue fixation is typically incorporated to guard against this damage and is therefore critically important to the quality and significance of the harvested data. Here, we describe mechanisms of fixation; advantages and disadvantages of using formaldehyde and glutaraldehyde as fixatives during immunohistochemistry; and modifications of widely used protocols that have recently been found to improve cell shape preservation and immunostaining patterns, especially in proximal retinal neurons.
Collapse
Affiliation(s)
- Tyler W Stradleigh
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, USA
| | - Andrew T Ishida
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, USA; Department of Ophthalmology and Vision Science, University of California, Sacramento, CA 95817, USA.
| |
Collapse
|
107
|
Purgert RJ, Lukasiewicz PD. Differential encoding of spatial information among retinal on cone bipolar cells. J Neurophysiol 2015. [PMID: 26203104 DOI: 10.1152/jn.00287.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The retina is the first stage of visual processing. It encodes elemental features of visual scenes. Distinct cone bipolar cells provide the substrate for this to occur. They encode visual information, such as color and luminance, a principle known as parallel processing. Few studies have directly examined whether different forms of spatial information are processed in parallel among cone bipolar cells. To address this issue, we examined the spatial information encoded by mouse ON cone bipolar cells, the subpopulation excited by increments in illumination. Two types of spatial processing were identified. We found that ON cone bipolar cells with axons ramifying in the central inner plexiform layer were tuned to preferentially encode small stimuli. By contrast, ON cone bipolar cells with axons ramifying in the proximal inner plexiform layer, nearest the ganglion cell layer, were tuned to encode both small and large stimuli. This dichotomy in spatial tuning is attributable to amacrine cells providing stronger inhibition to central ON cone bipolar cells compared with proximal ON cone bipolar cells. Furthermore, background illumination altered this difference in spatial tuning. It became less pronounced in bright light, as amacrine cell-driven inhibition became pervasive among all ON cone bipolar cells. These results suggest that differential amacrine cell input determined the distinct spatial encoding properties among ON cone bipolar cells. These findings enhance the known parallel processing capacity of the retina.
Collapse
Affiliation(s)
- Robert J Purgert
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri; and
| | - Peter D Lukasiewicz
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri; and Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
108
|
Gillette TA, Hosseini P, Ascoli GA. Topological characterization of neuronal arbor morphology via sequence representation: II--global alignment. BMC Bioinformatics 2015; 16:209. [PMID: 26141505 PMCID: PMC4491275 DOI: 10.1186/s12859-015-0605-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/30/2015] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The increasing abundance of neuromorphological data provides both the opportunity and the challenge to compare massive numbers of neurons from a wide diversity of sources efficiently and effectively. We implemented a modified global alignment algorithm representing axonal and dendritic bifurcations as strings of characters. Sequence alignment quantifies neuronal similarity by identifying branch-level correspondences between trees. RESULTS The space generated from pairwise similarities is capable of classifying neuronal arbor types as well as, or better than, traditional topological metrics. Unsupervised cluster analysis produces groups that significantly correspond with known cell classes for axons, dendrites, and pyramidal apical dendrites. Furthermore, the distinguishing consensus topology generated by multiple sequence alignment of a group of neurons reveals their shared branching blueprint. Interestingly, the axons of dendritic-targeting interneurons in the rodent cortex associates with pyramidal axons but apart from the (more topologically symmetric) axons of perisomatic-targeting interneurons. CONCLUSIONS Global pairwise and multiple sequence alignment of neurite topologies enables detailed comparison of neurites and identification of conserved topological features in alignment-defined clusters. The methods presented also provide a framework for incorporation of additional branch-level morphological features. Moreover, comparison of multiple alignment with motif analysis shows that the two techniques provide complementary information respectively revealing global and local features.
Collapse
Affiliation(s)
- Todd A Gillette
- Department of Molecular Neuroscience, Center for Neural Informatics, Structures, and Plasticity, Krasnow Institute for Advanced Study (MS2A1), George Mason University, Fairfax, VA, USA.
| | - Parsa Hosseini
- Department of Molecular Neuroscience, Center for Neural Informatics, Structures, and Plasticity, Krasnow Institute for Advanced Study (MS2A1), George Mason University, Fairfax, VA, USA.
| | - Giorgio A Ascoli
- Department of Molecular Neuroscience, Center for Neural Informatics, Structures, and Plasticity, Krasnow Institute for Advanced Study (MS2A1), George Mason University, Fairfax, VA, USA.
| |
Collapse
|
109
|
Retinal ganglion cell dendrite pathology and synapse loss: Implications for glaucoma. PROGRESS IN BRAIN RESEARCH 2015; 220:199-216. [PMID: 26497792 DOI: 10.1016/bs.pbr.2015.04.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dendrites are exquisitely specialized cellular compartments that critically influence how neurons collect and process information. Retinal ganglion cell (RGC) dendrites receive synaptic inputs from bipolar and amacrine cells, thus allowing cell-to-cell communication and flow of visual information. In glaucoma, damage to RGC axons results in progressive neurodegeneration and vision loss. Recent data indicate that axonal injury triggers rapid structural alterations in RGC dendritic arbors, prior to manifest axonal loss, which lead to synaptic rearrangements and functional deficits. Here, we provide an update on recent work addressing the role of RGC dendritic degeneration in models of acute and chronic optic nerve damage as well as novel mechanisms that regulate RGC dendrite stability. A better understanding of how defects in RGC dendrites contribute to neurodegeneration in glaucoma might provide new insights into disease onset and progression, while informing the development of novel therapies to prevent vision loss.
Collapse
|
110
|
Sexton TJ, Bleckert A, Turner MH, Van Gelder RN. Type I intrinsically photosensitive retinal ganglion cells of early post-natal development correspond to the M4 subtype. Neural Dev 2015; 10:17. [PMID: 26091805 PMCID: PMC4480886 DOI: 10.1186/s13064-015-0042-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 06/03/2015] [Indexed: 12/16/2022] Open
Abstract
Background Intrinsically photosensitive retinal ganglion cells (ipRGCs) mediate circadian light entrainment and the pupillary light response in adult mice. In early development these cells mediate different processes, including negative phototaxis and the timing of retinal vascular development. To determine if ipRGC physiologic properties also change with development, we measured ipRGC cell density and light responses in wild-type mouse retinas at post-natal days 8, 15 and 30. Results Melanopsin-positive cell density decreases by 17 % between post-natal days 8 and 15 and by 25 % between days 8 and 30. This decrease is due specifically to a decrease in cells co-labeled with a SMI-32, a marker for alpha-on ganglion cells (corresponding to adult morphologic type M4 ipRGCs). On multi-electrode array recordings, post-natal day 8 (P8) ipRGC light responses show more robust firing, reduced adaptation and more rapid recovery from short and extended light pulses than do the light responses of P15 and P30 ipRGCs. Three ipRGC subtypes – Types I-III – have been defined in early development based on sensitivity and latency on multielectrode array recordings. We find that Type I cells largely account for the unique physiologic properties of P8 ipRGCs. Type I cells have previously been shown to have relatively short latencies and high sensitivity. We now show that Type I cells show have rapid and robust recovery from long and short bright light exposures compared with Type II and III cells, suggesting differential light adaptation mechanisms between cell types. By P15, Type I ipRGCs are no longer detectable. Loose patch recordings of P8 M4 ipRGCs demonstrate Type I physiology. Conclusions Type I ipRGCs are found only in early development. In addition to their previously described high sensitivity and rapid kinetics, these cells are uniquely resistant to adaptation and recover quickly and fully to short and prolonged light exposure. Type I ipRGCs correspond to the SMI-32 positive, M4 subtype and largely lose melanopsin expression in development. These cells constitute a unique morphologic and physiologic class of ipRGCs functioning early in postnatal development. Electronic supplementary material The online version of this article (doi:10.1186/s13064-015-0042-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Timothy J Sexton
- Department of Ophthalmology, University of Washington, 325 9th Avenue, Seattle, WA, 98104, USA. .,Program in Neurobiology and Behavior, University of Washington, Health Sciences Center, Seattle, WA, 98195, USA.
| | - Adam Bleckert
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA. .,Program in Neurobiology and Behavior, University of Washington, Health Sciences Center, Seattle, WA, 98195, USA.
| | - Maxwell H Turner
- Department of Physiology & Biophysics, University of Washington, 1705 NE Pacific St., Seattle, WA, 98195, USA. .,Program in Neurobiology and Behavior, University of Washington, Health Sciences Center, Seattle, WA, 98195, USA.
| | - Russell N Van Gelder
- Department of Ophthalmology, University of Washington, 325 9th Avenue, Seattle, WA, 98104, USA. .,Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA. .,Department of Pathology, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA. .,Program in Neurobiology and Behavior, University of Washington, Health Sciences Center, Seattle, WA, 98195, USA.
| |
Collapse
|
111
|
Gidday JM, Zhang L, Chiang CW, Zhu Y. Enhanced Retinal Ganglion Cell Survival in Glaucoma by Hypoxic Postconditioning After Disease Onset. Neurotherapeutics 2015; 12:502-14. [PMID: 25549850 PMCID: PMC4404439 DOI: 10.1007/s13311-014-0330-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The neuroprotective efficacy of adaptive epigenetics, wherein beneficial gene expression changes are induced by nonharmful "conditioning" stimuli, is now well established in several acute, preclinical central nervous system injury models. Recently, in a mouse model of glaucoma, we demonstrated retinal ganglion cell (RGC) protection by repetitively "preconditioning" with hypoxia prior to disease onset, indicating an epigenetic approach may also yield benefits in chronic neurodegenerative disease. Herein, we determined whether presenting the repetitive hypoxic stimulus after disease initiation [repetitive hypoxic "postconditioning" (RH-Post)] could afford similar functional and morphologic protection against glaucomatous RGC injury. Chronic elevations in intraocular pressure (IOP) were induced unilaterally in adult male C57BL/6 mice by episcleral vein ligation. Mice were randomized to an RH-Post [1 h of systemic hypoxia (11% oxygen) every other day, starting 4 days after IOP elevation] or an untreated control group. After 3 weeks of experimental glaucoma, the 21-27% reduction and 5-25% prolongation in flash visual-evoked potential amplitudes and latencies, respectively, and the 30% impairment in visual acuity were robustly improved in RH-Post-treated mice, as was the 17% loss in RGC soma number and 20% reduction in axon integrity. These protective effects were observed without RH-Post affecting IOP. The present findings demonstrate that functional and morphologic protection of RGCs can be realized by stimulating epigenetic responses during the early stages of disease, and thus constitute a new conceptual approach to glaucoma therapeutics.
Collapse
Affiliation(s)
- Jeffrey M Gidday
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, 63110, USA,
| | | | | | | |
Collapse
|
112
|
Whitney IE, Kautzman AG, Reese BE. Alternative splicing of the LIM-homeodomain transcription factor Isl1 in the mouse retina. Mol Cell Neurosci 2015; 65:102-13. [PMID: 25752730 DOI: 10.1016/j.mcn.2015.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 02/12/2015] [Accepted: 03/05/2015] [Indexed: 11/25/2022] Open
Abstract
Islet-1 (Isl1) is a LIM-homeodomain (LIM-HD) transcription factor that functions in a combinatorial manner with other LIM-HD proteins to direct the differentiation of distinct cell types within the central nervous system and many other tissues. A study of pancreatic cell lines showed that Isl1 is alternatively spliced generating a second isoform, Isl1β, which is missing 23 amino acids within the C-terminal region. This study examines the expression of the canonical and alternative Isl1 transcripts across other tissues, in particular, within the retina, where Isl1 is required for the differentiation of multiple neuronal cell types. The alternative splicing of Isl1 is shown to occur in multiple tissues, but the relative abundance of Isl1α and Isl1β expression varies greatly across them. In most tissues, Isl1α is the more abundant transcript, but in others the transcripts are expressed equally, or the alternative splice variant is dominant. Within the retina, differential expression of the two Isl1 transcripts increases as a function of development, with dynamic changes in expression peaking at E16.5 and again at P10. At the cellular level, individual retinal ganglion cells vary in their expression, with a subset of small-to-medium sized cells expressing only the alternative isoform. The functional significance of the difference in protein sequence between the two Isl1 isoforms was also assessed using a luciferase assay, demonstrating that the alternative isoform forms a less effective transcriptional complex for activating gene expression. These results demonstrate the differential presence of the canonical and alternative isoforms of Isl1 amongst retinal ganglion cell classes. As Isl1 participates in the differentiation of multiple cell types within the CNS, the present results support a role for alternative splicing in the establishment of cellular diversity in the developing nervous system.
Collapse
Affiliation(s)
- Irene E Whitney
- Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA 93106-5060, United States; Department of Molecular, Cellular and Developmental Biology, University of California at Santa Barbara, Santa Barbara, CA 93106-9625, United States.
| | - Amanda G Kautzman
- Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA 93106-5060, United States; Department of Psychological & Brain Sciences, University of California at Santa Barbara, Santa Barbara, CA 93106-9660, United States.
| | - Benjamin E Reese
- Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA 93106-5060, United States; Department of Psychological & Brain Sciences, University of California at Santa Barbara, Santa Barbara, CA 93106-9660, United States.
| |
Collapse
|
113
|
He S, Ye C, Sun Q, Leung CK, Qu JY. Label-free nonlinear optical imaging of mouse retina. BIOMEDICAL OPTICS EXPRESS 2015; 6:1055-66. [PMID: 25798325 PMCID: PMC4361420 DOI: 10.1364/boe.6.001055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/14/2015] [Accepted: 02/16/2015] [Indexed: 05/18/2023]
Abstract
A nonlinear optical (NLO) microscopy system integrating stimulated Raman scattering (SRS), two-photon excited fluorescence (TPEF) and second-harmonic generation (SHG) was developed to image fresh mouse retinas. The morphological and functional details of various retinal layers were revealed by the endogenous NLO signals. Particularly, high resolution label-free imaging of retinal neurons and nerve fibers in the ganglion cell and nerve fiber layers was achieved by capturing endogenous SRS and TPEF signals. In addition, the spectral and temporal analysis of TPEF images allowed visualization of different fluorescent components in the retinal pigment epithelium (RPE). Fluorophores with short TPEF lifetime, such as A2E, can be differentiated from other long-lifetime components in the RPE. The NLO imaging method would provide important information for investigation of retinal ganglion cell degeneration and holds the potential to study the biochemical processes of visual cycle in the RPE.
Collapse
Affiliation(s)
- Sicong He
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong,
China
- Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR,
China
- These authors contributed equally to this work
| | - Cong Ye
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Kowloon, Hong Kong,
China
- These authors contributed equally to this work
| | - Qiqi Sun
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong,
China
- Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR,
China
| | - Christopher K.S. Leung
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Kowloon, Hong Kong,
China
| | - Jianan Y. Qu
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong,
China
- Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR,
China
| |
Collapse
|
114
|
Visual impairment in an optineurin mouse model of primary open-angle glaucoma. Neurobiol Aging 2015; 36:2201-12. [PMID: 25818176 DOI: 10.1016/j.neurobiolaging.2015.02.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 11/23/2022]
Abstract
Primary open-angle glaucoma (POAG) is characterized by progressive neurodegeneration of retinal ganglion cells (RGCs). Why RGCs degenerate in low-pressure POAG remains poorly understood. To gain mechanistic insights, we developed a novel mouse model based on a mutation in human optineurin associated with hereditary, low-pressure POAG. This mouse improves the design and phenotype of currently available optineurin mice, which showed high global overexpression. Although both 18-month-old optineurin and nontransgenic control mice showed an age-related decrease in healthy axons and RGCs, the expression of mutant optineurin enhanced axonal degeneration and decreased RGC survival. Mouse visual function was determined using visual evoked potentials, which revealed specific visual impairment in contrast sensitivity. The E50K optineurin transgenic mouse described here exhibited clinical features of POAG and may be useful for mechanistic dissection of POAG and therapeutic development.
Collapse
|
115
|
Sweeney NT, James KN, Sales EC, Feldheim DA. Ephrin-As are required for the topographic mapping but not laminar choice of physiologically distinct RGC types. Dev Neurobiol 2015; 75:584-93. [PMID: 25649160 DOI: 10.1002/dneu.22265] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/08/2015] [Accepted: 01/25/2015] [Indexed: 02/02/2023]
Abstract
In the retinocollicular projection, the axons from functionally distinct retinal ganglion cell (RGC) types form synapses in a stereotypical manner along the superficial to deep axis of the superior colliculus (SC). Each lamina contains an orderly topographic map of the visual scene but different laminae receive inputs from distinct sets of RGCs, and inputs to each lamina are aligned with the others to integrate parallel streams of visual information. To determine the relationship between laminar organization and topography of physiologically defined RGC types, we used genetic and anatomical axon tracing techniques in wild type and ephrin-A mutant mice. We find that adjacent RGCs of the same physiological type can send axons to both ectopic and normal topographic locations, supporting a penetrance model for ephrin-A independent mapping cues. While the overall laminar organization in the SC is unaffected in ephrin-A2/A5 double mutant mice, analysis of the laminar locations of ectopic terminations shows that the topographic maps of different RGC types are misaligned. These data lend support to the hypothesis that the retinocollicular projection is a superimposition of a number of individual two-dimensional topographic maps that originate from specific types of RGCs, require ephrin-A signaling, and form independently of the other maps.
Collapse
Affiliation(s)
- Neal T Sweeney
- Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, 95064
| | - Kiely N James
- Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, 95064
| | - Emily C Sales
- Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, 95064
| | - David A Feldheim
- Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, 95064
| |
Collapse
|
116
|
Abstract
We describe recent progress toward defining neuronal cell types in the mouse retina and attempt to extract lessons that may be generally useful in the mammalian brain. Achieving a comprehensive catalog of retinal cell types now appears within reach, because researchers have achieved consensus concerning two fundamental challenges. The first is accuracy-defining pure cell types rather than settling for neuronal classes that are mixtures of types. The second is completeness-developing methods guaranteed to eventually identify all cell types, as well as criteria for determining when all types have been found. Case studies illustrate how these two challenges are handled by combining state-of-the-art molecular, anatomical, and physiological techniques. Progress is also being made in observing and modeling connectivity between cell types. Scaling up to larger brain regions, such as the cortex, will require not only technical advances but also careful consideration of the challenges of accuracy and completeness.
Collapse
|
117
|
Maturana MI, Turpin A, McKendrick AM, Kameneva T. Ionic channel changes in glaucomatous retinal ganglion cells: multicompartment modeling. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:4535-8. [PMID: 25571000 DOI: 10.1109/embc.2014.6944632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This research takes a step towards discovering underlying ionic channel changes in the glaucomatous ganglion cells. Glaucoma is characterized by a gradual death of retinal ganglion cells. In this paper, we propose a hypothesis that the ionic channel concentrations change during the progression of glaucoma. We use computer simulation of a multi-compartment morphologically correct model of a mouse retinal ganglion cell to verify our hypothesis. Using published experimental data, we alter the morphology of healthy ganglion cells to replicate glaucomatous cells. Our results suggest that in glaucomatous cell, the sodium channel concentration decreases in the soma by 30% and by 60% in the dendrites, calcium channel concentration decreases by 10% in all compartments, and leak channel concentration increases by 40% in the soma and by 100% in the dendrites.
Collapse
|
118
|
Duan X, Krishnaswamy A, De la Huerta I, Sanes JR. Type II cadherins guide assembly of a direction-selective retinal circuit. Cell 2014; 158:793-807. [PMID: 25126785 DOI: 10.1016/j.cell.2014.06.047] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 05/10/2014] [Accepted: 06/20/2014] [Indexed: 01/02/2023]
Abstract
Complex retinal circuits process visual information and deliver it to the brain. Few molecular determinants of synaptic specificity in this system are known. Using genetic and optogenetic methods, we identified two types of bipolar interneurons that convey visual input from photoreceptors to a circuit that computes the direction in which objects are moving. We then sought recognition molecules that promote selective connections of these cells with previously characterized components of the circuit. We found that the type II cadherins, cdh8 and cdh9, are each expressed selectively by one of the two bipolar cell types. Using loss- and gain-of-function methods, we showed that they are critical determinants of connectivity in this circuit and that perturbation of their expression leads to distinct defects in visually evoked responses. Our results reveal cellular components of a retinal circuit and demonstrate roles of type II cadherins in synaptic choice and circuit function.
Collapse
Affiliation(s)
- Xin Duan
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Arjun Krishnaswamy
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Irina De la Huerta
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Joshua R Sanes
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
119
|
Sümbül U, Zlateski A, Vishwanathan A, Masland RH, Seung HS. Automated computation of arbor densities: a step toward identifying neuronal cell types. Front Neuroanat 2014; 8:139. [PMID: 25505389 PMCID: PMC4243570 DOI: 10.3389/fnana.2014.00139] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 11/06/2014] [Indexed: 11/17/2022] Open
Abstract
The shape and position of a neuron convey information regarding its molecular and functional identity. The identification of cell types from structure, a classic method, relies on the time-consuming step of arbor tracing. However, as genetic tools and imaging methods make data-driven approaches to neuronal circuit analysis feasible, the need for automated processing increases. Here, we first establish that mouse retinal ganglion cell types can be as precise about distributing their arbor volumes across the inner plexiform layer as they are about distributing the skeletons of the arbors. Then, we describe an automated approach to computing the spatial distribution of the dendritic arbors, or arbor density, with respect to a global depth coordinate based on this observation. Our method involves three-dimensional reconstruction of neuronal arbors by a supervised machine learning algorithm, post-processing of the enhanced stacks to remove somata and isolate the neuron of interest, and registration of neurons to each other using automatically detected arbors of the starburst amacrine interneurons as fiducial markers. In principle, this method could be generalizable to other structures of the CNS, provided that they allow sparse labeling of the cells and contain a reliable axis of spatial reference.
Collapse
Affiliation(s)
- Uygar Sümbül
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology Cambridge, MA, USA ; Department of Ophthalmology, Harvard Medical School Boston, MA, USA
| | - Aleksandar Zlateski
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology Cambridge, MA, USA
| | - Ashwin Vishwanathan
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology Cambridge, MA, USA
| | - Richard H Masland
- Department of Ophthalmology, Harvard Medical School Boston, MA, USA ; Department of Neurobiology, Harvard Medical School Boston, MA, USA
| | - H Sebastian Seung
- Princeton Neuroscience Institute and Computer Science Department, Princeton University Princeton, NJ, USA
| |
Collapse
|
120
|
Abstract
AbstractRetinal ganglion cell (RGC) dendritic atrophy is an early feature of many forms of retinal degeneration, providing a challenge to RGC classification. The characterization of these changes is complicated by the possibility that selective labeling of any particular class can confound the estimation of dendritic remodeling. To address this issue we have developed a novel, robust, and quantitative RGC classification based on proximal dendritic features which are resistant to early degeneration. RGCs were labeled through the ballistic delivery of DiO and DiI coated tungsten particles to whole retinal explants of 20 adult Brown Norway rats. RGCs were grouped according to the Sun classification system. A comprehensive set of primary and secondary dendrite features were quantified and a new classification model derived using principal component (PCA) and discriminant analyses, to estimate the likelihood that a cell belonged to any given class. One-hundred and thirty one imaged RGCs were analyzed; according to the Sun classification, 24% (n = 31) were RGCA, 29% (n = 38) RGCB, 32% (n = 42) RGCC, and 15% (n = 20) RGCD. PCA gave a 3 component solution, separating RGCs based on descriptors of soma size and primary dendrite thickness, proximal dendritic field size and dendritic tree asymmetry. The new variables correctly classified 73.3% (n = 74) of RGCs from a training sample and 63.3% (n = 19) from a hold out sample indicating an effective model. Soma and proximal dendritic tree morphological features provide a useful surrogate measurement for the classification of RGCs in disease. While a definitive classification is not possible in every case, the technique provides a useful safeguard against sample bias where the normal criteria for cell classification may not be reliable.
Collapse
|
121
|
Stradleigh TW, Greenberg KP, Partida GJ, Pham A, Ishida AT. Moniliform deformation of retinal ganglion cells by formaldehyde-based fixatives. J Comp Neurol 2014; 523:545-64. [PMID: 25283775 DOI: 10.1002/cne.23689] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 09/27/2014] [Accepted: 09/29/2014] [Indexed: 12/12/2022]
Abstract
Protocols for characterizing cellular phenotypes commonly use chemical fixatives to preserve anatomical features, mechanically stabilize tissue, and stop physiological responses. Formaldehyde, diluted in either phosphate-buffered saline or phosphate buffer, has been widely used in studies of neurons, especially in conjunction with dyes and antibodies. However, previous studies have found that these fixatives induce the formation of bead-like varicosities in the dendrites and axons of brain and spinal cord neurons. We report here that these formaldehyde formulations can induce bead formation in the dendrites and axons of adult rat and rabbit retinal ganglion cells, and that retinal ganglion cells differ from hippocampal, cortical, cerebellar, and spinal cord neurons in that bead formation is not blocked by glutamate receptor antagonists, a voltage-gated Na(+) channel toxin, extracellular Ca(2+) ion exclusion, or temperature shifts. Moreover, we describe a modification of formaldehyde-based fixatives that prevents bead formation in retinal ganglion cells visualized by green fluorescent protein expression and by immunohistochemistry.
Collapse
Affiliation(s)
- Tyler W Stradleigh
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California, 95616
| | | | | | | | | |
Collapse
|
122
|
Kwon OJ, Lee ES, Jeon CJ. Density and types of calretinin-containing retinal ganglion cells in rabbit. Neuroscience 2014; 278:343-53. [DOI: 10.1016/j.neuroscience.2014.08.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/14/2014] [Accepted: 08/14/2014] [Indexed: 11/25/2022]
|
123
|
Morquette B, Morquette P, Agostinone J, Feinstein E, McKinney RA, Kolta A, Di Polo A. REDD2-mediated inhibition of mTOR promotes dendrite retraction induced by axonal injury. Cell Death Differ 2014; 22:612-25. [PMID: 25257176 PMCID: PMC4572858 DOI: 10.1038/cdd.2014.149] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/07/2014] [Accepted: 08/18/2014] [Indexed: 12/30/2022] Open
Abstract
Dendritic defects occur in neurodegenerative diseases accompanied by axonopathy, yet the mechanisms that regulate these pathologic changes are poorly understood. Using Thy1-YFPH mice subjected to optic nerve axotomy, we demonstrate early retraction of retinal ganglion cell (RGC) dendrites and selective loss of mammalian target of rapamycin (mTOR) activity, which precede soma loss. Axonal injury triggered rapid upregulation of the stress-induced protein REDD2 (regulated in development and DNA damage response 2), a potent inhibitor of mTOR. Short interfering RNA-mediated REDD2 knockdown restored mTOR activity and rescued dendritic length, area and branch complexity in a rapamycin-dependent manner. Whole-cell recordings demonstrated that REDD2 depletion leading to mTOR activation in RGCs restored their light response properties. Lastly, we show that REDD2-dependent mTOR activity extended RGC survival following axonal damage. These results indicate that injury-induced stress leads to REDD2 upregulation, mTOR inhibition and dendrite pathology causing neuronal dysfunction and subsequent cell death.
Collapse
Affiliation(s)
- B Morquette
- 1] Department of Neuroscience, CHUM Research Center, University of Montreal, Montreal, QC, Canada [2] University of Montreal Hospital Research Center (CR-CHUM), Montreal, QC, Canada [3] Groupe de Recherche sur le Système Nerveux Central (GRSNC), University of Montreal, Montreal, QC, Canada
| | - P Morquette
- 1] Department of Neuroscience, CHUM Research Center, University of Montreal, Montreal, QC, Canada [2] Groupe de Recherche sur le Système Nerveux Central (GRSNC), University of Montreal, Montreal, QC, Canada
| | - J Agostinone
- 1] Department of Neuroscience, CHUM Research Center, University of Montreal, Montreal, QC, Canada [2] University of Montreal Hospital Research Center (CR-CHUM), Montreal, QC, Canada [3] Groupe de Recherche sur le Système Nerveux Central (GRSNC), University of Montreal, Montreal, QC, Canada
| | - E Feinstein
- Quark Pharmaceuticals Inc., Research Division, Ness Ziona, Israel
| | - R A McKinney
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - A Kolta
- 1] Department of Neuroscience, CHUM Research Center, University of Montreal, Montreal, QC, Canada [2] Groupe de Recherche sur le Système Nerveux Central (GRSNC), University of Montreal, Montreal, QC, Canada [3] Department of Stomatology, Faculty of Dentistry, University of Montreal, Montreal, QC, Canada
| | - A Di Polo
- 1] Department of Neuroscience, CHUM Research Center, University of Montreal, Montreal, QC, Canada [2] University of Montreal Hospital Research Center (CR-CHUM), Montreal, QC, Canada [3] Groupe de Recherche sur le Système Nerveux Central (GRSNC), University of Montreal, Montreal, QC, Canada
| |
Collapse
|
124
|
Yonehara K, Roska B. Neuroscience: retinal projectome reveals organizing principles of the visual system. Curr Biol 2014; 24:R833-R835. [PMID: 25247353 DOI: 10.1016/j.cub.2014.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A new study using zebrafish genetics and whole-brain imaging has identified more than 50 retinal ganglion cell morphologies and produced the first comprehensive map of connectivity between retina and its target visual centers.
Collapse
Affiliation(s)
- Keisuke Yonehara
- Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Botond Roska
- Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.
| |
Collapse
|
125
|
Dunn FA, Wong ROL. Wiring patterns in the mouse retina: collecting evidence across the connectome, physiology and light microscopy. J Physiol 2014; 592:4809-23. [PMID: 25172948 DOI: 10.1113/jphysiol.2014.277228] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The visual system has often been thought of as a parallel processor because distinct regions of the brain process different features of visual information. However, increasing evidence for convergence and divergence of circuit connections, even at the level of the retina where visual information is first processed, chips away at a model of dedicated and distinct pathways for parallel information flow. Instead, our current understanding is that parallel channels may emerge, not from exclusive microcircuits for each channel, but from unique combinations of microcircuits. This review depicts diagrammatically the current knowledge and remaining puzzles about the retinal circuit with a focus on the mouse retina. Advances in techniques for labelling cells and genetic manipulations have popularized the use of transgenic mice. We summarize evidence gained from serial electron microscopy, electrophysiology and light microscopy to illustrate the wiring patterns in mouse retina. We emphasize the need to explore proposed retinal connectivity using multiple methods to verify circuits both structurally and functionally.
Collapse
Affiliation(s)
- Felice A Dunn
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, 94143-0730, USA
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
126
|
Yee CW, Toychiev AH, Ivanova E, Sagdullaev BT. Aberrant synaptic input to retinal ganglion cells varies with morphology in a mouse model of retinal degeneration. J Comp Neurol 2014; 522:4085-99. [PMID: 25099614 DOI: 10.1002/cne.23660] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/23/2014] [Accepted: 08/04/2014] [Indexed: 11/10/2022]
Abstract
Retinal degeneration describes a group of disorders which lead to progressive photoreceptor cell death, resulting in blindness. As this occurs, retinal ganglion cells (RGCs) begin to develop oscillatory physiological activity. Here we studied the morphological and physiological properties of RGCs in rd1 mice, aged 30-60 days, to determine how this aberrant activity correlates with morphology. Patch-clamp recordings of excitatory and inhibitory currents were performed, then dendritic structures were visualized by infusion of fluorescent dye. Only RGCs with oscillatory activity were selected for further analysis. Oscillatory frequency and power were calculated using power spectral density analysis of recorded currents. Dendritic arbor stratification, total length, and area were measured from confocal microscope image stacks. These measurements were used to sort RGCs by cluster analysis using Ward's Method. This resulted in a total of 10 clusters, with monostratified and bistratified cells having five clusters each. Both populations exhibited correlations between arbor stratification and aberrant inhibitory input, while excitatory input did not vary with arbor distribution. These findings illustrate the relationship between aberrant activity and RGC morphology at early stages of retinal degeneration.
Collapse
Affiliation(s)
- Christopher W Yee
- Departments of Ophthalmology and Neurology, Weill Medical College of Cornell University, Burke Medical Research Institute, White Plains, NY, 10605
| | | | | | | |
Collapse
|
127
|
Abstract
A major stumbling block to understanding neural circuits is the extreme anatomical and functional diversity of interneurons. Subsets of interneurons can be targeted for manipulation using Cre mouse lines, but Cre expression is rarely confined to a single interneuron type. It is essential to have a strategy that further restricts labeling in Cre driver lines. We now describe an approach that combines Cre driver mice, recombinant adeno-associated virus, and rabies virus to produce sparse but binary labeling of select interneurons--frequently only a single cell in a large region. We used this approach to characterize the retinal amacrine and ganglion cell types in five GABAergic Cre mouse (Mus musculus) lines, and identified two new amacrine cell types: an asymmetric medium-field type and a wide-field type. We also labeled several wide-field amacrine cell types that have been previously identified based on morphology but whose connectivity and function had not been systematically studied due to lack of genetic markers. All Cre-expressing amacrine cells labeled with an antibody to GABA. Cre-expressing RGCs lacked GABA labeling and included classically defined as well as recently identified types. In addition to the retina, our technique leads to sparse labeling of neurons in the cortex, lateral geniculate nucleus, and superior colliculus, and can be used to express optogenetic tools such as channelrhodopsin and protein sensors such as GCaMP. The Cre drivers identified in this study provide genetic access to otherwise hard to access cell types for systematic analysis including anatomical characterization, physiological recording, optogenetic and/or chemical manipulation, and circuit mapping.
Collapse
|
128
|
Schmidt TM, Alam NM, Chen S, Kofuji P, Li W, Prusky GT, Hattar S. A role for melanopsin in alpha retinal ganglion cells and contrast detection. Neuron 2014; 82:781-8. [PMID: 24853938 PMCID: PMC4083763 DOI: 10.1016/j.neuron.2014.03.022] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2014] [Indexed: 11/21/2022]
Abstract
Distinct subclasses of retinal ganglion cells (RGCs) mediate vision and nonimage-forming functions such as circadian photoentrainment. This distinction stems from studies that ablated melanopsin-expressing intrinsically photosensitive RGCs (ipRGCs) and showed deficits in nonimage-forming behaviors, but not image vision. However, we show that the ON alpha RGC, a conventional RGC type, is intrinsically photosensitive in mammals. In addition to their classical response to fast changes in contrast through rod/cone signaling, melanopsin expression allows ON alpha RGCs to signal prior light exposure and environmental luminance over long periods of time. Consistent with the high contrast sensitivity of ON alpha RGCs, mice lacking either melanopsin or ON alpha RGCs have behavioral deficits in contrast sensitivity. These findings indicate a surprising role for melanopsin and ipRGCs in vision.
Collapse
Affiliation(s)
| | - Nazia M. Alam
- Department of Physiology and Biophysics, Weill Cornell Medical College, Burke Medical Research Institute, White Plains, NY 10605, USA
| | - Shan Chen
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Paulo Kofuji
- University of Minnesota, Department of Neuroscience, Minneapolis, MN 55455
| | - Wei Li
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Glen T. Prusky
- Department of Physiology and Biophysics, Weill Cornell Medical College, Burke Medical Research Institute, White Plains, NY 10605, USA
| | - Samer Hattar
- Johns Hopkins University, Department of Biology, Baltimore, MD 21218
- Johns Hopkins University, Department of Neuroscience, Baltimore, MD 21218
| |
Collapse
|
129
|
Xu HP, Sun JH, Tian N. A general principle governs vision-dependent dendritic patterning of retinal ganglion cells. J Comp Neurol 2014; 522:3403-22. [PMID: 24737624 DOI: 10.1002/cne.23609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 04/09/2014] [Accepted: 04/09/2014] [Indexed: 11/09/2022]
Abstract
Dendritic arbors of retinal ganglion cells (RGCs) collect information over a certain area of the visual scene. The coverage territory and the arbor density of dendrites determine what fraction of the visual field is sampled by a single cell and at what resolution. However, it is not clear whether visual stimulation is required for the establishment of branching patterns of RGCs, and whether a general principle directs the dendritic patterning of diverse RGCs. By analyzing the geometric structures of RGC dendrites, we found that dendritic arbors of RGCs underwent a substantial spatial rearrangement after eye-opening. Light deprivation blocked both the dendritic growth and the branch patterning, suggesting that visual stimulation is required for the acquisition of specific branching patterns of RGCs. We further showed that vision-dependent dendritic growth and arbor refinement occurred mainly in the middle portion of the dendritic tree. This nonproportional growth and selective refinement suggest that the late-stage dendritic development of RGCs is not a passive stretching with the growth of eyes, but rather an active process of selective growth/elimination of dendritic arbors of RGCs driven by visual activity. Finally, our data showed that there was a power law relationship between the coverage territory and dendritic arbor density of RGCs on a cell-by-cell basis. RGCs were systematically less dense when they cover larger territories regardless of their cell type, retinal location, or developmental stage. These results suggest that a general structural design principle directs the vision-dependent patterning of RGC dendrites.
Collapse
Affiliation(s)
- Hong-Ping Xu
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, 06520
| | | | | |
Collapse
|
130
|
Rodriguez AR, de Sevilla Müller LP, Brecha NC. The RNA binding protein RBPMS is a selective marker of ganglion cells in the mammalian retina. J Comp Neurol 2014; 522:1411-43. [PMID: 24318667 PMCID: PMC3959221 DOI: 10.1002/cne.23521] [Citation(s) in RCA: 355] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 11/27/2013] [Accepted: 12/03/2013] [Indexed: 12/12/2022]
Abstract
There are few neurochemical markers that reliably identify retinal ganglion cells (RGCs), which are a heterogeneous population of cells that integrate and transmit the visual signal from the retina to the central visual nuclei. We have developed and characterized a new set of affinity-purified guinea pig and rabbit antibodies against RNA-binding protein with multiple splicing (RBPMS). On western blots these antibodies recognize a single band at 〜24 kDa, corresponding to RBPMS, and they strongly label RGC and displaced RGC (dRGC) somata in mouse, rat, guinea pig, rabbit, and monkey retina. RBPMS-immunoreactive cells and RGCs identified by other techniques have a similar range of somal diameters and areas. The density of RBPMS cells in mouse and rat retina is comparable to earlier semiquantitative estimates of RGCs. RBPMS is mainly expressed in medium and large DAPI-, DRAQ5-, NeuroTrace- and NeuN-stained cells in the ganglion cell layer (GCL), and RBPMS is not expressed in syntaxin (HPC-1)-immunoreactive cells in the inner nuclear layer (INL) and GCL, consistent with their identity as RGCs, and not displaced amacrine cells. In mouse and rat retina, most RBPMS cells are lost following optic nerve crush or transection at 3 weeks, and all Brn3a-, SMI-32-, and melanopsin-immunoreactive RGCs also express RBPMS immunoreactivity. RBPMS immunoreactivity is localized to cyan fluorescent protein (CFP)-fluorescent RGCs in the B6.Cg-Tg(Thy1-CFP)23Jrs/J mouse line. These findings show that antibodies against RBPMS are robust reagents that exclusively identify RGCs and dRGCs in multiple mammalian species, and they will be especially useful for quantification of RGCs.
Collapse
Affiliation(s)
- Allen R Rodriguez
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763
| | | | | |
Collapse
|
131
|
A genetic and computational approach to structurally classify neuronal types. Nat Commun 2014; 5:3512. [PMID: 24662602 PMCID: PMC4164236 DOI: 10.1038/ncomms4512] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/25/2014] [Indexed: 01/25/2023] Open
Abstract
The importance of cell types in understanding brain function is widely appreciated but only a tiny fraction of neuronal diversity has been catalogued. Here, we exploit recent progress in genetic definition of cell types in an objective structural approach to neuronal classification. The approach is based on highly accurate quantification of dendritic arbor position relative to neurites of other cells. We test the method on a population of 363 mouse retinal ganglion cells. For each cell, we determine the spatial distribution of the dendritic arbors, or “arbor density” with reference to arbors of an abundant, well-defined interneuronal type. The arbor densities are sorted into a number of clusters that is set by comparison with several molecularly defined cell types. The algorithm reproduces the genetic classes that are pure types, and detects six newly clustered cell types that await genetic definition.
Collapse
|
132
|
Pushchin I, Karetin Y. Retinal ganglion cells in the Pacific redfin,Tribolodon brandtiidybowski, 1872: Morphology and diversity. J Comp Neurol 2014; 522:1355-72. [DOI: 10.1002/cne.23489] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 10/11/2013] [Accepted: 10/11/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Igor Pushchin
- Laboratory of Physiology; A.V. Zhirmunsky Institute of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences; Vladivostok 690059 Russia
| | - Yuriy Karetin
- Laboratory of Embryology; A.V. Zhirmunsky Institute of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences; Vladivostok 690059 Russia
- Laboratory of Cell Biology; School of Natural Sciences; Far Eastern Federal University; Vladivostok 690950 Russia
| |
Collapse
|
133
|
Sholl analysis: A quantitative comparison of semi-automated methods. J Neurosci Methods 2014; 225:65-70. [DOI: 10.1016/j.jneumeth.2014.01.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 01/15/2014] [Accepted: 01/17/2014] [Indexed: 01/03/2023]
|
134
|
Chen YP, Chiao CC. Spatial distribution of excitatory synapses on the dendrites of ganglion cells in the mouse retina. PLoS One 2014; 9:e86159. [PMID: 24465934 PMCID: PMC3895034 DOI: 10.1371/journal.pone.0086159] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 12/05/2013] [Indexed: 11/19/2022] Open
Abstract
Excitatory glutamatergic inputs from bipolar cells affect the physiological properties of ganglion cells in the mammalian retina. The spatial distribution of these excitatory synapses on the dendrites of retinal ganglion cells thus may shape their distinct functions. To visualize the spatial pattern of excitatory glutamatergic input into the ganglion cells in the mouse retina, particle-mediated gene transfer of plasmids expressing postsynaptic density 95-green fluorescent fusion protein (PSD95-GFP) was used to label the excitatory synapses. Despite wide variation in the size and morphology of the retinal ganglion cells, the expression of PSD95 puncta was found to follow two general rules. Firstly, the PSD95 puncta are regularly spaced, at 1–2 µm intervals, along the dendrites, whereby the presence of an excitatory synapse creates an exclusion zone that rules out the presence of other glutamatergic synaptic inputs. Secondly, the spatial distribution of PSD95 puncta on the dendrites of diverse retinal ganglion cells are similar in that the number of excitatory synapses appears to be less on primary dendrites and to increase to a plateau on higher branch order dendrites. These observations suggest that synaptogenesis is spatially regulated along the dendritic segments and that the number of synaptic contacts is relatively constant beyond the primary dendrites. Interestingly, we also found that the linear puncta density is slightly higher in large cells than in small cells. This may suggest that retinal ganglion cells with a large dendritic field tend to show an increased connectivity of excitatory synapses that makes up for their reduced dendrite density. Mapping the spatial distribution pattern of the excitatory synapses on retinal ganglion cells thus provides explicit structural information that is essential for our understanding of how excitatory glutamatergic inputs shape neuronal responses.
Collapse
Affiliation(s)
- Yin-Peng Chen
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
| | - Chuan-Chin Chiao
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
- * E-mail:
| |
Collapse
|
135
|
Bleckert A, Schwartz GW, Turner MH, Rieke F, Wong ROL. Visual space is represented by nonmatching topographies of distinct mouse retinal ganglion cell types. Curr Biol 2014; 24:310-5. [PMID: 24440397 DOI: 10.1016/j.cub.2013.12.020] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/10/2013] [Accepted: 12/10/2013] [Indexed: 10/25/2022]
Abstract
The distributions of neurons in sensory circuits display ordered spatial patterns arranged to enhance or encode specific regions or features of the external environment. Indeed, visual space is not sampled uniformly across the vertebrate retina. Retinal ganglion cell (RGC) density increases and dendritic arbor size decreases toward retinal locations with higher sampling frequency, such as the fovea in primates and area centralis in carnivores [1]. In these locations, higher acuity at the level of individual cells is obtained because the receptive field center of a RGC corresponds approximately to the spatial extent of its dendritic arbor [2, 3]. For most species, structurally and functionally distinct RGC types appear to have similar topographies, collectively scaling their cell densities and arbor sizes toward the same retinal location [4]. Thus, visual space is represented across the retina in parallel by multiple distinct circuits [5]. In contrast, we find a population of mouse RGCs, known as alpha or alpha-like [6], that displays a nasal-to-temporal gradient in cell density, size, and receptive fields, which facilitates enhanced visual sampling in frontal visual fields. The distribution of alpha-like RGCs contrasts with other known mouse RGC types and suggests that, unlike most mammals, RGC topographies in mice are arranged to sample space differentially.
Collapse
Affiliation(s)
- Adam Bleckert
- Graduate Program in Neurobiology and Behavior, University of Washington, Seattle, WA 98195, USA; Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Gregory W Schwartz
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Maxwell H Turner
- Graduate Program in Neurobiology and Behavior, University of Washington, Seattle, WA 98195, USA; Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
136
|
Fletcher LN, Coimbra JP, Rodger J, Potter IC, Gill HS, Dunlop SA, Collin SP. Classification of retinal ganglion cells in the southern hemisphere lampreyGeotria australis(Cyclostomata). J Comp Neurol 2014; 522:750-71. [PMID: 23897624 DOI: 10.1002/cne.23441] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 05/08/2013] [Accepted: 07/18/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Lee Norman Fletcher
- School of Animal Biology; The University of Western Australia; Crawley Western Australia 6009 Australia
- Oceans Institute; The University of Western Australia; Crawley Western Australia 6009 Australia
| | - João Paulo Coimbra
- School of Animal Biology; The University of Western Australia; Crawley Western Australia 6009 Australia
- Oceans Institute; The University of Western Australia; Crawley Western Australia 6009 Australia
| | - Jennifer Rodger
- School of Animal Biology; The University of Western Australia; Crawley Western Australia 6009 Australia
| | - Ian C. Potter
- School of Biological Sciences and Biotechnology; Murdoch University; Murdoch Western Australia 6150 Australia
| | - Howard S. Gill
- School of Biological Sciences and Biotechnology; Murdoch University; Murdoch Western Australia 6150 Australia
| | - Sarah A. Dunlop
- School of Animal Biology; The University of Western Australia; Crawley Western Australia 6009 Australia
| | - Shaun P. Collin
- School of Animal Biology; The University of Western Australia; Crawley Western Australia 6009 Australia
- Oceans Institute; The University of Western Australia; Crawley Western Australia 6009 Australia
| |
Collapse
|
137
|
Baier H. Synaptic laminae in the visual system: molecular mechanisms forming layers of perception. Annu Rev Cell Dev Biol 2013; 29:385-416. [PMID: 24099086 DOI: 10.1146/annurev-cellbio-101011-155748] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Synaptic connections between neurons form the basis for perception and behavior. Synapses are often clustered in space, forming stereotyped layers. In the retina and optic tectum, multiple such synaptic laminae are stacked on top of each other, giving rise to stratified neuropil regions in which each layer combines synapses responsive to a particular sensory feature. Recently, several cellular and molecular mechanisms that underlie the development of multilaminar arrays of synapses have been discovered. These mechanisms include neurite guidance and cell-cell recognition. Molecules of the Slit, Semaphorin, Netrin, and Hedgehog families, binding to their matching receptors, bring axons and dendrites into spatial register. These guidance cues may diffuse over short distances or bind to sheets of extracellular matrix, thus conditioning the local extracellular milieu, or are presented on the surface of cells bordering the future neuropil. In addition, mutual recognition of axons and dendrites through adhesion molecules with immunoglobulin domains ensures cell type-specific connections within a given layer. Thus, an elaborate genetic program assembles the parallel processing channels that underlie visual perception.
Collapse
Affiliation(s)
- Herwig Baier
- Genes - Circuits - Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried near Munich, Germany;
| |
Collapse
|
138
|
Ivanova E, Lee P, Pan ZH. Characterization of multiple bistratified retinal ganglion cells in a purkinje cell protein 2-Cre transgenic mouse line. J Comp Neurol 2013; 521:2165-80. [PMID: 23224947 DOI: 10.1002/cne.23279] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 07/28/2012] [Accepted: 11/28/2012] [Indexed: 01/08/2023]
Abstract
Retinal ganglion cells are categorized into multiple classes, including multiple types of bistratified ganglion cells (BGCs). The recent use of transgenic mouse lines with specific type(s) of ganglion cells that are labeled by fluorescent markers has facilitated the morphological and physiological studies of BGCs, particularly the directional-selective BGCs. The most important benefit from using transgenic animals is the capability to perform in vivo gene manipulation. In particular, the Cre/LoxP recombination system has become a powerful tool, allowing gene deletion, overexpression, and ectopic expression in a cell type-specific and temporally controlled fashion. The key to this tool is the availability of Cre mouse lines with cell or tissue type-specific expression of Cre recombinase. In this study we characterized the Cre-positive retinal ganglion cells in a PCP2 (Purkinje cell protein 2)-cre mouse line. We found that all of the Cre-positive retinal ganglion cells were BGCs. Based on morphological criteria, we determined that they can be grouped into five types. The On- and Off-dendrites of three of these types stratified outside of the cholinergic bands and differed from directional selective ganglion cells (DSGCs) morphologically. These cells were negative for Brn-3b and positive for both calretinin and CART retina markers. The remaining two types were identified as putative On-Off and On-DSGCs. This Cre mouse line could be useful for further studies of the molecular and functional properties of BGCs in mice.
Collapse
Affiliation(s)
- Elena Ivanova
- Department of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
139
|
Maturana MI, Wong R, Cloherty SL, Ibbotson MR, Hadjinicolaou AE, Grayden DB, Burkitt AN, Meffin H, O'Brien BJ, Kameneva T. Retinal ganglion cells electrophysiology: the effect of cell morphology on impulse waveform. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2013:2583-6. [PMID: 24110255 DOI: 10.1109/embc.2013.6610068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There are 16 morphologically defined classes of rats retinal ganglion cells (RGCs). Using computer simulation of a realistic anatomically correct A1 mouse RGC, we investigate the effect of the cell's morphology on its impulse waveform, using the first-, and second-order time derivatives as well as the phase plot features. Using whole cell patch clamp recordings, we recorded the impulse waveform for each of the rat RGCs types. While we found some clear differences in many features of the impulse waveforms for A2 and B2 cells compared to other cell classes, many cell types did not show clear differences.
Collapse
|
140
|
Yu J, Wang L, Weng SJ, Yang XL, Zhang DQ, Zhong YM. Hyperactivity of ON-type retinal ganglion cells in streptozotocin-induced diabetic mice. PLoS One 2013; 8:e76049. [PMID: 24069457 PMCID: PMC3777880 DOI: 10.1371/journal.pone.0076049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 08/19/2013] [Indexed: 11/29/2022] Open
Abstract
Impairment of visual function has been detected in the early stage of diabetes but the underlying neural mechanisms involved are largely unknown. Morphological and functional alterations of retinal ganglion cells, the final output neurons of the vertebrate retina, are thought to be the major cause of visual defects in diabetes but direct evidence to support this notion is limited. In this study we investigated functional changes of retinal ganglion cells in a type 1-like diabetic mouse model. Our results demonstrated that the spontaneous spiking activity of ON-type retinal ganglion cells was increased in streptozotocin-diabetic mice after 3 to 4 months of diabetes. At this stage of diabetes, no apoptotic signals or cell loss were detected in the ganglion cell layer of the retina, suggesting that the functional alterations in ganglion cells occur prior to massive ganglion cell apoptosis. Furthermore, we found that the increased activity of ON-type ganglion cells was mainly a result of reduced inhibitory signaling to the cells in diabetes. This novel mechanism provides insight into how visual function is impaired in diabetic retinopathy.
Collapse
Affiliation(s)
- Jun Yu
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Lu Wang
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Shi-Jun Weng
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Xiong-Li Yang
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Dao-Qi Zhang
- Eye Research Institute, Oakland University, Rochester, Michigan, United States of America
| | - Yong-Mei Zhong
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| |
Collapse
|
141
|
Maturana MI, Kameneva T, Burkitt AN, Meffin H, Grayden DB. The effect of morphology upon electrophysiological responses of retinal ganglion cells: simulation results. J Comput Neurosci 2013; 36:157-75. [PMID: 23835760 PMCID: PMC3950609 DOI: 10.1007/s10827-013-0463-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 04/15/2013] [Accepted: 05/14/2013] [Indexed: 11/30/2022]
Abstract
Retinal ganglion cells (RGCs) display differences in their morphology and intrinsic electrophysiology. The goal of this study is to characterize the ionic currents that explain the behavior of ON and OFF RGCs and to explore if all morphological types of RGCs exhibit the phenomena described in electrophysiological data. We extend our previous single compartment cell models of ON and OFF RGCs to more biophysically realistic multicompartment cell models and investigate the effect of cell morphology on intrinsic electrophysiological properties. The membrane dynamics are described using the Hodgkin - Huxley type formalism. A subset of published patch-clamp data from isolated intact mouse retina is used to constrain the model and another subset is used to validate the model. Two hundred morphologically distinct ON and OFF RGCs are simulated with various densities of ionic currents in different morphological neuron compartments. Our model predicts that the differences between ON and OFF cells are explained by the presence of the low voltage activated calcium current in OFF cells and absence of such in ON cells. Our study shows through simulation that particular morphological types of RGCs are capable of exhibiting the full range of phenomena described in recent experiments. Comparisons of outputs from different cells indicate that the RGC morphologies that best describe recent experimental results are ones that have a larger ratio of soma to total surface area.
Collapse
Affiliation(s)
- Matias I Maturana
- Centre for Neural Engineering, University of Melbourne, 203 Bouverie St, Carlton, Vic, 3053, Australia
| | | | | | | | | |
Collapse
|
142
|
Retinal ganglion cell dendritic degeneration in a mouse model of Alzheimer's disease. Neurobiol Aging 2013; 34:1799-806. [DOI: 10.1016/j.neurobiolaging.2013.01.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 01/11/2013] [Accepted: 01/11/2013] [Indexed: 12/30/2022]
|
143
|
Lin B, Peng EB. Retinal ganglion cells are resistant to photoreceptor loss in retinal degeneration. PLoS One 2013; 8:e68084. [PMID: 23840814 PMCID: PMC3695938 DOI: 10.1371/journal.pone.0068084] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/24/2013] [Indexed: 01/19/2023] Open
Abstract
The rapid and massive degeneration of photoreceptors in retinal degeneration might have a dramatic negative effect on retinal circuits downstream of photoreceptors. However, the impact of photoreceptor loss on the morphology and function of retinal ganglion cells (RGCs) is not fully understood, precluding the rational design of therapeutic interventions that can reverse the progressive loss of retinal function. The present study investigated the morphological changes in several identified RGCs in the retinal degeneration rd1 mouse model of retinitis pigmentosa (RP), using a combination of viral transfection, microinjection of neurobiotin and confocal microscopy. Individual RGCs were visualized with a high degree of detail using an adeno-associated virus (AAV) vector carrying the gene for enhanced green fluorescent protein (EGFP), allowed for large-scale surveys of the morphology of RGCs over a wide age range. Interestingly, we found that the RGCs of nine different types we encountered were especially resistant to photoreceptor degeneration, and retained their fine dendritic geometry well beyond the complete death of photoreceptors. In addition, the RGC-specific markers revealed a remarkable degree of stability in both morphology and numbers of two identified types of RGCs for up to 18 months of age. Collectively, our data suggest that ganglion cells, the only output cells of the retina, are well preserved morphologically, indicating the ganglion cell population might be an attractive target for treating vision loss.
Collapse
Affiliation(s)
- Bin Lin
- Department of Anatomy, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Pokfulam, Hong Kong.
| | | |
Collapse
|
144
|
Su J, Klemm MA, Josephson AM, Fox MA. Contributions of VLDLR and LRP8 in the establishment of retinogeniculate projections. Neural Dev 2013; 8:11. [PMID: 23758727 PMCID: PMC3685595 DOI: 10.1186/1749-8104-8-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 05/22/2013] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Retinal ganglion cells (RGCs), the output neurons of the retina, project to over 20 distinct brain nuclei, including the lateral geniculate nucleus (LGN), a thalamic region comprised of three functionally distinct subnuclei: the ventral LGN (vLGN), the dorsal LGN (dLGN) and the intergeniculate leaflet (IGL). We previously identified reelin, an extracellular glycoprotein, as a critical factor that directs class-specific targeting of these subnuclei. Reelin is known to bind to two receptors: very-low-density lipoprotein receptor (VLDLR) and low-density lipoprotein receptor-related protein 8 (LRP8), also known as apolipoprotein E receptor 2 (ApoER2). Here we examined the roles of these canonical reelin receptors in retinogeniculate targeting. RESULTS To assess the roles of VLDLR and LRP8 in retinogeniculate targeting, we used intraocular injections of fluorescently conjugated cholera toxin B subunit (CTB) to label all RGC axons in vivo. Retinogeniculate projections in mutant mice lacking either VLDLR or LRP8 appeared similar to controls; however, deletion of both receptors resulted in dramatic defects in the pattern of retinal innervation in LGN. Surprisingly, defects in vldlr(-/-);lrp8(-/-) double mutant mice were remarkably different than those observed in mice lacking reelin. First, we failed to observe retinal axons exiting the medial border of the vLGN and IGL to invade distant regions of non-retino-recipient thalamus. Second, an ectopic region of binocular innervation emerged in the dorsomedial pole of vldlr(-/-);lrp8(-/-) mutant dLGN. Analysis of retinal projection development, retinal terminal sizes and LGN cytoarchitecture in vldlr(-/-);lrp8(-/-) mutants, all suggest that a subset of retinal axons destined for the IGL are misrouted to the dorsomedial pole of dLGN in the absence of VLDLR and LRP8. Such mistargeting is likely the result of abnormal migration of IGL neurons into the dorsomedial pole of dLGN in vldlr(-/-);lrp8(-/-) mutants. CONCLUSIONS In contrast to our expectations, the development of both the LGN and retinogeniculate projections appeared dramatically different in mutants lacking either reelin or both canonical reelin receptors. These results suggest that there are reelin-independent functions of VLDLR and LRP8 in LGN development, and VLDLR- and LRP8-independent functions of reelin in class-specific axonal targeting.
Collapse
Affiliation(s)
- Jianmin Su
- Virginia Tech Carilion Research Institute, Roanoke, VA 24016, USA
| | - Michael A Klemm
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Anne M Josephson
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA
| | - Michael A Fox
- Virginia Tech Carilion Research Institute, Roanoke, VA 24016, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA
| |
Collapse
|
145
|
Bennet D, Kim S. Impedance-based cell culture platform to assess light-induced stress changes with antagonist drugs using retinal cells. Anal Chem 2013; 85:4902-11. [PMID: 23596983 DOI: 10.1021/ac303068t] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This Article describes an unprecedented, simple, and real-time in vitro analytical tool to measure the luminous effect on the time responses function of retinal ganglion cells (RGC-5) by electric cell substrate impedance sensing (ECIS) system. The ECIS system was used for the continuous measurement of different color light-induced effects on the response of cells that exposed to protective drugs. The measurement suggests that the association of photo-oxidative stress was mediated by reactive oxygen species (ROS), which plays a critical role that leads to cell stress, damages, and retinopathy, resulting in eye degenerative diseases. Continuous light radiation caused time-dependent decline of RGC-5 response and resulted in photodamage within 10 h due to adenosine 5'-triphosphate depletion and increased ROS level, which is similar to in vivo photodamage. The ECIS results were correlated with standard cell viability assay. ECIS is very helpful to determine the protective effects of analyzed drugs such as β-carotene, quercetin, agmatine, and glutathione in RGC-5 cells, and the maximum drug activity of nontoxic safer drug concentrations was found to be 0.25, 0.25, 0.25, and 1.0 mM, respectively. All drugs show protection against light radiation toxicity in a dose-dependent manner; the most effective drug was found to be glutathione. The proposed system identifies the phototoxic effects in RGC-5 and provides high throughput drug screening for photo-oxidative stress during early stages of drug discovery. This study is convenient and potential enough for the direct measurements of the photoprotective effect in vitro and would be of broad interest in the field of therapeutics.
Collapse
Affiliation(s)
- Devasier Bennet
- Department of Bionanotechnology, Gachon University, Sujeong-Gu, Seongnam-Si, Gyeonggi-Do, Republic of Korea
| | | |
Collapse
|
146
|
Feng L, Zhao Y, Yoshida M, Chen H, Yang JF, Kim TS, Cang J, Troy JB, Liu X. Sustained ocular hypertension induces dendritic degeneration of mouse retinal ganglion cells that depends on cell type and location. Invest Ophthalmol Vis Sci 2013; 54:1106-17. [PMID: 23322576 DOI: 10.1167/iovs.12-10791] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Glaucoma is characterized by retinal ganglion cell (RGC) death and frequently associated with elevated IOP. How RGCs degenerate before death is little understood, so we sought to investigate RGC degeneration in a mouse model of ocular hypertension. METHODS A laser-induced mouse model of chronic ocular hypertension mimicked human high-tension glaucoma. Immunohistochemistry was used to characterize overall RGC loss and an optomotor behavioral test to measure corresponding changes in visual capacity. Changes in RGC functional properties were characterized by a large-scale multielectrode array (MEA). The transgenic Thy-1-YFP mouse line, in which a small number of RGCs are labeled with yellow fluorescent protein (YFP), permitted investigation of whether subtypes of RGCs or RGCs from particular retinal areas were differentially vulnerable to elevated IOP. RESULTS Sustained IOP elevation in mice was achieved by laser photocoagulation. We confirmed RGC loss and decreased visual acuity in ocular hypertensive mice. Furthermore, these mice had fewer visually responsive cells with smaller receptive field sizes compared to controls. We demonstrated that RGC dendritic shrinkage started from the vertical axis of hypertensive eyes and that mono-laminated ON cells were more susceptible to IOP elevation than bi-laminated ON-OFF cells. Moreover, a subgroup of ON RGCs labeled by the SMI-32 antibody exhibited significant dendritic atrophy in the superior quadrant of the hypertensive eyes. CONCLUSIONS RGC degeneration depends on subtype and location in hypertensive eyes. This study introduces a valuable model to investigate how the structural and functional degeneration of RGCs leads to visual impairments.
Collapse
Affiliation(s)
- Liang Feng
- Department of Ophthalmology, Northwestern University, Evanston, IL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Sharma R, Yin L, Geng Y, Merigan WH, Palczewska G, Palczewski K, Williams DR, Hunter JJ. In vivo two-photon imaging of the mouse retina. BIOMEDICAL OPTICS EXPRESS 2013; 4:1285-93. [PMID: 24009992 PMCID: PMC3756587 DOI: 10.1364/boe.4.001285] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/06/2013] [Accepted: 06/17/2013] [Indexed: 05/18/2023]
Abstract
Though in vivo two-photon imaging has been demonstrated in non-human primates, improvements in the signal-to-noise ratio (SNR) would greatly improve its scientific utility. In this study, extrinsic fluorophores, expressed in otherwise transparent retinal ganglion cells, were imaged in the living mouse eye using a two-photon fluorescence adaptive optics scanning laser ophthalmoscope. We recorded two orders of magnitude greater signal levels from extrinsically labeled cells relative to previous work done in two-photon autofluorescence imaging of primates. Features as small as single dendrites in various layers of the retina could be resolved and predictions are made about the feasibility of measuring functional response from cells. In the future, two-photon imaging in the intact eye may allow us to monitor the function of retinal cell classes with infrared light that minimally excites the visual response.
Collapse
Affiliation(s)
- Robin Sharma
- Center for Visual Science, University of Rochester, Rochester, New York 14627, USA
- The Institute of Optics, University of Rochester, Rochester, New York 14620, USA
| | - Lu Yin
- Center for Visual Science, University of Rochester, Rochester, New York 14627, USA
| | - Ying Geng
- Center for Visual Science, University of Rochester, Rochester, New York 14627, USA
- The Institute of Optics, University of Rochester, Rochester, New York 14620, USA
- Currently at: Corning Incorporated, One Riverfront Plaza, Corning, New York 14831, USA
| | - William H. Merigan
- Center for Visual Science, University of Rochester, Rochester, New York 14627, USA
- Flaum Eye Institute, University of Rochester, Rochester, New York 14642, USA
| | - Grazyna Palczewska
- Polgenix, Inc., 11000 Cedar Avenue, Suite 260, Cleveland, Ohio 44106, USA
| | - Krzysztof Palczewski
- Department of Pharmacology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - David R. Williams
- Center for Visual Science, University of Rochester, Rochester, New York 14627, USA
- The Institute of Optics, University of Rochester, Rochester, New York 14620, USA
- Flaum Eye Institute, University of Rochester, Rochester, New York 14642, USA
| | - Jennifer J. Hunter
- Center for Visual Science, University of Rochester, Rochester, New York 14627, USA
- Flaum Eye Institute, University of Rochester, Rochester, New York 14642, USA
| |
Collapse
|
148
|
Gollisch T. Features and functions of nonlinear spatial integration by retinal ganglion cells. ACTA ACUST UNITED AC 2012; 107:338-48. [PMID: 23262113 DOI: 10.1016/j.jphysparis.2012.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 11/19/2012] [Accepted: 12/04/2012] [Indexed: 11/27/2022]
Abstract
Ganglion cells in the vertebrate retina integrate visual information over their receptive fields. They do so by pooling presynaptic excitatory inputs from typically many bipolar cells, which themselves collect inputs from several photoreceptors. In addition, inhibitory interactions mediated by horizontal cells and amacrine cells modulate the structure of the receptive field. In many models, this spatial integration is assumed to occur in a linear fashion. Yet, it has long been known that spatial integration by retinal ganglion cells also incurs nonlinear phenomena. Moreover, several recent examples have shown that nonlinear spatial integration is tightly connected to specific visual functions performed by different types of retinal ganglion cells. This work discusses these advances in understanding the role of nonlinear spatial integration and reviews recent efforts to quantitatively study the nature and mechanisms underlying spatial nonlinearities. These new insights point towards a critical role of nonlinearities within ganglion cell receptive fields for capturing responses of the cells to natural and behaviorally relevant visual stimuli. In the long run, nonlinear phenomena of spatial integration may also prove important for implementing the actual neural code of retinal neurons when designing visual prostheses for the eye.
Collapse
Affiliation(s)
- Tim Gollisch
- University Medical Center Göttingen, Department of Ophthalmology, Waldweg 33, 37073 Göttingen, Germany.
| |
Collapse
|
149
|
Form and function of the M4 cell, an intrinsically photosensitive retinal ganglion cell type contributing to geniculocortical vision. J Neurosci 2012; 32:13608-20. [PMID: 23015450 DOI: 10.1523/jneurosci.1422-12.2012] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The photopigment melanopsin confers photosensitivity upon a minority of retinal output neurons. These intrinsically photosensitive retinal ganglion cells (ipRGCs) are more diverse than once believed, comprising five morphologically distinct types, M1 through M5. Here, in mouse retina, we provide the first in-depth characterization of M4 cells, including their structure, function, and central projections. M4 cells apparently correspond to ON α cells of earlier reports, and are easily distinguished from other ipRGCs by their very large somata. Their dendritic arbors are more radiate and highly branched than those of M1, M2, or M3 cells. The melanopsin-based intrinsic photocurrents of M4 cells are smaller than those of M1 and M2 cells, presumably because melanopsin is more weakly expressed; we can detect it immunohistochemically only with strong amplification. Like M2 cells, M4 cells exhibit robust, sustained, synaptically driven ON responses and dendritic stratification in the ON sublamina of the inner plexiform layer. However, their stratification patterns are subtly different, with M4 dendrites positioned just distal to those of M2 cells and just proximal to the ON cholinergic band. M4 receptive fields are large, with an ON center, antagonistic OFF surround and nonlinear spatial summation. Their synaptically driven photoresponses lack direction selectivity and show higher ultraviolet sensitivity in the ventral retina than in the dorsal retina, echoing the topographic gradient in S- and M-cone opsin expression. M4 cells are readily labeled by retrograde transport from the dorsal lateral geniculate nucleus and thus likely contribute to the pattern vision that persists in mice lacking functional rods and cones.
Collapse
|
150
|
Direction-selective retinal ganglion cells arise from molecularly specified multipotential progenitors. Proc Natl Acad Sci U S A 2012; 109:17663-8. [PMID: 23045641 DOI: 10.1073/pnas.1215806109] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Single progenitors can give rise to any and all of the main retinal cell types: photoreceptors, interneurons (horizontal, bipolar, and amacrine cells), retinal ganglion cells (RGCs), and glia. Many of these types are divisible into multiple functionally, structurally, and molecularly distinct subtypes (e.g., ~25 for RGCs). It remains unknown when and how progenitors become committed to generate such subtypes. Here, we determine the origin of RGCs that respond selectively to vertical motion and express cadherin 6 (cdh6). Using Cre recombinase-based lineage tracing, we show that these RGCs arise from progenitors that themselves express cdh6. These progenitors are capable of generating all major retinal cell types, but the RGCs they generate are predominantly of the single direction-selective subtype. In contrast, cdh6-positive progenitors retain the ability to generate multiple subtypes of amacrine and bipolar cells. Our results demonstrate that type and subtype specification are regulated in different ways and suggest that multipotential but fate-restricted progenitors contribute to subtype specification in retina.
Collapse
|