101
|
Guseva D, Wirth A, Ponimaskin E. Cellular mechanisms of the 5-HT7 receptor-mediated signaling. Front Behav Neurosci 2014; 8:306. [PMID: 25324743 PMCID: PMC4181333 DOI: 10.3389/fnbeh.2014.00306] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/23/2014] [Indexed: 11/21/2022] Open
Abstract
Serotonin (5-hydroxytryptamine or 5-HT) is an important neurotransmitter regulating a wide range of physiological and pathological functions via activation of heterogeneously expressed 5-HT receptors. The 5-HT7 receptor is one of the most recently described members of the 5-HT receptor family. Functionally, 5-HT7 receptor is associated with a number of physiological and pathological responses, including serotonin-induced phase shifting of the circadian rhythm, control of memory as well as locomotor and exploratory activity. A large body of evidence indicates involvement of the 5-HT7 receptor in anxiety and depression, and recent studies suggest that 5-HT7 receptor can be highly relevant for the treatment of major depressive disorders. The 5-HT7 receptor is coupled to the stimulatory Gs-protein, and receptor stimulation results in activation of adenylyl cyclase (AC) leading to a rise of cAMP concentration. In addition, this receptor is coupled to the G12-protein to activate small GTPases of the Rho family. This review focuses on molecular mechanisms responsible for the 5-HT7 receptor-mediated signaling. We provide detailed overview of signaling cascades controlled and regulated by the 5-HT7 receptor and discuss the functional impact of 5-HT7 receptor for the regulation of different cellular and subcellular processes.
Collapse
Affiliation(s)
- Daria Guseva
- Department of Cellular Neurophysiology, Hannover Medical School Hannover, Germany
| | - Alexander Wirth
- Department of Cellular Neurophysiology, Hannover Medical School Hannover, Germany
| | - Evgeni Ponimaskin
- Department of Cellular Neurophysiology, Hannover Medical School Hannover, Germany
| |
Collapse
|
102
|
Effect of the cosolutes trehalose and methanol on the equilibrium and phase-transition properties of glycerol-monopalmitate lipid bilayers investigated using molecular dynamics simulations. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 43:517-44. [DOI: 10.1007/s00249-014-0982-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/16/2014] [Accepted: 07/24/2014] [Indexed: 10/24/2022]
|
103
|
Zhang Z, Jin Z, Zhao Y, Zhang Z, Li R, Xiao J, Wu J. Systematic study on G-protein couple receptor prototypes: did they really evolve from prokaryotic genes? IET Syst Biol 2014; 8:154-61. [PMID: 25075528 PMCID: PMC8687355 DOI: 10.1049/iet-syb.2013.0037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
G‐protein couple receptor (GPCR) is one of the most striking examples of signalling proteins and it is only observed in eukaryotes. Based on various GPCR identification methods and classification systems, several evolutionary presumptions of different GPCR families have been reported. However, the prototype of GPCR still limits our knowledge. By investigating its structure and domain variance, the authors propose that GPCR might be evolved from prokaryotic world. The results given by the authors indicate that metabotropic glutamate receptor family would be the ancestor of GPCR. Phylogenetic analysis hints that one of metabotropic glutamate receptor GABA is possibly formed and evolved from the ancient chemical union of bacteriorhodopsin and periplasmic binding protein. The results obtained by the authors also unprecedentedly demonstrate that specific domains and identical structures are shown in each type of GPCR, which provides unique opportunities for future strategies on GPCR orphans’ prediction and classification.
Collapse
Affiliation(s)
- Zaichao Zhang
- College of Life Science, Graduate University of Chinese Academy of Sciences, No.9A Yuquan Rd, Shijingshan District, Beijing 100049, People's Republic of China
| | - Zhong Jin
- Supercomputing Center, Computer Network Information Center, Chinese Academy of Sciences, No.4, South Four Street Zhongguancun, Haidian District, Beijing 100190, People's Republic of China
| | - Yongbing Zhao
- College of Life Science, Graduate University of Chinese Academy of Sciences, No.9A Yuquan Rd, Shijingshan District, Beijing 100049, People's Republic of China
| | - Zhewen Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, No.1-7, Beichen W Rd, Chaoyang District, Beijing, People's Republic of China, 100101
| | - Rujiao Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, No.1-7, Beichen W Rd, Chaoyang District, Beijing, People's Republic of China, 100101
| | - Jingfa Xiao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, No.1-7, Beichen W Rd, Chaoyang District, Beijing, People's Republic of China, 100101
| | - Jiayan Wu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, No.1-7, Beichen W Rd, Chaoyang District, Beijing, People's Republic of China, 100101.
| |
Collapse
|
104
|
Chen K, Xiang Y, Huang J, Gong W, Yoshimura T, Jiang Q, Tessarollo L, Le Y, Wang JM. The formylpeptide receptor 2 (Fpr2) and its endogenous ligand cathelin-related antimicrobial peptide (CRAMP) promote dendritic cell maturation. J Biol Chem 2014; 289:17553-63. [PMID: 24808174 PMCID: PMC4067191 DOI: 10.1074/jbc.m113.535674] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 04/17/2014] [Indexed: 12/17/2022] Open
Abstract
Mouse formylpeptide receptor 2 (Fpr2) is a homologue of the human G-protein coupled chemoattractant receptor FPR2, which interacts with pathogen and host-derived chemotactic agonists. Our previous studies revealed reduced allergic airway inflammation and immune responses in Fpr2-deficient (Fpr2(-/-)) mice in association with diminished dendritic cell (DC) recruitment into the airway and draining lymph nodes. These defects prompted us to investigate the potential changes in the differentiation and maturation of DCs caused by Fpr2 deficiency. Bone marrow monocytes from Fpr2(-/-) mouse mice incubated with GM-CSF and IL-4 in vitro showed normal expression of markers of immature DCs. However, upon stimulation with the TLR4 agonist LPS, Fpr2(-/-) mouse DCs failed to express normal levels of maturation markers with reduced production of IL-12 and diminished chemotaxis in response to the DC homing chemokine CCL21. Fpr2(-/-) DCs also failed to induce allogeneic T-cell proliferation in vitro, and their recruitment into the T-cell zones of the spleen was reduced after antigen immunization. The capacity of Fpr2 to sustain normal DC maturation was dependent on its interaction with an endogenous ligand CRAMP expressed by DCs, because neutralization of either Fpr2 or CRAMP inhibited DC maturation in response to LPS. We additionally observed that the presence of exogenous CRAMP in culture increased the sensitivity of WT mouse DCs to LPS stimulation. The importance of CRAMP for DC maturation was further demonstrated by the observations that DCs from CRAMP(-/-) mice expressed lower levels of costimulatory molecules and MHC II and exhibited poor chemotaxis in response to CCL21 after LPS stimulation. Our observations indicate a nonredundant role for Fpr2 and its agonist CRAMP in DC maturation in immune responses.
Collapse
Affiliation(s)
- Keqiang Chen
- From the Laboratories of Molecular Immunoregulation and
| | - Yi Xiang
- From the Laboratories of Molecular Immunoregulation and the Department of Pulmonary Medicine, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Jiaqiang Huang
- From the Laboratories of Molecular Immunoregulation and the College of Life Sciences and Bioengineering, School of Sciences, Beijing Jiaotong University, Beijing 100044, China
| | - Wanghua Gong
- Leidos Biomedical Research, Inc., SAIC-Frederick, Frederick, Maryland 21702, and
| | | | - Qun Jiang
- Experimental Immunology, Cancer and Inflammation Program and
| | - Lino Tessarollo
- the Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702
| | - Yingying Le
- the Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ji Ming Wang
- From the Laboratories of Molecular Immunoregulation and
| |
Collapse
|
105
|
Hull JJ, Brent CS. Identification and characterization of a sex peptide receptor-like transcript from the western tarnished plant bug Lygus hesperus. INSECT MOLECULAR BIOLOGY 2014; 23:301-319. [PMID: 24467643 DOI: 10.1111/imb.12082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Lygus hesperus females exhibit a post-mating behavioural switch that triggers increased egg laying and decreased sexual interest. In Drosophila melanogaster, these changes are controlled by sex peptide (SP) and the sex peptide receptor (DmSPR). In Helicoverpa armigera, SPR (HaSPR) also regulates some post-mating behaviour; however, myoinhibiting peptides (MIPs) have been identified as the SPR ancestral ligand, indicating that SPR is a pleiotropic receptor. In the present study, we identified a transcript, designated L. hesperus SPR (LhSPR), that is homologous to known SPRs and which is expressed throughout development and in most adult tissues. LhSPR was most abundant in female seminal depositories and heads as well as the hindgut/midgut of both sexes. In vitro analyses revealed that fluorescent chimeras of LhSPR, DmSPR and HaSPR localized to the cell surface of cultured insect cells, but only DmSPR and HaSPR bound carboxytetramethylrhodamine-labelled analogues of DmSP21-36 and DmMIP4. Injected DmSP21-36 also failed to have an effect on L. hesperus mating receptivity. Potential divergence in the LhSPR binding pocket may be linked to receptor-ligand co-evolution as 9 of 13 MIPs encoded by a putative L. hesperus MIP precursor exhibit an atypical W-X7 -Wamide motif vs the W-X6 -Wamide and W-X8 -Wamide motifs of Drosophila MIPs and SP.
Collapse
Affiliation(s)
- J J Hull
- USDA-ARS Arid Land Agricultural Center, Maricopa, AZ, USA
| | | |
Collapse
|
106
|
Teperino R, Aberger F, Esterbauer H, Riobo N, Pospisilik JA. Canonical and non-canonical Hedgehog signalling and the control of metabolism. Semin Cell Dev Biol 2014; 33:81-92. [PMID: 24862854 DOI: 10.1016/j.semcdb.2014.05.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 02/07/2023]
Abstract
Obesity and diabetes represent key healthcare challenges of our day, affecting upwards of one billion people worldwide. These individuals are at higher risk for cancer, stroke, blindness, heart and cardiovascular disease, and to date, have no effective long-term treatment options available. Recent and accumulating evidence has implicated the developmental morphogen Hedgehog and its downstream signalling in metabolic control. Generally thought to be quiescent in adults, Hedgehog is associated with several human cancers, and as such, has already emerged as a therapeutic target in oncology. Here, we attempt to give a comprehensive overview of the key signalling events associated with both canonical and non-canonical Hedgehog signalling, and highlight the increasingly complex regulatory modalities that appear to link Hedgehog and control metabolism. We highlight these key findings and discuss their impact for therapeutic development, cancer and metabolic disease.
Collapse
Affiliation(s)
- Raffaele Teperino
- Department of Epigenetics, Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Fritz Aberger
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Harald Esterbauer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Natalia Riobo
- Department of Biochemistry and Molecular Biology and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - John Andrew Pospisilik
- Department of Epigenetics, Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|
107
|
Chen L, He X, Zhang Y, Chen X, Lai X, Shao J, Shi Y, Zhou N. Melatonin receptor type 1 signals to extracellular signal-regulated kinase 1 and 2 via Gi and Gs dually coupled pathways in HEK-293 cells. Biochemistry 2014; 53:2827-39. [PMID: 24724723 DOI: 10.1021/bi500092e] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The pineal gland hormone melatonin exerts its regulatory roles in a variety of physiological and pathological responses through two G protein-coupled receptors, melatonin receptor type 1 (MT1) and melatonin receptor type 2 (MT2), which have been recognized as promising targets in the treatment of a number of human diseases and disorders. The MT1 receptor was identified nearly 20 years ago; however, the molecular mechanisms by which MT1-mediated signaling affects physiology remain to be further elucidated. In this study, using HEK293 cells stably expressing the human MT1 receptor, melatonin induced a concentration-dependent activation of extracellular signal-regulated kinase 1 and 2 (ERK1/2). The melatonin-mediated phosphorylation of ERK1/2 at later time points (≥5 min) was strongly suppressed by pretreatment with pertussis toxin, but only a slight, if any, inhibition of ERK1/2 activation at early time points (≤2 min) was detected. Further experiments demonstrated that the Gβγ subunit, phosphoinositide 3-kinase, and calcium-insensitive protein kinase C were involved in the MT1-mediated activation of ERK1/2 at later time points (≥5 min). Moreover, results derived from cAMP assays combined with a MT1 mutant indicated that the human MT1 receptor could also couple to Gs protein, stimulating intracellular cAMP formation, and that the MT1-induced activation of ERK1/2 at early time points (≤2 min) was mediated by the Gs/cAMP/PKA cascade. Our findings may provide new insights into the pharmacological effects and physiological functions modulated by the MT1-mediated activation of ERK1/2.
Collapse
Affiliation(s)
- Linjie Chen
- Institute of Biochemistry, College of Life Sciences, Zhejiang University , Hangzhou, Zhejiang 310058, China
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Boukharta L, Gutiérrez-de-Terán H, Aqvist J. Computational prediction of alanine scanning and ligand binding energetics in G-protein coupled receptors. PLoS Comput Biol 2014; 10:e1003585. [PMID: 24743773 PMCID: PMC3990513 DOI: 10.1371/journal.pcbi.1003585] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 03/12/2014] [Indexed: 11/25/2022] Open
Abstract
Site-directed mutagenesis combined with binding affinity measurements is widely used to probe the nature of ligand interactions with GPCRs. Such experiments, as well as structure-activity relationships for series of ligands, are usually interpreted with computationally derived models of ligand binding modes. However, systematic approaches for accurate calculations of the corresponding binding free energies are still lacking. Here, we report a computational strategy to quantitatively predict the effects of alanine scanning and ligand modifications based on molecular dynamics free energy simulations. A smooth stepwise scheme for free energy perturbation calculations is derived and applied to a series of thirteen alanine mutations of the human neuropeptide Y1 receptor and series of eight analogous antagonists. The robustness and accuracy of the method enables univocal interpretation of existing mutagenesis and binding data. We show how these calculations can be used to validate structural models and demonstrate their ability to discriminate against suboptimal ones.
Collapse
Affiliation(s)
- Lars Boukharta
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Hugo Gutiérrez-de-Terán
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Johan Aqvist
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Uppsala, Sweden
| |
Collapse
|
109
|
Chung HJ, Kim JD, Kim KH, Jeong NY. G protein-coupled receptor, family C, group 5 (GPRC5B) downregulation in spinal cord neurons is involved in neuropathic pain. Korean J Anesthesiol 2014; 66:230-6. [PMID: 24729846 PMCID: PMC3983420 DOI: 10.4097/kjae.2014.66.3.230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 10/02/2013] [Accepted: 10/22/2013] [Indexed: 01/10/2023] Open
Abstract
Background G protein-coupled receptor, family C, group 5 (GPRC5B), a retinoic acid-inducible orphan G-protein-coupled receptor (GPCR), is a member of the group C metabotropic glutamate receptor family proteins presumably related in non-canonical Wnt signaling. In this study, we investigated altered GPRC5B expression in the dorsal horn of the spinal cord after spinal nerve injury and its involvement in the development of neuropathic pain. Methods After induction of anesthesia by intraperitoneal injection of pentobarbital (35 mg /kg), the left L5 spinal nerve at the level of 2 mm distal to the L5 DRG was tightly ligated with silk and cut just distal to the ligature. Seven days after nerve injury, animals were perfused with 4% paraformaldehyde, and the spinal cords were extracted and post-fixed at 4℃ overnight. To identify the expression of GPRC5B and analyze the involvement of GPRC5B in neuropathic pain, immunofluorescence was performed using several markers for neurons and glial cells in spinal cord tissue. Results After L5 spinal nerve ligation (SNL), the expression of GPRC5B was decreased in the ipsilateral part, as compared to the contralateral part, of the spinal dorsal horn. SNL induced the downregulation of GPRC5B in NeuN-positive neurons in the spinal dorsal horn. However, CNPase-positive oligodendrocytes, OX42-positive microglia, and GFAP-positive astrocytes were not immunolabeled with GPRC5B antibody in the spinal dorsal horn. Conclusions These results imply that L5 SNL-induced GPRC5B downregulation may affect microglial activation in the spinal dorsal horn and be involved in neuropathic pain.
Collapse
Affiliation(s)
- Hyung-Joo Chung
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, Korea
| | - Ju Deok Kim
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, Korea
| | - Kyung Han Kim
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, Korea
| | - Na Young Jeong
- Department of Anatomy and Cell Biology and Mitochondria Hub Regulation Center, Dong-A University College of Medicine, Busan, Korea
| |
Collapse
|
110
|
Yi L, Zhao J, Lu J, Chen Y, Chen L, Cheng J, Sun Y, Li Z, Men R, Yang L, Kung H, Yang Z, He ML. Gene expression profiling of CD4⁺ T cells in treatment-naive HIV, HCV mono- or co-infected Chinese. Virol J 2014; 11:27. [PMID: 24520951 PMCID: PMC3943807 DOI: 10.1186/1743-422x-11-27] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 01/29/2014] [Indexed: 11/28/2022] Open
Abstract
Background Because of the shared transmission routes, co-infection with human immunodeficiency virus (HIV) and hepatitis C virus (HIV) is very common. Accumulated clinical evidence showed that one could alter the infectious course of the other virus in HIV and HCV co-infected individuals. However, little is known on the molecular basis of HIV/HCV interactions and their modulations on hosts. Methods In this study, treatment-naive HIV, HCV mono-/co-infected individuals with CD4+ T cell counts >300/μl were recruited and their gene expression profiles were investigated by microarray assays. The differentially expressed genes were identified and validated by quantitative real-time PCR (qRT-PCR). To further understand the biological meanings of the gene expression profiles in these three groups, GSEA analysis (version 2.0, Broad Institute
http://www.broad.mit.edu/gsea) was performed. Results By gene set enrichment analysis, we revealed that gene sets of cell cycle progression, innate immune response and some transcription factors in CD4+ T cells were mainly affected by HIV; while genes associated with GPCR signaling were the major targets of HCV. Metabolic pathways were modulated by both HCV and HIV viruses. Conclusions This study for the first time offers gene profiling basis for HCV/HIV mono-/co- infections in human beings. HIV infection displayed the great impact on transcription profile of CD4+ T cells in HIV/HCV co-infected individuals. Genes related to cell cycle arrest were significantly mediated by HIV which may lead to dysfunction of CD4+ T cells and acceleration of HCV-related disease progression in the co-infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Zhengrong Yang
- Stanley Ho Center for Emerging Infectious Diseases, and Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | | |
Collapse
|
111
|
G protein-coupled receptors: what a difference a 'partner' makes. Int J Mol Sci 2014; 15:1112-42. [PMID: 24441568 PMCID: PMC3907859 DOI: 10.3390/ijms15011112] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 12/20/2013] [Accepted: 01/08/2014] [Indexed: 01/16/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are important cell signaling mediators, involved in essential physiological processes. GPCRs respond to a wide variety of ligands from light to large macromolecules, including hormones and small peptides. Unfortunately, mutations and dysregulation of GPCRs that induce a loss of function or alter expression can lead to disorders that are sometimes lethal. Therefore, the expression, trafficking, signaling and desensitization of GPCRs must be tightly regulated by different cellular systems to prevent disease. Although there is substantial knowledge regarding the mechanisms that regulate the desensitization and down-regulation of GPCRs, less is known about the mechanisms that regulate the trafficking and cell-surface expression of newly synthesized GPCRs. More recently, there is accumulating evidence that suggests certain GPCRs are able to interact with specific proteins that can completely change their fate and function. These interactions add on another level of regulation and flexibility between different tissue/cell-types. Here, we review some of the main interacting proteins of GPCRs. A greater understanding of the mechanisms regulating their interactions may lead to the discovery of new drug targets for therapy.
Collapse
|
112
|
Sabbadin D, Ciancetta A, Moro S. Bridging molecular docking to membrane molecular dynamics to investigate GPCR-ligand recognition: the human A₂A adenosine receptor as a key study. J Chem Inf Model 2014; 54:169-83. [PMID: 24359090 DOI: 10.1021/ci400532b] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of cell-surface receptors and about one-third of the actual targets of clinically used drugs. Following the progress made in the field of GPCRs structural determination, docking-based screening for novel potent and selective ligands is becoming an increasingly adopted strategy in the drug discovery process. However, this methodology is not yet able to anticipate the "bioactive" binding mode and discern it among other conformations. In the present work, we present a novel approach consisting in the integration of molecular docking and membrane MD simulations with the aim to merge the rapid sampling of ligand poses into in the binding site, typical of docking algorithms, with the thermodynamic accuracy of MD simulations in describing, at the molecular level, the stability a GPCR-ligand complex embedded into explicit lipid-water environment. To validate our approach, we have chosen as a key study the human A(2A) adenosine receptor (hA(2A) AR) and selected four receptor-antagonist complexes and one receptor-agonist complex that have been recently crystallized. In light of the obtained results, we believe that our novel strategy can be extended to other GPCRs and might represent a valuable tool to anticipate the "bioactive" conformation of high-affinity ligands.
Collapse
Affiliation(s)
- Davide Sabbadin
- Molecular Modeling Section (MMS), Dipartimento di Scienze del Farmaco, Università di Padova , via Marzolo 5, 35131 Padova, Italy
| | | | | |
Collapse
|
113
|
Reese EA, Norimatsu Y, Grandy MS, Suchland KL, Bunzow JR, Grandy DK. Exploring the determinants of trace amine-associated receptor 1's functional selectivity for the stereoisomers of amphetamine and methamphetamine. J Med Chem 2014; 57:378-90. [PMID: 24354319 DOI: 10.1021/jm401316v] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amphetamines are widely abused drugs that interfere with dopamine transport and storage. Recently, however, another mechanism of action was identified: stereoselective activation of the GαS protein-coupled trace amine-associated receptor 1 (TAAR1). To identify structural determinants of this stereoselectivity, we functionally evaluated six mutant receptors in vitro and then used homology modeling and dynamic simulation to predict drug affinities. Converting Asp102 to Ala rendered mouse and rat TAAR1 (mTAAR1 and rTAAR1, respectively) insensitive to β-phenylethylamine, amphetamine (AMPH), and methamphetamine (METH). Mutating Met268 in rTAAR1 to Thr shifted the concentration-response profiles for AMPH and METH isomers rightward an order of magnitude, whereas replacing Thr268 with Met in mTAAR1 resulted in profiles leftward shifted 10-30-fold. Replacing Asn287 with Tyr in rTAAR1 produced a mouselike receptor, while the reciprocal mTAAR1 mutant was rTAAR1-like. These results confirm TAAR1 is an AMPH/METH receptor in vitro and establish residues 102 (3.32) and 268 (6.55) as major contributors to AMPH/METH binding with residue 287 (7.39) determining species stereoselectivity.
Collapse
Affiliation(s)
- Edmund A Reese
- Department of Physiology & Pharmacology, School of Medicine, Oregon Health & Science University , Portland, Oregon 97239, United States
| | | | | | | | | | | |
Collapse
|
114
|
Patocka N, Sharma N, Rashid M, Ribeiro P. Serotonin signaling in Schistosoma mansoni: a serotonin-activated G protein-coupled receptor controls parasite movement. PLoS Pathog 2014; 10:e1003878. [PMID: 24453972 PMCID: PMC3894222 DOI: 10.1371/journal.ppat.1003878] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/25/2013] [Indexed: 01/19/2023] Open
Abstract
Serotonin is an important neuroactive substance in all the parasitic helminths. In Schistosoma mansoni, serotonin is strongly myoexcitatory; it potentiates contraction of the body wall muscles and stimulates motor activity. This is considered to be a critical mechanism of motor control in the parasite, but the mode of action of serotonin is poorly understood. Here we provide the first molecular evidence of a functional serotonin receptor (Sm5HTR) in S. mansoni. The schistosome receptor belongs to the G protein-coupled receptor (GPCR) superfamily and is distantly related to serotonergic type 7 (5HT7) receptors from other species. Functional expression studies in transfected HEK 293 cells showed that Sm5HTR is a specific serotonin receptor and it signals through an increase in intracellular cAMP, consistent with a 5HT7 signaling mechanism. Immunolocalization studies with a specific anti-Sm5HTR antibody revealed that the receptor is abundantly distributed in the worm's nervous system, including the cerebral ganglia and main nerve cords of the central nervous system and the peripheral innervation of the body wall muscles and tegument. RNA interference (RNAi) was performed both in schistosomulae and adult worms to test whether the receptor is required for parasite motility. The RNAi-suppressed adults and larvae were markedly hypoactive compared to the corresponding controls and they were also resistant to exogenous serotonin treatment. These results show that Sm5HTR is at least one of the receptors responsible for the motor effects of serotonin in S. mansoni. The fact that Sm5HTR is expressed in nerve tissue further suggests that serotonin stimulates movement via this receptor by modulating neuronal output to the musculature. Together, the evidence identifies Sm5HTR as an important neuronal protein and a key component of the motor control apparatus in S. mansoni.
Collapse
Affiliation(s)
- Nicholas Patocka
- Institute of Parasitology, McGill University, Macdonald Campus, Ste. Anne de Bellevue, Quebec, Canada
| | - Nidhi Sharma
- Institute of Parasitology, McGill University, Macdonald Campus, Ste. Anne de Bellevue, Quebec, Canada
| | - Mohammed Rashid
- Institute of Parasitology, McGill University, Macdonald Campus, Ste. Anne de Bellevue, Quebec, Canada
| | - Paula Ribeiro
- Institute of Parasitology, McGill University, Macdonald Campus, Ste. Anne de Bellevue, Quebec, Canada
| |
Collapse
|
115
|
Gonzalez A, Cordomí A, Matsoukas M, Zachmann J, Pardo L. Modeling of G Protein-Coupled Receptors Using Crystal Structures: From Monomers to Signaling Complexes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 796:15-33. [DOI: 10.1007/978-94-007-7423-0_2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
116
|
Cygankiewicz AI, Maslowska A, Krajewska WM. Molecular Basis of Taste Sense: Involvement of GPCR Receptors. Crit Rev Food Sci Nutr 2013; 54:771-80. [DOI: 10.1080/10408398.2011.606929] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
117
|
The muscarinic acetylcholine receptor agonist BuTAC mediates antipsychotic-like effects via the M4 subtype. Neuropsychopharmacology 2013; 38:2717-26. [PMID: 23907402 PMCID: PMC3828543 DOI: 10.1038/npp.2013.186] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 07/18/2013] [Accepted: 07/22/2013] [Indexed: 11/08/2022]
Abstract
The generation of muscarinic acetylcholine receptor (mAChR) subtype-selective compounds has been challenging, requiring use of nonpharmacological approaches, such as genetically engineered animals, to deepen our understanding of the potential that members of the muscarinic receptor subtype family hold as therapeutic drug targets. The muscarinic receptor agonist 'BuTAC' was previously shown to exhibit efficacy in animal models of psychosis, although the particular receptor subtype(s) responsible for such activity was unclear. Here, we evaluate the in vitro functional agonist and antagonist activity of BuTAC using an assay that provides a direct measure of G protein activation. In addition, we employ the conditioned avoidance response paradigm, an in vivo model predictive of antipsychotic activity, and mouse genetic deletion models to investigate which presynaptic mAChR subtype mediates the antipsychotic-like effects of BuTAC. Our results show that, in vitro, BuTAC acts as a full agonist at the M2AChR and a partial agonist at the M1 and M4 receptors, with full antagonist activity at M3- and M5AChRs. In the mouse conditioned avoidance response (CAR) assay, BuTAC exhibits an atypical antipsychotic-like profile by selectively decreasing avoidance responses at doses that do not induce escape failures. CAR results using M2(-/-), M4(-/-), and M2/M4 (M2/M4(-/-)) mice found that the effects of BuTAC were near completely lost in M2/M4(-/-) double-knockout mice and potency of BuTAC was right-shifted in M4(-/-) as compared with wild-type and M2(-/-) mice. The M2/M4(-/-) mice showed no altered sensitivity to the antipsychotic effects of either haloperidol or clozapine, suggesting that these compounds mediate their actions in CAR via a non-mAChR-mediated mechanism. These data support a role for the M4AChR subtype in mediating the antipsychotic-like activity of BuTAC and implicate M4AChR agonism as a potential novel therapeutic mechanism for ameliorating symptoms associated with schizophrenia.
Collapse
|
118
|
Leutner S, Oliveira KC, Rotter B, Beckmann S, Buro C, Hahnel S, Kitajima JP, Verjovski-Almeida S, Winter P, Grevelding CG. Combinatory microarray and SuperSAGE analyses identify pairing-dependently transcribed genes in Schistosoma mansoni males, including follistatin. PLoS Negl Trop Dis 2013; 7:e2532. [PMID: 24244773 PMCID: PMC3820750 DOI: 10.1371/journal.pntd.0002532] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 09/29/2013] [Indexed: 12/23/2022] Open
Abstract
Background Schistosomiasis is a disease of world-wide importance and is caused by parasitic flatworms of the genus Schistosoma. These parasites exhibit a unique reproduction biology as the female's sexual maturation depends on a constant pairing-contact to the male. Pairing leads to gonad differentiation in the female, and even gene expression of some gonad-associated genes is controlled by pairing. In contrast, no morphological changes have been observed in males, although first data indicated an effect of pairing also on gene transcription in males. Methodology/Principal Findings To investigate the influence of pairing on males, we performed a combinatory approach applying SuperSAGE and microarray hybridization, generating the most comprehensive data-set on differential transcription available to date. Of 6,326 sense transcripts detected by both analyses, 29 were significantly differentially transcribed. Besides mutual confirmation, the two methods complemented each other as shown by data comparison and real-time PCR, which revealed a number of genes with consistent regulation across all methods. One of the candidate genes, follistatin of S. mansoni (SmFst) was characterized in more detail by in situ hybridization and yeast two-hybrid (Y2H) interaction analyses with potential binding partners. Conclusions/Significance Beyond confirming previously hypothesized differences in metabolic processes between pairing-experienced (EM) and pairing-unexperienced males (UM), our data indicate that neuronal processes are involved in male-female interaction but also TGFβ-signaling. One candidate revealing significant down-regulation in EM was the TGFβ-pathway controlling molecule follistatin (SmFst). First functional analyses demonstrated SmFst interaction with the S. mansoni TGFβ-receptor agonists inhibin/activin (SmInAct) and bone morphogenic protein (SmBMP), and all molecules colocalized in the testes. This indicates a yet unknown role of the TGFβ-pathway for schistosome biology leading to male competence and a possible influence of pairing on the male gonad. Schistosomiasis is an important infectious disease caused by worm parasites of the genus Schistosoma and directly affects more than 240 million people in 78 tropical and sub-tropical countries but also animals. Pathogenesis is triggered by eggs that are produced by paired females and get trapped in liver and gut causing severe inflammation. While studies have concentrated on the reproductive biology of schistosome females in the past, not much is known about males even though they are indispensable for female sexual development and egg production. Therefore, we studied pairing-dependent processes in S. mansoni males using two independent transcriptomics approaches providing a congruent and most comprehensive data-set on genes being differentially transcribed between pairing-experienced, competent males and pairing-unexperienced, naive males. Besides confirming former studies concerning changes in metabolic processes, our results give new insights into processes leading to male competence indicating among others a potential role of neurotransmitters and TGFβ signal-transduction processes. We especially highlight the follistatin gene SmFst, which codes for an inhibitor of the TGFβ-pathway. SmFst transcription was localized in the testes and found to be down-regulated in pairing-experienced males. This indicates a yet unknown function of pairing on the male gonad and a further role of TGFβ-signaling for schistosome biology.
Collapse
Affiliation(s)
- Silke Leutner
- Institute of Parasitology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Katia C. Oliveira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brasil
| | | | - Svenja Beckmann
- Institute of Parasitology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Christin Buro
- Institute of Parasitology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Steffen Hahnel
- Institute of Parasitology, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | | | | | |
Collapse
|
119
|
Hu G, Suo Y, Huang J. A crucial role of the RGS domain in trans-Golgi network export of AtRGS1 in the protein secretory pathway. MOLECULAR PLANT 2013; 6:1933-1944. [PMID: 23793400 DOI: 10.1093/mp/sst109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The secretory pathway is responsible for the transport of newly synthesized transmembrane proteins from the endoplasmic reticulum to their destinations via the Golgi/trans-Golgi network (TGN). Cargo proteins at each station are actively sorted by specific sorting signals on the cargo and the corresponding coat complexes. Here, we used the Arabidopsis regulator of G-protein signaling (AtRGS1), which contains an N-terminal potentially sensing glucose seven-transmembrane domain and a C-terminal RGS domain, as a model to uncover sorting motifs required for its cell surface expression. Expression of wild-type and truncated or mutated AtRGS1 fluorescent fusion proteins identified two cysteine residues in the extracellular N-terminus that are essential for endoplasmic reticulum exit and/or correct folding of AtRGS1. The linker between the seven-transmembrane and RGS domains contains an endoplasmic reticulum export signal, whereas the C-terminus is dispensable for the plasma membrane expression of AtRGS1. Interestingly, deletion of the RGS domain results in Golgi/TGN localization of the truncated AtRGS1. Further analysis using site-directed mutagenesis showed that a tyrosine-based motif embedded in the RGS domain is essential for Golgi/TGN export of AtRGS1. These results reveal a new role for the RGS domain in regulating AtRGS1 trafficking from the Golgi/TGN to the plasma membrane and explain the interaction between the seven-transmembrane and RGS domains.
Collapse
Affiliation(s)
- Guangzhen Hu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Feng Lin Road, Shanghai 200032, China
| | | | | |
Collapse
|
120
|
Jacobsen SE, Nørskov-Lauritsen L, Thomsen ARB, Smajilovic S, Wellendorph P, Larsson NHP, Lehmann A, Bhatia VK, Bräuner-Osborne H. Delineation of the GPRC6A receptor signaling pathways using a mammalian cell line stably expressing the receptor. J Pharmacol Exp Ther 2013; 347:298-309. [PMID: 24008333 PMCID: PMC11047948 DOI: 10.1124/jpet.113.206276] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 09/05/2013] [Indexed: 11/22/2022] Open
Abstract
The GPRC6A receptor is a recently "deorphanized" class C G protein-coupled receptor. We and others have shown that this receptor is coactivated by basic l-α-amino acids and divalent cations, whereas other groups have also suggested osteocalcin and testosterone to be agonists. Likewise, the GPRC6A receptor has been suggested to couple to multiple G protein classes albeit via indirect methods. Thus, the exact ligand preferences and signaling pathways are yet to be elucidated. In the present study, we generated a Chinese hamster ovary (CHO) cell line that stably expresses mouse GPRC6A. In an effort to establish fully the signaling properties of the receptor, we tested representatives of four previously reported GPRC6A agonist classes for activity in the Gq, Gs, Gi, and extracellular-signal regulated kinase signaling pathways. Our results confirm that GPRC6A is activated by basic l-α-amino acids and divalent cations, and for the first time, we conclusively show that these responses are mediated through the Gq pathway. We were not able to confirm previously published data demonstrating Gi- and Gs-mediated signaling; neither could we detect agonistic activity of testosterone and osteocalcin. Generation of the stable CHO cell line with robust receptor responsiveness and optimization of the highly sensitive homogeneous time resolved fluorescence technology allow fast assessment of Gq activation without previous manipulations like cotransfection of mutated G proteins. This cell-based assay system for GPRC6A is thus useful in high-throughput screening for novel pharmacological tool compounds, which are necessary to unravel the physiologic function of the receptor.
Collapse
Affiliation(s)
- Stine Engesgaard Jacobsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (S.E.J., L.N.-L., A.R.B.T., S.S., P.W., V.K.B., H.B.-O.); and AstraZeneca, Mölndal, Sweden (N.H.P.L., A.L.)
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Rathore RM, Angotzi AR, Jordal AEO, Rønnestad I. Cholecystokinin receptors in Atlantic salmon: molecular cloning, gene expression, and structural basis. Physiol Rep 2013; 1:e00069. [PMID: 24303160 PMCID: PMC3841022 DOI: 10.1002/phy2.69] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/01/2013] [Indexed: 01/08/2023] Open
Abstract
The peptide hormone cholecystokinin (CCK) exerts a wide range of digestive and CNS-related physiological signaling via CCK receptors in brain and gut. There is very limited information available on these receptors in Atlantic salmon. The aim of this study was to characterize CCK receptors in gut and brain of salmon. We have identified and cloned one CCK-1 receptor and duplicates of CCK-2 receptor in salmon. The phylogenetic analysis indicates the existence of one common ancestor gene for all CCK receptors. CCK-1R mRNA is highly expressed in pancreas followed by midgut, hindgut, gallbladder, and stomach indicating an involvement in pancreatic regulation and gallbladder contractions. CCK-2R1/gastrin mRNA is expressed at high levels in midgut and at relatively low levels in stomach, gallbladder, and pancreas. We postulate CCK-2R1/gastrin receptor to have gastrin-related functions because of its distribution and abundance in gastro-intestinal (GI) tissues. CCK-2R2 is relatively abundant in brain but has low expression levels in gut tissues supporting the hypothesis for involvement in the gut-brain signaling. Major functional motifs and ligand interaction sites in salmon are conserved with that of mammals. This information will be instrumental for comparative studies and further targeting receptor activation and selectivity of biological responses of CCK in salmon.
Collapse
Affiliation(s)
- Raja M Rathore
- Department of Biology, University of Bergen N-5020, Bergen, Norway
| | | | | | | |
Collapse
|
122
|
Kleinau G, Neumann S, Grüters A, Krude H, Biebermann H. Novel insights on thyroid-stimulating hormone receptor signal transduction. Endocr Rev 2013; 34:691-724. [PMID: 23645907 PMCID: PMC3785642 DOI: 10.1210/er.2012-1072] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The TSH receptor (TSHR) is a member of the glycoprotein hormone receptors, a subfamily of family A G protein-coupled receptors. The TSHR is of great importance for the growth and function of the thyroid gland. The TSHR and its endogenous ligand TSH are pivotal proteins with respect to a variety of physiological functions and malfunctions. The molecular events of TSHR regulation can be summarized as a process of signal transduction, including signal reception, conversion, and amplification. The steps during signal transduction from the extra- to the intracellular sites of the cell are not yet comprehensively understood. However, essential new insights have been achieved in recent years on the interrelated mechanisms at the extracellular region, the transmembrane domain, and intracellular components. This review contains a critical summary of available knowledge of the molecular mechanisms of signal transduction at the TSHR, for example, the key amino acids involved in hormone binding or in the structural conformational changes that lead to G protein activation or signaling regulation. Aspects of TSHR oligomerization, signaling promiscuity, signaling selectivity, phenotypes of genetic variations, and potential extrathyroidal receptor activity are also considered, because these are relevant to an understanding of the overall function of the TSHR, including physiological, pathophysiological, and pharmacological perspectives. Directions for future research are discussed.
Collapse
Affiliation(s)
- Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, Ostring 3, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | | | | | | | |
Collapse
|
123
|
The complexity of G-protein coupled receptor-ligand interactions. Sci China Chem 2013. [DOI: 10.1007/s11426-013-4911-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
124
|
Moreira IS. Structural features of the G-protein/GPCR interactions. Biochim Biophys Acta Gen Subj 2013; 1840:16-33. [PMID: 24016604 DOI: 10.1016/j.bbagen.2013.08.027] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 01/07/2023]
Abstract
BACKGROUND The details of the functional interaction between G proteins and the G protein coupled receptors (GPCRs) have long been subjected to extensive investigations with structural and functional assays and a large number of computational studies. SCOPE OF REVIEW The nature and sites of interaction in the G-protein/GPCR complexes, and the specificities of these interactions selecting coupling partners among the large number of families of GPCRs and G protein forms, are still poorly defined. MAJOR CONCLUSIONS Many of the contact sites between the two proteins in specific complexes have been identified, but the three dimensional molecular architecture of a receptor-Gα interface is only known for one pair. Consequently, many fundamental questions regarding this macromolecular assembly and its mechanism remain unanswered. GENERAL SIGNIFICANCE In the context of current structural data we review the structural details of the interfaces and recognition sites in complexes of sub-family A GPCRs with cognate G-proteins, with special emphasis on the consequences of activation on GPCR structure, the prevalence of preassembled GPCR/G-protein complexes, the key structural determinants for selective coupling and the possible involvement of GPCR oligomerization in this process.
Collapse
Affiliation(s)
- Irina S Moreira
- REQUIMTE/Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| |
Collapse
|
125
|
Chan KH, Wong YH. A molecular and chemical perspective in defining melatonin receptor subtype selectivity. Int J Mol Sci 2013; 14:18385-406. [PMID: 24018885 PMCID: PMC3794785 DOI: 10.3390/ijms140918385] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 07/16/2013] [Accepted: 08/26/2013] [Indexed: 12/15/2022] Open
Abstract
Melatonin is primarily synthesized and secreted by the pineal gland during darkness in a normal diurnal cycle. In addition to its intrinsic antioxidant property, the neurohormone has renowned regulatory roles in the control of circadian rhythm and exerts its physiological actions primarily by interacting with the G protein-coupled MT1 and MT2 transmembrane receptors. The two melatonin receptor subtypes display identical ligand binding characteristics and mediate a myriad of signaling pathways, including adenylyl cyclase inhibition, phospholipase C stimulation and the regulation of other effector molecules. Both MT1 and MT2 receptors are widely expressed in the central nervous system as well as many peripheral tissues, but each receptor subtype can be linked to specific functional responses at the target tissue. Given the broad therapeutic implications of melatonin receptors in chronobiology, immunomodulation, endocrine regulation, reproductive functions and cancer development, drug discovery and development programs have been directed at identifying chemical molecules that bind to the two melatonin receptor subtypes. However, all of the melatoninergics in the market act on both subtypes of melatonin receptors without significant selectivity. To facilitate the design and development of novel therapeutic agents, it is necessary to understand the intrinsic differences between MT1 and MT2 that determine ligand binding, functional efficacy, and signaling specificity. This review summarizes our current knowledge in differentiating MT1 and MT2 receptors and their signaling capacities. The use of homology modeling in the mapping of the ligand-binding pocket will be described. Identification of conserved and distinct residues will be tremendously useful in the design of highly selective ligands.
Collapse
MESH Headings
- Animals
- Humans
- Melatonin/metabolism
- Receptor, Melatonin, MT1/chemistry
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT2/chemistry
- Receptor, Melatonin, MT2/metabolism
- Receptors, Melatonin/chemistry
- Receptors, Melatonin/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- King Hang Chan
- Biotechnology Research Institute, State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong.
| | | |
Collapse
|
126
|
Gao QB, Ye XF, He J. Classifying G-protein-coupled receptors to the finest subtype level. Biochem Biophys Res Commun 2013; 439:303-8. [DOI: 10.1016/j.bbrc.2013.08.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 08/08/2013] [Indexed: 11/17/2022]
|
127
|
Krystal AD, Richelson E, Roth T. Review of the histamine system and the clinical effects of H1 antagonists: Basis for a new model for understanding the effects of insomnia medications. Sleep Med Rev 2013; 17:263-72. [DOI: 10.1016/j.smrv.2012.08.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 08/09/2012] [Accepted: 08/09/2012] [Indexed: 11/27/2022]
|
128
|
Patra MC, Maharana J, Pradhan SK, Rath SN. Molecular dynamics simulation of neuropeptide B and neuropeptide W in the dipalmitoylphosphatidylcholine membrane bilayer. J Biomol Struct Dyn 2013; 32:1118-31. [DOI: 10.1080/07391102.2013.811699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
129
|
Shiraishi A, Niijima S, Brown JB, Nakatsui M, Okuno Y. Chemical genomics approach for GPCR-ligand interaction prediction and extraction of ligand binding determinants. J Chem Inf Model 2013; 53:1253-62. [PMID: 23721295 DOI: 10.1021/ci300515z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Chemical genomics research has revealed that G-protein coupled receptors (GPCRs) interact with a variety of ligands and that a large number of ligands are known to bind GPCRs even with low transmembrane (TM) sequence similarity. It is crucial to extract informative binding region propensities from large quantities of bioactivity data. To address this issue, we propose a machine learning approach that enables identification of both chemical substructures and amino acid properties that are associated with ligand binding, which can be applied to virtual ligand screening on a GPCR-wide scale. We also address the question of how to select plausible negative noninteraction pairs based on a statistical approach in order to develop reliable prediction models for GPCR-ligand interactions. The key interaction sites estimated by our approach can be of great use not only for screening of active compounds but also for modification of active compounds with the aim of improving activity or selectivity.
Collapse
Affiliation(s)
- Akira Shiraishi
- Department of Systems Biosciences for Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto
| | | | | | | | | |
Collapse
|
130
|
Baltoumas FA, Theodoropoulou MC, Hamodrakas SJ. Interactions of the α-subunits of heterotrimeric G-proteins with GPCRs, effectors and RGS proteins: A critical review and analysis of interacting surfaces, conformational shifts, structural diversity and electrostatic potentials. J Struct Biol 2013; 182:209-18. [DOI: 10.1016/j.jsb.2013.03.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 03/06/2013] [Accepted: 03/11/2013] [Indexed: 01/05/2023]
|
131
|
Vishnivetskiy SA, Baameur F, Findley KR, Gurevich VV. Critical role of the central 139-loop in stability and binding selectivity of arrestin-1. J Biol Chem 2013; 288:11741-11750. [PMID: 23476014 PMCID: PMC3636863 DOI: 10.1074/jbc.m113.450031] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/28/2013] [Indexed: 11/06/2022] Open
Abstract
Arrestin-1 selectively binds active phosphorylated rhodopsin (P-Rh*), demonstrating much lower affinity for inactive phosphorylated (P-Rh) and unphosphorylated active (Rh*) forms. Receptor interaction induces significant conformational changes in arrestin-1, which include large movement of the previously neglected 139-loop in the center of the receptor binding surface, away from the incoming receptor. To elucidate the functional role of this loop, in mouse arrestin-1 we introduced deletions of variable lengths and made several substitutions of Lys-142 in it and Asp-72 in the adjacent loop. Several mutants with perturbations in the 139-loop demonstrate increased binding to P-Rh*, dark P-Rh, Rh*, and phospho-opsin. Enhanced binding of arrestin-1 mutants to non-preferred forms of rhodopsin correlates with decreased thermal stability. The 139-loop perturbations increase P-Rh* binding of arrestin-1 at low temperatures and further change its binding profile on the background of 3A mutant, where the C-tail is detached from the body of the molecule by triple alanine substitution. Thus, the 139-loop stabilizes basal conformation of arrestin-1 and acts as a brake, preventing its binding to non-preferred forms of rhodopsin. Conservation of this loop in other subtypes suggests that it has the same function in all members of the arrestin family.
Collapse
Affiliation(s)
| | - Faiza Baameur
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Kristen R. Findley
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Vsevolod V. Gurevich
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| |
Collapse
|
132
|
Cornall LM, Mathai ML, Hryciw DH, McAinch AJ. Is GPR119 agonism an appropriate treatment modality for the safe amelioration of metabolic diseases? Expert Opin Investig Drugs 2013; 22:487-98. [DOI: 10.1517/13543784.2013.775245] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
133
|
Vishnivetskiy SA, Chen Q, Palazzo MC, Brooks EK, Altenbach C, Iverson TM, Hubbell WL, Gurevich VV. Engineering visual arrestin-1 with special functional characteristics. J Biol Chem 2013; 288:3394-3405. [PMID: 23250748 PMCID: PMC3561558 DOI: 10.1074/jbc.m112.445437] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Indexed: 01/31/2023] Open
Abstract
Arrestin-1 preferentially binds active phosphorylated rhodopsin. Previously, a mutant with enhanced binding to unphosphorylated active rhodopsin (Rh*) was shown to partially compensate for lack of rhodopsin phosphorylation in vivo. Here we showed that reengineering of the receptor binding surface of arrestin-1 further improves the binding to Rh* while preserving protein stability. In mammals, arrestin-1 readily self-associates at physiological concentrations. The biological role of this phenomenon can only be elucidated by replacing wild type arrestin-1 in living animals with a non-oligomerizing mutant retaining all other functions. We demonstrate that constitutively monomeric forms of arrestin-1 are sufficiently stable for in vivo expression. We also tested the idea that individual functions of arrestin-1 can be independently manipulated to generate mutants with the desired combinations of functional characteristics. Here we showed that this approach is feasible; stable forms of arrestin-1 with high Rh* binding can be generated with or without the ability to self-associate. These novel molecular tools open the possibility of testing of the biological role of arrestin-1 self-association and pave the way to elucidation of full potential of compensational approach to gene therapy of gain-of-function receptor mutations.
Collapse
Affiliation(s)
| | - Qiuyan Chen
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232 and
| | - Maria C. Palazzo
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232 and
| | - Evan K. Brooks
- the University of California Los Angeles, Los Angeles, California 90095
| | | | - Tina M. Iverson
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232 and
| | - Wayne L. Hubbell
- the University of California Los Angeles, Los Angeles, California 90095
| | - Vsevolod V. Gurevich
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232 and
| |
Collapse
|
134
|
Gancedo JM. Biological roles of cAMP: variations on a theme in the different kingdoms of life. Biol Rev Camb Philos Soc 2013; 88:645-68. [PMID: 23356492 DOI: 10.1111/brv.12020] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 12/18/2022]
Abstract
Cyclic AMP (cAMP) plays a key regulatory role in most types of cells; however, the pathways controlled by cAMP may present important differences between organisms and between tissues within a specific organism. Changes in cAMP levels are caused by multiple triggers, most affecting adenylyl cyclases, the enzymes that synthesize cAMP. Adenylyl cyclases form a large and diverse family including soluble forms and others with one or more transmembrane domains. Regulatory mechanisms for the soluble adenylyl cyclases involve either interaction with diverse proteins, as happens in Escherichia coli or yeasts, or with calcium or bicarbonate ions, as occurs in mammalian cells. The transmembrane cyclases can be regulated by a variety of proteins, among which the α subunit and the βγ complex from G proteins coupled to membrane receptors are prominent. cAMP levels also are controlled by the activity of phosphodiesterases, enzymes that hydrolyze cAMP. Phosphodiesterases can be regulated by cAMP, cGMP or calcium-calmodulin or by phosphorylation by different protein kinases. Regulation through cAMP depends on its binding to diverse proteins, its proximal targets, this in turn causing changes in a variety of distal targets. Specifically, binding of cAMP to regulatory subunits of cAMP-dependent protein kinases (PKAs) affects the activity of substrates of PKA, binding to exchange proteins directly activated by cAMP (Epac) regulates small GTPases, binding to transcription factors such as the cAMP receptor protein (CRP) or the virulence factor regulator (Vfr) modifies the rate of transcription of certain genes, while cAMP binding to ion channels modulates their activity directly. Further studies on cAMP signalling will have important implications, not only for advancing fundamental knowledge but also for identifying targets for the development of new therapeutic agents.
Collapse
Affiliation(s)
- Juana M Gancedo
- Department of Metabolism and Cell Signalling, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid 28029, Spain.
| |
Collapse
|
135
|
Spielman SJ, Wilke CO. Membrane environment imposes unique selection pressures on transmembrane domains of G protein-coupled receptors. J Mol Evol 2013; 76:172-82. [PMID: 23355009 DOI: 10.1007/s00239-012-9538-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 12/18/2012] [Indexed: 12/25/2022]
Abstract
We have investigated the influence of the plasma membrane environment on the molecular evolution of G protein-coupled receptors (GPCRs), the largest receptor family in Metazoa. In particular, we have analyzed the site-specific rate variation across the two primary structural partitions, transmembrane (TM) and extramembrane (EM), of these membrane proteins. We find that TM domains evolve more slowly than do EM domains, though TM domains display increased rate heterogeneity relative to their EM counterparts. Although the majority of residues across GPCRs experience strong to weak purifying selection, many GPCRs experience positive selection at both TM and EM residues, albeit with a slight bias towards the EM. Further, a subset of GPCRs, chemosensory receptors (including olfactory and taste receptors), exhibit increased rates of evolution relative to other GPCRs, an effect which is more pronounced in their TM spans. Although it has been previously suggested that the TM's low evolutionary rate is caused by their high percentage of buried residues, we show that their attenuated rate seems to stem from the strong biophysical constraints of the membrane itself, or by functional requirements. In spite of the strong evolutionary constraints acting on the TM spans of GPCRs, positive selection and high levels of evolutionary rate variability are common. Thus, biophysical constraints should not be presumed to preclude a protein's ability to evolve.
Collapse
|
136
|
Franco R, Martínez-Pinilla E, Ricobaraza A, McCormick PJ. Challenges in the development of heteromer-GPCR-based drugs. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:143-62. [PMID: 23663968 DOI: 10.1016/b978-0-12-386931-9.00006-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
G-protein-coupled receptors are targets of a variety of diseases. Drug screening has been classically performed assuming the occurrence of monomeric receptors. As more and more receptor heteromers are identified, the challenge is now to develop screening assays to select heteromer-specific drugs. These drugs may, for instance, be able to interact preferentially with prerather than with postsynaptic receptors. Heteromer-based drug discovery opens new perspectives in both Academic pursuits and for the Pharmaceutical industry.
Collapse
Affiliation(s)
- Rafael Franco
- Applied Medical Research Center (CIMA), University of Navarra, Pamplona, Spain
| | | | | | | |
Collapse
|
137
|
Goldfeld DA, Friesner RA. The protein local optimization program and G-protein-coupled receptors: loop restoration and applications to homology modeling. Methods Enzymol 2013; 522:1-20. [PMID: 23374177 DOI: 10.1016/b978-0-12-407865-9.00001-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The protein local optimization program (PLOP) uses sophisticated sampling algorithms and a highly refined physics-based energy function to restore loops within a protein structure. In this chapter, we highlight some of the recent successes we have had with PLOP restoring long loops in their native environment as well as the intra- and extracellular loops of four G-protein-coupled receptors. This includes the very long second extracellular loops of bovine rhodopsin and the turkey β1- and human β2-adrenergic receptors. We then provide an extremely detailed description of PLOP's algorithms, as well as a sample file and explicit keywords so that a new user can successfully run PLOP.
Collapse
|
138
|
Klos A, Wende E, Wareham KJ, Monk PN. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXVII. Complement peptide C5a, C4a, and C3a receptors. Pharmacol Rev 2013; 65:500-43. [PMID: 23383423 DOI: 10.1124/pr.111.005223] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The activation of the complement cascade, a cornerstone of the innate immune response, produces a number of small (74-77 amino acid) fragments, originally termed anaphylatoxins, that are potent chemoattractants and secretagogues that act on a wide variety of cell types. These fragments, C5a, C4a, and C3a, participate at all levels of the immune response and are also involved in other processes such as neural development and organ regeneration. Their primary function, however, is in inflammation, so they are important targets for the development of antiinflammatory therapies. Only three receptors for complement peptides have been found, but there are no satisfactory antagonists as yet, despite intensive investigation. In humans, there is a single receptor for C3a (C3a receptor), no known receptor for C4a, and two receptors for C5a (C5a₁ receptor and C5a₂ receptor). The most recently characterized receptor, the C5a₂ receptor (previously known as C5L2 or GPR77), has been regarded as a passive binding protein, but signaling activities are now ascribed to it, so we propose that it be formally identified as a receptor and be given a name to reflect this. Here, we describe the complex biology of the complement peptides, introduce a new suggested nomenclature, and review our current knowledge of receptor pharmacology.
Collapse
Affiliation(s)
- Andreas Klos
- Department for Medical Microbiology, Medical School Hannover, Hannover, Germany
| | | | | | | |
Collapse
|
139
|
Moreno JL, Holloway T, González-Maeso J. G protein-coupled receptor heterocomplexes in neuropsychiatric disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:187-205. [PMID: 23663970 DOI: 10.1016/b978-0-12-386931-9.00008-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
G protein-coupled receptors (or GPCRs) represent the largest family of membrane proteins in the human genome and are the target of approximately half of all therapeutic drugs. GPCRs contain a conserved structure of seven transmembrane domains. Their amino terminus is located extracellularly, whereas the carboxy terminus extends into the cytoplasm. Accumulating evidence suggests that GPCRs exist and function as monomeric entities. Nevertheless, more recent findings indicate that GPCRs can also form dimers or even higher order oligomers. The differential pharmacological and signaling properties of GPCR heteromeric complexes hint that their physiological effects may be different as compared to those obtained in tissue cultures that express a particular GPCR. In this chapter, we review current data on the role of GPCR heteromerization in receptor signaling, as well as its potential implication in neuropsychiatric disorders such as schizophrenia, depression, and Parkinson's disease.
Collapse
Affiliation(s)
- José L Moreno
- Department of Psychiatry, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, USA
| | | | | |
Collapse
|
140
|
Quaternary Structure Predictions and Structural Communication Features of GPCR Dimers. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:105-42. [DOI: 10.1016/b978-0-12-386931-9.00005-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
141
|
Kim JM, Moon SH, Park SJ, Lee HY, Hong KS, Seo J, Bae YS, Chung HM. Pertussis toxin enhances colony organization of enzymatic-dissociated single human embryonic stem cells. Stem Cells Dev 2012; 22:307-19. [PMID: 23075100 DOI: 10.1089/scd.2012.0288] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Human embryonic stem cells (hESCs) self-renew indefinitely as highly organized pluripotent colonies. Unlike mouse pluripotent stem cell colonies, human colonies form a uniform, flat, epithelium-like monolayer. Interestingly, it has been reported that colony morphology is closely correlated with the maintenance of pluripotency. However, the molecular mechanisms that underlie human pluripotent colony formation and organization are poorly understood. In this study, we used real-time imaging tools to examine the in vitro colony formation of enzymatically dissociated single hESCs under feeder-free conditions. We demonstrate that colony formation consists of 4 stages: attachment, migration, aggregation, and colony formation, which are facilitated in an intracellular, calcium-dependent manner. Moreover, we found that blocking G(i)-coupled G protein-coupled receptor (GPCR) signaling results in enhanced cell-cell interactions and plays an integral role in promoting the survival of hESCs in culture. From the imaging results, we identified the conditions required for colony formation, and we identified the importance of blocking G(i)-coupled GPCR by pertussis toxin in modulating hESC colony formation and organization. These results will likely be useful for engineering hESCs to further study the mechanisms involved in their function.
Collapse
Affiliation(s)
- Jung Mo Kim
- Stem Cell Research Lab, CHA Stem Cell Institute, CHA University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
142
|
Walther C, Lotze J, Beck-Sickinger AG, Mörl K. The anterograde transport of the human neuropeptide Y2 receptor is regulated by a subtype specific mechanism mediated by the C-terminus. Neuropeptides 2012; 46:335-43. [PMID: 23020974 DOI: 10.1016/j.npep.2012.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/24/2012] [Accepted: 08/28/2012] [Indexed: 02/06/2023]
Abstract
The export of newly synthesized proteins, including G protein-coupled receptors (GPCR), from the endoplasmic reticulum (ER) and further transport to the plasma membrane is a tightly regulated process. ER export and subsequent cell surface targeting of GPCR is initially mediated through COPII-coated vesicles. It is governed by specific amino acid sequences located in extracellular as well as intracellular receptor domains, for example in the C-terminus (CT) of the receptor. Herein, we determined the role of the CT in the anterograde transport of the human neuropeptide Y receptor (hYR) type 2. We identified a short sequence motif in the membrane proximal CT: Y(x)(3)F(x)(3)F in the region of the putative 8th helix has a critical functional relevance for the anterograde transport of hY(2)R, since its deletion leads to accumulation of the receptor in the ER. It is sequence and position specific. Furthermore we identified a distinct role of C-terminal sequences in hY(1)R, hY(2)R, hY(4)R and hY(5)R. Regulation of hY(5)R export is regulated by a different mechanism as compared to hY(2)R. Different sequence elements with respect to function and localization are involved as demonstrated by the construction of a hY(2)/hY(5) receptor chimera and a noneffective deletion in the region of helix eight in the hY(5)R. In contrast to hY(2)R, deletion of the corresponding helical segment F(x)(3)L(x)(3)F has no influence on anterograde transport of hY(1)R, whereas deletion of F(x)(3)I(x)(3)V in hY(4)R restrains the receptor to the Golgi apparatus. Interestingly this pattern is not mirrored by repression of COPII vesicle transport by Sar1[H79G] overexpression. Whereas the 8th helix is involved before or at the level of Sar1 dependent export pathways in the ER for the hY(2)R, in hY(4)R helix eight is involved at later stages of anterograde transport.
Collapse
Affiliation(s)
- Cornelia Walther
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Universität Leipzig, Germany
| | | | | | | |
Collapse
|
143
|
Jumbo-Lucioni P, Bu S, Harbison ST, Slaughter JC, Mackay TFC, Moellering DR, De Luca M. Nuclear genomic control of naturally occurring variation in mitochondrial function in Drosophila melanogaster. BMC Genomics 2012; 13:659. [PMID: 23171078 PMCID: PMC3526424 DOI: 10.1186/1471-2164-13-659] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 11/16/2012] [Indexed: 12/23/2022] Open
Abstract
Background Mitochondria are organelles found in nearly all eukaryotic cells that play a crucial role in cellular survival and function. Mitochondrial function is under the control of nuclear and mitochondrial genomes. While the latter has been the focus of most genetic research, we remain largely ignorant about the nuclear-encoded genomic control of inter-individual variability in mitochondrial function. Here, we used Drosophila melanogaster as our model organism to address this question. Results We quantified mitochondrial state 3 and state 4 respiration rates and P:O ratio in mitochondria isolated from the thoraces of 40 sequenced inbred lines of the Drosophila Genetic Reference Panel. We found significant within-population genetic variability for all mitochondrial traits. Hence, we performed genome-wide association mapping and identified 141 single nucleotide polymorphisms (SNPs) associated with differences in mitochondrial respiration and efficiency (P ≤1 × 10-5). Gene-centered regression models showed that 2–3 SNPs can explain 31, 13, and 18% of the phenotypic variation in state 3, state 4, and P:O ratio, respectively. Most of the genes tagged by the SNPs are involved in organ development, second messenger-mediated signaling pathways, and cytoskeleton remodeling. One of these genes, sallimus (sls), encodes a component of the muscle sarcomere. We confirmed the direct effect of sls on mitochondrial respiration using two viable mutants and their coisogenic wild-type strain. Furthermore, correlation network analysis revealed that sls functions as a transcriptional hub in a co-regulated module associated with mitochondrial respiration and is connected to CG7834, which is predicted to encode a protein with mitochondrial electron transfer flavoprotein activity. This latter finding was also verified in the sls mutants. Conclusions Our results provide novel insights into the genetic factors regulating natural variation in mitochondrial function in D. melanogaster. The integrative genomic approach used in our study allowed us to identify sls as a novel hub gene responsible for the regulation of mitochondrial respiration in muscle sarcomere and to provide evidence that sls might act via the electron transfer flavoprotein/ubiquinone oxidoreductase complex.
Collapse
Affiliation(s)
- Patricia Jumbo-Lucioni
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|
144
|
Abstract
Hedgehog (Hh) proteins regulate the development of a wide range of metazoan embryonic and adult structures, and disruption of Hh signaling pathways results in various human diseases. Here, we provide a comprehensive review of the signaling pathways regulated by Hh, consolidating data from a diverse array of organisms in a variety of scientific disciplines. Similar to the elucidation of many other signaling pathways, our knowledge of Hh signaling developed in a sequential manner centered on its earliest discoveries. Thus, our knowledge of Hh signaling has for the most part focused on elucidating the mechanism by which Hh regulates the Gli family of transcription factors, the so-called "canonical" Hh signaling pathway. However, in the past few years, numerous studies have shown that Hh proteins can also signal through Gli-independent mechanisms collectively referred to as "noncanonical" signaling pathways. Noncanonical Hh signaling is itself subdivided into two distinct signaling modules: (i) those not requiring Smoothened (Smo) and (ii) those downstream of Smo that do not require Gli transcription factors. Thus, Hh signaling is now proposed to occur through a variety of distinct context-dependent signaling modules that have the ability to crosstalk with one another to form an interacting, dynamic Hh signaling network.
Collapse
Affiliation(s)
- David J Robbins
- Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| | | | | |
Collapse
|
145
|
Nocillado JN, Biran J, Lee YY, Levavi-Sivan B, Mechaly AS, Zohar Y, Elizur A. The Kiss2 receptor (Kiss2r) gene in Southern Bluefin Tuna, Thunnus maccoyii and in Yellowtail Kingfish, Seriola lalandi - functional analysis and isolation of transcript variants. Mol Cell Endocrinol 2012; 362:211-20. [PMID: 22824208 DOI: 10.1016/j.mce.2012.06.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 06/26/2012] [Accepted: 06/29/2012] [Indexed: 01/17/2023]
Abstract
The kisspeptin system plays an essential role in reproductive function in vertebrates, particularly in the onset of puberty. We investigated the kisspeptin system in two Perciform teleosts, the Southern Bluefin Tuna (SBT; Thunnus maccoyii), and the Yellowtail Kingfish (YTK; Seriola lalandi), by characterising their kisspeptin 2 receptor (Kiss2r) genes. In addition to the full length Kiss2r cDNA sequences, we have isolated from SBT and YTK a transcript variant that retained an intron. We have further obtained three ytkKiss2r transcript variants that contained deletions. In vitro functional analysis of the full length SBT and YTK Kiss2r showed higher response to Kiss2-10 than to Kiss1-10, with stronger transduction via PKC than PKA. The full length ytkKiss2r and two deletion variants were differentially expressed in the brain of male, but not in female, juvenile YTK treated with increasing doses of Kiss2-10 peptide. In the gonads, the expression level of the ytkKiss2r transcripts did not vary significantly either in the male or female fish. This is the first time that transcript variants of the Kiss2r gene that contain deletions and show responsiveness to treatments with kisspeptin have been reported in any teleost.
Collapse
Affiliation(s)
- J N Nocillado
- School of Science, Education and Engineering, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, Queensland 4558, Australia
| | | | | | | | | | | | | |
Collapse
|
146
|
Zamponi GW, Currie KPM. Regulation of Ca(V)2 calcium channels by G protein coupled receptors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:1629-43. [PMID: 23063655 DOI: 10.1016/j.bbamem.2012.10.004] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 10/02/2012] [Accepted: 10/04/2012] [Indexed: 12/29/2022]
Abstract
Voltage gated calcium channels (Ca²⁺ channels) are key mediators of depolarization induced calcium influx into excitable cells, and thereby play pivotal roles in a wide array of physiological responses. This review focuses on the inhibition of Ca(V)2 (N- and P/Q-type) Ca²⁺-channels by G protein coupled receptors (GPCRs), which exerts important autocrine/paracrine control over synaptic transmission and neuroendocrine secretion. Voltage-dependent inhibition is the most widespread mechanism, and involves direct binding of the G protein βγ dimer (Gβγ) to the α1 subunit of Ca(V)2 channels. GPCRs can also recruit several other distinct mechanisms including phosphorylation, lipid signaling pathways, and channel trafficking that result in voltage-independent inhibition. Current knowledge of Gβγ-mediated inhibition is reviewed, including the molecular interactions involved, determinants of voltage-dependence, and crosstalk with other cell signaling pathways. A summary of recent developments in understanding the voltage-independent mechanisms prominent in sympathetic and sensory neurons is also included. This article is part of a Special Issue entitled: Calcium channels.
Collapse
Affiliation(s)
- Gerald W Zamponi
- Department of Physiology & Pharmacology, Hotchkiss Brain Institute, University of Calgary, Canada
| | | |
Collapse
|
147
|
Daskalopoulos EP, Lang MA, Marselos M, Malliou F, Konstandi M. D₂-dopaminergic receptor-linked pathways: critical regulators of CYP3A, CYP2C, and CYP2D. Mol Pharmacol 2012; 82:668-78. [PMID: 22772593 DOI: 10.1124/mol.112.078709] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Various hormonal and monoaminergic systems play determinant roles in the regulation of several cytochromes P450 (P450s) in the liver. Growth hormone (GH), prolactin, and insulin are involved in P450 regulation, and their release is under dopaminergic control. This study focused on the role of D₂-dopaminergic systems in the regulation of the major drug-metabolizing P450s, i.e., CYP3A, CYP2C, and CYP2D. Blockade of D₂-dopaminergic receptors with either sulpiride (SULP) or 4-(4-chlorophenyl)-1-(1H-indol-3-ylmethyl)piperidin-4-ol (L-741,626) markedly down-regulated CYP3A1/2, CYP2C11, and CYP2D1 expression in rat liver. This suppressive effect appeared to be mediated by the insulin/phosphatidylinositol 3-kinase/Akt/FOXO1 signaling pathway. Furthermore, inactivation of the GH/STAT5b signaling pathway appeared to play a role in D₂-dopaminergic receptor-mediated down-regulating effects on these P450s. SULP suppressed plasma GH levels, with subsequently reduced activation of STAT5b, which is the major GH pulse-activated transcription factor and has up-regulating effects on various P450s in hepatic tissue. Levels of prolactin, which exerts down-regulating control on P450s, were increased by SULP, which may contribute to SULP-mediated effects. Finally, it appears that SULP-induced inactivation of the cAMP/protein kinase A/cAMP-response element-binding protein signaling pathway, which is a critical regulator of pregnane X receptor and hepatocyte nuclear factor 1α, and inactivation of the c-Jun N-terminal kinase contribute to SULP-induced down-regulation of the aforementioned P450s. Taken together, the present data provide evidence that drugs acting as D₂-dopaminergic receptor antagonists might interfere with several major signaling pathways involved in the regulation of CYP3A, CYP2C, and CYP2D, which are critical enzymes in drug metabolism, thus affecting the effectiveness of the majority of prescribed drugs and the toxicity and carcinogenic potency of a plethora of toxicants and carcinogens.
Collapse
|
148
|
Goldfeld DA, Zhu K, Beuming T, Friesner RA. Loop prediction for a GPCR homology model: Algorithms and results. Proteins 2012; 81:214-28. [DOI: 10.1002/prot.24178] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 08/13/2012] [Accepted: 08/25/2012] [Indexed: 11/07/2022]
|
149
|
Civelli O, Reinscheid RK, Zhang Y, Wang Z, Fredriksson R, Schiöth HB. G protein-coupled receptor deorphanizations. Annu Rev Pharmacol Toxicol 2012; 53:127-46. [PMID: 23020293 PMCID: PMC5828024 DOI: 10.1146/annurev-pharmtox-010611-134548] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
G protein-coupled receptors (GPCRs) are major regulators of intercellular interactions. They initiate these actions by being activated by a wide variety of natural ligands. Historically, ligands were discovered first, but the advent of molecular biology reversed this trend. Most GPCRs are identified on the basis of their DNA sequences and thus are initially unmatched to known natural ligands. They are termed orphan GPCRs. Discovering their ligands-i.e., "deorphanizing" the GPCRs-gave birth to the field of reverse pharmacology. This review discusses the present status of GPCR deorphanization, presents a few examples of successes and surprises, and highlights difficulties encountered in these efforts.
Collapse
Affiliation(s)
- Olivier Civelli
- Department of Pharmacology, University of California, Irvine, Irvine, California 92617, USA.
| | | | | | | | | | | |
Collapse
|
150
|
Trzaskowski B, Latek D, Yuan S, Ghoshdastider U, Debinski A, Filipek S. Action of molecular switches in GPCRs--theoretical and experimental studies. Curr Med Chem 2012; 19:1090-109. [PMID: 22300046 PMCID: PMC3343417 DOI: 10.2174/092986712799320556] [Citation(s) in RCA: 336] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 12/30/2011] [Accepted: 01/02/2012] [Indexed: 01/14/2023]
Abstract
G protein coupled receptors (GPCRs), also called 7TM receptors, form a huge superfamily of membrane proteins that, upon activation by extracellular agonists, pass the signal to the cell interior. Ligands can bind either to extracellular N-terminus and loops (e.g. glutamate receptors) or to the binding site within transmembrane helices (Rhodopsin-like family). They are all activated by agonists although a spontaneous auto-activation of an empty receptor can also be observed. Biochemical and crystallographic methods together with molecular dynamics simulations and other theoretical techniques provided models of the receptor activation based on the action of so-called "molecular switches" buried in the receptor structure. They are changed by agonists but also by inverse agonists evoking an ensemble of activation states leading toward different activation pathways. Switches discovered so far include the ionic lock switch, the 3-7 lock switch, the tyrosine toggle switch linked with the nPxxy motif in TM7, and the transmission switch. The latter one was proposed instead of the tryptophan rotamer toggle switch because no change of the rotamer was observed in structures of activated receptors. The global toggle switch suggested earlier consisting of a vertical rigid motion of TM6, seems also to be implausible based on the recent crystal structures of GPCRs with agonists. Theoretical and experimental methods (crystallography, NMR, specific spectroscopic methods like FRET/BRET but also single-molecule-force-spectroscopy) are currently used to study the effect of ligands on the receptor structure, location of stable structural segments/domains of GPCRs, and to answer the still open question on how ligands are binding: either via ensemble of conformational receptor states or rather via induced fit mechanisms. On the other hand the structural investigations of homoand heterodimers and higher oligomers revealed the mechanism of allosteric signal transmission and receptor activation that could lead to design highly effective and selective allosteric or ago-allosteric drugs.
Collapse
Affiliation(s)
- B Trzaskowski
- Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw, Poland
| | | | | | | | | | | |
Collapse
|