101
|
Aβ-degrading enzymes: potential for treatment of Alzheimer disease. J Neuropathol Exp Neurol 2011; 70:944-59. [PMID: 22002425 DOI: 10.1097/nen.0b013e3182345e46] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
There is increasing evidence that deficient clearance of β-amyloid (Aβ) contributes to its accumulation in late-onset Alzheimer disease (AD). Several Aβ-degrading enzymes, including neprilysin (NEP), insulin-degrading enzyme, and endothelin-converting enzyme reduce Aβ levels and protect against cognitive impairment in mouse models of AD. The activity of several Aβ-degrading enzymes rises with age and increases still further in AD, perhaps as a physiological response to minimize the buildup of Aβ. The age- and disease-related changes in expression of more recently recognized Aβ-degrading enzymes (e.g. NEP-2 and cathepsin B) remain to be investigated, and there is strong evidence that reduced NEP activity contributes to the development of cerebral amyloid angiopathy. Regardless of the role of Aβ-degrading enzymes in the development of AD, experimental data indicate that increasing the activity of these enzymes (NEP in particular) has therapeutic potential in AD, although targeting their delivery to the brain remains a major challenge. The most promising current approaches include the peripheral administration of agents that enhance the activity of Aβ-degrading enzymes and the direct intracerebral delivery of NEP by convection-enhanced delivery. In the longer term, genetic approaches to increasing the intracerebral expression of NEP or other Aβ-degrading enzymes may offer advantages.
Collapse
|
102
|
Yahata N, Asai M, Kitaoka S, Takahashi K, Asaka I, Hioki H, Kaneko T, Maruyama K, Saido TC, Nakahata T, Asada T, Yamanaka S, Iwata N, Inoue H. Anti-Aβ drug screening platform using human iPS cell-derived neurons for the treatment of Alzheimer's disease. PLoS One 2011; 6:e25788. [PMID: 21984949 PMCID: PMC3184175 DOI: 10.1371/journal.pone.0025788] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 09/10/2011] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder that causes progressive memory and cognitive decline during middle to late adult life. The AD brain is characterized by deposition of amyloid β peptide (Aβ), which is produced from amyloid precursor protein by β- and γ-secretase (presenilin complex)-mediated sequential cleavage. Induced pluripotent stem (iPS) cells potentially provide an opportunity to generate a human cell-based model of AD that would be crucial for drug discovery as well as for investigating mechanisms of the disease. METHODOLOGY/PRINCIPAL FINDINGS We differentiated human iPS (hiPS) cells into neuronal cells expressing the forebrain marker, Foxg1, and the neocortical markers, Cux1, Satb2, Ctip2, and Tbr1. The iPS cell-derived neuronal cells also expressed amyloid precursor protein, β-secretase, and γ-secretase components, and were capable of secreting Aβ into the conditioned media. Aβ production was inhibited by β-secretase inhibitor, γ-secretase inhibitor (GSI), and an NSAID; however, there were different susceptibilities to all three drugs between early and late differentiation stages. At the early differentiation stage, GSI treatment caused a fast increase at lower dose (Aβ surge) and drastic decline of Aβ production. CONCLUSIONS/SIGNIFICANCE These results indicate that the hiPS cell-derived neuronal cells express functional β- and γ-secretases involved in Aβ production; however, anti-Aβ drug screening using these hiPS cell-derived neuronal cells requires sufficient neuronal differentiation.
Collapse
Affiliation(s)
- Naoki Yahata
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Masashi Asai
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan
| | - Shiho Kitaoka
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Kazutoshi Takahashi
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Isao Asaka
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Hiroyuki Hioki
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Kaneko
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kei Maruyama
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan
| | - Tatsutoshi Nakahata
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Takashi Asada
- Department of Neuropsychiatry, Institute of Clinical Medicine, University of Tsukuba, Tsukuba, Japan
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Yamanaka iPS Cell Special Project, Japan Science and Technology Agency, Saitama, Japan
| | - Nobuhisa Iwata
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Haruhisa Inoue
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
- Yamanaka iPS Cell Special Project, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
103
|
Liu Y, Hua Q, Lei H, Li P. Effect of Tong Luo Jiu Nao on Aβ-degrading enzymes in AD rat brains. JOURNAL OF ETHNOPHARMACOLOGY 2011; 137:1035-1046. [PMID: 21798326 DOI: 10.1016/j.jep.2011.07.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 07/10/2011] [Accepted: 07/11/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tong Luo Jiu Nao (TLJN) is a modern Chinese formula based on Traditional Chinese Medicine theory that has been used to treat ischemic cerebral stroke and vascular dementia. TLJN belongs to the ethnopharmacological family of medicines. In this study, we investigated the mechanism of the TLJN effect on Alzheimer's disease (AD). AIM OF THE STUDY To investigate the effect of TLJN on β-amyloid-degrading enzymes and learning and memory in the AD rat brain. MATERIALS AND METHODS AD rats whose disease was induced by Aβ(25-35) injection into the bilateral hippocampus CA1 region were subjected to intragastric administration of various preparations. The experimental animals were healthy male Sprague-Dawley rats which were randomly divided into normal, sham, model, TLJN min, TLJN max and donepezil hydrochloride groups. Spontaneous alternation and passive avoidance behavior, which are regarded as measures of spatial learning and memory, were investigated using Y-maze testing. Western blotting and immunohistochemistry were used to observe the therapeutic effect of TLJN on the deposits of amyloid plaque and on the expression of synaptophysin, insulin-degrading enzyme and neprilysin. RESULTS Y-maze results showed that the AD model group presented with spatial learning and memory impairments. Hematoxylin-eosin and Congo red staining indicated neuronal impairment and deposits of amyloid plaque in the model group and these results were consistent with their learning and memory deficits in the Y-maze. The TLJN-treated groups exhibited prolonged a cavity delitescence, decreased arm entries and improvement in learning and memory. Moreover, the structure of the neurons of the treated groups was restored and the expression of synaptophysin increased in both the hippocampus and cortex. In addition, their levels of insulin-degrading enzyme and neprilysin in the cortex and hippocampus were upregulated and the amyloid plaque was decreased. CONCLUSION TLJN can improve learning and memory, up-regulate insulin-degrading enzyme and neprilysin levels, promote the degrading of Aβ and clear amyloid plaque from the AD rat brain. In future, TLJN may have significant therapeutic potential in the treatment of AD patients.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Pathology, School of Preclinical Medicine, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Road, Chaoyang District, Beijing 100029, China
| | | | | | | |
Collapse
|
104
|
Traumatic brain injury and amyloid-β pathology: a link to Alzheimer's disease? Nat Rev Neurosci 2011; 11:361-70. [PMID: 20216546 DOI: 10.1038/nrn2808] [Citation(s) in RCA: 438] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Traumatic brain injury (TBI) has devastating acute effects and in many cases seems to initiate long-term neurodegeneration. Indeed, an epidemiological association between TBI and the development of Alzheimer's disease (AD) later in life has been demonstrated, and it has been shown that amyloid-β (Aβ) plaques — one of the hallmarks of AD — may be found in patients within hours following TBI. Here, we explore the mechanistic underpinnings of the link between TBI and AD, focusing on the hypothesis that rapid Aβ plaque formation may result from the accumulation of amyloid precursor protein in damaged axons and a disturbed balance between Aβ genesis and catabolism following TBI.
Collapse
|
105
|
Ling S, Zhou J, Rudd JA, Hu Z, Fang M. The recent updates of therapeutic approaches against aβ for the treatment of Alzheimer's disease. Anat Rec (Hoboken) 2011; 294:1307-18. [PMID: 21717585 DOI: 10.1002/ar.21425] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 04/30/2011] [Indexed: 12/21/2022]
Abstract
One of the main neuropathological lesions observed in brain autopsy of Alzheimer's disease (AD) patients is the extracellular senile plaques mainly composed of amyloid-beta (Aβ) peptide. Recently, treatment strategies have focused on modifying the formation, clearance, and accumulation of this potentially neurotoxic peptide. β- and γ-secretase are responsible for the cleavage of amyloid precursor protein (APP) and the generation of Aβ peptide. Treatments targeting these two critical secretases may therefore reduce Aβ peptide levels and positive impact on AD. Vaccination is also an advanced approach against Aβ. This review focuses on recent advances of our understanding of this key peptide, with emphasis on Aβ peptide synthesis, accumulation and neurotoxicity, and current therapies including vaccination and two critical secretase inhibitors. MicroRNAs (miRNAs) are a class of conserved endogenous small noncoding RNAs, known to regulate the expression of complementary messenger RNAs, involved in AD development. We therefore address the relationship of miRNAs in the brain and Aβ generation, as a novel therapeutic approach to the treatment of AD while also providing new insights on the etiology of this neurological disorder.
Collapse
Affiliation(s)
- Shucai Ling
- Institute of Anatomy and Cell Biology, Medical College, Zhejiang University, Hangzhou, China
| | | | | | | | | |
Collapse
|
106
|
Ghalkhani M, Fernandes IP, Oliveira SCB, Shahrokhian S, Oliveira–Brett AM. Anodic behavior of clioquinol at a glassy carbon electrode. Bioelectrochemistry 2011; 80:175-81. [DOI: 10.1016/j.bioelechem.2010.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 10/08/2010] [Accepted: 10/10/2010] [Indexed: 11/25/2022]
|
107
|
Saraiva AM, Cardoso I, Saraiva MJ, Tauer K, Pereira MC, Coelho MAN, Möhwald H, Brezesinski G. Randomization of amyloid-β-peptide(1-42) conformation by sulfonated and sulfated nanoparticles reduces aggregation and cytotoxicity. Macromol Biosci 2011; 10:1152-63. [PMID: 20480510 DOI: 10.1002/mabi.200900448] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The amyloid-β peptide (Aβ) plays a central role in the mechanism of Alzheimer's disease, being the main constituent of the plaque deposits found in AD brains. Aβ amyloid formation and deposition are due to a conformational switching to a β-enriched secondary structure. Our strategy to inhibit Aβ aggregation involves the re-conversion of Aβ conformation by adsorption to nanoparticles. NPs were synthesized by sulfonation and sulfation of polystyrene, leading to microgels and latexes. Both polymeric nanostructures affect the conformation of Aβ inducing an unordered state. Oligomerization was delayed and cytotoxicity reduced. The proper balance between hydrophilic moieties and hydrophobic chains seems to be an essential feature of effective NPs.
Collapse
Affiliation(s)
- Ana M Saraiva
- Max Planck Institute of Colloids and Interfaces, Wissenschaftspark Golm, Potsdam, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Ohta N, Horie T, Satoh N, Sasakura Y. Transposon-mediated enhancer detection reveals the location, morphology and development of the cupular organs, which are putative hydrodynamic sensors, in the ascidian Ciona intestinalis. Zoolog Sci 2011; 27:842-50. [PMID: 21039122 DOI: 10.2108/zsj.27.842] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The adult of the ascidian Ciona intestinalis has cupular organs, i.e., putative hydrodynamic sensors, at the atrial epithelium. The cupular organ consists of support cells and sensory neurons, and it extends a gelatinous matrix, known as a cupula, toward the atrial cavity. These characteristics are shared with sensory hair cells in the vertebrate inner ear and lateral line neuromasts in fish and amphibians, which suggests an evolutionary link between the cupular organ and these vertebrate hydrodynamic sensors. In the present study, we have isolated and investigated two transposon-mediated enhancer detection lines that showed GFP expression in support cells of the cupular organs. Using the enhancer detection lines and neuron marker transgenic lines, we describe the position, morphology, and development of the cupular organs. Cupular organs were found at the atrial epithelium, but not in the branchial epithelium. We found that cupular organs are also present along the dorsal fold and the gonoducts. The cells lining the pre-atrial opening in juveniles are presumably precursor cells of the cupular organ. To our knowledge, the present study is the first precise description of the ascidian cupular organ, providing evidence that may help to resolve discrepancies among previous studies on the organ.
Collapse
Affiliation(s)
- Naoyuki Ohta
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
109
|
Saraiva AM, Cardoso I, Pereira MC, Coelho MAN, Saraiva MJ, Möhwald H, Brezesinski G. Controlling amyloid-beta peptide(1-42) oligomerization and toxicity by fluorinated nanoparticles. Chembiochem 2011; 11:1905-13. [PMID: 20661987 DOI: 10.1002/cbic.201000237] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The amyloid-beta peptide (Abeta) is a major fibrillar component of neuritic plaques in Alzheimer's disease brains and is related to the pathogenesis of the disease. Soluble oligomers that precede fibril formation have been proposed as the main neurotoxic species that contributes to neurodegeneration and dementia. We hypothesize that oligomerization and cytotoxicity can be repressed by nanoparticles (NPs) that induce conformational changes in Abeta42. We show here that fluorinated and hydrogenated NPs with different abilities to change Abeta42 conformation influence oligomerization as assessed by atomic force microscopy, immunoblot and SDS-PAGE. Fluorinated NPs, which promote an increase in alpha-helical content, exert an antioligomeric effect, whereas hydrogenated analogues do not and lead to aggregation. Cytotoxicity assays confirmed our hypothesis by indicating that the conformational conversion of Abeta42 into an alpha-helical-enriched secondary structure also has antiapoptotic activity, thereby increasing the viability of cells treated with oligomeric species.
Collapse
Affiliation(s)
- Ana M Saraiva
- Interfaces Department, Max Planck Institute of Colloids and Interfaces, Wissenschaftspark Golm, 14476 Potsdam, Germany.
| | | | | | | | | | | | | |
Collapse
|
110
|
Piau A, Nourhashémi F, Hein C, Caillaud C, Vellas B. Progress in the development of new drugs in Alzheimer's disease. J Nutr Health Aging 2011; 15:45-57. [PMID: 21267520 DOI: 10.1007/s12603-011-0012-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease with a global prevalence estimated at 26.55 million in 2006. During the past decades, several agents have been approved that enhance cognition of AD patients. However, the effectiveness of these treatments are limited or controversial and they do not modify disease progression. Recent advances in understanding AD pathogenesis have led to the development of numerous compounds that might modify the disease process. AD is mainly characterized neuropathologically by the presence of two kinds of protein aggregates: extracellular plaques of Abeta-peptide and intracellular neurofibrillary tangles. Abeta and tau could interfere in an original way contributing to a cascade of events leading to neuronal death and transmitter deficits. Investigation for novel therapeutic approaches targeting the presumed underlying pathogenic mechanisms is major focus of research. Antiamyloid agents targeting production, accumulation, clearance, or toxicity associated with Abeta peptide, are some approaches under investigation to limit extracellular plaques of Abeta-peptide accumulation. We can state as an example: Abeta passive and active immunization, secretases modulation, Abeta degradation enhancement, or antiaggregation and antifibrillization agents. Tau-related therapies are also under clinical investigation but few compounds are available. Another alternative approach under development is neuroprotective agents such as antioxidants, anti-inflammatory drugs, compounds acting against glutamate mediated neurotoxicity. Neurorestorative approaches through neurotrophin or cell therapy also represent a minor avenue in AD research. Finally, statins, receptor for advanced glycation end products inhibitors, thiazolidinediones, insulin, and hormonal therapies are some other ways of research for a therapeutic approach of Alzheimer's disease. Taking into account AD complexity, it becomes clear that polypharmacology with drugs targeting different sites could be the future treatment approach and a majority of the recent drugs under evaluation seems to act on multiple targets. This article exposes general classes of disease-modifying therapies under investigation.
Collapse
|
111
|
Sandoval KE, Farr SA, Banks WA, Niehoff ML, Morley JE, Crider AM, Witt KA. Chronic peripheral administration of somatostatin receptor subtype-4 agonist NNC 26-9100 enhances learning and memory in SAMP8 mice. Eur J Pharmacol 2010; 654:53-9. [PMID: 21185826 DOI: 10.1016/j.ejphar.2010.12.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 12/15/2010] [Indexed: 12/22/2022]
Abstract
Selective somatostatin receptor subtype agonists have been proposed as a means to mitigate learning and memory loss associated with Alzheimer's disease. The first aim of this study evaluated blood-to-brain transport and regional brain distribution of NNC 26-9100, a selective somatostatin subtype-4 (sst4) receptor agonist. The entry rate of (131)I-NNC 26-9100 was K(i)=0.25 μl/g min, with an ~93% association with the parenchymal component. The second goal of this study was to evaluate the effect of chronic NNC 26-9100 administration (i.p.) on learning and memory, brain Aβ(x-42) levels, and protein expression of sst4 receptor and amyloid precursor protein (APP) in the senescence-accelerated mouse p8 (SAMP8) model of Alzheimer's disease. Mice chronically treated with NNC 26-9100 showed improved learning (day 21) and memory (day 28) using the T-maze paradigm (20 and 200 μg). Ex vivo tissue analyses showed a decline in Aβ(x-42) levels at the 20 μg dose, while no alterations were observed in sst4 receptor or APP protein expression compared to vehicle controls. These findings indicate NNC 26-9100 is taken up into key brain regions associated with learning and memory. Furthermore, chronic administration of NNC 26-9100 improved learning and memory and decreased Aβ(x-42) brain levels. These results suggest sst4 receptor agonists may provide a viable therapy in the treatment of Alzheimer's disease and other forms of cognitive impairment.
Collapse
Affiliation(s)
- Karin E Sandoval
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, 200 University Park Drive, Edwardsville, IL 62026, USA
| | | | | | | | | | | | | |
Collapse
|
112
|
Design, synthesis, and testing of an 6-O-linked series of benzimidazole based inhibitors of CDK5/p25. Bioorg Med Chem 2010; 19:359-73. [PMID: 21144757 DOI: 10.1016/j.bmc.2010.11.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/01/2010] [Accepted: 11/06/2010] [Indexed: 02/02/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease resulting in cognitive and behavioral impairment. The two classic pathological hallmarks of AD include extraneuronal deposition of amyloid β (Aβ) and intraneuronal formation of neurofibrillary tangles (NFTs). NFTs contain hyperphosphorylated tau. Tau is the major microtubule-associated protein in neurons and stabilizes microtubules (MTs). Cyclin dependent kinase 5 (CDK5), when activated by the regulatory binding protein p25, phosphorylates tau at a number of proline-directed serine/threonine residues, resulting in formation of phosphorylated tau as paired helical filaments (PHFs) then in subsequent deposition of PHFs as NFTs. Beginning with the structure of Roscovitine, a moderately selective CDK5 inhibitor, we sought to conduct structural modifications to increase inhibitory potency of CDK5 and increase selectivity over a similar enzyme, cyclin dependent kinase 2 (CDK2). The design, synthesis, and testing of a series of 1-isopropyl-4-aminobenzyl-6-ether-linked benzimidazoles is presented.
Collapse
|
113
|
Asai M, Iwata N, Tomita T, Iwatsubo T, Ishiura S, Saido TC, Maruyama K. Efficient four-drug cocktail therapy targeting amyloid-β peptide for Alzheimer's disease. J Neurosci Res 2010; 88:3588-97. [DOI: 10.1002/jnr.22503] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 07/13/2010] [Accepted: 08/01/2010] [Indexed: 12/21/2022]
|
114
|
Tamboli IY, Barth E, Christian L, Siepmann M, Kumar S, Singh S, Tolksdorf K, Heneka MT, Lütjohann D, Wunderlich P, Walter J. Statins promote the degradation of extracellular amyloid {beta}-peptide by microglia via stimulation of exosome-associated insulin-degrading enzyme (IDE) secretion. J Biol Chem 2010; 285:37405-14. [PMID: 20876579 DOI: 10.1074/jbc.m110.149468] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epidemiological studies indicate that intake of statins decrease the risk of developing Alzheimer disease. Cellular and in vivo studies suggested that statins might decrease the generation of the amyloid β-peptide (Aβ) from the β-amyloid precursor protein. Here, we show that statins potently stimulate the degradation of extracellular Aβ by microglia. The statin-dependent clearance of extracellular Aβ is mainly exerted by insulin-degrading enzyme (IDE) that is secreted in a nonconventional pathway in association with exosomes. Stimulated IDE secretion and Aβ degradation were also observed in blood of mice upon peripheral treatment with lovastatin. Importantly, increased IDE secretion upon lovastatin treatment was dependent on protein isoprenylation and up-regulation of exosome secretion by fusion of multivesicular bodies with the plasma membrane. These data demonstrate a novel pathway for the nonconventional secretion of IDE via exosomes. The modulation of this pathway could provide a new strategy to enhance the extracellular clearance of Aβ.
Collapse
Affiliation(s)
- Irfan Y Tamboli
- Departments of Neurology, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Yamada K, Hirotsu T, Matsuki M, Butcher RA, Tomioka M, Ishihara T, Clardy J, Kunitomo H, Iino Y. Olfactory plasticity is regulated by pheromonal signaling in Caenorhabditis elegans. Science 2010; 329:1647-50. [PMID: 20929849 PMCID: PMC3021133 DOI: 10.1126/science.1192020] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Population density-dependent dispersal is a well-characterized strategy of animal behavior in which dispersal rate increases when population density is higher. Caenorhabditis elegans shows positive chemotaxis to a set of odorants, but the chemotaxis switches from attraction to dispersal after prolonged exposure to the odorants. We show here that this plasticity of olfactory behavior is dependent on population density and that this regulation is mediated by pheromonal signaling. We show that a peptide, suppressor of NEP-2 (SNET-1), negatively regulates olfactory plasticity and that its expression is down-regulated by the pheromone. NEP-2, a homolog of the extracellular peptidase neprilysin, antagonizes SNET-1, and this function is essential for olfactory plasticity. These results suggest that population density information is transmitted through the external pheromone and endogenous peptide signaling to modulate chemotactic behavior.
Collapse
Affiliation(s)
- Koji Yamada
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Takaaki Hirotsu
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Department of Biology, Graduate School of Science, Kyushu University, Fukuoka, Japan
| | - Masahiro Matsuki
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Rebecca A Butcher
- Department of Biological Chemistry and Molecular Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Masahiro Tomioka
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Takeshi Ishihara
- Department of Biology, Graduate School of Science, Kyushu University, Fukuoka, Japan
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hirofumi Kunitomo
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yuichi Iino
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
116
|
Johnson VE, Stewart W, Graham DI, Stewart JE, Praestgaard AH, Smith DH. A neprilysin polymorphism and amyloid-beta plaques after traumatic brain injury. J Neurotrauma 2010; 26:1197-202. [PMID: 19326964 DOI: 10.1089/neu.2008.0843] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) induces the rapid formation of Alzheimer's disease (AD)-like amyloid-beta (AB) plaques in about 30% of patients. However, the mechanisms behind this selective plaque formation are unclear. We investigated a potential association between amyloid deposition acutely after TBI and a genetic polymorphism of the AB-degrading enzyme, neprilysin (n = 81). We found that the length of the GT repeats in AB-accumulators was longer than in non-accumulators. Specifically, there was an increased risk of AB plaques for patients with more than 41 total repeats (p < 0.0001; OR: 10.1). In addition, the presence of 22 repeats in at least one allele was independently associated with plaque deposition (p = 0.03; OR: 5.2). In contrast, the presence of 20 GT repeats in one allele was independently associated with a reduced incidence of AB deposition (p = 0.003). These data suggest a genetically linked mechanism that determines which TBI patients will rapidly form AB plaques. Moreover, these findings provide a potential genetic screening test for individuals at high risk of TBI, such as participants in contact sports and military personnel.
Collapse
Affiliation(s)
- Victoria E Johnson
- Penn Center for Brain Injury and Repair, The University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
117
|
Role of ubiquitin-proteasome-mediated proteolysis in nervous system disease. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1809:128-40. [PMID: 20674814 DOI: 10.1016/j.bbagrm.2010.07.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 07/15/2010] [Accepted: 07/21/2010] [Indexed: 12/12/2022]
Abstract
Proteolysis by the ubiquitin-proteasome pathway (UPP) is now widely recognized as a molecular mechanism controlling myriad normal functions in the nervous system. Also, this pathway is intimately linked to many diseases and disorders of the brain. Among the diseases connected to the UPP are neurodegenerative disorders such as Alzheimer's, Parkinson's and Huntington's diseases. Perturbation in the UPP is also believed to play a causative role in mental disorders such as Angelman syndrome. The pathology of neurodegenerative diseases is characterized by abnormal deposition of insoluble protein aggregates or inclusion bodies within neurons. The ubiquitinated protein aggregates are believed to result from dysfunction of the UPP or from structural changes in the protein substrates which prevent their recognition and degradation by the UPP. An early effect of abnormal UPP in diseases of the nervous system is likely to be impairment of synaptic function. Here we discuss the UPP and its physiological roles in the nervous system and how alterations in the UPP relate to development of nervous system diseases. This article is part of a Special Issue entitled The 26S Proteasome: When degradation is just not enough!
Collapse
|
118
|
Diabetes synergistically exacerbates poststroke dementia and tau abnormality in brain. Neurochem Int 2010; 56:955-61. [DOI: 10.1016/j.neuint.2010.04.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 04/06/2010] [Indexed: 01/21/2023]
|
119
|
Estrogen regulates cytoskeletal flexibility, cellular metabolism and synaptic proteins: A proteomic study. Psychoneuroendocrinology 2010; 35:807-19. [PMID: 20005634 DOI: 10.1016/j.psyneuen.2009.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 11/03/2009] [Accepted: 11/04/2009] [Indexed: 12/28/2022]
Abstract
Estrogen (E2) influences brain function to induce gender differences in neuronal processes. In contrast to its well-described effects on signaling systems and gene transcription factors, our knowledge of E2-regulated protein networks is rather limited. Thus, we examined changes in protein expression patterns in the whole brains of ovariectomized mice after 24h estrogen exposure using two-dimensional differential gel electrophoresis. Interpretation of our network-based hypothesis suggested that E2 regulates synaptic proteins and processes, increases cytoskeletal flexibility and alters glucose consumption in the brain. We verified the predicted reduced basal synaptic activity using in vivo microdialysis in conscious mice, showing that E2 decreases the extracellular concentrations of certain amino acids in two different brain areas (in the striatum and in the hypothalamus) and that this is independent from the E2 receptor densities. Our data reveal that E2 induces minor, but substantial changes to functionally different protein networks at the whole brain level, and as a cumulative effect, it adjusts the brain steady-state condition to a more flexible state.
Collapse
|
120
|
Abstract
Extensive β-amyloid (Aβ) deposits in brain parenchyma
in the form of senile plaques and in blood vessels in the form of
amyloid angiopathy are pathological hallmarks of Alzheimer's
disease (AD). The mechanisms underlying Aβ deposition
remain unclear. Major efforts have focused on Aβ production,
but there is little to suggest that increased production of
Aβ plays a role in Aβ deposition, except for rare
familial forms of AD. Thus, other mechanisms must be involved in
the accumulation of Aβ in AD. Recent data shows that
impaired clearance may play an important role in Aβ
accumulation in the pathogenesis of AD. This review focuses on our
current knowledge of Aβ-degrading enzymes, including
neprilysin (NEP), endothelin-converting enzyme (ECE),
insulin-degrading enzyme (IDE), angiotensin-converting enzyme
(ACE), and the plasmin/uPA/tPA system as they relate to amyloid
deposition in AD.
Collapse
Affiliation(s)
- Deng-Shun Wang
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Wisconsin, Madison, WI 53705, USA
- *Deng-Shun Wang:
| | - Dennis W. Dickson
- Departments of Pathology (Neuropathology) and Neuroscience, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA
| | - James S. Malter
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Wisconsin, Madison, WI 53705, USA
- Waisman Center for Developmental Disabilities, School of Medicine, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
121
|
A highly sensitive peptide substrate for detecting two Aβ-degrading enzymes: Neprilysin and insulin-degrading enzyme. J Neurosci Methods 2010; 190:57-62. [DOI: 10.1016/j.jneumeth.2010.04.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 04/23/2010] [Accepted: 04/25/2010] [Indexed: 11/23/2022]
|
122
|
Nilsson P, Iwata N, Muramatsu SI, Tjernberg LO, Winblad B, Saido TC. Gene therapy in Alzheimer's disease - potential for disease modification. J Cell Mol Med 2010; 14:741-57. [PMID: 20158567 PMCID: PMC3823109 DOI: 10.1111/j.1582-4934.2010.01038.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Accepted: 02/09/2010] [Indexed: 01/12/2023] Open
Abstract
Alzheimer's disease (AD) is the major cause of dementia in the elderly, leading to memory loss and cognitive decline. The mechanism underlying onset of the disease has not been fully elucidated. However, characteristic pathological manifestations include extracellular accumulation and aggregation of the amyloid beta-peptide (Abeta) into plaques and intracellular accumulation and aggregation of hyperphosphorylated tau, forming neurofibrillary tangles. Despite extensive research worldwide, no disease modifying treatment is yet available. In this review, we focus on gene therapy as a potential treatment for AD, and summarize recent work in the field, ranging from proof-of-concept studies in animal models to clinical trials. The multifactorial causes of AD offer a variety of possible targets for gene therapy, including two neurotrophic growth factors, nerve growth factor and brain-derived neurotrophic factor, Abeta-degrading enzymes, such as neprilysin, endothelin-converting enzyme and cathepsin B, and AD associated apolipoprotein E. This review also discusses advantages and drawbacks of various rapidly developing virus-mediated gene delivery techniques for gene therapy. Finally, approaches aiming at down-regulating amyloid precursor protein (APP) and beta-site APP cleaving enzyme 1 levels by means of siRNA-mediated knockdown are briefly summarized. Overall, the prospects appear hopeful that gene therapy has the potential to be a disease modifying treatment for AD.
Collapse
Affiliation(s)
- Per Nilsson
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science InstituteWako-shi, Saitama, Japan
- KI-Alzheimer’s Disease Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska InstitutetNovum, Huddinge, Sweden
| | - Nobuhisa Iwata
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science InstituteWako-shi, Saitama, Japan
| | - Shin-ichi Muramatsu
- Division of Neurology, Department of Medicine, Jichi Medical SchoolShimotsuke, Tochigi, Japan
| | - Lars O Tjernberg
- KI-Alzheimer’s Disease Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska InstitutetNovum, Huddinge, Sweden
| | - Bengt Winblad
- KI-Alzheimer’s Disease Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska InstitutetNovum, Huddinge, Sweden
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science InstituteWako-shi, Saitama, Japan
| |
Collapse
|
123
|
Kumari U, Heese K. Cardiovascular dementia - a different perspective. Open Biochem J 2010; 4:29-52. [PMID: 20448820 PMCID: PMC2864432 DOI: 10.2174/1874091x01004010029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 01/12/2010] [Accepted: 01/22/2010] [Indexed: 02/08/2023] Open
Abstract
The number of dementia patients has been growing in recent years and dementia represents a significant threat to aging people all over the world. Recent research has shown that the number of people affected by Alzheimer's disease (AD) and dementia is growing at an epidemic pace. The rapidly increasing financial and personal costs will affect the world's economies, health care systems, and many families. Researchers are now exploring a possible connection among AD, vascular dementia (VD), diabetes mellitus (type 2, T2DM) and cardiovascular diseases (CD). This correlation may be due to a strong association of cardiovascular risk factors with AD and VD, suggesting that these diseases share some biologic pathways. Since heart failure is associated with an increased risk of AD and VD, keeping the heart healthy may prove to keep the brain healthy as well. The risk for dementia is especially high when diabetes mellitus is comorbid with severe systolic hypertension or heart disease. In addition, the degree of coronary artery disease (CAD) is independently associated with cardinal neuropathological lesions of AD. Thus, the contribution of T2DM and CD to AD and VD implies that cardiovascular therapies may prove useful in preventing AD and dementia.
Collapse
Affiliation(s)
- Udhaya Kumari
- Division of Cell and Molecular Biology, School of Biological Sciences, College of Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | | |
Collapse
|
124
|
Ayoub S, Melzig MF. Induction of neutral endopeptidase (NEP) activity of SK-N-SH cells by natural compounds from green tea. J Pharm Pharmacol 2010; 58:495-501. [PMID: 16597367 DOI: 10.1211/jpp.58.4.0009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Deposition of amyloid β-peptide as senile plaques in the brain is one of the neuropathological hallmarks of Alzheimer's disease, which is the most prevalent progressive neurodegenerative disease leading to dementia. Neutral endopeptidase is one of the major β-amyloid-degrading enzymes in the brain. To examine the influence of different polyphenols and other natural products from green tea extract (from Camellia sinensis, Theaceae), we used the neuroblastoma cell line SK-N-SH and studied the changes in the specific cellular neutral endopeptidase activity after long-term treatment with these substances. We have shown that caffeine leads to an increase in specific cellular neutral endopeptidase activity more than theophylline, theobromine or theanine. We have also shown that the combination of epicatechin, epigallocatechin and epigallocatechingallate with caffeine, theobromine or theophylline induced cellular neutral endopeptidase activity. It is suggested that the enhancement of cellular neutral endopeptidase activity by green tea extract and its natural products might be correlated with an elevated level of intracellular cyclic adenosine monophosphate.
Collapse
Affiliation(s)
- Shereen Ayoub
- Institut für Pharmazie, Freie Universität Berlin, Königin-Luise-Str. 2-4, 14195 Berlin, Germany
| | | |
Collapse
|
125
|
Yerbury JJ, Wilson MR. Extracellular chaperones modulate the effects of Alzheimer's patient cerebrospinal fluid on Abeta(1-42) toxicity and uptake. Cell Stress Chaperones 2010; 15:115-21. [PMID: 19472074 PMCID: PMC2866977 DOI: 10.1007/s12192-009-0122-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 04/22/2009] [Accepted: 05/13/2009] [Indexed: 01/03/2023] Open
Abstract
Alzheimer's disease is characterised by the inappropriate death of brain cells and accumulation of the Abeta peptide in the brain. Thus, it is possible that there are fundamental differences between Alzheimer's disease patients and healthy individuals in their abilities to clear Abeta from brain fluid and to protect neurons from Abeta toxicity. In the present study, we examined (1) the cytotoxicity of Alzheimer's disease cerebrospinal fluid (CSF) compared to control CSF, (2) the ability of Alzheimer's disease and control CSF to protect cells from Abeta toxicity and to promote cell-mediated clearance of Abeta and lastly (3) the effects of extracellular chaperones, normally found in CSF, on these processes. We show that the Alzheimer's disease CSF samples tested were more toxic to cultured neuroblastoma cells than normal CSF. In addition, the Alzheimer's disease CSF samples tested were less able to protect cells from Abeta-induced toxicity and less efficient at promoting macrophage-like cell uptake when compared to normal CSF. The addition of physiologically relevant concentrations of the extracellular chaperones, clusterin, haptoglobin and alpha(2)-macroglobulin into CSF protected neuroblastoma cells from Alphabeta(1-42) toxicity and promoted Alphabeta(1-42) uptake in macrophage-like cells. These results suggest that extracellular chaperones are an important element of a system of extracellular protein folding quality control that protects against Abeta toxicity and accumulation.
Collapse
|
126
|
Transgenic Drosophila models of Alzheimer's disease and tauopathies. Brain Struct Funct 2009; 214:245-62. [PMID: 19967412 DOI: 10.1007/s00429-009-0234-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Accepted: 11/14/2009] [Indexed: 01/24/2023]
Abstract
Alzheimer's disease (AD) is the most common form of senile dementia. Aggregation of the amyloid-beta42 peptide (Abeta42) and tau proteins are pathological hallmarks in AD brains. Accumulating evidence suggests that Abeta42 plays a central role in the pathogenesis of AD, and tau acts downstream of Abeta42 as a modulator of the disease progression. Tau pathology is also observed in frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17) and other related diseases, so called tauopathies. Although most cases are sporadic, genes associated with familial AD and FTDP-17 have been identified, which led to the development of transgenic animal models. Drosophila has been a powerful genetic model system used in many fields of biology, and recently emerges as a model for human neurodegenerative diseases. In this review, we will summarize key features of transgenic Drosophila models of AD and tauopathies and a number of insights into disease mechanisms as well as therapeutic implications gained from these models.
Collapse
|
127
|
Abramov E, Dolev I, Fogel H, Ciccotosto GD, Ruff E, Slutsky I. Amyloid-β as a positive endogenous regulator of release probability at hippocampal synapses. Nat Neurosci 2009; 12:1567-76. [DOI: 10.1038/nn.2433] [Citation(s) in RCA: 371] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 09/25/2009] [Indexed: 01/18/2023]
|
128
|
Augustin S, Rimbach G, Augustin K, Cermak R, Wolffram S. Gene Regulatory Effects of Ginkgo biloba Extract and Its Flavonol and Terpenelactone Fractions in Mouse Brain. J Clin Biochem Nutr 2009; 45:315-21. [PMID: 19902022 PMCID: PMC2771253 DOI: 10.3164/jcbn.08-248] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 05/20/2009] [Indexed: 01/15/2023] Open
Abstract
The standardised Ginkgo biloba extract EGb761 is known for its potential beneficial effects in the prevention and therapy of neurodegenerative disorders including Alzheimer’s disease (AD). However, the molecular mechanisms and the specific role of its constituents are largely unknown. The aim of the present feeding trial was to investigate the effects of EGb761 and its major constituents on the expression of genes encoding for proteins involved in the pathogenesis of AD in mouse brain. Six month old C57B6 mice were fed semi synthetic diets enriched with either EGb761 or one of its main fractions, flavonols and terpenelactones, respectively, over a period of 4 weeks. Thereafter, mRNA of α-secretase, neprilysin, amyloid precursor protein (App), App binding protein-1 and acetylcholine esterase was quantified in hippocampus and cortex. EGb761 and its flavonol fraction had no effects on relative mRNA levels of the respective genes in mouse brain. However, the terpenelactone fraction significantly decreased the mRNA levels of App in the hippocampus. Taken together, a 4 week dietary treatment with EGb761 or its main fractions had only moderate effects on mRNA levels of AD related genes in cortex and hippocampus of mice.
Collapse
Affiliation(s)
- Sabine Augustin
- Institute of Animal Nutrition and Physiology, Christian-Albrechts-University of Kiel, Hermann-Rodewald-Strasse 9, 24098 Kiel, Germany
| | | | | | | | | |
Collapse
|
129
|
Somatostatin, Alzheimer's disease and cognition: An old story coming of age? Prog Neurobiol 2009; 89:153-61. [DOI: 10.1016/j.pneurobio.2009.07.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 04/27/2009] [Accepted: 07/02/2009] [Indexed: 12/21/2022]
|
130
|
Xue S, Jia L, Jia J. Association between somatostatin gene polymorphisms and sporadic Alzheimer's disease in Chinese population. Neurosci Lett 2009; 465:181-3. [PMID: 19733630 DOI: 10.1016/j.neulet.2009.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 08/29/2009] [Accepted: 09/01/2009] [Indexed: 10/20/2022]
Abstract
Recent evidence has suggested that down-regulation of somatostatin (SST) expression in the human brain during early stages of aging leads to an elevation in the steady-state levels of Abeta and therefore may be involved in Alzheimer's disease (AD) progression. We hypothesized that alterations in the SST gene might alter its expression or function and also play a role in the pathogenesis of sporadic AD (SAD). First, we sequenced the entire SST gene in 25 randomly selected controls and 25 SAD patients and then screened for C/T polymorphisms (rs4988514) in the 3' un-translated region. We genotyped rs4988514 polymorphisms as well as apolipoprotein epsilon4 (APOE epsilon4) status in 309 SAD patients and 276 normal controls with restriction fragment length polymorphism (RFLP) analysis. Results showed that the C allele of the rs4988514 polymorphism had an increased incidence in the SAD group compared to the control group (p=0.042). In subjects with the APOE epsilon4 allele, the presence of both the CC genotype and the C allele of this polymorphism were elevated in the SAD group compared to the control group (genotype p=0.027, allele p=0.011). In the whole study group, the age, sex, and APOE epsilon4 adjusted OR for the risk of AD in C allele carriers was 1.313 (95%CI=1.068-2.234, p=0.027) whereas within only APOE epsilon4 allele carriers, the adjusted OR increased to 2.734 (95%CI=1.236-5.862, p=0.012). Our results supported the notion that the C allele of the rs4988514 polymorphism may increase the risk for AD in the Chinese population and possibly have additive effect with the APOE epsilon4 allele.
Collapse
Affiliation(s)
- Sufang Xue
- Department of Neurology, Xuan Wu Hospital of the Capital Medical University, Key Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, 45 Changchun Street, Beijing 100053, PR China
| | | | | |
Collapse
|
131
|
Nishida Y, Ito S, Ohtsuki S, Yamamoto N, Takahashi T, Iwata N, Jishage KI, Yamada H, Sasaguri H, Yokota S, Piao W, Tomimitsu H, Saido TC, Yanagisawa K, Terasaki T, Mizusawa H, Yokota T. Depletion of vitamin E increases amyloid beta accumulation by decreasing its clearances from brain and blood in a mouse model of Alzheimer disease. J Biol Chem 2009; 284:33400-8. [PMID: 19679659 DOI: 10.1074/jbc.m109.054056] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Increased oxidative damage is a prominent and early feature in Alzheimer disease. We previously crossed Alzheimer disease transgenic (APPsw) model mice with alpha-tocopherol transfer protein knock-out (Ttpa(-/-)) mice in which lipid peroxidation in the brain was significantly increased. The resulting double-mutant (Ttpa(-/-)APPsw) mice showed increased amyloid beta (Abeta) deposits in the brain, which was ameliorated with alpha-tocopherol supplementation. To investigate the mechanism of the increased Abeta accumulation, we here studied generation, degradation, aggregation, and efflux of Abeta in the mice. The clearance of intracerebral-microinjected (125)I-Abeta(1-40) from brain was decreased in Ttpa(-/-) mice to be compared with wild-type mice, whereas the generation of Abeta was not increased in Ttpa(-/-)APPsw mice. The activity of an Abeta-degrading enzyme, neprilysin, did not decrease, but the expression level of insulin-degrading enzyme was markedly decreased in Ttpa(-/-) mouse brain. In contrast, Abeta aggregation was accelerated in Ttpa(-/-) mouse brains compared with wild-type brains, and well known molecules involved in Abeta transport from brain to blood, low density lipoprotein receptor-related protein-1 (LRP-1) and p-glycoprotein, were up-regulated in the small vascular fraction of Ttpa(-/-) mouse brains. Moreover, the disappearance of intravenously administered (125)I-Abeta(1-40) was decreased in Ttpa(-/-) mice with reduced translocation of LRP-1 in the hepatocytes. These results suggest that lipid peroxidation due to depletion of alpha-tocopherol impairs Abeta clearances from the brain and from the blood, possibly causing increased Abeta accumulation in Ttpa(-/-)APPsw mouse brain and plasma.
Collapse
Affiliation(s)
- Yoichiro Nishida
- Department of Neurology and Neurological Science, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519. Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Sarantseva SV, Schwarzman AL. Modern genetic approaches to searching for targets for medicinal preparations. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409070011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
133
|
Saiz-Sanchez D, Ubeda-Bañon I, de la Rosa-Prieto C, Argandoña-Palacios L, Garcia-Muñozguren S, Insausti R, Martinez-Marcos A. Somatostatin, tau, and beta-amyloid within the anterior olfactory nucleus in Alzheimer disease. Exp Neurol 2009; 223:347-50. [PMID: 19559700 DOI: 10.1016/j.expneurol.2009.06.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 06/08/2009] [Accepted: 06/17/2009] [Indexed: 11/29/2022]
Abstract
Impaired olfaction is an early symptom of Alzheimer disease (AD). This likely to reflect neurodegenerative processes taking place in basal telencephalic structures that mediate olfactory processing, including the anterior olfactory nucleus. Betaeta-amyloid (Abeta) accumulation in AD brain may relate to decline in somatostatin levels: somatostatin induces the expression of the Abeta-degrading enzyme neprilysin and somatostatin deficiency in AD may therefore reduce Abeta clearance. We have investigated the expression of somatostatin in the anterior olfactory nucleus of AD and control brain. We report that somatostatin levels were reduced by approximately 50% in AD brain. Furthermore, triple-immunofluorescence revealed co-localization of somatostatin expression with Abeta (65.43%) with Abeta and tau (19.75%) and with tau (2.47%). These data indicate that somatostatin decreases in AD and its expression may be linked with Abeta deposition.
Collapse
Affiliation(s)
- D Saiz-Sanchez
- Laboratorio de Neuroanatomía Humana, Departamento de Ciencias Médicas, Facultad de Medicina, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, 02006 Albacete, Spain
| | | | | | | | | | | | | |
Collapse
|
134
|
Orhan I, Ozcelik B, Aslan S, Kartal M, Karaoglu T, Sener B, Terzioglu S, Iqbal Choudhary M. In vitro biological activity screening of Lycopodium complanatum L. ssp. chamaecyparissus (A. Br.) Doll. Nat Prod Res 2009; 23:514-26. [PMID: 19384728 DOI: 10.1080/14786410802163743] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This article reports the results of selected biological activities, including anticholinesterase, antioxidant, antibacterial, antifungal and antiviral properties, of the petroleum ether, chloroform and methanol extracts as well as the alkaloid fraction of Lycopodium complanatum L. ssp. chamaecyparissus (A. Br.) Doll (LCC, Lycopodiaceae) growing in Turkey. Anticholinesterase effect of the extracts was tested against both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) at concentrations of 0.2 and 1 mg mL(-1) using microplate-reader assay based on Ellman method. Antioxidant activity of the LCC extracts was evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging method at 0.2 mg mL(-1) using microplate-reader assay. Both DNA virus Herpes simplex (HSV) and RNA virus Parainfluenza (PI-3) were employed for antiviral assessment of LCC exracts using Madin-Darby Bovine Kidney and Vero cell lines. Antibacterial and antifungal activities of the extracts were screened against the bacteria: Escherichia coli, Pseudomonas aeruginosa, Proteus mirabilis, Acinobacter baumannii, Klebsiella pneumoniae, Staphylococcus aureus, Bacillus subtilis as well as the fungi: Candida albicans and C. parapsilosis. Only the petroleum ether extract of LCC possessed remarkable activity against both AChE and BChE at 1 mg mL(-1) (76.5 and 69.6%, respectively), whereas LCC extracts showed low free radical-scavenging activity. All of the extracts were found to be more effective against the ATCC strains than isolated ones, particularly S. aureus, while the extracts had moderate antifungal activity. On the other hand, we found that only the petroleum ether extract was active against HSV. In addition, we also analysed the content of the alkaloid fraction of the plant by capillary gas chromatography-mass spectrometry (GC-MS) and identified lycopodine as the major alkaloid (60.8%).
Collapse
Affiliation(s)
- Ilkay Orhan
- Faculty of Pharmacy, Department of Pharmacognosy, Gazi University, Ankara, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
135
|
Neprilysin overexpression inhibits plaque formation but fails to reduce pathogenic Abeta oligomers and associated cognitive deficits in human amyloid precursor protein transgenic mice. J Neurosci 2009; 29:1977-86. [PMID: 19228952 DOI: 10.1523/jneurosci.2984-08.2009] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The accumulation of amyloid-beta (Abeta) peptides in the brain of patients with Alzheimer's disease (AD) may arise from an imbalance between Abeta production and clearance. Overexpression of the Abeta-degrading enzyme neprilysin in brains of human amyloid precursor protein (hAPP) transgenic mice decreases overall Abeta levels and amyloid plaque burdens. Because AD-related synaptic and cognitive deficits appear to be more closely related to Abeta oligomers than to plaques, it is important to determine whether increased neprilysin activity also diminishes the levels of pathogenic Abeta oligomers and related neuronal deficits in vivo. To address this question, we crossed hAPP transgenic mice with neprilysin transgenic mice and analyzed their offspring. Neprilysin overexpression reduced soluble Abeta levels by 50% and effectively prevented early Abeta deposition in the neocortex and hippocampus. However, it did not reduce levels of Abeta trimers and Abeta*56 or improve deficits in spatial learning and memory. The differential effect of neprilysin on plaques and oligomers suggests that neprilysin-dependent degradation of Abeta affects plaques more than oligomers and that these structures may form through distinct assembly mechanisms. Neprilysin's inability to prevent learning and memory deficits in hAPP mice may be related to its inability to reduce pathogenic Abeta oligomers. Reduction of Abeta oligomers will likely be required for anti-Abeta treatments to improve cognitive functions.
Collapse
|
136
|
Johnson VE, Stewart W, Stewart JE, Graham DI, Praestgaard AH, Smith DH. A Neprilysin Polymorphism and Amyloid-β Plaques Following Traumatic Brain Injury. J Neurotrauma 2009. [DOI: 10.1089/neu.2008-0843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
137
|
Mohajeri MH, Wolfer DP. Neprilysin deficiency-dependent impairment of cognitive functions in a mouse model of amyloidosis. Neurochem Res 2009; 34:717-26. [PMID: 19199031 DOI: 10.1007/s11064-009-9919-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2008] [Indexed: 11/25/2022]
Abstract
Alzheimer's disease, responsible for the vast majority of dementia cases in the elderly population, is caused by accumulation of toxic levels of amyloid beta peptide (A beta) in the brain. Neprilysin is a major enzyme responsible for the degradation of A beta in vivo. We have previously shown that elevation of neprilysin levels in the brain delays the deposition of A beta-plaques in a mouse model of amyloidosis and that lack of neprilysin leads to increased A beta generation and to signs of incipient neurodegeneration in mouse brains. This study was designed to test whether low brain levels of neprilysin affect the amyloid pathology or perturb the learning and memory performance of mice. Double-mutated mice carrying a targeted depletion of one allele of Mme, the gene encoding neprilysin, and over-expressing human amyloid precursor protein (APP), exhibited a reinforced amyloid pathology in comparison with their APP transgenic littermates. Moreover, in contrast to their parental lines, these mice were impaired in the Morris water maze learning and memory paradigm and showed facilitated extinction in the conditioned taste aversion test. These data suggest that even a partial neprilysin deficiency, as is found during aging, exacerbates amyloid pathology and may impair cognitive functions.
Collapse
Affiliation(s)
- M Hasan Mohajeri
- Division of Psychiatry Research, University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|
138
|
Granstein RD, Luger TA. The Role of Neuropeptide Endopeptidases in Cutaneous Immunity. NEUROIMMUNOLOGY OF THE SKIN 2009. [PMCID: PMC7120023 DOI: 10.1007/978-3-540-35989-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteolytic processing and degradation plays an important role in modulating the generation and bioactivity of neuroendocrine peptide mediators, a class of key molecules in cutaneous biology. Accordingly, the cellular localization and expression, and the molecular biology and structural properties of selected intracellular prohormone convertases and ectopically expressed zinc-binding metalloendoproteases are discussed. A special reference will be made to the physiologic and pathophysiologic significance of these endopeptidases in cutaneous immunobiology. Because of the number of pathologically relevant changes in inflammation and tumor progression that can be directly attributed to neprilysin and angiotensin-converting enzyme, a particular focus will be on the role of these enzymes in modulating innate and adaptive immune responses in the skin.
Collapse
Affiliation(s)
- Richard D. Granstein
- Weill Cornell Medical College Department of Dermatology, Cornell University, 1300 York Ave., 10021 New York, NY USA
| | - Thomas A. Luger
- Medizinische Einrichtungen Klinik und Poliklinik für, Universitätsklinikum Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany
| |
Collapse
|
139
|
Effect of a short- and long-term treatment with Ginkgo biloba extract on amyloid precursor protein levels in a transgenic mouse model relevant to Alzheimer's disease. Arch Biochem Biophys 2008; 481:177-82. [PMID: 18996078 DOI: 10.1016/j.abb.2008.10.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 10/13/2008] [Accepted: 10/23/2008] [Indexed: 02/07/2023]
Abstract
Several clinical trials have reported beneficial effects of the Ginkgo biloba extract EGb761 in the prevention and therapy of cognitive disorders including Alzheimer's disease (AD). The aim of the present long-term feeding trial was to study the impact of dietary EGb761 on Amyloid precursor protein (APP) metabolism in mice transgenic for human APP (Tg2576). Tg2576 mice were fed diets with and without EGb761 (300 mg/kg diet) for 1 and 16 months, respectively. Long-term treatment (16 months) with EGb761 significantly lowered human APP protein levels by approximately 50% as compared to controls in the cortex but not in the hippocampus. However, APP levels were not affected by EGb761 in young mice. Current data indicate that APP seems to be an important molecular target of EGb761 in relation to the duration of the Ginkgo biloba treatment and/or the age of the animals. Potential neuroprotective properties of EGb761 may be, at least partly, related to its APP lowering activity.
Collapse
|
140
|
[Alzheimer's disease. Molecular pathology, animal models, and current treatment]. DER NERVENARZT 2008; 79 Suppl 3:117-25; quiz 126-7. [PMID: 18820894 DOI: 10.1007/s00115-008-2496-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The currently approved but only mildly efficient drugs against Alzheimer's disease treat merely the symptoms. Genetic, neuropathological, and biochemical data support the importance of the amyloid hypothesis of Alzheimer's disease, at the moment the most influential hypothesis. Many treatment strategies have been performed based on this hypothesis and were markedly successful in preclinical animal models. Unfortunately the treatment is still unsuccessful in humans. This could be due to the animal models showing marginal behavioural deficits but no Alzheimer-like nerve cell loss, although they all developed a more or less pronounced plaque load. Today we know however that Alzheimer plaques are not mainly responsible for the cell loss. Therefore novel animal models have been developed that show age-dependent axonal degeneration, massive neuronal loss, and robust behavioural deficits. Successful treatment of an animal model with such robust deficits would be very likely better suited to transferral into the clinic. The final validation or disproof of individual Alzheimer hypotheses and their resulting treatment strategies can however be obtained only after clinical proof.
Collapse
|
141
|
Takeuchi Y, Uetsuka K, Murayama M, Kikuta F, Takashima A, Doi K, Nakayama H. Complementary Distributions of Amyloid-β and Neprilysin in the Brains of Dogs and Cats. Vet Pathol 2008; 45:455-66. [DOI: 10.1354/vp.45-4-455] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neprilysin is an amyloid-β-degrading enzyme localized in the brain parenchyma. The involvement of neprilysin in the pathogenesis of Alzheimer's disease has recently received much attention. We examined the localization of neprilysin and amyloid-β, as well as the activity of neprilysin, in the brains of dogs and cats of various ages to clarify the relationship between neprilysin activity and amyloid-β deposition. The distribution of neprilysin was almost identical in dogs and cats, being high in the striatum, globus pallidus, and substantia nigra, but very low in the cerebral cortex. The white matter and hippocampus were negative. Neprilysin activity in the brain regions in dogs and cats was ranked from high to low as follows: thalamus/striatum > cerebral cortex > hippocampus > white matter. Amyloid-β deposition was first detected at 7 and 10 years of age in dogs and cats, respectively, and both the quantity and frequency of deposition increased with age. In both species, amyloid-β deposition appeared in the cerebral cortex and the hippocampus. In summary, the localization of neprilysin and neprilysin activity, and that of amyloid-β, were complementary in the brains of dogs and cats.
Collapse
Affiliation(s)
- Y. Takeuchi
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo ku, Tokyo, Japan
| | - K. Uetsuka
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo ku, Tokyo, Japan
| | - M. Murayama
- Laboratory for Alzheimer's Disease, Brain Science Institute, RIKEN, Wako-shi, Saitama, Japan
| | - F. Kikuta
- St. Luke's College of Nursing, Chuou-ku, Tokyo, Japan
| | - A. Takashima
- Laboratory for Alzheimer's Disease, Brain Science Institute, RIKEN, Wako-shi, Saitama, Japan
| | - K. Doi
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo ku, Tokyo, Japan
| | - H. Nakayama
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo ku, Tokyo, Japan
| |
Collapse
|
142
|
Hirata-Fukae C, Li HF, Hoe HS, Gray AJ, Minami SS, Hamada K, Niikura T, Hua F, Tsukagoshi-Nagai H, Horikoshi-Sakuraba Y, Mughal M, Rebeck GW, LaFerla FM, Mattson MP, Iwata N, Saido TC, Klein WL, Duff KE, Aisen PS, Matsuoka Y. Females exhibit more extensive amyloid, but not tau, pathology in an Alzheimer transgenic model. Brain Res 2008; 1216:92-103. [DOI: 10.1016/j.brainres.2008.03.079] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 03/21/2008] [Accepted: 03/27/2008] [Indexed: 02/04/2023]
|
143
|
Vetrivel KS, Zhang X, Meckler X, Cheng H, Lee S, Gong P, Lopes KO, Chen Y, Iwata N, Yin KJ, Lee JM, Parent AT, Saido TC, Li YM, Sisodia SS, Thinakaran G. Evidence that CD147 modulation of beta-amyloid (Abeta) levels is mediated by extracellular degradation of secreted Abeta. J Biol Chem 2008; 283:19489-98. [PMID: 18456655 DOI: 10.1074/jbc.m801037200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cerebral deposition of beta-amyloid (Abeta) peptides is a pathological hallmark of Alzheimer disease. Intramembranous proteolysis of amyloid precursor protein by a multiprotein gamma-secretase complex generates Abeta. Previously, it was reported that CD147, a glycoprotein that stimulates production of matrix metalloproteinases (MMPs), is a subunit of gamma-secretase and that the levels of secreted Abeta inversely correlate with CD147 expression. Here, we show that the levels and localization of CD147 in fibroblasts, as well as postnatal expression and distribution in brain, are distinct from those of integral gamma-secretase subunits. Notably, we show that although depletion of CD147 increased extracellular Abeta levels in intact cells, membranes isolated from CD147-depleted cells failed to elevate Abeta production in an in vitro gamma-secretase assay. Consistent with an extracellular source that modulates Abeta metabolism, synthetic Abeta was degraded more rapidly in the conditioned medium of cells overexpressing CD147. Moreover, modulation of CD147 expression had no effect on epsilon-site cleavage of amyloid precursor protein and Notch1 receptor. Collectively, our results demonstrate that CD147 modulates Abeta levels not by regulating gamma-secretase activity, but by stimulating extracellular degradation of Abeta. In view of the known function of CD147 in MMP production, we postulate that CD147 expression influences Abeta levels by an indirect mechanism involving MMPs that can degrade extracellular Abeta.
Collapse
Affiliation(s)
- Kulandaivelu S Vetrivel
- Department of Neurobiology and Neurology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Iwata N, Higuchi M, Saido TC. [Therapeutic strategy by manipulating some protease activities for Alzheimer's disease]. Nihon Yakurigaku Zasshi 2008; 131:320-325. [PMID: 18480559 DOI: 10.1254/fpj.131.320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
145
|
Pike CJ, Nguyen TVV, Ramsden M, Yao M, Murphy MP, Rosario ER. Androgen cell signaling pathways involved in neuroprotective actions. Horm Behav 2008; 53:693-705. [PMID: 18222446 PMCID: PMC2424283 DOI: 10.1016/j.yhbeh.2007.11.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 10/31/2007] [Accepted: 11/05/2007] [Indexed: 11/15/2022]
Abstract
As a normal consequence of aging in men, testosterone levels significantly decline in both serum and brain. Age-related testosterone depletion results in increased risk of dysfunction and disease in androgen-responsive tissues, including brain. Recent evidence indicates that one deleterious effect of age-related testosterone loss in men is increased risk for Alzheimer's disease (AD). We discuss recent findings from our laboratory and others that identify androgen actions implicated in protecting the brain against neurodegenerative diseases and begin to define androgen cell signaling pathways that underlie these protective effects. Specifically, we focus on the roles of androgens as (1) endogenous negative regulators of beta-amyloid accumulation, a key event in AD pathogenesis, and (2) neuroprotective factors that utilize rapid non-genomic signaling to inhibit neuronal apoptosis. Continued elucidation of cell signaling pathways that contribute to protective actions of androgens should facilitate the development of targeted therapeutic strategies to combat AD and other age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Christian J Pike
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| | | | | | | | | | | |
Collapse
|
146
|
El-Amouri SS, Zhu H, Yu J, Marr R, Verma IM, Kindy MS. Neprilysin: an enzyme candidate to slow the progression of Alzheimer's disease. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:1342-54. [PMID: 18403590 DOI: 10.2353/ajpath.2008.070620] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It is well established that the extracellular deposition of amyloid beta (Abeta) peptide plays a central role in the development of Alzheimer's disease (AD). Therefore, either preventing the accumulation of Abeta peptide in the brain or accelerating its clearance may slow the rate of AD onset. Neprilysin (NEP) is the dominant Abeta peptide-degrading enzyme in the brain; NEP becomes inactivated and down-regulated during both the early stages of AD and aging. In this study, we investigated the effect of human (h)NEP gene transfer to the brain in a mouse model of AD before the development of amyloid plaques, and assessed how this treatment modality affected the accumulation of Abeta peptide and associated pathogenetic changes (eg, inflammation, oxidative stress, and memory impairment). Overexpression of hNEP for 4 months in young APP/DeltaPS1 double-transgenic mice resulted in reduction in Abeta peptide levels, attenuation of amyloid load, oxidative stress, and inflammation, and improved spatial orientation. Moreover, the overall reduction in amyloidosis and associated pathogenetic changes in the brain resulted in decreased memory impairment by approximately 50%. These data suggest that restoring NEP levels in the brain at the early stages of AD is an effective strategy to prevent or attenuate disease progression.
Collapse
Affiliation(s)
- Salim S El-Amouri
- Department of Molecular and Cellular Biochemistry, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | |
Collapse
|
147
|
Bowman GL, Quinn JF. Alzheimer's disease and the Blood-Brain Barrier: Past, Present and Future. ACTA ACUST UNITED AC 2008; 4:47-55. [PMID: 19924258 DOI: 10.2217/1745509x.4.1.47] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Successful prevention and treatment of late-onset Alzheimer’s disease (AD) is a high priority for industrialized societies where the incidence is growing rapidly. Much of the underlying biology leading to AD is unknown, and the more knowledge we gain the more we appreciate the complexities involved. Popular etiologic hypotheses have largely ignored the blood–brain barrier (BBB) as an important factor contributing to the pathologic hallmarks of this most common form of dementia. Evidence identifying BBB dysfunction in AD or patients at risk (i.e., those with mild cognitive impairment) continue to escalate. This review highlights methodological issues facing investigators assessing BBB integrity in living patients while also discussing whether the BBB dysfunction is a cause, effect or epiphenomenon in AD. Rationale for future research pursuits aimed at describing the role of BBB function in AD pathogenesis is also presented.
Collapse
Affiliation(s)
- Gene L Bowman
- NIA-Layton Aging & Alzheimer's Disease Center, Oregon Health & Science University, Portland
| | | |
Collapse
|
148
|
Upadhya SC, Hegde AN. Role of the ubiquitin proteasome system in Alzheimer's disease. BMC BIOCHEMISTRY 2007; 8 Suppl 1:S12. [PMID: 18047736 PMCID: PMC2106363 DOI: 10.1186/1471-2091-8-s1-s12] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Though Alzheimer's disease (AD) is a syndrome with well-defined clinical and neuropathological manifestations, an array of molecular defects underlies its pathology. A role for the ubiquitin proteasome system (UPS) was suspected in the pathogenesis of AD since the presence of ubiquitin immunoreactivity in AD-related neuronal inclusions, such as neurofibrillary tangles, is seen in all AD cases. Recent studies have indicated that components of the UPS could be linked to the early phase of AD, which is marked by synaptic dysfunction, as well as to the late stages of the disease, characterized by neurodegeneration. Insoluble protein aggregates in the brain of AD patients could result from malfunction or overload of the UPS, or from structural changes in the protein substrates, which prevent their recognition and degradation by the UPS. Defective proteolysis could cause the synaptic dysfunction observed early in AD since the UPS is known to play a role in the normal functioning of synapses. In this review, we discuss recent observations on possible links between the UPS and AD, and the potential for utilizing UPS components as targets for treatment of this disease. Publication history: Republished from Current BioData's Targeted Proteins database (TPdb; ).
Collapse
Affiliation(s)
- Sudarshan C Upadhya
- Department of Neurobiology and Anatomy, Wake Forest University Health Sciences Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | |
Collapse
|
149
|
Gentile MT, Poulet R, Di Pardo A, Cifelli G, Maffei A, Vecchione C, Passarelli F, Landolfi A, Carullo P, Lembo G. Beta-amyloid deposition in brain is enhanced in mouse models of arterial hypertension. Neurobiol Aging 2007; 30:222-8. [PMID: 17673335 DOI: 10.1016/j.neurobiolaging.2007.06.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 06/04/2007] [Accepted: 06/07/2007] [Indexed: 10/23/2022]
Abstract
There are conflicting evidence regarding the association of hypertension with Alzheimer's disease (AD), and so far it is still unexplored whether increased blood pressure levels can be mechanistically related to the pathophysiology of AD. Since the deposition of beta-amyloid (A beta) in brain represents the first pathogenetic event in the onset of AD, in this study we investigated the role of hypertension in the brain deposition of A beta. We analyzed two independent mouse models of hypertension. In both models we observed an increased permeability of blood-brain barrier in cortex and hippocampus. More interestingly, in the same areas hypertensive mice showed a marked positivity to anti-A beta antibodies and the presence of A beta-like fragments. Finally, we analyzed mice after passive immunotherapy with anti-A beta IgG. We observed that this latter approach determined a markedly reduced A beta immunopositivity in both cortex and hippocampus. Our study demonstrates that chronic hypertension determines an impairment of the blood-brain barrier permeability with deposition of A beta in brain tissue and that passive immunotherapy prevents this latter phenomenon.
Collapse
|
150
|
Cervia D, Bagnoli P. An update on somatostatin receptor signaling in native systems and new insights on their pathophysiology. Pharmacol Ther 2007; 116:322-41. [PMID: 17719647 DOI: 10.1016/j.pharmthera.2007.06.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 06/28/2007] [Indexed: 12/20/2022]
Abstract
The peptide somatostatin (SRIF) has important physiological effects, mostly inhibitory, which have formed the basis for the clinical use of SRIF compounds. SRIF binding to its 5 guanine nucleotide-binding proteins-coupled receptors leads to the modulation of multiple transduction pathways. However, our current understanding of signaling exerted by receptors endogenously expressed in different cells/tissues reflects a rather complicated picture. On the other hand, the complexity of SRIF receptor signaling in pathologies, including pituitary and nervous system diseases, may be studied not only as alternative intervention points for the modulation of SRIF function but also to exploit new chemical space for drug-like molecules.
Collapse
Affiliation(s)
- Davide Cervia
- Department of Environmental Sciences, University of Tuscia, largo dell'Università snc, blocco D, 01100 Viterbo, Italy.
| | | |
Collapse
|