101
|
Vila N, Besada P, Viña D, Sturlese M, Moro S, Terán C. Synthesis, biological evaluation and molecular modeling studies of phthalazin-1(2H)-one derivatives as novel cholinesterase inhibitors. RSC Adv 2016. [DOI: 10.1039/c6ra03841g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of donepezil analogues based on phthalazin-1(2H)-one scaffold was studied as hChEIs. The biological results revealed that the structural modifications proposed significantly affected ChE inhibitory potency as well as selectivity AChE/BuChE.
Collapse
Affiliation(s)
- Noemí Vila
- Departamento de Química Orgánica
- Universidade de Vigo
- Vigo
- Spain
- Instituto de Investigación biomédica (IBI)
| | - Pedro Besada
- Departamento de Química Orgánica
- Universidade de Vigo
- Vigo
- Spain
- Instituto de Investigación biomédica (IBI)
| | - Dolores Viña
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS)
- Universidade de Santiago de Compostela
- Santiago de Compostela
- Spain
| | - Mattia Sturlese
- Molecular Modeling Section (MMS)
- Dipartimento di Scienze del Farmaco
- Università degli Studi di Padova
- Padova
- Italy
| | - Stefano Moro
- Molecular Modeling Section (MMS)
- Dipartimento di Scienze del Farmaco
- Università degli Studi di Padova
- Padova
- Italy
| | - Carmen Terán
- Departamento de Química Orgánica
- Universidade de Vigo
- Vigo
- Spain
- Instituto de Investigación biomédica (IBI)
| |
Collapse
|
102
|
Proteomics in Traditional Chinese Medicine with an Emphasis on Alzheimer's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:393510. [PMID: 26557146 PMCID: PMC4628675 DOI: 10.1155/2015/393510] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 07/27/2015] [Indexed: 12/12/2022]
Abstract
In recent years, there has been an increasing worldwide interest in traditional Chinese medicine (TCM). This increasing demand for TCM needs to be accompanied by a deeper understanding of the mechanisms of action of TCM-based therapy. However, TCM is often described as a concept of Chinese philosophy, which is incomprehensible for Western medical society, thereby creating a gap between TCM and Western medicine (WM). In order to meet this challenge, TCM research has applied proteomics technologies for exploring the mechanisms of action of TCM treatment. Proteomics enables TCM researchers to oversee various pathways that are affected by treatment, as well as the dynamics of their interactions with one another. This review discusses the utility of comparative proteomics to better understand how TCM treatment may be used as a complementary therapy for Alzheimer's disease (AD). Additionally, we review the data from comparative AD-related TCM proteomics studies and establish the relevance of the data with available AD hypotheses, most notably regarding the ubiquitin proteasome system (UPS).
Collapse
|
103
|
Zhu QY, Bi SW, Yao XT, Ni ZY, Li Y, Chen BY, Fan GG, Shang XL. Disruption of thalamic connectivity in Alzheimer's disease: a diffusion tensor imaging study. Metab Brain Dis 2015; 30:1295-308. [PMID: 26141074 DOI: 10.1007/s11011-015-9708-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/26/2015] [Indexed: 12/15/2022]
Abstract
The aim of this study was to evaluate the structural integrity of the thalamic connectivity of specific fiber tracts in different stages of Alzheimer's disease (AD) using diffusion tensor imaging (DTI). Thirty-five patients with AD and 22 normal control (NC) subjects were recruited. Based on Mini Mental State Examination score, the AD patients were divided into three subgroups for comparison with the NC group: mild (mi-AD, n = 14), moderate (mo-AD, n = 12), and severe (se-AD, n = 9) AD. The fornix (FX), anterior thalamic radiation (ATR), and posterior thalamic radiation (PTR) were selected to represent the thalamic connectivity with other brain regions. The fornix was divided into the column and body of the fornix (FX-1) and the bilateral fornix (crus)/stria terminalis (FX-2/ST) based on the atlas. Through the atlas-based analysis and fiber tracking method, we measured fractional anisotropy (FA), mean diffusivity (MD), and tract volume to reflect the microstructural and macrostructural changes of these fibers during AD progression. There were significant differences in the FA and MD of all fibers, except the right PTR, between the AD and NC subjects. Further subgroup analyses revealed that the mi-AD subgroup had decreased FA only in the FX-1 and increased MD in the FX-1 and bilateral ATR, the mo-AD subgroup showed declined FA and increased MD in the FX-1, bilateral FX-2/ST and ATR; the se-AD subgroup exhibited lower FA and higher MD values in all fibers except the right PTR. We also found reduced tract volume values in the FX and left ATR in the AD patients. Further subgroup analyses revealed that these differences only existed in the se-AD patients. Our DTI analyses indicate that the integrity of thalamic connectivity is progressively disrupted following cognitive decline in AD and that DTI parameters in the column and body of the fornix show promise as potential markers for the early diagnosis of AD and for monitoring disease progression.
Collapse
Affiliation(s)
- Qing-Yong Zhu
- Department of Neurology, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Saeed A, Zaib S, Ashraf S, Iftikhar J, Muddassar M, Zhang KYJ, Iqbal J. Synthesis, cholinesterase inhibition and molecular modelling studies of coumarin linked thiourea derivatives. Bioorg Chem 2015; 63:58-63. [PMID: 26440714 DOI: 10.1016/j.bioorg.2015.09.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/14/2015] [Accepted: 09/28/2015] [Indexed: 12/27/2022]
Abstract
Alzheimer's disease is among the most widespread neurodegenerative disorder. Cholinesterases (ChEs) play an indispensable role in the control of cholinergic transmission and thus the acetylcholine level in the brain is enhanced by inhibition of ChEs. Coumarin linked thiourea derivatives were designed, synthesized and evaluated biologically in order to determine their inhibitory activity against acetylcholinesterases (AChE) and butyrylcholinesterases (BChE). The synthesized derivatives of coumarin linked thiourea compounds showed potential inhibitory activity against AChE and BChE. Among all the synthesized compounds, 1-(2-Oxo-2H-chromene-3-carbonyl)-3-(3-chlorophenyl)thiourea (2e) was the most potent inhibitor against AChE with an IC50 value of 0.04±0.01μM, while 1-(2-Oxo-2H-chromene-3-carbonyl)-3-(2-methoxyphenyl)thiourea (2b) showed the most potent inhibitory activity with an IC50 value of 0.06±0.02μM against BChE. Molecular docking simulations were performed using the homology models of both cholinesterases in order to explore the probable binding modes of inhibitors. Results showed that the novel synthesized coumarin linked thiourea derivatives are potential candidates to develop for potent and efficacious acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors.
Collapse
Affiliation(s)
- Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad, Pakistan
| | - Sumera Zaib
- Centre for Advanced Drug Research, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
| | - Saba Ashraf
- Department of Chemistry, Quaid-I-Azam University, Islamabad, Pakistan
| | - Javeria Iftikhar
- Centre for Advanced Drug Research, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
| | - Muhammad Muddassar
- Structural Bioinformatics Team, Division of Structural and Synthetic Biology, Center for Life Science Technologies, RIKEN, 1-7-22 Suehiro, Yokohama, Kanagawa 230-0045, Japan; Department of Biosciences, COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan
| | - Kam Y J Zhang
- Structural Bioinformatics Team, Division of Structural and Synthetic Biology, Center for Life Science Technologies, RIKEN, 1-7-22 Suehiro, Yokohama, Kanagawa 230-0045, Japan
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan.
| |
Collapse
|
105
|
Rojsanga P, Sithisarn P, Tanaka K, Mizuki D, Matsumoto K. Thunbergia laurifolia extract ameliorates cognitive and emotional deficits in olfactorectomized mice. PHARMACEUTICAL BIOLOGY 2015; 53:1141-1148. [PMID: 25609149 DOI: 10.3109/13880209.2014.962059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Thunbergia laurifolia Lindl. (Acanthaceae) is a Thai medicinal plant used for the detoxification of poison which is likely to be beneficial for the treatment of cognitive deficits including Alzheimer's disease. OBJECTIVE To elucidate the effects of Thunbergia laurifolia leaf extract (TLL) on cognitive dysfunction and depression-like behavior in olfactory bulbectomized mice (OBX). MATERIALS AND METHODS OBX mice were treated daily with TLL at the dose of 250 and 500 mg/kg, tacrine, and imipramine, on the day after 10 d of OBX operation. The effects of TLL on cognitive and depression-like behavior of the animals were analyzed. After completing behavioral experiments, the expression levels of cholinergic marker genes encoding ChAT and muscarinic M1 receptor were quantitatively analyzed. RESULTS TLL and tacrine reduced OBX-induced cognitive deficits in the object recognition test (ORT) with the time spent for the novel object two times longer than that of the familiar object. Moreover, TLL at the dose of 500 mg/kg and imipramine ameliorated depression-like behavior in the tail suspension test (TST) by reducing the duration of immobility from 25.18% to 3.16% and from 25.18% to 6.48%, respectively. TLL at the dose of 250 and 500 mg/kg reversed the OBX-induced down-regulation of ChAT mRNA expression in the hippocampus from 0.12 to 0.17 and 0.24, respectively, while the down-regulation of mRNA expression of muscarinic M1 receptor was also reversed by TLL from 0.23 to 0.38 and 0.48, respectively. CONCLUSIONS TLL ameliorates non-spatial short-term memory deficits in OBX mice, and has the potential to exhibit an antidepressant-like action.
Collapse
|
106
|
Synthesis, biological evaluation and molecular modeling of new tetrahydroacridine derivatives as potential multifunctional agents for the treatment of Alzheimer's disease. Bioorg Med Chem 2015; 23:5610-8. [PMID: 26242241 DOI: 10.1016/j.bmc.2015.07.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/11/2015] [Accepted: 07/15/2015] [Indexed: 12/22/2022]
Abstract
A novel series of 9-amino-1,2,3,4-tetrahydroacridine derivatives with 4-dimethylaminobenzoic acid moiety was synthesized and tested towards inhibition of cholinesterases and amyloid β aggregation. Target compounds were designed as dual binding site cholinesterase inhibitors able to bind to both the catalytic and the peripheral site of the enzyme and therefore potentially endowed with other properties. The obtained derivatives were very potent inhibitors of both cholinesterases (EeAChE, EqBChE) with IC50 values ranging from sub-nanomolar to nanomolar range, and the inhibitory potency of the most promising agents was higher than that of the reference drugs (rivastigmine and tacrine). The kinetic studies of the most active compound 3a revealed competitive type of AChE inhibition. Moreover, all target compounds were more potent inhibitors of human AChE than tacrine with the most active compound 3b (IC50 = 19 nM). Compound 3a was also tested and displayed inhibitory potency against AChE-induced Aβ 1-42 aggregation (80.6% and 91.3% at 50 μM and 100 μM screening concentration, respectively). Moreover, cytotoxicity assay performed on A549 cells did not indicate toxicity of this agent. Compound 3a is a promising candidate for further development of novel multi-functional agents in the therapy of AD.
Collapse
|
107
|
Atri A, Stern TA. Psychopharmacologic Agents to Enhance Cognition in Alzheimer’s Disease. Psychiatr Ann 2015. [DOI: 10.3928/00485713-20150626-07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
108
|
Vandal M, Bourassa P, Calon F. Can insulin signaling pathways be targeted to transport Aβ out of the brain? Front Aging Neurosci 2015; 7:114. [PMID: 26136681 PMCID: PMC4468380 DOI: 10.3389/fnagi.2015.00114] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 05/29/2015] [Indexed: 12/11/2022] Open
Abstract
Although the causal role of Amyloid-β (Aβ) in Alzheimer’s disease (AD) is unclear, it is still reasonable to expect that lowering concentrations of Aβ in the brain may decrease the risk of developing the neurocognitive symptoms of the disease. Brain capillary endothelial cells forming the blood-brain barrier (BBB) express transporters regulating the efflux of Aβ out of the cerebral tissue. Age-related BBB dysfunctions, that have been identified in AD patients, might impair Aβ clearance from the brain. Thus, targeting BBB outward transport systems has been suggested as a way to stimulate the clearance of Aβ from the brain. Recent data indicate that the increase in soluble brain Aβ and behavioral impairments in 3×Tg-AD mice generated by months of intake of a high-fat diet can be acutely reversed by the administration of a single dose of insulin. A concomitant increase in plasma Aβ suggests that clearance from the brain through the BBB is a likely mechanism for this rapid effect of insulin. Here, we review how BBB insulin response pathways could be stimulated to decrease brain Aβ concentrations and improve cognitive performance, at least on the short term.
Collapse
Affiliation(s)
- Milene Vandal
- Faculté de Pharmacie, Université Laval Quebec, QC, Canada ; Axe Neurosciences, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUL) Québec, QC, Canada ; Institut des Nutraceutiques et des Aliments Fonctionnels, Université Laval Québec, QC, Canada
| | - Philippe Bourassa
- Faculté de Pharmacie, Université Laval Quebec, QC, Canada ; Axe Neurosciences, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUL) Québec, QC, Canada ; Institut des Nutraceutiques et des Aliments Fonctionnels, Université Laval Québec, QC, Canada
| | - Frédéric Calon
- Faculté de Pharmacie, Université Laval Quebec, QC, Canada ; Axe Neurosciences, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUL) Québec, QC, Canada ; Institut des Nutraceutiques et des Aliments Fonctionnels, Université Laval Québec, QC, Canada
| |
Collapse
|
109
|
NDP-α-MSH induces intense neurogenesis and cognitive recovery in Alzheimer transgenic mice through activation of melanocortin MC4 receptors. Mol Cell Neurosci 2015; 67:13-21. [PMID: 26003413 DOI: 10.1016/j.mcn.2015.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 05/15/2015] [Accepted: 05/20/2015] [Indexed: 01/01/2023] Open
Abstract
Melanocortins exert neuroprotection in a variety of experimental neurodegenerative disorders, including Alzheimer's disease (AD). Further, in previous research we showed that these endogenous peptides stimulate neurogenesis in an acute neurodegenerative disorder such as ischemic stroke. In the present research, we investigated the potential neurogenic effect of melanocortins in AD using APPSwe transgenic mice (Tg2576). To this purpose, 24week-old animals were prepared for 5-bromo-2'-deoxyuridine (BrdU) labeling of proliferating cells on days 1-11 of the study. Treatment of Tg2576 mice with nanomolar doses of the melanocortin analog [Nle(4),D-Phe(7)]α-melanocyte-stimulating hormone (NDP-α-MSH), administered once daily from day 1 to 50, improved brain histology and cognitive functions relative to saline-treated Tg2576 animals. No signs of toxicity were observed. Immunohistochemical examination of the hippocampus at the end of the study (day 50) showed that NDP-α-MSH-treated Tg2576 mice had a greater number of BrdU immunoreactive cells colocalized with NeuN (an indicator of mature neurons) and Zif268 (an indicator of functionally integrated neurons) in the dentate gyrus, relative to saline-treated Tg2576 animals; no newly formed astrocytes were found. Animal pretreatment with the selective melanocortin MC4 receptor antagonist HS024 before each NDP-α-MSH administration prevented all the beneficial effects of the peptide. The present data indicate that MC4 receptor stimulation by a melanocortin prevents cognitive decline in experimental AD, this effect being associated not only with neuroprotection but also with an intense neurogenesis. MC4 receptor agonists could be innovative and safe candidates to counteract AD progression in humans.
Collapse
|
110
|
Cheng S, Zheng W, Gong P, Zhou Q, Xie Q, Yu L, Zhang P, Chen L, Li J, Chen J, Chen H, Chen H. (-)-Meptazinol-melatonin hybrids as novel dual inhibitors of cholinesterases and amyloid-β aggregation with high antioxidant potency for Alzheimer's therapy. Bioorg Med Chem 2015; 23:3110-8. [PMID: 26025073 DOI: 10.1016/j.bmc.2015.04.084] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/28/2015] [Accepted: 04/30/2015] [Indexed: 01/22/2023]
Abstract
The multifactorial pathogenesis of Alzheimer's disease (AD) implicates that multi-target-directed ligands (MTDLs) intervention may represent a promising therapy for AD. Amyloid-β (Aβ) aggregation and oxidative stress, two prominent neuropathological hallmarks in patients, play crucial roles in the neurotoxic cascade of this disease. In the present study, a series of novel (-)-meptazinol-melatonin hybrids were designed, synthesized and biologically characterized as potential MTDLs against AD. Among them, hybrids 7-7c displayed higher dual inhibitory potency toward cholinesterases (ChEs) and better oxygen radical absorbance capacity (ORAC) than the parental drugs. Furthermore, compound 7c could effectively inhibit Aβ self-aggregation, showed favorable safety and the blood-brain barrier (BBB) permeability. Therefore, 7c may serve as a valuable candidate that is worthy of further investigations in the treatment of AD.
Collapse
Affiliation(s)
- Shaobing Cheng
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Wei Zheng
- NPFPC Key Laboratory of Contraceptives Drugs & Devices, Shanghai Institute of Planned Parenthood Research, 2140 Xietu Road, Shanghai 200032, PR China.
| | - Ping Gong
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, PR China
| | - Qiang Zhou
- Putuo Hospital Affiliated to Shanghai University of Traditional Chinese Medical, 164 Lanxi Road, Shanghai 200062, PR China
| | - Qiong Xie
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Lining Yu
- NPFPC Key Laboratory of Contraceptives Drugs & Devices, Shanghai Institute of Planned Parenthood Research, 2140 Xietu Road, Shanghai 200032, PR China
| | - Peiyi Zhang
- NPFPC Key Laboratory of Contraceptives Drugs & Devices, Shanghai Institute of Planned Parenthood Research, 2140 Xietu Road, Shanghai 200032, PR China
| | - Liangkang Chen
- NPFPC Key Laboratory of Contraceptives Drugs & Devices, Shanghai Institute of Planned Parenthood Research, 2140 Xietu Road, Shanghai 200032, PR China
| | - Juan Li
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, PR China.
| | - Jianxing Chen
- NPFPC Key Laboratory of Contraceptives Drugs & Devices, Shanghai Institute of Planned Parenthood Research, 2140 Xietu Road, Shanghai 200032, PR China
| | - Hailin Chen
- NPFPC Key Laboratory of Contraceptives Drugs & Devices, Shanghai Institute of Planned Parenthood Research, 2140 Xietu Road, Shanghai 200032, PR China
| | - Hongzhuan Chen
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, PR China
| |
Collapse
|
111
|
Folch J, Petrov D, Ettcheto M, Pedrós I, Abad S, Beas-Zarate C, Lazarowski A, Marin M, Olloquequi J, Auladell C, Camins A. Masitinib for the treatment of mild to moderate Alzheimer's disease. Expert Rev Neurother 2015; 15:587-96. [PMID: 25961655 DOI: 10.1586/14737175.2015.1045419] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a degenerative neurological disorder that is the most common cause of dementia and disability in older patients. Available treatments are symptomatic in nature and are only sufficient to improve the quality of life of AD patients temporarily. A potential strategy, currently under investigation, is to target cell-signaling pathways associated with neurodegeneration, in order to decrease neuroinflammation, excitotoxicity, and to improve cognitive functions. Current review centers on the role of neuroinflammation and the specific contribution of mast cells to AD pathophysiology. The authors look at masitinib therapy and the evidence presented through preclinical and clinical trials. Dual actions of masitinib as an inhibitor of mast cell-glia axis and a Fyn kinase blocker are discussed in the context of AD pathology. Masitinib is in Phase III clinical trials for the treatment of malignant melanoma, mastocytosis, multiple myeloma, gastrointestinal cancer and pancreatic cancer. It is also in Phase II/III clinical trials for the treatment of multiple sclerosis, rheumatoid arthritis and AD. Additional research is warranted to better investigate the potential effects of masitinib in combination with other drugs employed in AD treatment.
Collapse
Affiliation(s)
- Jaume Folch
- Unitat de Bioquimica i Biotecnología, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Tarragona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Li Y, Hai S, Zhou Y, Dong BR. Cholinesterase inhibitors for rarer dementias associated with neurological conditions. Cochrane Database Syst Rev 2015; 2015:CD009444. [PMID: 25734590 PMCID: PMC10644993 DOI: 10.1002/14651858.cd009444.pub3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Rarer dementias include Huntington's disease (HD), cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), frontotemporal dementia (FTD), dementia in multiple sclerosis (MS) and progressive supranuclear palsy (PSP). Cholinesterase inhibitors, including donepezil, galantamine and rivastigmine, are considered to be the first-line medicines for Alzheimer's disease and some other dementias, such as dementia in Parkinson's disease. Cholinesterase inhibitors are hypothesised to work by inhibiting the enzyme acetylcholinesterase (AChE) which breaks down the neurotransmitter acetylcholine. Cholinesterase inhibitors may also lead to clinical improvement for rarer dementias associated with neurological conditions. OBJECTIVES To assess the efficacy and safety of cholinesterase inhibitors for cognitive impairment or dementia associated with neurological conditions. SEARCH METHODS We searched the Cochrane Dementia and Cognitive Improvement Group's Specialised Register, CENTRAL, MEDLINE, EMBASE, PsycINFO, CINAHL, LILACS, several trial registries and grey literature sources in August 2013. SELECTION CRITERIA We included randomised, double-blind, controlled trials assessing the efficacy of treatment of rarer dementias associated with neurological conditions with currently marketed cholinesterase inhibitors. DATA COLLECTION AND ANALYSIS Two review authors independently assessed eligibility and quality of trials, and extracted data. We used the standard methodological procedures of the Cochrane Collaboration. MAIN RESULTS We included eight RCTs involving 567 participants. Six studies used a simple parallel-group design; the other two consisted of an open-label treatment period followed by a randomised phase. All trials were well concealed for allocation and double-blind, however the sample sizes of most trials were small. All trials used placebo as control. We performed meta-analyses for some outcomes in patients with MS. For all other conditions, results are presented narratively.Two trials included patients with HD; one found that cholinesterase inhibitor use in the short-term had no statistically significant impact on the cognitive portion of the Alzheimer Disease Assessment Scale (ADAS-Cog; 1 study, WMD 1.00, 95% CI -1.66 to 3.66, P = 0.46; low quality evidence), Unified Huntington's Disease Rating Scale (UHDRS) Verbal Fluency Test (1 study, WMD -1.20, 95% CI -7.97 to 5.57, P = 0.73; low quality evidence), UHDRS Symbol Digit Modalities Test (SDMT; 1 study, WMD 2.70, 95% CI -0.95 to 6.35, P = 0.15; low quality evidence) and other psychometric tests. The other study found that cholinesterase inhibitor use in the medium-term improved the results of the verbal fluency test (1 study, WMD 6.43, 95% CI 0.66 to 12.20, P = 0.03; moderate quality evidence) and California Verbal Learning Test - Second Edition (CVLT-II) Recognition Task (1 study, WMD 2.42, 95% CI 0.17 to 4.67, P = 0.04; moderate quality evidence). There was no statistically significant difference between groups on the SDMT (1 study, WMD -0.31, 95% CI -7.77 to 7.15, P = 0.94; moderate quality evidence), CVLT-II trials 1-5 (1 study, WMD -2.09, 95% CI -11.65 to 7.47, P = 0.67; moderate quality evidence), short-delay recall (1 study, WMD 0.35, 95% CI -2.87 to 3.57, P = 0.83; moderate quality evidence), or long-delay recall (1 study, WMD -0.14, 95% CI -3.08 to 2.80, P = 0.93; moderate quality evidence), and other psychometric tests.Four trials included patients with MS; one found no differences between the cholinesterase inhibitors (short-term) and placebo groups on the Wechsler Memory Scales general memory score (1 study, WMD 0.90, 95% CI -0.52 to 2.32, P = 0.22; low quality evidence). The three other trials found that, in the medium-term - cholinesterase inhibitors improved the clinician's impression of cognitive change (2 studies, OR 1.96, 95% CI 1.06 to 3.62, P = 0.03; high quality evidence). However, the treatment effect on other aspects of cognitive change were unclear, measured by the Selective Reminding Test (3 studies, WMD 1.47, 95% CI -0.39 to 3.32, P = 0.12; high quality evidence), patient's self-reported impression of memory change (2 studies, OR 1.67, 95% CI 0.93 to 3.00, P = 0.08; high quality evidence) and cognitive change (1 study, OR 0.95, 95% CI 0.45 to 1.98, P = 0.89; high quality evidence), clinician's impression of memory change (1 study, OR 1.50, 95% CI 0.59 to 3.84, P = 0.39; moderate quality evidence), other psychometric tests, and activities of daily living - patient reported impact of multiple sclerosis activities (1 study, WMD -1.18, 95% CI -3.02 to 0.66, P = 0.21; low quality evidence).One study on patients with CADASIL found a beneficial effect of cholinesterase inhibitors on the Executive interview, and Trail Making Test parts A and B. The impact of cholinesterase inhibitors on the Vascular ADAS-Cog score (1 study, WMD 0.04, 95% CI -1.57 to 1.65, P = 0.96; high quality evidence), the Clinical Dementia Rating Scale Sum of Boxes (1 study, WMD -0.09, 95% CI -0.48 to 0.03, P = 0.65; high quality evidence) Disability Assessment for Dementia scale (1 study, WMD 0.58, 95% CI -2.72 to 3.88, P = 0.73; moderate quality evidence), and other measures was unclearOne study included patients with FTD. This trial consisted of an open-label treatment period followed by a randomised, double-blind, placebo-controlled phase. No data of primary outcomes were reported in this study.In the included studies, the most common side effect was gastrointestinal symptoms. For all conditions, compared to the treatment group, the placebo group experienced significantly less nausea (6 studies, 44/257 vs. 22/246, OR 2.10, 95% CI 1.22 to 3.62, P = 0.007; high quality evidence), diarrhoea (6 studies, 40/257 vs. 13/246, OR 3.26, 95% CI 1.72 to 6.19, P = 0.0003; moderate quality evidence) and vomiting (3 studies, 17/192 vs. 3/182, OR 5.76, 95% CI 1.67 to 19.87, P = 0.006; moderate quality evidence). AUTHORS' CONCLUSIONS The sample sizes of most included trials were small, and some of the results were extracted from only one study. There were no poolable data for HD, CADASIL and FTD patients and there were no results for patients with PSP. Current evidence shows that the efficacy on cognitive function and activities of daily living of cholinesterase inhibitors in people with HD, CADASIL, MS, PSP or FTD is unclear, although cholinesterase inhibitors are associated with more gastrointestinal side effects compared with placebo.
Collapse
Affiliation(s)
- Ying Li
- West China Hospital, Sichuan UniversityCenter of Geriatrics and GerontologyNo. 37, Guo Xue XiangChengduSichuanChina610041
| | - Shan Hai
- West China Hospital, Sichuan UniversityCenter of Geriatrics and GerontologyNo. 37, Guo Xue XiangChengduSichuanChina610041
| | - Yan Zhou
- West China Hospital, Sichuan UniversityCenter of Geriatrics and GerontologyNo. 37, Guo Xue XiangChengduSichuanChina610041
| | - Bi Rong Dong
- West China Hospital, Sichuan UniversityCenter of Geriatrics and GerontologyNo. 37, Guo Xue XiangChengduSichuanChina610041
| | | |
Collapse
|
113
|
Zhou Q, Wang M, Du Y, Zhang W, Bai M, Zhang Z, Li Z, Miao J. Inhibition of c-Jun N-terminal kinase activation reverses Alzheimer disease phenotypes in APPswe/PS1dE9 mice. Ann Neurol 2015; 77:637-54. [PMID: 25611954 DOI: 10.1002/ana.24361] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/02/2015] [Accepted: 01/08/2015] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Growing evidence indicates that the activation of c-Jun N-terminal kinase (JNK) is implicated in the multiple major pathological features of Alzheimer disease (AD). However, whether specific inhibition of JNK activation could prevent disease progression in adult transgenic AD models at moderate stage remains unknown. Here we first investigated the potential disease-modifying therapeutic effect of systemic administration of SP600125, a small-molecule JNK-specific inhibitor, in middle-aged APPswe/PS1dE9 mice. METHODS Using behavioral, histological, and biochemical methods, outcomes of SP600125 treatment on neuropathology and cognitive deficits were studied in APPswe/PS1dE9 mice. RESULTS Compared with vehicle-treated APPswe/PS1dE9 mice, chronic treatment of SP600125 for 12 weeks potently inhibited JNK activation, which resulted in a marked improvement of behavioral measures of cognitive deficits and a dramatic reduction in amyloid plaque burden, β-amyloid production, tau hyperphosphorylation, inflammatory responses, and synaptic loss in these transgenic animals. In particular, we found that SP600125 treatment strongly promoted nonamyloidogenic amyloid precursor protein (APP) processing and inhibited amyloidogenic APP processing via regulating APP-cleavage secretase expression (ie, ADAM10, BACE1, and PS1) in APPswe/PS1dE9 mice. INTERPRETATION Our findings demonstrate that chronic SP600125 treatment is powerfully effective in slowing down disease progression by markedly reducing multiple pathological features and ameliorating cognitive deficits associated with AD. This study highlights the concept that active JNK actually contributes to the development of the disease, and provides critical preclinical evidence that specific inhibition of JNK activation by SP600125 treatment may be a novel promising disease-modifying therapeutic strategy for the treatment of AD.
Collapse
Affiliation(s)
- Qiong Zhou
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | |
Collapse
|
114
|
A polysaccharide from Polygonatum sibiricum attenuates amyloid-β-induced neurotoxicity in PC12 cells. Carbohydr Polym 2015; 117:879-886. [DOI: 10.1016/j.carbpol.2014.10.034] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 10/08/2014] [Accepted: 10/09/2014] [Indexed: 11/24/2022]
|
115
|
Takahashi K, Kong Q, Lin Y, Stouffer N, Schulte DA, Lai L, Liu Q, Chang LC, Dominguez S, Xing X, Cuny GD, Hodgetts KJ, Glicksman MA, Lin CLG. Restored glial glutamate transporter EAAT2 function as a potential therapeutic approach for Alzheimer's disease. ACTA ACUST UNITED AC 2015; 212:319-32. [PMID: 25711212 PMCID: PMC4354363 DOI: 10.1084/jem.20140413] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Takahashi et al. demonstrate that restoring glial glutamate transporter EAAT2 function improves cognitive functions and synaptic integrity while reducing amyloid plaques in a sustained fashion after treatment cessation. Glutamatergic systems play a critical role in cognitive functions and are known to be defective in Alzheimer’s disease (AD) patients. Previous literature has indicated that glial glutamate transporter EAAT2 plays an essential role in cognitive functions and that loss of EAAT2 protein is a common phenomenon observed in AD patients and animal models. In the current study, we investigated whether restored EAAT2 protein and function could benefit cognitive functions and pathology in APPSw,Ind mice, an animal model of AD. A transgenic mouse approach via crossing EAAT2 transgenic mice with APPSw,Ind. mice and a pharmacological approach using a novel EAAT2 translational activator, LDN/OSU-0212320, were conducted. Findings from both approaches demonstrated that restored EAAT2 protein function significantly improved cognitive functions, restored synaptic integrity, and reduced amyloid plaques. Importantly, the observed benefits were sustained one month after compound treatment cessation, suggesting that EAAT2 is a potential disease modifier with therapeutic potential for AD.
Collapse
Affiliation(s)
- Kou Takahashi
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210
| | - Qiongman Kong
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210
| | - Yuchen Lin
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210
| | - Nathan Stouffer
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210
| | - Delanie A Schulte
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210
| | - Liching Lai
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210
| | - Qibing Liu
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210
| | - Ling-Chu Chang
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210
| | - Sky Dominguez
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210
| | - Xuechao Xing
- Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Gregory D Cuny
- Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115 Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX 77004
| | - Kevin J Hodgetts
- Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Marcie A Glicksman
- Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
116
|
Lancioni GE, Singh NN, O'Reilly MF, Sigafoos J, D'Amico F, Sasanelli G, De Vanna F, Signorino M. Persons with Alzheimer's disease engage in leisure and mild physical activity with the support of technology-aided programs. RESEARCH IN DEVELOPMENTAL DISABILITIES 2015; 37:55-63. [PMID: 25460220 DOI: 10.1016/j.ridd.2014.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 11/06/2014] [Indexed: 06/04/2023]
Abstract
Three studies were conducted to assess technology-aided programs to promote leisure engagement and mild physical activity in persons with Alzheimer's disease. Specifically, Study I assessed a program aimed at enabling three patients with mild or moderate Alzheimer's disease to choose among different music options and activate the preferred ones. Studies II and III were directed at patients in the low moderate or severe stages of the Alzheimer's disease who were no longer capable of ambulating and spent their time generally inactive, sitting in their wheelchairs. In particular, Study II used a program to help three patients exercise an arm-raising movement. Study III used a program to help three patients exercise a leg-foot movement. Each study was carried out according to a nonconcurrent multiple baseline design across patients. Results were very encouraging. The patients of Study I learned to choose and activate their preferred music pieces. The patients of Studies II and III enhanced their performance of the target movements and increased their indices of positive participation (e.g., smiles and verbalizations) during the sessions. The applicability of the programs in daily contexts and their implications for the patients involved are discussed.
Collapse
Affiliation(s)
| | - Nirbhay N Singh
- Medical College of Georgia, Georgia Regents University, Augusta, USA
| | | | | | | | | | | | | |
Collapse
|
117
|
Design, synthesis and in vitro testing of 7-methoxytacrine-amantadine analogues: a novel cholinesterase inhibitors for the treatment of Alzheimer’s disease. Med Chem Res 2015. [DOI: 10.1007/s00044-015-1316-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
118
|
Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds. CHEMICAL PAPERS 2015. [DOI: 10.2478/s11696-014-0542-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AbstractAcetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are enzymes expressed in the human body under physiological conditions. AChE is an important part of the cholinergic nerves where it hydrolyses neurotransmitter acetylcholine. Both cholinesterases are sensitive to inhibitors acting as neurotoxic compounds. In analytical applications, the enzymes can serve as a biorecognition element in biosensors as well as simple disposable sensors (dipsticks) and be used for assaying the neurotoxic compounds. In the present review, the mechanism of AChE and BChE inhibition by disparate compounds is explained and methods for assaying the enzymes activity are shown. Optical, electrochemical, and piezoelectric biosensors are described. Attention is also given to the application of sol-gel techniques and quantum dots in the biosensors’ construction. Examples of the biosensors are provided and the pros and cons are discussed.
Collapse
|
119
|
Yamchuen P, Aimjongjun S, Limpeanchob N. Oxidized low density lipoprotein increases acetylcholinesterase activity correlating with reactive oxygen species production. Neurochem Int 2014; 78:1-6. [DOI: 10.1016/j.neuint.2014.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/30/2014] [Accepted: 07/24/2014] [Indexed: 01/08/2023]
|
120
|
Dong H, Wang S, Zeng Z, Li F, Montalvo-Ortiz J, Tucker C, Akhtar S, Shi J, Meltzer HY, Rice KC, Csernansky JG. Effects of corticotrophin-releasing factor receptor 1 antagonists on amyloid-β and behavior in Tg2576 mice. Psychopharmacology (Berl) 2014; 231:4711-22. [PMID: 24862368 PMCID: PMC4233002 DOI: 10.1007/s00213-014-3629-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 05/14/2014] [Indexed: 12/11/2022]
Abstract
RATIONALE Previous studies indicate that psychosocial stressors could accelerate amyloid-β (Aβ) levels and accelerate plaque deposition in mouse models of Alzheimer disease (AD). Stressors enhanced the release of corticotrophin-releasing factor (CRF), and exogenous CRF administration mimicked the effects of stress on Aβ levels in mouse models of AD. However, whether CRF receptor 1 (CRF1) antagonists could influence the stress-induced acceleration of an AD-like process in mouse models has not been well studied. OBJECTIVE We sought to examine whether CRF1 antagonists inhibit the effects of isolation stress on tissue Aβ levels, Aβ plaque deposition, and behaviors related to anxiety and memory in Tg2576 mice, and to investigate the molecular mechanism underlying such effects. METHODS Cohorts of Tg2576 mouse pups were isolated or group-housed at 21 days of age, and then the subgroups of these cohorts received daily intraperitoneal injections of the CRF1 antagonists, antalarmin or R121919 (5, 10, and 20 mg/kg), or vehicle for 1 week. Other cohorts of Tg2576 mouse pups were isolated or group-housed at 21 days of age, and then at 4 months of age, subgroups of these mice were administered antalarmin (20 mg/kg) or vehicle in their drinking water for 6 months. Finally, cultured primary hippocampal neurons from regular Tg2576 pups (P0) were incubated with CRF (0.1, 1, and 10 nM), antalarmin (100 nM) or H-89 (1 μM) for 48 h. Brain tissues or cultured neurons were collected for histological and biochemical analyses, and behavioral measures were collected in the cohorts of mice that were chronically stressed. RESULTS Administration of antalarmin at 20 mg/kg dose for 1 week significantly reduced Aβ1-42 levels in isolation stressed mice. Administration of antalarmin for 6 months significantly decreased plasma corticosterone levels, tissue Aβ1-42 levels, and Aβ plaque deposition in the brain and blocked the effects of isolation stress on behaviors related to anxiety and memory. Finally, incubation of neurons with 100 nM antalarmin inhibited the ability of 10 nM CRF to increase Aβ1-42 levels and protein kinase A IIβ expression. The effect of CRF1 on Aβ1-42 levels was also diminished by treatment with H-89, a c-AMP/PKA inhibitor. CONCLUSIONS These results suggest that CRF1 antagonists can slow an AD-like process in Tg2576 mice and that the c-AMP/PKA signaling pathway may be involved in this effect.
Collapse
Affiliation(s)
- Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Feinberg School Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Salem AM, Ahmed HH, Atta HM, Ghazy MA, Aglan HA. Potential of bone marrow mesenchymal stem cells in management of Alzheimer's disease in female rats. Cell Biol Int 2014; 38:1367-83. [PMID: 25044885 DOI: 10.1002/cbin.10331] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 05/17/2014] [Indexed: 07/27/2024]
Abstract
Alzheimer's disease (AD) has been called the disease of the century with significant clinical and socioeconomic impacts. Pharmacological treatment has limited efficacy and only provides symptomatic relief without long-term cure. Accordingly, there is an urgent need to develop novel and effective medications for AD. Stem cell-based therapy is a promising approach to handling neurodegenerative diseases. Therefore, the current study aimed to explore the possible therapeutic role of single intravenous injection of bone marrow derived mesenchymal stem cells (BM-MSCs) after 4 months in management of AD in the experimental model. The work also extended to compare the therapeutic potential of BM-MSCs with 2 conventional therapies of AD; rivastigmine and cerebrolysin administered daily. BM-MSCs were able to home at the injured brains and produced significant increases in the number of positive cells for choline acetyltransferase (ChAT) and survivin expression, as well as selective AD indicator-1 (seladin-1) and nestin gene expression. Histopathological examination indicated that BM-MSCs could remove beta-amyloid plaques from hippocampus. Significant improvement in these biomarkers was similar to or better sometimes than the reference drugs, clearly showing the potential therapeutic role of BM-MSCs against AD through their anti-apoptotic, neurogenic and immunomodulatory properties.
Collapse
Affiliation(s)
- Ahmed M Salem
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | | | | | | | | |
Collapse
|
122
|
Protection of Radial Glial-Like Cells in the Hippocampus of APP/PS1 Mice: a Novel Mechanism of Memantine in the Treatment of Alzheimer’s Disease. Mol Neurobiol 2014; 52:464-77. [DOI: 10.1007/s12035-014-8875-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 08/25/2014] [Indexed: 12/14/2022]
|
123
|
Lancioni GE, Singh NN, O'Reilly MF, Sigafoos J, Renna C, Pinto K, De Vanna F, Caffò AO, Stasolla F. Persons with moderate Alzheimer's disease use simple technology aids to manage daily activities and leisure occupation. RESEARCH IN DEVELOPMENTAL DISABILITIES 2014; 35:2117-2128. [PMID: 24881006 DOI: 10.1016/j.ridd.2014.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 05/05/2014] [Indexed: 06/03/2023]
Abstract
Two studies assessed technology-aided programs to support performance of daily activities and selection/activation of music items with patients with moderate Alzheimer's disease. In Study I, four patients were presented with activity-related pictorial instructions via a computer fitted with inexpensive, commercial software. In Study II, four patients were (a) presented with different music options and (b) allowed to select and activate the preferred option via a microswitch response. Study I showed that each patient learned to perform the two activities available with percentages of correct responses exceeding 85 by the end of the intervention. Study II showed that all patients learned to choose and activate music options. Psychology students, employed in a social validation check, scored the patients' behavior within the program better than their behavior in a control situation. The relevance and usability of simplified pictorial-instruction programs and music choice programs for patients with moderate Alzheimer's disease were discussed.
Collapse
Affiliation(s)
| | - Nirbhay N Singh
- Medical College of Georgia, Georgia Regents University, Augusta, USA
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Behl P, Edwards JD, Kiss A, Lanctot KL, Streiner DL, Black SE, Stuss DT. Treatment effects in multiple cognitive domains in Alzheimer's disease: a two-year cohort study. ALZHEIMERS RESEARCH & THERAPY 2014; 6:48. [PMID: 25484926 PMCID: PMC4255390 DOI: 10.1186/alzrt280] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/14/2014] [Indexed: 11/10/2022]
Abstract
Introduction Despite widespread use of second-generation cholinesterase inhibitors for the symptomatic treatment of Alzheimer’s disease (AD), little is known about the long term effects of cholinergic treatment on global cognitive function and potential specific effects in different cognitive domains. The objectives of this study were to determine the association between cholinergic treatment and global cognitive function over one and two years in a cohort of patients with mild or moderate AD and identify potential differences in domain-specific cognitive outcomes within this cohort. Methods A cohort of patients meeting the revised National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer's Disease and Related Disorders Association (NINCDS-ADRDA) criteria for mild or moderate AD, including patients both on treatment with a cholinesterase inhibitor and untreated controls (treated = 65, untreated = 65), were recruited from the Cognitive Neurology Clinic at Sunnybrook Health Sciences Centre, as part of the Sunnybrook Dementia Study. Patients were followed for one to two years and underwent standardized neuropsychological assessments to evaluate global and domain-specific cognitive function. Associations between cholinesterase inhibitor use and global and domain-specific cognitive outcome measures at one and two years of follow-up were estimated using mixed model linear regression, adjusting for age, education, and baseline mini mental state examination (MMSE). Results At one year, treated patients showed significantly less decline in global cognitive function, and treatment and time effects across tests of executive and visuospatial function. At two years, there was a significant trend towards less decline in global cognition for treated patients. Moreover, treated patients showed significant treatment and time effects across tests of executive functioning, memory, and visuospatial function. Conclusions The present study offers two important contributions to knowledge of the effectiveness of cholinesterase inhibitor treatment in patients with mild-moderate AD: 1) that second-generation cholinesterase inhibitors demonstrate long-term effectiveness for reducing global cognitive decline over one to two years of follow-up, and 2) that decline in function for cognitive domains, including executive function, memory, and visuospatial skill that are primarily mediated by frontal networks and by the cholinergic system, rather than memory, may be slowed by treatment targeting the cholinergic system.
Collapse
Affiliation(s)
- Pearl Behl
- L.C.Campbell Cognitive Neurology Research Unit, Toronto, Canada ; University of Toronto, Toronto, Ontario, Canada
| | - Jodi D Edwards
- L.C.Campbell Cognitive Neurology Research Unit, Toronto, Canada ; Canadian Partnership for Stroke Recovery, Toronto, Ontario, Canada
| | - Alexander Kiss
- Brain Sciences Research Program, Sunnybrook Health Sciences Center, Toronto, Ontario, Canada
| | - Krista L Lanctot
- University of Toronto, Toronto, Ontario, Canada ; Brain Sciences Research Program, Sunnybrook Health Sciences Center, Toronto, Ontario, Canada ; Department of Psychiatry, Toronto, Ontario, Canada
| | - David L Streiner
- Department of Psychiatry & Behavioral Neurosciences, McMaster University, Toronto, Ontario, Canada
| | - Sandra E Black
- L.C.Campbell Cognitive Neurology Research Unit, Toronto, Canada ; University of Toronto, Toronto, Ontario, Canada ; Brain Sciences Research Program, Sunnybrook Health Sciences Center, Toronto, Ontario, Canada ; Department of Medicine (Neurology), Toronto, Ontario, Canada ; Department of Psychology, Toronto, Ontario, Canada
| | - Donald T Stuss
- University of Toronto, Toronto, Ontario, Canada ; Department of Medicine (Neurology), Toronto, Ontario, Canada ; Department of Psychology, Toronto, Ontario, Canada ; Ontario Brain Institute, Toronto, Ontario, Canada
| |
Collapse
|
125
|
Kurz A, Grimmer T. Efficacy of memantine hydrochloride once-daily in Alzheimer’s disease. Expert Opin Pharmacother 2014; 15:1955-60. [DOI: 10.1517/14656566.2014.945907] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
126
|
Giuliani D, Galantucci M, Neri L, Canalini F, Calevro A, Bitto A, Ottani A, Vandini E, Sena P, Sandrini M, Squadrito F, Zaffe D, Guarini S. Melanocortins protect against brain damage and counteract cognitive decline in a transgenic mouse model of moderate Alzheimer׳s disease. Eur J Pharmacol 2014; 740:144-50. [PMID: 25034807 DOI: 10.1016/j.ejphar.2014.06.063] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 06/25/2014] [Accepted: 06/28/2014] [Indexed: 01/02/2023]
Abstract
We previously reported that melanocortins induce neuroprotection in experimental acute and chronic neurodegenerative conditions, including Alzheimer׳s disease (AD) of mild severity. Here we investigated whether melanocortins afford neuroprotection and counteract cognitive decline in AD with a medium level of severity by using 24 week-old (at the start of the study) APPSwe transgenic mice (Tg2576). Saline-treated (days 1-50) control Tg2576 mice showed an impairment in spatial learning and memory, associated (at day 50, end of the study) with hippocampus at low levels of the synaptic activity-dependent gene Zif268, relevant brain changes such as cerebral cortex/hippocampus increased level of β-amyloid (Aβ) deposit, and neuronal loss, in comparison with wild-type animals. Treatment of Tg2576 mice (once daily at days 1-50) with a nanomolar dose of the melanocortin analog [Nle4,D-Phe7]α-melanocyte-stimulating hormone (NDP-α-MSH) reduced cerebral cortex/hippocampus level of Aβ deposit, decreased neuronal loss, increased hippocampus Zif268 expression and improved cognitive functions, relative to saline-treated Tg2576 mice. Pharmacological blockade of melanocortin MC4 receptors with the MC4 receptor antagonist HS024 prevented all favorable effects of NDP-α-MSH. Our data indicate that MC4 receptor-stimulating melanocortins are able to counteract cognitive decline in experimental AD of medium severity through induction of neuroprotection and improvement of synaptic transmission. After further studies, these agents could gain a role as disease modifying therapeutics for AD.
Collapse
Affiliation(s)
- Daniela Giuliani
- Department of Biomedical, Metabolic and Neural Sciences, Section of Pharmacology and Molecular Medicine, University of Modena and Reggio Emilia, Modena, Italy.
| | - Maria Galantucci
- Department of Biomedical, Metabolic and Neural Sciences, Section of Pharmacology and Molecular Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Neri
- Department of Biomedical, Metabolic and Neural Sciences, Section of Pharmacology and Molecular Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabrizio Canalini
- Department of Biomedical, Metabolic and Neural Sciences, Section of Pharmacology and Molecular Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Anita Calevro
- Department of Biomedical, Metabolic and Neural Sciences, Section of Pharmacology and Molecular Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Messina, Messina, Italy
| | - Alessandra Ottani
- Department of Biomedical, Metabolic and Neural Sciences, Section of Pharmacology and Molecular Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Eleonora Vandini
- Department of Biomedical, Metabolic and Neural Sciences, Section of Pharmacology and Molecular Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Paola Sena
- Department of Biomedical, Metabolic and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Maurizio Sandrini
- Department of Biomedical, Metabolic and Neural Sciences, Section of Pharmacology and Molecular Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Messina, Messina, Italy
| | - Davide Zaffe
- Department of Biomedical, Metabolic and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Salvatore Guarini
- Department of Biomedical, Metabolic and Neural Sciences, Section of Pharmacology and Molecular Medicine, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
127
|
Neha, Sodhi RK, Jaggi AS, Singh N. Animal models of dementia and cognitive dysfunction. Life Sci 2014; 109:73-86. [DOI: 10.1016/j.lfs.2014.05.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/16/2014] [Accepted: 05/22/2014] [Indexed: 12/28/2022]
|
128
|
Spencer B, Masliah E. Immunotherapy for Alzheimer's disease: past, present and future. Front Aging Neurosci 2014; 6:114. [PMID: 24959143 PMCID: PMC4051211 DOI: 10.3389/fnagi.2014.00114] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/21/2014] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is an incurable, progressive, neurodegenerative disorder affecting over 5 million people in the US alone. This neurological disorder is characterized by widespread neurodegeneration throughout the association cortex and limbic system caused by deposition of Aβ resulting in the formation of plaques and tau resulting in the formation of neurofibrillary tangles. Active immunization for Aβ showed promise in animal models of AD; however, the models were unable to predict the off-target immune effects in human patients. A few patients in the initial trial suffered cerebral meningoencephalitis. Recently, passive immunization has shown promise in the lab with less chance of off-target immune effects. Several trials have attempted using passive immunization for Aβ, but again, positive end points have been elusive. The next generation of immunotherapy for AD may involve the marriage of anti-Aβ antibodies with technology aimed at improving transport across the blood-brain barrier (BBB). Receptor mediated transport of antibodies may increase CNS exposure and improve the therapeutic index in the clinic.
Collapse
Affiliation(s)
- Brian Spencer
- Department of Neurosciences, University of CaliforniaSan Diego, La Jolla, CA, USA
| | - Eliezer Masliah
- Department of Neurosciences, University of CaliforniaSan Diego, La Jolla, CA, USA
- Department of Pathology, University of CaliforniaSan Diego, La Jolla, CA, USA
| |
Collapse
|
129
|
Pohanka M. Inhibitors of acetylcholinesterase and butyrylcholinesterase meet immunity. Int J Mol Sci 2014; 15:9809-25. [PMID: 24893223 PMCID: PMC4100123 DOI: 10.3390/ijms15069809] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/06/2014] [Accepted: 03/11/2014] [Indexed: 12/22/2022] Open
Abstract
Acetylcholinesterase (AChE) inhibitors are widely used for the symptomatic treatment of Alzheimer’s disease and other dementias. More recent use is for myasthenia gravis. Many of these inhibitors interact with the second known cholinesterase, butyrylcholinesterase (BChE). Further, evidence shows that acetylcholine plays a role in suppression of cytokine release through a “cholinergic anti-inflammatory pathway” which raises questions about the role of these inhibitors in the immune system. This review covers research and discussion of the role of the inhibitors in modulating the immune response using as examples the commonly available drugs, donepezil, galantamine, huperzine, neostigmine and pyridostigmine. Major attention is given to the cholinergic anti-inflammatory pathway, a well-described link between the central nervous system and terminal effector cells in the immune system.
Collapse
Affiliation(s)
- Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defence, Trebesska 1575, Hradec Kralove CZ-50001, Czech Republic.
| |
Collapse
|
130
|
Jin G, Wang LH, Ji XF, Chi TY, Qi Y, Jiao Q, Xu Q, Zhou XY, Zhang R, Zou LB. Xanthoceraside rescues learning and memory deficits through attenuating beta-amyloid deposition and tau hyperphosphorylation in APP mice. Neurosci Lett 2014; 573:58-63. [DOI: 10.1016/j.neulet.2014.04.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/18/2014] [Accepted: 04/24/2014] [Indexed: 11/26/2022]
|
131
|
Castro MJ, Richmond V, Romero C, Maier MS, Estévez-Braun A, Ravelo AG, Faraoni MB, Murray AP. Preparation, anticholinesterase activity and molecular docking of new lupane derivatives. Bioorg Med Chem 2014; 22:3341-50. [PMID: 24835788 DOI: 10.1016/j.bmc.2014.04.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/16/2014] [Accepted: 04/25/2014] [Indexed: 01/11/2023]
Abstract
A set of twenty one lupane derivatives (2-22) was prepared from the natural triterpenoid calenduladiol (1) by transformations on the hydroxyl groups at C-3 and C-16, and also on the isopropenyl moiety. The derivatives were tested for their inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) and some structure-activity relationships were outlined with the aid of enzyme kinetic studies and docking modelization. The most active compound resulted to be 3,16,30-trioxolup-20(29)-ene (22), with an IC50 value of 21.5μM for butyrylcholinesterase, which revealed a selective inhibitor profile towards this enzyme.
Collapse
Affiliation(s)
- María Julia Castro
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Av. Alem 1253, B8000CPB Bahía Blanca, Argentina
| | - Victoria Richmond
- UMYMFOR (CONICET-UBA), Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, 1428 Buenos Aires, Argentina
| | - Carmen Romero
- Instituto Universitario de Bio-Orgánica (CIBICAN), Av. Astrofísico Francisco Sánchez 2, 38206, Departamento de Química Orgánica, Universidad de La Laguna, Tenerife, Spain
| | - Marta S Maier
- UMYMFOR (CONICET-UBA), Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, 1428 Buenos Aires, Argentina
| | - Ana Estévez-Braun
- Instituto Universitario de Bio-Orgánica (CIBICAN), Av. Astrofísico Francisco Sánchez 2, 38206, Departamento de Química Orgánica, Universidad de La Laguna, Tenerife, Spain
| | - Angel G Ravelo
- Instituto Universitario de Bio-Orgánica (CIBICAN), Av. Astrofísico Francisco Sánchez 2, 38206, Departamento de Química Orgánica, Universidad de La Laguna, Tenerife, Spain
| | - María Belén Faraoni
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Av. Alem 1253, B8000CPB Bahía Blanca, Argentina
| | - Ana Paula Murray
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Av. Alem 1253, B8000CPB Bahía Blanca, Argentina.
| |
Collapse
|
132
|
Veloso AJ, Chow AM, Ganesh HVS, Li N, Dhar D, Wu DCH, Mikhaylichenko S, Brown IR, Kerman K. Electrochemical Immunosensors for Effective Evaluation of Amyloid-Beta Modulators on Oligomeric and Fibrillar Aggregation Processes. Anal Chem 2014; 86:4901-9. [DOI: 10.1021/ac500424t] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
| | - Ari M. Chow
- Centre
for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Hashwin V. S. Ganesh
- Centre
for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Nan Li
- Department
of Physical and Environmental Sciences and
| | - Devjani Dhar
- Department
of Physical and Environmental Sciences and
| | | | | | - Ian R. Brown
- Centre
for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Kagan Kerman
- Department
of Physical and Environmental Sciences and
- Centre
for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| |
Collapse
|
133
|
Wittenberg NJ, Wootla B, Jordan LR, Denic A, Warrington AE, Oh SH, Rodriguez M. Applications of SPR for the characterization of molecules important in the pathogenesis and treatment of neurodegenerative diseases. Expert Rev Neurother 2014; 14:449-63. [PMID: 24625008 PMCID: PMC3989105 DOI: 10.1586/14737175.2014.896199] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Characterization of binding kinetics and affinity between a potential drug and its receptor are key steps in the development of new drugs. Among the techniques available to determine binding affinities, surface plasmon resonance has emerged as the gold standard because it can measure binding and dissociation rates in real-time in a label-free fashion. Surface plasmon resonance is now finding applications in the characterization of molecules for treatment of neurodegenerative diseases, characterization of molecules associated with pathogenesis of neurodegenerative diseases and detection of neurodegenerative disease biomarkers. In addition it has been used in the characterization of a new class of natural autoantibodies that have therapeutic potential in a number of neurologic diseases. In this review we will introduce surface plasmon resonance and describe some applications of the technique that pertain to neurodegenerative disorders and their treatment.
Collapse
Affiliation(s)
- Nathan J. Wittenberg
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN USA
| | - Bharath Wootla
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN USA
| | - Luke R. Jordan
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN USA
| | - Aleksandar Denic
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN USA
| | | | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN USA
| | - Moses Rodriguez
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN USA
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN USA
| |
Collapse
|
134
|
Léger GC, Massoud F. Novel disease-modifying therapeutics for the treatment of Alzheimer’s disease. Expert Rev Clin Pharmacol 2014; 6:423-42. [DOI: 10.1586/17512433.2013.811237] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
135
|
Natural Compounds (Small Molecules) as Potential and Real Drugs of Alzheimer's Disease. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/b978-0-444-63281-4.00006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
136
|
Pohanka M. Copper, aluminum, iron and calcium inhibit human acetylcholinesterase in vitro. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:455-459. [PMID: 24473150 DOI: 10.1016/j.etap.2014.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/31/2013] [Accepted: 01/05/2014] [Indexed: 06/03/2023]
Abstract
Acetylcholinesterase (AChE) is an important part of cholinergic nerves where it participates in termination of neurotransmission. AChE can be inhibited by e.g. some Alzheimer disease drugs, nerve agents, and secondary metabolites. In this work, metal salts aluminum chloride, calcium chloride, cupric chloride, ferric chloride, potassium chloride, magnesium chloride and sodium chloride were tested for their ability to inhibit AChE. Standard Ellman assay based on human recombinant AChE was done and inhibition was measured using Dixon plot. No inhibition was proved for sodium, potassium and magnesium ions. However, aluminum, cupric, ferric and calcium ions were able to inhibit AChE via noncompetitive mechanism of inhibition. Though the inhibition is much weaker when compared to e.g. drugs with noncompetitive mechanism of action, biological relevance of the findings can be anticipated.
Collapse
Affiliation(s)
- Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defence, Trebesska 1575, CZ-500 01 Hradec Kralove, Czech Republic; Karel English College in Brno, Sujanovo namesti 356/1, 60200 Brno, Czech Republic.
| |
Collapse
|
137
|
Zhang HY, Yamakawa YI, Matsuya Y, Toyooka N, Tohda C, Awale S, Li F, Kadota S, Tezuka Y. Synthesis of long-chain fatty acid derivatives as a novel anti-Alzheimer's agent. Bioorg Med Chem Lett 2013; 24:604-8. [PMID: 24360558 DOI: 10.1016/j.bmcl.2013.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/20/2013] [Accepted: 12/02/2013] [Indexed: 11/29/2022]
Abstract
In order to develop new drugs for Alzheimer's disease, we prepared 17 fatty acid derivatives with different chain lengths and different numbers and positions of double bonds by using Wittig reaction and stereospecific hydrogenation of triple bonds as key reactions. Among them, (4Z,15Z)-octadecadienoic acid (10) and (23Z,34Z)-heptatriacontadienoic acid (16) showed the most potent neurite outgrowth activities on Aβ(25-35)-treated rat cortical neurons, which activities were comparable to that of a positive control, NGF. Both fatty acids 10 and 16 possess two (Z)-double bonds at the n-3 and n-14 positions, which might be important for the neurite outgrowth activity.
Collapse
Affiliation(s)
- Hong-Yan Zhang
- Division of Natural Products Chemistry, Institute of Natural Medicine, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Yu-ichiro Yamakawa
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Yuji Matsuya
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Naoki Toyooka
- Graduate School of Science and Technology for Research, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan; Graduate School of Innovative Life Science, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan.
| | - Chihiro Tohda
- Division of Division of Neuromedical Science, Institute of Natural Medicine, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Suresh Awale
- Frontier Research Core for Life Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Feng Li
- Research Promotion Office, Joint Usage/Research Center for Science-Based Natural Medicine, Institute of Natural Medicine, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Shigetoshi Kadota
- Division of Natural Products Chemistry, Institute of Natural Medicine, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Yasuhiro Tezuka
- Division of Natural Products Chemistry, Institute of Natural Medicine, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan.
| |
Collapse
|
138
|
Abstract
Alzheimer's disease (AD) is an age-dependent neurodegenerative disorder and the most common cause of dementia. The early stages of AD are characterized by short-term memory loss. Once the disease progresses, patients experience difficulties in sense of direction, oral communication, calculation, ability to learn, and cognitive thinking. The median duration of the disease is 10 years. The pathology is characterized by deposition of amyloid beta peptide (so-called senile plaques) and tau protein in the form of neurofibrillary tangles. Currently, two classes of drugs are licensed by the European Medicines Agency for the treatment of AD, ie, acetylcholinesterase inhibitors for mild to moderate AD, and memantine, an N-methyl-D-aspartate receptor antagonist, for moderate and severe AD. Treatment with acetylcholinesterase inhibitors or memantine aims at slowing progression and controlling symptoms, whereas drugs under development are intended to modify the pathologic steps leading to AD. Herein, we review the clinical features, pharmacologic properties, and cost-effectiveness of the available acetylcholinesterase inhibitors and memantine, and focus on disease-modifying drugs aiming to interfere with the amyloid beta peptide, including vaccination, passive immunization, and tau deposition.
Collapse
Affiliation(s)
- Laura Ghezzi
- Neurology Unit, Department of Pathophysiology and Transplantation, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Elio Scarpini
- Neurology Unit, Department of Pathophysiology and Transplantation, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Galimberti
- Neurology Unit, Department of Pathophysiology and Transplantation, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
139
|
Wattmo C, Wallin AK, Minthon L. Progression of mild Alzheimer's disease: knowledge and prediction models required for future treatment strategies. ALZHEIMERS RESEARCH & THERAPY 2013; 5:44. [PMID: 24099236 PMCID: PMC3978889 DOI: 10.1186/alzrt210] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 09/12/2013] [Indexed: 11/10/2022]
Abstract
Introduction Knowledge of longitudinal progression in mild Alzheimer’s disease (AD) is required for the evaluation of disease-modifying therapies. Our aim was to observe the effects of long-term cholinesterase inhibitor (ChEI) therapy in mild AD patients in a routine clinical setting. Methods This was a prospective, open-label, non-randomized, multicenter study of ChEI treatment (donepezil, rivastigmine or galantamine) conducted during clinical practice. The 734 mild AD patients (Mini-Mental State Examination (MMSE) score 20 to 26) were assessed at baseline and then semi-annually over three years. Outcome measures included the MMSE, Alzheimer’s Disease Assessment Scale-cognitive subscale (ADAS-cog), Clinician’s Interview-Based Impression of Change (CIBIC) and Instrumental Activities of Daily Living (IADL) scale. Results After three years of ChEI therapy, 31% (MMSE) and 33% (ADAS-cog) of the patients showed improved/unchanged cognitive ability, 33% showed improved/unchanged global performance and 14% showed improved/unchanged IADL capacity. Higher mean dose of ChEI and lower educational level were both predictors of more positive longitudinal cognitive and functional outcomes. Older participants and those with a better IADL score at baseline exhibited a slower rate of cognitive decline, whereas younger participants and those with higher cognitive status showed more preserved IADL ability over time. Gender and apolipoprotein E (APOE) genotype showed inconsistent results. Prediction models using the abovementioned scales are presented. Conclusions In naturalistic mild AD patients, a marked deterioration in IADL compared with cognitive and global long-term outcomes was observed, indicating the importance of functional assessments during the early stages of the disease. The participants’ time on ChEI treatment before inclusion in studies of new therapies might affect their rate of decline and thus the comparisons of changes in scores between various studies. An increased understanding of expected disease progression in different domains and potential predictors of disease progression is essential for assessment of future therapies in AD.
Collapse
Affiliation(s)
- Carina Wattmo
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Malmö, Sweden
| | - Asa K Wallin
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Malmö, Sweden
| | - Lennart Minthon
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Malmö, Sweden
| |
Collapse
|
140
|
Giuliani D, Bitto A, Galantucci M, Zaffe D, Ottani A, Irrera N, Neri L, Cavallini GM, Altavilla D, Botticelli AR, Squadrito F, Guarini S. Melanocortins protect against progression of Alzheimer's disease in triple-transgenic mice by targeting multiple pathophysiological pathways. Neurobiol Aging 2013; 35:537-47. [PMID: 24094579 DOI: 10.1016/j.neurobiolaging.2013.08.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/20/2013] [Accepted: 08/23/2013] [Indexed: 01/02/2023]
Abstract
Besides specific triggering causes, Alzheimer's disease (AD) involves pathophysiological pathways that are common to acute and chronic neurodegenerative disorders. Melanocortins induce neuroprotection in experimental acute neurodegenerative conditions, and low melanocortin levels have been found in occasional studies performed in AD-type dementia patients. Here we investigated the possible neuroprotective role of melanocortins in a chronic neurodegenerative disorder, AD, by using 12-week-old (at the start of the study) triple-transgenic (3xTg-AD) mice harboring human transgenes APPSwe, PS1M146V, and tauP301L. Treatment of 3xTg-AD mice, once daily until the end of the study (30 weeks of age), with the melanocortin analog [Nle(4),D-Phe(7)]-α-melanocyte-stimulating hormone (NDP-α-MSH) reduced cerebral cortex/hippocampus phosphorylation/level of all AD-related biomarkers investigated (mediators of amyloid/tau cascade, oxidative/nitrosative stress, inflammation, apoptosis), decreased neuronal loss, induced over-expression of the synaptic activity-dependent gene Zif268, and improved cognitive functions, relative to saline-treated 3xTg-AD mice. Pharmacological blockade of melanocortin MC4 receptors prevented all neuroprotective effects of NDP-α-MSH. Our study identifies, for the first time, a class of drugs, MC4 receptor-stimulating melanocortins, that are able to counteract the progression of experimental AD by targeting pathophysiological mechanisms up- and down-stream of β-amyloid and tau. These data could have important clinical implications.
Collapse
Affiliation(s)
- Daniela Giuliani
- Department of Biomedical, Metabolic and Neural Sciences, Section of Pharmacology and Molecular Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
da Cunha Xavier Soares SF, Vieira AA, Delfino RT, Figueroa-Villar JD. NMR determination of Electrophorus electricus acetylcholinesterase inhibition and reactivation by neutral oximes. Bioorg Med Chem 2013; 21:5923-30. [DOI: 10.1016/j.bmc.2013.05.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/21/2013] [Accepted: 05/29/2013] [Indexed: 12/20/2022]
|
142
|
Dhikav V, Singh P, Anand KS. Medication adherence survey of drugs useful in prevention of dementia of Alzheimer's type among Indian patients. Int Psychogeriatr 2013; 25:1409-13. [PMID: 23731967 DOI: 10.1017/s1041610213000744] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Good medication adherence is the cornerstone of therapeutic success. Alzheimer's disease (AD) is the most common type of dementia and most patients are old and on multiple drugs, and good compliance therefore is even more important in this population. Dementia of Alzheimer's type (DAT) at present is yet to find a cure. Anticholinesterases and N-methyl-D-aspartate blockers are specific anti-AD therapies available. Hypertension, diabetes, and dyslipidemia can contribute to cognitive worsening. Keeping hypertension, diabetes, and dyslipidemia in control can therefore possibly prevent further cognitive decline. METHODS Patients with subjective memory complaints (n = 75) were chosen randomly. Upon thorough neurological diagnostic work up for dementia, those with mild cognitive impairment/questionable dementia (Clinical Dementia Rating = 0.5) or those with AD were recruited in this study (n = 67). Those with hypertension, diabetes, and deranged lipid profile were further interviewed if they were able to take medicines regularly or not. An attempt was made to know causes of non-compliance. RESULTS Forty-one percent of patients were not taking the drugs that have potential to prevent cardiovascular complications or ability to slow down cognitive decline in AD on regular basis. The lack of awareness, ignorance, medicines being "too expensive," and the pressure of taking medicines regularly were cited as the reasons for non-compliance. Being illiterate and having low education contributed majorly to poor compliance in this study. CONCLUSION Compliance to drugs that have potential or real ability to slow down cognitive decline is low in elderly people with DAT.
Collapse
Affiliation(s)
- Vikas Dhikav
- Department of Neurology, Dr RML Hospital and Postgraduate Institute of Medical Education and Research, GGS-IP University, Baba Kharak Singh Marg, New Delhi 110001, India.
| | | | | |
Collapse
|
143
|
Personalized medicine in Alzheimer's disease and depression. Contemp Clin Trials 2013; 36:616-23. [PMID: 23816492 DOI: 10.1016/j.cct.2013.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 06/14/2013] [Accepted: 06/20/2013] [Indexed: 12/17/2022]
Abstract
Latest research in the mental health field brings new hope to patients and promises to revolutionize the field of psychiatry. Personalized pharmacogenetic tests that aid in diagnosis and treatment choice are now becoming available for clinical practice. Amyloid beta peptide biomarkers in the cerebrospinal fluid of patients with Alzheimer's disease are now available. For the first time, radiologists are able to visualize amyloid plaques specific to Alzheimer's disease in live patients using Positron Emission Tomography-based tests approved by the FDA. A novel blood-based assay has been developed to aid in the diagnosis of depression based on activation of the HPA axis, metabolic, inflammatory and neurochemical pathways. Serotonin reuptake inhibitors have shown increased remission rates in specific ethnic subgroups and Cytochrome P450 gene polymorphisms can predict antidepressant tolerability. The latest research will help to eradicate "trial and error" prescription, ushering in the most personalized medicine to date. Like all major medical breakthroughs, integration of new algorithms and technologies requires sound science and time. But for many mentally ill patients, diagnosis and effective therapy cannot happen fast enough. This review will describe the newest diagnostic tests, treatments and clinical studies for the diagnosis and treatment of Alzheimer's disease and unipolar, major depressive disorder.
Collapse
Key Words
- 5-HTT
- 5-HTTLPR
- 5-Hydroxytryptamine Transporter gene
- AD
- ADNI
- ADRDA
- Alzheimer's Disease Neuroimaging Initiative
- Alzheimer's Disease and Related Disorders Association
- Alzheimer's disease
- Aβ40
- Aβ42
- CREB
- CSF
- CT
- CV
- CYP2C19
- CYP2D6
- CYP450
- Coefficient of Variation
- Computed Tomography
- Cytochrome P450
- Cytochrome P450 2C19
- Cytochrome P450 2D6
- DNA
- DSM
- DSM-IV-TR
- DSM-V
- Deoxyribonucleic Acid
- Depression
- Diagnostic and Statistical Manual of Mental Disorders
- Diagnostic and Statistical Manual of Mental Disorders—Fifth Edition
- Diagnostic and Statistical Manual of Mental Disorders—Fourth Edition-Text Revision
- ELISA
- Enzyme-Linked Immunosorbent Assay
- Epigenetics
- FDA
- FK506-binding protein
- FKBP5
- Food and Drug Administration
- GRIA
- GRIK
- HPA
- IL28RA
- KCNK2
- MDDScore
- MRI
- MTC
- Magnetic Resonance Imaging
- Major Depressive Disorder Score
- Methylthioninium Chloride
- NINCDS
- National Institute of Neurological and Communicative Disorders and Stroke
- P-tau181P
- PAPLN
- PET
- Personalized medicine
- Positron Emission Tomography
- QC
- Quality Control
- RDoC
- RNA
- Research Domain Criteria
- Ribonucleic Acid
- SSRI
- STAR*D
- Selective Serotonin Reuptake Inhibitor
- Sequenced Treatment Alternatives to Relieve Depression
- Serotonin-Transporter-Gene-Linked Polymorphic Region
- T-tau
- Tau phosphorylated at threonine 181
- VNTR
- WHO
- World Health Organization
- beta-amyloid, amino acids 1–40
- beta-amyloid, amino acids 1–42
- cAMP response element-binding protein
- cerebrospinal fluid
- glutamate receptor, ionotropic, AMPA
- glutamate receptor, ionotropic, kainate
- hypothalamic–pituitary–adrenal
- interleukin 28 receptor, alpha (interferon, lambda receptor)
- papilin, proteoglycan-like sulfated glycoprotein
- potassium channel, subfamily K, member 2
- total Tau
- variable nucleotide terminal repeat
Collapse
|
144
|
Pinton S, Souza AC, Sari MH, Ramalho RM, Rodrigues CM, Nogueira CW. p,p′-Methoxyl-diphenyl diselenide protects against amyloid-β induced cytotoxicity in vitro and improves memory deficits in vivo. Behav Brain Res 2013; 247:241-7. [DOI: 10.1016/j.bbr.2013.03.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 03/20/2013] [Accepted: 03/23/2013] [Indexed: 12/24/2022]
|
145
|
Hydrogen sulfide slows down progression of experimental Alzheimer's disease by targeting multiple pathophysiological mechanisms. Neurobiol Learn Mem 2013; 104:82-91. [PMID: 23726868 DOI: 10.1016/j.nlm.2013.05.006] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/08/2013] [Accepted: 05/22/2013] [Indexed: 01/09/2023]
Abstract
It has been previously reported that brain hydrogen sulfide (H2S) synthesis is severely decreased in Alzheimer's disease (AD) patients, and plasma H2S levels are negatively correlated with the severity of AD. Here we extensively investigated whether treatment with a H2S donor and spa-waters rich in H2S induces neuroprotection and slows down progression of AD. Studies with sodium hydrosulfide (a H2S donor) and Tabiano's spa-water were carried out in three experimental models of AD. Short-term and long-term treatments with sodium hydrosulfide and/or Tabiano's spa-water significantly protected against impairment in learning and memory in rat models of AD induced by brain injection of β-amyloid1-40 (Aβ) or streptozotocin, and in an AD mouse model harboring human transgenes APPSwe, PS1M146V and tauP301L (3xTg-AD mice). The improvement in behavioral performance was associated with hippocampus was size of Aβ plaques and preservation of the morphological picture, as found in AD rats. Further, lowered concentration/phosphorylation levels of proteins thought to be the central events in AD pathophysiology, namely amyloid precursor protein, presenilin-1, Aβ1-42 and tau phosphorylated at Thr181, Ser396 and Ser202, were detected in 3xTg-AD mice treated with spa-water. The excitotoxicity-triggered oxidative and nitrosative stress was counteracted in 3xTg-AD mice, as indicated by the decreased levels of malondialdehyde and nitrites in the cerebral cortex. Hippocampus reduced activity of c-jun N-terminal kinases, extracellular signal-regulated kinases and p38, which have an established role not only in phosphorylation of tau protein but also in inflammation and apoptosis, was also found. Consistently, decrease in tumor necrosis factor-α level, up-regulation of Bcl-2, and down-regulation of BAX and the downstream executioner caspase-3, also occurred in the hippocampus of 3xTg-AD mice after treatment with Tabiano's spa-water, thus suggesting that it is also able to modulate inflammation and apoptosis. Our findings indicate that appropriate treatments with H2S donors and Tabiano's spa-waters, and may be other spa-waters rich in H2S content, might represent an innovative approach to slow down AD progression in humans by targeting multiple pathophysiological mechanisms.
Collapse
|
146
|
Prescription patterns of anticholinergic agents and their associated factors in Korean elderly patients with dementia. Int J Clin Pharm 2013; 35:711-8. [PMID: 23708883 DOI: 10.1007/s11096-013-9793-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 05/11/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Dementia is a disorder that is characterized by a chronic, progressive loss of cognitive function. Anticholinergic agents that are often used with elderly patients may cause a decline in cognitive capacity; therefore, they must be used with caution. OBJECTIVE We aimed to identify the prescription patterns for anticholinergic drugs in elderly outpatients with a documented diagnosis of dementia through a retrospective analysis of electronic medical records. In addition, the study aimed to identify factors influencing these prescription patterns. SETTING The Kyung Hee University Hospital in Korea. METHODS We studied outpatients aged ≥ 65 years registered with dementia between January 1, 2011 and December 31, 2011. We reviewed prescription histories, identified anticholinergic prescriptions during the study period using the anticholinergic risk scale (ARS), and examined prescription patterns in the subjects. After analysing the ARS scores for each drug and subject, we performed a statistical analysis of the factors affecting prescription patterns for anticholinergic medications in patients with ARS scores of ≥ 2. MAIN OUTCOME MEASURE Prescription data on anticholinergic agents. RESULTS Of 773 elderly dementia patients, 362 patients (46.83 %) were prescribed at least one anticholinergic medication. Of the ARS 2-point anticholinergics, nortriptyline was prescribed most frequently. Among ARS 3-point anticholinergics, cyproheptadine was prescribed most frequently. An ARS score of ≥ 2 was given in 255 (32.98 %) patients. A multivariate logistic regression analysis of the factors associated with anticholinergic prescription patterns revealed that those patients with comorbid Parkinson's disease received significantly fewer prescriptions (OR = 0.544; 95% CI 0.364-0.813) and those patients who were prescribed 6-10 or ≥ 11 medications were significantly more likely to receive anticholinergic prescriptions (OR = 3.410; 95 % CI 2.228-5.220 and OR = 4.688; 95 % CI 2.993-7.344, respectively). CONCLUSION Approximately 33% of the elderly dementia patients in this study were prescribed clinically significant medication regimens totaling an ARS score of ≥ 2. Our findings show that the total number of medications and comorbid Parkinson's disease both influence prescription patterns for anticholinergic medications.
Collapse
|
147
|
Čolović MB, Krstić DZ, Lazarević-Pašti TD, Bondžić AM, Vasić VM. Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol 2013; 11:315-35. [PMID: 24179466 PMCID: PMC3648782 DOI: 10.2174/1570159x11311030006] [Citation(s) in RCA: 1506] [Impact Index Per Article: 125.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 01/04/2013] [Accepted: 02/02/2013] [Indexed: 12/12/2022] Open
Abstract
Acetylcholinesterase is involved in the termination of impulse transmission by rapid hydrolysis of the neurotransmitter acetylcholine in numerous cholinergic pathways in the central and peripheral nervous systems. The enzyme inactivation, induced by various inhibitors, leads to acetylcholine accumulation, hyperstimulation of nicotinic and muscarinic receptors, and disrupted neurotransmission. Hence, acetylcholinesterase inhibitors, interacting with the enzyme as their primary target, are applied as relevant drugs and toxins. This review presents an overview of toxicology and pharmacology of reversible and irreversible acetylcholinesterase inactivating compounds. In the case of reversible inhibitors being commonly applied in neurodegenerative disorders treatment, special attention is paid to currently approved drugs (donepezil, rivastigmine and galantamine) in the pharmacotherapy of Alzheimer's disease, and toxic carbamates used as pesticides. Subsequently, mechanism of irreversible acetylcholinesterase inhibition induced by organophosphorus compounds (insecticides and nerve agents), and their specific and nonspecific toxic effects are described, as well as irreversible inhibitors having pharmacological implementation. In addition, the pharmacological treatment of intoxication caused by organophosphates is presented, with emphasis on oxime reactivators of the inhibited enzyme activity administering as causal drugs after the poisoning. Besides, organophosphorus and carbamate insecticides can be detoxified in mammals through enzymatic hydrolysis before they reach targets in the nervous system. Carboxylesterases most effectively decompose carbamates, whereas the most successful route of organophosphates detoxification is their degradation by corresponding phosphotriesterases.
Collapse
Affiliation(s)
- Mirjana B Čolović
- Department of Physical Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Danijela Z Krstić
- University School of Medicine, Institute of Medical Chemistry, University of Belgrade, Belgrade, Serbia
| | - Tamara D Lazarević-Pašti
- Department of Physical Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Aleksandra M Bondžić
- Department of Physical Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Vesna M Vasić
- Department of Physical Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
148
|
Tayeb HO, Murray ED, Price BH, Tarazi FI. Bapineuzumab and solanezumab for Alzheimer's disease: is the 'amyloid cascade hypothesis' still alive? Expert Opin Biol Ther 2013; 13:1075-84. [PMID: 23574434 DOI: 10.1517/14712598.2013.789856] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The 'amyloid cascade hypothesis' remains the leading hypothesis to explain the pathophysiology of Alzheimer's disease (AD). Immunotherapeutic agents have been developed to remove the neurotoxic amyloid β42 protein and prevent the hypothesized amyloid β42-induced neurotoxicity and neurodegeneration. The most notable of these immunotherapies are bapineuzumab and solanezumab. AREAS COVERED This article briefly reviews the experimental agents in development for treatment of AD and then discusses the results of bapineuzumab and solanezumab in AD patients, as reported in preclinical studies, clinical trials and press releases. EXPERT OPINION Phase III trials showed that bapineuzumab failed to improve cognitive and functional performances in AD patients, and was associated with a high incidence of amyloid-related imaging abnormalities (ARIA). Solanezumab's two Phase III trials in AD patients failed to meet endpoints when analyzed independently. However, analysis of pooled data from both trials showed a significant reduction in cognitive decline in mild AD patients. The improvement was associated with an increase in plasma amyloid-β (Aβ) levels and a low incidence of ARIA in solanezumab-treated patients. The marginal benefits of solanezumab are encouraging to support continued evaluation in future studies, and offer small support in favor of the ongoing viability of the 'amyloid cascade hypothesis' of AD.
Collapse
Affiliation(s)
- Haythum O Tayeb
- McLean Hospital, Harvard Medical School, Department of Psychiatry, 115 Mill Street, Belmont, MA 02478, USA
| | | | | | | |
Collapse
|
149
|
Lemkul JA, Bevan DR. The role of molecular simulations in the development of inhibitors of amyloid β-peptide aggregation for the treatment of Alzheimer's disease. ACS Chem Neurosci 2012; 3:845-56. [PMID: 23173066 DOI: 10.1021/cn300091a] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 08/27/2012] [Indexed: 12/26/2022] Open
Abstract
The pathogenic aggregation of the amyloid β-peptide (Aβ) is considered a hallmark of the progression of Alzheimer's disease, the leading cause of senile dementia in the elderly and one of the principal causes of death in the United States. In the absence of effective therapeutics, the incidence and economic burden associated with the disease are expected to rise dramatically in the coming decades. Targeting Aβ aggregation is an attractive therapeutic approach, though structural insights into the nature of Aβ aggregates from traditional experiments are elusive, making drug design difficult. Theoretical methods have been used for several years to augment experimental work and drive progress forward in Alzheimer's drug design. In this Review, we will describe how two common techniques, molecular docking and molecular dynamics simulations, are being applied in developing small molecules as effective therapeutics against monomeric, oligomeric, and fibrillated forms of Aβ. Recent successes and important limitations will be discussed, and we conclude by providing a perspective on the future of this field by citing recent examples of sophisticated approaches used to better characterize interactions of small molecules with Aβ and other amyloidogenic proteins.
Collapse
Affiliation(s)
- Justin A. Lemkul
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - David R. Bevan
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
150
|
Catto M, Pisani L, Leonetti F, Nicolotti O, Pesce P, Stefanachi A, Cellamare S, Carotti A. Design, synthesis and biological evaluation of coumarin alkylamines as potent and selective dual binding site inhibitors of acetylcholinesterase. Bioorg Med Chem 2012. [PMID: 23199476 DOI: 10.1016/j.bmc.2012.10.045] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Acetylcholinesterase inhibitors (AChEIs) are currently the drugs of choice, although only symptomatic and palliative, for the treatment of Alzheimer's disease (AD). Donepezil is one of most used AChEIs in AD therapy, acting as a dual binding site, reversible inhibitor of AChE with high selectivity over butyrylcholinesterase (BChE). Through a combined target- and ligand-based approach, a series of coumarin alkylamines matching the structural determinants of donepezil were designed and prepared. 6,7-Dimethoxycoumarin derivatives carrying a protonatable benzylamino group, linked to position 3 by suitable linkers, exhibited fairly good AChE inhibitory activity and a high selectivity over BChE. The inhibitory potency was strongly influenced by the length and shape of the spacer and by the methoxy substituents on the coumarin scaffold. The inhibition mechanism, assessed for the most active compound 13 (IC(50) 7.6 nM) resulted in a mixed-type, thus confirming its binding at both the catalytic and peripheral binding sites of AChE.
Collapse
Affiliation(s)
- Marco Catto
- Dipartimento di Farmacia, Università degli Studi di Bari Aldo Moro, via E. Orabona 4, Bari 70125, Italy.
| | | | | | | | | | | | | | | |
Collapse
|