101
|
Adu-Afarwuah S, Arnold CD, Lartey A, Okronipa H, Maleta K, Ashorn P, Ashorn U, Fan YM, Matchado A, Kortekangas E, Oaks BM, Jackson KH, Dewey KG. Small-Quantity Lipid-Based Nutrient Supplements Increase Infants' Plasma Essential Fatty Acid Levels in Ghana and Malawi: A Secondary Outcome Analysis of the iLiNS-DYAD Randomized Trials. J Nutr 2022; 152:286-301. [PMID: 34543432 DOI: 10.1093/jn/nxab329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 11/14/2022] Open
Abstract
INTRODUCTION Small-quantity (SQ) lipid-based nutrient supplements (LNSs) may influence infants' plasma fatty acid (FA) profiles, which could be associated with short- and long-term outcomes. OBJECTIVES We aimed to determine the impact of SQ-LNS consumption on infants' plasma FA profiles in Ghana and Malawi. METHODS Ghanaian (n = 1320) and Malawian (n = 1391) women ≤20 weeks pregnant were assigned to consume 60 mg iron and 400 μg folic acid daily until delivery [iron and folic acid (IFA) group], multiple-micronutrient supplements (MMNs) until 6 months postpartum (MMN group), or SQ-LNSs (∼7.8 linoleic acid:α-linolenic acid ratio) until 6 months postpartum (LNS group). LNS group infants received SQ-LNS from 6 to 18 months of age. We compared infant plasma FAs by intervention group in subsamples (n = 379 in Ghana; n = 442 in Malawi) at 6 and 18 months using ANOVA and Poisson regression models. Main outcomes were mean percentage compositions (%Cs; percentage of FAs by weight) of α-linolenic acid (ALA), linoleic acid (LA), EPA, DHA, and arachidonic acid (AA). RESULTS At 6 months, LNS infants had greater mean ± SD ALA %Cs in Ghana (0.23 ± 0.08; IFA, 0.21 ± 0.06; MMN, 0.21 ± 0.07; P = 0.034) and Malawi (0.42 ± 0.16; IFA, 0.38 ± 0.15; MMN, 0.38 ± 0.14; P = 0.034) and greater AA values in Ghana (6.25 ± 1.24; IFA, 6.12 ± 1.13; MMN, 5.89 ± 1.24; P = 0.049). At 18 months, LNS infants had a tendency towards greater ALA (0.32 ± 0.16; IFA, 0.24 ± 0.08; MMN, 0.24 ± 0.10; P = 0.06) and LA (27.8 ± 3.6; IFA, 26.9 ± 2.9; MMN, 27.0 ± 3.1; P = 0.06) in Ghana, and greater ALA (0.45 ± 0.18; IFA, 0.39 ± 0.18; MMN, 0.39 ± 0.18; P < 0.001) and LA (29.7 ± 3.5; IFA, 28.7 ± 3.3; MMN, 28.6 ± 3.4; P = 0.011) in Malawi. The prevalence of ALA below the population-specific 10th percentile was lower in the LNS group compared to the MMN group, but not the IFA group. Groups did not differ significantly in plasma EPA or DHA levels. CONCLUSIONS SQ-LNS increased infants' plasma essential FA levels in Ghana and Malawi, which may have implications for health and developmental outcomes. These trials were registered at clinicaltrials.gov as NCT00970866 and NCT01239693.
Collapse
Affiliation(s)
- Seth Adu-Afarwuah
- Department of Nutrition and Food Science, University of Ghana, Legon, Accra, Ghana
| | - Charles D Arnold
- Institute for Global Nutrition, Department of Nutrition, University of California, Davis, CA, USA
| | - Anna Lartey
- Department of Nutrition and Food Science, University of Ghana, Legon, Accra, Ghana
| | - Harriet Okronipa
- Department of Nutrition and Food Science, University of Ghana, Legon, Accra, Ghana.,Institute for Global Nutrition, Department of Nutrition, University of California, Davis, CA, USA
| | - Kenneth Maleta
- University of Malawi College of Medicine, School of Public Health and Family Medicine, Department of Public Health, Blantyre, Malawi
| | - Per Ashorn
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Department of Pediatrics, Tampere University Hospital, Tampere, Finland
| | - Ulla Ashorn
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Yue-Mei Fan
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Andrew Matchado
- University of Malawi College of Medicine, School of Public Health and Family Medicine, Department of Public Health, Blantyre, Malawi
| | - Emma Kortekangas
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Brietta M Oaks
- Institute for Global Nutrition, Department of Nutrition, University of California, Davis, CA, USA
| | | | - Kathryn G Dewey
- Institute for Global Nutrition, Department of Nutrition, University of California, Davis, CA, USA
| |
Collapse
|
102
|
pH influences the interfacial properties of blue whiting (M. poutassou) and whey protein hydrolysates determining the physical stability of fish oil-in-water emulsions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107075] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
103
|
Murphy RA, Tintle N, Harris WS, Darvishian M, Marklund M, Virtanen JK, Hantunen S, de Mello VD, Tuomilehto J, Lindström J, Bolt MA, Brouwer IA, Wood AC, Senn M, Redline S, Tsai MY, Gudnason V, Eiriksdottir G, Lindberg E, Shadyab AH, Liu B, Carnethon M, Uusitupa M, Djousse L, Risérus U, Lind L, van Dam RM, Koh WP, Shi P, Siscovick D, Lemaitre RN, Mozaffarian D. PUFA ω-3 and ω-6 biomarkers and sleep: a pooled analysis of cohort studies on behalf of the Fatty Acids and Outcomes Research Consortium (FORCE). Am J Clin Nutr 2021; 115:864-876. [PMID: 34918026 PMCID: PMC8895226 DOI: 10.1093/ajcn/nqab408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/07/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND n-3 and n-6 PUFAs have physiologic roles in sleep processes, but little is known regarding circulating n-3 and n-6 PUFA and sleep parameters. OBJECTIVES We sought to assess associations between biomarkers of n-3 and n-6 PUFA intake with self-reported sleep duration and difficulty falling sleeping in the Fatty Acids and Outcome Research Consortium. METHODS Harmonized, de novo, individual-level analyses were performed and pooled across 12 cohorts. Participants were 35-96 y old and from 5 nations. Circulating measures included α-linolenic acid (ALA), EPA, docosapentaenoic acid (DPA), DHA, EPA + DPA + DHA, linoleic acid, and arachidonic acid. Sleep duration (10 cohorts, n = 18,791) was categorized as short (≤6 h), 7-8 h (reference), or long (≥9 h). Difficulty falling asleep (8 cohorts, n = 12,500) was categorized as yes or no. Associations between PUFAs, sleep duration, and difficulty falling sleeping were assessed by cross-sectional multinomial logistic regression using standardized protocols and covariates. Cohort-specific multivariable-adjusted ORs per quintile of PUFAs were pooled with inverse-variance weighted meta-analysis. RESULTS In pooled analysis adjusted for sociodemographic characteristics and health status, participants with higher very long-chain n-3 PUFAs were less likely to have long sleep duration. In the top compared with the bottom quintiles, the multivariable-adjusted ORs (95% CIs) for long sleep were 0.78 (95% CI: 0.65, 0.95) for DHA and 0.76 (95% CI: 0.63, 0.93) for EPA + DPA + DHA. Significant associations for ALA and n-6 PUFA with short sleep duration or difficulty falling sleeping were not identified. CONCLUSIONS Participants with higher concentrations of very long-chain n-3 PUFAs were less likely to have long sleep duration. While objective biomarkers reduce recall bias and misclassification, the cross-sectional design limits assessment of the temporal nature of this relation. These novel findings across 12 cohorts highlight the need for experimental and biological assessments of very long-chain n-3 PUFAs and sleep duration.
Collapse
Affiliation(s)
| | - Nathan Tintle
- Department of Mathematics and Statistics, Dordt College, Sioux Center, IA, USA,Fatty Acid Research Institute, Sioux Falls, SD, USA
| | - William S Harris
- Fatty Acid Research Institute, Sioux Falls, SD, USA,Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | | | - Matti Marklund
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, Australia,Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA,Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala, Sweden,Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Jyrki K Virtanen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Sari Hantunen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Vanessa D de Mello
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Jaakko Tuomilehto
- Public Health, University of Helsinki, Helsinki, Finland,National Institute for Health and Welfare, Helsinki, Finland,National School of Public Health, Madrid, Spain
| | | | - Matthew A Bolt
- Department of Mathematics and Statistics, Dordt College, Sioux Center, IA, USA
| | - Ingeborg A Brouwer
- Department of Health Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands,Amersterdam Public Health Research Institute, De Boelelaan, Amsterdam, Netherlands
| | - Alexis C Wood
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Mackenzie Senn
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Susan Redline
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA,Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Michael Y Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | | | | | - Eva Lindberg
- Department of Medical Sciences, Respiratory, Allergy and Sleep Research, Uppsala University, Sweden
| | - Aladdin H Shadyab
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, USA
| | - Buyun Liu
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Mercedes Carnethon
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - Matti Uusitupa
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Luc Djousse
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ulf Risérus
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala, Sweden
| | - Lars Lind
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala, Sweden
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Woon-Puay Koh
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A *STAR), Singapore
| | - Peilin Shi
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | | | - Rozenn N Lemaitre
- Department of Medicine, Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Dariush Mozaffarian
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| |
Collapse
|
104
|
Stiefvatter L, Lehnert K, Frick K, Montoya-Arroyo A, Frank J, Vetter W, Schmid-Staiger U, Bischoff SC. Oral Bioavailability of Omega-3 Fatty Acids and Carotenoids from the Microalgae Phaeodactylum tricornutum in Healthy Young Adults. Mar Drugs 2021; 19:700. [PMID: 34940699 PMCID: PMC8709223 DOI: 10.3390/md19120700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/20/2022] Open
Abstract
The microalgae Phaeodactylum tricornutum (PT) contains valuable nutrients such as proteins, polyunsaturated omega-3 fatty acids (n-3 PUFA), particularly eicosapentaenoic acid (EPA) and some docosahexaenoic acid (DHA), carotenoids such as fucoxanthin (FX), and beta-glucans, which may confer health benefits. In a randomized intervention trial involving 22 healthy individuals, we administered for two weeks in a crossover manner the whole biomass of PT (5.3 g/day), or fish oil (FO) containing equal amounts of EPA and DHA (together 300 mg/day). In an additional experiment, sea fish at 185 g/week resulting in a similar EPA and DHA intake was administered in nine individuals. We determined the bioavailability of fatty acids and carotenoids and assessed safety parameters. The intake of PT resulted in a similar increase in the n-3 PUFA and EPA content and a decrease in the PUFA n-6:n-3 ratio in plasma. PT intake caused an uptake of FX that is metabolized to fucoxanthinol (FXOH) and amarouciaxanthin A (AxA). No relevant adverse effects occurred following PT consumption. The study shows that PT is a safe and effective source of EPA and FX-and likely other nutrients-and therefore should be considered as a future sustainable food item.
Collapse
Affiliation(s)
- Lena Stiefvatter
- Institute of Nutritional Medicine, University of Hohenheim, Fruwirthstr. 12, 70593 Stuttgart, Germany;
| | - Katja Lehnert
- Institute of Food Chemistry, University of Hohenheim, 70593 Stuttgart, Germany; (K.L.); (W.V.)
| | - Konstantin Frick
- Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart, 70569 Stuttgart, Germany;
| | - Alexander Montoya-Arroyo
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, 70593 Stuttgart, Germany; (A.M.-A.); (J.F.)
| | - Jan Frank
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, 70593 Stuttgart, Germany; (A.M.-A.); (J.F.)
| | - Walter Vetter
- Institute of Food Chemistry, University of Hohenheim, 70593 Stuttgart, Germany; (K.L.); (W.V.)
| | - Ulrike Schmid-Staiger
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Innovation Field Algae Biotechnology-Development, 70569 Stuttgart, Germany;
| | - Stephan C. Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Fruwirthstr. 12, 70593 Stuttgart, Germany;
| |
Collapse
|
105
|
Liu T, Sun Y, Li H, Xu H, Xiao N, Wang X, Song L, Bai C, Wen H, Ge J, Zhang Y, Song W, Chen J. Metabolomic Characterization of Fatty Acids in Patients With Coronary Artery Ectasias. Front Physiol 2021; 12:770223. [PMID: 34867478 PMCID: PMC8640203 DOI: 10.3389/fphys.2021.770223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
Background: We used a targeted metabolomics approach to identify fatty acid (FA) metabolites that distinguished patients with coronary artery ectasia (CAE) from healthy Controls and patients with coronary artery disease (CAD). Materials and methods: Two hundred fifty-two human subjects were enrolled in our study, such as patients with CAE, patients with CAD, and Controls. All the subjects were diagnosed by coronary angiography. Plasma metabolomic profiles of FAs were determined by an ultra-high-performance liquid chromatography coupled to triple quadrupole mass spectrometric (UPLC-QqQ-MS/MS). Results: Ninety-nine plasma metabolites were profiled in the discovery sets (n = 72), such as 35 metabolites of arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), 10 FAs, and 54 phospholipids. Among these metabolites, 36 metabolites of AA, EPA, and DHA showed the largest difference between CAE and Controls or CAD. 12-hydroxyeicosatetraenoic acid (12-HETE), 17(S)-hydroxydocosahexaenoic acid (17-HDoHE), EPA, AA, and 5-HETE were defined as a biomarker panel in peripheral blood to distinguish CAE from CAD and Controls in a discovery set (n = 72) and a validation set (n = 180). This biomarker panel had a better diagnostic performance than metabolite alone in differentiating CAE from Controls and CAD. The areas under the ROC curve of the biomarker panel were 0.991 and 0.836 for CAE versus Controls and 1.00 and 0.904 for CAE versus CAD in the discovery and validation sets, respectively. Conclusions: Our findings revealed that the metabolic profiles of FAs in the plasma from patients with CAE can be distinguished from those of Controls and CAD. Differences in FAs metabolites may help to interpret pathological mechanisms of CAE.
Collapse
Affiliation(s)
- Tianlong Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yingying Sun
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haochen Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Xiao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuliang Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Congxia Bai
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongyan Wen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Ge
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yinhui Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weihua Song
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingzhou Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
106
|
Yang J, Wen C, Duan Y, Deng Q, Peng D, Zhang H, Ma H. The composition, extraction, analysis, bioactivities, bioavailability and applications in food system of flaxseed (Linum usitatissimum L.) oil: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
107
|
Stephenson K, Callaghan-Gillespie M, Maleta K, Nkhoma M, George M, Park HG, Lee R, Humphries-Cuff I, Lacombe RJS, Wegner DR, Canfield RL, Brenna JT, Manary MJ. Low linoleic acid foods with added DHA given to Malawian children with severe acute malnutrition improve cognition: a randomized, triple-blinded, controlled clinical trial. Am J Clin Nutr 2021; 115:1322-1333. [PMID: 34726694 PMCID: PMC9071416 DOI: 10.1093/ajcn/nqab363] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/28/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND There is concern that the PUFA composition of ready-to-use therapeutic food (RUTF) for the treatment of severe acute malnutrition (SAM) is suboptimal for neurocognitive recovery. OBJECTIVES We tested the hypothesis that RUTF made with reduced amounts of linoleic acid, achieved using high-oleic (HO) peanuts without added DHA (HO-RUTF) or with added DHA (DHA-HO-RUTF), improves cognition when compared with standard RUTF (S-RUTF). METHODS A triple-blind, randomized, controlled clinical feeding trial was conducted among children with uncomplicated SAM in Malawi with 3 types of RUTF: DHA-HO-RUTF, HO-RUTF, and S-RUTF. The primary outcomes, measured in a subset of subjects, were the Malawi Developmental Assessment Tool (MDAT) global z-score and a modified Willatts problem-solving assessment (PSA) intention score for 3 standardized problems, measured 6 mo and immediately after completing RUTF therapy, respectively. MDAT domain z-scores, plasma fatty acid content, anthropometry, and eye tracking were secondary outcomes. Comparisons were made between the novel PUFA RUTFs and S-RUTF. RESULTS Among the 2565 SAM children enrolled, mean global MDAT z-scores were -0.69 ± 1.19 and -0.88 ± 1.27 for children receiving DHA-HO-RUTF and S-RUTF, respectively (difference 0.19, 95% CI: 0.01, 0.38). Children receiving DHA-HO-RUTF had higher gross motor and social domain z-scores than those receiving S-RUTF. The PSA problem 3 scores did not differ by dietary group (OR: 0.92, 95% CI: 0.67, 1.26 for DHA-HO-RUTF). After 4 wk of treatment, plasma phospholipid EPA and α-linolenic acid were greater in children consuming DHA-HO-RUTF or HO-RUTF when compared with S-RUTF (for all 4 comparisons P values < 0.001), but only plasma DHA was greater in DHA-HO-RUTF than S-RUTF (P < 0.001). CONCLUSIONS Treatment of uncomplicated SAM with DHA-HO-RUTF resulted in an improved MDAT score, conferring a cognitive benefit 6 mo after completing diet therapy. This treatment should be explored in operational settings. This trial was registered at clinicaltrials.gov as NCT03094247.
Collapse
Affiliation(s)
- Kevin Stephenson
- Department of Medicine, Washington University, St.
Louis, MO, USA
| | | | - Kenneth Maleta
- Department of Public Health, School of Public Health & Family Medicine,
Kamuzu University of Health Sciences, Blantyre,
Malawi
| | - Minyanga Nkhoma
- Department of Public Health, School of Public Health & Family Medicine,
Kamuzu University of Health Sciences, Blantyre,
Malawi
| | - Matthews George
- Department of Public Health, School of Public Health & Family Medicine,
Kamuzu University of Health Sciences, Blantyre,
Malawi
| | - Hui Gyu Park
- Department of Pediatrics, University of Texas at Austin,
Austin, TX, USA
| | - Reginald Lee
- Department of Pediatrics, Washington University,
St. Louis, MO, USA
| | | | - R J Scott Lacombe
- Department of Pediatrics, University of Texas at Austin,
Austin, TX, USA
| | - Donna R Wegner
- Department of Pediatrics, Washington University,
St. Louis, MO, USA
| | - Richard L Canfield
- Department of Pediatrics, University of Texas at Austin,
Austin, TX, USA
| | - J Thomas Brenna
- Department of Pediatrics, University of Texas at Austin,
Austin, TX, USA,Division of Nutritional Sciences, Cornell University,
Ithaca, NY, USA
| | | |
Collapse
|
108
|
Demmelmair H, Koletzko B. Perinatal Polyunsaturated Fatty Acid Status and Obesity Risk. Nutrients 2021; 13:3882. [PMID: 34836138 PMCID: PMC8625539 DOI: 10.3390/nu13113882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
High obesity rates in almost all regions of the world prompt an urgent need for effective obesity prevention. Very good scientific evidence from cell culture and rodent studies show that the availability of essential polyunsaturated fatty acids (PUFA) and their long-chain polyunsaturated derivatives, namely, arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid, influence adipogenesis; for this reason, early life status may influence later obesity risk. The respective PUFA effects could be mediated via their eicosanoid derivatives, their influence on cell membrane properties, the browning of white adipose tissue, changes to the offspring gut microbiome, their influence on developing regulatory circuits, and gene expression during critical periods. Randomized clinical trials and observational studies show divergent findings in humans, with mostly null findings but also the positive and negative effects of an increased n-3 to n-6 PUFA ratio on BMI and fat mass development. Hence, animal study findings cannot be directly extrapolated to humans. Even though the mechanistic data basis for the effects of n-3 PUFA on obesity risk appears promising, no recommendations for humans can be derived at present.
Collapse
Affiliation(s)
| | - Berthold Koletzko
- Division of Metabolic and Nutritional Medicine, Department Pediatrics, Dr. von Hauner Children’s Hospital, University of Munich Medical Centre, LMU—Ludwig-Maximilians-Universität Munich, D-80337 Munich, Germany;
| |
Collapse
|
109
|
Omega-3 Polyunsaturated Fatty Acids (PUFAs): Emerging Plant and Microbial Sources, Oxidative Stability, Bioavailability, and Health Benefits-A Review. Antioxidants (Basel) 2021; 10:antiox10101627. [PMID: 34679761 PMCID: PMC8533147 DOI: 10.3390/antiox10101627] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022] Open
Abstract
The omega−3 (n−3) polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic (DHA) acid are well known to protect against numerous metabolic disorders. In view of the alarming increase in the incidence of chronic diseases, consumer interest and demand are rapidly increasing for natural dietary sources of n−3 PUFAs. Among the plant sources, seed oils from chia (Salvia hispanica), flax (Linum usitatissimum), and garden cress (Lepidium sativum) are now widely considered to increase α-linolenic acid (ALA) in the diet. Moreover, seed oil of Echium plantagineum, Buglossoides arvensis, and Ribes sp. are widely explored as a source of stearidonic acid (SDA), a more effective source than is ALA for increasing the EPA and DHA status in the body. Further, the oil from microalgae and thraustochytrids can also directly supply EPA and DHA. Thus, these microbial sources are currently used for the commercial production of vegan EPA and DHA. Considering the nutritional and commercial importance of n−3 PUFAs, this review critically discusses the nutritional aspects of commercially exploited sources of n−3 PUFAs from plants, microalgae, macroalgae, and thraustochytrids. Moreover, we discuss issues related to oxidative stability and bioavailability of n−3 PUFAs and future prospects in these areas.
Collapse
|
110
|
Pereira G, Simões P, Bexiga R, Silva E, Mateus L, Fernandes T, Alves SP, Bessa RJB, Lopes-da-Costa L. Effects of feeding rumen-protected linseed fat to postpartum dairy cows on plasma n-3 polyunsaturated fatty acid concentrations and metabolic and reproductive parameters. J Dairy Sci 2021; 105:361-374. [PMID: 34635360 DOI: 10.3168/jds.2021-20674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/28/2021] [Indexed: 12/30/2022]
Abstract
High-yielding dairy cows experience a negative energy balance and inflammatory status during the transition period. Fat supplementation increases diet energy density, and plasma n-3 polyunsaturated fatty acids (PUFA) have been proposed to improve immune function. This study tested the hypothesis that dietary supplementation with a rumen-protected and n-3 PUFA-enriched fat could ameliorate both the energetic deficit and immune status of postpartum high-yielding dairy cows, improving overall health and reproductive efficiency. At 11 d in milk (DIM), cows were randomly allocated to groups (1) n-3 PUFA (n = 29), supplemented with encapsulated linseed oil supplying additional up to 64 g/d (mean 25 ± 4 g/d) of α-linolenic acid (ALA), or (2) control (n = 31), supplemented with hydrogenated palm oil without ALA content. Fat supplements of the n-3 PUFA and control groups were available through an automated, off-parlor feeding system, and intake depended on the cow's feeding behavior. Plasma ALA concentrations were higher in n-3 PUFA than control cows, following a linear relation with supplement ingestion, resulting in a lower n-6/n-3 ratio in plasma. Metabolic parameters (body condition score and glucose and β-hydroxybutyric acid blood concentrations) were unaffected, but milk yield improved with increased intake of fat supplements. Plasma total adiponectin concentrations were negatively correlated with ingestion of n-3 PUFA-enriched fat supplement, following a linear relation with intake. Conception rate to first AI increased with higher intake of both fats, but a decrease of calving-to-conception interval occurred only in n-3 PUFA cows. Postpartum ovarian activity and endometrial inflammatory status at 45 DIM were unaffected. In conclusion, this study evinced a positive linear relation between rumen-protected linseed fat intake and plasma n-3 PUFA concentrations, which modulated adiponectin expression and improved reproductive parameters.
Collapse
Affiliation(s)
- Gonçalo Pereira
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Patrícia Simões
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Ricardo Bexiga
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Elisabete Silva
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Luisa Mateus
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Tatiane Fernandes
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Susana P Alves
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Rui J B Bessa
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Luis Lopes-da-Costa
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal.
| |
Collapse
|
111
|
Ordóñez-Gutiérrez L, Fábrias G, Casas J, Wandosell F. Diets with Higher ω-6/ω-3 Ratios Show Differences in Ceramides and Fatty Acid Levels Accompanied by Increased Amyloid-Beta in the Brains of Male APP/PS1 Transgenic Mice. Int J Mol Sci 2021; 22:ijms222010907. [PMID: 34681567 PMCID: PMC8535881 DOI: 10.3390/ijms222010907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Senile plaque formation as a consequence of amyloid-β peptide (Aβ) aggregation constitutes one of the main hallmarks of Alzheimer's disease (AD). This pathology is characterized by synaptic alterations and cognitive impairment. In order to either prevent or revert it, different therapeutic approaches have been proposed, and some of them are focused on diet modification. Modification of the ω-6/ω-3 fatty acids (FA) ratio in diets has been proven to affect Aβ production and senile plaque formation in the hippocampus and cortex of female transgenic (TG) mice. In these diets, linoleic acid is the main contribution of ω-6 FA, whereas alpha-linoleic acid (ALA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA) are the contributors of ω-3 FA. In the present work, we have explored the effect of ω-6/ω-3 ratio modifications in the diets of male double-transgenic APPswe/PS1ΔE9 (AD model) and wild-type mice (WT). Amyloid burden in the hippocampus increased in parallel with the increase in dietary ω-6/ω-3 ratio in TG male mice. In addition, there was a modification in the brain lipid profile proportional to the ω-6/ω-3 ratio of the diet. In particular, the higher the ω-6/ω-3 ratio, the lower the ceramides and higher the FAs, particularly docosatetraenoic acid. Modifications to the cortex lipid profile was mostly similar between TG and WT mice, except for gangliosides (higher levels in TG mice) and some ceramide species (lower levels in TG mice).
Collapse
Affiliation(s)
- Lara Ordóñez-Gutiérrez
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28049 Madrid, Spain;
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain
| | - Gemma Fábrias
- Instituto de Química Avanzada de Cataluña (IQAC-CSIC), 080034 Barcelona, Spain; (G.F.); (J.C.)
| | - Josefina Casas
- Instituto de Química Avanzada de Cataluña (IQAC-CSIC), 080034 Barcelona, Spain; (G.F.); (J.C.)
| | - Francisco Wandosell
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28049 Madrid, Spain;
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain
- Correspondence: ; Tel.: +34-91-196-4561
| |
Collapse
|
112
|
Mathieu‐Resuge M, Pilecky M, Twining CW, Martin‐Creuzburg D, Parmar TP, Vitecek S, Kainz MJ. Dietary availability determines metabolic conversion of long‐chain polyunsaturated fatty acids in spiders: a dual compound‐specific stable isotope approach. OIKOS 2021. [DOI: 10.1111/oik.08513] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Matthias Pilecky
- WasserCluster Lunz – Biologische Station GmbH Lunz am See Austria
| | - Cornelia W. Twining
- Max Planck Inst. of Animal Behavior Radolfzell Germany
- Limnological Inst., Univ. of Konstanz Konstanz Germany
| | | | | | - Simon Vitecek
- WasserCluster Lunz – Biologische Station GmbH Lunz am See Austria
- Univ. of Natural Resources and Life Sciences, Vienna, Inst. of Hydrobiology and Aquatic Ecosystem Management Vienna Austria
| | - Martin J. Kainz
- WasserCluster Lunz – Biologische Station GmbH Lunz am See Austria
- Faculty of Medicine and Health, Danube Univ. Krems Krems Austria
| |
Collapse
|
113
|
Barta DG, Coman V, Vodnar DC. Microalgae as sources of omega-3 polyunsaturated fatty acids: Biotechnological aspects. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
114
|
Bermingham KM, Brennan L, Segurado R, Gray IJ, Barron RE, Gibney ER, Ryan MF, Gibney MJ, Newman JW, O'Sullivan DAM. Genetic and environmental influences on serum oxylipins, endocannabinoids, bile acids and steroids. Prostaglandins Leukot Essent Fatty Acids 2021; 173:102338. [PMID: 34500309 DOI: 10.1016/j.plefa.2021.102338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/06/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022]
Abstract
Lipid bioactivity is a result of direct action and the action of lipid mediators including oxylipins, endocannabinoids, bile acids and steroids. Understanding the factors contributing to biological variation in lipid mediators may inform future approaches to understand and treat complex metabolic diseases. This research aims to determine the contribution of genetic and environmental influences on lipid mediators involved in the regulation of inflammation and energy metabolism. This study recruited 138 monozygotic (MZ) and dizygotic (DZ) twins aged 18-65 years and measured serum oxylipins, endocannabinoids, bile acids and steroids using liquid chromatography mass-spectrometry (LC-MS). In this classic twin design, the similarities and differences between MZ and DZ twins are modelled to estimate the contribution of genetic and environmental influences to variation in lipid mediators. Heritable lipid mediators included the 12-lipoxygenase products 12-hydroxyeicosatetraenoic acid [0.70 (95% CI: 0.12,0.82)], 12-hydroxyeicosatetraenoic acid [0.73 (95% CI: 0.30,0.83)] and 14‑hydroxy-docosahexaenoic acid [0.51 (95% CI: 0.07,0.71)], along with the endocannabinoid docosahexaenoy-lethanolamide [0.52 (95% CI: 0.15,0.72)]. For others such as 13-hydroxyoctadecatrienoic acid and lithocholic acid the contribution of environment to variation was stronger. With increased understanding of lipid mediator functions in health, it is important to understand the factors contributing to their variance. This study provides a comprehensive analysis of lipid mediators and extends pre-existing knowledge of the genetic and environmental influences on the human lipidome.
Collapse
MESH Headings
- 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/blood
- 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/genetics
- Adolescent
- Adult
- Aged
- Bile Acids and Salts/blood
- Bile Acids and Salts/genetics
- Dehydroepiandrosterone/blood
- Dehydroepiandrosterone/genetics
- Docosahexaenoic Acids/blood
- Docosahexaenoic Acids/genetics
- Eicosapentaenoic Acid/analogs & derivatives
- Eicosapentaenoic Acid/blood
- Eicosapentaenoic Acid/genetics
- Endocannabinoids/blood
- Endocannabinoids/genetics
- Fatty Acids, Omega-3/blood
- Fatty Acids, Omega-3/genetics
- Female
- Gene-Environment Interaction
- Humans
- Lipid Metabolism/genetics
- Male
- Middle Aged
- Oxylipins/blood
- Steroids/blood
- Twins, Dizygotic/genetics
- Twins, Monozygotic/genetics
- Young Adult
Collapse
Affiliation(s)
- K M Bermingham
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - L Brennan
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - R Segurado
- UCD School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - I J Gray
- Obesity and Metabolism Research Unit, United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, USA; West Coast Metabolomics Center, UC Davis Genome Center, University of California Davis, Davis, CA, USA
| | - R E Barron
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - E R Gibney
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - M F Ryan
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - M J Gibney
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - J W Newman
- Obesity and Metabolism Research Unit, United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, USA; West Coast Metabolomics Center, UC Davis Genome Center, University of California Davis, Davis, CA, USA; Dept of Nutrition, University of California Davis, Davis, CA, USA
| | - Dr A M O'Sullivan
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
115
|
Akhigbe RE, Hamed MA, Odetayo AF, Akhigbe TM, Ajayi AF, Ajibogun FAH. Omega-3 fatty acid rescues ischaemia/perfusion-induced testicular and sperm damage via modulation of lactate transport and xanthine oxidase/uric acid signaling. Biomed Pharmacother 2021; 142:111975. [PMID: 34343894 DOI: 10.1016/j.biopha.2021.111975] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/14/2021] [Accepted: 07/26/2021] [Indexed: 12/27/2022] Open
Abstract
This study aimed to explore the potential antioxidant, anti-inflammatory, and anti-apoptotic effects of omega 3 fatty acid (Ω-3) in a rat model of testicular torsion/detorsion (T/D). Under ketamine/xylazine anaesthesia, age-matched adult male Wistar rats of comparable weight underwent sham-operation or testicular torsion by fixing the left testis rotated at 720° for two and half hours. After detorsion, animals were treated with either olive oil as vehicle or Ω-3 subcutaneously for three days. On post-operative day 3, rats were culled and the ipsilateral and contralateral testes, as well as obtained blood samples, were analyzed. Our findings revealed that T/D led to significant poor weight gain, distorted gross anatomy, and cytoarchitecture of the testes, low sperm quality, redox imbalance, and inflammation of the ipsilateral and contralateral testes. This was accompanied by reduced circulatory testosterone, a decline in testicular lactate metabolism and transport, upregulation of xanthine oxidase/uric acid signaling, and increased testicular DNA fragmentation. Administration of Ω-3 attenuated T/D-induced damage to the testes and sperm cells with a significant rise in the level of serum testosterone. Enhancement of lactate transport and down-regulation of xanthine oxidase/uric acid signaling by Ω-3 may be beneficial in protecting against T/D-related oxido-inflammatory damage and male infertility.
Collapse
Affiliation(s)
- R E Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Reproductive Biology and Toxicology Research Laboratories, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria; Department of Chemical Sciences, Kings University, Odeomu, Osun, Nigeria.
| | - M A Hamed
- Reproductive Biology and Toxicology Research Laboratories, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria; Buntai Medical and Diagnostic Laboratories, Osogbo, Nigeria.
| | - A F Odetayo
- Reproductive Biology and Toxicology Research Laboratories, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria; Department of Physiology, University of Ilorin, Ilorin, Kwara State, Nigeria.
| | - T M Akhigbe
- Reproductive Biology and Toxicology Research Laboratories, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria; Department of Crop Production and Soil Science, Faculty of Agricultural Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
| | - A F Ajayi
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
| | - F A H Ajibogun
- Bioresources Development Centre, National Biotechnology Development Agency, Ministry of Science and Technology, Ogbomoso, Oyo State, Nigeria.
| |
Collapse
|
116
|
Kim M, Voy BH. Fighting Fat With Fat: n-3 Polyunsaturated Fatty Acids and Adipose Deposition in Broiler Chickens. Front Physiol 2021; 12:755317. [PMID: 34658934 PMCID: PMC8511411 DOI: 10.3389/fphys.2021.755317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
Modern broiler chickens are incredibly efficient, but they accumulate more adipose tissue than is physiologically necessary due to inadvertent consequences of selection for rapid growth. Accumulation of excess adipose tissue wastes feed in birds raised for market, and it compromises well-being in broiler-breeders. Studies driven by the obesity epidemic in humans demonstrate that the fatty acid profile of the diet influences adipose tissue growth and metabolism in ways that can be manipulated to reduce fat accretion. Omega-3 polyunsaturated fatty acids (n-3 PUFA) can inhibit adipocyte differentiation, induce fatty acid oxidation, and enhance energy expenditure, all of which can counteract the accretion of excess adipose tissue. This mini-review summarizes efforts to counteract the tendency for fat accretion in broilers by enriching the diet in n-3 PUFA.
Collapse
Affiliation(s)
| | - Brynn H. Voy
- Department of Animal Science, The University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
117
|
Sugimori N, Hamazaki K, Matsumura K, Kasamatsu H, Tsuchida A, Inadera H. Association between mothers' fish intake during pregnancy and infants' sleep duration: a nationwide longitudinal study-The Japan Environment and Children's Study (JECS). Eur J Nutr 2021; 61:679-686. [PMID: 34505173 PMCID: PMC8854241 DOI: 10.1007/s00394-021-02671-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 08/31/2021] [Indexed: 11/29/2022]
Abstract
Purpose N-3 polyunsaturated fatty acids (n-3 PUFAs), which are an important nutrient for humans, are particularly essential to the growth and development of the central nervous system (CNS) in fetuses and infants. Consequently, sufficient n-3 PUFA intake by mothers during pregnancy is considered to contribute to CNS development in their infants. CNS development is known to be associated with sleep, but no large epidemiological studies have yet confirmed that n-3 PUFA intake during pregnancy is associated with infants’ sleep. Methods After exclusion and multiple imputation from a dataset comprising 104 065 records from the Japan Environment and Children’s Study (JECS), we examined 87 337 mother–child pairs for the association between mothers’ fish and n-3 PUFA intakes and risk of their infants sleeping less than 11 h at 1 year of age. Results Multiple logistic regression analysis with the lowest quintile used as a reference revealed odds ratios for the second through fifth quintiles of 0.81 (95% confidence interval [95% CI] 0.76–0.87), 0.81 (95% CI 0.76–0.87), 0.78 (95% CI 0.72–0.84), and 0.82 (95% CI 0.76–0.88) for fish intake (p for trend < 0.001) and 0.90 (95% CI 0.84–0.97), 0.88 (95% CI 0.81–0.94), 0.88 (95% CI 0.82–0.95), and 0.93 (95% CI 0.86–0.998) for n-3 PUFA intake (p for trend = 0.04). Conclusions Low fish intake during pregnancy may increase the risk of infants sleeping less than 11 h at 1 year of age. This relationship may have been mediated by maternal n-3 PUFA intake and infant neurodevelopment, but further evidence from interventional and other studies is needed to determine the appropriate level of fish intake during pregnancy. Trial registration The Japan Environment and Children’s Study, https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000035091 (Registration no. UMIN000030786). Supplementary Information The online version contains supplementary material available at 10.1007/s00394-021-02671-4.
Collapse
Affiliation(s)
- Narumi Sugimori
- Department of Public Health, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama City, Toyama, 930-0194, Japan
| | - Kei Hamazaki
- Department of Public Health, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama City, Toyama, 930-0194, Japan.,Toyama Regional Center for JECS, University of Toyama, Toyama, Japan
| | - Kenta Matsumura
- Toyama Regional Center for JECS, University of Toyama, Toyama, Japan
| | - Haruka Kasamatsu
- Toyama Regional Center for JECS, University of Toyama, Toyama, Japan
| | - Akiko Tsuchida
- Department of Public Health, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama City, Toyama, 930-0194, Japan.,Toyama Regional Center for JECS, University of Toyama, Toyama, Japan
| | - Hidekuni Inadera
- Department of Public Health, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama City, Toyama, 930-0194, Japan. .,Toyama Regional Center for JECS, University of Toyama, Toyama, Japan.
| | | |
Collapse
|
118
|
Rashid N, Ashraf I, Kumar R, Richa R. Enrichment via chia seeds to tackle hidden hunger: A review. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Ifra Ashraf
- College of Agricultural Engineering and Technology Sher‐e‐Kashmir University of Agricultural Sciences and Technology of Kashmir Shalimar Campus Srinagar India
| | - Rohitashw Kumar
- College of Agricultural Engineering and Technology Sher‐e‐Kashmir University of Agricultural Sciences and Technology of Kashmir Shalimar Campus Srinagar India
| | - Rishi Richa
- College of Agricultural Engineering and Technology Sher‐e‐Kashmir University of Agricultural Sciences and Technology of Kashmir Shalimar Campus Srinagar India
| |
Collapse
|
119
|
Gonzalez-Soto M, Abdelmagid SA, Ma DW, El-Sohemy A, Mutch DM. Soy Consumption, but Not Dairy Consumption, Is Inversely Associated with Fatty Acid Desaturase Activity in Young Adults. Nutrients 2021; 13:2817. [PMID: 34444977 PMCID: PMC8400722 DOI: 10.3390/nu13082817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 11/17/2022] Open
Abstract
Past research using hepatic rat microsomes showed that soy protein suppressed delta-6 desaturase activity (D6D) compared to casein (a dairy protein). The effects of soy and dairy on desaturase pathway activity in humans remain poorly investigated. The objective of this analysis was to investigate the association between soy and dairy consumption with plasma fatty acids and estimate the desaturase pathway activity in a multiethnic Canadian population of young adults. We analyzed data from men (n = 319) and women (n = 764) previously collected for the Toronto Nutrigenomics and Health Study. Food frequency questionnaires and plasma fatty acids were assessed. Relationships between soy and dairy beverages and food consumption with estimated desaturase activities were assessed by regression models and by grouping participants according to beverage and food intake data. Weak inverse associations (p ≤ 0.05) were found between soy consumption and the overall desaturation pathway activity, specifically D6D activity. When participants were grouped based on soy and dairy consumption habits, omega-6 LC-PUFAs, as well as various estimates of the desaturase pathway activity, were significantly lower in individuals consuming soy (with or without dairy) compared to individuals consuming only fluid milk and dairy products. In conclusion, soy consumption, not dairy consumption, appears to suppress desaturase pathway activity.
Collapse
Affiliation(s)
- Melissa Gonzalez-Soto
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.G.-S.); (S.A.A.); (D.W.L.M.)
| | - Salma A Abdelmagid
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.G.-S.); (S.A.A.); (D.W.L.M.)
| | - David W.L. Ma
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.G.-S.); (S.A.A.); (D.W.L.M.)
| | - Ahmed El-Sohemy
- Department of Nutritional Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - David M Mutch
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.G.-S.); (S.A.A.); (D.W.L.M.)
| |
Collapse
|
120
|
Carlson SE, Schipper L, Brenna JT, Agostoni C, Calder PC, Forsyth S, Legrand P, Abrahamse-Berkeveld M, van de Heijning BJM, van der Beek EM, Koletzko BV, Muhlhausler B. Perspective: Moving Toward Desirable Linoleic Acid Content in Infant Formula. Adv Nutr 2021; 12:2085-2098. [PMID: 34265035 PMCID: PMC8634410 DOI: 10.1093/advances/nmab076] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
Infant formula should provide the appropriate nutrients and adequate energy to facilitate healthy infant growth and development. If conclusive data on quantitative nutrient requirements are not available, the composition of human milk (HM) can provide some initial guidance on the infant formula composition. This paper provides a narrative review of the current knowledge, unresolved questions, and future research needs in the area of HM fatty acid (FA) composition, with a particular focus on exploring appropriate intake levels of the essential FA linoleic acid (LA) in infant formula. The paper highlights a clear gap in clinical evidence as to the impact of LA levels in HM or formula on infant outcomes, such as growth, development, and long-term health. The available preclinical information suggests potential disadvantages of high LA intake in the early postnatal period. We recommend performing well-designed clinical intervention trials to create clarity on optimal levels of LA to achieve positive impacts on both short-term growth and development and long-term functional health outcomes.
Collapse
Affiliation(s)
| | | | - J Thomas Brenna
- Department of Pediatrics, University of Texas at Austin, Austin, TX, USA,Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Carlo Agostoni
- Pediatric Area, Fondazione IRCCS Ca’Granda- Ospedale Maggiore Policlinico, Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Philip C Calder
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | | - Philippe Legrand
- Laboratoire de Biochimie-Nutrition Humaine, Agrocampus–French National Institute of Health and Medical Research, Rennes, France
| | | | | | - Eline M van der Beek
- Danone Nutricia Research, Utrecht, The Netherlands,Department of Pediatrics, University Medical Center, Groningen, The Netherlands
| | - Berthold V Koletzko
- Ludwig-Maximilians-Universität Munich, Department of Paediatrics, Dr von Hauner Children's Hospital, University of Munich Medical Center, Munich, Germany
| | - Beverly Muhlhausler
- Nutrition and Health Program, Health and Biosecurity, CSIRO, Adelaide, Australia,School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
121
|
Kowarik C, Martin-Creuzburg D, Robinson CT. Cross-Ecosystem Linkages: Transfer of Polyunsaturated Fatty Acids From Streams to Riparian Spiders via Emergent Insects. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.707570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are essential resources unequally distributed throughout landscapes. Certain PUFAs, such as eicosapentaenoic acid (EPA), are common in aquatic but scarce in terrestrial ecosystems. In environments with low PUFA availability, meeting nutritional needs requires either adaptations in metabolism to PUFA-poor resources or selective foraging for PUFA-rich resources. Amphibiotic organisms that emerge from aquatic ecosystems represent important resources that can be exploited by predators in adjacent terrestrial habitats. Here, we traced PUFA transfer from streams to terrestrial ecosystems, considering benthic algae as the initial PUFA source, through emergent aquatic insects to riparian spiders. We combined carbon stable isotope and fatty acid analyses to follow food web linkages across the ecosystem boundary and investigated the influence of spider lifestyle (web building vs. ground dwelling), season, and ecosystem degradation on PUFA relations. Our data revealed that riparian spiders consumed considerable amounts of aquatic-derived resources. EPA represented on average 15 % of the total fatty acids in riparian spiders. Season had a strong influence on spider PUFA profiles, with highest EPA contents in spring. Isotope data revealed that web-building spiders contain more aquatic-derived carbon than ground dwelling spiders in spring, although both spider types had similarly high EPA levels. Comparing a natural with an anthropogenically degraded fluvial system revealed higher stearidonic acid (SDA) contents and Σω3/Σω6 ratios in spiders collected along the more natural river in spring but no difference in spider EPA content between systems. PUFA profiles of riparian spiders where distinct from other terrestrial organism and more closely resembled that of emergent aquatic insects (higher Σω3/Σω6 ratio). We show here that the extent to which riparian spiders draw on aquatic PUFA subsidies can vary seasonally and depends on the spider’s lifestyle, highlighting the complexity of aquatic-terrestrial linkages.
Collapse
|
122
|
Gholamalizadeh M, Tabrizi R, Bourbour F, Rezaei S, Pourtaheri A, Badeli M, Jarrahi SAM, Akbari ME, Kalantari N, Doaei S. Are the FTO Gene Polymorphisms Associated with Colorectal Cancer? A Meta-analysis. J Gastrointest Cancer 2021; 52:846-853. [PMID: 34212310 DOI: 10.1007/s12029-021-00651-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 02/01/2025]
Abstract
BACKGROUND Colorectal cancer (CRC) is reported to be associated with some gene polymorphisms. However, the effect of the fat mass and obesity associated (FTO) gene on colorectal cancer is not yet clear. This meta-analysis aimed to investigate the association of the FTO gene polymorphism and colorectal cancer. METHODS PubMed, Web of science, Scopus, and Embase were explored to identify the studies investigating the relationship between rs9939609 and rs17817449 polymorphisms of FTO gene and colorectal cancer, and the published papers from 2000 to 2019 were collected. This meta-analysis was conducted by using a random-effects model for the best estimation of the desired outcomes. RESULTS In this study, 1528 studies were initially included and five eligible case-control studies including 13,460 cases and 22,578 controls were eligible for further analyses. No significant association was found between risk allele of FTO rs9939609 (OR = 0.98, 0.87-1.1) and rs17817449 (OR = 0.9, 0.79-1.03) polymorphisms and colorectal cancer risk. The subgroup analyses considering the source of the control group and race found no significant association between FTO polymorphisms and the risk of colon cancer. CONCLUSIONS This study indicated that rs9939609 and rs17817449 FTO gene polymorphisms are not associated with colorectal cancer risk. Individual studies involving different FTO polymorphisms are needed to further evaluation of the associations between the FTO gene and colon cancer.
Collapse
Affiliation(s)
- Maryam Gholamalizadeh
- Students Research Committee, Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Tabrizi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Fatemeh Bourbour
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahla Rezaei
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.,Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azam Pourtaheri
- School of Medicine, Mashhad University of Medical Sciences, Tehran, Iran
| | - Mostafa Badeli
- Department of Nutrition, Urmia University of Medical Science, Urmia, Iran
| | | | | | - Naser Kalantari
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Doaei
- Research Center of Health and Environment, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
123
|
Walker RE, Parkhomenko V, Ying Y, Urrutia N, Harvatine KJ. Dietary SFAs and ω-6 Fatty Acids Alter Incorporation of ω-3 Fatty Acids into Milk Fat of Lactating CD-1 Mice and Tissues of Offspring. J Nutr 2021; 151:1834-1843. [PMID: 33982073 DOI: 10.1093/jn/nxab094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/13/2021] [Accepted: 03/15/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Methods to increase the amount of omega-3 (n-3) PUFAs in milk are desirable for neonatal health. The n-3 PUFA, α-linolenic acid (18:3n-3), can be elongated to EPA (20:5n-3) and DHA (22:6n-3). n-6 PUFAs suppress tissue n-3 PUFA incorporation, but the effect of SFAs is not clear. OBJECTIVES In this study, we compared the effects of SFAs and n-6 PUFAs on n-3 PUFA incorporation into milk and tissues of lactating mice and tissues of their offspring. METHODS Female CD-1 mice were bred at 8 wk of age. All experimental diets included 3% flaxseed oil and were begun on day 8 of lactation: low-fat diet (LFD); high-SFA diet (SAT), with an additional 12% saturated oil; or high-linoleic-acid diet (HLA), with 12% high-linoleic-acid oil (% kcal, carbohydrates:fat:protein: LFD, 49:24:27; both SAT and HLA, 35:46:19; n = 5/treatment). After 5 d, pup stomach milk clot FA profiles, tissue FA profiles in dams and pups, and mammary and hepatic expression of lipid metabolism genes in dams were analyzed. Data were analyzed by ANOVA with treatment diet as a fixed effect. RESULTS Dams in all groups had similar total milk fat concentrations, but both SAT and HLA decreased the concentration of n-3 PUFAs (SAT: -23%; HLA: -31%) compared with LFD, and HLA increased milk n-6 FAs by 347% compared with SAT. SAT pups had n-3 PUFA tissue concentrations similar to LFD, but HLA pups had lower n-3 PUFAs than SAT pups in multiple tissues (liver, -32%; kidney, -29%; heart, -28%; muscle, -18%). Mammary expression of lipid metabolism genes was mostly unchanged, but hepatic expression of elongases and desaturases was decreased with SAT compared with LFD [elongation of very-long-chain fatty acid (Elov)5, -42%; Elov6, -64%; fatty acid desaturase (Fads)1, -33%; Fads2, -44%]. CONCLUSIONS HLA decreased n-3 PUFA concentrations across multiple pup tissues compared with SAT. This suggests that high dietary n-6 PUFAs suppress n-3 PUFA incorporation in neonates.
Collapse
Affiliation(s)
- Rachel E Walker
- Department of Animal Sciences, The Pennsylvania State University, University Park, PA, USA.,Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Valentina Parkhomenko
- Department of Animal Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Yun Ying
- Department of Animal Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Natalie Urrutia
- Department of Animal Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Kevin J Harvatine
- Department of Animal Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
124
|
Unger AL, Jetton TL, Kraft J. Tissue and Circulating Fatty Acids as Biomarkers to Evaluate Long-Term Fat Intake Are Tissue and Sex Dependent in CD-1 Mice. J Nutr 2021; 151:1779-1790. [PMID: 33982087 DOI: 10.1093/jn/nxab079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/27/2021] [Accepted: 03/01/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND There is currently no consensus on which tissues are optimal for assessing specific diet-derived fatty acids (FAs) as biomarkers for long-term dietary studies. OBJECTIVES This study measured the content of unique diet-derived FAs from dairy, echium, and fish in tissues (adipose, muscle, liver, erythrocyte membranes, and plasma phospholipids, cholesterol esters, triglycerides, and free fatty acids) after long-term feeding in CD-1 mice. METHODS Beginning at weaning, mice (n = 10-11/sex/diet) were fed 1 of 4 diets (40% kcal/total energy) that only differed in FA composition: control fat blend (CON), reflecting the FA profile of the average US American diet, or CON supplemented with 30% of fish oil (FO), dairy fat (DF), or echium oil (EO). After 13 mo, tissues were collected to determine FAs via gas-liquid chromatography. Tissue FAs were analyzed via 2-factor ANOVA, and relationships between FA intake and tissue content were assessed with Spearman correlations. RESULTS As anticipated, 20:5n-3 (ω-3) tissue content was ≤32-fold greater in FO- compared with CON-fed mice (P < 0.05). In addition, 20:5n-3 intake strongly correlated with its content in all tissues (ρ = 0.67-0.76; P < 0.05). Echium oil intake also influenced tissue FA content in mice as expected. For example, 18:3n-6 was ≤25-fold greater in adipose, muscle, and liver tissues of EO-fed compared with CON-fed mice (P < 0.05). Tissue content of FAs typically considered biomarkers of dairy fat intake (15:0, 16:1 t9, and 17:0) was often not greater in mice fed DF than other diet groups, although 18:2 c9, t11 content was ≤6-fold greater in tissues from DF-fed compared with CON-fed mice (P < 0.05). The content of dairy-derived FAs in blood fractions of females was up to 2-fold greater compared with males, whereas docosapentaenoic acid content was up to 1-fold greater in all blood fractions and in liver tissue of males compared with females (P < 0.05). In adipose, muscle, and liver tissue, the content of γ-linolenic acid and stearidonic acid was less than 1-fold greater in females than in males (P < 0.05). CONCLUSIONS Our study indicates that the distribution of dietary FAs is tissue and sex dependent in aged CD-1 mice. Research using FA biomarkers should assess a combination of FA biomarkers to accurately validate patterns of FA intake and source.
Collapse
Affiliation(s)
- Allison L Unger
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, USA
| | - Thomas L Jetton
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Vermont, Colchester, VT, USA
| | - Jana Kraft
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, USA.,Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Vermont, Colchester, VT, USA
| |
Collapse
|
125
|
Nienaber A, Ozturk M, Dolman RC, Zandberg L, Hayford FE, Brombacher F, Blaauw R, Smuts CM, Parihar SP, Malan L. Beneficial effect of long-chain n-3 polyunsaturated fatty acid supplementation on tuberculosis in mice. Prostaglandins Leukot Essent Fatty Acids 2021; 170:102304. [PMID: 34082319 DOI: 10.1016/j.plefa.2021.102304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/03/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
Intakes of the omega-3 essential fatty acids (n-3 EFAs) are low in the general adult population, with high n-6/n-3 polyunsaturated fatty acid (PUFA) ratios and the accompanying suboptimal n-3 PUFA status. Eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) have antibacterial and inflammation-resolving effects in tuberculosis (TB). However, whether switching to a diet with optimum n-3 EFA intake after the infection has comparable benefits has not been investigated. We aimed to compare the effects of a diet with sufficient n-3 EFA content in an acceptable n-6/n-3 PUFA ratio for rodents ((n-3)eFAS group) with those on the same diet supplemented with EPA and DHA (EPA/DHA group) in Mycobacterium tuberculosis (Mtb)-infected C3HeB/FeJ mice with a low n-3 PUFA status. Mice were conditioned on an n-3 PUFA-deficient diet with a high n-6/n-3 PUFA ratio for 6 weeks before Mtb infection and randomized to either (n-3)eFAS or EPA/DHA diets 1 week post-infection for 3 weeks. At endpoint, EPA and DHA compositions were higher and arachidonic acid, osbond acid, and total n-6 LCPUFAs lower in all lipid pools measured in the EPA/DHA group (all P < 0.001). Percentage body weight gain was higher (P = 0.017) and lung bacterial load lower (P < 0.001) in the EPA/DHA group. Additionally, the EPA/DHA group had a more pro-resolving lung lipid mediator profile and lower lung in IL-1α and IL-1β concentrations (P = 0.023, P = 0.049). Inverse correlations were found between the lung and peripheral blood mononuclear cell EPA and DHA and selected pro-inflammatory cytokines. These are the first findings that indicate that EPA/DHA supplementation provides benefits superior to a diet with sufficient n-3 EFAs concerning bacterial killing, weight gain and lung inflammation resolution in Mtb-infected mice with a low n-3 PUFA status. Therefore, EPA and DHA may be worth considering as adjunct TB treatment.
Collapse
Affiliation(s)
- Arista Nienaber
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa.
| | - Mumin Ozturk
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, University of Cape Town, Cape Town, Western Cape, South Africa; Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Robin C Dolman
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Lizelle Zandberg
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Frank Ea Hayford
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa; Department of Nutrition and Dietetics, School of biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, University of Cape Town, Cape Town, Western Cape, South Africa; Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, University of Cape Town, Cape Town, Western Cape, South Africa; Welcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, Western Cape, South Africa; Division of Medical Microbiology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Renee Blaauw
- Division of Human Nutrition, Stellenbosch University, Tygerberg, Cape Town, Western Cape, South Africa
| | - Cornelius M Smuts
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Suraj P Parihar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, University of Cape Town, Cape Town, Western Cape, South Africa; Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, University of Cape Town, Cape Town, Western Cape, South Africa; Welcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, Western Cape, South Africa; Division of Medical Microbiology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Linda Malan
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| |
Collapse
|
126
|
Metelcová T, Vaňková M, Zamrazilová H, Hovhannisyan M, Staňková B, Tvrzická E, Hill M, Hainer V, Včelák J, Kunešová M. FADS1 gene polymorphism(s) and fatty acid composition of serum lipids in adolescents. Lipids 2021; 56:499-508. [PMID: 34189740 DOI: 10.1002/lipd.12317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 11/09/2022]
Abstract
Polyunsaturated fatty acids (PUFA) influence many physiological functions. Associations have been found between single nucleotide polymorphisms (SNP) in the FADS1 (Fatty acid desaturase 1) gene and the relative abundance of PUFA in serum lipids. This study examines the relationship between two SNPs in the FADS1 gene (rs174546, rs174537) and the fatty acid (FA) composition of serum lipids in adolescents (13-18 years). We used DNA samples (670 children; 336 girls and 334 boys) from the Childhood Obesity Prevalence and Treatment (COPAT) project. Genomic DNA was extracted from peripheral blood leukocytes in whole blood samples. For genotype analysis, TaqMan SNP Genotyping assays (Applied Biosystems) were used. Fatty acid composition of serum lipids was assessed using gas chromatography. The T-statistic and regression were used for statistical evaluations. Minor allele T carriers in both SNPs had significant lower level of palmitic acid (16:0, phospholipids) and arachidonic acid (20:4[n-6], phospholipids) in both sexes. In girls, we found a significant positive association between minor allele T carriers and eicosadienoic acid (20:2[n-6], cholesteryl esters) in both SNPs. Being a minor allele T carrier was significantly positively associated with dihomo-γ-linolenic acid (20:3[n-6], phospholipids) in boys in both SNPs. SNPs (including rs174546, rs174537) in the FADS gene cluster should have impacted desaturase activity, which may contribute to different efficiency of PUFA synthesis.
Collapse
Affiliation(s)
- Tereza Metelcová
- Institute of Endocrinology, Prague, The Czech Republic.,1st Medical Faculty, Charles University, Prague, The Czech Republic
| | | | | | | | - Barbora Staňková
- 4th Department of Internal Medicine, 1st Medical Faculty, Charles University, Prague, The Czech Republic
| | - Eva Tvrzická
- 4th Department of Internal Medicine, 1st Medical Faculty, Charles University, Prague, The Czech Republic
| | - Martin Hill
- Institute of Endocrinology, Prague, The Czech Republic
| | | | - Josef Včelák
- Institute of Endocrinology, Prague, The Czech Republic
| | - Marie Kunešová
- Institute of Endocrinology, Prague, The Czech Republic.,4th Department of Internal Medicine, 1st Medical Faculty, Charles University, Prague, The Czech Republic
| |
Collapse
|
127
|
Differential Metabolomics and Network Pharmacology Analysis of Silkworm Biotransformation between Mulberry Leaves and Silkworm Droppings. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8819538. [PMID: 34306157 PMCID: PMC8263261 DOI: 10.1155/2021/8819538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/29/2021] [Accepted: 06/17/2021] [Indexed: 11/17/2022]
Abstract
Silkworm droppings are the product of mulberry leaves digested by silkworm intestines, which are an important medicinal resource in traditional Chinese medicine (TCM). The contents of total fat, fat acids, crude protein, amino acids, and secondary metabolites of obtained mulberry leaves and silkworm droppings were analyzed by HPLC, GC-MS, and UHPLC-Q-TOF MS. The target genes and enriched pathways related to significantly changed compositions between mulberry leaves and silkworm droppings were analyzed by network pharmacology. High unsaturated C18 : 3 fatty acids were transformed to low unsaturated C18 : 1 from mulberry leaves to silkworm droppings. Only lysine and 17 mini-peptides had significantly higher content in silkworm droppings than in mulberry leaves. There were 36 common target genes or the different compounds between mulberry leaves and silkworm droppings. The main pathways of mulberry leaf were enriched in antivirus and anticancer properties, while the pathways of silkworm droppings were enriched in hormone regulation and signal transduction.
Collapse
|
128
|
Twining CW, Bernhardt JR, Derry AM, Hudson CM, Ishikawa A, Kabeya N, Kainz MJ, Kitano J, Kowarik C, Ladd SN, Leal MC, Scharnweber K, Shipley JR, Matthews B. The evolutionary ecology of fatty-acid variation: Implications for consumer adaptation and diversification. Ecol Lett 2021; 24:1709-1731. [PMID: 34114320 DOI: 10.1111/ele.13771] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/20/2021] [Accepted: 04/09/2021] [Indexed: 12/20/2022]
Abstract
The nutritional diversity of resources can affect the adaptive evolution of consumer metabolism and consumer diversification. The omega-3 long-chain polyunsaturated fatty acids eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) have a high potential to affect consumer fitness, through their widespread effects on reproduction, growth and survival. However, few studies consider the evolution of fatty acid metabolism within an ecological context. In this review, we first document the extensive diversity in both primary producer and consumer fatty acid distributions amongst major ecosystems, between habitats and amongst species within habitats. We highlight some of the key nutritional contrasts that can shape behavioural and/or metabolic adaptation in consumers, discussing how consumers can evolve in response to the spatial, seasonal and community-level variation of resource quality. We propose a hierarchical trait-based approach for studying the evolution of consumers' metabolic networks and review the evolutionary genetic mechanisms underpinning consumer adaptation to EPA and DHA distributions. In doing so, we consider how the metabolic traits of consumers are hierarchically structured, from cell membrane function to maternal investment, and have strongly environment-dependent expression. Finally, we conclude with an outlook on how studying the metabolic adaptation of consumers within the context of nutritional landscapes can open up new opportunities for understanding evolutionary diversification.
Collapse
Affiliation(s)
- Cornelia W Twining
- Max Planck Institute of Animal Behavior, Radolfzell, Germany.,Limnological Institute, University of Konstanz, Konstanz-Egg, Germany
| | - Joey R Bernhardt
- Department of Biology, McGill University, Montréal, QC, Canada.,Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Alison M Derry
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| | - Cameron M Hudson
- Department of Fish Ecology and Evolution, Eawag, Center of Ecology, Evolution and Biochemistry, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Asano Ishikawa
- Ecological Genetics Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Naoki Kabeya
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology (TUMSAT, Tokyo, Japan
| | - Martin J Kainz
- WasserCluster Lunz-Inter-university Center for Aquatic Ecosystems Research, Lunz am See, Austria
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Carmen Kowarik
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Sarah Nemiah Ladd
- Ecosystem Physiology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Miguel C Leal
- ECOMARE and CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Kristin Scharnweber
- Department of Ecology and Genetics; Limnology, Uppsala University, Uppsala, Sweden.,University of Potsdam, Plant Ecology and Nature Conservation, Potsdam-Golm, Germany
| | - Jeremy R Shipley
- Max Planck Institute of Animal Behavior, Radolfzell, Germany.,Department of Fish Ecology and Evolution, Eawag, Center of Ecology, Evolution and Biochemistry, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Blake Matthews
- Department of Fish Ecology and Evolution, Eawag, Center of Ecology, Evolution and Biochemistry, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| |
Collapse
|
129
|
Specialized Pro-Resolving Lipid Mediators in Neonatal Cardiovascular Physiology and Diseases. Antioxidants (Basel) 2021; 10:antiox10060933. [PMID: 34201378 PMCID: PMC8229722 DOI: 10.3390/antiox10060933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease remains a leading cause of mortality worldwide. Unresolved inflammation plays a critical role in cardiovascular diseases development. Specialized Pro-Resolving Mediators (SPMs), derived from long chain polyunsaturated fatty acids (LCPUFAs), enhances the host defense, by resolving the inflammation and tissue repair. In addition, SPMs also have anti-inflammatory properties. These physiological effects depend on the availability of LCPUFAs precursors and cellular metabolic balance. Most of the studies have focused on the impact of SPMs in adult cardiovascular health and diseases. In this review, we discuss LCPUFAs metabolism, SPMs, and their potential effect on cardiovascular health and diseases primarily focusing in neonates. A better understanding of the role of these SPMs in cardiovascular health and diseases in neonates could lead to the development of novel therapeutic approaches in cardiovascular dysfunction.
Collapse
|
130
|
Gonzalez-Soto M, Mutch DM. Diet Regulation of Long-Chain PUFA Synthesis: Role of Macronutrients, Micronutrients, and Polyphenols on Δ-5/Δ-6 Desaturases and Elongases 2/5. Adv Nutr 2021; 12:980-994. [PMID: 33186986 PMCID: PMC8166571 DOI: 10.1093/advances/nmaa142] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/04/2020] [Accepted: 10/01/2020] [Indexed: 01/08/2023] Open
Abstract
Deficiencies in the n-3 (ω-3) long-chain PUFAs (LC-PUFAs) EPA and DHA are associated with increased risk for the development of numerous diseases. Although n-3 LC-PUFAs can be obtained by consuming marine products, they are also synthesized endogenously through a biochemical pathway regulated by the Δ-5/Δ-6 desaturase and elongase 2/5 enzymes. This narrative review collates evidence from the past 40 y demonstrating that mRNA expression and activity of desaturase and elongase enzymes are influenced by numerous dietary components, including macronutrients, micronutrients, and polyphenols. Specifically, we highlight that both the quantity and the composition of dietary fats, carbohydrates, and proteins can differentially regulate desaturase pathway activity. Furthermore, desaturase and elongase mRNA levels and enzyme activities are also influenced by micronutrients (folate, vitamin B-12, vitamin A), trace minerals (iron, zinc), and polyphenols (resveratrol, isoflavones). Understanding how these various dietary components influence LC-PUFA synthesis will help further advance our understanding of how dietary patterns, ranging from caloric excesses to micronutrient deficiencies, influence disease risks.
Collapse
Affiliation(s)
- Melissa Gonzalez-Soto
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - David M Mutch
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| |
Collapse
|
131
|
Roy P, Tomassoni D, Traini E, Martinelli I, Micioni Di Bonaventura MV, Cifani C, Amenta F, Tayebati SK. Natural Antioxidant Application on Fat Accumulation: Preclinical Evidence. Antioxidants (Basel) 2021; 10:antiox10060858. [PMID: 34071903 PMCID: PMC8227384 DOI: 10.3390/antiox10060858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022] Open
Abstract
Obesity represents one of the most important challenges in the contemporary world that must be overcome. Different pathological consequences of these physical conditions have been studied for more than 30 years. The most nagging effects were found early in the cardiovascular system. However, later, its negative impact was also investigated in several other organs. Damage at cellular structures due to overexpression of reactive oxygen species together with mechanisms that cause under-production of antioxidants leads to the development of obesity-related complications. In this view, the negative results of oxidant molecules due to obesity were studied in various districts of the body. In the last ten years, scientific literature has reported reasonable evidence regarding natural and synthetic compounds' supplementation, which showed benefits in reducing oxidative stress and inflammatory processes in animal models of obesity. This article attempts to clarify the role of oxidative stress due to obesity and the opposing role of antioxidants to counter it, reported in preclinical studies. This analysis aims to clear-up different mechanisms that lead to the build-up of pro-oxidants during obesity and how various molecules of different origins hinder this phenomenon, behaving as antioxidants.
Collapse
Affiliation(s)
- Proshanta Roy
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (P.R.); (D.T.)
| | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (P.R.); (D.T.)
| | - Enea Traini
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (E.T.); (I.M.); (M.V.M.D.B.); (C.C.); (F.A.)
| | - Ilenia Martinelli
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (E.T.); (I.M.); (M.V.M.D.B.); (C.C.); (F.A.)
| | | | - Carlo Cifani
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (E.T.); (I.M.); (M.V.M.D.B.); (C.C.); (F.A.)
| | - Francesco Amenta
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (E.T.); (I.M.); (M.V.M.D.B.); (C.C.); (F.A.)
| | - Seyed Khosrow Tayebati
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (E.T.); (I.M.); (M.V.M.D.B.); (C.C.); (F.A.)
- Correspondence:
| |
Collapse
|
132
|
Mazzocchi A, De Cosmi V, Risé P, Milani GP, Turolo S, Syrén ML, Sala A, Agostoni C. Bioactive Compounds in Edible Oils and Their Role in Oxidative Stress and Inflammation. Front Physiol 2021; 12:659551. [PMID: 33995124 PMCID: PMC8119658 DOI: 10.3389/fphys.2021.659551] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Diet and inflammatory response are recognized as strictly related, and interest in exploring the potential of edible fats and oils for health and chronic diseases is emerging worldwide. Polyunsaturated fatty acids (PUFAs) present in fish oil (FO), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), may be partly converted into oxygenated bioactive lipids with anti-inflammatory and/or pro-resolving activities. Moreover, the co-presence of phenolic compounds and vitamins in edible oils may prevent the development of chronic diseases by their anti-inflammatory, antioxidant, neuroprotective, and immunomodulatory activities. Finally, a high content in mono-unsaturated fatty acids may improve the serum lipid profile and decrease the alterations caused by the oxidized low-density lipoproteins and free radicals. The present review aims to highlight the role of lipids and other bioactive compounds contained in edible oils on oxidative stress and inflammation, focusing on critical and controversial issues that recently emerged, and pointing to the opposing role often played by edible oils components and their oxidized metabolites.
Collapse
Affiliation(s)
- Alessandra Mazzocchi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Valentina De Cosmi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Pediatric Intermediate Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Patrizia Risé
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Gregorio Paolo Milani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Pediatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Turolo
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marie-Louise Syrén
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Angelo Sala
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy.,Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), Consiglio Nazionale delle Ricerche (CNR), Palermo, Italy
| | - Carlo Agostoni
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Pediatric Intermediate Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
133
|
Impact of Obesity-Induced Inflammation on Cardiovascular Diseases (CVD). Int J Mol Sci 2021; 22:ijms22094798. [PMID: 33946540 PMCID: PMC8125716 DOI: 10.3390/ijms22094798] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 12/22/2022] Open
Abstract
Overweight and obesity are key risk factors of cardiovascular disease (CVD). Obesity is currently presented as a pro-inflammatory state with an expansion in the outflow of inflammatory cytokines, such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), alongside the expanded emission of leptin. The present review aimed to evaluate the relationship between obesity and inflammation and their impacts on the development of cardiovascular disease. A literature search was conducted by employing three academic databases, namely PubMed (Medline), Scopus (EMBASE), and the Cumulative Index to Nursing and Allied Health Literature (CINAHL). The search presented 786 items, and by inclusion and exclusion filterers, 59 works were considered for final review. The Newcastle–Ottawa Scale (NOS) method was adopted to conduct quality assessment; 19 papers were further selected based on the quality score. Obesity-related inflammation leads to a low-grade inflammatory state in organisms by upregulating pro-inflammatory markers and downregulating anti-inflammatory cytokines, thereby contributing to cardiovascular disease pathogenesis. Because of inflammatory and infectious symptoms, adipocytes appear to instigate articulation and discharge a few intense stage reactants and carriers of inflammation. Obesity and inflammatory markers are strongly associated, and are important factors in the development of CVD. Hence, weight management can help prevent cardiovascular risks and poor outcomes by inhibiting inflammatory mechanisms.
Collapse
|
134
|
Total long-chain polyunsaturated n-3 fatty acids level is an independent predictive factor of breast cancer multifocality in women with positive hormone-receptors tumors. Surg Oncol 2021; 38:101597. [PMID: 34051659 DOI: 10.1016/j.suronc.2021.101597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 01/16/2023]
Abstract
In a previous pilot study, we showed that polyunsaturated n-3 fatty acids of breast adipose tissues were associated with breast cancer multifocality. In the present study, we investigated biochemical, clinical and histological factors associated with breast cancer focality in a large cohort of women with positive hormone-receptors tumors. One hundred sixty-one consecutive women presenting with positive hormone-receptors breast cancer underwent breast-imaging procedures including a Magnetic Resonance Imaging prior to treatment. Breast adipose tissue specimens were collected during surgery of tumors. A biochemical profile of breast adipose tissue fatty acids was established by gas chromatography. Clinicopathologic characteristics were correlated with multifocality. We assessed whether these factors were predictive of breast cancer focality. We found that tumor size (OR = 1.06 95%CI [1.02-1.09], p < 0.001) and decreased levels in breast adipose tissue of long-chain polyunsaturated n-3 fatty acids (OR = 0.11 95%CI [0.01-0.98], p = 0.03), were independent predictive factors of multifocality. Low levels of long chain polyunsaturated n-3 fatty acids in breast adipose tissue appear to contribute to breast cancer multifocality. The present results reinforce the link between dietary habits and breast cancer clinical presentation.
Collapse
|
135
|
Simard M, Rioux G, Morin S, Martin C, Guérin SL, Flamand N, Julien P, Fradette J, Pouliot R. Investigation of Omega-3 Polyunsaturated Fatty Acid Biological Activity in a Tissue-Engineered Skin Model Involving Psoriatic Cells. J Invest Dermatol 2021; 141:2391-2401.e13. [PMID: 33857488 DOI: 10.1016/j.jid.2021.02.755] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022]
Abstract
Clinical studies have shown that diets enriched with omega-3 (also know as n-3) polyunsaturated fatty acids could relieve the symptoms of patients with psoriasis. However, the mechanisms involved remain poorly understood. The aim of this study was to investigate the effects of α-linolenic acid (ALA) on the proliferation and differentiation of psoriatic keratinocytes in a three-dimensional skin model. Skin models featuring healthy (healthy substitute) or psoriatic (psoriatic substitute) cells were engineered by the self-assembly method of tissue engineering using a culture medium supplemented with 10 μM ALA in comparison with the regular unsupplemented medium. ALA decreased keratinocyte proliferation and improved psoriatic substitute epidermal differentiation, as measured by decreased Ki67 staining and increased protein expression of FLG and loricrin. The added ALA was notably incorporated into the epidermal phospholipids and metabolized into long-chain n-3 polyunsaturated fatty acids, mainly eicosapentaenoic acid and n-3 docosapentaenoic acid. ALA supplementation led to increased levels of eicosapentaenoic acid derivatives (15-hydroxyeicosapentaenoic acid and 18-hydroxyeicosapentaenoic acid) as well as a decrease in levels of omega-6 (also know as n-6) polyunsaturated fatty acid lipid mediators (9-hydroxyoctadecadienoic acid, 12-hydroxyeicosatetraenoic acid, and leukotriene B4). Furthermore, the signal transduction mediators extracellular signal‒regulated kinases 1 and 2 were the kinases most activated after ALA supplementation. Taken together, these results show that ALA decreases the pathologic phenotype of psoriatic substitutes by normalizing keratinocyte proliferation and differentiation in vitro.
Collapse
Affiliation(s)
- Mélissa Simard
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, Québec, Canada; Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada; Faculté de pharmacie, Université Laval, Québec, Québec, Canada
| | - Geneviève Rioux
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, Québec, Canada; Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada; Faculté de pharmacie, Université Laval, Québec, Québec, Canada
| | - Sophie Morin
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, Québec, Canada; Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada; Faculté de pharmacie, Université Laval, Québec, Québec, Canada
| | - Cyril Martin
- Centre de recherche de l'institut universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada; Département de médecine, Faculté de médecine, Université Laval, Québec, Québec, Canada
| | - Sylvain L Guérin
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, Québec, Canada; Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada; CUO-Recherche, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada; Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec, Canada
| | - Nicolas Flamand
- Centre de recherche de l'institut universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada; Département de médecine, Faculté de médecine, Université Laval, Québec, Québec, Canada
| | - Pierre Julien
- Département de médecine, Faculté de médecine, Université Laval, Québec, Québec, Canada; Axe Endocrinologie et Néphrologie, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada
| | - Julie Fradette
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, Québec, Canada; Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada; Département de chirurgie, Faculté de médecine, Université Laval, Québec, Québec, Canada
| | - Roxane Pouliot
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, Québec, Canada; Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada; Faculté de pharmacie, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
136
|
Comparison of Three Feeding Regimens on Blood Fatty Acids Metabolites of Wujumqin Sheep in Inner Mongolia. Animals (Basel) 2021; 11:ani11041080. [PMID: 33920167 PMCID: PMC8070206 DOI: 10.3390/ani11041080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 01/03/2023] Open
Abstract
Simple Summary The traditional sheep feeding system in Inner Mongolia, based on pasture grazing, is gradually transforming into a semi-grazing plus supplementation or feedlot approach, as grassland ecological protection becomes increasingly important. The fatty acid composition of the animals’ tissues changes with transformation of the feeding system. However, the changes to blood fatty acid metabolites in sheep as a result of alterations to the feeding regimen are unknown. In this study, pasture feeding, pasture feeding plus corn supplementation, and barn feeding were carried out to explore the effects of feeding regimens on blood fatty acid composition and metabolic pathways of sheep using a metabolomic approach. The results revealed that compared to grazing, concentrate supplement feeding regimens, including either grazing plus supplements or feeding indoors, down-regulated blood n-3 PUFA biosynthesis and up-regulated blood inflammatory compound metabolism by n-6 PUFA. These data suggest that under different feeding regimens, an appropriate ratio of n-6/n-3 PUFA in ruminant diets will contribute to increasingly high-quality animal production and improved immunocompetence. Abstract Feeding regimens influence the fatty acid composition of animal-derived products. However, there is limited information on the effect of feeding regimens on the blood fatty acid composition and metabolic pathways of ruminant animals. In this study, 30 Wujumqin sheep were randomly assigned to three groups, PF (pasture feeding), PSF (pasture feeding plus corn supplementation) and BF (barn feeding), to examine the effects of feeding regimens on blood fatty acid composition and metabolic pathways through a metabolomic approach. The results showed that the BF sheep had increased serum n-6 polyunsaturated fatty acids levels, while the PF and PSF sheep had increased serum n-3 PUFA levels. Compared to the BF and PSF sheep that were fed ground corn, the PF sheep that only ate natural grass had up-regulated serum DHA levels. Meanwhile, blood metabolites from linoleic acid and arachidonic acid, including pro-inflammatory products (20-HETE, LTs, TX etc.) and anti-inflammatory products (LXB4, DHETs, HPETEs etc.) were elevated in the BF group. It was found that, compared to grazing, concentrate supplement feeding regimens, including either grazing plus supplements or feeding indoors, down-regulated blood n-3 PUFA biosynthesis and up-regulated the blood inflammatory compound metabolism by n-6 PUFA.
Collapse
|
137
|
Kim SH, Lee UH, Lee SB, Jeong GT, Kim SK. Improvement of Unsaturated Fatty Acid Production from Porphyridium cruentum Using a Two-Phase Culture System in a Photobioreactor with Light-Emitting Diodes (LEDs). J Microbiol Biotechnol 2021; 31:456-463. [PMID: 33323671 PMCID: PMC9705849 DOI: 10.4014/jmb.2011.11004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022]
Abstract
In this study, the culture conditions for Porphyridium cruentum were optimized to obtain the maximum biomass and lipid productions. The eicosapentaenoic acid content was increased by pH optimization. P. cruentum was cultured with modified F/2 medium in 14-L photobioreactors using a two-phase culture system, in which the green (520 nm) and red (625 nm) light-emitting diodes (LEDs) were used during the first and second phases for biomass production and lipid production, respectively. Various parameters, including aeration rate, light intensity, photoperiod, and pH were optimized. The maximum biomass concentration of 0.91 g dcw/l was obtained with an aeration rate of 0.75 vvm, a light intensity of 300 μmol m-2s-1, and a photoperiod of 24:0 h. The maximum lipid production of 51.8% (w/w) was obtained with a light intensity of 400 μmol m-2s-1 and a photoperiod of 18:6 h. Additionally, the eicosapentaenoic acid and unsaturated fatty acid contents reached 30.6% to 56.2% at pH 6.0.
Collapse
Affiliation(s)
- So Hee Kim
- School of Marine, Fisheries and Life Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Ui Hun Lee
- School of Marine, Fisheries and Life Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Sang Baek Lee
- School of Marine, Fisheries and Life Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Gwi-Taek Jeong
- School of Marine, Fisheries and Life Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Sung-Koo Kim
- School of Marine, Fisheries and Life Science, Pukyong National University, Busan 48513, Republic of Korea,Corresponding author Phone: +82-51-629-5868 Fax: + 82-51-629-5863 E-mail:
| |
Collapse
|
138
|
The Intestinal Fatty Acid-Enteroendocrine Interplay, Emerging Roles for Olfactory Signaling and Serotonin Conjugates. Molecules 2021; 26:molecules26051416. [PMID: 33807994 PMCID: PMC7961910 DOI: 10.3390/molecules26051416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
Intestinal enteroendocrine cells (EECs) respond to fatty acids from dietary and microbial origin by releasing neurotransmitters and hormones with various paracrine and endocrine functions. Much has become known about the underlying signaling mechanisms, including the involvement of G-protein coupled receptors (GPCRs), like free fatty acids receptors (FFARs). This review focusses on two more recently emerging research lines: the roles of odorant receptors (ORs), and those of fatty acid conjugates in gut. Odorant receptors belong to a large family of GPCRs with functional roles that only lately have shown to reach beyond the nasal-oral cavity. In the intestinal tract, ORs are expressed on serotonin (5-HT) and glucagon-like-peptide-1 (GLP-1) producing enterochromaffin and enteroendocrine L cells, respectively. There, they appear to function as chemosensors of microbiologically produced short-, and branched-chain fatty acids. Another mechanism of fatty acid signaling in the intestine occurs via their conjugates. Among them, conjugates of unsaturated long chain fatty acids and acetate with 5-HT, N-acyl serotonins have recently emerged as mediators with immune-modulatory effects. In this review, novel findings in mechanisms and molecular players involved in intestinal fatty acid biology are highlighted and their potential relevance for EEC-mediated signaling to the pancreas, immune system, and brain is discussed.
Collapse
|
139
|
Castejón N, Señoráns FJ. Integrated Green and Enzymatic Process to Produce Omega‐3 Acylglycerols from
Echium plantagineum
Using Immobilized Lipases. J AM OIL CHEM SOC 2021. [DOI: 10.1002/aocs.12464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Natalia Castejón
- Healthy‐Lipids Group, Sección Departamental de Ciencias de la Alimentación, Faculty of Sciences Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Francisco Javier Señoráns
- Healthy‐Lipids Group, Sección Departamental de Ciencias de la Alimentación, Faculty of Sciences Universidad Autónoma de Madrid 28049 Madrid Spain
| |
Collapse
|
140
|
Lamarre J, Cheema SK, Robertson GJ, Wilson DR. Omega-3 fatty acids accelerate fledging in an avian marine predator: a potential role of cognition. J Exp Biol 2021; 224:jeb.235929. [PMID: 33462136 PMCID: PMC7929930 DOI: 10.1242/jeb.235929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/12/2021] [Indexed: 12/16/2022]
Abstract
Consuming omega-3 fatty acids (n-3 LCPUFAs) during development improves cognition in mammals, but the effect remains untested in other taxa. In aquatic ecosystems, n-3 LCPUFAs are produced by phytoplankton and bioaccumulate in the food web. Alarmingly, the warming and acidification of aquatic systems caused by climate change impair n-3 LCPUFA production, with an anticipated decrease of 80% by the year 2100. We tested whether n-3 LCPUFA consumption affects the physiology, morphology, behaviour and cognition of the chicks of a top marine predator, the ring-billed gull. Using a colony with little access to n-3 LCPUFAs, we supplemented siblings from 22 fenced nests with contrasting treatments from hatching until fledging; one sibling received n-3 LCPUFA-rich fish oil and the other, a control sucrose solution without n-3 LCPUFAs. Halfway through the nestling period, half the chicks receiving fish oil were switched to the sucrose solution to test whether n-3 LCPUFA intake remains crucial past the main growth phase (chronic versus transient treatments). Upon fledging, n-3 LCPUFAs were elevated in the blood and brains of chicks receiving the chronic treatment, but were comparable to control levels among those receiving the transient treatment. Across the entire sample, chicks with elevated n-3 LCPUFAs in their tissues fledged earlier despite their morphology and activity levels being unrelated to fledging age. Fledging required chicks to escape fences encircling their nest. We therefore interpret fledging age as a possible indicator of cognition, with chicks with improved cognition fledging earlier. These results provide insight into whether declining dietary n-3 LCPUFAs will compromise top predators' problem-solving skills, and thus their ability to survive in a rapidly changing world.
Collapse
Affiliation(s)
- Jessika Lamarre
- Cognitive and Behavioural Ecology Program, Memorial University of Newfoundland, St John's, NL, Canada, A1B 3X9
| | - Sukhinder Kaur Cheema
- Department of Biochemistry, Memorial University of Newfoundland, St John's, NL, Canada, A1B 3X9
| | - Gregory J Robertson
- Wildlife Research Division, Environment and Climate Change Canada, Mount Pearl, NL, Canada, A1N 4T3
| | - David R Wilson
- Department of Psychology, Memorial University of Newfoundland, St John's, NL, Canada, A1B 3X9
| |
Collapse
|
141
|
Leikin-Frenkel A, Liraz-Zaltsman S, Hollander KS, Atrakchi D, Ravid O, Rand D, Kandel-Kfir M, Israelov H, Cohen H, Kamari Y, Shaish A, Harats D, Schnaider-Beeri M, Cooper I. Dietary alpha linolenic acid in pregnant mice and during weaning increases brain docosahexaenoic acid and improves recognition memory in the offspring. J Nutr Biochem 2021; 91:108597. [PMID: 33545323 DOI: 10.1016/j.jnutbio.2021.108597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 11/17/2022]
Abstract
Docosahexaenoic acid (DHA) is critical for normal brain development and function. DHA is in danger of being significantly reduced in the human food supply, and the question of whether its metabolic precursor, the essential n-3 alpha linolenic acid (ALA) during pregnancy, can support fetal brain DHA levels for optimal neurodevelopment, is fundamental. Female mice were fed either ALA-enriched or Control diet during pregnancy and lactation. The direct effect of maternal dietary ALA on lipids was analyzed in liver, red blood cells, brain and brain vasculature, together with genes of fatty acid metabolism and transport in three-week-old offspring. The long-term effect of maternal dietary ALA on brain fatty acids and memory was studied in 19-week-old offspring. Three-week-old ALA offspring showed higher levels of n-3 fatty acids in liver, red blood cell, blood-brain barrier (BBB) vasculature and brain parenchyma, DHA enrichment in brain phospholipids and higher gene and protein expression of the DHA transporter, major facilitator superfamily domain containing 2a, compared to Controls. 19-week-old ALA offspring showed higher brain DHA levels and better memory performance than Controls. The increased brain DHA levels induced by maternal dietary ALA during pregnancy-lactation, together with the up-regulated levels of major facilitator superfamily domain containing 2a, may indicate a mode for greater DHA uptake with long-term impact on better memory in ALA offspring.
Collapse
Affiliation(s)
- Alicia Leikin-Frenkel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Bert Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Sigal Liraz-Zaltsman
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel-Hashomer, Israel
| | | | - Dana Atrakchi
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Orly Ravid
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Daniel Rand
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Michal Kandel-Kfir
- Bert Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Hila Israelov
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Hofit Cohen
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Bert Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Yehuda Kamari
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Bert Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Aviv Shaish
- Bert Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer, Israel; Achva Academic College, Israel
| | - Dror Harats
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Bert Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Michal Schnaider-Beeri
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel-Hashomer, Israel; School of Psychology, Interdisciplinary Center (IDC) Herzliya, Herzliya, Israel; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Itzik Cooper
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel-Hashomer, Israel; School of Psychology, Interdisciplinary Center (IDC) Herzliya, Herzliya, Israel; The Nehemia Rubin Excellence in Biomedical Research - The TELEM Program, Sheba Medical Center, Tel-Hashomer, Israel.
| |
Collapse
|
142
|
Chen HY, Cairns BJ, Small AM, Burr HA, Ambikkumar A, Martinsson A, Thériault S, Munter HM, Steffen B, Zhang R, Levinson RT, Shaffer CM, Rong J, Sonestedt E, Dufresne L, Ljungberg J, Näslund U, Johansson B, Ranatunga DK, Whitmer RA, Budoff MJ, Nguyen A, Vasan RS, Larson MG, Harris WS, Damrauer SM, Stark KD, Boekholdt SM, Wareham NJ, Pibarot P, Arsenault BJ, Mathieu P, Gudnason V, O'Donnell CJ, Rotter JI, Tsai MY, Post WS, Clarke R, Söderberg S, Bossé Y, Wells QS, Smith JG, Rader DJ, Lathrop M, Engert JC, Thanassoulis G. Association of FADS1/2 Locus Variants and Polyunsaturated Fatty Acids With Aortic Stenosis. JAMA Cardiol 2021; 5:694-702. [PMID: 32186652 PMCID: PMC7081150 DOI: 10.1001/jamacardio.2020.0246] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Question Can genetic analysis identify additional causes of aortic stenosis? Findings In this genome-wide association study of 44 703 participants, each copy of a FADS1/2 (fatty acid desaturase) genetic variant was associated with a 13% decrease in the odds of aortic stenosis. Results of a meta-analysis with 7 replication cohorts showed genome-wide significance, with biomarker and mendelian randomization analyses implicating elevated ω-6 fatty acid levels as having a potentially causal association with aortic valve calcium and aortic stenosis. Meaning These findings demonstrate that the FADS1/2 locus and fatty acid biosynthesis are associated with aortic stenosis and should be examined further for their potential as therapeutic targets. Importance Aortic stenosis (AS) has no approved medical treatment. Identifying etiological pathways for AS could identify pharmacological targets. Objective To identify novel genetic loci and pathways associated with AS. Design, Setting, and Participants This genome-wide association study used a case-control design to evaluate 44 703 participants (3469 cases of AS) of self-reported European ancestry from the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort (from January 1, 1996, to December 31, 2015). Replication was performed in 7 other cohorts totaling 256 926 participants (5926 cases of AS), with additional analyses performed in 6942 participants from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. Follow-up biomarker analyses with aortic valve calcium (AVC) were also performed. Data were analyzed from May 1, 2017, to December 5, 2019. Exposures Genetic variants (615 643 variants) and polyunsaturated fatty acids (ω-6 and ω-3) measured in blood samples. Main Outcomes and Measures Aortic stenosis and aortic valve replacement defined by electronic health records, surgical records, or echocardiography and the presence of AVC measured by computed tomography. Results The mean (SD) age of the 44 703 GERA participants was 69.7 (8.4) years, and 22 019 (49.3%) were men. The rs174547 variant at the FADS1/2 locus was associated with AS (odds ratio [OR] per C allele, 0.88; 95% CI, 0.83-0.93; P = 3.0 × 10−6), with genome-wide significance after meta-analysis with 7 replication cohorts totaling 312 118 individuals (9395 cases of AS) (OR, 0.91; 95% CI, 0.88-0.94; P = 2.5 × 10−8). A consistent association with AVC was also observed (OR, 0.91; 95% CI, 0.83-0.99; P = .03). A higher ratio of arachidonic acid to linoleic acid was associated with AVC (OR per SD of the natural logarithm, 1.19; 95% CI, 1.09-1.30; P = 6.6 × 10−5). In mendelian randomization, increased FADS1 liver expression and arachidonic acid were associated with AS (OR per unit of normalized expression, 1.31 [95% CI, 1.17-1.48; P = 7.4 × 10−6]; OR per 5–percentage point increase in arachidonic acid for AVC, 1.23 [95% CI, 1.01-1.49; P = .04]; OR per 5–percentage point increase in arachidonic acid for AS, 1.08 [95% CI, 1.04-1.13; P = 4.1 × 10−4]). Conclusions and Relevance Variation at the FADS1/2 locus was associated with AS and AVC. Findings from biomarker measurements and mendelian randomization appear to link ω-6 fatty acid biosynthesis to AS, which may represent a therapeutic target.
Collapse
Affiliation(s)
- Hao Yu Chen
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada.,Preventive and Genomic Cardiology, McGill University Health Centre and Research Institute, Montreal, Quebec, Canada
| | - Benjamin J Cairns
- MRC (Medical Research Council) Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom.,Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom.,Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Aeron M Small
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Hannah A Burr
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada.,Preventive and Genomic Cardiology, McGill University Health Centre and Research Institute, Montreal, Quebec, Canada
| | - Athithan Ambikkumar
- Preventive and Genomic Cardiology, McGill University Health Centre and Research Institute, Montreal, Quebec, Canada
| | - Andreas Martinsson
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden.,Department of Cardiology, Skåne University Hospital, Lund, Sweden
| | - Sébastien Thériault
- Quebec Heart and Lung Institute, Laval University, Quebec City, Quebec, Canada
| | - Hans Markus Munter
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Brian Steffen
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Richard Zhang
- Preventive and Genomic Cardiology, McGill University Health Centre and Research Institute, Montreal, Quebec, Canada
| | - Rebecca T Levinson
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Christian M Shaffer
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jian Rong
- National Heart, Lung, and Blood Institute, Bethesda, Maryland.,Boston University's Framingham Heart Study, Boston, Massachusetts
| | - Emily Sonestedt
- Nutritional Epidemiology, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Line Dufresne
- Preventive and Genomic Cardiology, McGill University Health Centre and Research Institute, Montreal, Quebec, Canada
| | - Johan Ljungberg
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Ulf Näslund
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Bengt Johansson
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | | | - Rachel A Whitmer
- Department of Public Health Sciences, University of California, Davis
| | - Matthew J Budoff
- Los Angeles Biomedical Research Institute, Torrance, California.,Departments of Pediatrics and Medicine at Harbor-UCLA (University of California, Los Angeles) Medical Center, Torrance
| | - Albert Nguyen
- Preventive and Genomic Cardiology, McGill University Health Centre and Research Institute, Montreal, Quebec, Canada
| | - Ramachandran S Vasan
- National Heart, Lung, and Blood Institute, Bethesda, Maryland.,Boston University's Framingham Heart Study, Boston, Massachusetts
| | - Martin G Larson
- National Heart, Lung, and Blood Institute, Bethesda, Maryland.,Boston University's Framingham Heart Study, Boston, Massachusetts
| | - William S Harris
- Department of Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota.,OmegaQuant Analytics LLC, Sioux Falls, South Dakota
| | - Scott M Damrauer
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Ken D Stark
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - S Matthijs Boekholdt
- Department of Cardiology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Philippe Pibarot
- Quebec Heart and Lung Institute, Laval University, Quebec City, Quebec, Canada
| | - Benoit J Arsenault
- Quebec Heart and Lung Institute, Laval University, Quebec City, Quebec, Canada
| | - Patrick Mathieu
- Quebec Heart and Lung Institute, Laval University, Quebec City, Quebec, Canada
| | | | - Christopher J O'Donnell
- National Heart, Lung, and Blood Institute, Bethesda, Maryland.,Boston University's Framingham Heart Study, Boston, Massachusetts
| | - Jerome I Rotter
- Los Angeles Biomedical Research Institute, Torrance, California.,Departments of Pediatrics and Medicine at Harbor-UCLA (University of California, Los Angeles) Medical Center, Torrance
| | - Michael Y Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Wendy S Post
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert Clarke
- MRC (Medical Research Council) Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom.,Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom.,Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Stefan Söderberg
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Yohan Bossé
- Quebec Heart and Lung Institute, Laval University, Quebec City, Quebec, Canada
| | - Quinn S Wells
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - J Gustav Smith
- Department of Cardiology, Skåne University Hospital, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Lund University Diabetes Center, Lund University, Lund, Sweden
| | - Daniel J Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Mark Lathrop
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - James C Engert
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada.,Preventive and Genomic Cardiology, McGill University Health Centre and Research Institute, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - George Thanassoulis
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada.,Preventive and Genomic Cardiology, McGill University Health Centre and Research Institute, Montreal, Quebec, Canada
| |
Collapse
|
143
|
Regulation of Osteoclast Differentiation and Activity by Lipid Metabolism. Cells 2021; 10:cells10010089. [PMID: 33430327 PMCID: PMC7825801 DOI: 10.3390/cells10010089] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Bone is a dynamic tissue and is constantly being remodeled by bone cells. Metabolic reprogramming plays a critical role in the activation of these bone cells and skeletal metabolism, which fulfills the energy demand for bone remodeling. Among various metabolic pathways, the importance of lipid metabolism in bone cells has long been appreciated. More recent studies also establish the link between bone loss and lipid-altering conditions—such as atherosclerotic vascular disease, hyperlipidemia, and obesity—and uncover the detrimental effect of fat accumulation on skeletal homeostasis and increased risk of fracture. Targeting lipid metabolism with statin, a lipid-lowering drug, has been shown to improve bone density and quality in metabolic bone diseases. However, the molecular mechanisms of lipid-mediated regulation in osteoclasts are not completely understood. Thus, a better understanding of lipid metabolism in osteoclasts can be used to harness bone cell activity to treat pathological bone disorders. This review summarizes the recent developments of the contribution of lipid metabolism to the function and phenotype of osteoclasts.
Collapse
|
144
|
Abstract
Despite the overwhelming prevalence of anxiety disorders in modern society, medications and psychotherapy often fail to achieve complete symptom resolution. A complementary approach to medicating symptoms is to address the underlying metabolic pathologies associated with mental illnesses and anxiety. This may be achieved through nutritional interventions. In this perspectives piece, we highlight the roles of the microbiome and inflammation as influencers of anxiety. We further discuss the evidence base for six specific nutritional interventions: avoiding artificial sweeteners and gluten, including omega-3 fatty acids and turmeric in the diet, supplementation with vitamin D, and ketogenic diets. We attempt to integrate insights from the nutrition science-literature in order to highlight some practices that practitioners may consider when treating individual patients. Notably, this piece is not meant to serve as a comprehensive review of the literature, but rather argue our perspective that nutritional interventions should be more widely considered among clinical psychiatrists. Nutritional psychiatry is in its infancy and more research is needed in this burgeoning low-risk and potentially high-yield field.
Collapse
Affiliation(s)
- Nicholas G Norwitz
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Harvard Medical School, Boston, MA, United States
| | - Uma Naidoo
- Harvard Medical School, Boston, MA, United States.,Department of Nutrition and Lifestyle Psychiatry, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
145
|
Manusama K, Balvers M, Diepeveen-de Bruin M, Headley L, Bosi R, Schwarm M, Witkamp R. In vitro dissolution behaviour and absorption in humans of a novel mixed l-lysine salt formulation of EPA and DHA. Prostaglandins Leukot Essent Fatty Acids 2021; 164:102232. [PMID: 33360684 DOI: 10.1016/j.plefa.2020.102232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/01/2020] [Accepted: 12/15/2020] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Supplements with eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are generally oil-based formulations containing their triacylglycerols, phospholipids or ethyl-esters (EE). Recently, a l-lysine salt of carboxylic EPA and DHA became available (Lys-FFA), which necessitated to study its oral absorption and plasma kinetics in humans. OBJECTIVES The in vitro dissolution characteristics, oral bioavailability and 48 h plasma profiles of EPA and DHA (as triacylglycerides) of Lys-FFA, relative to a commercially available oil-based EE supplement. METHODS Dissociation of the lysine from the FFAs was studied in vitro applying simulated gastric (12 h) and intestinal (3 h) conditions. In an open label, randomized, two-way cross-over design, oral administration of Lys-FFA (500 mg EPA plus 302 mg DHA) versus EE (504 mg EPA plus 378 mg DHA) was studied over 48 h, in eight female volunteers. Plasma profiles of EPA and DHA were described by Area Under the Curve (AUC; 0-12 h), Cmax and Tmax. RESULTS Dissolution studies with Lys-FFA showed complete dissociation under both conditions. In volunteers Lys-FFA showed rapid absorption and high bioavailability indicated by significant differences in both the AUC0-12hr and Cmax when compared to the EE comparator (p<0.001), with AUC0-12hr which was for EPA 5 times higher with Lys-FFA than with the EE formulation. CONCLUSION This first-in-man study of Lys-FFA demonstrated rapid absorption of EPA and DHA and a considerably higher bioavailability compared to an EE supplement under fasting conditions. The release and absorption characteristics from this solid form offer several new options in terms of formulation technology and dosing.
Collapse
Affiliation(s)
- Koen Manusama
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, Netherlands
| | - Michiel Balvers
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, Netherlands
| | | | - Laura Headley
- Evonik Operations GmbH, Kirschenallee, 64293 Darmstadt, Germany
| | - Roberta Bosi
- Evonik Operations GmbH, Rodenbacher Chaussee 4, 63457 Hanau, Germany
| | - Michael Schwarm
- Evonik Operations GmbH, Rodenbacher Chaussee 4, 63457 Hanau, Germany
| | - Renger Witkamp
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, Netherlands.
| |
Collapse
|
146
|
Cornelio‐Santiago HP, Bodini RB, Oliveira AL. Potential of Oilseeds Native to Amazon and Brazilian Cerrado Biomes: Benefits, Chemical and Functional Properties, and Extraction Methods. J AM OIL CHEM SOC 2021. [DOI: 10.1002/aocs.12452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Heber P. Cornelio‐Santiago
- Laboratory of High‐Pressure Technology and Natural Products (LAPPN), Department of Food Engineering (ZEA‐FZEA) University of São Paulo (USP) P.O. Box 23 Pirassununga SP 13635‐900 Brazil
| | - Renata Barbosa Bodini
- Laboratory of High‐Pressure Technology and Natural Products (LAPPN), Department of Food Engineering (ZEA‐FZEA) University of São Paulo (USP) P.O. Box 23 Pirassununga SP 13635‐900 Brazil
| | - Alessandra Lopes Oliveira
- Laboratory of High‐Pressure Technology and Natural Products (LAPPN), Department of Food Engineering (ZEA‐FZEA) University of São Paulo (USP) P.O. Box 23 Pirassununga SP 13635‐900 Brazil
| |
Collapse
|
147
|
Kim KP, Shin KO, Park K, Cho Y. Borage Oil Enhances Lamellar Body Content and Alters Fatty Acid Composition of Epidermal Ceramides in Essential Fatty Acid-Deficient Guinea Pigs. Lipids 2020; 56:345-353. [PMID: 33378788 DOI: 10.1002/lipd.12295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/27/2020] [Accepted: 12/14/2020] [Indexed: 11/11/2022]
Abstract
Borage oil [BO: 40.9% linoleic acid (LNA) and 24.0% γ-linolenic acid (GLA)] reverses disrupted epidermal lipid barrier in essential fatty acid deficiency (EFAD). We determined the effects of BO on lamellar body (LB) content and LNA and GLA incorporation into epidermal ceramide 1 (CER1) and epidermal ceramide 2 (CER2), major barrier lipids. EFAD was induced in guinea pigs by a diet of 6% hydrogenated coconut oil (HCO) for 10 weeks (group HCO) or 8 weeks followed by 6% BO for 2 weeks (group HCO + BO). LB content and LNA and GLA incorporation into CER1 were higher in group HCO + BO than in group HCO. Small but significant levels of LNA, GLA, and their C20-metabolized fatty acids [dihomo-γ-linolenic acid (DGLA) and arachidonic acid (ARA)] were incorporated into CER2, where ARA was detected at a level lower than LNA, but DGLA incorporation exceeded that for GLA in group HCO + BO. Dietary BO enhanced LB content and differential incorporation of GLA into CER1 and DGLA into CER2.
Collapse
Affiliation(s)
- Kun-Pyo Kim
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, 1732, Deogyeong-daero, Yongin-si, 17104, Republic of Korea
| | - Kyong-Oh Shin
- Department of Food Science and Nutrition, Hallym University, 1, Hallymdaehak-gil, Chuncheon-si, 24252, Republic of Korea
| | - Kyungho Park
- Department of Food Science and Nutrition, Hallym University, 1, Hallymdaehak-gil, Chuncheon-si, 24252, Republic of Korea
| | - Yunhi Cho
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, 1732, Deogyeong-daero, Yongin-si, 17104, Republic of Korea
| |
Collapse
|
148
|
Fatty Acids and Cardiovascular Risk. Evidence, Lack of Evidence, and Diligence. Nutrients 2020; 12:nu12123782. [PMID: 33317164 PMCID: PMC7764656 DOI: 10.3390/nu12123782] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022] Open
Abstract
One of the most controversial areas of nutrition research relates to fats, particularly essential fatty acids, in the context of cardiovascular disease risk. A critical feature of dietary fatty acids is that they incorporate into the plasma membrane, modifying fluidity and key physiological functions. Importantly, they can reshape the bioavailability of eicosanoids and other lipid mediators, which direct cellular responses to external stimuli, such as inflammation and chronic stress conditions. This paper provides an overview of the most recent evidence, as well as historical controversies, linking fat consumption with human health and disease. We underscore current pitfalls in the area of fatty acid research and critically frame fatty acid intake in the larger context of diet and behavior. We conclude that fundamental research on fatty acids and lipids is appropriate in certain areas, but the rigor and reproducibility are lacking in others. The pros and cons are highlighted throughout the review, seeking to guide future research on the important area of nutrition, fat intake, and cardiovascular disease risk.
Collapse
|
149
|
Martínez-Padilla E, Li K, Blok Frandsen H, Skejovic Joehnke M, Vargas-Bello-Pérez E, Lykke Petersen I. In Vitro Protein Digestibility and Fatty Acid Profile of Commercial Plant-Based Milk Alternatives. Foods 2020; 9:E1784. [PMID: 33271952 PMCID: PMC7760957 DOI: 10.3390/foods9121784] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/19/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022] Open
Abstract
Plant-based milk alternatives (PBMA) are a new popular food trend among consumers in Europe and North America. The forecast shows that PBMA will double their value by 2023. The objective of this study was to analyze the nutritional value of commercial products in terms of their fatty acid profile and protein digestibility from commercial PBMA. Eight commercially available PBMA were selected for fatty acid analysis, performed with gas chromatography of methylated fatty acids (GC-FAME), and, from these, four commercial products (almond drink, hemp drink, oat drink, and soy drink) were selected for a short-term in vitro protein digestibility (IVPD) analysis. The fatty acid analysis results showed that most of the products predominantly contained oleic acid (C18:1 ω-9) and linoleic acid (C18:2 ω-6). Hemp drink contained the highest omega-6/omega-3 (ω6/ω3) ratio among all tested products (3.43). Oat drink and almond drink were the PBMA with the highest short-term protein digestibility, non-significantly different from cow's milk, while soy drink showed the lowest value of protein digestibility. In conclusion, PBMA showed a significant variability depending on the plant source, both in terms of fatty acid composition and protein digestibility. These results provide more in-depth nutritional information, for future product development, and for consumer's choice.
Collapse
Affiliation(s)
- Eliana Martínez-Padilla
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark; (E.M.-P.); (K.L.); (H.B.F.); (M.S.J.)
| | - Kexin Li
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark; (E.M.-P.); (K.L.); (H.B.F.); (M.S.J.)
| | - Heidi Blok Frandsen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark; (E.M.-P.); (K.L.); (H.B.F.); (M.S.J.)
- SiccaDania, Pilehøj 18, DK-3460 Birkerød, Denmark
| | - Marcel Skejovic Joehnke
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark; (E.M.-P.); (K.L.); (H.B.F.); (M.S.J.)
| | - Einar Vargas-Bello-Pérez
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870 Frederiksberg C, Denmark;
| | - Iben Lykke Petersen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark; (E.M.-P.); (K.L.); (H.B.F.); (M.S.J.)
| |
Collapse
|
150
|
Amiri M, Raeisi-Dehkordi H, Sarrafzadegan N, Forbes SC, Salehi-Abargouei A. The effects of Canola oil on cardiovascular risk factors: A systematic review and meta-analysis with dose-response analysis of controlled clinical trials. Nutr Metab Cardiovasc Dis 2020; 30:2133-2145. [PMID: 33127255 DOI: 10.1016/j.numecd.2020.06.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/22/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Canola oil (CO) is a plant-based oil with the potential to improve several cardiometabolic risk factors. We systematically reviewed controlled clinical trials investigating the effects of CO on lipid profiles, apo-lipoproteins, glycemic indices, inflammation, and blood pressure compared to other edible oils in adults. METHODS AND RESULTS Online databases were searched for articles up to January 2020. Forty-two articles met the inclusion criteria. CO significantly reduced total cholesterol (TC, -0.27 mmol/l, n = 37), low-density lipoprotein cholesterol (LDL-C, -0.23 mmol/l, n = 35), LDL-C to high-density lipoprotein cholesterol ratio (LDL/HDL, -0.21, n = 10), TC/HDL (-0.13, n = 15), apolipoprotein B (Apo B, -0.03 g/l, n = 14), and Apo B/Apo A-1 (-0.02, n = 6) compared to other edible oils (P < 0.05). Compared to olive oil, CO decreased TC (-0.23 mmol/l, n = 9), LDL-C (-0.17 mmol/l, n = 9), LDL/HDL (-0.39, n = 2), and triglycerides in VLDL (VLDL-TG, -0.10 mmol/l, n = 2) (P < 0.05). Compared to sunflower oil, CO improved LDL-C (-0.14 mmol/l, n = 11), and LDL/HDL (-0.30, n = 3) (P < 0.05). In comparison with saturated fats, CO improved TC (-0.59 mmol/l, n = 11), TG (-0.08 mmol/l, n = 11), LDL-C (-0.49 mmol/l, n = 10), TC/HDL (-0.29, n = 5), and Apo B (-0.09 g/l, n = 4) (P < 0.05). Based on the nonlinear dose-response curve, replacing CO with ~15% of total caloric intake provided the greatest benefits. CONCLUSION CO significantly improved different cardiometabolic risk factors compared to other edible oils. Further well-designed clinical trials are warranted to confirm the dose-response associations.
Collapse
Affiliation(s)
- Mojgan Amiri
- Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hamidreza Raeisi-Dehkordi
- Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nizal Sarrafzadegan
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran; School of Population and Public Health, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Scott C Forbes
- Department of Physical Education, Faculty of Education, Brandon University, Brandon, MB, Canada
| | - Amin Salehi-Abargouei
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|