101
|
Rochester JR, Bolden AL. Bisphenol S and F: A Systematic Review and Comparison of the Hormonal Activity of Bisphenol A Substitutes. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:643-50. [PMID: 25775505 PMCID: PMC4492270 DOI: 10.1289/ehp.1408989] [Citation(s) in RCA: 1031] [Impact Index Per Article: 103.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 03/05/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Increasing concern over bisphenol A (BPA) as an endocrine-disrupting chemical and its possible effects on human health have prompted the removal of BPA from consumer products, often labeled "BPA-free." Some of the chemical replacements, however, are also bisphenols and may have similar physiological effects in organisms. Bisphenol S (BPS) and bisphenol F (BPF) are two such BPA substitutes. OBJECTIVES This review was carried out to evaluate the physiological effects and endocrine activities of the BPA substitutes BPS and BPF. Further, we compared the hormonal potency of BPS and BPF to that of BPA. METHODS We conducted a systematic review based on the Office of Health Assessment and Translation (OHAT) protocol. RESULTS We identified the body of literature to date, consisting of 32 studies (25 in vitro only, and 7 in vivo). The majority of these studies examined the hormonal activities of BPS and BPF and found their potency to be in the same order of magnitude and of similar action as BPA (estrogenic, antiestrogenic, androgenic, and antiandrogenic) in vitro and in vivo. BPS also has potencies similar to that of estradiol in membrane-mediated pathways, which are important for cellular actions such as proliferation, differentiation, and death. BPS and BPF also showed other effects in vitro and in vivo, such as altered organ weights, reproductive end points, and enzyme expression. CONCLUSIONS Based on the current literature, BPS and BPF are as hormonally active as BPA, and they have endocrine-disrupting effects. CITATION Rochester JR, Bolden AL. 2015. Bisphenol S and F: a systematic review and comparison of the hormonal activity of bisphenol A substitutes.
Collapse
|
102
|
Ruzzin J, Bethune C, Goksøyr A, Hylland K, Lee DH, Jacobs DR, Carpenter DO. Comment on "Contaminant levels in Norwegian farmed Atlantic salmon (Salmo salar) in the 13-year period from 1999 to 2011" by Nøstbakken et al. ENVIRONMENT INTERNATIONAL 2015; 80:98-99. [PMID: 25601359 DOI: 10.1016/j.envint.2015.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/05/2015] [Indexed: 06/04/2023]
Affiliation(s)
- Jérôme Ruzzin
- Department of Biology, University of Bergen, Bergen, Norway
| | | | - Anders Goksøyr
- Department of Biology, University of Bergen, Bergen, Norway
| | - Ketil Hylland
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Duk Hee Lee
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - David R Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, USA
| | - David O Carpenter
- Institute for Health and the Environment, University at Albany, Rensselaer, NY 12144, USA
| |
Collapse
|
103
|
Jung C, Son A, Her N, Zoh KD, Cho J, Yoon Y. Removal of endocrine disrupting compounds, pharmaceuticals, and personal care products in water using carbon nanotubes: A review. J IND ENG CHEM 2015. [DOI: 10.1016/j.jiec.2014.12.035] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
104
|
Goodson WH, Lowe L, Carpenter DO, Gilbertson M, Manaf Ali A, Lopez de Cerain Salsamendi A, Lasfar A, Carnero A, Azqueta A, Amedei A, Charles AK, Collins AR, Ward A, Salzberg AC, Colacci AM, Olsen AK, Berg A, Barclay BJ, Zhou BP, Blanco-Aparicio C, Baglole CJ, Dong C, Mondello C, Hsu CW, Naus CC, Yedjou C, Curran CS, Laird DW, Koch DC, Carlin DJ, Felsher DW, Roy D, Brown DG, Ratovitski E, Ryan EP, Corsini E, Rojas E, Moon EY, Laconi E, Marongiu F, Al-Mulla F, Chiaradonna F, Darroudi F, Martin FL, Van Schooten FJ, Goldberg GS, Wagemaker G, Nangami GN, Calaf GM, Williams GP, Wolf GT, Koppen G, Brunborg G, Lyerly HK, Krishnan H, Ab Hamid H, Yasaei H, Sone H, Kondoh H, Salem HK, Hsu HY, Park HH, Koturbash I, Miousse IR, Scovassi A, Klaunig JE, Vondráček J, Raju J, Roman J, Wise JP, Whitfield JR, Woodrick J, Christopher JA, Ochieng J, Martinez-Leal JF, Weisz J, Kravchenko J, Sun J, Prudhomme KR, Narayanan KB, Cohen-Solal KA, Moorwood K, Gonzalez L, Soucek L, Jian L, D’Abronzo LS, Lin LT, Li L, Gulliver L, McCawley LJ, Memeo L, Vermeulen L, Leyns L, Zhang L, Valverde M, Khatami M, Romano MF, Chapellier M, Williams MA, Wade M, et alGoodson WH, Lowe L, Carpenter DO, Gilbertson M, Manaf Ali A, Lopez de Cerain Salsamendi A, Lasfar A, Carnero A, Azqueta A, Amedei A, Charles AK, Collins AR, Ward A, Salzberg AC, Colacci AM, Olsen AK, Berg A, Barclay BJ, Zhou BP, Blanco-Aparicio C, Baglole CJ, Dong C, Mondello C, Hsu CW, Naus CC, Yedjou C, Curran CS, Laird DW, Koch DC, Carlin DJ, Felsher DW, Roy D, Brown DG, Ratovitski E, Ryan EP, Corsini E, Rojas E, Moon EY, Laconi E, Marongiu F, Al-Mulla F, Chiaradonna F, Darroudi F, Martin FL, Van Schooten FJ, Goldberg GS, Wagemaker G, Nangami GN, Calaf GM, Williams GP, Wolf GT, Koppen G, Brunborg G, Lyerly HK, Krishnan H, Ab Hamid H, Yasaei H, Sone H, Kondoh H, Salem HK, Hsu HY, Park HH, Koturbash I, Miousse IR, Scovassi A, Klaunig JE, Vondráček J, Raju J, Roman J, Wise JP, Whitfield JR, Woodrick J, Christopher JA, Ochieng J, Martinez-Leal JF, Weisz J, Kravchenko J, Sun J, Prudhomme KR, Narayanan KB, Cohen-Solal KA, Moorwood K, Gonzalez L, Soucek L, Jian L, D’Abronzo LS, Lin LT, Li L, Gulliver L, McCawley LJ, Memeo L, Vermeulen L, Leyns L, Zhang L, Valverde M, Khatami M, Romano MF, Chapellier M, Williams MA, Wade M, Manjili MH, Lleonart ME, Xia M, Gonzalez Guzman MJ, Karamouzis MV, Kirsch-Volders M, Vaccari M, Kuemmerle NB, Singh N, Cruickshanks N, Kleinstreuer N, van Larebeke N, Ahmed N, Ogunkua O, Krishnakumar P, Vadgama P, Marignani PA, Ghosh PM, Ostrosky-Wegman P, Thompson PA, Dent P, Heneberg P, Darbre P, Leung PS, Nangia-Makker P, Cheng Q(S, Robey R, Al-Temaimi R, Roy R, Andrade-Vieira R, Sinha RK, Mehta R, Vento R, Di Fiore R, Ponce-Cusi R, Dornetshuber-Fleiss R, Nahta R, Castellino RC, Palorini R, Hamid RA, Langie SA, Eltom SE, Brooks SA, Ryeom S, Wise SS, Bay SN, Harris SA, Papagerakis S, Romano S, Pavanello S, Eriksson S, Forte S, Casey SC, Luanpitpong S, Lee TJ, Otsuki T, Chen T, Massfelder T, Sanderson T, Guarnieri T, Hultman T, Dormoy V, Odero-Marah V, Sabbisetti V, Maguer-Satta V, Rathmell W, Engström W, Decker WK, Bisson WH, Rojanasakul Y, Luqmani Y, Chen Z, Hu Z. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead. Carcinogenesis 2015; 36 Suppl 1:S254-S296. [PMID: 26106142 PMCID: PMC4480130 DOI: 10.1093/carcin/bgv039] [Show More Authors] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 01/23/2015] [Accepted: 01/31/2015] [Indexed: 02/07/2023] Open
Abstract
Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology.
Collapse
Affiliation(s)
- William H. Goodson
- *To whom correspondence should be addressed. William H.Goodson III, California Pacific Medical Center Research Institute, 2100 Webster Street #401, San Francisco, CA 94115, USA. Tel: +41 59 233925; Fax: +41 57 761977;
| | - Leroy Lowe
- Getting to Know Cancer, Room 229A, 36 Arthur Street, Truro, Nova Scotia B2N 1X5, Canada
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4AP, UK
| | - David O. Carpenter
- Institute for Health and the Environment, University at Albany, 5 University Pl., Rensselaer, NY 12144, USA
| | | | - Abdul Manaf Ali
- School of Biotechnology, Faculty of Agriculture Biotechnology and Food Sciences, Sultan Zainal Abidin University, Tembila Campus, 22200 Besut, Terengganu, Malaysia
| | | | - Ahmed Lasfar
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, State University of New Jersey, Piscataway, NJ 08854, USA
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, Consejo Superior de Investigaciones Cientificas. Hospital Universitario Virgen del Rocio, Univ. de Sevilla., Avda Manuel Siurot sn. 41013 Sevilla, Spain
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Pamplona 31008, Spain
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Florence 50134, Italy
| | - Amelia K. Charles
- School of Biological Sciences, University of Reading, Hopkins Building, Reading, Berkshire RG6 6UB, UK
| | | | - Andrew Ward
- Department of Biochemistry and Biology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Anna C. Salzberg
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Anna Maria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, 40126 Bologna, Italy
| | - Ann-Karin Olsen
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo N-0403, Norway
| | - Arthur Berg
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | | | - Binhua P. Zhou
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40508, USA
| | - Carmen Blanco-Aparicio
- Spanish National Cancer Research Centre, CNIO, Melchor Fernandez Almagro, 3, 28029 Madrid, Spain
| | - Carolyn J. Baglole
- Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Chenfang Dong
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40508, USA
| | - Chiara Mondello
- Istituto di Genetica Molecolare, CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Chia-Wen Hsu
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892–3375, USA
| | - Christian C. Naus
- Department of Cellular and Physiological Sciences, Life Sciences Institute, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Clement Yedjou
- Department of Biology, Jackson State University, Jackson, MS 39217, USA
| | - Colleen S. Curran
- Department of Molecular and Environmental Toxicology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Dale W. Laird
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Daniel C. Koch
- Stanford University Department of Medicine, Division of Oncology, Stanford, CA 94305, USA
| | - Danielle J. Carlin
- Superfund Research Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27560, USA
| | - Dean W. Felsher
- Department of Medicine, Oncology and Pathology, Stanford University,Stanford, CA 94305, USA
| | - Debasish Roy
- Department of Natural Science, The City University of New York at Hostos Campus, Bronx, NY 10451, USA
| | - Dustin G. Brown
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523–1680, USA
| | - Edward Ratovitski
- Department of Head and Neck Surgery/Head and Neck Cancer Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elizabeth P. Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523–1680, USA
| | - Emanuela Corsini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Emilio Rojas
- Department of Genomic Medicine and Environmental Toxicology, Institute for Biomedical Research, National Autonomous University of Mexico, Mexico City 04510, México
| | - Eun-Yi Moon
- Department of Bioscience and Biotechnology, Sejong University, Seoul 143–747, Korea
| | - Ezio Laconi
- Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Fabio Marongiu
- Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Fahd Al-Mulla
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | - Ferdinando Chiaradonna
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
- SYSBIO Centre of Systems Biology, Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Firouz Darroudi
- Human Safety and Environmental Research, Department of Health Sciences, College of North Atlantic, Doha 24449, State of Qatar
| | - Francis L. Martin
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4AP, UK
| | - Frederik J. Van Schooten
- Department of Toxicology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht 6200, The Netherlands
| | - Gary S. Goldberg
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Gerard Wagemaker
- Hacettepe University, Center for Stem Cell Research and Development, Ankara 06640, Turkey
| | - Gladys N. Nangami
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Gloria M. Calaf
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA
- Instituto de Alta Investigacion, Universidad de Tarapaca, Arica, Chile
| | - Graeme P. Williams
- School of Biological Sciences, University of Reading, Reading, RG6 6UB, UK
| | - Gregory T. Wolf
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Gudrun Koppen
- Environmental Risk and Health Unit, Flemish Institute for Technological Research, 2400 Mol, Belgium
| | - Gunnar Brunborg
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo N-0403, Norway
| | - H. Kim Lyerly
- Department of Surgery, Pathology, Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Harini Krishnan
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Hasiah Ab Hamid
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, 43400 Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Hemad Yasaei
- Department of Life Sciences, College of Health and Life Sciences and the Health and Environment Theme, Institute of Environment, Health and Societies, Brunel University Kingston Lane, Uxbridge, Middlesex UB8 3PH, UK
| | - Hideko Sone
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibraki 3058506, Japan
| | - Hiroshi Kondoh
- Department of Geriatric Medicine, Kyoto University Hospital 54 Kawaharacho, Shogoin, Sakyo-ku Kyoto, 606–8507, Japan
| | - Hosni K. Salem
- Department of Urology, Kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 11559, Egypt
| | - Hsue-Yin Hsu
- Department of Life Sciences, Tzu-Chi University, Hualien 970, Taiwan
| | - Hyun Ho Park
- School of Biotechnology, Yeungnam University, Gyeongbuk 712-749, South Korea
| | - Igor Koturbash
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Isabelle R. Miousse
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - A.Ivana Scovassi
- Istituto di Genetica Molecolare, CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - James E. Klaunig
- Department of Environmental Health, Indiana University, School of Public Health, Bloomington, IN 47405, USA
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics Academy of Sciences of the Czech Republic, Brno, CZ-61265, Czech Republic
| | - Jayadev Raju
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Jesse Roman
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- Robley Rex VA Medical Center, Louisville, KY 40202, USA
| | - John Pierce Wise
- Department of Applied Medical Sciences, University of Southern Maine, 96 Falmouth St., Portland, ME 04104, USA
| | - Jonathan R. Whitfield
- Mouse Models of Cancer Therapies Group, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Jordan Woodrick
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA
| | - Joseph A. Christopher
- Cancer Research UK. Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Josiah Ochieng
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | | | - Judith Weisz
- Departments of Obstetrics and Gynecology and Pathology, Pennsylvania State University College of Medicine, Hershey PA 17033, USA
| | - Julia Kravchenko
- Department of Surgery, Pathology, Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jun Sun
- Department of Biochemistry, Rush University, Chicago, IL 60612, USA
| | - Kalan R. Prudhomme
- Environmental and Molecular Toxicology, Environmental Health Science Center, Oregon State University, Corvallis, OR 97331, USA
| | | | - Karine A. Cohen-Solal
- Department of Medicine/Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Kim Moorwood
- Department of Biochemistry and Biology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Laetitia Gonzalez
- Laboratory for Cell Genetics, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Laura Soucek
- Mouse Models of Cancer Therapies Group, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| | - Le Jian
- School of Public Health, Curtin University, Bentley, WA 6102, Australia
- Department of Urology, University of California Davis, Sacramento, CA 95817, USA
| | - Leandro S. D’Abronzo
- Department of Urology, University of California Davis, Sacramento, CA 95817, USA
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Lin Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, The People’s Republic of China
| | - Linda Gulliver
- Faculty of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Lisa J. McCawley
- Department of Biomedical Engineering and Cancer Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Lorenzo Memeo
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Via Penninazzo 7, Viagrande (CT) 95029, Italy
| | - Louis Vermeulen
- Center for Experimental Molecular Medicine, Academic Medical Center, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | - Luc Leyns
- Laboratory for Cell Genetics, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720-7360, USA
| | - Mahara Valverde
- Department of Genomic Medicine and Environmental Toxicology, Institute for Biomedical Research, National Autonomous University of Mexico, Mexico City 04510, México
| | - Mahin Khatami
- Inflammation and Cancer Research, National Cancer Institute (NCI) (Retired), National Institutes of Health, Bethesda, MD 20892, USA
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, 80131 Naples, Italy
| | - Marion Chapellier
- Centre De Recherche En Cancerologie,De Lyon, Lyon, U1052-UMR5286, France
| | - Marc A. Williams
- United States Army Institute of Public Health, Toxicology Portfolio-Health Effects Research Program, Aberdeen Proving Ground, Edgewood, MD 21010-5403, USA
| | - Mark Wade
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Via Adamello 16, 20139 Milano, Italy
| | - Masoud H. Manjili
- Department of Microbiology and Immunology, Virginia Commonwealth University, Massey Cancer Center, Richmond, VA 23298, USA
| | - Matilde E. Lleonart
- Institut De Recerca Hospital Vall D’Hebron, Passeig Vall d’Hebron, 119–129, 08035 Barcelona, Spain
| | - Menghang Xia
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892–3375, USA
| | - Michael J. Gonzalez Guzman
- University of Puerto Rico, Medical Sciences Campus, School of Public Health, Nutrition Program, San Juan 00921, Puerto Rico
| | - Michalis V. Karamouzis
- Department of Biological Chemistry, Medical School, University of Athens, Institute of Molecular Medicine and Biomedical Research, 10676 Athens, Greece
| | | | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, 40126 Bologna, Italy
| | | | - Neetu Singh
- Advanced Molecular Science Research Centre (Centre for Advanced Research), King George’s Medical University, Lucknow, Uttar Pradesh 226 003, India
| | - Nichola Cruickshanks
- Departments of Neurosurgery and Biochemistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Nicole Kleinstreuer
- Integrated Laboratory Systems Inc., in support of the National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, RTP, NC 27709, USA
| | - Nik van Larebeke
- Analytische, Milieu en Geochemie, Vrije Universiteit Brussel, Brussel B1050, Belgium
| | - Nuzhat Ahmed
- Department of Obstetrics and Gynecology, University of Melbourne, Victoria 3052, Australia
| | - Olugbemiga Ogunkua
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - P.K. Krishnakumar
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 3126, Saudi Arabia
| | - Pankaj Vadgama
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Paola A. Marignani
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Paramita M. Ghosh
- Department of Urology, University of California Davis, Sacramento, CA 95817, USA
| | - Patricia Ostrosky-Wegman
- Department of Genomic Medicine and Environmental Toxicology, Institute for Biomedical Research, National Autonomous University of Mexico, Mexico City 04510, México
| | - Patricia A. Thompson
- Department of Pathology, Stony Brook School of Medicine, Stony Brook University, The State University of New York, Stony Brook, NY 11794-8691, USA
| | - Paul Dent
- Departments of Neurosurgery and Biochemistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Petr Heneberg
- Charles University in Prague, Third Faculty of Medicine, CZ-100 00 Prague 10, Czech Republic
| | - Philippa Darbre
- School of Biological Sciences, The University of Reading, Whiteknights, Reading RG6 6UB, England
| | - Po Sing Leung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, The People’s Republic of China
| | | | - Qiang (Shawn) Cheng
- Computer Science Department, Southern Illinois University, Carbondale, IL 62901, USA
| | - R.Brooks Robey
- White River Junction Veterans Affairs Medical Center, White River Junction, VT 05009, USA
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Rabeah Al-Temaimi
- Human Genetics Unit, Department of Pathology, Faculty of Medicine, Kuwait University, Jabriya 13110, Kuwait
| | - Rabindra Roy
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA
| | - Rafaela Andrade-Vieira
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Ranjeet K. Sinha
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rekha Mehta
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Renza Vento
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, Polyclinic Plexus, University of Palermo, Palermo 90127, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
| | - Riccardo Di Fiore
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, Polyclinic Plexus, University of Palermo, Palermo 90127, Italy
| | | | - Rita Dornetshuber-Fleiss
- Department of Pharmacology and Toxicology, University of Vienna, Vienna A-1090, Austria
- Institute of Cancer Research, Department of Medicine, Medical University of Vienna, Wien 1090, Austria
| | - Rita Nahta
- Departments of Pharmacology and Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA 30322, USA
| | - Robert C. Castellino
- Division of Hematology and Oncology, Department of Pediatrics, Children’s Healthcare of Atlanta, GA 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Roberta Palorini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
- SYSBIO Centre of Systems Biology, Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Roslida A. Hamid
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, 43400 Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sabine A.S. Langie
- Environmental Risk and Health Unit, Flemish Institute for Technological Research, 2400 Mol, Belgium
| | - Sakina E. Eltom
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Samira A. Brooks
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Sandra Ryeom
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sandra S. Wise
- Department of Applied Medical Sciences, University of Southern Maine, 96 Falmouth St., Portland, ME 04104, USA
| | - Sarah N. Bay
- Program in Genetics and Molecular Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
| | - Shelley A. Harris
- Population Health and Prevention, Research, Prevention and Cancer Control, Cancer Care Ontario, Toronto, Ontario, M5G 2L7, Canada
- Departments of Epidemiology and Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, M5T 3M7, Canada
| | - Silvana Papagerakis
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, 80131 Naples, Italy
| | - Sofia Pavanello
- Department of Cardiac, Thoracic and Vascular Sciences, Unit of Occupational Medicine, University of Padova, Padova 35128, Italy
| | - Staffan Eriksson
- Department of Anatomy, Physiology and Biochemistry, The Swedish University of Agricultural Sciences, PO Box 7011, VHC, Almas Allé 4, SE-756 51, Uppsala, Sweden
| | - Stefano Forte
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Via Penninazzo 7, Viagrande (CT) 95029, Italy
| | - Stephanie C. Casey
- Stanford University Department of Medicine, Division of Oncology, Stanford, CA 94305, USA
| | - Sudjit Luanpitpong
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Tae-Jin Lee
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu 705–717, South Korea,
| | - Takemi Otsuki
- Department of Hygiene, Kawasaki Medical School, Matsushima Kurashiki, Okayama 701-0192, Japan,
| | - Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR 72079, USA
| | - Thierry Massfelder
- INSERM U1113, team 3 ‘Cell Signalling and Communication in Kidney and Prostate Cancer’, University of Strasbourg, Faculté de Médecine, 67085 Strasbourg, France
| | - Thomas Sanderson
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada,
| | - Tiziana Guarnieri
- Department of Biology, Geology and Environmental Sciences, Alma Mater Studiorum Università di Bologna, Via Francesco Selmi, 3, 40126 Bologna, Italy
- Center for Applied Biomedical Research, S. Orsola-Malpighi University Hospital, Via Massarenti, 9, 40126 Bologna, Italy
- National Institute of Biostructures and Biosystems, Viale Medaglie d’ Oro, 305, 00136 Roma, Italy
| | - Tove Hultman
- Department of Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Swedish University of Agricultural Sciences, PO Box 7028, 75007 Uppsala, Sweden
| | - Valérian Dormoy
- INSERM U1113, team 3 ‘Cell Signalling and Communication in Kidney and Prostate Cancer’, University of Strasbourg, Faculté de Médecine, 67085 Strasbourg, France
- Department of Cell and Developmental Biology, University of California, Irvine, CA 92697, USA
| | - Valerie Odero-Marah
- Department of Biology/Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Venkata Sabbisetti
- Harvard Medical School/Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Veronique Maguer-Satta
- United States Army Institute of Public Health, Toxicology Portfolio-Health Effects Research Program, Aberdeen Proving Ground, Edgewood, MD 21010-5403, USA
| | - W.Kimryn Rathmell
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Wilhelm Engström
- Department of Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Swedish University of Agricultural Sciences, PO Box 7028, 75007 Uppsala, Sweden
| | | | - William H. Bisson
- Environmental and Molecular Toxicology, Environmental Health Science Center, Oregon State University, Corvallis, OR 97331, USA
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown,WV, 26506,USA
| | - Yunus Luqmani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, PO Box 24923, Safat 13110, Kuwait and
| | - Zhenbang Chen
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Zhiwei Hu
- Department of Surgery, The Ohio State University College of Medicine, The James Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
105
|
Zoeller RT, Vandenberg LN. Assessing dose-response relationships for endocrine disrupting chemicals (EDCs): a focus on non-monotonicity. Environ Health 2015; 14:42. [PMID: 25533907 PMCID: PMC4440251 DOI: 10.1186/s12940-015-0029-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/29/2015] [Indexed: 05/02/2023]
Abstract
The fundamental principle in regulatory toxicology is that all chemicals are toxic and that the severity of effect is proportional to the exposure level. An ancillary assumption is that there are no effects at exposures below the lowest observed adverse effect level (LOAEL), either because no effects exist or because they are not statistically resolvable, implying that they would not be adverse. Chemicals that interfere with hormones violate these principles in two important ways: dose-response relationships can be non-monotonic, which have been reported in hundreds of studies of endocrine disrupting chemicals (EDCs); and effects are often observed below the LOAEL, including all environmental epidemiological studies examining EDCs. In recognition of the importance of this issue, Lagarde et al. have published the first proposal to qualitatively assess non-monotonic dose response (NMDR) relationships for use in risk assessments. Their proposal represents a significant step forward in the evaluation of complex datasets for use in risk assessments. Here, we comment on three elements of the Lagarde proposal that we feel need to be assessed more critically and present our arguments: 1) the use of Klimisch scores to evaluate study quality, 2) the concept of evaluating study quality without topical experts' knowledge and opinions, and 3) the requirement of establishing the biological plausibility of an NMDR before consideration for use in risk assessment. We present evidence-based logical arguments that 1) the use of the Klimisch score should be abandoned for assessing study quality; 2) evaluating study quality requires experts in the specific field; and 3) an understanding of mechanisms should not be required to accept observable, statistically valid phenomena. It is our hope to contribute to the important and ongoing debate about the impact of NMDRs on risk assessment with positive suggestions.
Collapse
|
106
|
Futran Fuhrman V, Tal A, Arnon S. Why endocrine disrupting chemicals (EDCs) challenge traditional risk assessment and how to respond. JOURNAL OF HAZARDOUS MATERIALS 2015; 286:589-611. [PMID: 25646754 DOI: 10.1016/j.jhazmat.2014.12.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 12/02/2014] [Accepted: 12/08/2014] [Indexed: 05/11/2023]
Abstract
Endocrine disrupting compounds (EDCs) are a diverse group of "chemicals of emerging concern" which have attracted much interest from the research community since the 1990s. Today there is still no definitive risk assessment tool for EDCs. While some decision making organizations have attempted to design methodology guidelines to evaluate the potential risk from this broadly defined group of constituents, risk assessors still face many uncertainties and unknowns. Until a risk assessment paradigm is designed specifically for EDCs and is vetted by the field, traditional risk assessment tools may be used with caution to evaluate EDCs. In doing so, each issue of contention should be addressed with transparency in order to leverage available information and technology without sacrificing integrity or accuracy. The challenges that EDCs pose to traditional risk assessment are described in this article to assist in this process.
Collapse
Affiliation(s)
- Vivian Futran Fuhrman
- Institute for Dryland, Environmental and Desert Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer 84990, Israel.
| | - Alon Tal
- Institute for Dryland, Environmental and Desert Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer 84990, Israel.
| | - Shai Arnon
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer 84990, Israel.
| |
Collapse
|
107
|
Lagarde F, Beausoleil C, Belcher SM, Belzunces LP, Emond C, Guerbet M, Rousselle C. Non-monotonic dose-response relationships and endocrine disruptors: a qualitative method of assessment. Environ Health 2015; 14:13. [PMID: 25971433 PMCID: PMC4429934 DOI: 10.1186/1476-069x-14-13] [Citation(s) in RCA: 246] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/16/2015] [Indexed: 05/17/2023]
Abstract
Experimental studies investigating the effects of endocrine disruptors frequently identify potential unconventional dose-response relationships called non-monotonic dose-response (NMDR) relationships. Standardized approaches for investigating NMDR relationships in a risk assessment context are missing. The aim of this work was to develop criteria for assessing the strength of NMDR relationships. A literature search was conducted to identify published studies that report NMDR relationships with endocrine disruptors. Fifty-one experimental studies that investigated various effects associated with endocrine disruption elicited by many substances were selected. Scoring criteria were applied by adaptation of an approach previously used for identification of hormesis-type dose-response relationships. Out of the 148 NMDR relationships analyzed, 82 were categorized with this method as having a "moderate" to "high" level of plausibility for various effects. Numerous modes of action described in the literature can explain such phenomena. NMDR can arise from numerous molecular mechanisms such as opposing effects induced by multiple receptors differing by their affinity, receptor desensitization, negative feedback with increasing dose, or dose-dependent metabolism modulation. A stepwise decision tree was developed as a tool to standardize the analysis of NMDR relationships observed in the literature with the final aim to use these results in a Risk Assessment purpose. This decision tree was finally applied to studies focused on the effects of bisphenol A.
Collapse
Affiliation(s)
- Fabien Lagarde
- />Risk Assessment Department, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort Cedex, France
| | - Claire Beausoleil
- />Risk Assessment Department, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort Cedex, France
| | - Scott M Belcher
- />Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, Cincinnati, OH USA
| | - Luc P Belzunces
- />INRA, Laboratoire de Toxicologie Environnementale, UR 406 A&E, CS 40509, 84914 Avignon Cedex 9, France
| | | | - Michel Guerbet
- />Université de Rouen, UFR Médecine Pharmacie, Laboratoire de Toxicologie, UR 4651 ABTE, 76183 Rouen Cedex 1, France
| | - Christophe Rousselle
- />Risk Assessment Department, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort Cedex, France
| |
Collapse
|
108
|
Gao L, Li X, Li C, Yan Y. Detection of nonfluorescent cyhalothrin in honey by a spheral SiO2-based particle coating with thin fluorescent molecularly imprinted polymers film. RSC Adv 2015. [DOI: 10.1039/c5ra17851g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In this study, we report a general protocol for making core–shell SiO2@KH570-MIP based on the surface modification of SiO2 beads for the selective fluorescence detection of ultra trace cyhalothrin.
Collapse
Affiliation(s)
- Lin Gao
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- People's Republic of China
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials
| | - Xiuying Li
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials
- Jilin Normal University
- Chinese Ministry of Education
- Siping 136000
- People's Republic of China
| | - Chunxiang Li
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- People's Republic of China
| | - Yongsheng Yan
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- People's Republic of China
| |
Collapse
|
109
|
Tang-Péronard JL, Jensen TK, Andersen HR, Ried-Larsen M, Grøntved A, Andersen LB, Timmermann CA, Nielsen F, Heitmann BL. Associations between Exposure to Persistent Organic Pollutants in Childhood and Overweight up to 12 Years Later in a Low Exposed Danish Population. Obes Facts 2015; 8:282-92. [PMID: 26228100 PMCID: PMC5644795 DOI: 10.1159/000438834] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/10/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Persistent organic pollutants (POPs) have metabolic disrupting abilities and are suggested to contribute to the obesity epidemic. We investigated whether serum concentrations of POPs at 8-10 years of age were associated with subsequent development of overweight at age 14-16 and 20-22 years. METHODS The study was based on data from the European Youth Heart Study, Danish component (1997). Concentrations of several polychlorinated biphenyls (PCBs) and the organochlorine pesticides p,p-dichlorodiphenyldichloroethylene (DDE) and hexachlorobenzene (HCB) were measured in serum from children aged 8-10 years (n = 509). Information on BMI z-scores, waist circumference and % body fat were collected at clinical examinations at ages 8-10, 14-16 and 20-22 years. Multiple linear regression analyses were performed taking potential confounders into account. RESULTS Overall, POP serum concentrations were low: median ΣPCB 0.18 µg/g lipid, DDE 0.04 µg/g lipid and HCB 0.03 µg/g lipid. POPs were generally not associated with weight gain at 14-16 and 20-22 years of age, except for an inverse association among the highest exposed girls at 20-22 years of age, which might possibly be explained by multiple testing or residual confounding. CONCLUSION This study suggests that, in a low exposed population, childhood serum concentrations of PCB, DDE, and HCB are not associated with subsequent weight gain.
Collapse
Affiliation(s)
- Jeanett L. Tang-Péronard
- Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
- Research Unit for Dietary Studies, The Parker Institute and Institute of Preventive Medicine, Copenhagen University Hospitals, Frederiksberg, Denmark
| | - Tina K. Jensen
- Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Helle R. Andersen
- Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Mathias Ried-Larsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Anders Grøntved
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
- Centre for Research in Childhood Health, University of Southern Denmark, Odense, Denmark
| | - Lars B. Andersen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
- Centre for Research in Childhood Health, University of Southern Denmark, Odense, Denmark
| | - Clara A.G. Timmermann
- Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Flemming Nielsen
- Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Berit L. Heitmann
- Research Unit for Dietary Studies, The Parker Institute and Institute of Preventive Medicine, Copenhagen University Hospitals, Frederiksberg, Denmark
- The Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders, Sydney Medical School, Sydney, Australia
- National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
- *Berit L. Heitmann, Research Unit for Dietary Studies, The Parker Institute and Institute of, Preventive Medicine, Copenhagen University Hospitals, Nordre Fasanvej 57, Hovedvejen, entrance 5, ground floor, 2000 Frederiksberg, Denmark,
| |
Collapse
|
110
|
Catanese MC, Suvorov A, Vandenberg LN. Beyond a means of exposure: a new view of the mother in toxicology research. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00119b] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Toxicological studies generally view pregnant animals as a conduit through which gestational exposure of offspring to chemicals can be achieved, allowing for the study of developmental toxicity.
Collapse
Affiliation(s)
- Mary C. Catanese
- Program in Neuroscience & Behaviour
- University of Massachusetts – Amherst
- Amherst
- USA
| | - Alexander Suvorov
- Program in Neuroscience & Behaviour
- University of Massachusetts – Amherst
- Amherst
- USA
- Division of Environmental Health Sciences
| | - Laura N. Vandenberg
- Program in Neuroscience & Behaviour
- University of Massachusetts – Amherst
- Amherst
- USA
- Division of Environmental Health Sciences
| |
Collapse
|
111
|
Zoeller RT, Bergman Å, Becher G, Bjerregaard P, Bornman R, Brandt I, Iguchi T, Jobling S, Kidd KA, Kortenkamp A, Skakkebaek NE, Toppari J, Vandenberg LN. A path forward in the debate over health impacts of endocrine disrupting chemicals. Environ Health 2014; 13:118. [PMID: 25533907 PMCID: PMC4298083 DOI: 10.1186/1476-069x-13-118] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 12/08/2014] [Indexed: 05/17/2023]
Abstract
Several recent publications reflect debate on the issue of "endocrine disrupting chemicals" (EDCs), indicating that two seemingly mutually exclusive perspectives are being articulated separately and independently. Considering this, a group of scientists with expertise in basic science, medicine and risk assessment reviewed the various aspects of the debate to identify the most significant areas of dispute and to propose a path forward. We identified four areas of debate. The first is about the definitions for terms such as "endocrine disrupting chemical", "adverse effects", and "endocrine system". The second is focused on elements of hormone action including "potency", "endpoints", "timing", "dose" and "thresholds". The third addresses the information needed to establish sufficient evidence of harm. Finally, the fourth focuses on the need to develop and the characteristics of transparent, systematic methods to review the EDC literature. Herein we identify areas of general consensus and propose resolutions for these four areas that would allow the field to move beyond the current and, in our opinion, ineffective debate.
Collapse
Affiliation(s)
| | - Åke Bergman
- />Swedish Toxicology Sciences Research Center (Swetox), Forskargatan 20, SE-151 36 Sodertalje, Sweden
| | - Georg Becher
- />Norwegian Institute of Public Health, Oslo, Norway
| | | | - Riana Bornman
- />School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | | | - Taisen Iguchi
- />National Institute for Basic Biology, Okazaki, Japan
| | | | - Karen A Kidd
- />University of New Brunswick, Saint John, New Brunswick, Canada
| | | | | | | | | |
Collapse
|
112
|
Le Magueresse-Battistoni B, Vidal H, Naville D. Lifelong consumption of low-dosed food pollutants and metabolic health. J Epidemiol Community Health 2014; 69:512-5. [PMID: 25472636 DOI: 10.1136/jech-2014-203913] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Brigitte Le Magueresse-Battistoni
- Laboratoire de Recherche en Cardiovasculaire, Métabolisme, Diabétologie et Nutrition, CarMeN INSERM U1060, Lyon-1 University, INRA UMR1397, INSA-Lyon, Lyon, France
| | - Hubert Vidal
- Laboratoire de Recherche en Cardiovasculaire, Métabolisme, Diabétologie et Nutrition, CarMeN INSERM U1060, Lyon-1 University, INRA UMR1397, INSA-Lyon, Lyon, France
| | - Danielle Naville
- Laboratoire de Recherche en Cardiovasculaire, Métabolisme, Diabétologie et Nutrition, CarMeN INSERM U1060, Lyon-1 University, INRA UMR1397, INSA-Lyon, Lyon, France
| |
Collapse
|
113
|
Vandenberg LN, Bowler AG. Non-monotonic dose responses in EDSP Tier 1 guideline assays. ACTA ACUST UNITED AC 2014. [DOI: 10.4161/23273739.2014.964530] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
114
|
Vandenberg LN, Ehrlich S, Belcher SM, Ben-Jonathan N, Dolinoy DC, Hugo ER, Hunt PA, Newbold RR, Rubin BS, Saili KS, Soto AM, Wang HS, vom Saal FS. Low dose effects of bisphenol A. ACTA ACUST UNITED AC 2014. [DOI: 10.4161/endo.26490] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
115
|
Ng HW, Zhang W, Shu M, Luo H, Ge W, Perkins R, Tong W, Hong H. Competitive molecular docking approach for predicting estrogen receptor subtype α agonists and antagonists. BMC Bioinformatics 2014; 15 Suppl 11:S4. [PMID: 25349983 PMCID: PMC4251048 DOI: 10.1186/1471-2105-15-s11-s4] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Endocrine disrupting chemicals (EDCs) are exogenous compounds that interfere with the endocrine system of vertebrates, often through direct or indirect interactions with nuclear receptor proteins. Estrogen receptors (ERs) are particularly important protein targets and many EDCs are ER binders, capable of altering normal homeostatic transcription and signaling pathways. An estrogenic xenobiotic can bind ER as either an agonist or antagonist to increase or inhibit transcription, respectively. The receptor conformations in the complexes of ER bound with agonists and antagonists are different and dependent on interactions with co-regulator proteins that vary across tissue type. Assessment of chemical endocrine disruption potential depends not only on binding affinity to ERs, but also on changes that may alter the receptor conformation and its ability to subsequently bind DNA response elements and initiate transcription. Using both agonist and antagonist conformations of the ERα, we developed an in silico approach that can be used to differentiate agonist versus antagonist status of potential binders. Methods The approach combined separate molecular docking models for ER agonist and antagonist conformations. The ability of this approach to differentiate agonists and antagonists was first evaluated using true agonists and antagonists extracted from the crystal structures available in the protein data bank (PDB), and then further validated using a larger set of ligands from the literature. The usefulness of the approach was demonstrated with enrichment analysis in data sets with a large number of decoy ligands. Results The performance of individual agonist and antagonist docking models was found comparable to similar models in the literature. When combined in a competitive docking approach, they provided the ability to discriminate agonists from antagonists with good accuracy, as well as the ability to efficiently select true agonists and antagonists from decoys during enrichment analysis. Conclusion This approach enables evaluation of potential ER biological function changes caused by chemicals bound to the receptor which, in turn, allows the assessment of a chemical's endocrine disrupting potential. The approach can be used not only by regulatory authorities to perform risk assessments on potential EDCs but also by the industry in drug discovery projects to screen for potential agonists and antagonists.
Collapse
|
116
|
Fadiel A, Song J, Tivon D, Hamza A, Cardozo T, Naftolin F. Phenytoin is an estrogen receptor α-selective modulator that interacts with helix 12. Reprod Sci 2014; 22:146-55. [PMID: 25258361 DOI: 10.1177/1933719114549853] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
RATIONALE Phenytoin (Dilantin(®); DPH) is used to treat epilepsy but causes estrogen agonist-antagonist-like side effects. We investigated the interaction of phenytoin with estrogen receptors (ERs) α and β by computational molecular docking, ER competition binding, transcriptional assays, and biological actions, comparing outcomes with estradiol (E2), estrone (E1), and tamoxifen (TMX). EXPERIMENTAL (1) The DPH docking to 3-dimensional crystal structures of the ERα ligand-binding domain (LBD) showed a high degree of structural complementarity (-57.15 calculated energy units, approximating kcal/mol) with the ligand-binding pocket, including a contact at leucine (L540) in helix 12. Estrogen receptor β showed slightly less favorable interactions (-54.27 kcal/mol), without contacting L450. Estradiol, E1, and TMX contact points with ERα and ERβ do not include L450. (2) Cellular actions: Incubation of cells transfected with ERα or ERβ and a luciferase promoter phenytoin was several orders weaker than E2 as an agonist through ERα and had no effect through ERβ. However, phenytoin at clinical concentrations (10(-11) to 10(-6) mol/L) powerfully antagonized action of E2 on ERα-expressing cells. Similarly, phenytoin at clinically effective concentrations marginally induced alkaline phosphatase by ERα- and ERβ-expressing endometrial cancer cells but at doses well below clinical effectiveness blocked E2-induced alkaline phosphatase. (3) ER competition: In Scatchard plots comparing phenytoin with 17β-estradiol against endometrial cancer cell cytosol E2-alone more effectively displaced labeled E2 than phenytoin, but phenytoin was approximately equimolar effective to E2 in inhibiting E2's displacement of the radiolabel, further confirming that phenytoin is a strong E2 antagonist. CONCLUSIONS At clinically effective concentrations, phenytoin is a strong ERα cell antagonist but a many-fold weaker agonist. Although it interacts with ERβ LBD residues, phenytoin has no effects on ERβ-only expressing cells. Docking studies indicate phenytoin interacts with the ERα LBD at the hinge of helix 12 and could thereby interfere with the entry of other ER ligands or with the mobility of helix 12, either of which actions could explain phenytoin's antagonism of ER-mediated E2 actions. Our results suggest an explanation for the broad profile of phenytoin's actions and raise possibilities for the use of phenytoin or congeners in the clinical management of ERα-dependent conditions.
Collapse
Affiliation(s)
- A Fadiel
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York University, New York, NY, USA
| | - J Song
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York University, New York, NY, USA
| | - D Tivon
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York University, New York, NY, USA
| | - A Hamza
- School of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - T Cardozo
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York University, New York, NY, USA
| | - Frederick Naftolin
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York University, New York, NY, USA
| |
Collapse
|
117
|
|
118
|
Habert R, Livera G, Rouiller-Fabre V. Man is not a big rat: concerns with traditional human risk assessment of phthalates based on their anti-androgenic effects observed in the rat foetus. Basic Clin Androl 2014; 24:14. [PMID: 25780587 PMCID: PMC4349750 DOI: 10.1186/2051-4190-24-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/15/2014] [Indexed: 11/10/2022] Open
Abstract
Phthalates provide one of the most documented example evidencing how much we must be cautious when using the traditional paradigm based on extrapolation of experimental data from rodent studies for human health risk assessment of endocrine disruptors (EDs). Since foetal testis is known as one of the most sensitive targets of EDs, phthalate risk assessment is routinely based on the capacity of such compounds to decrease testosterone production by the testis or to impair masculinization in the rat during foetal life. In this paper, the well-established inhibiting effects of phthalates of the foetal Leydig cells function in the rat are briefly reviewed. Then, data obtained in humans and other species are carefully analysed. Already in January 2009, using the organotypic culture system named Fetal Testis Assay (FeTA) that we developed, we reported that phthalates might not affect testosterone production in human foetal testes. Several recent experimental studies using xenografts confirm the absence of detectable anti-androgenic effect of phthalates in the human foetal testes. Epidemiological studies led to contradictory results. Altogether, these findings suggest that phthalates effects on foetal Leydig cells are largely species-specific. Consequently, the phthalate threshold doses that disturb foetal steroidogenesis in rat testes and that are presently used to define the acceptable daily intake levels for human health protection must be questioned. This does not mean that phthalates are safe because these compounds have many deleterious effects upon germ cell development that may be common to the different studied species including human. More generally, the identification of common molecular, cellular or/and phenotypic targets in rat and human testes should precede the choice of the toxicological endpoint in rat to accurately assess the safety threshold of any ED in humans.
Collapse
Affiliation(s)
- René Habert
- Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, University Paris Diderot, BP 6, 92265 Fontenay-aux-Roses, France ; CEA, DSV, iRCM, SCSR, LDG, 92265 Fontenay-aux-Roses, France ; INSERM, Unité 967, F-92265 Fontenay aux Roses, France ; Stem Cells and Radiation Unit, LDG / SCSR / iRCM / DSV, Centre CEA, BP6, F-92265 Fontenay aux Roses, France
| | - Gabriel Livera
- Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, University Paris Diderot, BP 6, 92265 Fontenay-aux-Roses, France ; CEA, DSV, iRCM, SCSR, LDG, 92265 Fontenay-aux-Roses, France ; INSERM, Unité 967, F-92265 Fontenay aux Roses, France
| | - Virginie Rouiller-Fabre
- Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, University Paris Diderot, BP 6, 92265 Fontenay-aux-Roses, France ; CEA, DSV, iRCM, SCSR, LDG, 92265 Fontenay-aux-Roses, France ; INSERM, Unité 967, F-92265 Fontenay aux Roses, France
| |
Collapse
|
119
|
Lee DH, Porta M, Jacobs DR, Vandenberg LN. Chlorinated persistent organic pollutants, obesity, and type 2 diabetes. Endocr Rev 2014. [PMID: 24483949 DOI: 10.1210/er.9013-1084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
Persistent organic pollutants (POPs) are lipophilic compounds that travel with lipids and accumulate mainly in adipose tissue. Recent human evidence links low-dose POPs to an increased risk of type 2 diabetes (T2D). Because humans are contaminated by POP mixtures and POPs possibly have nonmonotonic dose-response relations with T2D, critical methodological issues arise in evaluating human findings. This review summarizes epidemiological results on chlorinated POPs and T2D, and relevant experimental evidence. It also discusses how features of POPs can affect inferences in humans. The evidence as a whole suggests that, rather than a few individual POPs, background exposure to POP mixtures-including organochlorine pesticides and polychlorinated biphenyls-can increase T2D risk in humans. Inconsistent statistical significance for individual POPs may arise due to distributional differences in POP mixtures among populations. Differences in the observed shape of the dose-response curves among human studies may reflect an inverted U-shaped association secondary to mitochondrial dysfunction or endocrine disruption. Finally, we examine the relationship between POPs and obesity. There is evidence in animal studies that low-dose POP mixtures are obesogenic. However, relationships between POPs and obesity in humans have been inconsistent. Adipose tissue plays a dual role of promoting T2D and providing a relatively safe place to store POPs. Large prospective studies with serial measurements of a broad range of POPs, adiposity, and clinically relevant biomarkers are needed to disentangle the interrelationships among POPs, obesity, and the development of T2D. Also needed are laboratory experiments that more closely mimic real-world POP doses, mixtures, and exposure duration in humans.
Collapse
Affiliation(s)
- Duk-Hee Lee
- Department of Preventive Medicine (D.-H.L.), School of Medicine, Kyungpook National University, Daegu 700-422, Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science (D.-H.L.), Kyungpook National University, Korea; Hospital del Mar Institute of Medical Research (M.P.), School of Medicine, Universitat Autonoma de Barcelona, and Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, Barcelona 08193, Spain; Division of Epidemiology (D.R.J.), School of Public Health, University of Minnesota, Minneapolis, Minnesota 55455; Department of Nutrition (D.R.J.), University of Oslo, 0313 Oslo, Norway; and University of Massachusetts-Amherst (L.N.V.), School of Public Health, Division of Environmental Health Sciences, Amherst, Massachusetts 01003
| | | | | | | |
Collapse
|
120
|
Lee DH, Porta M, Jacobs DR, Vandenberg LN. Chlorinated persistent organic pollutants, obesity, and type 2 diabetes. Endocr Rev 2014; 35:557-601. [PMID: 24483949 PMCID: PMC5393257 DOI: 10.1210/er.2013-1084] [Citation(s) in RCA: 308] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Persistent organic pollutants (POPs) are lipophilic compounds that travel with lipids and accumulate mainly in adipose tissue. Recent human evidence links low-dose POPs to an increased risk of type 2 diabetes (T2D). Because humans are contaminated by POP mixtures and POPs possibly have nonmonotonic dose-response relations with T2D, critical methodological issues arise in evaluating human findings. This review summarizes epidemiological results on chlorinated POPs and T2D, and relevant experimental evidence. It also discusses how features of POPs can affect inferences in humans. The evidence as a whole suggests that, rather than a few individual POPs, background exposure to POP mixtures-including organochlorine pesticides and polychlorinated biphenyls-can increase T2D risk in humans. Inconsistent statistical significance for individual POPs may arise due to distributional differences in POP mixtures among populations. Differences in the observed shape of the dose-response curves among human studies may reflect an inverted U-shaped association secondary to mitochondrial dysfunction or endocrine disruption. Finally, we examine the relationship between POPs and obesity. There is evidence in animal studies that low-dose POP mixtures are obesogenic. However, relationships between POPs and obesity in humans have been inconsistent. Adipose tissue plays a dual role of promoting T2D and providing a relatively safe place to store POPs. Large prospective studies with serial measurements of a broad range of POPs, adiposity, and clinically relevant biomarkers are needed to disentangle the interrelationships among POPs, obesity, and the development of T2D. Also needed are laboratory experiments that more closely mimic real-world POP doses, mixtures, and exposure duration in humans.
Collapse
Affiliation(s)
- Duk-Hee Lee
- Department of Preventive Medicine (D.-H.L.), School of Medicine, Kyungpook National University, Daegu 700-422, Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science (D.-H.L.), Kyungpook National University, Korea; Hospital del Mar Institute of Medical Research (M.P.), School of Medicine, Universitat Autonoma de Barcelona, and Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, Barcelona 08193, Spain; Division of Epidemiology (D.R.J.), School of Public Health, University of Minnesota, Minneapolis, Minnesota 55455; Department of Nutrition (D.R.J.), University of Oslo, 0313 Oslo, Norway; and University of Massachusetts-Amherst (L.N.V.), School of Public Health, Division of Environmental Health Sciences, Amherst, Massachusetts 01003
| | | | | | | |
Collapse
|
121
|
Pestana D, Faria G, Sá C, Fernandes VC, Teixeira D, Norberto S, Faria A, Meireles M, Marques C, Correia-Sá L, Cunha A, Guimarães JT, Taveira-Gomes A, Santos AC, Domingues VF, Delerue-Matos C, Monteiro R, Calhau C. Persistent organic pollutant levels in human visceral and subcutaneous adipose tissue in obese individuals--depot differences and dysmetabolism implications. ENVIRONMENTAL RESEARCH 2014; 133:170-177. [PMID: 24949816 DOI: 10.1016/j.envres.2014.05.026] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 04/22/2014] [Accepted: 05/27/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND The role of persistent organic pollutants (POPs) with endocrine disrupting activity in the aetiology of obesity and other metabolic dysfunctions has been recently highlighted. Adipose tissue (AT) is a common site of POPs accumulation where they can induce adverse effects on human health. OBJECTIVES To evaluate the presence of POPs in human visceral (vAT) and subcutaneous (scAT) adipose tissue in a sample of Portuguese obese patients that underwent bariatric surgery, and assess their putative association with metabolic disruption preoperatively, as well as with subsequent body mass index (BMI) reduction. METHODS AT samples (n=189) from obese patients (BMI ≥ 35) were collected and the levels of 13 POPs were determined by gas chromatography with electron-capture detection (GC-ECD). Anthropometric and biochemical data were collected at the time of surgery. BMI variation was evaluated after 12 months and adipocyte size was measured in AT samples. RESULTS Our data confirm that POPs are pervasive in this obese population (96.3% of detection on both tissues), their abundance increasing with age (RS=0.310, p<0.01) and duration of obesity (RS=0.170, p<0.05). We observed a difference in AT depot POPs storage capability, with higher levels of ΣPOPs in vAT (213.9 ± 204.2 compared to 155.1 ± 147.4 ng/g of fat, p<0.001), extremely relevant when evaluating their metabolic impact. Furthermore, there was a positive correlation between POP levels and the presence of metabolic syndrome components, namely dysglycaemia and hypertension, and more importantly with cardiovascular risk (RS=0.277, p<0.01), with relevance for vAT (RS=0.315, p<0.01). Finally, we observed an interesting relation of higher POP levels with lower weight loss in older patients. CONCLUSION Our sample of obese subjects allowed us to highlight the importance of POPs stored in AT on the development of metabolic dysfunction in a context of obesity, shifting the focus to their metabolic effects and not only for their recognition as environmental obesogens.
Collapse
Affiliation(s)
- Diogo Pestana
- Department of Biochemistry (U38-FCT), Faculty of Medicine, University of Porto, Centro de Investigação Médica, P-4200-450 Porto, Portugal; CINTESIS-Center for Research in Health Technologies and Information Systems, P-4200-450 Porto, Portugal.
| | - Gil Faria
- General Surgery Department, S. João Hospital, Faculty of Medicine, University of Porto, P-4200-450 Porto, Portugal
| | - Carla Sá
- Department of Biochemistry (U38-FCT), Faculty of Medicine, University of Porto, Centro de Investigação Médica, P-4200-450 Porto, Portugal
| | - Virgínia C Fernandes
- Chemistry Investigation Centre (CIQ), Department of Chemistry, Faculty of Sciences, University of Porto, P-4169-007 Porto, Portugal; Requimte-Instituto Superior de Engenharia, Instituto Politécnico do Porto, P-4200-072 Porto, Portugal
| | - Diana Teixeira
- Department of Biochemistry (U38-FCT), Faculty of Medicine, University of Porto, Centro de Investigação Médica, P-4200-450 Porto, Portugal
| | - Sónia Norberto
- Department of Biochemistry (U38-FCT), Faculty of Medicine, University of Porto, Centro de Investigação Médica, P-4200-450 Porto, Portugal
| | - Ana Faria
- Department of Biochemistry (U38-FCT), Faculty of Medicine, University of Porto, Centro de Investigação Médica, P-4200-450 Porto, Portugal; Chemistry Investigation Centre (CIQ), Department of Chemistry, Faculty of Sciences, University of Porto, P-4169-007 Porto, Portugal; Faculty of Nutrition and Food Sciences, University of Porto, P-4200-465 Porto, Portugal
| | - Manuela Meireles
- Department of Biochemistry (U38-FCT), Faculty of Medicine, University of Porto, Centro de Investigação Médica, P-4200-450 Porto, Portugal
| | - Cláudia Marques
- Department of Biochemistry (U38-FCT), Faculty of Medicine, University of Porto, Centro de Investigação Médica, P-4200-450 Porto, Portugal
| | - Luísa Correia-Sá
- Chemistry Investigation Centre (CIQ), Department of Chemistry, Faculty of Sciences, University of Porto, P-4169-007 Porto, Portugal
| | - Ana Cunha
- Department of Biochemistry (U38-FCT), Faculty of Medicine, University of Porto, Centro de Investigação Médica, P-4200-450 Porto, Portugal
| | - João T Guimarães
- Department of Biochemistry (U38-FCT), Faculty of Medicine, University of Porto, Centro de Investigação Médica, P-4200-450 Porto, Portugal; Department of Clinical Pathology, Hospital S. João, P-4200-450 Porto, Portugal
| | - António Taveira-Gomes
- General Surgery Department, S. João Hospital, Faculty of Medicine, University of Porto, P-4200-450 Porto, Portugal
| | - Ana Cristina Santos
- Department of Hygiene and Epidemiology, Faculty of Medicine and Institute of Public Health, University of Porto, P-4200-450 Porto, Portugal
| | - Valentina F Domingues
- Requimte-Instituto Superior de Engenharia, Instituto Politécnico do Porto, P-4200-072 Porto, Portugal
| | - Cristina Delerue-Matos
- Requimte-Instituto Superior de Engenharia, Instituto Politécnico do Porto, P-4200-072 Porto, Portugal
| | - Rosário Monteiro
- Department of Biochemistry (U38-FCT), Faculty of Medicine, University of Porto, Centro de Investigação Médica, P-4200-450 Porto, Portugal
| | - Conceição Calhau
- Department of Biochemistry (U38-FCT), Faculty of Medicine, University of Porto, Centro de Investigação Médica, P-4200-450 Porto, Portugal; CINTESIS-Center for Research in Health Technologies and Information Systems, P-4200-450 Porto, Portugal
| |
Collapse
|
122
|
Gore AC, Balthazart J, Bikle D, Carpenter DO, Crews D, Czernichow P, Diamanti-Kandarakis E, Dores RM, Grattan D, Hof PR, Hollenberg AN, Lange C, Lee AV, Levine JE, Millar RP, Nelson RJ, Porta M, Poth M, Power DM, Prins GS, Ridgway EC, Rissman EF, Romijn JA, Sawchenko PE, Sly PD, Söder O, Taylor HS, Tena-Sempere M, Vaudry H, Wallen K, Wang Z, Wartofsky L, Watson CS. Policy decisions on endocrine disruptors should be based on science across disciplines: a response to Dietrich et al. Horm Res Paediatr 2014; 80:305-8. [PMID: 24107550 DOI: 10.1159/000355668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- A C Gore
- Division of Pharmacology and Toxicology, The University of Texas, Austin, Tex., USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Kudłak B, Szczepańska N, Owczarek K, Mazerska Z, Namieśnik J. Revision of Biological Methods for Determination of EDC Presence and Their Endocrine Potential. Crit Rev Anal Chem 2014; 45:191-200. [DOI: 10.1080/10408347.2014.904731] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
124
|
Hampel M, Bron JE, Taggart JB, Leaver MJ. The antidepressant drug carbamazepine induces differential transcriptome expression in the brain of Atlantic salmon, Salmo salar. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 151:114-123. [PMID: 24439755 DOI: 10.1016/j.aquatox.2013.12.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 06/03/2023]
Abstract
Concerns are being expressed recently over possible environmental effects of human pharmaceuticals. Although the likelihood of acute toxicity is low, the continuous discharge of pharmaceuticals into the aquatic environment means that sublethal effects on non-target organisms need to be seriously considered. One-year-old Atlantic salmon parr were exposed to 7.85±0.13μgL(-1) of the antidepressant drug Carbamazepine (CBZ) for five days to investigate changes of mRNA expression in the brain by means of a custom 17k Atlantic salmon cDNA microarray. The selected concentration is similar to upper levels that can be found in hospital and sewage treatment plant effluents. After treatment, 373 features were differently expressed with 26 showing up- or down-regulation of ≥2-fold (p≤0.05). Among the mRNAs showing the highest change were the pituitary hormones encoding features somatolactin, prolactin and somatotropin, or growth hormone. Functional enrichment and network analyses of up- and down-regulated genes showed that CBZ induced a highly different gene expression profile in comparison to untreated organisms. CBZ induced expression of essential genes of the focal adhesion and extracellular matrix - receptor interaction pathways most likely through integrin alpha-6 (itga6) activation. Negative regulation of apoptotic process, extracellular matrix organization and heme biosynthesis were the most enriched biological process related GO-terms, with the simultaneous enrichment of collagen and extracellular region related cellular component GO-terms, and extracellular matrix structural constituent, hormone activity and chromatin binding molecular function related GO-terms. These results show that relatively low doses of CBZ may affect brain physiology in exposed salmon parr, targeting similar processes as in human, indicating a high degree of conservation of targets of CBZ action. However, and since the mRNAs showing most changes in expression are critical for adaptation to different stressors and life history transitions in Atlantic salmon, more research should be undertaken to assess CBZ effects to avoid impairment of normal development and maintenance of natural populations.
Collapse
Affiliation(s)
- M Hampel
- Institute of Aquaculture, University of Stirling, FK9 4LA Stirling, UK.
| | - J E Bron
- Institute of Aquaculture, University of Stirling, FK9 4LA Stirling, UK
| | - J B Taggart
- Institute of Aquaculture, University of Stirling, FK9 4LA Stirling, UK
| | - M J Leaver
- Institute of Aquaculture, University of Stirling, FK9 4LA Stirling, UK
| |
Collapse
|
125
|
Schneider JE, Brozek JM, Keen-Rhinehart E. Our stolen figures: the interface of sexual differentiation, endocrine disruptors, maternal programming, and energy balance. Horm Behav 2014; 66:104-19. [PMID: 24681201 DOI: 10.1016/j.yhbeh.2014.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 03/15/2014] [Accepted: 03/18/2014] [Indexed: 02/06/2023]
Abstract
This article is part of a Special Issue "Energy Balance". The prevalence of adult obesity has risen markedly in the last quarter of the 20th century and has not been reversed in this century. Less well known is the fact that obesity prevalence has risen in domestic, laboratory, and feral animals, suggesting that all of these species have been exposed to obesogenic factors present in the environment. This review emphasizes interactions among three biological processes known to influence energy balance: Sexual differentiation, endocrine disruption, and maternal programming. Sexual dimorphisms include differences between males and females in body weight, adiposity, adipose tissue distribution, ingestive behavior, and the underlying neural circuits. These sexual dimorphisms are controlled by sex chromosomes, hormones that masculinize or feminize adult body weight during perinatal development, and hormones that act during later periods of development, such as puberty. Endocrine disruptors are natural and synthetic molecules that attenuate or block normal hormonal action during these same developmental periods. A growing body of research documents effects of endocrine disruptors on the differentiation of adipocytes and the central nervous system circuits that control food intake, energy expenditure, and adipose tissue storage. In parallel, interest has grown in epigenetic influences, including maternal programming, the process by which the mother's experience has permanent effects on energy-balancing traits in the offspring. This review highlights the points at which maternal programming, sexual differentiation, and endocrine disruption might dovetail to influence global changes in energy balancing traits.
Collapse
Affiliation(s)
- Jill E Schneider
- Lehigh University, Department of Biological Sciences, Bethlehem, PA 18015, USA.
| | - Jeremy M Brozek
- Lehigh University, Department of Biological Sciences, Bethlehem, PA 18015, USA
| | - Erin Keen-Rhinehart
- Susquehanna University, Department of Biological Sciences, Selinsgrove, PA 17870, USA
| |
Collapse
|
126
|
Huang MY, Duan RY, Ji X. Chronic effects of environmentally-relevant concentrations of lead in Pelophylax nigromaculata tadpoles: Threshold dose and adverse effects. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 104:310-316. [PMID: 24726944 DOI: 10.1016/j.ecoenv.2014.03.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 03/21/2014] [Accepted: 03/22/2014] [Indexed: 06/03/2023]
Abstract
Lead (Pb) is a common heavy metal in the natural environment, but its concentration has been increasing alongside widespread industrial and agricultural development in China. The dark-spotted frog Pelophylax (formerly Rana) nigromaculata (Anura: Ranidae) is distributed across East Asia and inhabits anthropogenic habitats such as farmland. Here, P. nigromaculata tadpoles (Gosner stage 19-46) were exposed to Pb at different concentrations (0, 40, 80, 160, 320, 640 and 1280µg/L) and Pb-induced survival, metamorphosis time, development, malformations, mobility and gonad structure were monitored. The results showed that above the threshold concentration of Pb, adverse effects were obvious. As the concentration of Pb increased, the adverse effects on different traits followed different patterns: the effects on hindlimb length, survival rate, metamorphosis rate, total malformation rate, swimming speed and jumping speed largely exhibited a linear pattern; the effects on snout-vent length, body mass and forelimb length largely exhibited a bimodal pattern. Sex ratio and gonadal histology were not affected by Pb, suggesting that Pb is not strongly estrogenic in P. nigromaculata.
Collapse
Affiliation(s)
- Min-Yi Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, Jiangsu, China; College of Life Sciences, Anqing Normal University, Anqing 246011, Anhui, China
| | - Ren-Yan Duan
- College of Life Sciences, Anqing Normal University, Anqing 246011, Anhui, China
| | - Xiang Ji
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, Jiangsu, China.
| |
Collapse
|
127
|
Laurenson JP, Bloom RA, Page S, Sadrieh N. Ethinyl estradiol and other human pharmaceutical estrogens in the aquatic environment: a review of recent risk assessment data. AAPS J 2014; 16:299-310. [PMID: 24470211 PMCID: PMC3933577 DOI: 10.1208/s12248-014-9561-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 01/02/2014] [Indexed: 11/30/2022] Open
Abstract
Interest in pharmaceuticals in the environment has increased substantially in recent years. Several studies in particular have assessed human and ecological risks from human pharmaceutical estrogens, such as 17α-ethinyl estradiol (EE2). Regulatory action also has increased, with the USA and other countries developing rules to address estrogens and other pharmaceuticals in the environment. Accordingly, the Center for Drug Evaluation and Research at the US Food and Drug Administration has conducted a review and analysis of current data on the long-term ecological exposure and effects of EE2 and other estrogens. The results indicate that mean-flow long-term predicted environmental concentrations (PECs) of EE2 in approximately 99% or more of US surface water segments downstream of wastewater treatment plants are lower than a predicted no-effect concentration (PNEC) for aquatic chronic toxicity of 0.1 ng/L. Exceedances are expected to be primarily in localized, effluent-dominated water segments. The median mean-flow PEC is more than two orders of magnitude lower than this PNEC. Similar results exist for other pharmaceutical estrogens. Data also suggest that the contribution of EE2 more broadly to total estrogenic load in the environment from all sources (including other human pharmaceutical estrogens, endogenous estrogens, natural environmental estrogens, and industrial chemicals), while highly uncertain and variable, appears to be relatively low overall. Additional data and a more comprehensive approach for data collection and analysis for estrogenic substances in the environment, especially in effluent-dominated water segments in sensitive environments, would more fully characterize the risks.
Collapse
Affiliation(s)
- James P Laurenson
- Office of Pharmaceutical Science, Center for Drug Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland, 20903, USA,
| | | | | | | |
Collapse
|
128
|
Fernández MF, Olea N. Disruptores endocrinos, ¿suficiente evidencia para actuar? GACETA SANITARIA 2014; 28:93-5. [DOI: 10.1016/j.gaceta.2013.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 11/25/2013] [Accepted: 11/28/2013] [Indexed: 11/28/2022]
|
129
|
Gore AC, Balthazart J, Bikle D, Carpenter DO, Crews D, Czernichow P, Diamanti-Kandarakis E, Dores RM, Grattan D, Hof PR, Hollenberg AN, Lange C, Lee AV, Levine JE, Millar RP, Nelson RJ, Porta M, Poth M, Power DM, Prins GS, Ridgway EC, Rissman EF, Romijn JA, Sawchenko PE, Sly PD, Söder O, Taylor HS, Tena-Sempere M, Vaudry H, Wallen K, Wang Z, Wartofsky L, Watson CS. Reprint of: policy decisions on endocrine disruptors should be based on science across disciplines: a response to Dietrich et al. Horm Behav 2014; 65:190-3. [PMID: 24289987 DOI: 10.1016/j.yhbeh.2013.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- A C Gore
- Division of Pharmacology and Toxicology, The University of Texas, Austin, TX 78712, USA.
| | - J Balthazart
- University of Liège, GIGA Neurosciences, B-4000 Liège, Belgium
| | - D Bikle
- VA Medical Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - D O Carpenter
- Institute for Health and the Environment, University at Albany, State University of New York, Albany, NY 12222, USA
| | - D Crews
- Section of Integrative Biology, The University of Texas, Austin, TX 78712, USA
| | | | | | - R M Dores
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - D Grattan
- Department of Anatomy, University of Otago, North Dunedin 9016, New Zealand
| | - P R Hof
- Icahn School of Medicine at Mt Sinai, New York, NY 10029, USA
| | - A N Hollenberg
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - C Lange
- University of Minnesota Masonic Cancer Center, Minneapolis, MN 55455, USA
| | - A V Lee
- University of Pittsburgh Cancer Institute, Magee Women's Research Institute, Pittsburgh, PA 15213, USA
| | - J E Levine
- Wisconsin National Primate Research Center, Madison, WI 53715, USA
| | - R P Millar
- UCT/MRC Receptor Biology Unit, University of Cape Town, Cape Town, South Africa
| | - R J Nelson
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - M Porta
- Hospital del Mar Institute of Medical Research, School of Medicine, Universitat Autònoma de Barcelona, 080041 Barcelona, Spain
| | - M Poth
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - D M Power
- Department of Biosciences, Universidade do Algarve, 8005-139 Faro, Portugal
| | - G S Prins
- Department of Physiology and Biophysics, University of Illinois, Chicago, IL 60612, USA
| | - E C Ridgway
- Department of Medicine, University of Colorado School of Medicine, Denver, CO 80208, USA
| | - E F Rissman
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - J A Romijn
- Division of Medicine, Academic Medical Center, University of Amsterdam, 1012 WX Amsterdam, The Netherlands
| | - P E Sawchenko
- Laboratory of Neuronal Structure and Function, The Salk Institute, La Jolla, CA 92037, USA
| | - P D Sly
- Queensland Children's Medical Institute, University of Queensland, Royal Children's Hospital, Brisbane, Queensland 4000, Australia
| | - O Söder
- Karolinska Institutet at Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
| | - H S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
| | - M Tena-Sempere
- Department of Cell Biology and Physiology, University of Córdoba, 14071 Córdoba, Spain
| | - H Vaudry
- Institut National de la Santé et de la Recherche Médicale U982, University of Rouen, 76821 Rouen, France
| | - K Wallen
- Department of Psychology, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
| | - Z Wang
- Department of Psychology and Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - L Wartofsky
- Department of Medicine, Washington Hospital Center, Washington, DC 20010, USA
| | - C S Watson
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
130
|
Gore AC, Balthazart J, Bikle D, Carpenter DO, Crews D, Czernichow P, Diamanti-Kandarakis E, Dores RM, Grattan D, Hof PR, Hollenberg AN, Lange C, Lee AV, Levine JE, Millar RP, Nelson RJ, Porta M, Poth M, Power DM, Prins GS, Ridgway EC, Rissman EF, Romijn JA, Sawchenko PE, Sly PD, Söder O, Taylor HS, Tena-Sempere M, Vaudry H, Wallen K, Wang Z, Wartofsky L, Watson CS. Reprint of: policy decisions on endocrine disruptors should be based on science across disciplines: a response to Dietrich, et al. Front Neuroendocrinol 2014; 35:2-5. [PMID: 24268499 DOI: 10.1016/j.yfrne.2013.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 09/17/2013] [Indexed: 11/24/2022]
Affiliation(s)
- A C Gore
- Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, United States.
| | - J Balthazart
- University of Liège, GIGA Neurosciences, B-4000 Liège, Belgium
| | - D Bikle
- VA Medical Center and University of California, San Francisco, San Francisco, CA 94143, United States
| | - D O Carpenter
- Institute for Health and the Environment, University at Albany, State University of New York, Albany, NY 12222, United States
| | - D Crews
- Section of Integrative Biology, The University of Texas, Austin, TX 78712, United States
| | - P Czernichow
- Professor Emeritus of Pediatrics, University of Paris, 75006 Paris, France
| | | | - R M Dores
- Department of Biological Sciences, University of Denver, Denver, CO 80208, United States
| | - D Grattan
- Department of Anatomy, University of Otago, North Dunedin 9016, New Zealand
| | - P R Hof
- Icahn School of Medicine at Mt Sinai, New York, NY 10029, United States
| | | | - C Lange
- University of Minnesota Masonic Cancer Center, Minneapolis, MN 55455, United States
| | - A V Lee
- University of Pittsburgh Cancer Institute and Magee Women's Research Institute, Pittsburgh, PA 15213, United States
| | - J E Levine
- Wisconsin National Primate Research Center, Madison, WI 53715, United States
| | - R P Millar
- UCT/MRC Receptor Biology Unit, University of Cape Town, Cape Town, South Africa
| | - R J Nelson
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| | - M Porta
- Hospital del Mar Institute of Medical Research and School of Medicine, Universitat Autònoma de Barcelona, 080041 Barcelona, Spain
| | - M Poth
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States
| | - D M Power
- Department of Biosciences, Universidade do Algarve, 8005-139 Faro, Portugal
| | - G S Prins
- Department of Physiology and Biophysics, University of Illinois, Chicago, IL 60612, United States
| | - E C Ridgway
- Department of Medicine, University of Colorado School of Medicine, Denver, CO 80208, United States
| | - E F Rissman
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, United States
| | - J A Romijn
- Division of Medicine, Academic Medical Center, University of Amsterdam, 1012 WX Amsterdam, The Netherlands
| | - P E Sawchenko
- Laboratory of Neuronal Structure and Function, The Salk Institute, La Jolla, CA 92037, United States
| | - P D Sly
- Queensland Children's Medical Institute, University of Queensland, Royal Children's Hospital, Brisbane, Queensland 4000, Australia
| | - O Söder
- Karolinska Institutet at Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
| | - H S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, United States
| | - M Tena-Sempere
- Department of Cell Biology and Physiology, University of Córdoba, 14071 Córdoba, Spain
| | - H Vaudry
- Institut National de la Santé et de la Recherche Médicale U982, University of Rouen, 76821 Rouen, France
| | - K Wallen
- Department of Psychology and Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, United States
| | - Z Wang
- Department of Psychology and Neuroscience, Florida State University, Tallahassee, FL 32306, United States
| | - L Wartofsky
- Department of Medicine, Washington Hospital Center, Washington, DC 20010, United States
| | - C S Watson
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, United States
| |
Collapse
|
131
|
Gore AC, Balthazart J, Bikle D, Carpenter DO, Crews D, Czernichow P, Diamanti-Kandarakis E, Dores RM, Grattan D, Hof PR, Hollenberg AN, Lange C, Lee AV, Levine JE, Millar RP, Nelson RJ, Porta M, Poth M, Power DM, Prins GS, Ridgway EC, Rissman EF, Romijn JA, Sawchenko PE, Sly PD, Söder O, Taylor HS, Tena-Sempere M, Vaudry H, Wallen K, Wang Z, Wartofsky L, Watson CS. Policy decisions on endocrine disruptors should be based on science across disciplines: a response to Dietrich et al. Eur J Endocrinol 2013; 169:E1-4. [PMID: 24057478 DOI: 10.1530/eje-13-0763] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- A C Gore
- Division of Pharmacology and Toxicology, The University of Texas, Austin, Texas 78712, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Bourguignon JP, Franssen D, Gérard A, Janssen S, Pinson A, Naveau E, Parent AS. Early neuroendocrine disruption in hypothalamus and hippocampus: developmental effects including female sexual maturation and implications for endocrine disrupting chemical screening. J Neuroendocrinol 2013; 25:1079-87. [PMID: 24028442 DOI: 10.1111/jne.12107] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 08/03/2013] [Accepted: 09/05/2013] [Indexed: 01/25/2023]
Abstract
The timing of puberty has been mainly studied in females for several reasons, including the possible evaluation of a precise timer (i.e. menarcheal age) and concerns with respect to the high prevalence of precocity in females as opposed to males. Human evidence of altered female pubertal timing after exposure to endocrine disrupting chemicals (EDCs) is equivocal. Among the limiting factors, most studies evaluate exposure to single EDCs at the time of puberty and hardly assess the impact of lifelong exposure to mixtures of EDCs. Some rodent and ovine studies indicate a possible role of foetal and neonatal exposure to EDCs, in accordance with the concept of an early origin of health and disease. Such effects possibly involve neuroendocrine mechanisms because the hypothalamus is a site where homeostasis of reproduction, as well as control of energy balance, is programmed and regulated. In our previous studies, pulsatile gonadotrophin-releasing hormone (GnRH) secretion control via oestrogen, glutamate and aryl hydrocarbon receptors was shown to be involved in the mechanism of sexual precocity after early postnatal exposure to the insecticide dichlorodiphenyltrichloroethane. Very recently, we have shown that neonatal exposure to the potent synthetic oestrogen diethylstilbestrol (DES) is followed by early or delayed puberty depending on the dose, with consistent changes in developmental increase of GnRH pulse frequency. Moreover, DES results in reduced leptin stimulation of GnRH secretion in vitro, an effect that is additive with prenatal food restriction. Thus, using puberty as an endpoint of the effects of EDC, it appears necessary to consider pre- and perinatal exposure to low doses and to pay attention to the other conditions of prenatal life, such as energy availability, keeping in mind the possibility that puberty could not only be advanced, but also delayed through neuroendocrine mechanisms.
Collapse
Affiliation(s)
- J-P Bourguignon
- Developmental Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium; Department of Pediatrics, CHU, Liège, Belgium
| | | | | | | | | | | | | |
Collapse
|
133
|
Gore AC, Balthazart J, Bikle D, Carpenter DO, Crews D, Czernichow P, Diamanti-Kandarakis E, Dores RM, Grattan D, Hof PR, Hollenberg AN, Lange C, Lee AV, Levine JE, Millar RP, Nelson RJ, Porta M, Poth M, Power DM, Prins GS, Ridgway EC, Rissman EF, Romijn JA, Sawchenko PE, Sly PD, Söder O, Taylor HS, Tena-Sempere M, Vaudry H, Wallen K, Wang Z, Wartofsky L, Watson CS. Policy decisions on endocrine disruptors should be based on science across disciplines: a response to Dietrich et al. Endocrinology 2013; 154:3957-60. [PMID: 24048095 PMCID: PMC5398595 DOI: 10.1210/en.2013-1854] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- A C Gore
- PhD, Editor-in-Chief, Endocrinology, Gustavus, Louise Pfeiffer Professor of Pharmacology, Toxicology, The University of Texas at Austin, Austin, Texas 78712.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Gore AC, Balthazart J, Bikle D, Carpenter DO, Crews D, Czernichow P, Diamanti-Kandarakis E, Dores RM, Grattan D, Hof PR, Hollenberg AN, Lange C, Lee AV, Levine JE, Millar RP, Nelson RJ, Porta M, Poth M, Power DM, Prins GS, Ridgway EC, Rissman EF, Romijn JA, Sawchenko PE, Sly PD, Söder O, Taylor HS, Tena-Sempere M, Vaudry H, Wallen K, Wang Z, Wartofsky L, Watson CS. Policy decisions on endocrine disruptors should be based on science across disciplines: a response to Dietrichet al. Andrology 2013; 1:802-5. [DOI: 10.1111/j.2047-2927.2013.00151.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- A. C. Gore
- Division of Pharmacology and Toxicology; The University of Texas; Austin TX USA
| | - J. Balthazart
- University of Liège; GIGA Neurosciences; Liège Belgium
| | - D. Bikle
- VA Medical Center and University of California, San Francisco; San Francisco CA USA
| | - D. O. Carpenter
- Institute for Health and the Environment; University at Albany; State University of New York; Albany NY USA
| | - D. Crews
- Section of Integrative Biology; The University of Texas; Austin TX USA
| | | | | | - R. M. Dores
- Department of Biological Sciences; University of Denver; Denver CO USA
| | - D. Grattan
- Department of Anatomy; University of Otago; North Dunedin New Zealand
| | - P. R. Hof
- Icahn School of Medicine at Mt Sinai; New York NY USA
| | - A. N. Hollenberg
- Beth Israel Deaconess Medical Center; Harvard Medical School; Boston MA USA
| | - C. Lange
- University of Minnesota Masonic Cancer Center; Minneapolis MN USA
| | - A. V. Lee
- University of Pittsburgh Cancer Institute and Magee Women's Research Institute; Pittsburgh PA USA
| | - J. E. Levine
- Wisconsin National Primate Research Center; Madison WI USA
| | - R. P. Millar
- UCT/MRC Receptor Biology Unit; University of Cape Town; Cape Town South Africa
| | - R. J. Nelson
- Department of Neuroscience; The Ohio State University Wexner Medical Center; Columbus OH USA
| | - M. Porta
- Hospital del Mar Institute of Medical Research and School of Medicine; Universitat Autònoma de Barcelona; Barcelona Spain
| | - M. Poth
- Uniformed Services University of the Health Sciences; Bethesda MD USA
| | - D. M. Power
- Department of Biosciences; Universidade do Algarve; Faro Portugal
| | - G. S. Prins
- Department of Physiology and Biophysics; University of Illinois; Chicago IL USA
| | - E. C. Ridgway
- Department of Medicine; University of Colorado School of Medicine; Denver CO USA
| | - E. F. Rissman
- Department of Biochemistry and Molecular Genetics; School of Medicine; University of Virginia; Charlottesville VA USA
| | - J. A. Romijn
- Division of Medicine; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - P. E. Sawchenko
- Laboratory of Neuronal Structure and Function; The Salk Institute; La Jolla CA USA
| | - P. D. Sly
- Queensland Children's Medical Institute; University of Queensland; Royal Children's Hospital; Brisbane Qld Australia
| | - O. Söder
- Karolinska Institutet at Karolinska University Hospital Solna; Stockholm Sweden
| | - H. S. Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences; Yale School of Medicine; New Haven CT USA
| | - M. Tena-Sempere
- Department of Cell Biology and Physiology; University of Córdoba; Córdoba Spain
| | - H. Vaudry
- Institut National de la Santé et de la Recherche Médicale U982; University of Rouen; Rouen France
| | - K. Wallen
- Department of Psychology and Yerkes National Primate Research Center; Emory University; Atlanta GA USA
| | - Z. Wang
- Department of Psychology and Neuroscience; Florida State University; Tallahassee FL USA
| | - L. Wartofsky
- Department of Medicine; Washington Hospital Center; Washington DC USA
| | - C. S. Watson
- Department of Biochemistry and Molecular Biology; University of Texas Medical Branch; Galveston TX USA
| |
Collapse
|
135
|
Chen Zee E, Cornet P, Lazimi G, Rondet C, Lochard M, Magnier AM, Ibanez G. [Impact of endocrine disrupting chemicals on birth outcomes]. ACTA ACUST UNITED AC 2013; 41:601-10. [PMID: 24120149 DOI: 10.1016/j.gyobfe.2013.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 08/26/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND Endocrine disruptors are ubiquitous chemicals contaminants in the environment, wildlife, and humans. Their adverse effects on reproduction are well-documented. There is growing evidence that they can contribute to the current emergence of chronic diseases. OBJECTIVES Our aim is to assess the relationships between endocrine disruptors and the neonatal health outcomes. METHODS Two persons have independently reviewed Medline and Toxline databases about the following pollutants: bisphenol A, phthalates, parabens, brominated flame retardants and perfluorinated compounds. Only the human epidemiological studies, in general population with an abstract available, published between 2007 January the 1st and 2011 December the 31st, were analysed. The quality of each study was assessed with the Strobe score. RESULTS Twenty-five out of 680 studies were included in the analysis. All pollutants were widely detected in maternal and new borns samples. Most of the studies have shown associations between bisphenol A, brominated flame retardants and perfluorinated compounds and lower birth weight. The effects on gestational age were less documented and have shown no clear connection. Results for phthalates were more ambiguous. Only one non-instructive study was found on parabens. DISCUSSION Due to the inherent methological bias on endocrine disruptors research, further additional studies on environmental health must be investigated. It seems necessary to adopt preventive health measures first for vulnerable population.
Collapse
Affiliation(s)
- E Chen Zee
- Département de médecine générale, faculté de médecine Pierre et Marie Curie, 27, rue de Chaligny, 75012 Paris, France
| | | | | | | | | | | | | |
Collapse
|
136
|
Vandenberg LN. Non-monotonic dose responses in studies of endocrine disrupting chemicals: bisphenol a as a case study. Dose Response 2013; 12:259-76. [PMID: 24910584 DOI: 10.2203/dose-response.13-020.vandenberg] [Citation(s) in RCA: 248] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Non-monotonic dose response curves (NMDRCs) have been demonstrated for natural hormones and endocrine disrupting chemicals (EDCs) in a variety of biological systems including cultured cells, whole organ cultures, laboratory animals and human populations. The mechanisms responsible for these NMDRCs are well known, typically related to the interactions between the ligand (hormone or EDC) and a hormone receptor. Although there are hundreds of examples of NMDRCs in the EDC literature, there are claims that they are not 'common enough' to influence the use of high-to-low dose extrapolations in risk assessments. Here, we chose bisphenol A (BPA), a well-studied EDC, to assess the frequency of non-monotonic responses. Our results indicate that NMDRCs are common in the BPA literature, occurring in greater than 20% of all experiments and in at least one endpoint in more than 30% of all studies we examined. We also analyzed the types of endpoints that produce NMDRCs in vitro and factors related to study design that influence the ability to detect these kinds of responses. Taken together, these results provide strong evidence for NMDRCs in the EDC literature, specifically for BPA, and question the current risk assessment practice where 'safe' low doses are predicted from high dose exposures.
Collapse
|
137
|
Expressomal approach for comprehensive analysis and visualization of ligand sensitivities of xenoestrogen responsive genes. Proc Natl Acad Sci U S A 2013; 110:16508-13. [PMID: 24062438 DOI: 10.1073/pnas.1315929110] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although biological effects of endocrine disrupting chemicals (EDCs) are often observed at unexpectedly low doses with occasional nonmonotonic dose-response characteristics, transcriptome-wide profiles of sensitivities or dose-dependent behaviors of the EDC responsive genes have remained unexplored. Here, we describe expressome analysis for the comprehensive examination of dose-dependent gene responses and its applications to characterize estrogen responsive genes in MCF-7 cells. Transcriptomes of MCF-7 cells exposed to varying concentrations of representative natural and xenobiotic estrogens for 48 h were determined by microarray and used for computational calculation of interpolated approximations of estimated transcriptomes for 300 doses uniformly distributed in log space for each chemical. The entire collection of these estimated transcriptomes, designated as the expressome, has provided unique opportunities to profile chemical-specific distributions of ligand sensitivities for large numbers of estrogen responsive genes, revealing that at low concentrations estrogens generally tended to suppress rather than to activate transcription. Gene ontology analysis demonstrated distinct functional enrichment between high- and low-sensitivity estrogen responsive genes, supporting the notion that a single EDC chemical can cause qualitatively distinct biological responses at different doses. Expressomal heatmap visualization of dose-dependent induction of Bisphenol A inducible genes showed a weak gene activation peak at a very low concentration range (ca. 0.1 nM) in addition to the main, strong gene activation peak at and above 100 nM. Thus, expressome analysis is a powerful approach to understanding the EDC dose-dependent dynamic changes in gene expression at the transcriptomal level, providing important information on the overall profiles of ligand sensitivities and nonmonotonic responses.
Collapse
|
138
|
Acevedo N, Davis B, Schaeberle CM, Sonnenschein C, Soto AM. Perinatally administered bisphenol a as a potential mammary gland carcinogen in rats. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:1040-6. [PMID: 23876597 PMCID: PMC3764091 DOI: 10.1289/ehp.1306734] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 06/28/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Environmental exposure to bisphenol A (BPA) affects mammary gland development in rodents and primates. Prenatal exposure to environmentally relevant doses of BPA increased the number of intraductal hyperplasias and ductal carcinomas in situ by 50 days of age in Wistar-Furth rats. OBJECTIVE We aimed to determine whether BPA exposure of dams during gestation only or throughout lactation affects the incidence of mammary gland neoplasia in female offspring. METHODS We treated pregnant Sprague-Dawley rats with BPA at 0, 0.25, 2.5, 25, or 250 μg BPA/kg BW/day from gestational day (GD) 9 to birth and from GD9 to postnatal day (PND) 21. Mammary glands from BPA-exposed offspring were examined at four time points for preneoplastic and neoplastic lesions. To assess circulating BPA levels, we exposed pregnant rats to vehicle or 250 μg BPA/kg BW/day during gestation only or during gestation/lactation and analyzed sera from dams, fetuses, and nursing pups for total and unconjugated BPA. RESULTS Total and unconjugated BPA were detected in sera from 100% of dams and fetuses and 33% of pups exposed to 250 μg BPA/kg BW/day. Unconjugated BPA levels in exposed dams and fetuses (gestational) and in exposed dams and pups (gestational/lactational) were within levels found in humans. Preneoplastic lesions developed in BPA-exposed female offspring across all doses as early as PND50. Unexpectedly, mammary gland adenocarcinomas developed in BPA-exposed offspring by PND90. CONCLUSIONS Our findings suggest that developmental exposure to environmentally relevant levels of BPA during gestation and lactation induces mammary gland neoplasms in the absence of any additional carcinogenic treatment. Thus, BPA may act as a complete mammary gland carcinogen.
Collapse
Affiliation(s)
- Nicole Acevedo
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | |
Collapse
|