101
|
Otsuka R, Seino KI. Macrophage activation syndrome and COVID-19. Inflamm Regen 2020; 40:19. [PMID: 32834892 PMCID: PMC7406680 DOI: 10.1186/s41232-020-00131-w] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023] Open
Abstract
An emerging, rapidly spreading coronavirus SARS-CoV-2 is causing a devastating pandemic. As we have not developed curative medicine and effective vaccine, the end of this life-threatening infectious disease is still unclear. Severe COVID-19 is often associated with hypercytokinemia, which is typically found in macrophage activation syndrome. SARS-CoV-2 infection causes this strong inflammation within the lung and propagates to respiratory and, ultimately, systemic organ malfunction. Although we have not fully understood the physiological and pathological aspects of COVID-19, current research progress indicates the effectiveness of anti-cytokine therapy. Here, we summarize macrophage activation syndrome and its possible contribution to COVID-19, and cytokine targeted attempts in severe COVID-19 cases.
Collapse
Affiliation(s)
- Ryo Otsuka
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Sapporo, Hokkaido 060-0815 Japan
| | - Ken-ichiro Seino
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Sapporo, Hokkaido 060-0815 Japan
| |
Collapse
|
102
|
Abstract
Fecal microbial community changes are associated with numerous disease states, including cardiovascular disease (CVD). However, such data are merely associative. A causal contribution for gut microbiota in CVD has been further supported by a multitude of more direct experimental evidence. Indeed, gut microbiota transplantation studies, specific gut microbiota-dependent pathways, and downstream metabolites have all been shown to influence host metabolism and CVD, sometimes through specific identified host receptors. Multiple metaorganismal pathways (involving both microbe and host) both impact CVD in animal models and show striking clinical associations in human studies. For example, trimethylamine N-oxide and, more recently, phenylacetylglutamine are gut microbiota-dependent metabolites whose blood levels are associated with incident CVD risks in large-scale clinical studies. Importantly, a causal link to CVD for these and other specific gut microbial metabolites/pathways has been shown through numerous mechanistic animal model studies. Phenylacetylglutamine, for example, was recently shown to promote adverse cardiovascular phenotypes in the host via interaction with multiple ARs (adrenergic receptors)-a class of key receptors that regulate cardiovascular homeostasis. In this review, we summarize recent advances of microbiome research in CVD and related cardiometabolic phenotypes that have helped to move the field forward from associative to causative results. We focus on microbiota and metaorganismal compounds/pathways, with specific attention paid to short-chain fatty acids, secondary bile acids, trimethylamine N-oxide, and phenylacetylglutamine. We also discuss novel therapeutic strategies for directly targeting the gut microbiome to improve cardiovascular outcomes.
Collapse
Affiliation(s)
- Marco Witkowski
- From the Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute (M.W., T.L.W., S.L.H.), Cleveland Clinic, OH.,Center for Microbiome and Human Health (M.W., S.L.H.), Cleveland Clinic, OH
| | - Taylor L Weeks
- From the Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute (M.W., T.L.W., S.L.H.), Cleveland Clinic, OH.,Department of Cardiovascular Medicine, Heart and Vascular Institute (S.L.H.), Cleveland Clinic, OH
| | - Stanley L Hazen
- From the Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute (M.W., T.L.W., S.L.H.), Cleveland Clinic, OH.,Center for Microbiome and Human Health (M.W., S.L.H.), Cleveland Clinic, OH
| |
Collapse
|
103
|
Pasquarelli-do-Nascimento G, Braz-de-Melo HA, Faria SS, Santos IDO, Kobinger GP, Magalhães KG. Hypercoagulopathy and Adipose Tissue Exacerbated Inflammation May Explain Higher Mortality in COVID-19 Patients With Obesity. Front Endocrinol (Lausanne) 2020; 11:530. [PMID: 32849309 PMCID: PMC7399077 DOI: 10.3389/fendo.2020.00530] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022] Open
Abstract
COVID-19, caused by SARS-CoV-2, is characterized by pneumonia, lymphopenia, exhausted lymphocytes and a cytokine storm. Several reports from around the world have identified obesity and severe obesity as one of the strongest risk factors for COVID-19 hospitalization and mechanical ventilation. Moreover, countries with greater obesity prevalence have a higher morbidity and mortality risk of developing serious outcomes from COVID-19. The understanding of how this increased susceptibility of the people with obesity to develop severe forms of the SARS-CoV-2 infection occurs is crucial for implementing appropriate public health and therapeutic strategies to avoid COVID-19 severe symptoms and complications in people living with obesity. We hypothesize here that increased ACE2 expression in adipose tissue displayed by people with obesity may increase SARS-CoV-2 infection and accessibility to this tissue. Individuals with obesity have increased white adipose tissue, which may act as a reservoir for a more extensive viral spread with increased shedding, immune activation and pro-inflammatory cytokine amplification. Here we discuss how obesity is related to a pro-inflammatory and metabolic dysregulation, increased SARS-CoV-2 host cell entry in adipose tissue and induction of hypercoagulopathy, leading people with obesity to develop severe forms of COVID-19 and also death. Taken together, it may be crucial to better explore the role of visceral adipose tissue in the inflammatory response to SARS-CoV-2 infection and investigate the potential therapeutic effect of using specific target anti-inflammatories (canakinumab or anakinra for IL-1β inhibition; anti-IL-6 antibodies for IL-6 inhibition), anticoagulant or anti-diabetic drugs in COVID-19 treatment of people with obesity. Defining the immunopathological changes in COVID-19 patients with obesity can provide prominent targets for drug discovery and clinical management improvement.
Collapse
Affiliation(s)
| | | | - Sara Socorro Faria
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | - Igor de Oliveira Santos
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | - Gary P. Kobinger
- Département de Microbiologie-Infectiologie et d'Immunologie, Université Laval, Quebec City, QC, Canada
- Centre de Recherche en Infectiologie du CHU de Québec - Université Laval, Quebec City, QC, Canada
| | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
104
|
Lizarralde-Iragorri MA, Shet AS. Sickle Cell Disease: A Paradigm for Venous Thrombosis Pathophysiology. Int J Mol Sci 2020; 21:ijms21155279. [PMID: 32722421 PMCID: PMC7432404 DOI: 10.3390/ijms21155279] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Venous thromboembolism (VTE) is an important cause of vascular morbidity and mortality. Many risk factors have been identified for venous thrombosis that lead to alterations in blood flow, activate the vascular endothelium, and increase the propensity for blood coagulation. However, the precise molecular and cellular mechanisms that cause blood clots in the venous vasculature have not been fully elucidated. Patients with sickle cell disease (SCD) demonstrate all the risk factors for venous stasis, activated endothelium, and blood hypercoagulability, making them particularly vulnerable to VTE. In this review, we will discuss how mouse models have elucidated the complex vascular pathobiology of SCD. We review the dysregulated pathways of inflammation and coagulation in SCD and how the resultant hypercoagulable state can potentiate thrombosis through down-regulation of vascular anticoagulants. Studies of VTE pathogenesis using SCD mouse models may provide insight into the intersection between the cellular and molecular processes involving inflammation and coagulation and help to identify novel mechanistic pathways.
Collapse
|
105
|
Iannucci J, Renehan W, Grammas P. Thrombin, a Mediator of Coagulation, Inflammation, and Neurotoxicity at the Neurovascular Interface: Implications for Alzheimer's Disease. Front Neurosci 2020; 14:762. [PMID: 32792902 PMCID: PMC7393221 DOI: 10.3389/fnins.2020.00762] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022] Open
Abstract
The societal burden of Alzheimer’s disease (AD) is staggering, with current estimates suggesting that 50 million people world-wide have AD. Identification of new therapeutic targets is a critical barrier to the development of disease-modifying therapies. A large body of data implicates vascular pathology and cardiovascular risk factors in the development of AD, indicating that there are likely shared pathological mediators. Inflammation plays a role in both cardiovascular disease and AD, and recent evidence has implicated elements of the coagulation system in the regulation of inflammation. In particular, the multifunctional serine protease thrombin has been found to act as a mediator of vascular dysfunction and inflammation in both the periphery and the central nervous system. In the periphery, thrombin contributes to the development of cardiovascular disease, including atherosclerosis and diabetes, by inducing endothelial dysfunction and related inflammation. In the brain, thrombin has been found to act on endothelial cells of the blood brain barrier, microglia, astrocytes, and neurons in a manner that promotes vascular dysfunction, inflammation, and neurodegeneration. Thrombin is elevated in the AD brain, and thrombin signaling has been linked to both tau and amyloid beta, pathological hallmarks of the disease. In AD mouse models, inhibiting thrombin preserves cognition and endothelial function and reduces neuroinflammation. Evidence linking atrial fibrillation with AD and dementia indicates that anticoagulant therapy may reduce the risk of dementia, with targeting thrombin shown to be particularly effective. It is time for “outside-the-box” thinking about how vascular risk factors, such as atherosclerosis and diabetes, as well as the coagulation and inflammatory pathways interact to promote increased AD risk. In this review, we present evidence that thrombin is a convergence point for AD risk factors and as such that thrombin-based therapeutics could target multiple points of AD pathology, including neurodegeneration, vascular activation, and neuroinflammation. The urgent need for disease-modifying drugs in AD demands new thinking about disease pathogenesis and an exploration of novel drug targets, we propose that thrombin inhibition is an innovative tactic in the therapeutic battle against this devastating disease.
Collapse
Affiliation(s)
- Jaclyn Iannucci
- The George and Anne Ryan Institute for Neuroscience, The University of Rhode Island, Kingston, RI, United States.,Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, RI, United States
| | - William Renehan
- The George and Anne Ryan Institute for Neuroscience, The University of Rhode Island, Kingston, RI, United States
| | - Paula Grammas
- The George and Anne Ryan Institute for Neuroscience, The University of Rhode Island, Kingston, RI, United States.,Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, RI, United States
| |
Collapse
|
106
|
Unruh D, Horbinski C. Beyond thrombosis: the impact of tissue factor signaling in cancer. J Hematol Oncol 2020; 13:93. [PMID: 32665005 PMCID: PMC7362520 DOI: 10.1186/s13045-020-00932-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
Tissue factor (TF) is the primary initiator of the coagulation cascade, though its effects extend well beyond hemostasis. When TF binds to Factor VII, the resulting TF:FVIIa complex can proteolytically cleave transmembrane G protein-coupled protease-activated receptors (PARs). In addition to activating PARs, TF:FVIIa complex can also activate receptor tyrosine kinases (RTKs) and integrins. These signaling pathways are utilized by tumors to increase cell proliferation, angiogenesis, metastasis, and cancer stem-like cell maintenance. Herein, we review in detail the regulation of TF expression, mechanisms of TF signaling, their pathological consequences, and how it is being targeted in experimental cancer therapeutics.
Collapse
Affiliation(s)
- Dusten Unruh
- Department of Neurological Surgery, Northwestern University, 303 East Superior St, Chicago, IL, 60611, USA.
| | - Craig Horbinski
- Department of Neurological Surgery, Northwestern University, 303 East Superior St, Chicago, IL, 60611, USA.,Department of Pathology, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
107
|
Luan YY, Liu Y, Liu XY, Yu BJ, Chen RL, Peng M, Ren D, Li HL, Huang L, Liu Y, Li JX, Feng YW, Wu M. Coronavirus disease 2019 (COVID-19) associated coagulopathy and its impact on outcomes in Shenzhen, China: A retrospective cohort study. Thromb Res 2020; 195:62-68. [PMID: 32659462 PMCID: PMC7347306 DOI: 10.1016/j.thromres.2020.07.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 01/08/2023]
Abstract
Background: Early detection of suspected critical patients infected with coronavirus disease 2019 (COVID-19) is very important for the treatment of patients. This study aimed to investigate the role of COVID-19 associated coagulopathy (CAC) to preview and triage. Methods and Results: A cohort study was designed from government designated COVID-19 treatment center. CAC was defined as International Society on Thrombosis and Haemostasis (ISTH) score ≥2. Data from 117 patients COVID-19 were reviewed on admission. The primary and secondary outcomes were admission to Intensive Care Unit (ICU), the use of mechanical ventilation, vital organ dysfunction, discharges of days 14, 21 and 28 from admission and hospital mortality. Among them, admission to ICU was increased progressively from 16.1% in patients with non-CAC to 42.6% in patients with CAC (P < 0.01). Likely, invasive ventilation and noninvasive ventilation were increased from 1.8%, 21.4% in patients with non-CAC to 21.3%, 52.5% in patients with CAC, respectively (P < 0.01). The incidences of acute hepatic injury and acute respiratory distress syndrome in non-CAC and CAC were 28.6% vs. 62.3%, 8.9% vs. 27.9%, respectively (P < 0.01). The discharges of days 14, 21 and 28 from admission were more in non-CAC than those of CAC (P < 0.05). Multiple logistic regression results showed that ISTH score ≥2 was obviously associated with the admission to ICU (OR 4.07, 95% CI 1.47–11.25 P = 0.007) and the use of mechanical ventilation (OR 5.54, 95% CI 2.01–15.28 P = 0.001) in patients with COVID-19. Conclusion: All results show ISTH score ≥2 is an important indicator to preview and triage for COVID-19 patients. COVID-19 patients with ISTH score ≥ 2 on admission need more admission to ICU and mechanical ventilation. The incidence is high in acute hepatic injury and acute respiratory distress syndrome in COVID-19 patients with ISTH score ≥ 2. The discharges of 14 days, 21 days and 28 days from admission were less in COVID-19 patients with ISTH score ≥ 2. ISTH score ≥ 2 is an important indicator to preview and triage for COVID-19 patients on early admission.
Collapse
Affiliation(s)
- Ying-Yi Luan
- Department of Critical Care Medicine and Infection Prevention and Control, The Second People's Hospital of Shenzhen & First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, People's Republic of China
| | - Yan Liu
- Department of Critical Care Medicine and Infection Prevention and Control, The Second People's Hospital of Shenzhen & First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, People's Republic of China
| | - Xue-Yan Liu
- Department of Critical Care Medicine, Shenzhen People's Hospital, Shenzhen, People's Republic of China
| | - Bao-Jun Yu
- Department of Critical Care Medicine, Bao'an People's Hospital, Shenzhen, People's Republic of China
| | - Rong-Ling Chen
- Department of Critical Care Medicine, Central People's Hospital of Longgang, Shenzhen, People's Republic of China
| | - Mian Peng
- Department of Critical Care Medicine, the Third Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, People's Republic of China
| | - Di Ren
- Department of Critical Care Medicine and Infection Prevention and Control, The Second People's Hospital of Shenzhen & First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, People's Republic of China
| | - Hao-Li Li
- Department of Critical Care Medicine and Infection Prevention and Control, The Second People's Hospital of Shenzhen & First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, People's Republic of China
| | - Lei Huang
- Department of Critical Care Medicine, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China
| | - Yong Liu
- Department of Critical Care Medicine, Shenzhen Hospital of Southern Medical University, Shenzhen, People's Republic of China
| | - Jin-Xiu Li
- Department of Critical Care Medicine, The Third People's Hospital of Shenzhen, Shenzhen, People's Republic of China
| | - Yong-Wen Feng
- Department of Critical Care Medicine and Infection Prevention and Control, The Second People's Hospital of Shenzhen & First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, People's Republic of China.
| | - Ming Wu
- Department of Critical Care Medicine and Infection Prevention and Control, The Second People's Hospital of Shenzhen & First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, People's Republic of China.
| |
Collapse
|
108
|
Zhang Y, He L, Chen H, Lu S, Xiong Y, Liu J, Zheng Y, Wang S, Liu L. Manifestations of blood coagulation and its relation to clinical outcomes in severe COVID-19 patients: Retrospective analysis. Int J Lab Hematol 2020; 42:766-772. [PMID: 32592539 PMCID: PMC7361562 DOI: 10.1111/ijlh.13273] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 02/03/2023]
Abstract
Introduction Characteristics of blood coagulation and its relation to clinical outcomes in COVID‐19 patients are still rarely reported. We aimed to investigate the blood coagulation function and its influences on clinical outcomes of patients with syndrome coronavirus 2 (SARS‐CoV‐2) infection. Methods A total of 71 severe patients with confirmed SARS‐CoV‐2 infection who were treated in Wuhan First Hospital from February 12 to March 20, 2020, were enrolled. The blood coagulation data in these patients and in 61 healthy controls were collected. The patients with COVID‐19 were divided into two groups: the aggravated group and the nonaggravated group, respectively, basing on whether the patients' conditions turned to critically ill or not after admission. Results Compared with healthy controls, patients with COVID‐19 had significant performances with coagulation dysfunction, including dramatically elevated values of FIB, PT, APTT, INR, FDP, and D‐Dimers but markedly reduced AT value (P < .05). Importantly, more noteworthy coagulation disorders similar to the differences between patients and controls were found in the aggravated patients with conditions deterioration after admission than those in the nonaggravated patients without conditions deterioration (P < .05). Moreover, the aggravated patients possessed a longer hospital stay and a higher mortality compared with the nonaggravated patients (P < .001). The coagulation parameters of COVID‐19 patients were widely and closely related to the indexes of liver function and inflammation (P < .05), indicating the coagulation dysfunction of these patients may be caused by liver injury and inflammatory storm. Conclusion Severe patients with SARS‐CoV‐2 infection often possess coagulation dysfunction on admission. A certain correlation exists in coagulation disorder and adverse clinical outcome among severe COVID‐19 patients.
Collapse
Affiliation(s)
- Yanhong Zhang
- Department of Transfusion, Wuhan First Hospital, Wuhan, China
| | - Liwei He
- Department of Transfusion, Wuhan First Hospital, Wuhan, China
| | - Huixin Chen
- Department of Transfusion, Wuhan First Hospital, Wuhan, China
| | - Shuangyan Lu
- Department of Transfusion, Wuhan First Hospital, Wuhan, China
| | - Yongfen Xiong
- Department of Transfusion, Wuhan First Hospital, Wuhan, China
| | - Juan Liu
- Department of Transfusion, Wuhan First Hospital, Wuhan, China
| | - Yao Zheng
- Department of Transfusion, Wuhan First Hospital, Wuhan, China
| | - Shun Wang
- Department of Transfusion, Wuhan First Hospital, Wuhan, China
| | - Lei Liu
- Department of Transfusion, General Hospital of Central Theater Command of the PLA, Wuhan, China
| |
Collapse
|
109
|
Association Study of Coronary Artery Disease-Associated Genome-Wide Significant SNPs with Coronary Stenosis in Pakistani Population. DISEASE MARKERS 2020; 2020:9738567. [PMID: 32685059 PMCID: PMC7336215 DOI: 10.1155/2020/9738567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 01/17/2020] [Accepted: 01/23/2020] [Indexed: 11/19/2022]
Abstract
Genome-wide association studies (GWAS) of coronary artery disease (CAD) have revealed multiple genetic risk loci. We assessed the association of 47 genome-wide significant single-nucleotide polymorphisms (SNPs) at 43 CAD loci with coronary stenosis in a Pakistani sample comprising 663 clinically ascertained and angiographically confirmed cases. Genotypes were determined using the iPLEX Gold technology. All statistical analyses were performed using R software. Linkage disequilibrium (LD) between significant SNPs was determined using SNAP web portal, and functional annotation of SNPs was performed using the RegulomeDB and Genotype-Tissue Expression (GTEx) databases. Genotyping comparison was made between cases with severe stenosis (≥70%) and mild/minimal stenosis (<30%). Five SNPs demonstrated significant associations: three with additive genetic models PLG/rs4252120 (p = 0.0078), KIAA1462/rs2505083 (p = 0.005), and SLC22A3/rs2048327 (p = 0.045) and two with recessive models SORT1/rs602633 (p = 0.005) and UBE2Z/rs46522 (p = 0.03). PLG/rs4252120 was in LD with two functional PLG variants (rs4252126 and rs4252135), each with a RegulomeDB score of 1f. Likewise, KIAA1462/rs2505083 was in LD with a functional SNP, KIAA1462/rs3739998, having a RegulomeDB score of 2b. In the GTEx database, KIAA1462/rs2505083, SLC22A3/rs2048327, SORT1/rs602633, and UBE2Z/rs46522 SNPs were found to be expression quantitative trait loci (eQTLs) in CAD-associated tissues. In conclusion, five genome-wide significant SNPs previously reported in European GWAS were replicated in the Pakistani sample. Further association studies on larger non-European populations are needed to understand the worldwide genetic architecture of CAD.
Collapse
|
110
|
Fabregues F, Peñarrubia J. Assisted reproduction and thromboembolic risk in the COVID-19 pandemic. Reprod Biomed Online 2020; 41:361-364. [PMID: 32660814 PMCID: PMC7316047 DOI: 10.1016/j.rbmo.2020.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/22/2022]
Abstract
The COVID-19 pandemic has significantly increased mortality in many countries, with the number of infected cases increasing exponentially worldwide. One of the main determining factors of the poor prognosis in these patients is the development of coagulopathy. Moreover, it is well known that assisted reproductive technology procedures confer a risk of thromboembolic complications. This commentary analyses specific aspects coexisting between the thrombotic risk described during virus infection and that reported in the context of assisted reproduction treatments. Based on known pathophysiological aspects of virus infection and of ovarian stimulation, there are common elements that deserve to be taken into account. In the present context, any risk of hyperstimulation should be avoided. Gonadotrophin-releasing hormone agonist triggering should be mandatory in high-responder patients and/or those with COVID-19 infection. In both cases, the cycle should be segmented. A proposal is made for the use of prophylactic low molecular weight heparin not only in those cases in which oocyte retrieval has been performed, but also in those in which cancellation has been decided. In addition, endometrial preparation for frozen-thawed embryo transfers should use the transdermal route in order to minimize the higher thrombotic risk associated with the oral route.
Collapse
Affiliation(s)
- Francesc Fabregues
- Hospital Clinic, Institut de Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | | |
Collapse
|
111
|
Wehbe Z, Hammoud S, Soudani N, Zaraket H, El-Yazbi A, Eid AH. Molecular Insights Into SARS COV-2 Interaction With Cardiovascular Disease: Role of RAAS and MAPK Signaling. Front Pharmacol 2020; 11:836. [PMID: 32581799 PMCID: PMC7283382 DOI: 10.3389/fphar.2020.00836] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/21/2020] [Indexed: 01/08/2023] Open
Abstract
In December 2019, reports of viral pneumonia came out of Wuhan city in Hubei province in China. In early 2020, the causative agent was identified as a novel coronavirus (CoV) sharing some sequence similarity with SARS-CoV that caused the severe acute respiratory syndrome outbreak in 2002. The new virus, named SARS-CoV-2, is highly contagious and spread rapidly across the globe causing a pandemic of what became known as coronavirus infectious disease 2019 (COVID-19). Early observations indicated that cardiovascular disease (CVD) patients are at higher risk of progression to severe respiratory manifestations of COVID-19 including acute respiratory distress syndrome. Moreover, further observations demonstrated that SARS-CoV-2 infection can induce de novo cardiac and vascular damage in previously healthy individuals. Here, we offer an overview of the proposed molecular pathways shared by the pathogenesis of CVD and SARS-CoV infections in order to provide a mechanistic framework for the observed interrelation. We examine the crosstalk between the renin-angiotensin-aldosterone system and mitogen activated kinase pathways that potentially links cardiovascular predisposition and/or outcome to SARS-CoV-2 infection. Finally, we summarize the possible effect of currently available drugs with known cardiovascular benefit on these pathways and speculate on their potential utility in mitigating cardiovascular risk and morbidity in COVID-19 patients.
Collapse
Affiliation(s)
- Zena Wehbe
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Safaa Hammoud
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut, Lebanon
| | - Nadia Soudani
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon
| | - Hassan Zaraket
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon
| | - Ahmed El-Yazbi
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ali H Eid
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon.,Department of Biomedical Sciences, College of Health, Qatar University, Doha, Qatar
| |
Collapse
|
112
|
Hemokinin-1 Gene Expression Is Upregulated in Trigeminal Ganglia in an Inflammatory Orofacial Pain Model: Potential Role in Peripheral Sensitization. Int J Mol Sci 2020; 21:ijms21082938. [PMID: 32331300 PMCID: PMC7215309 DOI: 10.3390/ijms21082938] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/12/2020] [Accepted: 04/19/2020] [Indexed: 12/19/2022] Open
Abstract
A large percentage of primary sensory neurons in the trigeminal ganglia (TG) contain neuropeptides such as tachykinins or calcitonin gene-related peptide. Neuropeptides released from the central terminals of primary afferents sensitize the secondary nociceptive neurons in the trigeminal nucleus caudalis (TNC), but also activate glial cells contributing to neuroinflammation and consequent sensitization in chronic orofacial pain and migraine. In the present study, we investigated the newest member of the tachykinin family, hemokinin-1 (HK-1) encoded by the Tac4 gene in the trigeminal system. HK-1 had been shown to participate in inflammation and hyperalgesia in various models, but its role has not been investigated in orofacial pain or headache. In the complete Freund’s adjuvant (CFA)-induced inflammatory orofacial pain model, we showed that Tac4 expression increased in the TG in response to inflammation. Duration-dependent Tac4 upregulation was associated with the extent of the facial allodynia. Tac4 was detected in both TG neurons and satellite glial cells (SGC) by the ultrasensitive RNAscope in situ hybridization. We also compared gene expression changes of selected neuronal and glial sensitization and neuroinflammation markers between wild-type and Tac4-deficient (Tac4-/-) mice. Expression of the SGC/astrocyte marker in the TG and TNC was significantly lower in intact and saline/CFA-treated Tac4-/- mice. The procedural stress-related increase of the SGC/astrocyte marker was also strongly attenuated in Tac4-/- mice. Analysis of TG samples with a mouse neuroinflammation panel of 770 genes revealed that regulation of microglia and cytotoxic cell-related genes were significantly different in saline-treated Tac4-/- mice compared to their wild-types. It is concluded that HK-1 may participate in neuron-glia interactions both under physiological and inflammatory conditions and mediate pain in the trigeminal system.
Collapse
|
113
|
Omentin-1 Ameliorated Free Fatty Acid-Induced Impairment in Proliferation, Migration, and Inflammatory States of HUVECs. Cardiol Res Pract 2020; 2020:3054379. [PMID: 32300482 PMCID: PMC7140148 DOI: 10.1155/2020/3054379] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/20/2020] [Accepted: 02/28/2020] [Indexed: 02/05/2023] Open
Abstract
Objectives Endothelial cell injury is a critical pathological change during the development of atherosclerosis. Here, we explored the effect of omentin-1 on free fatty acid- (FFA-) induced endothelial cell injury. Methods An FFA-induced endothelial cell injury model was established to investigate the role of omentin-1 in this process. Cell proliferation was analyzed with the Cell Counting Kit assay and flow cytometry. Scratch and transwell assays were used to evaluate cell migration. Factors secreted by endothelial cells after injury were detected by western blotting, reverse-transcription quantitative polymerase chain reaction, and cellular fluorescence assay. Results Omentin-1 rescued the FFA-induced impaired proliferation and migration capabilities of human umbilical vein endothelial cells (HUVECs). It decreased the number of THP-1 cells attached to HUVECs in response to injury and inhibited the FFA-induced proinflammatory state of HUVECs. Conclusion Omentin-1 could partly ameliorate FFA-induced endothelial cell injury.
Collapse
|
114
|
Vermeulen JG, Burt F, van Heerden E, du Preez LL, Meiring M. Characterization of the inhibition mechanism of a tissuefactor inhibiting single-chain variable fragment: a combined computational approach. J Mol Model 2020; 26:87. [PMID: 32219568 DOI: 10.1007/s00894-020-4350-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/11/2020] [Indexed: 10/24/2022]
Abstract
The interaction of a single-chain variable fragment (scFv) directed against human tissue factor (TF) was predicted using an in silico approach with the aim to establish a most likely mechanism of inhibition. The structure of the TF inhibiting scFv (TFI-scFv) was predicted using homology modeling, and complementarity-determining regions (CDRs) were identified. The CDR was utilized to direct molecular docking between the homology model of TFI-scFv and the crystal structure of the extracellular domains of human tissue factor. The rigid-body docking model was refined by means of molecular dynamic (MD) simulations, and the most prevalent cluster was identified. MD simulations predicted improved interaction between TFI-scFv and TF and propose the formation of stable complex for duration of the 600-ns simulation. Analysis of the refined docking model suggests that the interactions between TFI-scFv would interfere with the allosterical activation of coagulation factor VII (FVII) by TF. This interaction would prevent the formation of the active TF:VIIa complex and in so doing inhibit the initiation phase of blood coagulation as observers during in vitro testing.
Collapse
Affiliation(s)
- Jan-G Vermeulen
- Department of Microbial, Biochemical and Food Biotechnology, Faculty of Agricultural Sciences, University of the Free State, Bloemfontein, South Africa. .,Department of Haematology and Cell Biology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa.
| | - Felicity Burt
- Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa.,National Health Laboratory Service, Universitas, Bloemfontein, South Africa
| | - Esta van Heerden
- Department of Microbial, Biochemical and Food Biotechnology, Faculty of Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Louis Lategan du Preez
- Department of Microbial, Biochemical and Food Biotechnology, Faculty of Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Muriel Meiring
- Department of Haematology and Cell Biology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa.,National Health Laboratory Service, Universitas, Bloemfontein, South Africa
| |
Collapse
|
115
|
Mei H, Hu Y. [Characteristics, causes, diagnosis and treatment of coagulation dysfunction in patients with COVID-19]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2020; 41:185-191. [PMID: 32133825 PMCID: PMC7357924 DOI: 10.3760/cma.j.issn.0253-2727.2020.0002] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Indexed: 01/14/2023]
Affiliation(s)
- H Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, The Thrombosis and Hemostasis Clinical Medical Research Center of Hubei Province, Wuhan 430022, China
| | - Y Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, The Thrombosis and Hemostasis Clinical Medical Research Center of Hubei Province, Wuhan 430022, China
| |
Collapse
|
116
|
Qin Y, Long L, Huang Q. Extracellular vesicles in toxicological studies: key roles in communication between environmental stress and adverse outcomes. J Appl Toxicol 2020; 40:1166-1182. [PMID: 32125006 DOI: 10.1002/jat.3963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/15/2020] [Accepted: 02/15/2020] [Indexed: 12/11/2022]
Abstract
External stressors, especially environmental toxicants can disturb biological homeostasis and thus lead to adverse health effects. However, there is limited understanding of how cells directly exposed to stressors transmit the signals to cells indirectly in contact with stressors. Extracellular vesicles (EVs) are receiving increasing attention as signal transductors between various types of cells in organisms. Cargo in EVs, including RNAs, proteins, lipids, and other signal molecules can be transferred between cells and become critical determining factors of intercellular communication. EVs can be a powerful mediator of environmental stimuli. It has been shown that external stressors reshape the secretion of EVs, modify the composition of EVs, and thus influence the mediating function of EVs. These abnormal EVs can lead to dysfunction of recipient cells, and even the pathogenesis of diseases. In this review, we first summarized current knowledge about the responses of EVs to external stimuli, including chemicals and chemical mixtures. Then we explained how these altered EVs regulate signal pathways in recipient cells, thus mediating physio-pathological responses in detail. The most up-to-date evidence from molecular, cellular, animal and human levels was synthesized to systematically address the mediating roles of EVs. EVs can be regarded as a bridge to link external stressors and internal response. Further toxicological and molecular epidemiological studies are expected to provide further insight into the roles of EVs in toxicology. The gaps in the engulfment of toxicants into EVs are listed as the priority to be solved in future studies.
Collapse
Affiliation(s)
- Yifei Qin
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Li Long
- Health Management Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiansheng Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| |
Collapse
|
117
|
Zeng Y, He X, Jiang W, Kou J, Yu B. Ten Representative Saponins on Tissue Factor Expression in Human Monocytes: Structure–Activity Relationships and Molecular Docking. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20913684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Saponins have significant bioactivities in treating cardiovascular disease. Whereas there is a lack of in-depth knowledge about how saponins prevent cardiovascular disease. Tissue factor (TF) is the major initiator of the coagulation cascade and plays an important role in hemostasis and thrombosis. However structure–activity relationships (SARs) of saponins inhibiting TF activity have not been discussed in detail at present. To further clarify the relationships between saponins and TF, in this study, 10 representative saponins were selected to study the inhibitory effect on TF procoagulant activity of monocytes by an improved chromogenic substrate method, and the possible SARs were preliminarily analyzed. Furthermore, molecular docking analysis suggested that 4 representative saponins had a good affinity with TF/FVIIa. In addition, a representative saponin, ruscogenin, decreased both messenger ribonucleic acid and protein levels of TF in human monocytes partly due to its downregulation of nuclear factor kappa-light-chain-enhancer of activated B cells and c-Jun N-terminal kinase pathways. In conclusion, this study provides further explanation for the cardiovascular protection of saponins, and the analysis of SARs between inhibiting TF activity and saponins will be helpful to explore the therapeutic TF inhibitors.
Collapse
Affiliation(s)
- Yongjiang Zeng
- Department of Pharmacy, School of Pharmaceutical Sciences, Guizhou University, Guiyang, P.R. China
| | - Xuhua He
- Department of Pharmacy, School of Pharmaceutical Sciences, Guizhou University, Guiyang, P.R. China
| | - Wenwen Jiang
- Department of Pharmacy, School of Pharmaceutical Sciences, Guizhou University, Guiyang, P.R. China
| | - Junping Kou
- Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, P.R. China
- Department of Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Boyang Yu
- Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, P.R. China
- Department of Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
118
|
Dominick L, Midgley N, Swart LM, Sprake D, Deshpande G, Laher I, Joseph D, Teer E, Essop MF. HIV-related cardiovascular diseases: the search for a unifying hypothesis. Am J Physiol Heart Circ Physiol 2020; 318:H731-H746. [PMID: 32083970 DOI: 10.1152/ajpheart.00549.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although the extensive rollout of antiretroviral (ARV) therapy resulted in a longer life expectancy for people living with human immunodeficiency virus (PLHIV), such individuals display a relatively increased occurrence of cardiovascular diseases (CVD). This health challenge stimulated significant research interests in the field, leading to an improved understanding of both lifestyle-related risk factors and the underlying mechanisms of CVD onset in PLHIV. However, despite such progress, the precise role of various risk factors and mechanisms underlying the development of HIV-mediated CVD still remains relatively poorly understood. Therefore, we review CVD onset in PLHIV and focus on 1) the spectrum of cardiovascular complications that typically manifest in such persons and 2) underlying mechanisms that are implicated in this process. Here, the contributions of such factors and modulators and underlying mechanisms are considered in a holistic and integrative manner to generate a unifying hypothesis that includes identification of the core pathways mediating CVD onset. The review focuses on the sub-Saharan African context, as there are relatively high numbers of PLHIV residing within this region, indicating that the greater CVD risk will increasingly threaten the well-being and health of its citizens. It is our opinion that such an approach helps point the way for future research efforts to improve treatment strategies and/or lifestyle-related modifications for PLHIV.
Collapse
Affiliation(s)
- Leanne Dominick
- Centre for Cardio-metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Natasha Midgley
- Centre for Cardio-metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Lisa-Mari Swart
- Centre for Cardio-metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Devon Sprake
- Centre for Cardio-metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Gaurang Deshpande
- Centre for Cardio-metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Ismail Laher
- Centre for Cardio-metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa.,Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Danzil Joseph
- Centre for Cardio-metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Eman Teer
- Centre for Cardio-metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - M Faadiel Essop
- Centre for Cardio-metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
119
|
Witkowski M, Witkowski M, Saffarzadeh M, Friebel J, Tabaraie T, Ta Bao L, Chakraborty A, Dörner A, Stratmann B, Tschoepe D, Winter SJ, Krueger A, Ruf W, Landmesser U, Rauch U. Vascular miR-181b controls tissue factor-dependent thrombogenicity and inflammation in type 2 diabetes. Cardiovasc Diabetol 2020; 19:20. [PMID: 32066445 PMCID: PMC7027062 DOI: 10.1186/s12933-020-0993-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/26/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Diabetes mellitus is characterized by chronic vascular inflammation leading to pathological expression of the thrombogenic full length (fl) tissue factor (TF) and its isoform alternatively-spliced (as) TF. Blood-borne TF promotes factor (F) Xa generation resulting in a pro-thrombotic state and cardiovascular complications. MicroRNA (miR)s impact gene expression on the post-transcriptional level and contribute to vascular homeostasis. Their distinct role in the control of the diabetes-related procoagulant state remains poorly understood. METHODS In a cohort of patients with poorly controlled type 2 diabetes (n = 46) plasma levels of miR-181b were correlated with TF pathway activity and markers for vascular inflammation. In vitro, human microvascular endothelial cells (HMEC)-1 and human monocytes (THP-1) were transfected with miR-181b or anti-miR-181b and exposed to tumor necrosis factor (TNF) α or lipopolysaccharides (LPS). Expression of TF isoforms, vascular adhesion molecule (VCAM) 1 and nuclear factor (NF) κB nuclear translocation was assessed. Moreover, aortas, spleen, plasma, and bone marrow-derived macrophage (BMDM)s of mice carrying a deletion of the first miR-181b locus were analyzed with respect to TF expression and activity. RESULTS In patients with type 2 diabetes, plasma miR-181b negatively correlated with the procoagulant state as evidenced by TF protein, TF activity, D-dimer levels as well as markers for vascular inflammation. In HMEC-1, miR-181b abrogated TNFα-induced expression of flTF, asTF, and VCAM1. These results were validated using the anti-miR-181b. Mechanistically, we confirmed a miR-181b-mediated inhibition of importin-α3 (KPNA4) leading to reduced nuclear translocation of the TF transcription factor NFκB. In THP-1, miR-181b reduced both TF isoforms and FXa generation in response to LPS due to targeting phosphatase and tensin homolog (PTEN), a principal inducer for TF in monocytes. Moreover, in miR-181-/- animals, we found that reduced levels of miR-181b were accompanied by increased TF, VCAM1, and KPNA4 expression in aortic tissue as well as increased TF and PTEN expression in spleen. Finally, BMDMs of miR-181-/- mice showed increased TF expression and FXa generation upon stimulation with LPS. CONCLUSIONS miR-181b epigenetically controls the procoagulant state in diabetes. Reduced miR-181b levels contribute to increased thrombogenicity and may help to identify individuals at particular risk for thrombosis.
Collapse
Affiliation(s)
- Marco Witkowski
- Charité Centrum 11, Department of Cardiology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Mario Witkowski
- Research Centre Immunology and Institute of Medical Microbiology and Hygiene, University of Mainz Medical Centre, Mainz, Germany
| | - Mona Saffarzadeh
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Julian Friebel
- Charité Centrum 11, Department of Cardiology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Termeh Tabaraie
- Charité Centrum 11, Department of Cardiology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Loc Ta Bao
- Charité Centrum 11, Department of Cardiology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Aritra Chakraborty
- Charité Centrum 11, Department of Cardiology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Andrea Dörner
- Charité Centrum 11, Department of Cardiology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Bernd Stratmann
- Heart and Diabetes Center NRW, Ruhr University of Bochum, Bad Oeynhausen, Germany
| | - Diethelm Tschoepe
- Heart and Diabetes Center NRW, Ruhr University of Bochum, Bad Oeynhausen, Germany
| | - Samantha J Winter
- Institute for Molecular Medicine, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Andreas Krueger
- Institute for Molecular Medicine, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Ulf Landmesser
- Charité Centrum 11, Department of Cardiology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Ursula Rauch
- Charité Centrum 11, Department of Cardiology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany.
| |
Collapse
|
120
|
Abstract
Guided by organ-specific signals in both development and disease response, the heterogeneous endothelial cell population is a dynamic member of the vasculature. Functioning as the gatekeeper to fluid, inflammatory cells, oxygen, and nutrients, endothelial cell communication with its local environment is critical. Impairment of endothelial cell-cell communication not only disrupts this signaling process, but also contributes to pathologic disease progression. Expanding our understanding of those processes that mediate endothelial cell-cell communication is an important step in the approach to treatment of disease processes.
Collapse
Affiliation(s)
- Daniel D Lee
- Indiana University School of Medicine, 1234 Notre Dame Avenue, South Bend, IN 46617, USA
| | - Margaret A Schwarz
- Indiana University School of Medicine, 1234 Notre Dame Avenue, South Bend, IN 46617, USA.
| |
Collapse
|
121
|
Dirofilaria immitis possesses molecules with anticoagulant properties in its excretory/secretory antigens. Parasitology 2020; 147:559-565. [DOI: 10.1017/s0031182020000104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractDirofilaria immitis is a parasitic nematode that survives in the circulatory system of suitable hosts for many years, causing the most severe thromboembolisms when simultaneous death of adult worms occurs. The two main mechanisms responsible for thrombus formation in mammals are the activation and aggregation of platelets and the generation of fibrin through the coagulation cascade. The aim of this work was to study the anticoagulant potential of excretory/secretory antigens from D. immitis adult worms (DiES) on the coagulation cascade of the host. Anticoagulant and inhibition assays respectively showed that DiES partially alter the coagulation cascade of the host and reduce the activity of the coagulation factor Xa, a key enzyme in the coagulation process. In addition, a D. immitis protein was identified by its similarity to the homologous serpin 6 from Brugia malayi as a possible candidate to form an inhibitory complex with FXa by sodium dodecyl sulfate polyacrylamide gel electrophoresis and mass spectrometry. These results indicate that D. immitis could use the anticoagulant properties of its excretory/secretory antigens to control the formation of blood clots in its immediate intravascular habitat as a survival mechanism.
Collapse
|
122
|
Visser MJ, Pretorius E. Atomic Force Microscopy: The Characterisation of Amyloid Protein Structure in Pathology. Curr Top Med Chem 2020; 19:2958-2973. [DOI: 10.2174/1568026619666191121143240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 12/28/2022]
Abstract
:
Proteins are versatile macromolecules that perform a variety of functions and participate in
virtually all cellular processes. The functionality of a protein greatly depends on its structure and alterations
may result in the development of diseases. Most well-known of these are protein misfolding disorders,
which include Alzheimer’s and Parkinson’s diseases as well as type 2 diabetes mellitus, where
soluble proteins transition into insoluble amyloid fibrils. Atomic Force Microscopy (AFM) is capable of
providing a topographical map of the protein and/or its aggregates, as well as probing the nanomechanical
properties of a sample. Moreover, AFM requires relatively simple sample preparation, which presents
the possibility of combining this technique with other research modalities, such as confocal laser
scanning microscopy, Raman spectroscopy and stimulated emission depletion microscopy. In this review,
the basic principles of AFM are discussed, followed by a brief overview of how it has been applied
in biological research. Finally, we focus specifically on its use as a characterisation method to
study protein structure at the nanoscale in pathophysiological conditions, considering both molecules
implicated in disease pathogenesis and the plasma protein fibrinogen. In conclusion, AFM is a userfriendly
tool that supplies multi-parametric data, rendering it a most valuable technique.
Collapse
Affiliation(s)
- Maria J.E. Visser
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
| |
Collapse
|
123
|
Xia Q, Zhang X, Chen Q, Chen X, Teng J, Wang C, Li M, Fan L. Down-regulation of tissue factor inhibits invasion and metastasis of non-small cell lung cancer. J Cancer 2020; 11:1195-1202. [PMID: 31956365 PMCID: PMC6959078 DOI: 10.7150/jca.37321] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/03/2019] [Indexed: 02/05/2023] Open
Abstract
Objective: Tissue factor (TF) is clinically identified as a marker for the detection of various types of cancer as well as the prediction of prognosis for cancer patients. This present study aims to explore the possibility and feasibility to use plasma TF as a biomarker for the prediction of prognosis of patients with non-small cell lung cancer (NSCLC). Methods: A total of 100 patients with NSCLC at stage I to IV was included in the study, in whom the expression of plasma TF was detected. The Cox proportional-hazards regression model was then used to analyze the collected information, attempting to identify how patients' overall survival (OS) was associated with the expression of plasma TF. To verify the function of TF in invasion and metastasis, the expression of plasma TF was downregulated by SiRNA both in vivo and in vitro. Results: The expression of plasma TF in NSCLC patients was related to the diagnosis age of the patient. It was noted that patients with high TF expression levels tended to have worse OS performance, which implied that TF could be used as a marker for patients with stage I-IV NSCLC (HR = 2.030, 95% CI = 1.21-3.398, P = 0.007). TF down-regulation inhibited the growth of tumor in vitro as well as the metastasis and invasion of NSCLC cells in vivo. Conclusion: Both in vivo and in vitro, the invasion and migration of NSCLC cells are suppressed by TF knockdown. TF has the potential to become an effective biomarker for the prediction of prognosis of patients with stage I-IV NSCLC.
Collapse
Affiliation(s)
- Qing Xia
- Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, China.,Institute of Energy Metabolism and Health, Tongji University School of Medicine, Shanghai, China.,Institute of Development and Research of Holistic Integrative Medicine, Tongji University, Shanghai, China
| | - Xu Zhang
- Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, China.,Institute of Energy Metabolism and Health, Tongji University School of Medicine, Shanghai, China.,Institute of Development and Research of Holistic Integrative Medicine, Tongji University, Shanghai, China
| | - Qianqian Chen
- Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, China.,Institute of Energy Metabolism and Health, Tongji University School of Medicine, Shanghai, China.,Institute of Development and Research of Holistic Integrative Medicine, Tongji University, Shanghai, China
| | - Xiangyun Chen
- Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, China.,Institute of Energy Metabolism and Health, Tongji University School of Medicine, Shanghai, China.,Institute of Development and Research of Holistic Integrative Medicine, Tongji University, Shanghai, China
| | - Junliang Teng
- School of information management and engineering, Shanghai University of Finance and Economics, Shanghai, China
| | - Changhui Wang
- Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, China
| | - Ming Li
- Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, China.,Institute of Energy Metabolism and Health, Tongji University School of Medicine, Shanghai, China.,Institute of Development and Research of Holistic Integrative Medicine, Tongji University, Shanghai, China
| | - Lihong Fan
- Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, China.,Institute of Energy Metabolism and Health, Tongji University School of Medicine, Shanghai, China.,Institute of Development and Research of Holistic Integrative Medicine, Tongji University, Shanghai, China
| |
Collapse
|
124
|
Thrombin Aptamer-Modified Metal-Organic Framework Nanoparticles: Functional Nanostructures for Sensing Thrombin and the Triggered Controlled Release of Anti-Blood Clotting Drugs. SENSORS 2019; 19:s19235260. [PMID: 31795428 PMCID: PMC6929137 DOI: 10.3390/s19235260] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/14/2019] [Accepted: 11/23/2019] [Indexed: 12/11/2022]
Abstract
This paper features the synthesis of thrombin-responsive, nucleic acid-gated, UiO-68 metal-organic framework nanoparticles (NMOFs) loaded with the drug Apixaban or rhodamine 6G as a drug model. Apixaban acts as an inhibitor of blood clots formation. The loads in the NMOFs are locked by duplex nucleic acids that are composed of anchor nucleic acids linked to the NMOFs that are hybridized with the anti-thrombin aptamer. In the presence of thrombin, the duplex gating units are separated through the formation of thrombin-aptamer complexes. The unlocking of the NMOFs releases the drug (or the drug model). The release of the drug is controlled by the concentration of thrombin. The Apixaban-loaded NMOFs revealed improved inhibition, as compared to free Apixaban, toward blood clot formation. This is reflected by their longer time intervals for inducing clot formation and the decreased doses of the drug required to affect clots formation. The beneficial effects of the Apixaban-loaded NMOFs are attributed to the slow-release mechanism induced by the NMOFs carriers, where the inhibition of factor Xa in the blood clotting cycle retards the formation of thrombin, which slows down the release of the drug.
Collapse
|
125
|
Ding L, Zhang C, Liu Z, Huang Q, Zhang Y, Li S, Nie G, Tang H, Wang Y. Metabonomic Investigation of Biological Effects of a New Vessel Target Protein tTF-pHLIP in a Mouse Model. J Proteome Res 2019; 19:238-247. [DOI: 10.1021/acs.jproteome.9b00507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Laifeng Ding
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 10049, P.R. China
| | - Congcong Zhang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Laboratory of Metabonomics and Systems Biology, Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Zhigang Liu
- Division of Integrative Systems Medicine and Digestive Disease, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Qingxia Huang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Laboratory of Metabonomics and Systems Biology, Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Yinlong Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Suping Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Laboratory of Metabonomics and Systems Biology, Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Yulan Wang
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, 639798 Singapore
| |
Collapse
|
126
|
Ferroni L, Gardin C, Dalla Paola L, Campo G, Cimaglia P, Bellin G, Pinton P, Zavan B. Characterization of Dermal Stem Cells of Diabetic Patients. Cells 2019; 8:cells8070729. [PMID: 31315286 PMCID: PMC6678145 DOI: 10.3390/cells8070729] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/26/2022] Open
Abstract
Diabetic foot ulcers (DFUs) are lesions that involve loss of epithelium and dermis, sometimes involving deep structures, compartments, and bones. The aim of this work is to investigate the innate regenerative properties of dermal tissue around ulcers by the identification and analysis of resident dermal stem cells (DSCs). Dermal samples were taken at the edge of DFUs, and genes related to the wound healing process were analyzed by the real-time PCR array. The DSCs were isolated and analyzed by immunofluorescence, flow cytometry, and real-time PCR array to define their stemness properties. The gene expression profile of dermal tissue showed a dysregulation in growth factors, metalloproteinases, collagens, and integrins involved in the wound healing process. In the basal condition, diabetic DSCs adhered on the culture plate with spindle-shaped fibroblast-like morphology. They were positive to the mesenchymal stem cells markers CD44, CD73, CD90, and CD105, but negative for the hematopoietic markers CD14, CD34, CD45, and HLA-DR. In diabetic DSCs, the transcription of genes related to self-renewal and cell division were equivalent to that in normal DSCs. However, the expression of CCNA2, CCND2, CDK1, ALDH1A1, and ABCG2 was downregulated compared with that of normal DSCs. These genes are also related to cell cycle progression and stem cell maintenance. Further investigation will improve the understanding of the molecular mechanisms by which these genes together govern cell proliferation, revealing new strategies useful for future treatment of DFUs.
Collapse
Affiliation(s)
- Letizia Ferroni
- Maria Cecilia Hospital, GVM Care & Research, 48,033 Cotignola (RA), Italy
- University of Ferrara, Department of Medical Sciences, via Fossato di Mortara 70, 44,121 Ferrara, Italy
| | - Chiara Gardin
- Maria Cecilia Hospital, GVM Care & Research, 48,033 Cotignola (RA), Italy
- University of Ferrara, Department of Medical Sciences, via Fossato di Mortara 70, 44,121 Ferrara, Italy
| | - Luca Dalla Paola
- Maria Cecilia Hospital, GVM Care & Research, 48,033 Cotignola (RA), Italy
| | - Gianluca Campo
- Maria Cecilia Hospital, GVM Care & Research, 48,033 Cotignola (RA), Italy
- University of Ferrara, Department of Medical Sciences, via Fossato di Mortara 70, 44,121 Ferrara, Italy
| | - Paolo Cimaglia
- Maria Cecilia Hospital, GVM Care & Research, 48,033 Cotignola (RA), Italy
| | - Gloria Bellin
- Maria Cecilia Hospital, GVM Care & Research, 48,033 Cotignola (RA), Italy
- University of Ferrara, Department of Medical Sciences, via Fossato di Mortara 70, 44,121 Ferrara, Italy
| | - Paolo Pinton
- Maria Cecilia Hospital, GVM Care & Research, 48,033 Cotignola (RA), Italy
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44,121 Ferrara, Italy
| | - Barbara Zavan
- Maria Cecilia Hospital, GVM Care & Research, 48,033 Cotignola (RA), Italy.
- University of Ferrara, Department of Medical Sciences, via Fossato di Mortara 70, 44,121 Ferrara, Italy.
| |
Collapse
|
127
|
Mayne ES, Louw S. Good Fences Make Good Neighbors: Human Immunodeficiency Virus and Vascular Disease. Open Forum Infect Dis 2019; 6:ofz303. [PMID: 31737735 PMCID: PMC6847507 DOI: 10.1093/ofid/ofz303] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/25/2019] [Indexed: 01/08/2023] Open
Abstract
Cardiovascular disease, venous thrombosis, and microvascular disease in people with HIV (PWH) is predicted to increase in an aging HIV-infected population. Endothelial damage and dysfunction is a risk factor for cardiovascular events in PWH and is characterized by impaired vascular relaxation and decreased nitric oxide availability. Vascular disease has been attributed to direct viral effects, opportunistic infections, chronic inflammation, effects of antiretroviral therapy, and underlying comorbid conditions, like hypertension and use of tobacco. Although biomarkers have been examined to predict and prognosticate thrombotic and cardiovascular disease in this population, more comprehensive validation of risk factors is necessary to ensure patients are managed appropriately. This review examines the pathogenesis of vascular disease in PWH and summarizes the biomarkers used to predict vascular disease in this population.
Collapse
Affiliation(s)
- Elizabeth S Mayne
- Department of Immunology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service
| | - Susan Louw
- Department of Molecular Medicine Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
128
|
Ciccocioppo R, Baumgart DC, Dos Santos CC, Galipeau J, Klersy C, Orlando G. Perspectives of the International Society for Cell & Gene Therapy Gastrointestinal Scientific Committee on the Intravenous Use of Mesenchymal Stromal Cells in Inflammatory Bowel Disease (PeMeGi). Cytotherapy 2019; 21:824-839. [PMID: 31201092 DOI: 10.1016/j.jcyt.2019.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/17/2019] [Accepted: 05/25/2019] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel disease (IBD), namely, Crohn's disease and ulcerative colitis, remains a grievous and recalcitrant problem incurring significant human and health care costs, even in consideration of the growing incidence. Initial goals of care aimed to achieve the induction and maintenance of clinical remission. The advent of novel treat-to-target approaches using patient stratification, early introduction of immunosuppressants and rapid escalation to biologics or early use of combination therapy has refocused the goals of care toward the achievement of mucosal healing. This is in an attempt to preserve intestinal function, decrease hospitalization and surgery rates and improve the quality of life of affected patients. Cellular therapeutics for the treatment of IBD offers an unprecedented opportunity to change the current paradigm from single-targeted to systems-targeted therapy, trying to dampen the whole inflammatory cascade instead of a only molecule. Therefore, as we move forward, the importance of designing informative and possibly adaptive trial designs, standardizing methodologies, harmonizing goals of therapy and evaluating methods cannot be underemphasized. In this article, we review the current literature on the application of mesenchymal stromal cells for the treatment of IBD in an effort to establish a consensus on designing efficient and consistent clinical trials for the intravenous use of this cellular therapy in IBD.
Collapse
Affiliation(s)
- R Ciccocioppo
- Gastroenterology Unit, Department of Medicine, AOUI Policlinico G.B. Rossi and University of Verona, Verona, Italy.
| | - D C Baumgart
- Division of Gastroenterology, University of Alberta, Edmonton, Canada and Department of Gastroenterology and Hepatology, Charité Medical School, Humboldt University of Berlin, Berlin, Germany
| | - C C Dos Santos
- Interdepartmental Division of Critical Care Medicine, Keenan Research Centre for Biomedical Science and St. Michael's Hospital, University of Toronto, Toronto, Canada
| | - J Galipeau
- Director of the Program for Advanced Cell Therapy, University of Wisconsin in Madision, Madision, Wisconsin, USA
| | - C Klersy
- Service of Clinical Epidemiology & Biostatistics, I.R.C.C.S Policlinico San Mateo Foundation, Pavia, Italy
| | - G Orlando
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
| |
Collapse
|
129
|
Reinhardt C. GAS6: Pouring GASoline Into the Inflammatory Inferno of Venous Thrombosis. Arterioscler Thromb Vasc Biol 2019. [PMID: 28637697 DOI: 10.1161/atvbaha.117.309585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Christoph Reinhardt
- From the Center for Thrombosis and Hemostasis, University Medical Center Mainz, Johannes Gutenberg-University Mainz, Germany; and the German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Mainz, Germany.
| |
Collapse
|
130
|
Benedikter BJ, Bouwman FG, Heinzmann ACA, Vajen T, Mariman EC, Wouters EFM, Savelkoul PHM, Koenen RR, Rohde GGU, van Oerle R, Spronk HM, Stassen FRM. Proteomic analysis reveals procoagulant properties of cigarette smoke-induced extracellular vesicles. J Extracell Vesicles 2019; 8:1585163. [PMID: 30863515 PMCID: PMC6407597 DOI: 10.1080/20013078.2019.1585163] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 02/12/2019] [Accepted: 02/18/2019] [Indexed: 01/02/2023] Open
Abstract
Airway epithelial cells secrete extracellular vesicles (EVs) under basal conditions and when exposed to cigarette smoke extract (CSE). Getting insights into the composition of these EVs will help unravel their functions in homeostasis and smoking-induced pathology. Here, we characterized the proteomic composition of basal and CSE-induced airway epithelial EVs. BEAS-2B cells were left unexposed or exposed to 1% CSE for 24 h, followed by EV isolation using ultrafiltration and size exclusion chromatography. Isolated EVs were labelled with tandem mass tags and their proteomic composition was determined using nano-LC-MS/MS. Tissue factor (TF) activity was determined by a factor Xa generation assay, phosphatidylserine (PS) content by prothrombinase assay and thrombin generation using calibrated automated thrombogram (CAT). Nano-LC-MS/MS identified 585 EV-associated proteins with high confidence. Of these, 201 were differentially expressed in the CSE-EVs according to the moderated t-test, followed by false discovery rate (FDR) adjustment with the FDR threshold set to 0.1. Functional enrichment analysis revealed that 24 proteins of the pathway haemostasis were significantly up-regulated in CSE-EVs, including TF. Increased TF expression on CSE-EVs was confirmed by bead-based flow cytometry and was associated with increased TF activity. CSE-EVs caused faster and more thrombin generation in normal human plasma than control-EVs, which was partly TF-, but also PS-dependent. In conclusion, proteomic analysis allowed us to predict procoagulant properties of CSE-EVs which were confirmed in vitro. Cigarette smoke-induced EVs may contribute to the increased cardiovascular and respiratory risk observed in smokers.
Collapse
Affiliation(s)
- Birke J Benedikter
- Department of Medical Microbiology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Freek G Bouwman
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Alexandra C A Heinzmann
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Tanja Vajen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Edwin C Mariman
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Emiel F M Wouters
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Paul H M Savelkoul
- Department of Medical Microbiology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Medical Microbiology & Infection Control, VU University Medical Center, Amsterdam, The Netherlands
| | - Rory R Koenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Gernot G U Rohde
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands.,Medical clinic I, Department of Respiratory Medicine, Goethe University Hospital, Frankfurt/Main, Germany
| | - Rene van Oerle
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Henri M Spronk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Frank R M Stassen
- Department of Medical Microbiology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
131
|
Sutherland MR, Simon AY, Shanina I, Horwitz MS, Ruf W, Pryzdial ELG. Virus envelope tissue factor promotes infection in mice. J Thromb Haemost 2019; 17:482-491. [PMID: 30659719 PMCID: PMC6397068 DOI: 10.1111/jth.14389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Indexed: 01/04/2023]
Abstract
Essentials The coagulation initiator, tissue factor (TF), is on the herpes simplex virus 1 (HSV1) surface. HSV1 surface TF was examined in mice as an antiviral target since it enhances infection in vitro. HSV1 surface TF facilitated infection of all organs evaluated and anticoagulants were antiviral. Protease activated receptor 2 inhibited infection in vivo and its pre-activation was antiviral. SUMMARY: Background Tissue factor (TF) is the essential cell surface initiator of coagulation, and mediates cell signaling through protease-activated receptor (PAR) 2. Having a diverse cellular distribution, TF is involved in many biological pathways and pathologies. Our earlier work identified host cell-derived TF on the envelope covering several viruses, and showed its involvement in enhanced cell infection in vitro. Objective In the current study, we evaluated the in vivo effects of virus surface TF on infection and on the related modulator of infection PAR2. Methods With the use of herpes simplex virus type 1 (HSV1) as a model enveloped virus, purified HSV1 was generated with or without envelope TF through propagation in a TF-inducible cell line. Infection was studied after intravenous inoculation of BALB/c, C57BL/6J or C57BL/6J PAR2 knockout mice with 5 × 105 plaque-forming units of HSV1, mimicking viremia. Three days after inoculation, organs were processed, and virus was quantified with plaque-forming assays and quantitative real-time PCR. Results Infection of brain, lung, heart, spinal cord and liver by HSV1 required viral TF. Demonstrating promise as a therapeutic target, virus-specific anti-TF mAbs or small-molecule inhibitors of coagulation inhibited infection. PAR2 modulates HSV1 in vivo as demonstrated with PAR2 knockout mice and PAR2 agonist peptide. Conclusion TF is a constituent of many permissive host cell types. Therefore, the results presented here may explain why many viruses are correlated with hemostatic abnormalities, and indicate that TF is a novel pan-specific envelope antiviral target.
Collapse
MESH Headings
- Animals
- Anticoagulants/pharmacology
- Antiviral Agents/pharmacology
- Disease Models, Animal
- Female
- Herpes Simplex/blood
- Herpes Simplex/drug therapy
- Herpes Simplex/immunology
- Herpes Simplex/virology
- Herpesvirus 1, Human/drug effects
- Herpesvirus 1, Human/immunology
- Herpesvirus 1, Human/metabolism
- Host-Pathogen Interactions
- Injections, Intravenous
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Receptor, PAR-2/genetics
- Receptor, PAR-2/metabolism
- Th1 Cells/immunology
- Th1 Cells/virology
- Thromboplastin/administration & dosage
- Thromboplastin/metabolism
- Viral Envelope Proteins/administration & dosage
- Viral Envelope Proteins/metabolism
Collapse
Affiliation(s)
- Michael R Sutherland
- Canadian Blood Services, Center for Innovation, Vancouver, Canada
- Centre for Blood Research and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Ayo Y Simon
- Canadian Blood Services, Center for Innovation, Vancouver, Canada
- Centre for Blood Research and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
- African Centre of Excellence on Neglected Tropical Diseases and Forensic Biotechnology and Veterinary Teaching Hospital, Ahmadu Bello University, Zaria, Nigeria
- Preclinical Research and Development, Emergent BioSolutions, Winnipeg, Manitoba, Canada
| | - Iryna Shanina
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Marc S Horwitz
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Wolfram Ruf
- Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, CA, USA
- Center for Thrombosis and Hemostasis, University Medical Center, Mainz, Germany
| | - Edward L G Pryzdial
- Canadian Blood Services, Center for Innovation, Vancouver, Canada
- Centre for Blood Research and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
132
|
Moll G, Ankrum JA, Kamhieh-Milz J, Bieback K, Ringdén O, Volk HD, Geissler S, Reinke P. Intravascular Mesenchymal Stromal/Stem Cell Therapy Product Diversification: Time for New Clinical Guidelines. Trends Mol Med 2019; 25:149-163. [PMID: 30711482 DOI: 10.1016/j.molmed.2018.12.006] [Citation(s) in RCA: 283] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/04/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022]
Abstract
Intravascular infusion is the most popular route for therapeutic multipotent mesenchymal stromal/stem cell (MSC) delivery in hundreds of clinical trials. Meta-analysis has demonstrated that bone marrow MSC infusion is safe. It is not clear if this also applies to diverse new cell products derived from other sources, such as adipose and perinatal tissues. Different MSC products display varying levels of highly procoagulant tissue factor (TF) and may adversely trigger the instant blood-mediated inflammatory reaction (IBMIR). Suitable strategies for assessing and controlling hemocompatibility and optimized cell delivery are crucial for the development of safer and more effective MSC therapies.
Collapse
Affiliation(s)
- Guido Moll
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin (FUB), Humboldt-Universität zu Berlin (HUB), and Berlin Institute of Health (BIH), Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin (FUB), Humboldt-Universität zu Berlin (HUB), and Berlin Institute of Health (BIH), Berlin, Germany; Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin (FUB), Humboldt-Universität zu Berlin (HUB), and Berlin Institute of Health (BIH), Berlin, Germany.
| | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, USA
| | - Julian Kamhieh-Milz
- Department of Transfusion Medicine, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin (FUB), Humboldt-Universität zu Berlin (HUB), and Berlin Institute of Health (BIH), Berlin, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; German Red Cross Blood Donor Service Baden-Württemberg-Hessen, Mannheim, Germany
| | - Olle Ringdén
- Translational Cell Therapy Research (TCR), Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Hans-Dieter Volk
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin (FUB), Humboldt-Universität zu Berlin (HUB), and Berlin Institute of Health (BIH), Berlin, Germany; Institute of Medical Immunology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin (FUB), Humboldt-Universität zu Berlin (HUB), and Berlin Institute of Health (BIH), Berlin, Germany; Berlin Center for Advanced Therapies (BECAT), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin (FUB), Humboldt-Universität zu Berlin (HUB), and Berlin Institute of Health (BIH), Berlin, Germany; Equal contribution senior authorship
| | - Sven Geissler
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin (FUB), Humboldt-Universität zu Berlin (HUB), and Berlin Institute of Health (BIH), Berlin, Germany; Julius Wolff Institute (JWI), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin (FUB), Humboldt-Universität zu Berlin (HUB), and Berlin Institute of Health (BIH), Berlin, Germany; Equal contribution senior authorship
| | - Petra Reinke
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin (FUB), Humboldt-Universität zu Berlin (HUB), and Berlin Institute of Health (BIH), Berlin, Germany; Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin (FUB), Humboldt-Universität zu Berlin (HUB), and Berlin Institute of Health (BIH), Berlin, Germany; Berlin Center for Advanced Therapies (BECAT), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin (FUB), Humboldt-Universität zu Berlin (HUB), and Berlin Institute of Health (BIH), Berlin, Germany; Equal contribution senior authorship
| |
Collapse
|
133
|
Wu J, Li M, He J, Lv K, Wang M, Guan W, Liu J, Tao Y, Li S, Ho CT, Zhao H. Protective effect of pterostilbene on concanavalin A-induced acute liver injury. Food Funct 2019; 10:7308-7314. [DOI: 10.1039/c9fo01405e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pterostilbene (PTE) is broadly found in berries and has antioxidant and anti-inflammatory properties.
Collapse
|
134
|
Davis MD, Suzaki I, Kawano S, Komiya K, Cai Q, Oh Y, Rubin BK. Tissue Factor Facilitates Wound Healing in Human Airway Epithelial Cells. Chest 2018; 155:534-539. [PMID: 30359615 DOI: 10.1016/j.chest.2018.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/21/2018] [Accepted: 10/02/2018] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Tissue factor (TF) canonically functions as the initiator of the coagulation cascade. TF levels are increased in inflamed airways and seem to be important for tumor growth and metastasis. We hypothesized that airway epithelia release TF as part of a wound repair program. OBJECTIVES The goal of this study was to evaluate whether airway epithelia release TF in response to pro-inflammatory stimuli and to investigate roles of TF in cell growth and repair. METHODS Airway epithelial cells were exposed to 10 μg/mL of lipopolysaccharide or 1 ng/mL of transforming growth factor β (TGF-β). TF and TGF-β messenger RNA and protein were measured in cell lysate and culture media, respectively. Signaling pathways were evaluated by using selective agonists and inhibitors. Airway epithelia were mechanically injured in the presence of TF and tissue factor pathway inhibitor to investigate their roles in wound repair. RESULTS TF protein levels increased in cell media after exposure to lipopolysaccharide (P < .01) but only in growing cells, and this action was blocked when exposed to an extracellular signal-regulated kinase inhibitor or a "small" worm phenotype and mothers against Decapentaplegic inhibitor. TF protein also increased in the presence of TGF-β (P < .05). Exposure to TF pathway inhibitor decreased the rate of cell growth by 60% (P < .05), and exposure to TF increased the rate of airway healing after injury by 19% (P < .05). CONCLUSIONS Growing airway epithelia release TF when exposed to lipopolysaccharide or TGF-β. TF reduces wound-healing time in airway epithelia and therefore may be important to airway recovery after injury.
Collapse
Affiliation(s)
- Michael D Davis
- Department of Pediatrics, Children's Hospital of Richmond at Virginia Commonwealth University, Richmond, VA
| | - Isao Suzaki
- Department of Pediatrics, Children's Hospital of Richmond at Virginia Commonwealth University, Richmond, VA
| | - Shuichi Kawano
- Department of Pediatrics, Children's Hospital of Richmond at Virginia Commonwealth University, Richmond, VA
| | - Kosaku Komiya
- Department of Pediatrics, Children's Hospital of Richmond at Virginia Commonwealth University, Richmond, VA
| | - Qing Cai
- Division of Cellular and Molecular Pathogenesis, Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Youngman Oh
- Division of Cellular and Molecular Pathogenesis, Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Bruce K Rubin
- Department of Pediatrics, Children's Hospital of Richmond at Virginia Commonwealth University, Richmond, VA.
| |
Collapse
|
135
|
Zou XL, Wang GF, Li DD, Chen JX, Zhang CL, Yu YZ, Zhou WJ, Zou YP, Rao BQ. Protection of tight junction between RPE cells with tissue factor targeting peptide. Int J Ophthalmol 2018; 11:1594-1599. [PMID: 30364251 DOI: 10.18240/ijo.2018.10.04] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 08/01/2018] [Indexed: 12/14/2022] Open
Abstract
AIM To investigate the effect of tissue factor targeting peptide (TF-TP) on retinal pigment epithelium (RPE) cells tight junctions. METHODS Cell counting kit-8 (CCK-8) was used to measure the proliferation of ARPE-19 cells. Expression of tight junction, ZO-1 in ARPE-19 cells was measured by Western blot and immunofluorescent staining. Western blot was also used to detect the expression of tissue factor (TF). CEC Transmigration Assay was used to measure the migration of ARPE-19 cells. The transport of fluorescent markers [fluorescein isothiocyanate dextrans of 4, 10, 20 (FD4, FD10, FD20)] and the transepithelial electrical resistance (TEER) were used to measure in ARPE-19 cell. RESULTS CCK-8 assay showed that 5 µmol/L TF-TP can inhibit ARPE-19 cells abnormally proliferation stimulated by lipopolysaccharide (LPS; P<0.05). LPS increased the transport of fluorescent markers (FD4, FD10, FD20) and decreased TEER levels in ARPE-19 cells, respectively, which were prevented by 5 µmol/L TF-TP pretreatment (P<0.05). Furthermore, LPS significantly up-regulated the expression of TF and downregulated the expression of ZO-1 (P<0.05) in ARPE-19 cell which was inhibited by the TF-TP (P<0.05). In addition, TF-TP inhibited the abnormal migration induced by LPS in ARPE-19 cell (P<0.05). CONCLUSION Our findings suggest that TF-TP suppressed proliferation and migration of ARPE-19 cells induced by LPS, and maintained the RPE tight junctions through inhibition of TF expression and increased expression of ZO-1.
Collapse
Affiliation(s)
- Xiu-Lan Zou
- Department of Ophthalmology, General Hospital of Guangzhou of PLA, Guangzhou 510010, Guangdong Province, China
| | - Guan-Feng Wang
- Department of Ophthalmology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong Province, China
| | - Dan-Dan Li
- Zhongshan Ophthalmology Center of Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Jing-Xia Chen
- Department of Ophthalmology, General Hospital of Guangzhou of PLA, Guangzhou 510010, Guangdong Province, China
| | - Chun-Li Zhang
- Department of Ophthalmology, General Hospital of Guangzhou of PLA, Guangzhou 510010, Guangdong Province, China
| | - Yong-Zhen Yu
- Department of Ophthalmology, General Hospital of Guangzhou of PLA, Guangzhou 510010, Guangdong Province, China
| | - Wen-Jie Zhou
- Department of Ophthalmology, General Hospital of Guangzhou of PLA, Guangzhou 510010, Guangdong Province, China
| | - Yu-Ping Zou
- Department of Ophthalmology, General Hospital of Guangzhou of PLA, Guangzhou 510010, Guangdong Province, China
| | - Ben-Qiang Rao
- General Surgery, Aviation General Hospital, Beijing 100012, China
| |
Collapse
|
136
|
Lal A, Akhtar J, Pinto S, Grewal H, Martin K. Recurrent Pulmonary Embolism and Hypersensitivity Pneumonitis Secondary to Aspergillus, in a Compost Plant Worker: Case Report and Review of Literature. Lung 2018; 196:553-560. [PMID: 30027471 DOI: 10.1007/s00408-018-0142-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/12/2018] [Indexed: 11/30/2022]
Abstract
Activation of blood coagulation pathways as a component of an allergic response has been studied in animal models. In patients with allergic diseases, clot qualities have been noted to be different in terms of denser fibrin clot with reduced plasmin-mediated clot lysis. Correlation between occupational hypersensitivity pneumonitis (HP) with thromboembolic events is scarce in the general patient population. We present a case of a 52-year-old man with recurrent venous thromboembolism with HP secondary to bioaerosol exposure in a compost plant. Biochemical evaluation found no evidence of underlying hypercoagulable state, with only remarkable findings of elevated levels of total serum immunoglobulin E and raised Aspergillus sp. IgG antibodies. The patient decided to change his working environment to one without exposure to compost or other fungal elements. His symptoms and pulmonary function tests gradually improved without any subsequent intervention. The patient chose against the advice of his care providers to discontinue warfarin anti-coagulation that had been recommended for lifelong duration after recurrent pulmonary thromboembolism. At a 4-year follow-up he has remained free of any further episodes of venous thromboembolic events without any anti-coagulation. Repeated imaging studies after cessation of exposure demonstrated clearance of multiple lung nodules and improvement in DLco.
Collapse
Affiliation(s)
- Amos Lal
- Department of Medicine, Saint Vincent Hospital, 123 Summer Street, Worcester, MA, 01608, USA.
| | - Jamal Akhtar
- Department of Medicine, Saint Vincent Hospital, 123 Summer Street, Worcester, MA, 01608, USA
| | - Soniya Pinto
- Department of Radiology, Saint Vincent Hospital, 123 Summer Street, Worcester, MA, 01608, USA
| | - Himmat Grewal
- Department of Medicine, Saint Vincent Hospital, 123 Summer Street, Worcester, MA, 01608, USA
| | - Kevin Martin
- Division of Pulmonology and Critical Care Medicine, Reliant Medical Group, 123 Summer Street, Worcester, MA, 01608, USA
| |
Collapse
|
137
|
Stroo I, Ding C, Novak A, Yang J, Roelofs JJTH, Meijers JCM, Revenko AS, van 't Veer C, Zeerleder S, Crosby JR, van der Poll T. Inhibition of the extrinsic or intrinsic coagulation pathway during pneumonia-derived sepsis. Am J Physiol Lung Cell Mol Physiol 2018; 315:L799-L809. [PMID: 30136609 DOI: 10.1152/ajplung.00014.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pneumonia is the most frequent cause of sepsis, and Klebsiella pneumoniae is a common pathogen in pneumonia and sepsis. Infection is associated with activation of the coagulation system. Coagulation can be activated by the extrinsic and intrinsic routes, mediated by factor VII (FVII) and factor XII (FXII), respectively. To determine the role of FVII and FXII in the host response during pneumonia-derived sepsis, mice were treated with specific antisense oligonucleotide (ASO) directed at FVII or FXII for 3 wk before infection with K. pneumoniae via the airways. FVII ASO treatment strongly inhibited hepatic FVII mRNA expression, reduced plasma FVII to ~25% of control, and selectively prolonged the prothrombin time. FXII ASO treatment strongly suppressed hepatic FXII mRNA expression, reduced plasma FXII to ~20% of control, and selectively prolonged the activated partial thromboplastin time. Lungs also expressed FVII mRNA, which was not altered by FVII ASO administration. Very low FXII mRNA levels were detected in lungs, which were not modified by FXII ASO treatment. FVII ASO attenuated systemic activation of coagulation but did not influence fibrin deposition in lung tissue. FVII ASO enhanced bacterial loads in lungs and mitigated sepsis-induced distant organ injury. FXII inhibition did not affect any of the host response parameters measured. These results suggest that partial inhibition of FVII, but not of FXII, modifies the host response to gram-negative pneumonia-derived sepsis.
Collapse
Affiliation(s)
- Ingrid Stroo
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands.,Department of Immunopathology, Sanquin Research, Amsterdam , The Netherlands
| | - Chao Ding
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands.,Department of General Surgery, Jinling Hospital, Medical School of Nanjing University , Nanjing , China
| | - Andreja Novak
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Jack Yang
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Joost C M Meijers
- Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands.,Department of Plasma Proteins, Sanquin Research, Amsterdam , The Netherlands
| | - Alexey S Revenko
- Drug Discovery and Corporate Development, Ionis Pharmaceuticals, Incorporated, Carlsbad, California
| | - Cornelis van 't Veer
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Sacha Zeerleder
- Department of Immunopathology, Sanquin Research, Amsterdam , The Netherlands.,Department of Hematology, Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Jeff R Crosby
- Drug Discovery and Corporate Development, Ionis Pharmaceuticals, Incorporated, Carlsbad, California
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands.,Division of Infectious Diseases, Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| |
Collapse
|
138
|
Perlee D, van Vught LA, Scicluna BP, Maag A, Lutter R, Kemper EM, van ‘t Veer C, Punchard MA, González J, Richard MP, Dalemans W, Lombardo E, de Vos AF, van der Poll T. Intravenous Infusion of Human Adipose Mesenchymal Stem Cells Modifies the Host Response to Lipopolysaccharide in Humans: A Randomized, Single-Blind, Parallel Group, Placebo Controlled Trial. Stem Cells 2018; 36:1778-1788. [DOI: 10.1002/stem.2891] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/06/2018] [Accepted: 07/02/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Desiree Perlee
- Center of Experimental & Molecular Medicine, Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - Lonneke A. van Vught
- Center of Experimental & Molecular Medicine, Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - Brendon P. Scicluna
- Center of Experimental & Molecular Medicine, Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
- Department of Clinical Epidemiology and Biostatistics, Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - Anja Maag
- Center of Experimental & Molecular Medicine, Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - René Lutter
- Department of Experimental Immunology & Respiratory Medicine, Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - Elles M. Kemper
- Department of Pharmacy, Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - Cornelis van ‘t Veer
- Center of Experimental & Molecular Medicine, Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | | | | | | | | | | | - Alex F. de Vos
- Center of Experimental & Molecular Medicine, Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - Tom van der Poll
- Center of Experimental & Molecular Medicine, Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
- Division of Infectious Diseases, Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| |
Collapse
|
139
|
D'Alessandro E, Posma J, Spronk H, ten Cate H. Tissue factor (:Factor VIIa) in the heart and vasculature: More than an envelope. Thromb Res 2018; 168:130-137. [DOI: 10.1016/j.thromres.2018.06.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/31/2018] [Accepted: 06/26/2018] [Indexed: 11/25/2022]
|
140
|
Grzanka R, Damasiewicz-Bodzek A, Kasperska-Zajac A. Interplay between acute phase response and coagulation/fibrinolysis in chronic spontaneous urticaria. Allergy Asthma Clin Immunol 2018; 14:27. [PMID: 30026764 PMCID: PMC6050720 DOI: 10.1186/s13223-018-0255-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/11/2018] [Indexed: 11/10/2022] Open
Abstract
Background Chronic spontaneous urticaria (CSU) is associated with activation of systemic inflammatory response and coagulation/fibrinolysis. Aim To study whether there is a relationship between the acute phase response and coagulation/fibrinolysis in chronic spontaneous urticaria (CSU) patients. Methods Serum concentrations of C-reactive protein (CRP) and interleukin 6 (IL-6), key markers of acute phase response and of D-dimer, a marker of fibrin turnover were investigated in 58 CSU patients assessed with the urticaria activity score (UAS) and the controls. Results Serum concentrations of IL-6, CRP, and D-dimer were significantly higher in CSU patients as compared with the controls. We found statistically significant correlations between D-dimers concentrations and the inflammatory markers: CRP and IL-6 as well as UAS. Conclusions Markers of inflammation (IL-6 and CRP) and of fibrinolysis (D-dimer) are related to each other in CSU, suggesting a possible cross-talk between inflammation and coagulation/fibrinolysis. It might be implicated in pathogenesis of the disease and may be associated with higher risks of cardiovascular diseases in CSU patients.
Collapse
Affiliation(s)
- R Grzanka
- 1Department of Internal Diseases, Dermatology and Allergology, SMDZ in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
| | - A Damasiewicz-Bodzek
- 2Department of Chemistry, SMDZ in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
| | - A Kasperska-Zajac
- 1Department of Internal Diseases, Dermatology and Allergology, SMDZ in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland.,European Center for Diagnosis and Treatment of Urticaria, Zabrze, Poland.,Department of Internal Diseases, Dermatology and Allergology, ul. M. Curie-Skłodowskiej 10, 41-800 Zabrze, Poland
| |
Collapse
|
141
|
Ning YJ, Lu XJ, Chen J. Molecular characterization of a tissue factor gene from ayu: A pro-inflammatory mediator via regulating monocytes/macrophages. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 84:37-47. [PMID: 29408399 DOI: 10.1016/j.dci.2018.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/01/2018] [Accepted: 02/01/2018] [Indexed: 06/07/2023]
Abstract
Tissue factor (TF) plays an important role in the host's immune system as the principal initiator of coagulation. However, the precise function of TF in teleosts remains unclear. We determined the cDNA sequence of TF from ayu Plecoglossus altivelis (PaTF). The PaTF transcript was expressed in all tested tissues, and changes in expression were observed in tissues and monocytes/macrophages (MO/MФ) upon infection with Vibrio anguillarum. PaTF was prokaryotically expressed and purified to prepare anti-PaTF antibodies. Western blot analysis revealed that native PaTF was glycosylated in thrombocytes, but not in ayu MO/MФ. Microparticles could transfer PaTF to thrombocytes. PaTF neutralization or knockdown led to anti-inflammatory status in ayu MO/MФ upon V. anguillarum infection. PaTF neutralization reduced the apoptosis of ayu MO/MФ and improve survival rate in V. anguillarum-infected ayu. Our results indicate that PaTF plays a role in ayu immune response against bacterial infection as a pro-inflammatory mediator.
Collapse
Affiliation(s)
- Ying-Jun Ning
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Xin-Jiang Lu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
142
|
Benedikter BJ, Wouters EFM, Savelkoul PHM, Rohde GGU, Stassen FRM. Extracellular vesicles released in response to respiratory exposures: implications for chronic disease. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2018; 21:142-160. [PMID: 29714636 DOI: 10.1080/10937404.2018.1466380] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Extracellular vesicles (EV) are secreted signaling entities that enhance various pathological processes when released in response to cellular stresses. Respiratory exposures such as cigarette smoke and air pollution exert cellular stresses and are associated with an increased risk of several chronic diseases. The aim of this review was to examine the evidence that modifications in EV contribute to respiratory exposure-associated diseases. Publications were searched using PubMed and Google Scholar with the search terms (cigarette smoke OR tobacco smoke OR air pollution OR particulate matter) AND (extracellular vesicles OR exosomes OR microvesicles OR microparticles OR ectosomes). All original research articles were included and reviewed. Fifty articles were identified, most of which investigated the effect of respiratory exposures on EV release in vitro (25) and/or on circulating EV in human plasma (24). The majority of studies based their main observations on the relatively insensitive scatter-based flow cytometry of EV (29). EV induced by respiratory exposures were found to modulate inflammation (19), thrombosis (13), endothelial dysfunction (11), tissue remodeling (6), and angiogenesis (3). By influencing these processes, EV may play a key role in the development of cardiovascular diseases and chronic obstructive pulmonary disease and possibly lung cancer and allergic asthma. The current findings warrant additional research with improved methodologies to evaluate the contribution of respiratory exposure-induced EV to disease etiology, as well as their potential as biomarkers of exposure or risk and as novel targets for preventive or therapeutic strategies.
Collapse
Affiliation(s)
- Birke J Benedikter
- a Department of Medical Microbiology , NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center , Maastricht , The Netherlands
- b Department of Respiratory Medicine , NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center , Maastricht , The Netherlands
| | - Emiel F M Wouters
- b Department of Respiratory Medicine , NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center , Maastricht , The Netherlands
| | - Paul H M Savelkoul
- a Department of Medical Microbiology , NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center , Maastricht , The Netherlands
- c Department of Medical Microbiology & Infection Control , VU University Medical Center , Amsterdam , The Netherlands
| | - Gernot G U Rohde
- d Medical clinic I, Department of Respiratory Medicine , Goethe University Hospital , Frankfurt/Main , Germany
| | - Frank R M Stassen
- a Department of Medical Microbiology , NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center , Maastricht , The Netherlands
| |
Collapse
|
143
|
Shi G, Zhao JW, Sun XX, Ma JF, Wang P, He FC, Ming L. TIPE2 is negatively correlated with tissue factor and thrombospondin-1 expression in patients with bronchial asthma. Exp Ther Med 2018; 15:3449-3454. [PMID: 29545867 PMCID: PMC5840926 DOI: 10.3892/etm.2018.5870] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 11/16/2017] [Indexed: 12/16/2022] Open
Abstract
The interaction between inflammatory processes and a hypercoagulant state may aggravate the severity of asthma and stimulate the airway remodeling of asthma. The aim of the current study was to evaluate the association between the negative inflammatory regulator tumor necrosis factor α induced protein-8 like-2 (TIPE2) and the coagulating substances tissue factor (TF) and thrombospondin-1 (TSP-1) in patients with bronchial asthma. Compared with healthy controls, TIPE2 expression was significantly downregulated, whereas TF expression was upregulated in the peripheral blood mononuclear cells (PBMCs) of patients with bronchial asthma. In addition, levels of TF and TSP-1 in the sera were up-regulated in patients with asthma compared with healthy controls. TIPE2 expression was negatively correlated with TF in the PBMCs and sera and was negatively correlated with TSP-1 levels in the sera of patients with bronchial asthma. The results of the current study indicated that anti-inflammatory TIPE2 levels are associated with levels of the coagulation substances TF and TSP-1. However, further studies are required to determine whether TIPE2 participates in the pathogenesis of asthma by interacting with the coagulation substances TF and TSP-1.
Collapse
Affiliation(s)
- Guang Shi
- Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, P.R. China
- Department of Laboratory Medicine of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jun-Wei Zhao
- Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, P.R. China
- Department of Laboratory Medicine of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiao-Xu Sun
- Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, P.R. China
| | - Jun-Fen Ma
- Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, P.R. China
- Department of Laboratory Medicine of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Pan Wang
- Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Fu-Cheng He
- Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, P.R. China
- Department of Laboratory Medicine of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Liang Ming
- Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, P.R. China
- Department of Laboratory Medicine of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Correspondence to: Professor Liang Ming, Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, 1E Jianshe Road, Zhengzhou, Henan 450052, P.R. China, E-mail:
| |
Collapse
|
144
|
Witkowski M, Tabaraie T, Steffens D, Friebel J, Dörner A, Skurk C, Witkowski M, Stratmann B, Tschoepe D, Landmesser U, Rauch U. MicroRNA-19a contributes to the epigenetic regulation of tissue factor in diabetes. Cardiovasc Diabetol 2018; 17:34. [PMID: 29477147 PMCID: PMC6389222 DOI: 10.1186/s12933-018-0678-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/17/2018] [Indexed: 12/21/2022] Open
Abstract
Background Diabetes mellitus is characterized by chronic vascular disorder and presents a main risk factor for cardiovascular mortality. In particular, hyperglycaemia and inflammatory cytokines induce vascular circulating tissue factor (TF) that promotes pro-thrombotic conditions in diabetes. It has recently become evident that alterations of the post-transcriptional regulation of TF via specific microRNA(miR)s, such as miR-126, contribute to the pathogenesis of diabetes and its complications. The endothelial miR-19a is involved in vascular homeostasis and atheroprotection. However, its role in diabetes-related thrombogenicity is unknown. Understanding miR-networks regulating procoagulability in diabetes may help to develop new treatment options preventing vascular complications. Methods and results Plasma of 44 patients with known diabetes was assessed for the expression of miR-19a, TF protein, TF activity, and markers for vascular inflammation. High miR-19a expression was associated with reduced TF protein, TF-mediated procoagulability, and vascular inflammation based on expression of vascular adhesion molecule-1 and leukocyte count. We found plasma expression of miR-19a to strongly correlate with miR-126. miR-19a reduced the TF expression on mRNA and protein level in human microvascular endothelial cells (HMEC) as well as TF activity in human monocytes (THP-1), while anti-miR-19a increased the TF expression. Interestingly, miR-19a induced VCAM expression in HMEC. However, miR-19a and miR-126 co-transfection reduced total endothelial VCAM expression and exhibited additive inhibition of a luciferase reporter construct containing the F3 3′UTR. Conclusions While both miRs have differential functions on endothelial VCAM expression, miR-19a and miR-126 cooperate to exhibit anti-thrombotic properties via regulating vascular TF expression. Modulating the post-transcriptional control of TF in diabetes may provide a future anti-thrombotic and anti-inflammatory therapy. Electronic supplementary material The online version of this article (10.1186/s12933-018-0678-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marco Witkowski
- Charité Centrum 11, Depart. of Cardiology, Campus Benjamin Franklin, Charité University Medicine Berlin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Termeh Tabaraie
- Charité Centrum 11, Depart. of Cardiology, Campus Benjamin Franklin, Charité University Medicine Berlin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Daniel Steffens
- Charité Centrum 11, Depart. of Cardiology, Campus Benjamin Franklin, Charité University Medicine Berlin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Julian Friebel
- Charité Centrum 11, Depart. of Cardiology, Campus Benjamin Franklin, Charité University Medicine Berlin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Andrea Dörner
- Charité Centrum 11, Depart. of Cardiology, Campus Benjamin Franklin, Charité University Medicine Berlin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Carsten Skurk
- Charité Centrum 11, Depart. of Cardiology, Campus Benjamin Franklin, Charité University Medicine Berlin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Mario Witkowski
- Institute of Microbiology and Infection Immunology, Charité University Medicine Berlin, Berlin, Germany
| | - Bernd Stratmann
- Heart and Diabetes Center NRW, Ruhr University of Bochum, Bad Oeynhausen, Germany
| | - Diethelm Tschoepe
- Heart and Diabetes Center NRW, Ruhr University of Bochum, Bad Oeynhausen, Germany
| | - Ulf Landmesser
- Charité Centrum 11, Depart. of Cardiology, Campus Benjamin Franklin, Charité University Medicine Berlin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Ursula Rauch
- Charité Centrum 11, Depart. of Cardiology, Campus Benjamin Franklin, Charité University Medicine Berlin, Hindenburgdamm 30, 12200, Berlin, Germany.
| |
Collapse
|
145
|
Grover SP, Mackman N. Tissue Factor: An Essential Mediator of Hemostasis and Trigger of Thrombosis. Arterioscler Thromb Vasc Biol 2018; 38:709-725. [PMID: 29437578 DOI: 10.1161/atvbaha.117.309846] [Citation(s) in RCA: 465] [Impact Index Per Article: 66.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/25/2018] [Indexed: 12/21/2022]
Abstract
Tissue factor (TF) is the high-affinity receptor and cofactor for factor (F)VII/VIIa. The TF-FVIIa complex is the primary initiator of blood coagulation and plays an essential role in hemostasis. TF is expressed on perivascular cells and epithelial cells at organ and body surfaces where it forms a hemostatic barrier. TF also provides additional hemostatic protection to vital organs, such as the brain, lung, and heart. Under pathological conditions, TF can trigger both arterial and venous thrombosis. For instance, atherosclerotic plaques contain high levels of TF on macrophage foam cells and microvesicles that drives thrombus formation after plaque rupture. In sepsis, inducible TF expression on monocytes leads to disseminated intravascular coagulation. In cancer patients, tumors release TF-positive microvesicles into the circulation that may contribute to venous thrombosis. TF also has nonhemostatic roles. For instance, TF-dependent activation of the coagulation cascade generates coagulation proteases, such as FVIIa, FXa, and thrombin, which induce signaling in a variety of cells by cleavage of protease-activated receptors. This review will focus on the roles of TF in protective hemostasis and pathological thrombosis.
Collapse
Affiliation(s)
- Steven P Grover
- From the Thrombosis and Hemostasis Program, Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill
| | - Nigel Mackman
- From the Thrombosis and Hemostasis Program, Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill.
| |
Collapse
|
146
|
Liang Y, Xie SB, Wu CH, Hu Y, Zhang Q, Li S, Fan YG, Leng RX, Pan HF, Xiong HB, Ye DQ. Coagulation cascade and complement system in systemic lupus erythematosus. Oncotarget 2017; 9:14862-14881. [PMID: 29599912 PMCID: PMC5871083 DOI: 10.18632/oncotarget.23206] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/16/2017] [Indexed: 12/26/2022] Open
Abstract
This study was conducted to (1) characterize coagulation cascade and complement system in systemic lupus erythematosus (SLE); (2) evaluate the associations between coagulation cascade, complement system, inflammatory response and SLE disease severity; (3) test the diagnostic value of a combination of D-dimer and C4 for lupus activity. Transcriptomics, proteomics and metabolomics were performed in 24 SLE patients and 24 healthy controls. The levels of ten coagulations, seven complements and three cytokines were measured in 112 SLE patients. Clinical data were collected from 2025 SLE patients. The analysis of multi-omics data revealed the common links for the components of coagulation cascade and complement system. The results of ELISA showed coagulation cascade and complement system had an interaction effect on SLE disease severity, this effect was pronounced among patients with excess inflammation. The analysis of clinical data revealed a combination of D-dimer and C4 provided good diagnostic performance for lupus activity. This study suggested that coagulation cascade and complement system become 'partners in crime', contributing to SLE disease severity and identified the diagnostic value of D-dimer combined with C4for lupus activity.
Collapse
Affiliation(s)
- Yan Liang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| | | | - Chang-Hao Wu
- Department of Biochemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Yuan Hu
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qin Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui, PR China
| | - Si Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui, PR China
| | - Yin-Guang Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui, PR China
| | - Rui-Xue Leng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui, PR China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui, PR China
| | - Hua-Bao Xiong
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui, PR China
| |
Collapse
|
147
|
Fujii E, Watanabe K, Nishihara K, Suzuki M, Kato A. Hazard characterization of an anti-human tissue factor antibody by combining results of tissue cross-reactivity studies and distribution of hemorrhagic lesions in monkey toxicity studies. Regul Toxicol Pharmacol 2017; 90:289-296. [DOI: 10.1016/j.yrtph.2017.09.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 11/16/2022]
|
148
|
Huang J, Tian R, Yang Y, Jiang R, Dai J, Tang L, Zhang L. The SIRT1 inhibitor EX-527 suppresses mTOR activation and alleviates acute lung injury in mice with endotoxiemia. Innate Immun 2017; 23:678-686. [PMID: 28952835 DOI: 10.1177/1753425917733531] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
It is generally regarded that Sirtuin 1 (SIRT1), a longevity factor in mammals, acts as a negative regulator of inflammation. However, recent studies also found that SIRT1 might be a detrimental factor under certain inflammatory circumstance. In this study, the potential pathophysiological roles and the underlying mechanisms of SIRT1 in a mouse model with endotoxemia-associated acute lung injury were investigated. The results indicated that treatment with the selective SIRT1 inhibitor EX-527 suppressed LPS-induced elevation of TNF-α and IL-6 in plasma. Treatment with EX-527 attenuated LPS-induced histological abnormalities in lung tissue, which was accompanied with decreased myeloperoxidase level and suppressed induction of tissue factor and plasminogen activator inhibitor-1. Treatment with EX-527 also suppressed LPS-induced phosphorylation of eukaryotic translation initiation factor-binding protein 1 (4E-BP1). Co-administration of a mammalian target of rapamycin (mTOR) activator 3-benzyl-5-[(2-nitrophenoxy) methyl]-dihydrofuran-2 (3H)-one (3BDO) abolished the inhibitory effects of EX-527 on 4E-BP1 phosphorylation. Meanwhile, the inhibitory effects of EX-527 on IL-6 induction and the beneficial effects of EX-527 on lung injury were partially reversed by 3BDO. This study suggests that selective inhibition of SIRT1 by EX-527 might alleviate endotoxemia-associated acute lung injury partially via suppression of mTOR, which implies that SIRT1 selective inhibitors might have potential value for the pharmacological intervention of inflammatory lung injury.
Collapse
Affiliation(s)
- Jing Huang
- 1 Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Rui Tian
- 2 Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yongqiang Yang
- 1 Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Rong Jiang
- 3 Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Jie Dai
- 4 Hospital of Chongqing University of Arts and Sciences, Chongqing, China
| | - Li Tang
- 1 Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Li Zhang
- 1 Department of Pathophysiology, Chongqing Medical University, Chongqing, China.,3 Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|
149
|
CD13 as target for tissue factor induced tumor vascular infarction in small cell lung cancer. Lung Cancer 2017; 113:121-127. [PMID: 29110838 DOI: 10.1016/j.lungcan.2017.09.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Zinc-binding protease aminopeptidase N (CD13) is expressed on tumor vascular cells and tumor cells. It represents a potential candidate for molecular targeted therapy, e.g. employing truncated tissue factor (tTF)-NGR, which can bind CD13 and thereby induce tumor vascular infarction. We performed a comprehensive analysis of CD13 expression in a clinically well characterized cohort of patients with small cell lung cancer (SCLC) to evaluate its potential use for targeted therapies in this disease. MATERIAL AND METHODS CD13 expression was analyzed immunohistochemically in 27 SCLC patients and correlated with clinical course and outcome. In CD-1 nude mice bearing human HTB119 SCLC xenotransplants, the systemic effects of the CD13-targeting fusion protein tTF-NGR on tumor growth were tested. RESULTS AND CONCLUSION In 52% of the investigated SCLC tissue samples, CD13 was expressed in tumor stroma cells, while the tumor cells were negative for CD13. No prognostic effect was found in the investigated SCLC study collective with regard to overall survival (p>0.05). In CD-1 nude mice, xenografts of CD13 negative HTB119 SCLC cells showed CD13 expression in the intratumoral vascular and perivascular cells, and the systemic application of CD13-targeted tissue factor tTF-NGR led to a significant reduction of tumor growth. We here present first data on the expression of CD13 in SCLC tumor samples. Our results strongly recommend the further investigation of tTF-NGR and other molecules targeted by NGR-peptides in SCLC patients. Considering the differential expression of CD13 in SCLC samples pre-therapeutic CD13 analysis is proposed for testing as investigational predictive biomarker for patient selection.
Collapse
|
150
|
Comparison of tissue factor expression and activity in foetal and adult endothelial cells. Blood Coagul Fibrinolysis 2017; 28:452-459. [DOI: 10.1097/mbc.0000000000000621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|