101
|
Molecular insight into taste and aroma of sliced dry-cured ham induced by protein degradation undergone high-pressure conditions. Food Res Int 2019; 122:635-642. [DOI: 10.1016/j.foodres.2019.01.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 11/21/2022]
|
102
|
Javaeed A, Ghauri SK. MCT4 has a potential to be used as a prognostic biomarker - a systematic review and meta-analysis. Oncol Rev 2019; 13:403. [PMID: 31410246 PMCID: PMC6661531 DOI: 10.4081/oncol.2019.403] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 06/27/2019] [Indexed: 12/12/2022] Open
Abstract
The role of several metabolic changes, such as hypoxia and acidosis, in the tumour environment has caught the attention of researchers in cancer progression and invasion. Lactate transport is one of the acidosis-enhancing processes that are mediated via monocarboxylate transporters (MCTs). We conducted a systematic review and meta-analysis to investigate the expression of two cancer-relevant MCTs (MCT1 and MCT4) and their potential prognostic significance in patients with metastasis of different types of cancer. Studies were included if they reported the number of metastatic tissue samples expressing either low or high levels of MCT1 and/or MCT4 or those revealing the hazard ratios (HRs) of the overall survival (OS) or disease-free survival (DFS) as prognostic indicators. During the period between 2010 and 2018, a total of 20 articles including 3831 patients (56.3% males) were identified. There was a significant association between MCT4 expression (high versus low) and lymph node metastasis [odds ratio (OR)=1.87, 95% confidence interval (CI)=1.10-3.17, P=0.02] and distant metastasis (OR=2.18, 95%CI=1.65-2.86, P<0.001) and the correlation remained significant for colorectal and hepatic cancer in subgroup analysis. For survival analysis, patients with shorter OS periods exhibited a higher MCT4 expression [hazard ratio (HR)=1.78, 95%CI=1.49-2.13, P<0.001], while DFS was shorter in patients with high MCT1 (HR=1.48, 95%CI=1.04-2.10, P=0.03) and MCT4 expression (HR=1.70, 95%CI=1.19-2.42, P=0.003) when compared to their counterparts with low expression levels. Future research studies should consider the pharmacologic inhibition of MCT4 to effectively inhibit cancer progression to metastasis.
Collapse
Affiliation(s)
| | - Sanniya Khan Ghauri
- Department of Emergency Medicine, Shifa International Hospital, Islamabad, Pakistan
| |
Collapse
|
103
|
Comparative Transcriptomic Analysis of the Larval and Adult Stages of Taenia pisiformis. Genes (Basel) 2019; 10:genes10070507. [PMID: 31277509 PMCID: PMC6678355 DOI: 10.3390/genes10070507] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/18/2019] [Accepted: 07/01/2019] [Indexed: 01/09/2023] Open
Abstract
Taenia pisiformis is a tapeworm causing economic losses in the rabbit breeding industry worldwide. Due to the absence of genomic data, our knowledge on the developmental process of T. pisiformis is still inadequate. In this study, to better characterize differential and specific genes and pathways associated with the parasite developments, a comparative transcriptomic analysis of the larval stage (TpM) and the adult stage (TpA) of T. pisiformis was performed by Illumina RNA sequencing (RNA-seq) technology and de novo analysis. In total, 68,588 unigenes were assembled with an average length of 789 nucleotides (nt) and N50 of 1485 nt. Further, we identified 4093 differentially expressed genes (DEGs) in TpA versus TpM, of which 3186 DEGs were upregulated and 907 were downregulated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes (KEGG) analyses revealed that most DEGs involved in metabolic processes and Wnt signaling pathway were much more active in the TpA stage. Quantitative real-time PCR (qPCR) validated that the expression levels of the selected 10 DEGs were consistent with those in RNA-seq, indicating that the transcriptomic data are reliable. The present study provides comparative transcriptomic data concerning two developmental stages of T. pisiformis, which will be of great value for future functional studies on the regulatory mechanisms behind adult worm pathogenesis and for developing drugs and vaccines against this important parasite.
Collapse
|
104
|
Sadaf A, Sinha R, Khare SK. Proteomic profiling of Sporotrichum thermophile under the effect of ionic liquids: manifestation of an oxidative stress response. 3 Biotech 2019; 9:240. [PMID: 31168433 PMCID: PMC6542886 DOI: 10.1007/s13205-019-1771-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/18/2019] [Indexed: 01/24/2023] Open
Abstract
Sporotrichum thermophile, a known producer of industrial enzymes exhibited stability in the presence of ionic liquids (ILs).The study reports, for the first time, the stress response of S. thermophile upon exposure to ILs. In vitro assay showed increased anti-oxidative enzyme levels indicating ROS-mediated oxidative stress by ILs. The proteomic profile and identification of differential proteins confirmed the fungal adaptations by (i) increased expression of glycolytic enzymes and ATP synthases (ii) downregulation of TCA cycle and protein synthesis machinery components (iii) expression of HSP70 and catalase/peroxidase. These changes are indicative of metabolic regulation of many important pathways and how ILs can be used to manipulate protein behavior.
Collapse
Affiliation(s)
- Ayesha Sadaf
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi, 110016 India
| | - Rajeshwari Sinha
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi, 110016 India
| | - Sunil K. Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi, 110016 India
| |
Collapse
|
105
|
Feng JY, Chen JX, Luo L, Lin SM, Chen YJ, Wang DS. Molecular and metabolic adaption of glucose metabolism in the red and white muscle of the omnivorous GIFT tilapia Oreochromis niloticus to a glucose load. Gen Comp Endocrinol 2019; 277:82-89. [PMID: 30902611 DOI: 10.1016/j.ygcen.2019.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 03/04/2019] [Accepted: 03/18/2019] [Indexed: 02/01/2023]
Abstract
In this experiment, Genetically improved farmed Nile tilapia Oreochromis niloticus were intraperitoneally injected with 1 g glucose/kg of body weight or saline. Red and white muscle tissues were collected at 0, 1, 2, 4, 6 and 12 h after the glucose tolerance test (GTT) or saline injection, and the time course of changes in molecular and metabolic adaption of glucose metabolism of these two tissues were evaluated. The results showed that the expression of insulin-responsive glucose transporter 4 (glut4) was up-regulated at 4 h after the GTT in the red muscle, implying an increase of glucose uptake. However, the expression of glut4 in the white muscle did not change with glucose load. The glycolysis of red muscle in tilapia was stimulated during 2-4 h after the GTT, as the expression of hexokinase 1b (hk1b), hk2, phosphofructokinase muscle type a (pfkma) and pfkmb and the activity of HK and PFK increased. By contrast, only the expression of hk1b was up-regulated at 6 h after the GTT in the white muscle. The mRNA level of glycogen synthase 1 (gys1) and glycogen content increased at 2 and 6 h, respectively after the GTT in the red muscle, suggesting that glucose storage was provoked. However, glycogen content in the white muscle was not impacted by GTT. Lipogenesis was stimulated in the red muscle as reflected by up-regulated expression of acetyl-CoA carboxylase α (accα) (during 2-4 h) and accβ (during 4-12 h) with GTT. In the white muscle, however, the expression of accα was not changed, and mRNA level of accβ was not up-regulated until 6 h after the GTT. Taken together, it was concluded that the glycolytic and glycogen synthesis mechanisms in the red muscle were highly regulated by an acute glucose load while those in the white muscle were less responsive to this stimulus.
Collapse
Affiliation(s)
- Jing-Yun Feng
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Jun-Xing Chen
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Li Luo
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Animal Science and Technology, Southwest University, Chongqing, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, China
| | - Shi-Mei Lin
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Animal Science and Technology, Southwest University, Chongqing, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, China
| | - Yong-Jun Chen
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Animal Science and Technology, Southwest University, Chongqing, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, China.
| | - De-Shou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, China; School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
106
|
Ren Q, Gliozzi ML, Rittenhouse NL, Edmunds LR, Rbaibi Y, Locker JD, Poholek AC, Jurczak MJ, Baty CJ, Weisz OA. Shear stress and oxygen availability drive differential changes in opossum kidney proximal tubule cell metabolism and endocytosis. Traffic 2019; 20:448-459. [PMID: 30989771 DOI: 10.1111/tra.12648] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 12/26/2022]
Abstract
Kidney proximal tubule (PT) cells have high-metabolic demands to drive the extraordinary ion and solute transport, water reabsorption, and endocytic uptake that occur in this nephron segment. Increases in renal blood flow alter glomerular filtration rate and lead to rapid mechanosensitive adaptations in PT transport, impacting metabolic demand. Although the PT reabsorbs essentially all of the filtered glucose, PT cells rely primarily on oxidative metabolism rather than glycolysis to meet their energy demands. We lack an understanding of how PT functions are impacted by changes in O2 availability via cortical capillaries and mechanosensitive signaling in response to alterations in luminal flow. Previously, we found that opossum kidney (OK) cells recapitulate key features of PT cells in vivo, including enhanced endocytic uptake and ion transport, when exposed to mechanical stimulation by culture on an orbital shaker. We hypothesized that increased oxygenation resulting from orbital shaking also contributes to this more physiologic phenotype. RNA seq of OK cells maintained under static conditions or exposed to orbital shaking for up to 96 hours showed significant time- and culture-dependent changes in gene expression. Transcriptional and metabolomics data were consistent with a decrease in glycolytic flux and with an increased utilization of aerobic metabolic pathways in cells exposed to orbital shaking. Moreover, we found spatial differences in the pattern of mitogenesis vs development of ion transport and endocytic capacities in our culture system that highlight the complexity of O2 -dependent and mechanosensitive crosstalk to regulate PT cell function.
Collapse
Affiliation(s)
- Qidong Ren
- School of Medicine, Tsinghua University, Beijing, China.,Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Megan L Gliozzi
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Natalie L Rittenhouse
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Lia R Edmunds
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Youssef Rbaibi
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Joseph D Locker
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Amanda C Poholek
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Michael J Jurczak
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Catherine J Baty
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ora A Weisz
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
107
|
Gizak A, Duda P, Wisniewski J, Rakus D. Fructose-1,6-bisphosphatase: From a glucose metabolism enzyme to multifaceted regulator of a cell fate. Adv Biol Regul 2019; 72:41-50. [PMID: 30871972 DOI: 10.1016/j.jbior.2019.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
Fructose-1,6-bisphosphatase (FBPase) is one of the ancient, evolutionarily conserved enzymes of carbohydrate metabolism. It has been described for a first time in 1943, however, for the next half a century mostly kinetic and structural parameters of animal FBPases have been studied. Discovery of ubiquitous expression of the muscle isozyme of FBPase, thus far considered to merely regulate glycogen synthesis from carbohydrate precursors, and its nuclear localisation in several cell types has risen new interest in the protein, resulting in numerous publications revealing complex functions/properties of FBPase. This review summarises the current knowledge of FBPase in animal cells providing evidence that the enzyme merits the name of moonlighting protein.
Collapse
Affiliation(s)
- Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Przemyslaw Duda
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Janusz Wisniewski
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland.
| |
Collapse
|
108
|
Twort VG, Newcomb RD, Buckley TR. New Zealand Tree and Giant Wētā (Orthoptera) Transcriptomics Reveal Divergent Selection Patterns in Metabolic Loci. Genome Biol Evol 2019; 11:1293-1306. [PMID: 30957857 PMCID: PMC6486805 DOI: 10.1093/gbe/evz070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2019] [Indexed: 01/01/2023] Open
Abstract
Exposure to low temperatures requires an organism to overcome physiological challenges. New Zealand wētā belonging to the genera Hemideina and Deinacrida are found across a wide range of thermal environments and therefore subject to varying selective pressures. Here we assess the selection pressures across the wētā phylogeny, with a particular emphasis on identifying genes under positive or diversifying selection. We used RNA-seq to generate transcriptomes for all 18 Deinacrida and Hemideina species. A total of 755 orthologous genes were identified using a bidirectional best-hit approach, with the resulting gene set encompassing a diverse range of functional classes. Analysis of ortholog ratios of synonymous to nonsynonymous amino acid changes found 83 genes that are under positive selection for at least one codon. A wide variety of Gene Ontology terms, enzymes, and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways are represented among these genes. In particular, enzymes involved in oxidative phosphorylation, melanin synthesis, and free-radical scavenging are represented, consistent with physiological and metabolic changes that are associated with adaptation to alpine environments. Structural alignment of the transcripts with the most codons under positive selection revealed that the majority of sites are surface residues, and therefore have the potential to influence the thermostability of the enzyme, with the exception of prophenoloxidase where two residues near the active site are under selection. These proteins provide interesting candidates for further analysis of protein evolution.
Collapse
Affiliation(s)
- Victoria G Twort
- School of Biological Sciences, University of Auckland, New Zealand.,Manaaki Whenua - Landcare Research, Auckland, New Zealand.,Department of Biology, Lund University, Lund, Sweden
| | - Richard D Newcomb
- School of Biological Sciences, University of Auckland, New Zealand.,The New Zealand Institute for Plant & Food Research Ltd, Auckland, New Zealand
| | - Thomas R Buckley
- School of Biological Sciences, University of Auckland, New Zealand.,Manaaki Whenua - Landcare Research, Auckland, New Zealand
| |
Collapse
|
109
|
Nouri H, Monnier AF, Fossum-Raunehaug S, Maciag-Dorszynska M, Cabin-Flaman A, Képès F, Wegrzyn G, Szalewska-Palasz A, Norris V, Skarstad K, Janniere L. Multiple links connect central carbon metabolism to DNA replication initiation and elongation in Bacillus subtilis. DNA Res 2019; 25:641-653. [PMID: 30256918 PMCID: PMC6289782 DOI: 10.1093/dnares/dsy031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 08/17/2018] [Indexed: 12/27/2022] Open
Abstract
DNA replication is coupled to growth by an unknown mechanism. Here, we investigated this coupling by analyzing growth and replication in 15 mutants of central carbon metabolism (CCM) cultivated in three rich media. In about one-fourth of the condition tested, defects in replication resulting from changes in initiation or elongation were detected. This uncovered 11 CCM genes important for replication and showed that some of these genes have an effect in one, two or three media. Additional results presented here and elsewhere (Jannière, L., Canceill, D., Suski, C., et al. (2007), PLoS One, 2, e447.) showed that, in the LB medium, the CCM genes important for DNA elongation (gapA and ackA) are genetically linked to the lagging strand polymerase DnaE while those important for initiation (pgk and pykA) are genetically linked to the replication enzymes DnaC (helicase), DnaG (primase) and DnaE. Our work thus shows that the coupling between growth and replication involves multiple, medium-dependent links between CCM and replication. They also suggest that changes in CCM may affect initiation by altering the functional recruitment of DnaC, DnaG and DnaE at the chromosomal origin, and may affect elongation by altering the activity of DnaE at the replication fork. The underlying mechanism is discussed.
Collapse
Affiliation(s)
- Hamid Nouri
- iSSB, Génopole, CNRS, UEVE, Université Paris-Saclay, Evry France.,MICALIS, INRA, Jouy en Josas, France
| | | | | | | | | | - François Képès
- iSSB, Génopole, CNRS, UEVE, Université Paris-Saclay, Evry France
| | - Grzegorz Wegrzyn
- Department of Molecular Biology, University of Gdansk, Gdansk, Poland
| | | | - Vic Norris
- Laboratoire MERCI, AMMIS, Faculté des Sciences, Mont-Saint-Aignan, France
| | - Kirsten Skarstad
- Department of Cell Biology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Laurent Janniere
- iSSB, Génopole, CNRS, UEVE, Université Paris-Saclay, Evry France.,MICALIS, INRA, Jouy en Josas, France
| |
Collapse
|
110
|
Li X, Wei W, Li F, Zhang L, Deng X, Liu Y, Yang S. The Plastidial Glyceraldehyde-3-Phosphate Dehydrogenase Is Critical for Abiotic Stress Response in Wheat. Int J Mol Sci 2019; 20:E1104. [PMID: 30836662 PMCID: PMC6429432 DOI: 10.3390/ijms20051104] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 11/16/2022] Open
Abstract
Plastidial glyceraldehyde-3-phosphate dehydrogenase (GAPDH, GAPCp) are ubiquitous proteins that play pivotal roles in plant metabolism and are involved in stress response. However, the mechanism of GAPCp's function in plant stress resistance process remains unclear. Here we isolated, identified, and characterized the TaGAPCp1 gene from Chinese Spring wheat for further investigation. Subcellular localization assay indicated that the TaGAPCp1 protein was localized in the plastid of tobacco (Nicotiana tobacum) protoplast. In addition, quantitative real-time PCR (qRT-PCR) unraveled that the expression of TaGAPCp1 (GenBank: MF477938.1) was evidently induced by osmotic stress and abscisic acid (ABA). This experiment also screened its interaction protein, cytochrome b6-f complex iron sulfite subunit (Cyt b6f), from the wheat cDNA library using TaGAPCp1 protein as a bait via the yeast two-hybrid system (Y2H) and the interaction between Cyt b6f and TaGAPCp1 was verified by bimolecular fluorescence complementation assay (BiFC). Moreover, H₂O₂ could also be used as a signal molecule to participate in the process of Cyt b6f response to abiotic stress. Subsequently, we found that the chlorophyll content in OE-TaGAPCp1 plants was significantly higher than that in wild type (WT) plants. In conclusion, our data revealed that TaGAPCp1 plays an important role in abiotic stress response in wheat and this stress resistance process may be completed by H₂O₂-mediated ABA signaling pathway.
Collapse
Affiliation(s)
- Xixi Li
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Wenjie Wei
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Fangfang Li
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Lin Zhang
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xia Deng
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Ying Liu
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Shushen Yang
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
111
|
Label-free quantitative proteomic analysis of milk fat globule membrane proteins of yak and cow and identification of proteins associated with glucose and lipid metabolism. Food Chem 2019; 275:59-68. [DOI: 10.1016/j.foodchem.2018.09.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 11/19/2022]
|
112
|
Non-Toxic and Ultra-Small Biosilver Nanoclusters Trigger Apoptotic Cell Death in Fluconazole-Resistant Candida albicans via Ras Signaling. Biomolecules 2019; 9:biom9020047. [PMID: 30769763 PMCID: PMC6406502 DOI: 10.3390/biom9020047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 01/01/2023] Open
Abstract
Silver-based nanostructures are suitable for many biomedical applications, but to be useful therapeutic agents, the high toxicity of these nanomaterials must be eliminated. Here, we biosynthesize nontoxic and ultra-small silver nanoclusters (rsAg@NCs) using metabolites of usnioid lichen (a symbiotic association of algae and fungi) that exhibit excellent antimicrobial activity against fluconazole (FCZ)-resistant Candida albicans that is many times higher than chemically synthesized silver nanoparticles (AgNPs) and FCZ. The rsAg@NCs trigger apoptosis via reactive oxygen species accumulation that leads to the loss of mitochondrial membrane potential, DNA fragmentation, chromosomal condensation, and the activation of metacaspases. The proteomic analysis clearly demonstrates that rsAg@NCs exposure significantly alters protein expression. Most remarkable among the down-regulated proteins are those related to glycolysis, metabolism, free radical scavenging, anti-apoptosis, and mitochondrial function. In contrast, proteins involved in plasma membrane function, oxidative stress, cell death, and apoptosis were upregulated. Eventually, we also established that the apoptosis-inducing potential of rsAg@NCs is due to the activation of Ras signaling, which confirms their application in combating FCZ-resistant C. albicans infections.
Collapse
|
113
|
Brewer MK, Gentry MS. Brain Glycogen Structure and Its Associated Proteins: Past, Present and Future. ADVANCES IN NEUROBIOLOGY 2019; 23:17-81. [PMID: 31667805 PMCID: PMC7239500 DOI: 10.1007/978-3-030-27480-1_2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This chapter reviews the history of glycogen-related research and discusses in detail the structure, regulation, chemical properties and subcellular distribution of glycogen and its associated proteins, with particular focus on these aspects in brain tissue.
Collapse
Affiliation(s)
- M Kathryn Brewer
- Department of Molecular and Cellular Biochemistry, Epilepsy and Brain Metabolism Center, Lafora Epilepsy Cure Initiative, and Center for Structural Biology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry, Epilepsy and Brain Metabolism Center, Lafora Epilepsy Cure Initiative, and Center for Structural Biology, University of Kentucky College of Medicine, Lexington, KY, USA.
| |
Collapse
|
114
|
Murphy S, Zweyer M, Henry M, Meleady P, Mundegar RR, Swandulla D, Ohlendieck K. Proteomic profiling of liver tissue from the mdx- 4cv mouse model of Duchenne muscular dystrophy. Clin Proteomics 2018; 15:34. [PMID: 30386187 PMCID: PMC6205794 DOI: 10.1186/s12014-018-9212-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/23/2018] [Indexed: 12/30/2022] Open
Abstract
Background Duchenne muscular dystrophy is a highly complex multi-system disease caused by primary abnormalities in the membrane cytoskeletal protein dystrophin. Besides progressive skeletal muscle degeneration, this neuromuscular disorder is also associated with pathophysiological perturbations in many other organs including the liver. To determine potential proteome-wide alterations in liver tissue, we have used a comparative and mass spectrometry-based approach to study the dystrophic mdx-4cv mouse model of dystrophinopathy. Methods The comparative proteomic profiling of mdx-4cv versus wild type liver extracts was carried out with an Orbitrap Fusion Tribrid mass spectrometer. The distribution of identified liver proteins within protein families and potential protein interaction patterns were analysed by systems bioinformatics. Key findings on fatty acid binding proteins were confirmed by immunoblot analysis and immunofluorescence microscopy. Results The proteomic analysis revealed changes in a variety of protein families, affecting especially fatty acid, carbohydrate and amino acid metabolism, biotransformation, the cellular stress response and ion handling in the mdx-4cv liver. Drastically increased protein species were identified as fatty acid binding protein FABP5, ferritin and calumenin. Decreased liver proteins included phosphoglycerate kinase, apolipoprotein and perilipin. The drastic change in FABP5 was independently verified by immunoblotting and immunofluorescence microscopy. Conclusions The proteomic results presented here indicate that the intricate and multifaceted pathogenesis of the mdx-4cv model of dystrophinopathy is associated with secondary alterations in the liver affecting especially fatty acid transportation. Since FABP5 levels were also shown to be elevated in serum from dystrophic mice, this protein might be a useful indicator for monitoring liver changes in X-linked muscular dystrophy.
Collapse
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Margit Zweyer
- 2Institute of Physiology II, University of Bonn, 53115 Bonn, Germany
| | - Michael Henry
- 3National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Paula Meleady
- 3National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Rustam R Mundegar
- 2Institute of Physiology II, University of Bonn, 53115 Bonn, Germany
| | - Dieter Swandulla
- 2Institute of Physiology II, University of Bonn, 53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
115
|
Marbaniang C, Kma L. Dysregulation of Glucose Metabolism by Oncogenes and Tumor Suppressors in Cancer Cells. Asian Pac J Cancer Prev 2018; 19:2377-2390. [PMID: 30255690 PMCID: PMC6249467 DOI: 10.22034/apjcp.2018.19.9.2377] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/20/2018] [Indexed: 02/07/2023] Open
Abstract
Cancers are complex diseases having several unique features, commonly described as ‘hallmarks of cancer’. Among them, altered signaling pathways are the common characteristic features that drive cancer progression; this is achieved due to mutations that lead to the activation of growth promoting(s) oncogenes and inactivation of tumor suppressors. As a result of which, cancer cells increase their glycolytic rate by consuming a large amount of glucose, and convert a majority of glucose to lactate even in the presence of oxygen known as the “Warburg effect”. Tumor cells like other cells are strictly dependent on energy for growth and survival; therefore, understanding energy metabolism will give us an idea to develop new effective anti-cancer therapies that target cancer energy production pathways. This review summarizes the roles of tumor suppressors and oncogenes and their products that provide metabolic advantages to cancer cells which in turn leads to the establishment of the “Warburg effect” and ultimately leads to cancer progression. Understanding cancer cell’s vulnerability will provide potential targets for its control.
Collapse
Affiliation(s)
- Casterland Marbaniang
- Department of Biochemistry, Cancer and Radiation Countermeasures Unit,North-Eastern Hill University, Shillong, Meghalaya, India.
| | | |
Collapse
|
116
|
Chen X, Yin G, Börner A, Xin X, He J, Nagel M, Liu X, Lu X. Comparative physiology and proteomics of two wheat genotypes differing in seed storage tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:455-463. [PMID: 30077921 DOI: 10.1016/j.plaphy.2018.07.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 05/07/2023]
Abstract
The longevity of seeds stored in Genebank is based on their storability. However, the mechanism of seed storability is largely unknown. In previous studies, accelerated ageing treatments were always applied for rapidly acquiring different seed viabilities, which could not reflect the actual situation during seed storage, especially for the seed stored in Genebank. In this study, two wheat genotypes (accession TRI_23248 and TRI_10230) were supplied by IPK-Gatersleben Genebank, Germany, where they were stored for 10 years in the long-term storage (-18 °C) and at ambient conditions (20 °C) The comparison of viability of those seed after this storage period, identified TRI_23248 as storage tolerant (ST) and TRI_10230 as storage sensitive (SS). The abundance patterns of proteins in these seeds identified 93 protein spots in the ST and 105 spots in the SS seeds that were markedly changed; their functions were mainly associated with disease or defense, protein destination and storage, energy, and other. The ST seeds possessed a stronger ability in activating the defense system against oxidative damage, utilizing storage proteins for germination, and maintaining energy metabolism for ATP supply. These results provided novel insights into the mechanism of seed storability, which can facilitate the comprehensive understanding of seed longevity.
Collapse
Affiliation(s)
- Xiuling Chen
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guangkun Yin
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Andreas Börner
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, 06466, Stadt Seeland, OT Gatersleben, Germany
| | - Xia Xin
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Juanjuan He
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Manuela Nagel
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, 06466, Stadt Seeland, OT Gatersleben, Germany
| | - Xu Liu
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinxiong Lu
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
117
|
Trax: A versatile signaling protein plays key roles in synaptic plasticity and DNA repair. Neurobiol Learn Mem 2018; 159:46-51. [PMID: 30017897 DOI: 10.1016/j.nlm.2018.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/20/2018] [Accepted: 07/03/2018] [Indexed: 01/23/2023]
Abstract
Translin-associated protein X (TSNAX), also called trax, was first identified as a protein that interacts with translin. Subsequent studies demonstrated that these proteins form a heteromeric RNase complex that mediates degradation of microRNAs, a pivotal finding that has stimulated interest in understanding the role of translin and trax in cell signaling. Recent studies addressing this question have revealed that trax plays key roles in both synaptic plasticity and DNA repair signaling pathways. In the context of synaptic plasticity, trax works together with its partner protein, translin, to degrade a subset of microRNAs. Activation of the translin/trax RNase complex reverses microRNA-mediated translational silencing to trigger dendritic protein synthesis critical for synaptic plasticity. In the context of DNA repair, trax binds to and activates ATM, a central component of the double-stranded DNA repair process. Thus, these studies focus attention on trax as a critical signaling protein that interacts with multiple partners to impact diverse signaling pathways. To stimulate interest in deciphering the multifaceted role of trax in cell signaling, we summarize the current understanding of trax biology and highlight gaps in our knowledge about this protean protein.
Collapse
|
118
|
Jiang Z, Wang X, Li J, Yang H, Lin X. Aldolase A as a prognostic factor and mediator of progression via inducing epithelial-mesenchymal transition in gastric cancer. J Cell Mol Med 2018; 22:4377-4386. [PMID: 29992789 PMCID: PMC6111871 DOI: 10.1111/jcmm.13732] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 05/24/2018] [Indexed: 02/03/2023] Open
Abstract
Glycolysis is regarded as the hallmark of cancer development and progression, which involves a multistep enzymatic reaction. This study aimed to explore the clinicopathological significance and potential role of glycolytic enzyme aldolase A (ALDOA) in the carcinogenesis and progression of gastric cancer (GC). ALDOA was screened from three paired liver metastasis tissues and primary GC tissues and further explored with clinical samples and in vitro studies. The ALDOA protein level significantly correlated with a larger tumor diameter (P = .004), advanced T stage (P < .001), N stage (P < .001) and lymphovascular invasion (P = .001). Moreover, the expression of ALDOA was an independent prognostic factor for the 5‐year overall survival and disease‐free survival of patients with GC in both univariate and multivariate survival analyses (P < .05). Silencing the expression of ALDOA in GC cell lines significantly impaired cell growth, proliferation and invasion ability (P < .05). Knockdown of the expression of ALDOA reversed the epithelial–mesenchymal transition process. Mechanically, ALDOA could affect the hypoxia‐inducible factor (HIF)‐1α activity as demonstrated by the HIF‐1α response element–luciferase activity in GC cells. Collectively, this study revealed that ALDOA was a potential biomarker of GC prognosis and was important in the carcinogenesis and progression of human GC.
Collapse
Affiliation(s)
- Zhonghua Jiang
- Department of Gastroenterology, The First People's Hospital of Yancheng, Yancheng, China
| | - Xiaohong Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jing Li
- Departments of CyberKnife, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongmei Yang
- Department of Gastroenterology, The First People's Hospital of Yancheng, Yancheng, China
| | - Xin Lin
- Department of Digestive Endoscopy, The First People's Hospital of Wujiang District, Suzhou, China
| |
Collapse
|
119
|
Cai K, Shao W, Chen X, Campbell YL, Nair MN, Suman SP, Beach CM, Guyton MC, Schilling MW. Meat quality traits and proteome profile of woody broiler breast (pectoralis major) meat. Poult Sci 2018; 97:337-346. [PMID: 29053841 DOI: 10.3382/ps/pex284] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 09/07/2017] [Indexed: 01/03/2023] Open
Abstract
Woody breast meat has recently become prevalent in the broiler industry in both the United States and European Union. Recent publications have described the meat quality characteristics of woody breast meat as having hardened areas and pale ridge-like bulges at both the caudal and cranial regions of the breast. The present study investigated the meat quality (pH, color, cooking loss, and shear force) and protein quality characteristics (protein and salt-soluble protein content) in woody breast meat as compared to normal breast meat. In addition, the differences in the muscle proteome profiles of woody and normal breast meat were characterized. Results indicated that woody breast meat had a greater average pH (P < 0.0001) and cooking loss (P = 0.001) than normal breast meat, but woody breast meat did not differ in shear force (P > 0.05) in comparison to normal breast meat samples. The L*, a*, and b* values of woody breast fillets were greater than normal breast fillets (P < 0.0001 to L*; P = 0.002 to a*; P = 0.016 to b*). The woody breast meat had more fat (P < 0.0001) and moisture (P < 0.021) and less protein (P < 0.0001) and salt-soluble protein (P < 0.0001) when compared with normal breast fillets. Whole muscle proteome analysis indicated 8 proteins that were differentially expressed (P < 0.05) between normal and woody breast meat samples. The differences in muscle proteome between normal and woody breast meat indicated an increased oxidative stress in woody breast meat when compared to normal meat. In addition, the abundance of some glycolytic enzymes, which are critical to the regeneration of adenosine triphosphate (ATP) in postmortem muscles, was lower in woody breast meat than in normal breast meat. Proteomic differences provide additional information on the biochemical pathways and genetic variations that lead to woody breast meat. Further research should be conducted to elucidate the genetic and nutritional contributions to the proliferation of woody breast meat in the United States.
Collapse
Affiliation(s)
- K Cai
- School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009 PRA
| | - W Shao
- Department of Food Science, Nutrition, and Health Promotion, Mississippi State University, Mississippi State 39762
| | - X Chen
- Department of Poultry Science, Mississippi State University, Mississippi State 39762
| | - Y L Campbell
- Department of Food Science, Nutrition, and Health Promotion, Mississippi State University, Mississippi State 39762
| | - M N Nair
- Department of Animal and Food Sciences, University of Kentucky, Lexington 40546
| | - S P Suman
- Department of Animal and Food Sciences, University of Kentucky, Lexington 40546
| | - C M Beach
- Proteomics Core Facility, University of Kentucky, Lexington 40506
| | - M C Guyton
- Department of Food Science, Nutrition, and Health Promotion, Mississippi State University, Mississippi State 39762
| | - M W Schilling
- Department of Food Science, Nutrition, and Health Promotion, Mississippi State University, Mississippi State 39762
| |
Collapse
|
120
|
Huangyang P, Simon MC. Hidden features: exploring the non-canonical functions of metabolic enzymes. Dis Model Mech 2018; 11:11/8/dmm033365. [PMID: 29991493 PMCID: PMC6124551 DOI: 10.1242/dmm.033365] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The study of cellular metabolism has been rigorously revisited over the past decade, especially in the field of cancer research, revealing new insights that expand our understanding of malignancy. Among these insights is the discovery that various metabolic enzymes have surprising activities outside of their established metabolic roles, including in the regulation of gene expression, DNA damage repair, cell cycle progression and apoptosis. Many of these newly identified functions are activated in response to growth factor signaling, nutrient and oxygen availability, and external stress. As such, multifaceted enzymes directly link metabolism to gene transcription and diverse physiological and pathological processes to maintain cell homeostasis. In this Review, we summarize the current understanding of non-canonical functions of multifaceted metabolic enzymes in disease settings, especially cancer, and discuss specific circumstances in which they are employed. We also highlight the important role of subcellular localization in activating these novel functions. Understanding their non-canonical properties should enhance the development of new therapeutic strategies for cancer treatment. Summary: This Review summarizes recent findings about multifaceted metabolic enzymes with non-canonical activities outside their core biochemical functions, and how they may provide new therapeutic strategies for cancers.
Collapse
Affiliation(s)
- Peiwei Huangyang
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Departments of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA .,Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
121
|
Wang Y, Li G, Wan F, Dai B, Ye D. Prognostic value of D-lactate dehydrogenase in patients with clear cell renal cell carcinoma. Oncol Lett 2018; 16:866-874. [PMID: 29963157 PMCID: PMC6019897 DOI: 10.3892/ol.2018.8782] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/28/2017] [Indexed: 12/31/2022] Open
Abstract
Lactate dehydrogenase (LDH) is an enzyme involved in anaerobic glycolysis and is associated with the prognosis of patients with renal cell carcinoma (RCC). The human genome has four LDH genes: LDHA, LDHB, LDHC and LDHD. In order to determine which of these four LDH genes may predict clear cell RCC (ccRCC), a total of 509 patients with ccRCC from The Cancer Genome Atlas (TCGA) cohort and 192 patients with ccRCC from the Fudan University Shanghai Cancer Centre (FUSCC) cohort were enrolled in the present study. The expression profiles of LDHD genes in the TCGA cohort were obtained from the TCGA RNAseq database. The Cox proportional hazards regression model and Kaplan-Meier curves were used to assess relative factors. The LDH family genes that were revealed to have an association with overall survival (OS) were further validated in the FUSCC cohort. In the TCGA cohort, following Cox proportional hazards analysis, LDHD expression (P=0.0400; hazard ratio, 0.872; 95% confidence interval, 0.764-0.994) was revealed to be predictive of the prognosis of patients with ccRCC. Further analysis revealed that low LDHD expression (P<0.0001) was significantly associated with a poor prognosis in terms of OS. Additionally, the expression of LDHD (P<0.0001) was significantly different in patients with ccRCC compared with paired controls. In the FUSCC cohort, low LDHD expression was also associated with a poor OS (P=0.0103), and the tumour pathological T stage was a factor that influenced the expression of LDHD (P=0.0120). Furthermore, the expression of LDHD influenced the serum LDH level (P=0.0126). The downregulation of LDHD expression may be a predictor of poor prognosis in patients with ccRCC.
Collapse
Affiliation(s)
- Yue Wang
- Department of Urology, Fudan University Shanghai Cancer Centre, Shanghai 200032, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Gaoxiang Li
- Department of Urology, Fudan University Shanghai Cancer Centre, Shanghai 200032, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Fangning Wan
- Department of Urology, Fudan University Shanghai Cancer Centre, Shanghai 200032, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Bo Dai
- Department of Urology, Fudan University Shanghai Cancer Centre, Shanghai 200032, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Centre, Shanghai 200032, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
122
|
Pietkiewicz J, Danielewicz R, Bednarz-Misa IS, Ceremuga I, Wiśniewski J, Mierzchala-Pasierb M, Bronowicka-Szydełko A, Ziomek E, Gamian A. Experimental and bioinformatic approach to identifying antigenic epitopes in human α- and β-enolases. Biochem Biophys Rep 2018; 15:25-32. [PMID: 29922723 PMCID: PMC6005794 DOI: 10.1016/j.bbrep.2018.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/07/2018] [Accepted: 05/31/2018] [Indexed: 11/30/2022] Open
Abstract
Human α- and β-enolases are highly homologous enzymes, difficult to differentiate immunologically. In this work, we describe production, purification and properties of anti-α- and anti-β-enolase polyclonal antibodies. To raise antibodies, rabbits were injected with enolase isoenzymes that were purified from human kidney (α-enolase) and skeletal muscle (β-enolase). Selective anti-α- and anti-β-enolase antibodies were obtained by affinity chromatography on either α- or β-enolase-Sepharose columns. On Western blots, antibodies directed against human β-enolase, did not react with human α-isoenzyme, but recognized pig and rat β-enolase. To determine what makes these antibodies selective bioinformatic tools were used to predict conformational epitopes for both enolase isoenzymes. Three predicted epitopes were mapped to the same regions in both α- and β-enolase. Peptides corresponding to predicted epitopes were synthesized and tested against purified antibodies. One of the pin-attached peptides representing α-enolase epitope (the C-terminal portion of the epitope 3 - S262PDDPSRYISPDQ273) reacted with anti-α-enolase, while the other also derived from the α-enolase sequence (epitope 2 - N193VIKEKYGKDATN205) was recognized by anti-β-enolase antibodies. Interestingly, neither anti-α- nor anti-β-antibody reacted with a peptide corresponding to the epitope 2 in β-enolase (G194VIKAKYGKDATN206). Further analysis showed that substitution of E197 with A in α-enolase epitope 2 peptide lead to 70% loss of immunological activity, while replacement of A198 with E in peptide representing β-enolase epitope 2, caused 67% increase in immunological activity. Our results suggest that E197 is essential for preserving immunologically active conformation in epitope 2 peptidic homolog, while it is not crucial for this epitope's antigenic activity in native β-enolase.
Collapse
Key Words
- AP, alkaline phosphatase
- BSA, bovine serum albumin
- Cross-reactivity
- ELISA, enzyme-linked immunosorbent assay
- ESI, electrospray injection
- Enolase purification
- Epitope prediction
- HRP, horse radish peroxidase
- IgG, immunoglobulin G
- LC, liquid chromatography
- MS, mass spectrometry
- Mass spectrometry
- MeOH, methanol
- OPD, ortho-phenylenediamine
- PAGE, polyacrylamide gel electrophoresis
- PBS, phosphate buffered saline
- PMSF, phenylmethylsulfonyl fluoride
- SDS, sodium dodecylsulfate
- Specific antibodies
- TBST, 20 mM Tris, pH 7.4, 150 mM NaCl, 0.05% Tween-20
- UPLC-Q-TOF-MS, ultrapressure liquid chromatography, quadrupole-time-of-flight mass spectrometer
- WB, western blotting
- pNPP, para-nitrophenyl phosphate
Collapse
Affiliation(s)
- Jadwiga Pietkiewicz
- Department of Medical Biochemistry, Wroclaw Medical University,Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Regina Danielewicz
- Department of Medical Biochemistry, Wroclaw Medical University,Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Iwona S Bednarz-Misa
- Department of Medical Biochemistry, Wroclaw Medical University,Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Ireneusz Ceremuga
- Department of Medical Biochemistry, Wroclaw Medical University,Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Jerzy Wiśniewski
- Department of Medical Biochemistry, Wroclaw Medical University,Chalubinskiego 10, 50-368 Wroclaw, Poland
| | | | | | - Edmund Ziomek
- Wroclaw Research Center, Stablowicka 147, 50-066 Wroclaw, Poland
| | - Andrzej Gamian
- Department of Medical Biochemistry, Wroclaw Medical University,Chalubinskiego 10, 50-368 Wroclaw, Poland.,Wroclaw Research Center, Stablowicka 147, 50-066 Wroclaw, Poland
| |
Collapse
|
123
|
Ponce R, León-Janampa N, Gilman RH, Liendo R, Roncal E, Luis S, Quiñones-Garcia S, Silverstein Z, García HH, Gonzales A, Sheen P, Zimic M, Pajuelo MJ. A novel enolase from Taenia solium metacestodes and its evaluation as an immunodiagnostic antigen for porcine cysticercosis. Exp Parasitol 2018; 191:44-54. [PMID: 29885292 DOI: 10.1016/j.exppara.2018.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 12/06/2017] [Accepted: 06/05/2018] [Indexed: 11/19/2022]
Abstract
Cysticercosis is a worldwide parasitic disease of humans and pigs principally caused by infection with the larvae of the pork tapeworm Taenia solium. Through the use of the recently-made-available T. solium genome, we identified a gene within a novel 1448 bp ORF that theoretically encodes for a 433 amino acid-long protein and predicted to be an α-enolase closely related to enolases of other flatworms. Additional bioinformatic analyses revealed a putative plasminogen-binding region on this protein, suggesting a potential role for this protein in pathogenesis. On this basis, we isolated the mRNA encoding for this presumptive enolase from T. solium metacestodes and reverse-transcribed it into cDNA before subsequently cloning and expressing it in both E. coli (rEnoTs) and insect cells (rEnoTsBac), in a 6xHis tagged manner. The molecular weights of these two recombinant proteins were ∼48 and ∼50 kDa, respectively, with the differences likely attributable to differential glycosylation. We used spectrophotometric assays to confirm the enolase nature of rEnoTs as well as to measure its enzymatic activity. The resulting estimates of specific activity (60.000 U/mg) and Km (0.091 mM) are quite similar to the catalytic characteristics of enolases of other flatworms. rEnoTs also exhibited high immunogenicity, eliciting a strong polyclonal antibody response in immunized rabbits. We subsequently employed rEnoTsBac for use in an ELISA aimed at discriminating between healthy pigs and those infected with T. solium. This diagnostic assay exhibited a sensitivity of 88.4% (95% CI, 74.92%-96.11%) and a specificity of 83.7% (95% CI: 69.29%-93.19%). In conclusión, this study reports on and enzymatically characterizes a novel enolase from T. solium metacestode, and shows a potential use as an immunodiagnostic for porcine cysticercosis.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Helminth/biosynthesis
- Antigens, Helminth/chemistry
- Antigens, Helminth/genetics
- Antigens, Helminth/immunology
- Antigens, Helminth/metabolism
- Computational Biology
- Confidence Intervals
- Cysticercosis/diagnosis
- Cysticercosis/veterinary
- DNA, Complementary/genetics
- Enzyme-Linked Immunosorbent Assay/veterinary
- Female
- Genetic Vectors
- Phosphopyruvate Hydratase/chemistry
- Phosphopyruvate Hydratase/genetics
- Phosphopyruvate Hydratase/immunology
- Phosphopyruvate Hydratase/metabolism
- Phylogeny
- Protein Structure, Secondary
- Protein Structure, Tertiary
- RNA, Messenger/genetics
- RNA, Messenger/isolation & purification
- ROC Curve
- Rabbits
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/metabolism
- Sensitivity and Specificity
- Sequence Alignment
- Sf9 Cells
- Spectrophotometry/veterinary
- Swine
- Swine Diseases/diagnosis
- Swine Diseases/parasitology
- Taenia solium/classification
- Taenia solium/enzymology
- Taenia solium/genetics
- Taenia solium/immunology
Collapse
Affiliation(s)
- Reynaldo Ponce
- Laboratorio de Bioinformática y Biología Molecular, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Nancy León-Janampa
- Laboratorio de Bioinformática y Biología Molecular, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Robert H Gilman
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ruddy Liendo
- Laboratorio de Bioinformática y Biología Molecular, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Elisa Roncal
- Laboratorio de Bioinformática y Biología Molecular, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Sueline Luis
- Laboratorio de Bioinformática y Biología Molecular, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Stefany Quiñones-Garcia
- Laboratorio de Bioinformática y Biología Molecular, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Zach Silverstein
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Hector H García
- Laboratorio de Bioinformática y Biología Molecular, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru; Cysticercosis Unit, Instituto de Ciencias Neurológicas, Lima, Peru
| | - Armando Gonzales
- School of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Patricia Sheen
- Laboratorio de Bioinformática y Biología Molecular, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Mirko Zimic
- Laboratorio de Bioinformática y Biología Molecular, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Mónica J Pajuelo
- Laboratorio de Bioinformática y Biología Molecular, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru.
| |
Collapse
|
124
|
Haque MW, Bose P, Siddique MUM, Sunita P, Lapenna A, Pattanayak SP. Taxifolin binds with LXR (α & β) to attenuate DMBA-induced mammary carcinogenesis through mTOR/Maf-1/PTEN pathway. Biomed Pharmacother 2018; 105:27-36. [PMID: 29843042 DOI: 10.1016/j.biopha.2018.05.114] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 01/27/2023] Open
Abstract
AIM 7,12-dimethylbenz(a)anthracene(DMBA), a PAH derivative initializes cascades of signaling events that alters a variety of enzymes responsible for lipid and glucose homeostasis resulting in enhanced availability and consumption of energy producing molecules for the development of carcinogenesis. 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoAR) is a key enzyme regulating the pathway of synthesis of cholesterol whereas liver-X-receptor (LXR) regulates lipid, carbohydrate metabolism in various malignancies including mammary carcinogenesis (MC). In this study Taxifolin (TAX), a potential flavanoid has been subjected to evaluate its anti-cancer potential on (MC). METHODS We designed to screen the molecular docking analysis of TAX on LXRα, LXRβ, HMG-CoAR, mTOR and PTEN using MAESTRO tool comparing with their reference ligands. MC was developed by the administration of DMBA in the air pouch (under the mammary fat pad) of the female Sprague-Dawley rats (55 days old). After 90 days of cancer induction, the chemotherapeutic potential of TAX was evaluated by administering TAX at different doses (10, 20 and 40 mg/kg b.w./day). Then western blot and RT-qPCR analysis were performed for determination of the protein and mRNA expressions respectively. RESULTS The docking analysis revealed significant interaction with LXR (α&β), HMG-CoAR, mTOR and PTEN. The docking results were validated with the enzyme inhibition assay using HMG-CoAR (EC 1.1.1.34). TAX inhibited the HMG-CoAR activity with an IC50 value of 97.54 ± 2.5 nM whereas the reference molecule pavastatin revealed an IC50 value of 84.35 ± 1.2 nM. Moreover, TAX modulated the energy regulation on DMBA-induced MC in SD-rats by significantly restoring the cancer-induced alterations in body weight, tumor growth and lipid, lipoproteins, lipid metabolizing enzymes and glycolytic enzymes. TAX interacted with LXRs, HMG-CoAR, metabolic enzymes and restored the altered metabolism that accelerates uncontrolled cell proliferation in MC. Moreover, TAX also altered the mRNA and protein expressions of HMG-CoAR, LXR (α,β), Maf1, PTEN, phosphoinositide 3-kinase (PI3K), Akt, mTOR, fatty acid synthase (FASN) and acetyl-CoA carboxylase 1 (ACC1) in a dose dependent manner. CONCLUSION These results validate the anti-cancer potential of TAX in DMBA-induced MC through LXR-mTOR/Maf1/PTEN axis.
Collapse
Affiliation(s)
- Md Wasimul Haque
- Division of Advanced Pharmacology, Department of Pharm. Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Pritha Bose
- Division of Advanced Pharmacology, Department of Pharm. Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Mohd Usman Mohd Siddique
- Division of Pharmaceutical Chemistry, Department of Pharm. Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India
| | - Priyashree Sunita
- Government Pharmacy Institute, Department of Health, Education & Family Welfare, Govt. of Jharkhand, Bariatu, Ranchi, 834009, India
| | - Antonio Lapenna
- Academic Unit of Inflammation & Tumor Targeting, Dept. of Oncology and Metabolism, University of Sheffield Medical School, Beech Hill Road, Sheffield, S10 2RX, United Kingdom
| | - Shakti P Pattanayak
- Division of Advanced Pharmacology, Department of Pharm. Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India.
| |
Collapse
|
125
|
Quintero-Troconis E, Buelvas N, Carrasco-López C, Domingo-Sananes M, González-González L, Ramírez-Molina R, Osorio L, Lobo-Rojas A, Cáceres A, Michels P, Acosta H, Quiñones W, Concepción J. Enolase from Trypanosoma cruzi is inhibited by its interaction with metallocarboxypeptidase-1 and a putative acireductone dioxygenase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018. [DOI: 10.1016/j.bbapap.2018.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
126
|
Extramitochondrial Assembly of Mitochondrial Targeting Signal Disrupted Mitochondrial Enzyme Aldehyde Dehydrogenase. Sci Rep 2018; 8:6186. [PMID: 29670139 PMCID: PMC5906672 DOI: 10.1038/s41598-018-24586-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/06/2018] [Indexed: 11/17/2022] Open
Abstract
Supramolecular assembly of metabolic enzymes has been studied both in vivo and in vitro for nearly a decade. Experimental evidence has suggested a close relationship between enzymatic activity and enzyme assembly/disassembly. However, most cases were studied with the cytosolic enzymes. Here, I report the evidence for a mitochondrial enzyme with its ability in forming visible intracellular structures. By removing the mitochondrial targeting sequence, yeast mitochondrial enzyme aldehyde dehydrogenase (Ald4p) exhibits reversible supramolecular assembly in the cytoplasm, thus creating a useful system for further characterization of the regulatory factors that modulate the assembly/disassembly of this mitochondrial enzyme.
Collapse
|
127
|
Regulation of Immune Cell Functions by Metabolic Reprogramming. J Immunol Res 2018; 2018:8605471. [PMID: 29651445 PMCID: PMC5831954 DOI: 10.1155/2018/8605471] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/14/2018] [Indexed: 02/07/2023] Open
Abstract
Recent findings show that the metabolic status of immune cells can determine immune responses. Metabolic reprogramming between aerobic glycolysis and oxidative phosphorylation, previously speculated as exclusively observable in cancer cells, exists in various types of immune and stromal cells in many different pathological conditions other than cancer. The microenvironments of cancer, obese adipose, and wound-repairing tissues share common features of inflammatory reactions. In addition, the metabolic changes in macrophages and T cells are now regarded as crucial for the functional plasticity of the immune cells and responsible for the progression and regression of many pathological processes, notably cancer. It is possible that metabolic changes in the microenvironment induced by other cellular components are responsible for the functional plasticity of immune cells. This review explores the molecular mechanisms responsible for metabolic reprogramming in macrophages and T cells and also provides a summary of recent updates with regard to the functional modulation of the immune cells by metabolic changes in the microenvironment, notably the tumor microenvironment.
Collapse
|
128
|
Feng J, Zhang Q, Zhou Y, Yu S, Hong L, Zhao S, Yang J, Wan H, Xu G, Zhang Y, Li C. Integration of Proteomics and Metabolomics Revealed Metabolite-Protein Networks in ACTH-Secreting Pituitary Adenoma. Front Endocrinol (Lausanne) 2018; 9:678. [PMID: 30532734 PMCID: PMC6266547 DOI: 10.3389/fendo.2018.00678] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022] Open
Abstract
An effective treatment for the management of adrenocorticotropic hormone-secreting pituitary adenomas (ACTH-PA) is currently lacking, although surgery is a treatment option. We have integrated information obtained at the metabolomic and proteomic levels to identify critical networks and signaling pathways that may play important roles in the metabolic regulation of ACTH-PA and therefore hopefully represent potential therapeutic targets. Six ACTH-PAs and seven normal pituitary glands were investigated via gas chromatography-mass spectrometry (GC-MS) analysis for metabolomics. Five ACTH-PAs and five normal pituitary glands were subjected to proteomics analysis via nano liquid chromatography tandem-mass spectrometry (nanoLC-MS/MS). The joint pathway analysis and network analysis was performed using MetaboAnalyst 3.0. software. There were significant differences of metabolites and protein expression levels between the ACTH-PAs and normal pituitary glands. A proteomic analysis identified 417 differentially expressed proteins that were significantly enriched in the Myc signaling pathway. The protein-metabolite joint pathway analysis showed that differentially expressed proteins and metabolites were significantly enriched in glycolysis/gluconeogenesis, pyruvate metabolism, citrate cycle (TCA cycle), and the fatty acid metabolism pathway in ACTH-PA. The protein-metabolite molecular interaction network identified from the metabolomics and proteomics investigation resulted in four subnetworks. Ten nodes in subnetwork 1 were the most significantly enriched in cell amino acid metabolism and pyrimidine nucleotide metabolism. Additionally, the metabolite-gene-disease interaction network established nine subnetworks. Ninety-two nodes in subnetwork 1 were the most significantly enriched in carboxylic acid metabolism and organic acid metabolism. The present study clarified the pathway networks that function in ACTH-PA. Our results demonstrated the presence of downregulated glycolysis and fatty acid synthesis in this tumor type. We also revealed that the Myc signaling pathway significantly participated in the metabolic changes and tumorigenesis of ACTH-PA. This data may provide biomarkers for ACTH-PA diagnosis and monitoring, and could also lead to the development of novel strategies for treating pituitary adenomas.
Collapse
Affiliation(s)
- Jie Feng
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Brain Tumor Center, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Shenyuan Yu
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lichuan Hong
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Sida Zhao
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jingjing Yang
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hong Wan
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yazhuo Zhang
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Brain Tumor Center, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chuzhong Li
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Brain Tumor Center, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Chuzhong Li
| |
Collapse
|
129
|
Nair MN, Li S, Beach CM, Rentfrow G, Suman SP. Changes in the Sarcoplasmic Proteome of Beef Muscles with Differential Color Stability during Postmortem Aging. MEAT AND MUSCLE BIOLOGY 2018. [DOI: 10.22175/mmb2017.07.0037] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Beef color is a muscle-specific trait, and sarcoplasmic proteome influences muscle-specific variations in beef color stability. Postmortem aging influences the color and sarcoplasmic proteome of beef muscles. Nonetheless, muscle-specific changes in sarcoplasmic proteome of beef muscles with differential color stability during aging have not been characterized yet. Therefore, our objective was to examine the changes in the sarcoplasmic proteome of 3 differentially color stable muscles from beef hindquarters during postmortem aging. Longissimus lumborum (LL), psoas major (PM), and semitendinosus (ST) separated from 8 (n = 8) beef carcasses (24 h postmortem) were subjected to aging in vacuum packaging (2°C) for 0, 7, 14, and 21 d. On each aging day, steaks were fabricated, and allotted to refrigerated storage (2°C) under aerobic packaging. Samples for proteome analysis obtained during fabrication were frozen at –80°C. Instrumental color and metmyoglobin reducing activity were evaluated on d 0, 3, and 6 of storage. Sarcoplasmic proteome was analyzed, and differentially abundant proteins were identified using mass spectrometry. Color attributes and biochemical parameters were influenced by muscle source and aging (P < 0.05); LL and ST had greater (P < 0.05) surface redness than PM. Aging also influenced surface redness, with 7-d aged steaks demonstrating greatest values (P < 0.05). Proteome analysis identified 135 protein spots differentially abundant (P < 0.05) between the muscles and aging time points indicating muscle-specific changes during aging. The identified proteins included glycolytic enzymes, proteins associated with energy metabolism, antioxidant proteins, chaperones, and transport proteins. Overall, the glycolytic enzymes were more abundant (P < 0.05) in color-stable muscles and at aging times with greater color stability, indicating that these proteins could be used as potential biomarkers for beef color.
Collapse
Affiliation(s)
| | - Shuting Li
- University of Kentucky Department of Animal and Food Sciences
| | | | - Gregg Rentfrow
- University of Kentucky Department of Animal and Food Sciences
| | | |
Collapse
|
130
|
Chen ZH, Qiu MZ, Wu XY, Wu QN, Lu JH, Zeng ZL, Wang Y, Wei XL, Wang F, Xu RH. Elevated baseline serum lactate dehydrogenase indicates a poor prognosis in primary duodenum adenocarcinoma patients. J Cancer 2018; 9:512-520. [PMID: 29483956 PMCID: PMC5820918 DOI: 10.7150/jca.22305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/02/2017] [Indexed: 12/15/2022] Open
Abstract
Purpose: Tumour cells produce energy through glycolysis and lactate dehydrogenase (LDH) is a key part of glycolysis. Elevation of serum LDH may indicate poor prognosis in primary duodenum adenocarcinoma. We aim to explore the prognostic significance of LDH in this disease. Methods and materials: Two hundred forty-four patients diagnosed with primary duodenum adenocarcinoma who were treated at the Sun Yat-sen Cancer Center from February 1996 to January 2016 were retrospectively analysed. We collected routine clinical data, including baseline LDH. Patients were classified into a normal LDH group (≤ 245U/L) and higher LDH group (>245U/L). Correlations of the LDH level and other clinicopathological characteristics were explored using the Chi-square test. Prognostic factors for overall survival were identified using univariate and multivariate analyses. Results: Two hundred seven patients (84.9%) had normal LDH levels, while 37 patients (15.1%) had abnormally high LDH levels. Higher LDH levels were significantly associated with more distant metastasis, node metastasis, poor differentiation and TNM stage Ⅲ-Ⅳ (P<0.05). Consistently, patients with node metastasis, poor differentiation and TNM stageⅢ-Ⅳ had a significantly higher median LDH level (P<0.05). The median survival of patients in the higher LDH group was significantly shorter than that of the patients in the normal LDH group (16.3 m vs. 42.5 m, P=0.02). Using multivariate analysis, LDH, age and radical surgery were independent prognostic factors associated with overall survival(OS) (HR=1.571, P=0.036 for LDH; HR=1.514, P=0.013 for age; HR=0.248, P<0.0001 for radical surgery, respectively). Conclusions: For the first time, our research suggests that baseline serum LDH is an independent prognostic factor in primary duodenum adenocarcinoma patients and elevated baseline serum LDH indicates a poor prognosis.
Collapse
Affiliation(s)
- Zhan-hong Chen
- Department of Medical Oncology of Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,651 Dongfengdong Road, Guangzhou,510060, China
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease, the Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou,510630, People's Republic of China
| | - Miao-zhen Qiu
- Department of Medical Oncology of Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,651 Dongfengdong Road, Guangzhou,510060, China
| | - Xiang-yuan Wu
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease, the Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou,510630, People's Republic of China
| | - Qi-nian Wu
- Department of Medical Oncology of Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,651 Dongfengdong Road, Guangzhou,510060, China
| | - Jia-huan Lu
- Department of Medical Oncology of Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,651 Dongfengdong Road, Guangzhou,510060, China
| | - Zhao-lei Zeng
- Department of Medical Oncology of Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,651 Dongfengdong Road, Guangzhou,510060, China
| | - Yun Wang
- Department of Medical Oncology of Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,651 Dongfengdong Road, Guangzhou,510060, China
| | - Xiao-li Wei
- Department of Medical Oncology of Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,651 Dongfengdong Road, Guangzhou,510060, China
| | - Feng Wang
- Department of Medical Oncology of Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,651 Dongfengdong Road, Guangzhou,510060, China
| | - Rui-hua Xu
- Department of Medical Oncology of Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,651 Dongfengdong Road, Guangzhou,510060, China
| |
Collapse
|
131
|
Chan SY, Rubin LJ. Metabolic dysfunction in pulmonary hypertension: from basic science to clinical practice. Eur Respir Rev 2017; 26:26/146/170094. [PMID: 29263174 PMCID: PMC5842433 DOI: 10.1183/16000617.0094-2017] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/28/2017] [Indexed: 01/29/2023] Open
Abstract
Pulmonary hypertension (PH) is an often-fatal vascular disease of unclear molecular origins. The pulmonary vascular remodelling which occurs in PH is characterised by elevated vasomotor tone and a pro-proliferative state, ultimately leading to right ventricular dysfunction and heart failure. Guided in many respects by prior evidence from cancer biology, recent investigations have identified metabolic aberrations as crucial components of the disease process in both the pulmonary vessels and the right ventricle. Given the need for improved diagnostic and therapeutic options for PH, the development or repurposing of metabolic tracers and medications could provide an effective avenue for preventing or even reversing disease progression. In this review, we describe the metabolic mechanisms that are known to be dysregulated in PH; we explore the advancing diagnostic testing and imaging modalities that are being developed to improve diagnostic capability for this disease; and we discuss emerging drugs for PH which target these metabolic pathways. Understanding metabolic pathways in PH provides opportunities for improved diagnostic and therapeutic optionshttp://ow.ly/pFQb30guez6
Collapse
Affiliation(s)
- Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Dept of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Lewis J Rubin
- University of California, San Diego School of Medicine, La Jolla, CA, USA
| |
Collapse
|
132
|
罗 起, 符 黄, 黄 海, 黄 华, 罗 琨, 李 传, 覃 成, 栗 学, 罗 宏, 王 俊, 唐 乾. [Small interfering RNA-mediated α-enolase knockdown suppresses glycolysis and proliferation of human glioma U251 cells in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:1484-1488. [PMID: 29180328 PMCID: PMC6779634 DOI: 10.3969/j.issn.1673-4254.2017.11.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To investigate the role of α-enolase (ENO1) in regulating glucose metabolism and cell growth in human glioma cells. METHODS Glucose uptake and lactate generation were assessed to evaluate the changes in glucose metabolism in human glioma U251 cells with small interfering RNA (siRNA)-mediated ENO1 knockdown. MTT assay and 5-ethynyl-2'-deoxyuridine (EdU) staining were used to examine the cell growth and cell cycle changes following siRNA transfection of the cells. RESULTS Transfection of U251 cells with siRNA-ENO1 markedly reduced glucose uptake (P=0.023) and lactate generation (P=0.007) in the cells and resulted in significant suppression of cell proliferation (*P<0.05) since the second day following the transfection. Transfection with siRNA-ENO1 also obviously suppressed cell cycle G1/S transition in the cells (P=0.0425). The expressions of HK2 and LDHA, the marker genes for glucose metabolism, were significantly down-regulated in the cells with siRNA-mediated ENO1 knockdown. CONCLUSION ENO1 as a potential oncogene promotes glioma cell growth by positively modulating glucose metabolism.
Collapse
Affiliation(s)
- 起胜 罗
- 右江民族医学院附属医院 神经外科,广西 百色 533000Department of neurosurgery, Affiliated Hospital of Youjiang Medical College for Nationalities, Guangxi, BaiSe 533000, China
- 湖南中医药大学中西医结合学院,湖南 长沙 410208College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Hunan, Changsha 410208, China
| | - 黄德 符
- 右江民族医学院附属医院 神经外科,广西 百色 533000Department of neurosurgery, Affiliated Hospital of Youjiang Medical College for Nationalities, Guangxi, BaiSe 533000, China
| | - 海能 黄
- 右江民族医学院附属医院 神经外科,广西 百色 533000Department of neurosurgery, Affiliated Hospital of Youjiang Medical College for Nationalities, Guangxi, BaiSe 533000, China
| | - 华东 黄
- 右江民族医学院附属医院 神经外科,广西 百色 533000Department of neurosurgery, Affiliated Hospital of Youjiang Medical College for Nationalities, Guangxi, BaiSe 533000, China
| | - 琨祥 罗
- 右江民族医学院附属医院 神经外科,广西 百色 533000Department of neurosurgery, Affiliated Hospital of Youjiang Medical College for Nationalities, Guangxi, BaiSe 533000, China
| | - 传玉 李
- 右江民族医学院附属医院 神经外科,广西 百色 533000Department of neurosurgery, Affiliated Hospital of Youjiang Medical College for Nationalities, Guangxi, BaiSe 533000, China
| | - 成箭 覃
- 右江民族医学院附属医院 神经外科,广西 百色 533000Department of neurosurgery, Affiliated Hospital of Youjiang Medical College for Nationalities, Guangxi, BaiSe 533000, China
| | - 学玉 栗
- 右江民族医学院附属医院 神经外科,广西 百色 533000Department of neurosurgery, Affiliated Hospital of Youjiang Medical College for Nationalities, Guangxi, BaiSe 533000, China
| | - 宏成 罗
- 右江民族医学院附属医院 检验科,广西 百色 533000Department of Laboratory Medicine, Affiliated Hospital of Youjiang Medical College for Nationalities, Guangxi, BaiSe 533000, China
| | - 俊利 王
- 右江民族医学院附属医院 检验科,广西 百色 533000Department of Laboratory Medicine, Affiliated Hospital of Youjiang Medical College for Nationalities, Guangxi, BaiSe 533000, China
| | - 乾利 唐
- 右江民族医学院附属医院 外科,广西 百色 533000Department of Surgery, Affiliated Hospital of Youjiang Medical College for Nationalities, Guangxi, BaiSe 533000, China
- 湖南中医药大学中西医结合学院,湖南 长沙 410208College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Hunan, Changsha 410208, China
| |
Collapse
|
133
|
Arif A, Yao P, Terenzi F, Jia J, Ray PS, Fox PL. The GAIT translational control system. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 9. [PMID: 29152905 PMCID: PMC5815886 DOI: 10.1002/wrna.1441] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/12/2017] [Accepted: 07/31/2017] [Indexed: 01/19/2023]
Abstract
The interferon (IFN)‐γ‐activated inhibitor of translation (GAIT) system directs transcript‐selective translational control of functionally related genes. In myeloid cells, IFN‐γ induces formation of a multiprotein GAIT complex that binds structural GAIT elements in the 3′‐untranslated regions (UTRs) of multiple inflammation‐related mRNAs, including ceruloplasmin and VEGF‐A, and represses their translation. The human GAIT complex is a heterotetramer containing glutamyl‐prolyl tRNA synthetase (EPRS), NS1‐associated protein 1 (NSAP1), ribosomal protein L13a (L13a), and glyceraldehyde‐3‐phosphate dehydrogenase (GAPDH). A network of IFN‐γ‐stimulated kinases regulates recruitment and assembly of GAIT complex constituents. Activation of cyclin‐dependent kinase 5 (Cdk5), mammalian target of rapamycin complex 1 (mTORC1), and S6K1 kinases induces EPRS release from its parental multiaminoacyl tRNA synthetase complex to join NSAP1 in a ‘pre‐GAIT’ complex. Subsequently, the DAPK‐ZIPK kinase axis phosphorylates L13a, inducing release from the 60S ribosomal subunit and binding to GAPDH. The subcomplexes join to form the functional GAIT complex. Each constituent has a distinct role in the GAIT system. EPRS binds the GAIT element in target mRNAs, NSAP1 negatively regulates mRNA binding, L13a binds eIF4G to block ribosome recruitment, and GAPDH shields L13a from proteasomal degradation. The GAIT system is susceptible to genetic and condition‐specific regulation. An N‐terminus EPRS truncate is a dominant‐negative inhibitor ensuring a ‘translational trickle’ of target transcripts. Also, hypoxia and oxidatively modified lipoproteins regulate GAIT activity. Mouse models exhibiting absent or genetically modified GAIT complex constituents are beginning to elucidate the physiological role of the GAIT system, particularly in the resolution of chronic inflammation. Finally, GAIT‐like systems in proto‐chordates suggests an evolutionarily conserved role of the pathway in innate immunity. WIREs RNA 2018, 9:e1441. doi: 10.1002/wrna.1441 This article is categorized under:
Translation > Translation Regulation RNA Interactions with Proteins and Other Molecules > RNA–Protein Complexes Regulatory RNAs/RNAi/Riboswitches > Riboswitches
Collapse
Affiliation(s)
- Abul Arif
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Peng Yao
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - Fulvia Terenzi
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jie Jia
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Partho Sarothi Ray
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, India
| | - Paul L Fox
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
134
|
Metabolic pressure and the breach of immunological self-tolerance. Nat Immunol 2017; 18:1190-1196. [DOI: 10.1038/ni.3851] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/05/2017] [Indexed: 12/12/2022]
|
135
|
Yin X, Komatsu S. Comprehensive analysis of response and tolerant mechanisms in early-stage soybean at initial-flooding stress. J Proteomics 2017; 169:225-232. [PMID: 28137666 DOI: 10.1016/j.jprot.2017.01.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/17/2017] [Accepted: 01/23/2017] [Indexed: 12/31/2022]
Abstract
Soybean is one of the most cultivated crops in the world; however, it is very sensitive to flooding stress, which markedly reduces its growth and yield. Morphological and biochemical changes such as an increase of fresh weight and a decrease of ATP content happen in early-stage soybean at initial-flooding stress, indicating that soybean responses to flooding stress are keys for its survival and seedling growth. Phosphoproteomics and nuclear proteomics are useful tools to detect protein-phosphorylation status and to identify transcriptional factors. In the review, the effect of flooding on soybean response to initial flooding stress is discussed based on recent results of proteomic, phosphoproteomic, nuclear proteomic, and nuclear phosphoproteomic studies. In addition, soybean survival under flooding stress, which is defined as tolerance mechanism, is discussed with the results of comprehensive analysis in flooding-tolerant mutant line and abscisic acid-treated soybean. BIOLOGICAL SIGNIFICANCE Soybean is one of the most cultivated crops in the world; however, it is very sensitive to flooding stress, especially soybean responses to initial flooding stress is key for its survival and seedling growth. Recently, proteomic techniques are applied to investigate the response and tolerant mechanisms of soybean at initial flooding condition. In this review, the progress in proteomic, phosphoproteomic, nuclear proteomic, and nuclear phosphoproteomic studies about the initial-flooding response mechanism in early-stage soybean is presented. In addition, the tolerant mechanism in soybean is discussed with the results of comprehensive analysis in flooding-tolerant mutant line and abscisic acid-treated soybean. Through this review, the key proteins and genes involved in initial flooding response and tolerance at early stage soybean are summarized and they contribute greatly to uncover response and tolerance mechanism at early stage under stressful environmental conditions in soybean.
Collapse
Affiliation(s)
- Xiaojian Yin
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| |
Collapse
|
136
|
Escherichia coli responds to environmental changes using enolasic degradosomes and stabilized DicF sRNA to alter cellular morphology. Proc Natl Acad Sci U S A 2017; 114:E8025-E8034. [PMID: 28874523 DOI: 10.1073/pnas.1703731114] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli RNase E is an essential enzyme that forms multicomponent ribonucleolytic complexes known as "RNA degradosomes." These complexes consist of four major components: RNase E, PNPase, RhlB RNA helicase, and enolase. However, the role of enolase in the RNase E/degradosome is not understood. Here, we report that presence of enolase in the RNase E/degradosome under anaerobic conditions regulates cell morphology, resulting in Ecoli MG1655 cell filamentation. Under anaerobic conditions, enolase bound to the RNase E/degradosome stabilizes the small RNA (sRNA) DicF, i.e., the inhibitor of the cell division gene ftsZ, through chaperon protein Hfq-dependent regulation. RNase E/enolase distribution changes from membrane-associated patterns under aerobic to diffuse patterns under anaerobic conditions. When the enolase-RNase E/degradosome interaction is disrupted, the anaerobically induced characteristics disappear. We provide a mechanism by which Ecoli uses enolase-bound degradosomes to switch from rod-shaped to filamentous form in response to anaerobiosis by regulating RNase E subcellular distribution, RNase E enzymatic activity, and the stability of the sRNA DicF required for the filamentous transition. In contrast to Ecoli nonpathogenic strains, pathogenic Ecoli strains predominantly have multiple copies of sRNA DicF in their genomes, with cell filamentation previously being linked to bacterial pathogenesis. Our data suggest a mechanism for bacterial cell filamentation during infection under anaerobic conditions.
Collapse
|
137
|
Plasmodium glyceraldehyde-3-phosphate dehydrogenase: A potential malaria diagnostic target. Exp Parasitol 2017; 179:7-19. [DOI: 10.1016/j.exppara.2017.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/18/2017] [Indexed: 01/09/2023]
|
138
|
Sahu U, Rajendra VKH, Kapnoor SS, Bhagavat R, Chandra N, Rangarajan PN. Methionine synthase is localized to the nucleus in Pichia pastoris and Candida albicans and to the cytoplasm in Saccharomyces cerevisiae. J Biol Chem 2017; 292:14730-14746. [PMID: 28701466 DOI: 10.1074/jbc.m117.783019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/10/2017] [Indexed: 11/06/2022] Open
Abstract
Methionine synthase (MS) catalyzes methylation of homocysteine, the last step in the biosynthesis of methionine, which is essential for the regeneration of tetrahydrofolate and biosynthesis of S-adenosylmethionine. Here, we report that MS is localized to the nucleus of Pichia pastoris and Candida albicans but is cytoplasmic in Saccharomyces cerevisiae The P. pastoris strain carrying a deletion of the MET6 gene encoding MS (Ppmet6) exhibits methionine as well as adenine auxotrophy indicating that MS is required for methionine as well as adenine biosynthesis. Nuclear localization of P. pastoris MS (PpMS) was abrogated by the deletion of 107 C-terminal amino acids or the R742A mutation. In silico analysis of the PpMS structure indicated that PpMS may exist in a dimer-like configuration in which Arg-742 of a monomer forms a salt bridge with Asp-113 of another monomer. Biochemical studies indicate that R742A as well as D113R mutations abrogate nuclear localization of PpMS and its ability to reverse methionine auxotrophy of Ppmet6 Thus, association of two PpMS monomers through the interaction of Arg-742 and Asp-113 is essential for catalytic activity and nuclear localization. When PpMS is targeted to the cytoplasm employing a heterologous nuclear export signal, it is expressed at very low levels and is unable to reverse methionine and adenine auxotrophy of Ppmet6 Thus, nuclear localization is essential for the stability and function of MS in P. pastoris. We conclude that nuclear localization of MS is a unique feature of respiratory yeasts such as P. pastoris and C. albicans, and it may have novel moonlighting functions in the nucleus.
Collapse
Affiliation(s)
- Umakant Sahu
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Vinod K H Rajendra
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Shankar S Kapnoor
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Raghu Bhagavat
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Nagasuma Chandra
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Pundi N Rangarajan
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
139
|
Duka T, Collins Z, Anderson SM, Raghanti MA, Ely JJ, Hof PR, Wildman DE, Goodman M, Grossman LI, Sherwood CC. Divergent lactate dehydrogenase isoenzyme profile in cellular compartments of primate forebrain structures. Mol Cell Neurosci 2017; 82:137-142. [PMID: 28461219 PMCID: PMC5531073 DOI: 10.1016/j.mcn.2017.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 04/13/2017] [Accepted: 04/20/2017] [Indexed: 10/19/2022] Open
Abstract
The compartmentalization and association of lactate dehydrogenase (LDH) with specific cellular structures (e.g., synaptosomal, sarcoplasmic or mitochondrial) may play an important role in brain energy metabolism. Our previous research revealed that LDH in the synaptosomal fraction shifts toward the aerobic isoforms (LDH-B) among the large-brained haplorhine primates compared to strepsirrhines. Here, we further analyzed the subcellular localization of LDH in primate forebrain structures using quantitative Western blotting and ELISA. We show that, in cytosolic and mitochondrial subfractions, LDH-B expression level was relatively elevated and LDH-A declined in haplorhines compared to strepsirrhines. LDH-B expression in mitochondrial fractions of the neocortex was preferentially increased, showing a particularly significant rise in the ratio of LDH-B to LDH-A in chimpanzees and humans. We also found a significant correlation between the protein levels of LDH-B in mitochondrial fractions from haplorhine neocortex and the synaptosomal LDH-B that suggests LDH isoforms shift from a predominance of A-subunits toward B-subunits as part of a system that spatially buffers dynamic energy requirements of brain cells. Our results indicate that there is differential subcellular compartmentalization of LDH isoenzymes that evolved among different primate lineages to meet the energy requirements in neocortical and striatal cells.
Collapse
Affiliation(s)
- Tetyana Duka
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - Zachary Collins
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - Sarah M Anderson
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | | | - Patrick R Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Derek E Wildman
- Department of Molecular and Integrative Physiology and Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Morris Goodman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Lawrence I Grossman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA.
| |
Collapse
|
140
|
Harting TP, Stubbendorff M, Hammer SC, Schadzek P, Ngezahayo A, Murua Escobar H, Nolte I. Dichloroacetate affects proliferation but not apoptosis in canine mammary cell lines. PLoS One 2017; 12:e0178744. [PMID: 28591165 PMCID: PMC5462399 DOI: 10.1371/journal.pone.0178744] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 05/18/2017] [Indexed: 12/28/2022] Open
Abstract
Targeting mitochondrial energy metabolism is a novel approach in cancer research and can be traced back to the description of the Warburg effect. Dichloroacetate, a controversially discussed subject of many studies in cancer research, is a pyruvate dehydrogenase kinase inhibitor. Dichloroacetate causes metabolic changes in cancerous glycolysis towards oxidative phosphorylation via indirect activation of pyruvate dehydrogenase in mitochondria. Canine mammary cancer is frequently diagnosed but after therapy prognosis still remains poor. In this study, canine mammary carcinoma, adenoma and non-neoplastic mammary gland cell lines were treated using 10 mM Dichloroacetate. The effect on cell number, lactate release and PDH expression and cell respiration was investigated. Further, the effect on apoptosis and several apoptotic proteins, proliferation, and microRNA expression was evaluated. Dichloroacetate was found to reduce cell proliferation without inducing apoptosis in all examined cell lines.
Collapse
Affiliation(s)
- Tatjana P. Harting
- Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Division of Medicine Clinic III, Hematology, Oncology and Palliative Medicine, University of Rostock, Rostock, Germany
| | | | - Susanne C. Hammer
- Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Division of Medicine Clinic III, Hematology, Oncology and Palliative Medicine, University of Rostock, Rostock, Germany
| | - Patrik Schadzek
- Institute of Biophysics, Leibniz University, Hannover, Germany
| | | | - Hugo Murua Escobar
- Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Division of Medicine Clinic III, Hematology, Oncology and Palliative Medicine, University of Rostock, Rostock, Germany
| | - Ingo Nolte
- Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- * E-mail:
| |
Collapse
|
141
|
Cao Y, Wang RH. Associations among Metabolism, Circadian Rhythm and Age-Associated Diseases. Aging Dis 2017; 8:314-333. [PMID: 28580187 PMCID: PMC5440111 DOI: 10.14336/ad.2016.1101] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/01/2016] [Indexed: 12/12/2022] Open
Abstract
Accumulating epidemiological studies have implicated a strong link between age associated metabolic diseases and cancer, though direct and irrefutable evidence is missing. In this review, we discuss the connection between Warburg effects and tumorigenesis, as well as adaptive responses to environment such as circadian rhythms on molecular pathways involved in metabolism. We also review the central role of the sirtuin family of proteins in physiological modulation of cellular processes and age-associated metabolic diseases. We also provide a macroscopic view of how the circadian rhythm affects metabolism and may be involved in cell metabolism reprogramming and cancer pathogenesis. The aberrations in metabolism and the circadian system may lead to age-associated diseases directly or through intermediates. These intermediates may be either mutated or reprogrammed, thus becoming responsible for chromatin modification and oncogene transcription. Integration of circadian rhythm and metabolic reprogramming in the holistic understanding of metabolic diseases and cancer may provide additional insights into human diseases.
Collapse
Affiliation(s)
- Yiwei Cao
- Faculty of Health Science, University of Macau, Macau, China
| | - Rui-Hong Wang
- Faculty of Health Science, University of Macau, Macau, China
| |
Collapse
|
142
|
Liu Y, Murray-Stewart T, Casero RA, Kagiampakis I, Jin L, Zhang J, Wang H, Che Q, Tong H, Ke J, Jiang F, Wang F, Wan X. Targeting hexokinase 2 inhibition promotes radiosensitization in HPV16 E7-induced cervical cancer and suppresses tumor growth. Int J Oncol 2017; 50:2011-2023. [PMID: 28498475 PMCID: PMC5435328 DOI: 10.3892/ijo.2017.3979] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/13/2017] [Indexed: 12/21/2022] Open
Abstract
In order to improve the sensitivity of cervical cancer cells to irradiation therapy, we targeted hexokinase 2 (HK2), the first rate-limiting enzyme of glycolysis, and explore its role in cervical cancer cells. We suppressed HK2 expression and/or function by shRNA and/or metformin and found HK2 inhibition enhanced cells apoptosis with accelerating expression of cleaved PARP and caspase-3. HK2 inhibition also induced much inferior proliferation of cervical cancer cells both in vitro and in vivo with diminishing expression of mTOR, MIB and MGMT. Moreover, HK2 inhibition altered the metabolic profile of cervical cancer cells to one less dependent on glycolysis with a reinforcement of mitochondrial function and an ablation of lactification ability. Importantly, cervical cancer cells contained HK2 inhibition displayed more sensitivity to irradiation. Further results indicated that HPV16 E7 oncoprotein altered the glucose homeostasis of cervical cancer cells into glycolysis by coordinately promoting HK2 expression and its downregulation of glycolysis. Taken together, our findings supported a mechanism whereby targeting HK2 inhibition contributed to suppress HPV16 E7-induced tumor glycolysis metabolism phenotype, inhibiting tumor growth, and induced apoptosis, blocking the cancer cell energy sources and ultimately enhanced the sensitivity of HPV(+) cervical cancer cells to irradiation therapy.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Tracy Murray-Stewart
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert A Casero
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ioannis Kagiampakis
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lihua Jin
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Shanghai Tongji University, Shanghai, P.R. China
| | - Huihui Wang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital Affiliated with Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Qi Che
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Huan Tong
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Jieqi Ke
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Feizhou Jiang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Fangyuan Wang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Xiaoping Wan
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
143
|
Wang G, Wang JJ, Guan R, Du L, Gao J, Fu XL. Strategies to Target Glucose Metabolism in Tumor Microenvironment on Cancer by Flavonoids. Nutr Cancer 2017; 69:534-554. [PMID: 28323500 DOI: 10.1080/01635581.2017.1295090] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The imbalance between glucose metabolism and cancer cell growth in tumor microenvironment (TME), which are closely related with the occurrence and progression of cancer. Accumulating evidence has demonstrated that flavonoids exert many biological properties, including antioxidant and anticarcinogenic activities. Recently, the roles and applications of flavonoids, particularly in relation to glucose metabolism in cancers, have been highlighted. Thus, the identification of flavonoids targeting alternative glucose metabolism pathways in TME may represent an attractive approach to the more effective therapeutic strategies for cancer. In this review, we will focus on the roles of flavonoids in regulating glucose metabolism and cancer cell growth in TME, such as proliferation advantage, cell mobility, and chemoresistance to cancer, as well as modifiers of thermal sensitivity. Not only have such large-scale endeavors been useful in providing fundamental insights into natural and synthesized flavonoids that can prevent and treat cancer, but also have led to the discovery of potential targets for cancer therapy.
Collapse
Affiliation(s)
- Gang Wang
- a Department of Pharmaceutics , Jiangsu University , Shanghai , China
- b Hubei University of Medicine , Shiyan , China
| | - Jun-Jie Wang
- a Department of Pharmaceutics , Jiangsu University , Shanghai , China
- b Hubei University of Medicine , Shiyan , China
| | - Rui Guan
- b Hubei University of Medicine , Shiyan , China
| | - Li Du
- a Department of Pharmaceutics , Jiangsu University , Shanghai , China
| | - Jing Gao
- c Jiangsu University Health Science Center , Jiangsu , China
| | - Xing-Li Fu
- c Jiangsu University Health Science Center , Jiangsu , China
| |
Collapse
|
144
|
Adamus G. Impact of Autoantibodies against Glycolytic Enzymes on Pathogenicity of Autoimmune Retinopathy and Other Autoimmune Disorders. Front Immunol 2017; 8:505. [PMID: 28503176 PMCID: PMC5408022 DOI: 10.3389/fimmu.2017.00505] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/12/2017] [Indexed: 12/20/2022] Open
Abstract
Autoantibodies (AAbs) against glycolytic enzymes: aldolase, α-enolase, glyceraldehyde-3-phosphate dehydrogenase, and pyruvate kinase are prevalent in sera of patients with blinding retinal diseases, such as paraneoplastic [cancer-associated retinopathy (CAR)] and non-paraneoplastic autoimmune retinopathies, as well as in many other autoimmune diseases. CAR is a degenerative disease of the retina characterized by sudden vision loss in patients with cancer and serum anti-retinal AAbs. In this review, we discuss the widespread serum presence of anti-glycolytic enzyme AAbs and their significance in autoimmune diseases. There are multiple mechanisms responsible for antibody generation, including the innate anti-microbial response, anti-tumor response, or autoimmune response against released self-antigens from damaged, inflamed tissue. AAbs against enolase, GADPH, and aldolase exist in a single patient in elevated titers, suggesting their participation in pathogenicity. The lack of restriction of AAbs to one disease may be related to an increased expression of glycolytic enzymes in various metabolically active tissues that triggers an autoimmune response and generation of AAbs with the same specificity in several chronic and autoimmune conditions. In CAR, the importance of serum anti-glycolytic enzyme AAbs had been previously dismissed, but the retina may be without pathological consequence until a failure of the blood–retinal barrier function, which would then allow pathogenic AAbs access to their retinal targets, ultimately leading to damaging effects.
Collapse
Affiliation(s)
- Grazyna Adamus
- School of Medicine, Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
145
|
Schilling MW, Suman SP, Zhang X, Nair MN, Desai MA, Cai K, Ciaramella MA, Allen PJ. Proteomic approach to characterize biochemistry of meat quality defects. Meat Sci 2017; 132:131-138. [PMID: 28454727 DOI: 10.1016/j.meatsci.2017.04.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 02/06/2023]
Abstract
Proteomics can be used to characterize quality defects including pale, soft, and exudative (PSE) meat (pork and poultry), woody broiler breast meat, reddish catfish fillets, meat toughness, and beef myoglobin oxidation. PSE broiler meat was characterized by 15 proteins that differed in abundance in comparison to normal broiler breast meat, and eight proteins were differentially expressed in woody breast meat in comparison to normal breast meat. Hemoglobin was the only protein that was differentially expressed between red and normal catfish fillets. However, inducing low oxygen and/or heat stress conditions to catfish fillets did not lead to the production of red fillets. Proteomic data provided information pertaining to the protein differences that exist in meat quality defects. However, these data need to be evaluated in conjunction with information pertaining to genetics, nutrition, environment of the live animal, muscle to meat conversion, meat quality analyses and sensory attributes to understand causality, protein biomarkers, and ultimately how to prevent quality defects.
Collapse
Affiliation(s)
- M W Schilling
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, MS 39762, United States.
| | - S P Suman
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, United States
| | - X Zhang
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, MS 39762, United States
| | - M N Nair
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, United States
| | - M A Desai
- Reed Food Technology, Pearl, MS 39208, United States
| | - K Cai
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, MS 39762, United States
| | - M A Ciaramella
- New York Sea Grant, College of Agriculture and Life Sciences, Cornell University, Stony Brook, NY 11794, United States
| | - P J Allen
- Department of Wildlife, Fisheries, and Aquaculture, Mississippi State University, Mississippi State, MS 39762, United States
| |
Collapse
|
146
|
Yu Q, Tong C, Luo M, Xue X, Mei Q, Ma L, Yu X, Mao W, Kong L, Yu X, Li S. Regulation of SESAME-mediated H3T11 phosphorylation by glycolytic enzymes and metabolites. PLoS One 2017; 12:e0175576. [PMID: 28426732 PMCID: PMC5398556 DOI: 10.1371/journal.pone.0175576] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/28/2017] [Indexed: 12/15/2022] Open
Abstract
Cancer cells prefer aerobic glycolysis, but little is known about the underlying mechanism. Recent studies showed that the rate-limiting glycolytic enzymes, pyruvate kinase M2 (PKM2) directly phosphorylates H3 at threonine 11 (H3T11) to regulate gene expression and cell proliferation, revealing its non-metabolic functions in connecting glycolysis and histone modifications. We have reported that the yeast homolog of PKM2, Pyk1 phosphorylates H3T11 to regulate gene expression and oxidative stress resistance. But how glycolysis regulates H3T11 phosphorylation remains unclear. Here, using a series of glycolytic enzyme mutants and commercial available metabolites, we investigated the role of glycolytic enzymes and metabolites on H3T11 phosphorylation. Mutation of glycolytic genes including phosphoglucose isomerase (PGI1), enolase (ENO2), triosephosphate isomerase (TPI1), or folate biosynthesis enzyme (FOL3) significantly reduced H3T11 phosphorylation. Further study demonstrated that glycolysis regulates H3T11 phosphorylation by fueling the substrate, phosphoenonylpyruvate and the coactivator, FBP to Pyk1. Thus, our results provide a comprehensive view of how glycolysis modulates H3T11 phosphorylation.
Collapse
Affiliation(s)
- Qi Yu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources,College of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Chong Tong
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources,College of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Mingdan Luo
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources,College of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Xiangyan Xue
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources,College of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Qianyun Mei
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources,College of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Lixin Ma
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources,College of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Xiaolan Yu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources,College of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Wuxiang Mao
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources,College of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Lingbao Kong
- Department of HumanPopulation Genetics, Human Aging Research Institute and School of Life Science, Nanchang University, Nanchang, China
| | - Xilan Yu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources,College of Life Sciences, Hubei University, Wuhan, Hubei, China
- * E-mail: (XY); (SL)
| | - Shanshan Li
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources,College of Life Sciences, Hubei University, Wuhan, Hubei, China
- * E-mail: (XY); (SL)
| |
Collapse
|
147
|
Passamani LZ, Barbosa RR, Reis RS, Heringer AS, Rangel PL, Santa-Catarina C, Grativol C, Veiga CFM, Souza-Filho GA, Silveira V. Salt stress induces changes in the proteomic profile of micropropagated sugarcane shoots. PLoS One 2017; 12:e0176076. [PMID: 28419154 PMCID: PMC5395195 DOI: 10.1371/journal.pone.0176076] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/05/2017] [Indexed: 01/09/2023] Open
Abstract
Salt stress is one of the most common stresses in agricultural regions worldwide. In particular, sugarcane is affected by salt stress conditions, and no sugarcane cultivar presently show high productivity accompanied by a tolerance to salt stress. Proteomic analysis allows elucidation of the important pathways involved in responses to various abiotic stresses at the biochemical and molecular levels. Thus, this study aimed to analyse the proteomic effects of salt stress in micropropagated shoots of two sugarcane cultivars (CB38-22 and RB855536) using a label-free proteomic approach. The mass spectrometry proteomics data are available via ProteomeXchange with identifier PXD006075. The RB855536 cultivar is more tolerant to salt stress than CB38-22. A quantitative label-free shotgun proteomic analysis identified 1172 non-redundant proteins, and 1160 of these were observed in both cultivars in the presence or absence of NaCl. Compared with CB38-22, the RB855536 cultivar showed a greater abundance of proteins involved in non-enzymatic antioxidant mechanisms, ion transport, and photosynthesis. Some proteins, such as calcium-dependent protein kinase, photosystem I, phospholipase D, and glyceraldehyde-3-phosphate dehydrogenase, were more abundant in the RB855536 cultivar under salt stress. Our results provide new insights into the response of sugarcane to salt stress, and the changes in the abundance of these proteins might be important for the acquisition of ionic and osmotic homeostasis during exposure to salt stress.
Collapse
Affiliation(s)
- Lucas Z. Passamani
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Campos dos Goytacazes, RJ, Brazil
| | - Roberta R. Barbosa
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Campos dos Goytacazes, RJ, Brazil
| | - Ricardo S. Reis
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Campos dos Goytacazes, RJ, Brazil
| | - Angelo S. Heringer
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Campos dos Goytacazes, RJ, Brazil
| | - Patricia L. Rangel
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Campos dos Goytacazes, RJ, Brazil
| | | | - Clícia Grativol
- Laboratório de Química e Função de Proteínas e Peptídeos, CBB, UENF, Campos dos Goytacazes, RJ, Brazil
| | - Carlos F. M. Veiga
- Laboratório de Cultura de Tecidos Vegetais (Biofábrica), Universidade Federal Rural do Rio de Janeiro Campus Campos dos Goytacazes, Campos dos Goytacazes, RJ, Brazil
| | - Gonçalo A. Souza-Filho
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Campos dos Goytacazes, RJ, Brazil
| | - Vanildo Silveira
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Campos dos Goytacazes, RJ, Brazil
- * E-mail:
| |
Collapse
|
148
|
Harvey LD, Chan SY. Emerging Metabolic Therapies in Pulmonary Arterial Hypertension. J Clin Med 2017; 6:jcm6040043. [PMID: 28375184 PMCID: PMC5406775 DOI: 10.3390/jcm6040043] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 12/26/2022] Open
Abstract
Pulmonary hypertension (PH) is an enigmatic vascular disorder characterized by pulmonary vascular remodeling and increased pulmonary vascular resistance, ultimately resulting in pressure overload, dysfunction, and failure of the right ventricle. Current medications for PH do not reverse or prevent disease progression, and current diagnostic strategies are suboptimal for detecting early-stage disease. Thus, there is a substantial need to develop new diagnostics and therapies that target the molecular origins of PH. Emerging investigations have defined metabolic aberrations as fundamental and early components of disease manifestation in both pulmonary vasculature and the right ventricle. As such, the elucidation of metabolic dysregulation in pulmonary hypertension allows for greater therapeutic insight into preventing, halting, or even reversing disease progression. This review will aim to discuss (1) the reprogramming and dysregulation of metabolic pathways in pulmonary hypertension; (2) the emerging therapeutic interventions targeting these metabolic pathways; and (3) further innovation needed to overcome barriers in the treatment of this devastating disease.
Collapse
Affiliation(s)
- Lloyd D Harvey
- Medical Scientist Training Program, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.
| | - Stephen Y Chan
- Division of Cardiology, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.
| |
Collapse
|
149
|
Zhang Z, Yu A, Lan J, Zhang H, Hu M, Cheng J, Zhao L, Lin L, Wei S. GapA, a potential vaccine candidate antigen against Streptococcus agalactiae in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2017; 63:255-260. [PMID: 28219739 DOI: 10.1016/j.fsi.2017.02.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 05/26/2023]
Abstract
Streptococcosis due to the bacterium Streptococcus agalactiae (S. agalactiae) has resulted in enormous economic losses in aquaculture worldwide, especially in the tilapia culture industry. Previously, there were limited vaccines that could be employed against streptococcosis in tilapia. This study aimed to develop a vaccine candidate using the glyceraldehyde-phosphate dehydrogenase protein (GapA) of S. agalactiae encoded by the gapA gene. Tilapia were intraperitoneally injected with PBS, PBS + Freund's adjuvant, PBS + Montanide's adjuvant, GapA + Freund's adjuvant, GapA + Montanide's adjuvant, killed S. agalactiae whole cells (WC)+Freund's adjuvant, or killed S. agalactiae whole cells (WC)+ Montanide's adjuvant. They were then challenged with S. agalactiae, and the relative percentage survival (RPS) was monitored 14 days after the challenge. The highest RPSs were observed in the WC groups, with 76.7% in WC + Freund's adjuvant and 74.4% in WC + Montanide's adjuvant groups; these were followed by the GapA groups, with 63.3% in GapA + Freund's adjuvant and 45.6% in GapA + Montanide's adjuvant groups. The RPS of the PBS group was 0%, and those of PBS + Freund's adjuvant and PBS + Montanide's adjuvant groups were 6.7% and 3.3%, respectively. Additionally, the IgM antibody responses elicited in GapA groups and WC groups were significantly higher than those in PBS groups. Furthermore, the expressions of cytokine (IL-1β and TNF-α) mRNAs in the GapA groups and WC groups were significantly higher than those in the PBS groups. Taken together, these results reveal that the GapA protein is a promising vaccine candidate that could be used to prevent streptococcosis in tilapia.
Collapse
Affiliation(s)
- Ze Zhang
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; School of Life Sciences, Beijing Normal University, Beijing, 100875, China; National Institute of Biological Sciences, Zhongguancun Life Science Park, Changping, 102206, Beijing, China
| | - Angen Yu
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jiangfeng Lan
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Hua Zhang
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Minqiang Hu
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jiewei Cheng
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Lijuan Zhao
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Li Lin
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
| | - Shun Wei
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
150
|
Molecular targets of the Warburg effect and inflammatory cytokines in the pathogenesis of pulmonary artery hypertension. Clin Chim Acta 2017; 466:98-104. [DOI: 10.1016/j.cca.2017.01.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 02/01/2023]
|