101
|
Tomassini V, d'Ambrosio A, Petsas N, Wise RG, Sbardella E, Allen M, Tona F, Fanelli F, Foster C, Carnì M, Gallo A, Pantano P, Pozzilli C. The effect of inflammation and its reduction on brain plasticity in multiple sclerosis: MRI evidence. Hum Brain Mapp 2016; 37:2431-45. [PMID: 26991559 PMCID: PMC5069650 DOI: 10.1002/hbm.23184] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 12/29/2022] Open
Abstract
Brain plasticity is the basis for systems‐level functional reorganization that promotes recovery in multiple sclerosis (MS). As inflammation interferes with plasticity, its pharmacological modulation may restore plasticity by promoting desired patterns of functional reorganization. Here, we tested the hypothesis that brain plasticity probed by a visuomotor adaptation task is impaired with MS inflammation and that pharmacological reduction of inflammation facilitates its restoration. MS patients were assessed twice before (sessions 1 and 2) and once after (session 3) the beginning of Interferon beta (IFN beta), using behavioural and structural MRI measures. During each session, 2 functional MRI runs of a visuomotor task, separated by 25‐minutes of task practice, were performed. Within‐session between‐run change in task‐related functional signal was our imaging marker of plasticity. During session 1, patients were compared with healthy controls. Comparison of patients' sessions 2 and 3 tested the effect of reduced inflammation on our imaging marker of plasticity. The proportion of patients with gadolinium‐enhancing lesions reduced significantly during IFN beta. In session 1, patients demonstrated a greater between‐run difference in functional MRI activity of secondary visual areas and cerebellum than controls. This abnormally large practice‐induced signal change in visual areas, and in functionally connected posterior parietal and motor cortices, was reduced in patients in session 3 compared with 2. Our results suggest that MS inflammation alters short‐term plasticity underlying motor practice. Reduction of inflammation with IFN beta is associated with a restoration of this plasticity, suggesting that modulation of inflammation may enhance recovery‐oriented strategies that rely on patients' brain plasticity. Hum Brain Mapp 37:2431–2445, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Valentina Tomassini
- Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, United Kingdom.,Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University School of Psychology, United Kingdom.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Alessandro d'Ambrosio
- Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, United Kingdom.,Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University School of Psychology, United Kingdom.,Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Italy
| | - Nikolaos Petsas
- Department of Neurology and Psychiatry, Sapienza University of Rome, Italy
| | - Richard G Wise
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University School of Psychology, United Kingdom
| | - Emilia Sbardella
- Department of Neurology and Psychiatry, Sapienza University of Rome, Italy
| | - Marek Allen
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University School of Psychology, United Kingdom
| | - Francesca Tona
- Department of Neurology and Psychiatry, Sapienza University of Rome, Italy
| | - Fulvia Fanelli
- Department of Neurology and Psychiatry, Sapienza University of Rome, Italy
| | - Catherine Foster
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University School of Psychology, United Kingdom
| | - Marco Carnì
- Department of Neurology and Psychiatry, Sapienza University of Rome, Italy
| | - Antonio Gallo
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Italy
| | - Patrizia Pantano
- Department of Neurology and Psychiatry, Sapienza University of Rome, Italy.,IRCCS NeuroMed, Pozzilli, IS
| | - Carlo Pozzilli
- Department of Neurology and Psychiatry, Sapienza University of Rome, Italy
| |
Collapse
|
102
|
Yu JZ, Chen C, Zhang Q, Zhao YF, Feng L, Zhang HF, Meng J, Ma CG, Xiao BG. Changes of synapses in experimental autoimmune encephalomyelitis by using Fasudil. Wound Repair Regen 2016; 24:317-27. [PMID: 26789651 DOI: 10.1111/wrr.12407] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 12/22/2015] [Indexed: 11/29/2022]
Abstract
The ROCK signaling pathway is involved in numerous fundamental cellular functions such as cell migration, apoptosis, inflammatory responses, and neurite outgrowth. Previous studies demonstrate that Fasudil exhibited therapeutic potential of experimental autoimmune encephalomyelitis (EAE) possibly through immune-modulation and anti-inflammation. In this study, we observed the effect of Fasudil on synaptic protection of EAE mice. Fasudil ameliorated the clinical severity of EAE and inhibited Rho kinase (ROCK), especially ROCK II, in brain and spinal cord of EAE mice. Protein extracts from spinal cord of Fasudil-treated EAE mice promoted the formation of neurite outgrowth when co-cultured with primary neurons, indicating that peripheral administration of Fasudil can enter the central nervous system (CNS) and exhibited its biological effect on the formation of neurite outgrowth. Synapse-related molecule synaptophysin was enhanced, and CRMP-2, AMPA receptor, and GSK-3β were declined in spinal cord of Fasudil-treated mice. Neurotrophic factor BDNF and GDNF as well as immunomodulatory cytokine IL-10 in spinal cord were elevated in Fasudil-treated mice, while inflammatory cytokine IL-17, IL-1β, IL-6, and TNF-α were obviously inhibited, accompanied by the decrease of inflammatory M1 iNOS and the increase of anti-inflammatory M2 Arg-1, providing a microenvironment that contributes to synaptic protection. Our results indicate that Fasudil treatment protected against synaptic damage and promoted synaptic formation, which may be related with increased neurotrophic factors as well as decreased inflammatory microenvironment in the CNS of EAE mice.
Collapse
Affiliation(s)
- Jie-Zhong Yu
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong, China
| | - Chan Chen
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Qiong Zhang
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Yong-Fei Zhao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Ling Feng
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong, China
| | - Hai-Fei Zhang
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong, China
| | - Jian Meng
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong, China
| | - Cun-Gen Ma
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong, China.,"2011" Collaborative Innovation Center/Research Center of Neurobiology, Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| | - Bao-Guo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| |
Collapse
|
103
|
Alterations of functional properties of hippocampal networks following repetitive closed-head injury. Exp Neurol 2016; 277:227-243. [DOI: 10.1016/j.expneurol.2015.12.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 12/09/2015] [Accepted: 12/22/2015] [Indexed: 11/16/2022]
|
104
|
A(H1N1) vaccination recruits T lymphocytes to the choroid plexus for the promotion of hippocampal neurogenesis and working memory in pregnant mice. Brain Behav Immun 2016; 53:72-83. [PMID: 26576725 DOI: 10.1016/j.bbi.2015.11.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/30/2015] [Accepted: 11/09/2015] [Indexed: 12/20/2022] Open
Abstract
We previously demonstrated that A(H1N1) influenza vaccine (AIV) promoted hippocampal neurogenesis and working memory in pregnant mice. However, the underlying mechanism of flu vaccination in neurogenesis and memory has remained unclear. In this study, we found that T lymphocytes were recruited from the periphery to the choroid plexus (CP) of the lateral and third (3rd) ventricles in pregnant mice vaccinated with AIV (Pre+AIV). Intracerebroventricular delivery of anti-TCR antibodies markedly decreased neurogenesis and the working memory of the Pre+AIV mice. Similarly, intravenous delivery of anti-CD4 antibodies to the periphery also down-regulated neurogenesis. Furthermore, AIV vaccination caused microglia to skew toward an M2-like phenotype (increased Arginase-1 and Ym1 mRNA levels), and elevated levels of brain-derived growth factor (BDNF) and insulin-like growth factor-1 (IGF-1) were found in the hippocampus, whereas these effects were offset by anti-TCR antibody treatment. Additionally, in the CP, the expression level of adhesion molecules and chemokines, which assist leukocytes in permeating into the brain, were also elevated after AIV vaccination of pregnant mice. Collectively, the results suggested that the infiltrative T lymphocytes in the CP contribute to the increase in hippocampal neurogenesis and working memory caused by flu vaccination, involving activation of the brain's CP, M2 microglial polarization and neurotrophic factor expression.
Collapse
|
105
|
Di Filippo M, de Iure A, Giampà C, Chiasserini D, Tozzi A, Orvietani PL, Ghiglieri V, Tantucci M, Durante V, Quiroga-Varela A, Mancini A, Costa C, Sarchielli P, Fusco FR, Calabresi P. Persistent activation of microglia and NADPH oxidase [corrected] drive hippocampal dysfunction in experimental multiple sclerosis. Sci Rep 2016; 6:20926. [PMID: 26887636 PMCID: PMC4757867 DOI: 10.1038/srep20926] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/13/2016] [Indexed: 01/08/2023] Open
Abstract
Cognitive impairment is common in multiple sclerosis (MS). Unfortunately, the synaptic and molecular mechanisms underlying MS-associated cognitive dysfunction are largely unknown. We explored the presence and the underlying mechanism of cognitive and synaptic hippocampal dysfunction during the remission phase of experimental MS. Experiments were performed in a chronic-relapsing experimental autoimmune encephalomyelitis (EAE) model of MS, after the resolution of motor deficits. Immunohistochemistry and patch-clamp recordings were performed in the CA1 hippocampal area. The hole-board was utilized as cognitive/behavioural test. In the remission phase of experimental MS, hippocampal microglial cells showed signs of activation, CA1 hippocampal synapses presented an impaired long-term potentiation (LTP) and an alteration of spatial tests became evident. The activation of hippocampal microglia mediated synaptic and cognitive/behavioural alterations during EAE. Specifically, LTP blockade was found to be caused by the reactive oxygen species (ROS)-producing enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. We suggest that in the remission phase of experimental MS microglia remains activated, causing synaptic dysfunctions mediated by NADPH oxidase. Inhibition of microglial activation and NADPH oxidase may represent a promising strategy to prevent neuroplasticity impairment associated with active neuro-inflammation, with the aim to improve cognition and counteract MS disease progression.
Collapse
Affiliation(s)
- Massimiliano Di Filippo
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Ospedale Santa Maria della Misericordia, S. Andrea delle Fratte, 06132 Perugia, Italy
| | - Antonio de Iure
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Ospedale Santa Maria della Misericordia, S. Andrea delle Fratte, 06132 Perugia, Italy
| | - Carmela Giampà
- IRCCS, Fondazione Santa Lucia, via del Fosso di Fiorano 64, 00143, Rome, Italy
| | - Davide Chiasserini
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Ospedale Santa Maria della Misericordia, S. Andrea delle Fratte, 06132 Perugia, Italy
| | - Alessandro Tozzi
- IRCCS, Fondazione Santa Lucia, via del Fosso di Fiorano 64, 00143, Rome, Italy.,Sezione di Fisiologia e Biochimica, Dipartimento di Medicina Sperimentale, Università degli Studi di Perugia, S. Andrea delle Fratte, 06132 Perugia, Italy
| | - Pier Luigi Orvietani
- Sezione di Fisiologia e Biochimica, Dipartimento di Medicina Sperimentale, Università degli Studi di Perugia, S. Andrea delle Fratte, 06132 Perugia, Italy
| | - Veronica Ghiglieri
- IRCCS, Fondazione Santa Lucia, via del Fosso di Fiorano 64, 00143, Rome, Italy
| | - Michela Tantucci
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Ospedale Santa Maria della Misericordia, S. Andrea delle Fratte, 06132 Perugia, Italy
| | - Valentina Durante
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Ospedale Santa Maria della Misericordia, S. Andrea delle Fratte, 06132 Perugia, Italy
| | - Ana Quiroga-Varela
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Ospedale Santa Maria della Misericordia, S. Andrea delle Fratte, 06132 Perugia, Italy
| | - Andrea Mancini
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Ospedale Santa Maria della Misericordia, S. Andrea delle Fratte, 06132 Perugia, Italy
| | - Cinzia Costa
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Ospedale Santa Maria della Misericordia, S. Andrea delle Fratte, 06132 Perugia, Italy
| | - Paola Sarchielli
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Ospedale Santa Maria della Misericordia, S. Andrea delle Fratte, 06132 Perugia, Italy
| | | | - Paolo Calabresi
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Ospedale Santa Maria della Misericordia, S. Andrea delle Fratte, 06132 Perugia, Italy.,IRCCS, Fondazione Santa Lucia, via del Fosso di Fiorano 64, 00143, Rome, Italy
| |
Collapse
|
106
|
Yi JH, Park HJ, Lee S, Jung JW, Kim BC, Lee YC, Ryu JH, Kim DH. Cassia obtusifolia seed ameliorates amyloid β-induced synaptic dysfunction through anti-inflammatory and Akt/GSK-3β pathways. JOURNAL OF ETHNOPHARMACOLOGY 2016; 178:50-7. [PMID: 26674159 DOI: 10.1016/j.jep.2015.12.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/26/2015] [Accepted: 12/02/2015] [Indexed: 05/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tea infused with the seed of Cassia obtusifolia has been traditionally used as an herbal remedy for liver, eye, and acute inflammatory diseases. Recent pharmacological reports have indicated that Cassiae semen has neuroprotective effects, attributable to its anti-inflammatory actions, in ischemic stroke and Parkinson's disease models. AIM OF THE STUDY Previously, the ethanol extract of C. obtusifolia seeds (COE) was reported to have memory enhancing properties. However, the effects of COE in an Alzheimer's disease (AD) model are currently unknown. In this study, we investigated the effect(s) of COE on aberrant synaptic plasticity and memory impairment induced by amyloid β (Aβ), a key toxic component found in the AD brain. MATERIALS AND METHODS To determine the effect of COE on Aβ-induced aberrant synaptic plasticity, we used acute mouse hippocampal slices and delivered theta burst stimulation to induce long-term potentiation (LTP). Western blots were used to detect Aβ- and/or COE-induced changes in signaling proteins. The novel object location recognition test was conducted to determine the effect of COE on Aβ-induced recognition memory impairment. RESULTS COE was found to ameliorate Aβ-induced LTP impairment in the acute hippocampal slices. Glycogen synthase kinase-3β (GSK-3β), a key molecule in LTP impairment, was activated by Aβ. However, this process was inhibited by COE via Akt signaling. Moreover, COE was found to attenuate Aβ-induced microglia, inducible nitric oxide synthase (iNOS), and cyclooxygenase (COX) activation. In the in vivo studies performed, COE ameliorated the Aβ-induced object recognition memory impairment. CONCLUSION These results suggest that COE exhibits neuroprotective activities against Aβ-induced brain disorders.
Collapse
Affiliation(s)
- Jee Hyun Yi
- School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK.
| | - Hey Jin Park
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 604-714, Republic of Korea; Institute of Convergence Bio-Health, Dong-A University, Busan 604-714, Republic of Korea.
| | - Seungheon Lee
- Department of Aquatic Biomedical Sciences, School of Marine Biomedical Science, College of Ocean Science, Jeju National University, Jeju 690-756, Republic of Korea.
| | - Ji Wook Jung
- Department of Herbal Medicinal Pharmacology, College of Herbal Bio-industry, Daegu Haany University, Kyungsan 712-715, Republic of Korea.
| | - Byeong C Kim
- Chonnam-Bristol Frontier Laboratory, Biomedical Research Institute, Chonnam National University Hospital, Jebong-ro, Gwangju 501-757, Republic of Korea.
| | - Young Choon Lee
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 604-714, Republic of Korea; Institute of Convergence Bio-Health, Dong-A University, Busan 604-714, Republic of Korea.
| | - Jong Hoon Ryu
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea; Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea.
| | - Dong Hyun Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 604-714, Republic of Korea; Institute of Convergence Bio-Health, Dong-A University, Busan 604-714, Republic of Korea.
| |
Collapse
|
107
|
Alaşehirli B, Oguz E, Gokcen C, Erbagcı AB, Orkmez M, Demiryurek AT. Relationship between soluble intercellular adhesion molecules and attention-deficit/hyperactivity disorder. Int J Psychiatry Med 2015; 50:238-47. [PMID: 26377944 DOI: 10.1177/0091217415605040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Attention-deficit/hyperactivity disorder (ADHD) is a common childhood-oneset psychiatric disease, characterized by excessive overactivity, inattention, and impulsiveness. In recent studies, it is emphasized that inflammation may have a role in ADHD. In this study, we aimed to investigate whether there are associations between ADHD and serum levels of soluble intercellular adhesion molecules (s-ICAMs) which have important role in inflammatory diseases. We also measured the levels of these molecules after treatment with oros-methylphenidate. METHODS Twenty-five patients diagnosed with ADHD according to Diagnostic and Statistical Manual of Mental Disorders-IV-TR criteria and 18 healthy volunteer controls were included in this study. The levels of sICAMs were measured in the serum of the patients and healthy volunteers by ELISA kit as described. RESULTS The levels of sICAM-1 and sICAM-2 were significantly higher in patients compared with controls. The level of sICAM-2 was decreased significantly in group treated with oros-methylphenidate. CONCLUSIONS This is the first study pointing out the relationship between sICAMs and ADHD. The changes in sICAM-2 level may have a role in the effect mechanism of oros-methylphenidate, used for the treatment of ADHD.
Collapse
Affiliation(s)
- Belgin Alaşehirli
- Department of Medical Pharmacology, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| | - Elif Oguz
- Department of Medical Pharmacology, Faculty of Medicine, University of Harran, Sanliurfa, Turkey
| | - Cem Gokcen
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| | - Ayse Binnur Erbagcı
- Department of Medical Biochemistry, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| | - Mustafa Orkmez
- Department of Medical Biochemistry, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| | - Abdullah T Demiryurek
- Department of Medical Pharmacology, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| |
Collapse
|
108
|
Rosenblat JD, Brietzke E, Mansur RB, Maruschak NA, Lee Y, McIntyre RS. Inflammation as a neurobiological substrate of cognitive impairment in bipolar disorder: Evidence, pathophysiology and treatment implications. J Affect Disord 2015; 188:149-59. [PMID: 26363613 DOI: 10.1016/j.jad.2015.08.058] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/05/2015] [Accepted: 08/26/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Bipolar disorder (BD) has been associated with cognitive impairment during depressed, manic and euthymic periods. Inflammation has been shown to be involved in the pathophysiology of BD and cognitive impairment. METHODS For this systematic review, the MEDLINE/PubMed, Embase, Google Scholar and ClinicalTrials.gov databases were searched for relevant articles assessing the association between cognitive function and inflammatory markers in BD subjects. A discussion of potential mechanisms and therapeutic implications is also included to provide further context to the subject matter. RESULTS Eight studies, including a total of 555 BD subjects, assessing the association between cognitive function and inflammatory markers were identified. Cognitive dysfunction was associated with elevated levels of pro-inflammatory markers YKL40, IL-6, sCD40L, IL-1Ra, hsCRP and TNF-α. Mechanistically, elevation in inflammatory cytokines alters monoamine levels leading to cognitive and affective dysfunction. Neuro-inflammation, manifesting as microglial activation, leads to increased oxidative stress, pathologic synaptic pruning and impaired neuroplasticity in key brain regions sub-serving mood and cognition. Immune dysfunction also activates the hypothalamic-pituitary-adrenal (HPA) axis leading to hypercortisolemia and metabolic dysfunction, further promoting neuronal dysfunction. Anti-inflammatory agents are therefore currently being investigated in the treatment of BD and appear to exert an antidepressant effect; however, cognitive outcomes have yet to be reported. CONCLUSION Several studies suggest that immune dysfunction is associated with cognitive impairment in BD. Several neurobiological pathways have been identified whereby immune dysfunction may promote cognitive impairment in BD. Future investigations of anti-inflammatory agents targeting cognitive function as a treatment outcome are merited.
Collapse
Affiliation(s)
- Joshua D Rosenblat
- Mood Disorder Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Elisa Brietzke
- Interdisciplinary Laboratory of Clinical Neurosciences (LINC), Federal University of Sao Paulo, Sao Paulo, Brazil; Program of Recognition and Intervention in Individuals in AT-Risk Mental States (PRISMA), Department of Psychiatry, Universidade FeInterdisciplinary Laboratory of Clinical Neurosciences (LINC), Federal University of Sao Pauloderal de São Paulo, São Paulo, Brazil
| | - Rodrigo B Mansur
- Mood Disorder Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Interdisciplinary Laboratory of Clinical Neurosciences (LINC), Federal University of Sao Paulo, Sao Paulo, Brazil; Program of Recognition and Intervention in Individuals in AT-Risk Mental States (PRISMA), Department of Psychiatry, Universidade FeInterdisciplinary Laboratory of Clinical Neurosciences (LINC), Federal University of Sao Pauloderal de São Paulo, São Paulo, Brazil
| | - Nadia A Maruschak
- Mood Disorder Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Yena Lee
- Mood Disorder Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Roger S McIntyre
- Mood Disorder Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
109
|
von Bernhardi R, Cornejo F, Parada GE, Eugenín J. Role of TGFβ signaling in the pathogenesis of Alzheimer's disease. Front Cell Neurosci 2015; 9:426. [PMID: 26578886 PMCID: PMC4623426 DOI: 10.3389/fncel.2015.00426] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 10/09/2015] [Indexed: 12/19/2022] Open
Abstract
Aging is the main risk factor for Alzheimer’s disease (AD); being associated with conspicuous changes on microglia activation. Aged microglia exhibit an increased expression of cytokines, exacerbated reactivity to various stimuli, oxidative stress, and reduced phagocytosis of β-amyloid (Aβ). Whereas normal inflammation is protective, it becomes dysregulated in the presence of a persistent stimulus, or in the context of an inflammatory environment, as observed in aging. Thus, neuroinflammation can be a self-perpetuating deleterious response, becoming a source of additional injury to host cells in neurodegenerative diseases. In aged individuals, although transforming growth factor β (TGFβ) is upregulated, its canonical Smad3 signaling is greatly reduced and neuroinflammation persists. This age-related Smad3 impairment reduces protective activation while facilitating cytotoxic activation of microglia through several cellular mechanisms, potentiating microglia-mediated neurodegeneration. Here, we critically discuss the role of TGFβ-Smad signaling on the cytotoxic activation of microglia and its relevance in the pathogenesis of AD. Other protective functions, such as phagocytosis, although observed in aged animals, are not further induced by inflammatory stimuli and TGFβ1. Analysis in silico revealed that increased expression of receptor scavenger receptor (SR)-A, involved in Aβ uptake and cell activation, by microglia exposed to TGFβ, through a Smad3-dependent mechanism could be mediated by transcriptional co-factors Smad2/3 over the MSR1 gene. We discuss that changes of TGFβ-mediated regulation could at least partially mediate age-associated microglia changes, and, together with other changes on inflammatory response, could result in the reduction of protective activation and the potentiation of cytotoxicity of microglia, resulting in the promotion of neurodegenerative diseases.
Collapse
Affiliation(s)
- Rommy von Bernhardi
- Laboratory of Neuroscience, Faculty of Medicine, Department of Neurology, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Francisca Cornejo
- Laboratory of Neuroscience, Faculty of Medicine, Department of Neurology, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Guillermo E Parada
- Laboratory of Neuroscience, Faculty of Medicine, Department of Neurology, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Jaime Eugenín
- Laboratory of Neural Systems, Faculty of Chemistry and Biology, Department of Biology, Universidad de Santiago de Chile Santiago, Chile
| |
Collapse
|
110
|
Yndart A, Kaushik A, Agudelo M, Raymond A, Atluri VS, Saxena SK, Nair M. Investigation of Neuropathogenesis in HIV-1 Clade B and C Infection Associated with IL-33 and ST2 Regulation. ACS Chem Neurosci 2015; 6:1600-12. [PMID: 26110635 DOI: 10.1021/acschemneuro.5b00156] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In present research work, for the first time, we demonstrate that neuropathogenesis in HIV-1 clade B and C infection is associated with IL-33 and ST2 dysregulation, that is, implication toward neuropathogenesis. It is known that neuropathogenesis of HIV infected individuals is clade dependent. Proinflammatory cytokines and related receptors play a significant role in the complex regulatory mechanisms of neuropathogenesis in HIV-1 infection. Among them, IL-33 is an inflammatory cytokine expressed in the central nervous system (CNS) and activates microglia cells and may affect neuroimmune inflammatory processes involved in HIV neuropathogenesis. Beside this, IL-33 receptor (ST2) plays a role in neuroinflammatory processes through the modulation of the biological action of IL-33. quantitative real time PCR (qRT-PCR), ELISA, Western blot (WB), and flow cytometry experiments were performed to elucidate the role of IL-33/ST2 in HIV neuropathogenesis in CNS cells. Apoptosis and mechanisms of IL-33 in neuronal cells were studied using caspase-3 assay and RT-PCR. Results of the studies suggest that the infection in CNS cells with HIV-1 clade B resulted in higher levels of IL-33/ST2L expression compared to HIV-1 clade C infection. Furthermore, higher concentrations of IL-33 were associated with a decrease in myocyte enhancer factor 2C (MEF2C) expression, a transcription factor that regulates synaptic function, and an increase in apoptosis, NOD2, and SLC11A1 in clade B infection. This led to neuroinflammation which dysregulates synaptic function and apoptosis. These parameters are common in neuroAIDS provoked by HIV infection.
Collapse
Affiliation(s)
- Adriana Yndart
- Center
of Personalized Nanomedicine, Institute of Neuropharmacology, Department
of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Ajeet Kaushik
- Center
of Personalized Nanomedicine, Institute of Neuropharmacology, Department
of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Marisela Agudelo
- Center
of Personalized Nanomedicine, Institute of Neuropharmacology, Department
of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Andrea Raymond
- Center
of Personalized Nanomedicine, Institute of Neuropharmacology, Department
of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Venkata S. Atluri
- Center
of Personalized Nanomedicine, Institute of Neuropharmacology, Department
of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Shailendra K Saxena
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500007 (TS), India
| | - Madhavan Nair
- Center
of Personalized Nanomedicine, Institute of Neuropharmacology, Department
of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
111
|
Neonatal vaccination with bacillus Calmette-Guérin and hepatitis B vaccines modulates hippocampal synaptic plasticity in rats. J Neuroimmunol 2015; 288:1-12. [PMID: 26531688 DOI: 10.1016/j.jneuroim.2015.08.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 08/08/2015] [Accepted: 08/19/2015] [Indexed: 11/21/2022]
Abstract
Immune activation can exert multiple effects on synaptic transmission. Our study demonstrates the influence of neonatal vaccination on hippocampal synaptic plasticity in rats under normal physiological conditions. The results revealed that neonatal BCG vaccination enhanced synaptic plasticity. In contrast, HBV hampered it. Furthermore, we found that the cytokine balance shifted in favour of the T helper type 1/T helper type 2 immune response in BCG/HBV-vaccinated rats in the periphery. The peripheral IFN-γ:IL-4 ratio was positively correlated with BDNF and IGF-1 in the hippocampus. BCG raised IFN-γ, IL-4, BDNF and IGF-1 and reduced IL-1β, IL-6, and TNF-α in the hippocampus, whereas, HBV triggered the opposite effects.
Collapse
|
112
|
Qulu L, Daniels WMU, Russell V, Mabandla MV. Searsia chirindensis reverses the potentiating effect of prenatal stress on the development of febrile seizures and decreased plasma interleukin-1β levels. Neurosci Res 2015; 103:54-8. [PMID: 26320878 DOI: 10.1016/j.neures.2015.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/18/2015] [Accepted: 08/21/2015] [Indexed: 12/16/2022]
Abstract
It is estimated that more than 80% of patients with epilepsy live in developing countries with 50-60% of them being children. This high prevalence is perpetuated by low socio-economic challenges, poor health care facilities and lack of drug affordability. Searsia chirindensis formerly known as rhus chirindensis and commonly known as 'Red Current' is a popular traditional medicinal plant, which has been used to treat a number of illnesses such as heart complaints and neurological disorders. The aim of this study is to investigate the effects of S. chirindensis on the development of febrile seizure in a prenatally stressed rat. Febrile seizures were induced by administering lipopolysaccharide to 14-day-old rat pups followed by kainic acid. A subset of the rats was treated with Searsia after induction of febrile seizures. Interleukin-1β (IL-1β) levels were measured in plasma. Lipid peroxidation was determined in liver tissue. Our data shows that treatment with Searsia reduced interleukin-1β levels in plasma of the febrile seizure rats and prevented lipid oxidation in the liver. Prenatal stress is dampened by the beneficial effects of Searsia on seizure development in rat pups. These results highlight the potentiating effects of Searsia in the reversal of febrile seizures and prenatal stress effects.
Collapse
Affiliation(s)
- Lihle Qulu
- Department of Human Physiology, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Willie M U Daniels
- Department of Human Physiology, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Vivienne Russell
- Department of Human Physiology, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Musa V Mabandla
- Department of Human Physiology, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
| |
Collapse
|
113
|
Intermittent Hypoxia-Induced Spinal Inflammation Impairs Respiratory Motor Plasticity by a Spinal p38 MAP Kinase-Dependent Mechanism. J Neurosci 2015; 35:6871-80. [PMID: 25926462 DOI: 10.1523/jneurosci.4539-14.2015] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Inflammation is characteristic of most clinical disorders that challenge the neural control of breathing. Since inflammation modulates neuroplasticity, we studied the impact of inflammation caused by prolonged intermittent hypoxia on an important form of respiratory plasticity, acute intermittent hypoxia (three, 5 min hypoxic episodes, 5 min normoxic intervals) induced phrenic long-term facilitation (pLTF). Because chronic intermittent hypoxia elicits neuroinflammation and pLTF is undermined by lipopolysaccharide-induced systemic inflammation, we hypothesized that one night of intermittent hypoxia (IH-1) elicits spinal inflammation, thereby impairing pLTF by a p38 MAP kinase-dependent mechanism. pLTF and spinal inflammation were assessed in anesthetized rats pretreated with IH-1 (2 min hypoxia, 2 min normoxia; 8 h) or sham normoxia and allowed 16 h for recovery. IH-1 (1) transiently increased IL-6 (1.5 ± 0.2-fold; p = 0.02) and inducible nitric oxide synthase (iNOS) (2.4 ± 0.4-fold; p = 0.01) mRNA in cervical spinal homogenates, (2) elicited a sustained increase in IL-1β mRNA (2.4 ± 0.2-fold; p < 0.001) in isolated cervical spinal microglia, and (3) abolished pLTF (-1 ± 5% vs 56 ± 10% in controls; p < 0.001). pLTF was restored after IH-1 by systemic NSAID administration (ketoprofen; 55 ± 9%; p < 0.001) or spinal p38 MAP kinase inhibition (58 ± 2%; p < 0.001). IH-1 increased phosphorylated (activated) p38 MAP kinase immunofluorescence in identified phrenic motoneurons and adjacent microglia. In conclusion, IH-1 elicits spinal inflammation and impairs pLTF by a spinal p38 MAP kinase-dependent mechanism. By targeting inflammation, we may develop strategies to manipulate respiratory motor plasticity for therapeutic advantage when the respiratory control system is compromised (e.g., sleep apnea, apnea of prematurity, spinal injury, or motor neuron disease).
Collapse
|
114
|
von Bernhardi R, Eugenín-von Bernhardi L, Eugenín J. Microglial cell dysregulation in brain aging and neurodegeneration. Front Aging Neurosci 2015; 7:124. [PMID: 26257642 PMCID: PMC4507468 DOI: 10.3389/fnagi.2015.00124] [Citation(s) in RCA: 390] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 06/22/2015] [Indexed: 12/29/2022] Open
Abstract
Aging is the main risk factor for neurodegenerative diseases. In aging, microglia undergoes phenotypic changes compatible with their activation. Glial activation can lead to neuroinflammation, which is increasingly accepted as part of the pathogenesis of neurodegenerative diseases, including Alzheimer’s disease (AD). We hypothesize that in aging, aberrant microglia activation leads to a deleterious environment and neurodegeneration. In aged mice, microglia exhibit an increased expression of cytokines and an exacerbated inflammatory response to pathological changes. Whereas LPS increases nitric oxide (NO) secretion in microglia from young mice, induction of reactive oxygen species (ROS) predominates in older mice. Furthermore, there is accumulation of DNA oxidative damage in mitochondria of microglia during aging, and also an increased intracellular ROS production. Increased ROS activates the redox-sensitive nuclear factor kappa B, which promotes more neuroinflammation, and can be translated in functional deficits, such as cognitive impairment. Mitochondria-derived ROS and cathepsin B, are also necessary for the microglial cell production of interleukin-1β, a key inflammatory cytokine. Interestingly, whereas the regulatory cytokine TGFβ1 is also increased in the aged brain, neuroinflammation persists. Assessing this apparent contradiction, we have reported that TGFβ1 induction and activation of Smad3 signaling after inflammatory stimulation are reduced in adult mice. Other protective functions, such as phagocytosis, although observed in aged animals, become not inducible by inflammatory stimuli and TGFβ1. Here, we discuss data suggesting that mitochondrial and endolysosomal dysfunction could at least partially mediate age-associated microglial cell changes, and, together with the impairment of the TGFβ1-Smad3 pathway, could result in the reduction of protective activation and the facilitation of cytotoxic activation of microglia, resulting in the promotion of neurodegenerative diseases.
Collapse
Affiliation(s)
- Rommy von Bernhardi
- Department of Neurology, Faculty of Medicine, Pontificia Universidad Católica de Chile Santiago, Chile
| | | | - Jaime Eugenín
- Laboratory of Neural Systems, Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile (USACH) Santiago, Chile
| |
Collapse
|
115
|
Gonzalez-Rothi EJ, Lee KZ, Dale EA, Reier PJ, Mitchell GS, Fuller DD. Intermittent hypoxia and neurorehabilitation. J Appl Physiol (1985) 2015; 119:1455-65. [PMID: 25997947 DOI: 10.1152/japplphysiol.00235.2015] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/18/2015] [Indexed: 02/05/2023] Open
Abstract
In recent years, it has become clear that brief, repeated presentations of hypoxia [i.e., acute intermittent hypoxia (AIH)] can boost the efficacy of more traditional therapeutic strategies in certain cases of neurologic dysfunction. This hypothesis derives from a series of studies in animal models and human subjects performed over the past 35 yr. In 1980, Millhorn et al. (Millhorn DE, Eldridge FL, Waldrop TG. Respir Physiol 41: 87-103, 1980) showed that electrical stimulation of carotid chemoafferent neurons produced a persistent, serotonin-dependent increase in phrenic motor output that outlasts the stimulus for more than 90 min (i.e., a "respiratory memory"). AIH elicits similar phrenic "long-term facilitation" (LTF) by a mechanism that requires cervical spinal serotonin receptor activation and de novo protein synthesis. From 2003 to present, a series of studies demonstrated that AIH can induce neuroplasticity in the injured spinal cord, causing functional recovery of breathing capacity after cervical spinal injury. Subsequently, it was demonstrated that repeated AIH (rAIH) can induce recovery of limb function, and the functional benefits of rAIH are greatest when paired with task-specific training. Since uncontrolled and/or prolonged intermittent hypoxia can elicit pathophysiology, a challenge of intermittent hypoxia research is to ensure that therapeutic protocols are well below the threshold for pathogenesis. This is possible since many low dose rAIH protocols have induced functional benefits without evidence of pathology. We propose that carefully controlled rAIH is a safe and noninvasive modality that can be paired with other neurorehabilitative strategies including traditional activity-based physical therapy or cell-based therapies such as intraspinal transplantation of neural progenitors.
Collapse
Affiliation(s)
- Elisa J Gonzalez-Rothi
- Department of Physical Therapy College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - Kun-Ze Lee
- Department of Biological Sciences, College of Science, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Erica A Dale
- Department of Integrative Biology and Physiology, University of California-Los Angeles, Los Angeles, California; and
| | - Paul J Reier
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida
| | - Gordon S Mitchell
- Department of Physical Therapy College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - David D Fuller
- Department of Physical Therapy College of Public Health and Health Professions, University of Florida, Gainesville, Florida;
| |
Collapse
|
116
|
Parlog A, Schlüter D, Dunay IR. Toxoplasma gondii-induced neuronal alterations. Parasite Immunol 2015; 37:159-70. [PMID: 25376390 DOI: 10.1111/pim.12157] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/31/2014] [Indexed: 12/13/2022]
Abstract
The zoonotic pathogen Toxoplasma gondii infects over 30% of the human population. The intracellular parasite can persist lifelong in the CNS within neurons modifying their function and structure, thus leading to specific behavioural changes of the host. In recent years, several in vitro studies and murine models have focused on the elucidation of these modifications. Furthermore, investigations of the human population have correlated Toxoplasma seropositivity with changes in neurological functions; however, the complex underlying mechanisms of the subtle behavioural alteration are still not fully understood. The parasites are able to induce direct modifications in the infected cells, for example by altering dopamine metabolism, by functionally silencing neurons as well as by hindering apoptosis. Moreover, indirect effects of the peripheral immune system and alterations of the immune status of the CNS, observed during chronic infection, might also contribute to changes in neuronal connectivity and synaptic plasticity. In this review, we will provide an overview and highlight recent advances, which describe changes in the neuronal function and morphology upon T. gondii infection.
Collapse
Affiliation(s)
- A Parlog
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University, Magdeburg, Germany
| | | | | |
Collapse
|
117
|
Exposure of Adolescent Mice to Delta-9-Tetrahydrocannabinol Induces Long-Lasting Modulation of Pro- and Anti-Inflammatory Cytokines in Hypothalamus and Hippocampus Similar to that Observed for Peripheral Macrophages. J Neuroimmune Pharmacol 2015; 10:371-9. [PMID: 25875136 DOI: 10.1007/s11481-015-9592-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/29/2015] [Indexed: 10/24/2022]
Abstract
Cannabis use is frequent among adolescents. Its main component, delta-9-tetrahydrocannabinol (THC), affects the immune system. We recently demonstrated that chronic exposure of adolescent mice to THC suppressed immunity immediately after treatment but that after a washout period THC induced a long-lasting opposite modulation towards a proinflammatory and T-helper-1 phenotype in adulthood. The main objective of this study was to investigate whether the same effect was also present in brain regions such as the hypothalamus and hippocampus. Thirty-three-day-old adolescent and 80-day-old adult male mice were used. Acute THC administration induced a similar reduction of macrophage proinflammatory cytokines and an IL-10 increase in adult and adolescent mice. THC did not affect brain cytokines in adult mice, but a proinflammatory cytokine decrease was evident in the adolescent brain. A similar effect was present in the hypothalamus and hippocampus after 10 days' THC administration. In contrast, when brain cytokines were measured 47 days after the final THC administration, we observed an inverted effect in adult mice treated as adolescents, i.e., IL-1β and TNF-α increased and IL-10 decreased, indicating a shift toward neuroinflammation. These data suggest that THC exposure in adolescence has long-lasting effects on brain cytokines that parallel those present in the periphery. This modulation may affect vulnerability to immune and behavioural diseases in adulthood.
Collapse
|
118
|
Parrott JM, O'Connor JC. Kynurenine 3-Monooxygenase: An Influential Mediator of Neuropathology. Front Psychiatry 2015; 6:116. [PMID: 26347662 PMCID: PMC4542134 DOI: 10.3389/fpsyt.2015.00116] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/03/2015] [Indexed: 12/13/2022] Open
Abstract
Mounting evidence demonstrates that kynurenine metabolism may play an important pathogenic role in the development of multiple neurological and neuropsychiatric disorders. The kynurenine pathway consists of two functionally distinct branches that generate both neuroactive and oxidatively reactive metabolites. In the brain, the rate-limiting enzyme for one of these branches, kynurenine 3-monooxygenase (KMO), is predominantly expressed in microglia and has emerged as a pivotal point of metabolic regulation. KMO substrate and expression levels are upregulated by pro-inflammatory cytokines and altered by functional genetic mutations. Increased KMO metabolism results in the formation of metabolites that activate glutamate receptors and elevate oxidative stress, while recent evidence has revealed neurodevelopmental consequences of reduced KMO activity. Together, the evidence suggests that KMO is positioned at a critical metabolic junction to influence the development or trajectory of a myriad of neurological diseases. Understanding the mechanism(s) by which alterations in KMO activity are able to impair neuronal function, and viability will enhance our knowledge of related disease pathology and provide insight into novel therapeutic opportunities. This review will discuss the influence of KMO on brain kynurenine metabolism and the current understanding of molecular mechanisms by which altered KMO activity may contribute to neurodevelopment, neurodegenerative, and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Jennifer M Parrott
- Department of Pharmacology, School of Medicine, University of Texas Health Science Center at San Antonio , San Antonio, TX , USA ; Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio , San Antonio, TX , USA
| | - Jason C O'Connor
- Department of Pharmacology, School of Medicine, University of Texas Health Science Center at San Antonio , San Antonio, TX , USA ; Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio , San Antonio, TX , USA ; Mood Disorders Translational Research Core, University of Texas Health Science Center at San Antonio , San Antonio, TX , USA ; Audie L. Murphy Memorial VA Hospital, South Texas Veterans Health System , San Antonio, TX , USA
| |
Collapse
|
119
|
Di Filippo M, de Iure A, Durante V, Gaetani L, Mancini A, Sarchielli P, Calabresi P. Synaptic plasticity and experimental autoimmune encephalomyelitis: implications for multiple sclerosis. Brain Res 2014; 1621:205-13. [PMID: 25498984 DOI: 10.1016/j.brainres.2014.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 12/22/2022]
Abstract
Structural and functional neuronal plasticity could play a crucial role during the course of multiple sclerosis (MS). The immune system and the central nervous system (CNS) strictly interact in physiologic conditions and during inflammation to modulate neuroplasticity and in particular the ability of the synapses to undergo long-term changes in the efficacy of synaptic transmission, such as long-term potentiation (LTP). During MS, neuro-inflammation might deeply influence the ability of neuronal networks to express physiologic plasticity, reducing the plastic reserve of the brain, with a negative impact on symptoms progression and cognitive performances. In this manuscript we review the evidence on synaptic plasticity alterations in experimental autoimmune encephalomyelitis (EAE), the most diffuse and widely utilized experimental model of MS, together with their potential underlying mechanisms and clinical relevance. This article is part of a Special Issue entitled SI: Brain and Memory.
Collapse
Affiliation(s)
- Massimiliano Di Filippo
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Perugia, Italy.
| | - Antonio de Iure
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Perugia, Italy
| | - Valentina Durante
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Perugia, Italy
| | - Lorenzo Gaetani
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Perugia, Italy
| | - Andrea Mancini
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Perugia, Italy
| | - Paola Sarchielli
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Perugia, Italy
| | - Paolo Calabresi
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Perugia, Italy; IRCCS Fondazione S Lucia, Rome, Italy
| |
Collapse
|
120
|
Affiliation(s)
- Judith M. Ford
- San Francisco VA Medical Center; San Francisco California USA
- Department of Psychiatry; University of California; San Francisco (UCSF); San Francisco California USA
| |
Collapse
|
121
|
Francardo V, Bez F, Wieloch T, Nissbrandt H, Ruscher K, Cenci MA. Pharmacological stimulation of sigma-1 receptors has neurorestorative effects in experimental parkinsonism. Brain 2014; 137:1998-2014. [PMID: 24755275 DOI: 10.1093/brain/awu107] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The sigma-1 receptor, an endoplasmic reticulum-associated molecular chaperone, is attracting great interest as a potential target for neuroprotective treatments. We provide the first evidence that pharmacological modulation of this protein produces functional neurorestoration in experimental parkinsonism. Mice with intrastriatal 6-hydroxydopamine lesions were treated daily with the selective sigma-1 receptor agonist, PRE-084, for 5 weeks. At the dose of 0.3 mg/kg/day, PRE-084 produced a gradual and significant improvement of spontaneous forelimb use. The behavioural recovery was paralleled by an increased density of dopaminergic fibres in the most denervated striatal regions, by a modest recovery of dopamine levels, and by an upregulation of neurotrophic factors (BDNF and GDNF) and their downstream effector pathways (extracellular signal regulated kinases 1/2 and Akt). No treatment-induced behavioural-histological restoration occurred in sigma-1 receptor knockout mice subjected to 6-hydroxydopamine lesions and treated with PRE-084. Immunoreactivity for the sigma-1 receptor protein was evident in both astrocytes and neurons in the substantia nigra and the striatum, and its intracellular distribution was modulated by PRE-084 (the treatment resulted in a wider intracellular distribution of the protein). Our results suggest that sigma-1 receptor regulates endogenous defence and plasticity mechanisms in experimental parkinsonism. Boosting the activity of this protein may have disease-modifying effects in Parkinson's disease.
Collapse
Affiliation(s)
- Veronica Francardo
- 1 Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, BMC F11, Lund University, Lund, Sweden
| | - Francesco Bez
- 1 Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, BMC F11, Lund University, Lund, Sweden
| | - Tadeusz Wieloch
- 2 Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Wallenberg Neuroscience Centre, Lund University, Lund, Sweden
| | - Hans Nissbrandt
- 3 Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Karsten Ruscher
- 2 Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Wallenberg Neuroscience Centre, Lund University, Lund, Sweden
| | - M Angela Cenci
- 1 Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, BMC F11, Lund University, Lund, Sweden
| |
Collapse
|
122
|
Weiss S, Mori F, Rossi S, Centonze D. Disability in multiple sclerosis: When synaptic long-term potentiation fails. Neurosci Biobehav Rev 2014; 43:88-99. [DOI: 10.1016/j.neubiorev.2014.03.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/11/2014] [Accepted: 03/31/2014] [Indexed: 12/13/2022]
|
123
|
Strehl A, Lenz M, Itsekson-Hayosh Z, Becker D, Chapman J, Deller T, Maggio N, Vlachos A. Systemic inflammation is associated with a reduction in Synaptopodin expression in the mouse hippocampus. Exp Neurol 2014; 261:230-5. [PMID: 24837317 DOI: 10.1016/j.expneurol.2014.04.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/06/2014] [Accepted: 04/30/2014] [Indexed: 02/07/2023]
Abstract
Systemic inflammation is known to affect memory function through the activation of immune cells and the release of inflammatory cytokines. However, the neuronal targets by which inflammatory signaling pathways affect synaptic plasticity remain not well understood. Here, we addressed the question of whether systemic lipopolysaccharide (LPS)-induced inflammation influences the expression of Synaptopodin (SP). SP is an actin-binding protein, which is considered to control the ability of neurons to express synaptic plasticity by regulating the actin-cytoskeleton and/or intracellular Ca(2+) stores. This makes SP an interesting target molecule in the context of inflammation-induced alterations in synaptic plasticity. Using quantitative PCR (qPCR)-analysis and immunohistochemistry we here demonstrate that intraperitoneal LPS-injection in two-month old male Balb/c mice leads to a reduction in hippocampal SP-levels (area CA1; 24h after injection). These changes are accompanied by a defect in the ability to induce long-term potentiation (LTP) of Schaffer collateral-CA1 synapses, similar to what is observed in SP-deficient mice. We therefore propose that systemic inflammation could exert its effects on neural plasticity, at least in part, through the down-regulation of SP in vivo.
Collapse
Affiliation(s)
- Andreas Strehl
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, 60590 Frankfurt, Germany; Cluster of Excellence Macromolecular Complexes, Goethe-University Frankfurt, 60438 Frankfurt, Germany; Department of Neurology and Sagol Center for Neurosciences, Sheba Medical Center, Sackler Faculty of Medicine, Tel Aviv University, 52621 Tel Aviv, Israel
| | - Maximilian Lenz
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Zeev Itsekson-Hayosh
- Department of Neurology and Sagol Center for Neurosciences, Sheba Medical Center, Sackler Faculty of Medicine, Tel Aviv University, 52621 Tel Aviv, Israel
| | - Denise Becker
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Joab Chapman
- Department of Neurology and Sagol Center for Neurosciences, Sheba Medical Center, Sackler Faculty of Medicine, Tel Aviv University, 52621 Tel Aviv, Israel
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Nicola Maggio
- Department of Neurology and Sagol Center for Neurosciences, Sheba Medical Center, Sackler Faculty of Medicine, Tel Aviv University, 52621 Tel Aviv, Israel; Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, 52621 Tel HaShomer, Israel.
| | - Andreas Vlachos
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, 60590 Frankfurt, Germany.
| |
Collapse
|
124
|
Scuderi C, Stecca C, Bronzuoli MR, Rotili D, Valente S, Mai A, Steardo L. Sirtuin modulators control reactive gliosis in an in vitro model of Alzheimer's disease. Front Pharmacol 2014; 5:89. [PMID: 24860504 PMCID: PMC4027795 DOI: 10.3389/fphar.2014.00089] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/11/2014] [Indexed: 12/17/2022] Open
Abstract
Among neurodegenerative disorders, Alzheimer’s disease (AD) represents the most common cause of dementia in the elderly. Several genetic and environmental factors have been identified; however, aging represents the most important risk factor in the development of AD. To date, no effective treatments to prevent or slow this dementia are available. Sirtuins (SIRTs) are a family of NAD+-dependent enzymes, implicated in the control of a variety of biological processes that have the potential to modulate neurodegeneration. Here we tested the hypothesis that activation of SIRT1 or inhibition of SIRT2 would prevent reactive gliosis which is considered one of the most important hallmark of AD. Primary rat astrocytes were activated with beta amyloid 1-42 (Aβ 1-42) and treated with resveratrol (RSV) or AGK-2, a SIRT1 activator and a SIRT2-selective inhibitor, respectively. Results showed that both RSV and AGK-2 were able to reduce astrocyte activation as well as the production of pro-inflammatory mediators. These data disclose novel findings about the therapeutic potential of SIRT modulators, and suggest novel strategies for AD treatment.
Collapse
Affiliation(s)
- Caterina Scuderi
- Vittorio Erspamer School of Physiology and Pharmacology, SAPIENZA University of Rome Rome, Italy
| | - Claudia Stecca
- Vittorio Erspamer School of Physiology and Pharmacology, SAPIENZA University of Rome Rome, Italy
| | - Maria R Bronzuoli
- Vittorio Erspamer School of Physiology and Pharmacology, SAPIENZA University of Rome Rome, Italy
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, SAPIENZA University of Rome Rome, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, SAPIENZA University of Rome Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, SAPIENZA University of Rome Rome, Italy ; Institute Pasteur - Cenci Bolognetti Foundation, SAPIENZA University of Rome Rome, Italy
| | - Luca Steardo
- Vittorio Erspamer School of Physiology and Pharmacology, SAPIENZA University of Rome Rome, Italy
| |
Collapse
|
125
|
Cauli O, Llansola M, Agustí A, Rodrigo R, Hernández-Rabaza V, Rodrigues TB, López-Larrubia P, Cerdán S, Felipo V. Cerebral oedema is not responsible for motor or cognitive deficits in rats with hepatic encephalopathy. Liver Int 2014; 34:379-87. [PMID: 23869990 DOI: 10.1111/liv.12258] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 06/12/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Low-grade cytotoxic oedema is considered a main contributor to the neurological (motor and cognitive) alterations in patients with hepatic encephalopathy (HE). This assumption is mainly based on studies with cultured astrocytes treated with very large ammonia concentrations or with animal models of acute liver failure with strong HE. However, the possible contribution of cerebral oedema (vasogenic or cytotoxic) to cognitive or motor alterations in chronic mild HE has not been demonstrated. The aim of this work was to assess whether cerebral oedema contributes to cognitive and/or motor alterations in rats with chronic mild HE. METHODS Motor activity and coordination and different types of learning and memory were assessed in rats with porta-caval shunts (PCS). Brain oedema was assessed by gravimetry in cerebellum and cortex and apparent diffusion coefficient (ADC) by magnetic resonance in 16 areas. RESULTS Four weeks after surgery, PCS rats show reduced motor activity and coordination, impaired ability to learn a conditional discrimination task in the Y maze and reduced spatial memory in the Morris water maze. PCS rats did not show increased brain water content at 4 or 10 weeks or changes in ADC at 4 weeks. At 10 weeks, increased ADC in some areas is compatible with vasogenic but not cytotoxic oedema. CONCLUSION Cerebral oedema is not involved in motor and cognitive alterations in rats (and likely in humans) with mild HE. Proper understanding of the mechanisms responsible for the neurological alterations in HE is necessary to design efficient treatments.
Collapse
Affiliation(s)
- Omar Cauli
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Valencia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Johnson RA, Mitchell GS. Common mechanisms of compensatory respiratory plasticity in spinal neurological disorders. Respir Physiol Neurobiol 2013; 189:419-28. [PMID: 23727226 PMCID: PMC3812344 DOI: 10.1016/j.resp.2013.05.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/18/2013] [Accepted: 05/21/2013] [Indexed: 12/11/2022]
Abstract
In many neurological disorders that disrupt spinal function and compromise breathing (e.g. ALS, cervical spinal injury, MS), patients often maintain ventilatory capacity well after the onset of severe CNS pathology. In progressive neurodegenerative diseases, patients ultimately reach a point where compensation is no longer possible, leading to catastrophic ventilatory failure. In this brief review, we consider evidence that common mechanisms of compensatory respiratory plasticity preserve breathing capacity in diverse clinical disorders, despite the onset of severe pathology (e.g. respiratory motor neuron denervation and/or death). We propose that a suite of mechanisms, operating at distinct sites in the respiratory control system, underlies compensatory respiratory plasticity, including: (1) increased (descending) central respiratory drive, (2) motor neuron plasticity, (3) plasticity at the neuromuscular junction or spared respiratory motor neurons, and (4) shifts in the balance from more to less severely compromised respiratory muscles. To establish this framework, we contrast three rodent models of neural dysfunction, each posing unique problems for the generation of adequate inspiratory motor output: (1) respiratory motor neuron death, (2) de- or dysmyelination of cervical spinal pathways, and (3) cervical spinal cord injury, a neuropathology with components of demyelination and motor neuron death. Through this contrast, we hope to understand the multilayered strategies used to "fight" for adequate breathing in the face of mounting pathology.
Collapse
Affiliation(s)
- Rebecca A Johnson
- Department of Surgical Sciences, University of Wisconsin, 2015 Linden Drive, Madison, WI 53706, United States.
| | | |
Collapse
|
127
|
Lin LC, Sibille E. Reduced brain somatostatin in mood disorders: a common pathophysiological substrate and drug target? Front Pharmacol 2013; 4:110. [PMID: 24058344 PMCID: PMC3766825 DOI: 10.3389/fphar.2013.00110] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 08/13/2013] [Indexed: 12/23/2022] Open
Abstract
Our knowledge of the pathophysiology of affect dysregulation has progressively increased, but the pharmacological treatments remain inadequate. Here, we summarize the current literature on deficits in somatostatin, an inhibitory modulatory neuropeptide, in major depression and other neurological disorders that also include mood disturbances. We focus on direct evidence in the human postmortem brain, and review rodent genetic and pharmacological studies probing the role of the somatostatin system in relation to mood. We also briefly go over pharmacological developments targeting the somatostatin system in peripheral organs and discuss the challenges of targeting the brain somatostatin system. Finally, the fact that somatostatin deficits are frequently observed across neurological disorders suggests a selective cellular vulnerability of somatostatin-expressing neurons. Potential cell intrinsic factors mediating those changes are discussed, including nitric oxide induced oxidative stress, mitochondrial dysfunction, high inflammatory response, high demand for neurotrophic environment, and overall aging processes. Together, based on the co-localization of somatostatin with gamma-aminobutyric acid (GABA), its presence in dendritic-targeting GABA neuron subtypes, and its temporal-specific function, we discuss the possibility that deficits in somatostatin play a central role in cortical local inhibitory circuit deficits leading to abnormal corticolimbic network activity and clinical mood symptoms across neurological disorders.
Collapse
Affiliation(s)
- Li-Chun Lin
- Department of Psychiatry, Center for Neuroscience, University of Pittsburgh Pittsburgh, PA, USA
| | | |
Collapse
|
128
|
Peripheral elevation of TNF-α leads to early synaptic abnormalities in the mouse somatosensory cortex in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 2013; 110:10306-11. [PMID: 23733958 DOI: 10.1073/pnas.1222895110] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Sensory abnormalities such as numbness and paresthesias are often the earliest symptoms in neuroinflammatory diseases including multiple sclerosis. The increased production of various cytokines occurs in the early stages of neuroinflammation and could have detrimental effects on the central nervous system, thereby contributing to sensory and cognitive deficits. However, it remains unknown whether and when elevation of cytokines causes changes in brain structure and function under inflammatory conditions. To address this question, we used a mouse model for experimental autoimmune encephalomyelitis (EAE) to examine the effect of inflammation and cytokine elevation on synaptic connections in the primary somatosensory cortex. Using in vivo two-photon microscopy, we found that the elimination and formation rates of dendritic spines and axonal boutons increased within 7 d of EAE induction--several days before the onset of paralysis--and continued to rise during the course of the disease. This synaptic instability occurred before T-cell infiltration and microglial activation in the central nervous system and was in conjunction with peripheral, but not central, production of TNF-α. Peripheral administration of a soluble TNF inhibitor prevented abnormal turnover of dendritic spines and axonal boutons in presymptomatic EAE mice. These findings indicate that peripheral production of TNF-α is a key mediator of synaptic instability in the primary somatosensory cortex and may contribute to sensory and cognitive deficits seen in autoimmune diseases.
Collapse
|
129
|
Targeting astrocytes ameliorates neurologic changes in a mouse model of Alzheimer's disease. J Neurosci 2013; 32:16129-40. [PMID: 23152597 DOI: 10.1523/jneurosci.2323-12.2012] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Astrocytes are the most abundant cell type in the brain and play a critical role in maintaining healthy nervous tissue. In Alzheimer's disease (AD) and most other neurodegenerative disorders, many astrocytes convert to a chronically "activated" phenotype characterized by morphologic and biochemical changes that appear to compromise protective properties and/or promote harmful neuroinflammatory processes. Activated astrocytes emerge early in the course of AD and become increasingly prominent as clinical and pathological symptoms progress, but few studies have tested the potential of astrocyte-targeted therapeutics in an intact animal model of AD. Here, we used adeno-associated virus (AAV) vectors containing the astrocyte-specific Gfa2 promoter to target hippocampal astrocytes in APP/PS1 mice. AAV-Gfa2 vectors drove the expression of VIVIT, a peptide that interferes with the immune/inflammatory calcineurin/NFAT (nuclear factor of activated T-cells) signaling pathway, shown by our laboratory and others to orchestrate biochemical cascades leading to astrocyte activation. After several months of treatment with Gfa2-VIVIT, APP/PS1 mice exhibited improved cognitive and synaptic function, reduced glial activation, and lower amyloid levels. The results confirm a deleterious role for activated astrocytes in AD and lay the groundwork for exploration of other novel astrocyte-based therapies.
Collapse
|
130
|
Huxtable AG, Smith SMC, Vinit S, Watters JJ, Mitchell GS. Systemic LPS induces spinal inflammatory gene expression and impairs phrenic long-term facilitation following acute intermittent hypoxia. J Appl Physiol (1985) 2013; 114:879-87. [PMID: 23329821 DOI: 10.1152/japplphysiol.01347.2012] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although systemic inflammation occurs in most pathological conditions that challenge the neural control of breathing, little is known concerning the impact of inflammation on respiratory motor plasticity. Here, we tested the hypothesis that low-grade systemic inflammation induced by lipopolysaccharide (LPS, 100 μg/kg ip; 3 and 24 h postinjection) elicits spinal inflammatory gene expression and attenuates a form of spinal, respiratory motor plasticity: phrenic long-term facilitation (pLTF) induced by acute intermittent hypoxia (AIH; 3, 5 min hypoxic episodes, 5 min intervals). pLTF was abolished 3 h (vehicle control: 67.1 ± 27.9% baseline; LPS: 3.7 ± 4.2%) and 24 h post-LPS injection (vehicle: 58.3 ± 17.1% baseline; LPS: 3.5 ± 4.3%). Pretreatment with the nonsteroidal anti-inflammatory drug ketoprofen (12.5 mg/kg ip) restored pLTF 24 h post-LPS (55.1 ± 12.3%). LPS increased inflammatory gene expression in the spleen and cervical spinal cord (homogenates and isolated microglia) 3 h postinjection; however, all molecules assessed had returned to baseline by 24 h postinjection. At 3 h post-LPS, cervical spinal iNOS and COX-2 mRNA were differentially increased in microglia and homogenates, suggesting differential contributions from spinal cells. Thus LPS-induced systemic inflammation impairs AIH-induced pLTF, even after measured inflammatory genes returned to normal. Since ketoprofen restores pLTF even without detectable inflammatory gene expression, "downstream" inflammatory molecules most likely impair pLTF. These findings have important implications for many disease states where acute systemic inflammation may undermine the capacity for compensatory respiratory plasticity.
Collapse
Affiliation(s)
- A G Huxtable
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA
| | | | | | | | | |
Collapse
|
131
|
Effects of central and peripheral inflammation on hippocampal synaptic plasticity. Neurobiol Dis 2013; 52:229-36. [PMID: 23295855 DOI: 10.1016/j.nbd.2012.12.009] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/13/2012] [Accepted: 12/21/2012] [Indexed: 01/16/2023] Open
Abstract
The central nervous system (CNS) and the immune system are known to be engaged in an intense bidirectional crosstalk. In particular, the immune system has the potential to influence the induction of brain plastic phenomena and neuronal networks functioning. During direct CNS inflammation, as well as during systemic, peripheral, inflammation, the modulation exerted by neuroinflammatory mediators on synaptic plasticity might negatively influence brain neuronal networks functioning. The aim of the present study was to investigate, by using electrophysiological techniques, the ability of hippocampal excitatory synapses to undergo synaptic plasticity during the initial clinical phase of an experimental model of CNS (experimental autoimmune encephalomyelitis, EAE) as well as following a systemic inflammatory trigger. Moreover, we compared the morphologic, synaptic and molecular consequences of central neuroinflammation with those accompanying peripheral inflammation. Hippocampal long-term potentiation (LTP) has been studied by extracellular field potential recordings in the CA1 region. Immunohistochemistry was performed to investigate microglia activation. Western blot and ELISA assays have been performed to assess changes in the subunit composition of the synaptic glutamate NMDA receptor and the concentration of pro-inflammatory cytokines in the hippocampus. Significant microglial activation together with an impairment of CA1 LTP was present in the hippocampus of mice with central as well as peripheral inflammation. Interestingly, exclusively during EAE but not during systemic inflammation, the impairment of hippocampal LTP was paralleled by a selective reduction of the NMDA receptor NR2B subunit levels and a selective increase of interleukin-1β (IL1β) levels. Both central and peripheral inflammation-triggered mechanisms can activate CNS microglia and influence the function of CNS synapses. During direct CNS inflammation these events are accompanied by detectable changes in synaptic glutamate receptors subunit composition and in the levels of the pro-inflammatory cytokine IL1β.
Collapse
|
132
|
Linares M, Marín-García P, Pérez-Benavente S, Sánchez-Nogueiro J, Puyet A, Bautista JM, Diez A. Brain-derived neurotrophic factor and the course of experimental cerebral malaria. Brain Res 2012; 1490:210-24. [PMID: 23123703 DOI: 10.1016/j.brainres.2012.10.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Revised: 09/17/2012] [Accepted: 10/21/2012] [Indexed: 01/08/2023]
Abstract
The role of neurotrophic factors on the integrity of the central nervous system (CNS) during cerebral malaria (CM) infection remains obscure, but the long-standing neurocognitive sequelae often observed in rescued children can be attributed in part to the modulation of neuronal survival and synaptic plasticity. To discriminate the contribution of key responses in the time-sequence of the pathogenic events that trigger the development of neurocognitive malaria syndrome we defined four stages (I-IV) of the neurological progression of CM in C57BL/6 mice infected with Plasmodium berghei ANKA. Upregulation of ICAM-1, VCAM-1, e-selectin and p-selectin expression was detected in all cerebral regions before parasitized red blood cells (pRBC) accumulation. As the severity of symptoms increased, BDNF mRNA progressively diminished in several brain regions, earliest in the thalamus-hypothalamus, cerebellum, brainstem and cortex, and correlated with a four-stage disease sequence. Immunohistochemical confocal microscopy revealed changes in the BDNF distribution pattern, suggesting altered axonal transport. During CM progression, molecular markers of neurological infection and inflammation in the parasite and the host, respectively, were accompanied by a switch in the brain constitutive proteasome to the immunoproteasome, which could impede normal protein turnover. In parallel with BDNF downregulation, NCAM expression also diminished with increased CM severity. Together, these data suggest that changes in BDNF availability could be involved in the pathogenesis of CM.
Collapse
Affiliation(s)
- María Linares
- Department of Biochemistry and Molecular Biology IV, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
133
|
Wang DS, Zurek AA, Lecker I, Yu J, Abramian AM, Avramescu S, Davies PA, Moss SJ, Lu WY, Orser BA. Memory deficits induced by inflammation are regulated by α5-subunit-containing GABAA receptors. Cell Rep 2012; 2:488-96. [PMID: 22999935 PMCID: PMC4391624 DOI: 10.1016/j.celrep.2012.08.022] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 08/08/2012] [Accepted: 08/21/2012] [Indexed: 11/30/2022] Open
Abstract
Systemic inflammation causes learning and memory deficits through mechanisms that remain poorly understood. Here, we studied the pathogenesis of memory loss associated with inflammation and found that we could reverse memory deficits by pharmacologically inhibiting α5-subunit-containing γ-aminobutyric acid type A (α5GABAA) receptors and deleting the gene associated with the α5 subunit. Acute inflammation reduces long-term potentiation, a synaptic correlate of memory, in hippocampal slices from wild-type mice, and this reduction was reversed by inhibition of α5GABAA receptor function. A tonic inhibitory current generated by α5GABAA receptors in hippocampal neurons was increased by the key proinflammatory cytokine interleukin-1β through a p38 mitogen-activated protein kinase signaling pathway. Interleukin-1β also increased the surface expression of α5GABAA receptors in the hippocampus. Collectively, these results show that α5GABAA receptor activity increases during inflammation and that this increase is critical for inflammation-induced memory deficits.
Collapse
Affiliation(s)
- Dian-Shi Wang
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Ben-Ari S, Ofek K, Barbash S, Meiri H, Kovalev E, Greenberg DS, Soreq H, Shoham S. Similar cation channels mediate protection from cerebellar exitotoxicity by exercise and inheritance. J Cell Mol Med 2012; 16:555-68. [PMID: 21507200 PMCID: PMC3822931 DOI: 10.1111/j.1582-4934.2011.01331.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Exercise and inherited factors both affect recovery from stroke and head injury, but the underlying mechanisms and interconnections between them are yet unknown. Here, we report that similar cation channels mediate the protective effect of exercise and specific genetic background in a kainate injection model of cerebellar stroke. Microinjection to the cerebellum of the glutamatergic agonist, kainate, creates glutamatergic excito-toxicity characteristic of focal stroke, head injury or alcoholism. Inherited protection and prior exercise were both accompanied by higher cerebellar expression levels of the Kir6.1 ATP-dependent potassium channel in adjacent Bergmann glia, and voltage-gated KVbeta2 and cyclic nucleotide-gated cation HCN1 channels in basket cells. Sedentary FVB/N and exercised C57BL/6 mice both expressed higher levels of these cation channels compared to sedentary C57BL/6 mice, and were both found to be less sensitive to glutamate toxicity. Moreover, blocking ATP-dependent potassium channels with Glibenclamide enhanced kainate-induced cell death in cerebellar slices from the resilient sedentary FVB/N mice. Furthermore, exercise increased the number of acetylcholinesterase-positive fibres in the molecular layer, reduced cerebellar cytokine levels and suppressed serum acetylcholinesterase activity, suggesting anti-inflammatory protection by enhanced cholinergic signalling. Our findings demonstrate for the first time that routine exercise and specific genetic backgrounds confer protection from cerebellar glutamatergic damages by similar molecular mechanisms, including elevated expression of cation channels. In addition, our findings highlight the involvement of the cholinergic anti-inflammatory pathway in insult-inducible cerebellar processes. These mechanisms are likely to play similar roles in other brain regions and injuries as well, opening new venues for targeted research efforts.
Collapse
Affiliation(s)
- Shani Ben-Ari
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
135
|
Effects of triptolide on the synaptophysin expression of hippocampal neurons in the AD cellular model. Int Immunopharmacol 2012; 13:175-80. [DOI: 10.1016/j.intimp.2012.03.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 03/10/2012] [Accepted: 03/21/2012] [Indexed: 11/22/2022]
|
136
|
von Bernhardi R, Eugenín J. Alzheimer's disease: redox dysregulation as a common denominator for diverse pathogenic mechanisms. Antioxid Redox Signal 2012; 16:974-1031. [PMID: 22122400 DOI: 10.1089/ars.2011.4082] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and a progressive neurodegeneration that appears to result from multiple pathogenic mechanisms (including protein misfolding/aggregation, involved in both amyloid β-dependent senile plaques and tau-dependent neurofibrillary tangles), metabolic and mitochondrial dysfunction, excitoxicity, calcium handling impairment, glial cell dysfunction, neuroinflammation, and oxidative stress. Oxidative stress, which could be secondary to several of the other pathophysiological mechanisms, appears to be a major determinant of the pathogenesis and progression of AD. The identification of oxidized proteins common for mild cognitive impairment and AD suggests that key oxidation pathways are triggered early and are involved in the initial progression of the neurodegenerative process. Abundant data support that oxidative stress, also considered as a main factor for aging, the major risk factor for AD, can be a common key element capable of articulating the divergent nature of the proposed pathogenic factors. Pathogenic mechanisms influence each other at different levels. Evidence suggests that it will be difficult to define a single-target therapy resulting in the arrest of progression or the improvement of AD deterioration. Since oxidative stress is present from early stages of disease, it appears as one of the main targets to be included in a clinical trial. Exploring the articulation of AD pathogenic mechanisms by oxidative stress will provide clues for better understanding the pathogenesis and progression of this dementing disorder and for the development of effective therapies to treat this disease.
Collapse
Affiliation(s)
- Rommy von Bernhardi
- Department of Neurology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | |
Collapse
|
137
|
Lovett-Barr MR, Satriotomo I, Muir GD, Wilkerson JER, Hoffman MS, Vinit S, Mitchell GS. Repetitive intermittent hypoxia induces respiratory and somatic motor recovery after chronic cervical spinal injury. J Neurosci 2012; 32:3591-600. [PMID: 22423083 PMCID: PMC3349282 DOI: 10.1523/jneurosci.2908-11.2012] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 12/06/2011] [Accepted: 01/14/2012] [Indexed: 12/14/2022] Open
Abstract
Spinal injury disrupts connections between the brain and spinal cord, causing life-long paralysis. Most spinal injuries are incomplete, leaving spared neural pathways to motor neurons that initiate and coordinate movement. One therapeutic strategy to induce functional motor recovery is to harness plasticity in these spared neural pathways. Chronic intermittent hypoxia (CIH) (72 episodes per night, 7 nights) increases synaptic strength in crossed spinal synaptic pathways to phrenic motoneurons below a C2 spinal hemisection. However, CIH also causes morbidity (e.g., high blood pressure, hippocampal apoptosis), rendering it unsuitable as a therapeutic approach to chronic spinal injury. Less severe protocols of repetitive acute intermittent hypoxia may elicit plasticity without associated morbidity. Here we demonstrate that daily acute intermittent hypoxia (dAIH; 10 episodes per day, 7 d) induces motor plasticity in respiratory and nonrespiratory motor behaviors without evidence for associated morbidity. dAIH induces plasticity in spared, spinal pathways to respiratory and nonrespiratory motor neurons, improving respiratory and nonrespiratory (forelimb) motor function in rats with chronic cervical injuries. Functional improvements were persistent and were mirrored by neurochemical changes in proteins that contribute to respiratory motor plasticity after intermittent hypoxia (BDNF and TrkB) within both respiratory and nonrespiratory motor nuclei. Collectively, these studies demonstrate that repetitive acute intermittent hypoxia may be an effective and non-invasive means of improving function in multiple motor systems after chronic spinal injury.
Collapse
Affiliation(s)
- Mary R. Lovett-Barr
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin, 53706, and
| | - Irawan Satriotomo
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin, 53706, and
| | - Gillian D. Muir
- Department of Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5B4
| | - Julia E. R. Wilkerson
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin, 53706, and
| | - Michael S. Hoffman
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin, 53706, and
| | - Stéphane Vinit
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin, 53706, and
| | - Gordon S. Mitchell
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin, 53706, and
| |
Collapse
|
138
|
Prefrontal dopaminergic and enkephalinergic synaptic accommodation in HIV-associated neurocognitive disorders and encephalitis. J Neuroimmune Pharmacol 2012; 7:686-700. [PMID: 22391864 PMCID: PMC3419353 DOI: 10.1007/s11481-012-9345-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 02/06/2012] [Indexed: 12/15/2022]
Abstract
Changes in synapse structure occur in frontal neocortex with HIV encephalitis (HIVE) and may contribute to HIV-associated neurocognitive disorders (HAND). A postmortem survey was conducted to determine if mRNAs involved in synaptic transmission are perturbed in dorsolateral prefrontal cortex (DLPFC) in subjects with HIVE or HAND. Expression of the opioid neurotransmitter preproenkephalin mRNA (PENK) was significantly decreased in a sampling of 446 brain specimens from HIV-1 infected people compared to 67 HIV negative subjects. Decreased DLPFC PENK was most evident in subjects with HIVE and/or increased expression of interferon regulatory factor 1 mRNA (IRF1). Type 2 dopamine receptor mRNA (DRD2L) was decreased significantly, but not in the same set of subjects with PENK dysregulation. DRD2L downregulation occurred primarily in the subjects without HIVE or neurocognitive impairment. Subjects with neurocognitive impairment often failed to significantly downregulate DRD2L and had abnormally high IRF1 expression. Conclusion: Dysregulation of synaptic preproenkephalin and DRD2L in frontal neocortex can occur with and without neurocognitive impairment in HIV-infected people. Downregulation of DRD2L in the prefrontal cortex was associated with more favorable neuropsychological and neuropathological outcomes; the failure to downregulate DRD2L was significantly less favorable. PENK downregulation was related neuropathologically to HIVE, but was not related to neuropsychological outcome independently. Emulating endogenous synaptic plasticity pharmacodynamically could enhance synaptic accommodation and improve neuropsychological and neuropathological outcomes in HIV/AIDS.
Collapse
|
139
|
Abstract
Autism is a neurodevelopmental disorders characterized by impairments in communication and social behavior, and by repetitive behaviors. Although genetic factors might be largely responsible for the occurrence of autism they cannot fully account for all cases and it is likely that in addition to a certain combination of autism-related genes, specific environmental factors might act as risk factors triggering the development of autism. Thus, the role of environmental factors in autism is an important area of research and recent data will be discussed in this review. Interestingly, the results show that many environmental risk factors are interrelated and their identification and comparison might unveil a common scheme of alterations on a contextual as well as molecular level. For example, both, disruption in the immune system and in zinc homeostasis may affect synaptic transmission in autism. Thus, here, a model is proposed that interconnects the most important and scientifically recognized environmental factors. Moreover, similarities in how these risk factors impact synapse function are discussed and a possible influence on an already well described genetic pathway leading to the development of autism via zinc homeostasis is proposed.
Collapse
Affiliation(s)
- Andreas M Grabrucker
- WG Molecular Analysis of Synaptopathies, Neurology Department, Neurocenter of Ulm University Ulm, Germany
| |
Collapse
|
140
|
Windelborn JA, Mitchell GS. Glial activation in the spinal ventral horn caudal to cervical injury. Respir Physiol Neurobiol 2011; 180:61-8. [PMID: 22041654 DOI: 10.1016/j.resp.2011.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 10/14/2011] [Accepted: 10/17/2011] [Indexed: 01/24/2023]
Abstract
Microglia and astrocytes play complex roles following spinal cord injury (SCI), contributing to inflammatory processes that both exacerbate injury and promote functional recovery by supporting neuro-protection and neuroplasticity. The crossed phrenic phenomenon (CPP) is an example of respiratory plasticity in which C(2) cervical hemisection (C(2)HS) strengthens crossed-spinal synaptic pathways to phrenic motor neurons ipsilateral to injury. We hypothesized that microglia and astrocytes are activated in the phrenic motor nucleus caudal and ipsilateral to C(2)HS, suggesting their potential for involvement in the CPP. To test this hypothesis, an incomplete cervical spinal hemisection (C(2) lateral injury; C(2)LI) was performed, and rats were allowed to recover for 1, 3, 14 or 28 days before collecting perfused spinal tissues. Microglia (via OX42) and astrocytes [via glial fibrillary acidic protein (GFAP)] were visualized with immunofluorescence microscopy in the C(4)-C(5) ventral horn, the region encompassing most of the phrenic motor nucleus. OX42-occupied fractional area ipsilateral to injury increased with C(2)LI (vs. sham) at 1 (12.5±1.8%, p<0.001), 3 (29.0±1.9%, p<0.001), 14 (26.1±3.1%, p<0.001) and 28 (19.2±2.0%, p<0.001) days post-C(2)LI. GFAP-occupied fractional area also increased with C(2)LI at 3 (24.4±3.2%, p<0.001) and 14 (16.8±8.3%, p=0.012) days, but not at 1 (6.2±3.9%, p=0.262) or 28 (10.6±3.9%, p=0.059) days post-C(2)LI. Thus, microglia and astrocytes are activated in the phrenic motor nucleus caudal to C(2)LI, suggesting that they play a role in functional deficits and/or recovery following spinal injury.
Collapse
Affiliation(s)
- James A Windelborn
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Dr. West, Madison, WI 53706, USA.
| | | |
Collapse
|
141
|
Huxtable AG, Vinit S, Windelborn JA, Crader SM, Guenther CH, Watters JJ, Mitchell GS. Systemic inflammation impairs respiratory chemoreflexes and plasticity. Respir Physiol Neurobiol 2011; 178:482-9. [PMID: 21729770 PMCID: PMC3172820 DOI: 10.1016/j.resp.2011.06.017] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Revised: 06/20/2011] [Accepted: 06/21/2011] [Indexed: 11/18/2022]
Abstract
Many lung and central nervous system disorders require robust and appropriate physiological responses to assure adequate breathing. Factors undermining the efficacy of ventilatory control will diminish the ability to compensate for pathology, threatening life itself. Although most of these same disorders are associated with systemic and/or neuroinflammation, and inflammation affects neural function, we are only beginning to understand interactions between inflammation and any aspect of ventilatory control (e.g. sensory receptors, rhythm generation, chemoreflexes, plasticity). Here we review available evidence, and present limited new data suggesting that systemic (or neural) inflammation impairs two key elements of ventilatory control: chemoreflexes and respiratory motor (versus sensory) plasticity. Achieving an understanding of mechanisms whereby inflammation undermines ventilatory control is fundamental since inflammation may diminish the capacity for natural, compensatory responses during pathological states, and the ability to harness respiratory plasticity as a therapeutic strategy in the treatment of devastating breathing disorders, such as during cervical spinal injury or motor neuron disease.
Collapse
Affiliation(s)
- A G Huxtable
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53706, United States
| | | | | | | | | | | | | |
Collapse
|
142
|
Vinit S, Windelborn JA, Mitchell GS. Lipopolysaccharide attenuates phrenic long-term facilitation following acute intermittent hypoxia. Respir Physiol Neurobiol 2011; 176:130-5. [PMID: 21334467 PMCID: PMC3096524 DOI: 10.1016/j.resp.2011.02.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 02/11/2011] [Accepted: 02/14/2011] [Indexed: 11/23/2022]
Abstract
Lipopolysaccharide (LPS) induces inflammatory responses, including microglial activation in the central nervous system. Since LPS impairs certain forms of hippocampal and spinal neuroplasticity, we hypothesized that LPS would impair phrenic long-term facilitation (pLTF) following acute intermittent hypoxia (AIH) in outbred Sprague-Dawley (SD) and inbred Lewis (L) rats. Approximately 3h following a single LPS injection (i.p.), the phrenic response during hypoxic episodes is reduced in both rat strains versus vehicle treated, control rats (SD: 84 ± 7% vs. 128 ± 14% baseline for control, p < 0.05; L: 62 ± 10% vs. 90 ± 9% baseline for control, p < 0.05). At 60 min post-AIH, pLTF is also diminished by LPS in both strains: (SD: 22 ± 5% vs. 73.5 ± 14% baseline for control, p < 0.05; L: 18 ± 15% vs. 56 ± 8% baseline for control, p < 0.05). LPS alone does not affect phrenic burst frequency in either rat strain, suggesting that acute LPS injection has minimal effect on brainstem respiratory rhythm generation. Thus, systemic LPS injections and (presumptive) inflammation impair pLTF, a form of spinal neuroplasticity in respiratory motor control. These results suggest that ongoing infection or inflammation must be carefully considered in studies of respiratory plasticity, or during attempts to harness spinal plasticity as a therapeutic tool in the treatment of respiratory insufficiency, such as spinal cord injury.
Collapse
Affiliation(s)
- Stéphane Vinit
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA, 53706
| | - James A. Windelborn
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA, 53706
| | - Gordon S. Mitchell
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA, 53706
| |
Collapse
|
143
|
Belarbi K, Burnouf S, Fernandez-Gomez FJ, Laurent C, Lestavel S, Figeac M, Sultan A, Troquier L, Leboucher A, Caillierez R, Grosjean ME, Demeyer D, Obriot H, Brion I, Barbot B, Galas MC, Staels B, Humez S, Sergeant N, Schraen-Maschke S, Muhr-Tailleux A, Hamdane M, Buée L, Blum D. Beneficial effects of exercise in a transgenic mouse model of Alzheimer's disease-like Tau pathology. Neurobiol Dis 2011; 43:486-94. [PMID: 21569847 DOI: 10.1016/j.nbd.2011.04.022] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 04/21/2011] [Accepted: 04/25/2011] [Indexed: 01/31/2023] Open
Abstract
Tau pathology is encountered in many neurodegenerative disorders known as tauopathies, including Alzheimer's disease. Physical activity is a lifestyle factor affecting processes crucial for memory and synaptic plasticity. Whether long-term voluntary exercise has an impact on Tau pathology and its pathophysiological consequences is currently unknown. To address this question, we investigated the effects of long-term voluntary exercise in the THY-Tau22 transgenic model of Alzheimer's disease-like Tau pathology, characterized by the progressive development of Tau pathology, cholinergic alterations and subsequent memory impairments. Three-month-old THY-Tau22 mice and wild-type littermates were assigned to standard housing or housing supplemented with a running wheel. After 9 months of exercise, mice were evaluated for memory performance and examined for hippocampal Tau pathology, cholinergic defects, inflammation and genes related to cholesterol metabolism. Exercise prevented memory alterations in THY-Tau22 mice. This was accompanied by a decrease in hippocampal Tau pathology and a prevention of the loss of expression of choline acetyltransferase within the medial septum. Whereas the expression of most cholesterol-related genes remained unchanged in the hippocampus of running THY-Tau22 mice, we observed a significant upregulation in mRNA levels of NPC1 and NPC2, genes involved in cholesterol trafficking from the lysosomes. Our data support the view that long-term voluntary physical exercise is an effective strategy capable of mitigating Tau pathology and its pathophysiological consequences.
Collapse
Affiliation(s)
- Karim Belarbi
- Université Lille-Nord de France, UDSL, F-59000 Lille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Yuskaitis CJ, Beurel E, Jope RS. Evidence of reactive astrocytes but not peripheral immune system activation in a mouse model of Fragile X syndrome. Biochim Biophys Acta Mol Basis Dis 2010; 1802:1006-12. [PMID: 20600866 DOI: 10.1016/j.bbadis.2010.06.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/01/2010] [Accepted: 06/23/2010] [Indexed: 12/24/2022]
Abstract
Fragile X syndrome (FXS) is the most common form of inherited mental retardation and is one of the few known genetic causes of autism. FXS results from the loss of Fmr1 gene function; thus, Fmr1 knockout mice provide a model to study impairments associated with FXS and autism and to test potential therapeutic interventions. The inhibitory serine phosphorylation of glycogen synthase kinase-3 (GSK3) is lower in brain regions of Fmr1 knockout mice than wild-type mice and the GSK3 inhibitor lithium rescues several behavioral impairments in Fmr1 knockout mice. Therefore, we examined if the serine phosphorylation of GSK3 in Fmr1 knockout mice also was altered outside the brain and if administration of lithium ameliorated the macroorchidism phenotype. Additionally, since GSK3 regulates numerous functions of the immune system and immune alterations have been associated with autism, we tested if immune function is altered in Fmr1 knockout mice. The inhibitory serine phosphorylation of GSK3 was significantly lower in the testis and liver of Fmr1 knockout mice than wild-type mice, and chronic lithium treatment reduced macroorchidism in Fmr1 knockout mice. No alterations in peripheral immune function were identified in Fmr1 knockout mice. However, examination of glia, the immune cells of the brain, revealed reactive astrocytes in several brain regions of Fmr1 knockout mice and treatment with lithium reduced this in the striatum and cerebellum. These results provide further evidence of the involvement of dysregulated GSK3 in FXS, and demonstrate that lithium administration reduces macroorchidism and reactive astrocytes in Fmr1 knockout mice.
Collapse
Affiliation(s)
- Christopher J Yuskaitis
- Department of Psychiatry and behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA
| | | | | |
Collapse
|
145
|
Schreurs BG. The effects of cholesterol on learning and memory. Neurosci Biobehav Rev 2010; 34:1366-79. [PMID: 20470821 PMCID: PMC2900496 DOI: 10.1016/j.neubiorev.2010.04.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 04/26/2010] [Accepted: 04/28/2010] [Indexed: 02/07/2023]
Abstract
Cholesterol is vital to normal brain function including learning and memory but that involvement is as complex as the synthesis, metabolism and excretion of cholesterol itself. Dietary cholesterol influences learning tasks from water maze to fear conditioning even though cholesterol does not cross the blood brain barrier. Excess cholesterol has many consequences including peripheral pathology that can signal brain via cholesterol metabolites, pro-inflammatory mediators and antioxidant processes. Manipulations of cholesterol within the central nervous system through genetic, pharmacological, or metabolic means circumvent the blood brain barrier and affect learning and memory but often in animals already otherwise compromised. The human literature is no less complex. Cholesterol reduction using statins improves memory in some cases but not others. There is also controversy over statin use to alleviate memory problems in Alzheimer's disease. Correlations of cholesterol and cognitive function are mixed and association studies find some genetic polymorphisms are related to cognitive function but others are not. In sum, the field is in flux with a number of seemingly contradictory results and many complexities. Nevertheless, understanding cholesterol effects on learning and memory is too important to ignore.
Collapse
Affiliation(s)
- Bernard G Schreurs
- Blanchette Rockefeller Neurosciences Institute and Department of Physiology and Pharmacology, West Virginia University School of Medicine, BRNI Building, Morgantown, WV 26505-3409-08, USA.
| |
Collapse
|
146
|
Oades RD, Myint AM, Dauvermann MR, Schimmelmann BG, Schwarz MJ. Attention-deficit hyperactivity disorder (ADHD) and glial integrity: an exploration of associations of cytokines and kynurenine metabolites with symptoms and attention. Behav Brain Funct 2010; 6:32. [PMID: 20534153 PMCID: PMC2900218 DOI: 10.1186/1744-9081-6-32] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 06/09/2010] [Indexed: 12/24/2022] Open
Abstract
Background In contrast to studies of depression and psychosis, the first part of this study showed no major differences in serum levels of cytokines and tryptophan metabolites between healthy children and those with attention-deficit/hyperactivity disorder of the combined type (ADHD). Yet, small decreases of potentially toxic kynurenine metabolites and increases of cytokines were evident in subgroups. Therefore we examined predictions of biochemical associations with the major symptom clusters, measures of attention and response variability. Methods We explored systematically associations of 8 cytokines (indicators of pro/anti-inflammatory function) and 5 tryptophan metabolites with symptom ratings (e.g. anxiety, opposition, inattention) and continuous performance test (CPT) measures (e.g. movement, response time (RT), variability) in 35 ADHD (14 on medication) and 21 control children. Predictions from linear regressions (controlled by the false discovery rate) confirmed or disconfirmed partial correlations accounting for age, body mass and socio-economic status. Results (1) Total symptom ratings were associated with increases of the interleukins IL-16 and IL-13, where relations of IL-16 (along with decreased S100B) with hyperactivity, and IL-13 with inattention were notable. Opposition ratings were predicted by increased IL-2 in ADHD and IL-6 in control children. (2) In the CPT, IL-16 related to motor measures and errors of commission, while IL-13 was associated with errors of omission. Increased RT variability related to lower TNF-α, but to higher IFN-γ levels. (3) Tryptophan metabolites were not significantly related to symptoms. But increased tryptophan predicted errors of omission, its breakdown predicted errors of commission and kynurenine levels related to faster RTs. Conclusions Many associations were found across diagnostic groups even though they were more marked in one group. This confirms the quantitative trait nature of these features. Conceptually the relationships of the pro- and antiinflammatory cytokines distinguished between behaviours associated more with cognitive or more with motor control respectively. Further study should extend the number of immunological and metabolic markers to confirm or refute the trends reported here and examine their stability from childhood to adolescence in a longitudinal design.
Collapse
Affiliation(s)
- Robert D Oades
- Clinic for Child and Adolescent Psychiatry and Psychotherapy, University of Duisburg-Essen, 45147 Essen, Germany
| | | | | | | | | |
Collapse
|
147
|
Oades RD, Dauvermann MR, Schimmelmann BG, Schwarz MJ, Myint AM. Attention-deficit hyperactivity disorder (ADHD) and glial integrity: S100B, cytokines and kynurenine metabolism--effects of medication. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2010; 6:29. [PMID: 20509936 PMCID: PMC2889842 DOI: 10.1186/1744-9081-6-29] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 05/28/2010] [Indexed: 12/30/2022]
Abstract
BACKGROUND Children with attention-deficit/hyperactivity disorder (ADHD) show a marked temporal variability in their display of symptoms and neuropsychological performance. This could be explained in terms of an impaired glial supply of energy to support neuronal activity. METHOD We pursued one test of the idea with measures of a neurotrophin reflecting glial integrity (S100B) and the influences of 8 cytokines on the metabolism of amino-acids, and of tryptophan/kynurenine to neuroprotective or potentially toxic products that could modulate glial function. Serum samples from 21 medication-naïve children with ADHD, 21 typically-developing controls, 14 medicated children with ADHD and 7 healthy siblings were analysed in this preliminary exploration of group differences and associations. RESULTS There were no marked group differences in levels of S100B, no major imbalance in the ratios of pro- to anti-inflammatory interleukins nor in the metabolism of kynurenine to toxic metabolites in ADHD. However, four trends are described that may be worthy of closer examination in a more extensive study. First, S100B levels tended to be lower in ADHD children that did not show oppositional/conduct problems. Second, in medicated children raised interleukin levels showed a trend to normalisation. Third, while across all children the sensitivity to allergy reflected increased levels of IL-16 and IL-10, the latter showed a significant inverse relationship to measures of S100B in the ADHD group. Fourthly, against expectations healthy controls tended to show higher levels of toxic 3-hydroxykynurenine (3 HK) than those with ADHD. CONCLUSIONS Thus, there were no clear signs (S100B) that the glial functions were compromised in ADHD. However, other markers of glial function require examination. Nonetheless there is preliminary evidence that a minor imbalance of the immunological system was improved on medication. Finally, if lower levels of the potentially toxic 3 HK in ADHD children were confirmed this could reflect a reduction of normal pruning processes in the brain that would be consistent with delayed maturation (supported here by associations with amino-acid metabolism) and a reduced metabolic source of energy.
Collapse
Affiliation(s)
- Robert D Oades
- Clinic for Child and Adolescent Psychiatry and Psychotherapy, University of Duisburg-Essen, 45147 Essen Germany
| | - Maria R Dauvermann
- Clinic for Child and Adolescent Psychiatry and Psychotherapy, University of Duisburg-Essen, 45147 Essen Germany
| | - Benno G Schimmelmann
- Child and Adolescent Psychiatry, University of Bern, Effingerstr. 12, 3011 Bern, Switzerland
| | - Markus J Schwarz
- Laboratory for Psychoneuroimmunology, Ludwig Maximillian's University Psychiatric Hospital, 8036 Munich, Germany
| | - Aye-Mu Myint
- Laboratory for Psychoneuroimmunology, Ludwig Maximillian's University Psychiatric Hospital, 8036 Munich, Germany
| |
Collapse
|
148
|
Abstract
Homeostatic synaptic plasticity is a negative feedback mechanism that neurons use to offset excessive excitation or inhibition by adjusting their synaptic strengths. Recent findings reveal a complex web of signaling processes involved in this compensatory form of synaptic strength regulation, and in contrast to the popular view of homeostatic plasticity as a slow, global phenomenon, neurons may also rapidly tune the efficacy of individual synapses on demand. Here we review our current understanding of cellular and molecular mechanisms of homeostatic synaptic plasticity.
Collapse
Affiliation(s)
- Karine Pozo
- MRC Cell Biology Unit and MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | | |
Collapse
|
149
|
Freria CM, Zanon RG, Santos LMB, Oliveira ALR. Major histocompatibility complex class I expression and glial reaction influence spinal motoneuron synaptic plasticity during the course of experimental autoimmune encephalomyelitis. J Comp Neurol 2010; 518:990-1007. [PMID: 20127802 DOI: 10.1002/cne.22259] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent studies have shown that major histocompatibility complex class I (MHC I) expression directly influences the stability of nerve terminals. Also, the acute phase of experimental autoimmune encephalomyelitis (EAE) has shown a significant impact on inputs within the spinal cord. Therefore, the present work investigated the synaptic covering of motoneurons during the induction phase of disease and progressive remissions of EAE. EAE was induced in C57BL/6J mice, which were divided into four groups: normal, peak disease, first remission, and second remission. The animals were killed and their lumbar spinal cords processed for in situ hybridization (IH), immunohistochemistry, and transmission electron microscopy (TEM). The results indicated an increase in glial reaction during the peak disease. During this period, the TEM analysis showed a reduction in the synaptic covering of the motoneurons, corresponding to a reduction in synaptophysin immunolabeling and an increase in the MHC I expression. The IH analysis reinforced the immunolabeling results, revealing an increased expression of MHC I mRNA by motoneurons and nonneuronal cells during the peak disease and first remission. The results observed in both remission groups indicated a return of the terminals to make contact with the motoneuron surface. The ratio between excitatory and inhibitory inputs increased, indicating the potential for development of an excitotoxic process. In conclusion, the results presented here indicate that MHC I up-regulation during the course of EAE correlates with the periods of synaptic plasticity induced by the infiltration of autoreactive immune cells and that synaptic plasticity decreases after recurrent peaks of inflammation.
Collapse
Affiliation(s)
- C M Freria
- Laboratory of Nerve Regeneration, Department of Anatomy, Institute of Biology, University of Campinas-UNICAMP, CEP 13083-970, Campinas, SP, Brazil
| | | | | | | |
Collapse
|
150
|
Autoantibodies from schizophrenia patients induce cerebral cox-1/iNOS mRNA expression with NO/PGE2/MMP-3 production. Int J Neuropsychopharmacol 2010; 13:293-303. [PMID: 19835666 DOI: 10.1017/s1461145709990770] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We demonstrated that circulating antibodies from schizophrenia patients, which interact with cerebral M1 muscarinic acetylcholine receptors (M1 mAChRs), trigger production of nitric oxide (NO), prostaglandin E2 (PGE2) and matrix metalloproteinase-3 (MMP-3), and act as inducers of cyclooxygenase-1 (cox-1) and inducible nitric oxide synthase (iNOS) mRNA expression in the rat frontal cortex. The corresponding affinity-purified anti-M1 peptide IgG from schizophrenia patients, while stimulating cerebral M1 mAChRs, increases NOS activity, PGE2 and MMP-3 production associated with iNOS over-activity and mRNA expression. Moreover, PGE2 and MMP-3 production is the result of cox-1 expression and activity. All these effects were inhibited by pirenzepine or haloperidol and mimicked the action of the authentic mAChR agonist. Concurrent analysis of the effects of iNOS, phospholipase C, protein kinase C and calcium/calmodulin inhibition showed that antibody up-regulation of NOS activity, PGE2 and MMP-3 production is under the control of the endogenous NO signalling system. These results provide evidence of the role that cholinergic receptor antibodies play in the development of cerebral inflammation, which shows that an antibody that interacts with cerebral mAChRs can induce expression of pro-inflammatory mediators, and support the participation of an autoimmune process in a particular group of chronic schizophrenia patients.
Collapse
|