101
|
Zboralski A, Filion M. Pseudomonas spp. can help plants face climate change. Front Microbiol 2023; 14:1198131. [PMID: 37426009 PMCID: PMC10326438 DOI: 10.3389/fmicb.2023.1198131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023] Open
Abstract
Climate change is increasingly affecting agriculture through droughts, high salinity in soils, heatwaves, and floodings, which put intense pressure on crops. This results in yield losses, leading to food insecurity in the most affected regions. Multiple plant-beneficial bacteria belonging to the genus Pseudomonas have been shown to improve plant tolerance to these stresses. Various mechanisms are involved, including alteration of the plant ethylene levels, direct phytohormone production, emission of volatile organic compounds, reinforcement of the root apoplast barriers, and exopolysaccharide biosynthesis. In this review, we summarize the effects of climate change-induced stresses on plants and detail the mechanisms used by plant-beneficial Pseudomonas strains to alleviate them. Recommendations are made to promote targeted research on the stress-alleviating potential of these bacteria.
Collapse
|
102
|
De K, Pal D, Shanks CM, Yates TB, Feng K, Jawdy SS, Hassan MM, Prabhakar PK, Yang JY, Chapla D, Moremen KW, Urbanowicz B, Binder BM, Muchero W. The Plasminogen-Apple-Nematode (PAN) domain suppresses JA/ET defense pathways in plants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545202. [PMID: 37398012 PMCID: PMC10312691 DOI: 10.1101/2023.06.15.545202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Suppression of immune response is a phenomenon that enables biological processes such as gamete fertilization, cell growth, cell proliferation, endophyte recruitment, parasitism, and pathogenesis. Here, we show for the first time that the Plasminogen-Apple-Nematode (PAN) domain present in G-type lectin receptor-like kinases is essential for immunosuppression in plants. Defense pathways involving jasmonic acid and ethylene are critical for plant immunity against microbes, necrotrophic pathogens, parasites, and insects. Using two Salix purpurea G-type lectin receptor kinases, we demonstrated that intact PAN domains suppress jasmonic acid and ethylene signaling in Arabidopsis and tobacco. Variants of the same receptors with mutated residues in this domain could trigger induction of both defense pathways. Assessment of signaling processes revealed significant differences between receptors with intact and mutated PAN domain in MAPK phosphorylation, global transcriptional reprogramming, induction of downstream signaling components, hormone biosynthesis and resistance to Botrytis cinerea . Further, we demonstrated that the domain is required for oligomerization, ubiquitination, and proteolytic degradation of these receptors. These processes were completely disrupted when conserved residues in the domain were mutated. Additionally, we have tested the hypothesis in recently characterized Arabidopsis mutant which has predicted PAN domain and negatively regulates plant immunity against root nematodes. ern1.1 mutant complemented with mutated PAN shows triggered immune response with elevated WRKY33 expression, hyperphosphorylation of MAPK and resistant to necrotrophic fungus Botrytis cinerea . Collectively, our results suggest that ubiquitination and proteolytic degradation mediated by the PAN domain plays a role in receptor turn-over to suppress jasmonic acid and ethylene defense signaling in plants.
Collapse
|
103
|
Ratnaningsih HR, Noviana Z, Dewi TK, Loekito S, Wiyono S, Gafur A, Antonius S. IAA and ACC deaminase producing-bacteria isolated from the rhizosphere of pineapple plants grown under different abiotic and biotic stresses. Heliyon 2023; 9:e16306. [PMID: 37292365 PMCID: PMC10245151 DOI: 10.1016/j.heliyon.2023.e16306] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 06/10/2023] Open
Abstract
The roles of plant growth-promoting rhizobacteria in promoting plant growth and soil health, including alteration in plant metabolism and production of phytohormones such as indole-3-acetic acid (IAA) and the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, are indisputable. This study aimed to isolate and characterize beneficial bacteria isolated from the rhizosphere of pineapple from distinct stress-inducing habitats, including water excess-, herbicide-over-treated-, and pathogen-infected areas at PT Great Giant Foods located in Lampung, Indonesia. The isolated bacteria were screened based on IAA production and ACC deaminase activities. Six selected isolates produced IAA with concentrations of up to 36.93 mgL-1. The highest value belongs to Bacillus sp. NCTB5I, followed by Brevundimonas sp. CHTB 2C (13.13 mgL-1) and Pseudomonas sp. CHTB 5B (6.65 mgL-1). All isolates were detected with ACC deaminase activities with Brevundimonas sp. CHTJ 5H consuming 88% of ACC over 24 h, the highest among all. Brevundimonas sp. CHTB 2C was detected with the highest ACC deaminase activity with the value of 13,370 nm α-ketobutyrate mg-1h-1. In another experiment, it was revealed that all selected isolates promote soybean growth. These bacteria are potential to be developed in the future as bioagents to promote plant growth, especially under stressful environmental conditions.
Collapse
Affiliation(s)
- Hanim R. Ratnaningsih
- Department of Soil Science and Land Resources, Faculty of Agriculture, IPB University, Bogor 16680, Indonesia
| | - Zahra Noviana
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Cibinong 16911, Indonesia
| | - Tirta Kumala Dewi
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Cibinong 16911, Indonesia
| | - Supriyono Loekito
- Research and Development Department, PT Great Giant Pineapple, Lampung Tengah 34163, Indonesia
| | - Suryo Wiyono
- Department of Plant Protection, Faculty of Agriculture, IPB University, Bogor 16680, Indonesia
| | - Abdul Gafur
- Sinarmas Forestry Corporate Research and Development, Perawang 28772, Indonesia
| | - Sarjiya Antonius
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Cibinong 16911, Indonesia
| |
Collapse
|
104
|
Quan L, Chen K, Chen T, Li H, Li W, Cheng T, Xia F, Lou Z, Geng T, Sun D, Jiang W. Monitoring weed mechanical and chemical damage stress based on chlorophyll fluorescence imaging. FRONTIERS IN PLANT SCIENCE 2023; 14:1188981. [PMID: 37255557 PMCID: PMC10225704 DOI: 10.3389/fpls.2023.1188981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/14/2023] [Indexed: 06/01/2023]
Abstract
Currently, mechanical and chemical damage is the main way to carry out weed control. The use of chlorophyll fluorescence (CF) technology to nondestructively monitor the stress physiological state of weeds is significant to reveal the damage mechanism of mechanical and chemical stresses as well as complex stresses. Under simulated real field environmental conditions, different species and leaf age weeds (Digitaria sanguinalis 2-5 leaf age, and Erigeron canadensis 5-10 leaf age) were subjected to experimental treatments for 1-7 days, and fluorescence parameters were measured every 24 h using a chlorophyll fluorometer. The aim of this study was to investigate the changes in CF parameters of different species of weeds (Digitaria sanguinalis, Erigeron canadensis) at their different stress sites under chemical, mechanical and their combined stresses. The results showed that when weeds (Digitaria sanguinalis and Erigeron canadensis) were chemically stressed in different parts, their leaf back parts were the most severely stressed after 7 days, with photosynthetic inhibition reaching R=75%. In contrast, mechanical stress differs from its changes, and after a period of its stress, each parameter recovers somewhat after 1 to 2 days of stress, with heavy mechanical stress R=11%. Complex stress had the most significant effect on CF parameters, mainly in the timing and efficiency of changes in Fv/Fm, Fq'/Fm', ETR, Rfd, NPQ and Y(NO), with R reaching 71%-73% after only 3-4 days of complex stress, and its changes in complex stress were basically consistent with the pattern of changes in its chemical stress. The results of the study will help to understand the effects of mechanical and chemical stresses and combined stresses on CF parameters of weeds and serve as a guide for efficient weed control operations and conducting weed control in the future.
Collapse
Affiliation(s)
- Longzhe Quan
- College of Engineering, Anhui Agricultural University, Hefei, Anhui, China
| | - Keyong Chen
- College of Engineering, Anhui Agricultural University, Hefei, Anhui, China
| | - Tianbao Chen
- College of Engineering, Anhui Agricultural University, Hefei, Anhui, China
| | - Hailong Li
- College of Engineering, Anhui Agricultural University, Hefei, Anhui, China
| | - Wenchang Li
- College of Engineering, Anhui Agricultural University, Hefei, Anhui, China
| | - Tianyu Cheng
- College of Engineering, Anhui Agricultural University, Hefei, Anhui, China
| | - Fulin Xia
- College of Engineering, Northeast Agricultural University, Harbin, China
| | - Zhaoxia Lou
- College of Engineering, Northeast Agricultural University, Harbin, China
| | - Tianyu Geng
- College of Engineering, Anhui Agricultural University, Hefei, Anhui, China
| | - Deng Sun
- College of Engineering, Northeast Agricultural University, Harbin, China
| | - Wei Jiang
- College of Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
105
|
Lu K, Zhang L, Qin L, Chen X, Wang X, Zhang M, Dong H. Importin β1 Mediates Nuclear Entry of EIN2C to Confer the Phloem-Based Defense against Aphids. Int J Mol Sci 2023; 24:ijms24108545. [PMID: 37239892 DOI: 10.3390/ijms24108545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Ethylene Insensitive 2 (EIN2) is an integral membrane protein that regulates ethylene signaling towards plant development and immunity by release of its carboxy-terminal functional portion (EIN2C) into the nucleus. The present study elucidates that the nuclear trafficking of EIN2C is induced by importin β1, which triggers the phloem-based defense (PBD) against aphid infestations in Arabidopsis. In plants, IMPβ1 interacts with EIN2C to facilitate EIN2C trafficking into the nucleus, either by ethylene treatment or by green peach aphid infestation, to confer EIN2-dependent PBD responses, which, in turn, impede the phloem-feeding activity and massive infestation by the aphid. In Arabidopsis, moreover, constitutively expressed EIN2C can complement the impβ1 mutant regarding EIN2C localization to the plant nucleus and the subsequent PBD development in the concomitant presence of IMPβ1 and ethylene. As a result, the phloem-feeding activity and massive infestation by green peach aphid were highly inhibited, indicating the potential value of EIN2C in protecting plants from insect attacks.
Collapse
Affiliation(s)
- Kai Lu
- State Key Laboratory of Crop Biology, College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Liyuan Zhang
- State Key Laboratory of Crop Biology, College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Lina Qin
- State Key Laboratory of Crop Biology, College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Xiaochen Chen
- State Key Laboratory of Crop Biology, College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Xiaobing Wang
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Meixiang Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710019, China
| | - Hansong Dong
- State Key Laboratory of Crop Biology, College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
106
|
Zhou L, Ma Y, Zhong S, Cao J, Luo Y, Qu G. Phytohormone ethylene mediates oligogalacturonic acid-induced growth inhibition in tomato etiolated seedlings. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111643. [PMID: 36805420 DOI: 10.1016/j.plantsci.2023.111643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/03/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Plant growth and immunity are tightly interconnected. Oligogalacturonic acids (OGs) are pectic fragments and have been well investigated in plant immunity as a damage-associated molecular pattern. However, little is known regarding how OGs affect plant growth. Here, we reveal that OGs inhibit the growth of intact etiolated seedling by using the horticultural crop tomato as a model. This inhibitory effect is partially suppressed by the action of ethylene biosynthesis inhibitors, or the gene silencing of SlACS2, an essential rate-limiting enzyme for ethylene biosynthesis, suggesting that SlACS2-mediated ethylene production promotes OG-induced growth inhibition. Furthermore, OGs treatment elevates the SlACS2 protein phosphorylation, and its decrease by the kinase inhibitor K252a partially rescue OG-induced growth inhibition, indicating that SlACS2 phosphorylation involves in OG-induced growth inhibition. Moreover, the mitogen-activated protein kinase SlMPK3 could be activated by OGs treatment and can directly phosphorylate SlACS2 in vitro, and the bimolecular fluorescence complementation combining with the yeast two-hybrid assay shows that SlMPK3 interacts with SlACS2, indicating that SlMPK3 may participate in modulating the OG-induced SlACS2 phosphorylation and growth inhibition. Our results reveal a regulatory mechanism at both the transcriptional and post-transcriptional levels by which OGs inhibit the growth of intact plant seedlings.
Collapse
Affiliation(s)
- Leilei Zhou
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yingxuan Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Silin Zhong
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yunbo Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Guiqin Qu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| |
Collapse
|
107
|
Neves M, Correia S, Canhoto J. Ethylene Inhibition Reduces De Novo Shoot Organogenesis and Subsequent Plant Development from Leaf Explants of Solanum betaceum Cav. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091854. [PMID: 37176912 PMCID: PMC10180641 DOI: 10.3390/plants12091854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
In de novo shoot organogenesis (DNSO) plant cells develop into new shoots, without the need of an existing meristem. Generally, this process is triggered by wounding and specific growth regulators, such as auxins and cytokinins. Despite the potential significance of the plant hormone ethylene in DNSO, its effect in regeneration processes of woody species has not been thoroughly investigated. To address this gap, Solanum betaceum Cav. was used as an experimental model to explore the role of this hormone on DNSO and potentially extend the findings to other woody species. In this work it was shown that ethylene positively regulates DNSO from tamarillo leaf explants. Ethylene precursors ACC and ethephon stimulated shoot regeneration by increasing the number of buds and shoots regenerated. In contrast, the inhibition of ethylene biosynthesis or perception by AVG and AgNO3 decreased shoot regeneration. Organogenic callus induced in the presence of ethylene precursors showed an upregulated expression of the auxin efflux carrier gene PIN1, suggesting that ethylene may enhance shoot regeneration by affecting auxin distribution prior to shoot development. Additionally, it was found that the de novo shoot meristems induced in explants in which ethylene biosynthesis and perception was suppressed were unable to further develop into elongated shoots. Overall, these results imply that altering ethylene levels and perception could enhance shoot regeneration efficiency in tamarillo. Moreover, we offer insights into the possible molecular mechanisms involved in ethylene-induced shoot regeneration.
Collapse
Affiliation(s)
- Mariana Neves
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Sandra Correia
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
- InnovPlantProtect CoLab, 7350-478 Elvas, Portugal
| | - Jorge Canhoto
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| |
Collapse
|
108
|
Etesami H, Jeong BR, Raheb A. Arsenic (As) resistant bacteria with multiple plant growth-promoting traits: Potential to alleviate As toxicity and accumulation in rice. Microbiol Res 2023; 272:127391. [PMID: 37121023 DOI: 10.1016/j.micres.2023.127391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023]
Abstract
A currently serious agronomic concern for paddy soils is arsenic (As) contamination. Paddy soils are mostly utilized for rice cultivation. Arsenite (As(III)) is prevalent in paddy soils, and its high mobility and toxicity make As uptake by rice substantially greater than that by other food crops. Globally, interest has increased towards using As-resistant plant growth-promoting bacteria (PGPB) to improve plant metal tolerance, promote plant growth, and immobilize As to prevent its uptake and accumulation in the edible parts of rice as much as possible. This review focuses on the As-resistant PGPB characteristics influencing rice growth and the mechanisms by which they function to alleviate As toxicity stress in rice plants. Several recent examples of mechanisms responsible for decreasing the availability of As to rice and coping with As stresses facilitated by the PGPB with multiple PGP traits (e.g., phosphate and silicate solubilization, the production of 1-aminocyclopropane-1-carboxylate deaminase, phytohormones, and siderophore, N2 fixation, sulfate reduction, the biosorption, bioaccumulation, methylation, and volatilization of As, and arsenite oxidation) are also reviewed. In addition, future research needs about the application of As-resistant PGPB with PGP traits to mitigate As accumulation in rice plants are described.
Collapse
Affiliation(s)
- Hassan Etesami
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran.
| | - Byoung Ryong Jeong
- Department of Horticulture, College of Agriculture & Life Sciences, Gyeongsang National University (GNU), Jinju 52828, South Korea
| | - Alireza Raheb
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| |
Collapse
|
109
|
Chen X, Yang S, Ma J, Huang Y, Wang Y, Zeng J, Li J, Li S, Long D, Xiao X, Sha L, Wu D, Fan X, Kang H, Zhang H, Zhou Y, Cheng Y. Manganese and copper additions differently reduced cadmium uptake and accumulation in dwarf Polish wheat (Triticum polonicum L.). JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130998. [PMID: 36860063 DOI: 10.1016/j.jhazmat.2023.130998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
This study investigated the effects of manganese (Mn) and copper (Cu) on dwarf Polish wheat under cadmium (Cd) stress by evaluating plant growth, Cd uptake, translocation, accumulation, subcellular distribution, and chemical forms, and the expression of genes participating in cell wall synthesis, metal chelation, and metal transport. Compared with the control, Mn deficiency and Cu deficiency increased Cd uptake and accumulation in roots, and Cd levels in root cell wall and soluble fractions, but inhibited Cd translocation to shoots. Mn addition reduced Cd uptake and accumulation in roots, and Cd level in root soluble fraction. Cu addition did not affect Cd uptake and accumulation in roots, while it caused a decrease and an increase of Cd levels in root cell wall and soluble fractions, respectively. The main Cd chemical forms (water-soluble Cd, pectates and protein integrated Cd, and undissolved Cd phosphate) in roots were differently changed. Furthermore, all treatments distinctly regulated several core genes that control the main component of root cell walls. Several Cd absorber (COPT, HIPP, NRAMP, and IRT) and exporter genes (ABCB, ABCG, ZIP, CAX, OPT, and YSL) were differently regulated to mediate Cd uptake, translocation, and accumulation. Overall, Mn and Cu differently influenced Cd uptake and accumulation; Mn addition is an effective treatment for reducing Cd accumulation in wheat.
Collapse
Affiliation(s)
- Xing Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Shan Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Yiwen Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Yi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China.
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Jun Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Jinjiang 610066, Sichuan, China
| | - Siyu Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Dan Long
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Xue Xiao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Lina Sha
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Dandan Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Xing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Haiqin Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Yonghong Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Yiran Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China.
| |
Collapse
|
110
|
Guo S, Ma R, Xu J, Zhang B, Yu M, Gao Z. Transcriptomic Analysis Reveals Genes Associated with the Regulation of Peach Fruit Softening and Senescence during Storage. Foods 2023; 12:foods12081648. [PMID: 37107443 PMCID: PMC10137801 DOI: 10.3390/foods12081648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Peach (Prunus persica (L.) Batsch) is a highly desirable fruit that is consumed around the world. However, the peach fruit is highly perishable after harvest, a characteristic that limits the distribution and supply to the market and causes heavy economic losses. Thus, peach fruit softening and senescence after harvest urgently need to be addressed. In the current study, transcriptomic analysis was performed to identify candidate genes associated with peach fruit softening and senescence, comparing peach fruit from cultivars with different flesh textures, namely melting and stony hard (SH) flesh textures during storage at room temperature. The mitogen-activated protein kinase signaling pathway-plant and plant hormone signal transduction pathways were associated with peach fruit softening and senescence according to the Venn diagram analysis and weighted gene co-expression network analysis. The expression levels of seven genes, including Prupe.1G034300, Prupe.2G176900, Prupe.3G024700, Prupe.3G098100, Prupe.6G226100, Prupe.7G234800, and Prupe.7G247500, were higher in melting peach fruit than in SH peach fruit during storage. Furthermore, the SH peach fruit softened rapidly after 1-naphthylacetic acid treatment, during which the levels of expression of these seven genes, determined by a quantitative reverse transcription polymerase chain reaction, were strongly induced and upregulated. Thus, these seven genes may play essential roles in regulating peach fruit softening and senescence.
Collapse
Affiliation(s)
- Shaolei Guo
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruijuan Ma
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Jianlan Xu
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Binbin Zhang
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Mingliang Yu
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Zhihong Gao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
111
|
Li Z, Zhao T, Liu J, Li H, Liu B. Shade-Induced Leaf Senescence in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:1550. [PMID: 37050176 PMCID: PMC10097262 DOI: 10.3390/plants12071550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Leaf senescence is a vital developmental process that involves the orderly breakdown of macromolecules to transfer nutrients from mature leaves to emerging and reproductive organs. This process is essential for a plant's overall fitness. Multiple internal and external factors, such as leaf age, plant hormones, stresses, and light environment, regulate the onset and progression of leaf senescence. When plants grow close to each other or are shaded, it results in significant alterations in light quantity and quality, such as a decrease in photosynthetically active radiation (PAR), a drop in red/far-red light ratios, and a reduction in blue light fluence rate, which triggers premature leaf senescence. Recently, studies have identified various components involved in light, phytohormone, and other signaling pathways that regulate the leaf senescence process in response to shade. This review summarizes the current knowledge on the molecular mechanisms that control leaf senescence induced by shade.
Collapse
Affiliation(s)
| | | | | | - Hongyu Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bin Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
112
|
Masood J, Zhu W, Fu Y, Li Z, Zhou Y, Zhang D, Han H, Yan Y, Wen X, Guo H, Liang J. Scaffold protein RACK1A positively regulates leaf senescence by coordinating the EIN3-miR164-ORE1 transcriptional cascade in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36939002 DOI: 10.1111/jipb.13483] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Plants have adopted versatile scaffold proteins to facilitate the crosstalk between multiple signaling pathways. Leaf senescence is a well-programmed developmental stage that is coordinated by various external and internal signals. However, the functions of plant scaffold proteins in response to senescence signals are not well understood. Here, we report that the scaffold protein RACK1A (RECEPTOR FOR ACTIVATED C KINASE 1A) participates in leaf senescence mediated by ethylene signaling via the coordination of the EIN3-miR164-ORE1 transcriptional regulatory cascade. RACK1A is a novel positive regulator of ethylene-mediated leaf senescence. The rack1a mutant exhibits delayed leaf senescence, while transgenic lines overexpressing RACK1A display early leaf senescence. Moreover, RACK1A promotes EIN3 (ETHYLENE INSENSITIVE 3) protein accumulation, and directly interacts with EIN3 to enhance its DNA-binding activity. Together, they then associate with the miR164 promoter to inhibit its transcription, leading to the release of the inhibition on downstream ORE1 (ORESARA 1) transcription and the promotion of leaf senescence. This study reveals a mechanistic framework by which RACK1A promotes leaf senescence via the EIN3-miR164-ORE1 transcriptional cascade, and provides a paradigm for how scaffold proteins finely tune phytohormone signaling to control plant development.
Collapse
Affiliation(s)
- Jan Masood
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Wei Zhu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Yajuan Fu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Zhiyong Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Yeling Zhou
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Dong Zhang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Huihui Han
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Yan Yan
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Xing Wen
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Hongwei Guo
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Jiansheng Liang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| |
Collapse
|
113
|
Soybean Mosaic Virus 6K1 Interactors Screening and GmPR4 and GmBI1 Function Characterization. Int J Mol Sci 2023; 24:ijms24065304. [PMID: 36982379 PMCID: PMC10049162 DOI: 10.3390/ijms24065304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/27/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023] Open
Abstract
Host proteins are essential during virus infection, and viral factors must target numerous host factors to complete their infectious cycle. The mature 6K1 protein of potyviruses is required for viral replication in plants. However, the interaction between 6K1 and host factors is poorly understood. The present study aims to identify the host interacting proteins of 6K1. Here, the 6K1 of Soybean mosaic virus (SMV) was used as the bait to screen a soybean cDNA library to gain insights about the interaction between 6K1 and host proteins. One hundred and twenty-seven 6K1 interactors were preliminarily identified, and they were classified into six groups, including defense-related, transport-related, metabolism-related, DNA binding, unknown, and membrane-related proteins. Then, thirty-nine proteins were cloned and merged into a prey vector to verify the interaction with 6K1, and thirty-three of these proteins were confirmed to interact with 6K1 by yeast two-hybrid (Y2H) assay. Of the thirty-three proteins, soybean pathogenesis-related protein 4 (GmPR4) and Bax inhibitor 1 (GmBI1) were chosen for further study. Their interactions with 6K1 were also confirmed by bimolecular fluorescence complementation (BiFC) assay. Subcellular localization showed that GmPR4 was localized to the cytoplasm and endoplasmic reticulum (ER), and GmBI1 was located in the ER. Moreover, both GmPR4 and GmBI1 were induced by SMV infection, ethylene and ER stress. The transient overexpression of GmPR4 and GmBI1 reduced SMV accumulation in tobacco, suggesting their involvement in the resistance to SMV. These results would contribute to exploring the mode of action of 6K1 in viral replication and improve our knowledge of the role of PR4 and BI1 in SMV response.
Collapse
|
114
|
Zhou GD, He P, Tian L, Xu S, Yang B, Liu L, Wang Y, Bai T, Li X, Li S, Zheng SJ. Disentangling the resistant mechanism of Fusarium wilt TR4 interactions with different cultivars and its elicitor application. FRONTIERS IN PLANT SCIENCE 2023; 14:1145837. [PMID: 36938065 PMCID: PMC10018200 DOI: 10.3389/fpls.2023.1145837] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Fusarium wilt of banana, especially Tropical Race 4 (TR4) is a major factor restricting banana production. Developing a resistant cultivar and inducing plant defenses by elicitor application are currently two of the best options to control this disease. Isotianil is a monocarboxylic acid amide that has been used as a fungicide to control rice blast and could potentially induce systemic acquired resistance in plants. To determine the control effect of elicitor isotianil on TR4 in different resistant cultivars, a greenhouse pot experiment was conducted and its results showed that isotianil could significantly alleviate the symptoms of TR4, provide enhanced disease control on the cultivars 'Baxi' and 'Yunjiao No.1' with control effect 50.14% and 56.14%, respectively. We compared the infection processes in 'Baxi' (susceptible cultivars) and 'Yunjiao No.1' (resistant cultivars) two cultivars inoculated with pathogen TR4. The results showed that TR4 hyphae could rapidly penetrate the cortex into the root vascular bundle for colonization, and the colonization capacity in 'Baxi' was significantly higher than that in 'Yunjiao No.1'. The accumulation of a large number of starch grains was observed in corms cells, and further analysis showed that the starch content in 'Yunjiao No. 1' as resistant cultivar was significantly higher than that in 'Baxi' as susceptible cultivar, and isotianil application could significantly increase the starch content in 'Baxi'. Besides, a mass of tyloses were observed in the roots and corms and these tyloses increased after application with isotianil. Furthermore, the total starch and tyloses contents and the control effect in the corms of 'Yunjiao No.1' was higher than that in the 'Baxi'. Moreover, the expression levels of key genes for plant resistance induction and starch synthesis were analyzed, and the results suggested that these genes were significantly upregulated at different time points after the application of isotianil. These results suggest that there are significant differences between cultivars in response to TR4 invasion and plant reactions with respect to starch accumulation, tyloses formation and the expression of plant resistance induction and starch synthesis related genes. Results also indicate that isotianil application may contribute to disease control by inducing host plant defense against TR4 infection and could be potentially used together with resistant cultivar as integrated approach to manage this destructive disease. Further research under field conditions should be included in the next phases of study.
Collapse
Affiliation(s)
- Guang-Dong Zhou
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
- Center For Potato Research, Resource Plant Research Institute, Yunnan University, Kunming, Yunnan, China
| | - Ping He
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Ministry of Education Key Laboratory of Agriculture Biodiversity for Plant Disease Management, College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Libo Tian
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
- Center For Potato Research, Resource Plant Research Institute, Yunnan University, Kunming, Yunnan, China
| | - Shengtao Xu
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Baoming Yang
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Lina Liu
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Yongfen Wang
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
- Institute of Tropical and Subtropical Industry Crops, Yunnan Academy of Agricultural Sciences, Baoshan, China
| | - Tingting Bai
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Xundong Li
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Shu Li
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Si-Jun Zheng
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
- Bioversity International, Kunming, Yunnan, China
| |
Collapse
|
115
|
Nie Y, Li Y, Liu M, Ma B, Sui X, Chen J, Yu Y, Dong CH. The nucleoporin NUP160 and NUP96 regulate nucleocytoplasmic export of mRNAs and participate in ethylene signaling and response in Arabidopsis. PLANT CELL REPORTS 2023; 42:549-559. [PMID: 36598573 DOI: 10.1007/s00299-022-02976-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Arabidopsis nucleoporin involved in the regulation of ethylene signaling via controlling of nucleocytoplasmic transport of mRNAs. The two-way transport of mRNAs between the nucleus and cytoplasm are controlled by the nuclear pore complex (NPC). In higher plants, the NPC contains at least 30 nucleoporins. The Arabidopsis nucleoporins are involved in various biological processes such as pathogen interaction, nodulation, cold response, flowering, and hormone signaling. However, little is known about the regulatory functions of the nucleoporin NUP160 and NUP96 in ethylene signaling pathway. In the present study, we provided data showing that the Arabidopsis nucleoporin NUP160 and NUP96 participate in ethylene signaling-related mRNAs nucleocytoplasmic transport. The Arabidopsis nucleoporin mutants (nup160, nup96-1, nup96-2) exhibited enhanced ethylene sensitivity. Nuclear qRT-PCR analysis and poly(A)-mRNA in situ hybridization showed that the nucleoporin mutants affected the nucleocytoplasmic transport of all the examined mRNAs, including the ethylene signaling-related mRNAs such as ETR2, ERS1, ERS2, EIN4, CTR1, EIN2, and EIN3. Transcriptome analysis of the nucleoporin mutants provided clues suggesting that the nucleoporin NUP160 and NUP96 may participate in ethylene signaling via various molecular mechanisms. These observations significantly advance our understanding of the regulatory mechanisms of nucleoporin proteins in ethylene signaling and ethylene response.
Collapse
Affiliation(s)
- Yuanyuan Nie
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yang Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Menghui Liu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Binran Ma
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xinying Sui
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jiacai Chen
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yanchong Yu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chun-Hai Dong
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
116
|
Genome-Wide Identification of the ERF Transcription Factor Family for Structure Analysis, Expression Pattern, and Response to Drought Stress in Populus alba × Populus glandulosa. Int J Mol Sci 2023; 24:ijms24043697. [PMID: 36835107 PMCID: PMC9967527 DOI: 10.3390/ijms24043697] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
The Ethylene Responsive Factor (ERF) transcription factor family is important for regulating plant growth and stress responses. Although the expression patterns of ERF family members have been reported in many plant species, their role in Populus alba × Populus glandulosa, an important model plant for forest research, remains unclear. In this study, we identified 209 PagERF transcription factors by analyzing the P. alba × P. glandulosa genome. We analyzed their amino acid sequences, molecular weight, theoretical pI (Isoelectric point), instability index, aliphatic index, grand average of hydropathicity, and subcellular localization. Most PagERFs were predicted to localize in the nucleus, with only a few PagERFs localized in the cytoplasm and nucleus. Phylogenetic analysis divided the PagERF proteins into ten groups, Class I to X, with those belonging to the same group containing similar motifs. Cis-acting elements associated with plant hormones, abiotic stress responses, and MYB binding sites were analyzed in the promoters of PagERF genes. We used transcriptome data to analyze the expression patterns of PagERF genes in different tissues of P. alba × P. glandulosa, including axillary buds, young leaves, functional leaves, cambium, xylem, and roots, and the results indicated that PagERF genes are expressed in all tissues of P. alba × P. glandulosa, especially in roots. Quantitative verification results were consistent with transcriptome data. When P. alba × P. glandulosa seedlings were treated with 6% polyethylene glycol 6000 (PEG6000), the results of RT-qRCR showed that nine PagERF genes responded to drought stress in various tissues. This study provides a new perspective on the roles of PagERF family members in regulating plant growth and development, and responses to stress in P. alba × P. glandulosa. Our study provides a theoretical basis for ERF family research in the future.
Collapse
|
117
|
Ikematsu S, Umase T, Shiozaki M, Nakayama S, Noguchi F, Sakamoto T, Hou H, Gohari G, Kimura S, Torii KU. Rewiring of hormones and light response pathways underlies the inhibition of stomatal development in an amphibious plant Rorippa aquatica underwater. Curr Biol 2023; 33:543-556.e4. [PMID: 36696900 DOI: 10.1016/j.cub.2022.12.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/12/2022] [Accepted: 12/22/2022] [Indexed: 01/26/2023]
Abstract
Land plants have evolved the ability to cope with submergence. Amphibious plants are adapted to both aerial and aquatic environments through phenotypic plasticity in leaf form and function, known as heterophylly. In general, underwater leaves of amphibious plants are devoid of stomata, yet their molecular regulatory mechanisms remain elusive. Using the emerging model of the Brassicaceae amphibious species Rorippa aquatica, we lay the foundation for the molecular physiological basis of the submergence-triggered inhibition of stomatal development. A series of temperature shift experiments showed that submergence-induced inhibition of stomatal development is largely uncoupled from morphological heterophylly and likely regulated by independent pathways. Submergence-responsive transcriptome analysis revealed rapid reprogramming of gene expression, exemplified by the suppression of RaSPEECHLESS and RaMUTE within 1 h and the involvement of light and hormones in the developmental switch from terrestrial to submerged leaves. Further physiological studies place ethylene as a central regulator of the submergence-triggered inhibition of stomatal development. Surprisingly, red and blue light have opposing functions in this process: blue light promotes, whereas red light inhibits stomatal development, through influencing the ethylene pathway. Finally, jasmonic acid counteracts the inhibition of stomatal development, which can be attenuated by the red light. The actions and interactions of light and hormone pathways in regulating stomatal development in R. aquatica are different from those in the terrestrial species, Arabidopsis thaliana. Thus, our work suggests that extensive rewiring events of red light to ethylene signaling might underlie the evolutionary adaption to water environment in Brassicaceae.
Collapse
Affiliation(s)
- Shuka Ikematsu
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-Ku, Kyoto 603-8555, Japan; Institute of Transformative Biomolecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, Aichi 464-8601, Japan; Center for Plant Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-Ku, Kyoto 603-8555, Japan
| | - Tatsushi Umase
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-Ku, Kyoto 603-8555, Japan
| | - Mako Shiozaki
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-Ku, Kyoto 603-8555, Japan
| | - Sodai Nakayama
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-Ku, Kyoto 603-8555, Japan
| | - Fuko Noguchi
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-Ku, Kyoto 603-8555, Japan
| | - Tomoaki Sakamoto
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-Ku, Kyoto 603-8555, Japan; Center for Plant Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-Ku, Kyoto 603-8555, Japan
| | - Hongwei Hou
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gholamreza Gohari
- Department of Horticultural Sciences, Faculty of Agriculture, University of Maragheh, Maragheh 83111-55181, East Azerbaijan, Iran
| | - Seisuke Kimura
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-Ku, Kyoto 603-8555, Japan; Center for Plant Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-Ku, Kyoto 603-8555, Japan.
| | - Keiko U Torii
- Institute of Transformative Biomolecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, Aichi 464-8601, Japan; Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
118
|
Xu C, Sun L, Mei Y, Sun G, Li W, Wang D, Li X, Wang NN. Domain Swapping between AtACS7 and PpACL1 Results in Chimeric ACS-like Proteins with ACS or C β-S Lyase Single Enzymatic Activity. Int J Mol Sci 2023; 24:ijms24032956. [PMID: 36769285 PMCID: PMC9917878 DOI: 10.3390/ijms24032956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
The gaseous hormone ethylene plays a pivotal role in plant growth and development. In seed plants, the key rate-limiting enzyme that controls ethylene biosynthesis is ACC synthase (ACS). ACS has, for a long time, been believed to be a single-activity enzyme until we recently discovered that it also possesses Cβ-S lyase (CSL) activity. This discovery raises fundamental questions regarding the biological significance of the dual enzymatic activities of ACS. To address these issues, it is highly necessary to obtain ACS mutants with either ACS or CSL single activity. Here, domain swapping between Arabidopsis AtACS7 and moss CSL PpACL1 were performed. Enzymatic activity assays of the constructed chimeras revealed that, R10, which was produced by replacing AtACS7 box 6 with that of PpACL1, lost ACS but retained CSL activity, whereas R12 generated by box 4 substitution lost CSL and only had ACS activity. The activities of both chimeric proteins were compared with previously obtained single-activity mutants including R6, AtACS7Q98A, and AtACS7D245N. All the results provided new insights into the key residues required for ACS and CSL activities of AtACS7 and laid an important foundation for further in-depth study of the biological functions of its dual enzymatic activities.
Collapse
Affiliation(s)
- Chang Xu
- College of Life Sciences, College of Agricultural Sciences, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin 300071, China
| | - Lifang Sun
- College of Life Sciences, College of Agricultural Sciences, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin 300071, China
| | - Yuanyuan Mei
- College of Life Sciences, College of Agricultural Sciences, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin 300071, China
| | - Gongling Sun
- College of Life Sciences, College of Agricultural Sciences, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin 300071, China
| | - Wenjing Li
- College of Life Sciences, College of Agricultural Sciences, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin 300071, China
| | - Dan Wang
- College of Life Sciences, College of Agricultural Sciences, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin 300071, China
| | - Xin Li
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ning Ning Wang
- College of Life Sciences, College of Agricultural Sciences, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin 300071, China
- Correspondence:
| |
Collapse
|
119
|
Khoudi H. SHINE clade of ERF transcription factors: A significant player in abiotic and biotic stress tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:77-88. [PMID: 36603451 DOI: 10.1016/j.plaphy.2022.12.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
SHINE (SHN) clade transcription factors (TFs) represents a subfamily of APETALA2/ethylene-responsive factor (AP2/ERF) proteins. The latter, is characterized by its responsiveness to the phytohormone ethylene and the presence of AP2 DNA-binding domain. They are involved in many biological processes and in responses to different environmental constraints. SHN TFs were among the first identified regulators of cuticle formation. Cuticle plays crucial role in plant tolerance to drought, salinity and high temperature as well as in defense against pathogens. In addition, SHN were shown to be involved in the regulation of stomatal development which influences resistance to drought and diseases. Interestingly, recent studies have also shown that SHN TFs are involved in mediating the beneficial effects of arbuscular mycorrhizal fungi (AMF) as well as disease resistance conferred by nanoparticles. To fulfill their roles, SHN TFs are controlled upstream by other TFs and they control, in their turn, different downstream genes. In this review, we highlight the role of SHN TFs in different abiotic and biotic stresses through their involvement in cuticle biosynthesis, stomatal development and molecular regulation of biochemical and physiological traits. In addition, we discuss the regulation of SHN TFs by plant hormones and their influence on hormone biosynthesis and signaling pathways. Knowledge of this complex regulation can be put into contribution to increase multiple abiotic stress tolerances through transgenesis, gene editing and classical breeding.
Collapse
Affiliation(s)
- Habib Khoudi
- Laboratory of Plant Biotechnology and Improvement, Center of Biotechnology of Sfax (CBS), University of Sfax, Route Sidi Mansour Km 6, B.P'1177', 3018, Sfax, Tunisia.
| |
Collapse
|
120
|
Orozco-Mosqueda MDC, Kumar A, Fadiji AE, Babalola OO, Puopolo G, Santoyo G. Agroecological Management of the Grey Mould Fungus Botrytis cinerea by Plant Growth-Promoting Bacteria. PLANTS (BASEL, SWITZERLAND) 2023; 12:637. [PMID: 36771719 PMCID: PMC9919678 DOI: 10.3390/plants12030637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/21/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Botrytis cinerea is the causal agent of grey mould and one of the most important plant pathogens in the world because of the damage it causes to fruits and vegetables. Although the application of botrycides is one of the most common plant protection strategies used in the world, the application of plant-beneficial bacteria might replace botrycides facilitating agroecological production practices. Based on this, we reviewed the different stages of B. cinerea infection in plants and the biocontrol mechanisms exerted by plant-beneficial bacteria, including the well-known plant growth-promoting bacteria (PGPB). Some PGPB mechanisms to control grey mould disease include antibiosis, space occupation, nutrient uptake, ethylene modulation, and the induction of plant defence mechanisms. In addition, recent studies on the action of anti-Botrytis compounds produced by PGPB and how they damage the conidial and mycelial structures of the pathogen are reviewed. Likewise, the advantages of individual inoculations of PGPB versus those that require the joint action of antagonist agents (microbial consortia) are discussed. Finally, it should be emphasised that PGPB are an excellent option to prevent grey mould in different crops and their use should be expanded for environmentally friendly agricultural practices.
Collapse
Affiliation(s)
| | - Ajay Kumar
- Centre of Advanced study in Botany, Banaras Hindu University, Varanasi 221005, India
| | - Ayomide Emmanuel Fadiji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Gerardo Puopolo
- Center Agriculture Food Environment (C3A), University of Trento, Via Edmund Mach 1, 38098 San Michele all’Adige, Italy
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mich, Mexico
| |
Collapse
|
121
|
Tripathi DK, Kandhol N, Rai P, Mishra V, Pandey S, Deshmukh R, Sahi S, Sharma S, Singh VP. Ethylene Renders Silver Nanoparticles Stress Tolerance in Rice Seedlings by Regulating Endogenous Nitric Oxide Accumulation. PLANT & CELL PHYSIOLOGY 2023; 63:1954-1967. [PMID: 36377808 DOI: 10.1093/pcp/pcac159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Developments in the field of nanotechnology over the past few years have increased the prevalence of silver nanoparticles (AgNPs) in the environment, resulting in increased exposure of plants to AgNPs. Recently, various studies have reported the effect of AgNPs on plant growth at different concentrations. However, identifying the mechanisms and signaling molecules involved in plant responses against AgNPs stress is crucial to find an effective way to deal with the phytotoxic impacts of AgNPs on plant growth and development. Therefore, this study was envisaged to investigate the participation of ethylene in mediating the activation of AgNPs stress tolerance in rice (Oryza sativa L.) through a switch that regulates endogenous nitric oxide (NO) accumulation. Treatment of AgNPs alone hampered the growth of rice seedlings due to severe oxidative stress as a result of decline in sulfur assimilation, glutathione (GSH) biosynthesis and alteration in the redox status of GSH. These results are also accompanied by the higher endogenous NO level. However, addition of ethephon (a donor of ethylene) reversed the AgNP-induced effects. Though the application of silicon nanoparticles (SiNPs) alone promoted the growth of rice seedlings but, interestingly their application in combination with AgNPs enhanced the AgNP-induced toxicity in the seedlings through the same routes as exhibited in the case of AgNPs alone treatment. Interestingly, addition of ethephon reversed the negative effects of SiNPs under AgNPs stress. These results suggest that ethylene might act as a switch to regulate the level of endogenous NO, which in turn could be associated with AgNPs stress tolerance in rice. Furthermore, the results also indicated that addition of l-NG-nitro arginine methyl ester (l-NAME) (an inhibitor of endogenous NO synthesis) also reversed the toxic effects of SiNPs together with AgNPs, further suggesting that the low level of endogenous NO was associated with AgNPs stress tolerance. Overall, the results indicate that the low level of endogenous NO triggers AgNPs stress tolerance, while high level leads to AgNPs toxicity by regulating sulfur assimilation, GSH biosynthesis, redox status of GSH and oxidative stress markers. The results revealed that ethylene might act as a switch for regulating AgNPs stress in rice seedlings by controlling endogenous NO accumulation.
Collapse
Affiliation(s)
- Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Nidhi Kandhol
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Padmaja Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, UP 211004, India
| | - Vipul Mishra
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj 211002, India
| | - Sangeeta Pandey
- Plant and Microbe Interaction Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, PB, India
| | - Shivendra Sahi
- Department of Biology, Saint Joseph's University, University City Campus, 600 S. 43rd St., Philadelphia, PA 19104, USA
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, UP 211004, India
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj 211002, India
| |
Collapse
|
122
|
Chiaranunt P, White JF. Plant Beneficial Bacteria and Their Potential Applications in Vertical Farming Systems. PLANTS (BASEL, SWITZERLAND) 2023; 12:400. [PMID: 36679113 PMCID: PMC9861093 DOI: 10.3390/plants12020400] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
In this literature review, we discuss the various functions of beneficial plant bacteria in improving plant nutrition, the defense against biotic and abiotic stress, and hormonal regulation. We also review the recent research on rhizophagy, a nutrient scavenging mechanism in which bacteria enter and exit root cells on a cyclical basis. These concepts are covered in the contexts of soil agriculture and controlled environment agriculture, and they are also used in vertical farming systems. Vertical farming-its advantages and disadvantages over soil agriculture, and the various climatic factors in controlled environment agriculture-is also discussed in relation to plant-bacterial relationships. The different factors under grower control, such as choice of substrate, oxygenation rates, temperature, light, and CO2 supplementation, may influence plant-bacterial interactions in unintended ways. Understanding the specific effects of these environmental factors may inform the best cultural practices and further elucidate the mechanisms by which beneficial bacteria promote plant growth.
Collapse
|
123
|
Xiao F, Zhou H. Plant salt response: Perception, signaling, and tolerance. FRONTIERS IN PLANT SCIENCE 2023; 13:1053699. [PMID: 36684765 PMCID: PMC9854262 DOI: 10.3389/fpls.2022.1053699] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/05/2022] [Indexed: 05/14/2023]
Abstract
Salt stress is one of the significant environmental stressors that severely affects plant growth and development. Plant responses to salt stress involve a series of biological mechanisms, including osmoregulation, redox and ionic homeostasis regulation, as well as hormone or light signaling-mediated growth adjustment, which are regulated by different functional components. Unraveling these adaptive mechanisms and identifying the critical genes involved in salt response and adaption are crucial for developing salt-tolerant cultivars. This review summarizes the current research progress in the regulatory networks for plant salt tolerance, highlighting the mechanisms of salt stress perception, signaling, and tolerance response. Finally, we also discuss the possible contribution of microbiota and nanobiotechnology to plant salt tolerance.
Collapse
Affiliation(s)
- Fei Xiao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Huapeng Zhou
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
124
|
Kim SJ, Lee Y, Choi EJ, Lee JM, Kim KH, Oh JW. The development progress of multi-array colourimetric sensors based on the M13 bacteriophage. NANO CONVERGENCE 2023; 10:1. [PMID: 36595116 PMCID: PMC9808696 DOI: 10.1186/s40580-022-00351-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Techniques for detecting chemicals dispersed at low concentrations in air continue to evolve. These techniques can be applied not only to manage the quality of agricultural products using a post-ripening process but also to establish a safety prevention system by detecting harmful gases and diagnosing diseases. Recently, techniques for rapid response to various chemicals and detection in complex and noisy environments have been developed using M13 bacteriophage-based sensors. In this review, M13 bacteriophage-based multi-array colourimetric sensors for the development of an electronic nose is discussed. The self-templating process was adapted to fabricate a colour band structure consisting of an M13 bacteriophage. To detect diverse target chemicals, the colour band was utilised with wild and genetically engineered M13 bacteriophages to enhance their sensing abilities. Multi-array colourimetric sensors were optimised for application in complex and noisy environments based on simulation and deep learning analysis. The development of a multi-array colourimetric sensor platform based on the M13 bacteriophage is likely to result in significant advances in the detection of various harmful gases and the diagnosis of various diseases based on exhaled gas in the future.
Collapse
Affiliation(s)
- Sung-Jo Kim
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, Republic of Korea
| | - Yujin Lee
- Department of Nano Fusion Technology, Pusan National University, Busan, Republic of Korea
| | - Eun Jung Choi
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, Republic of Korea
- Korea Nanobiotechnology Center, Pusan National University, Busan, Republic of Korea
| | - Jong-Min Lee
- School of Nano Convergence Technology, Hallym University, Chuncheon, Republic of Korea
- Korea and Nano Convergence Technology Center, Hallym University, Chuncheon, Republic of Korea
| | - Kwang Ho Kim
- School of Materials Science and Engineering, Pusan National University, Busan, Republic of Korea
- Global Frontier Research and Development Center for Hybrid Interface Materials, Pusan National University, Busan, Republic of Korea
| | - Jin-Woo Oh
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, Republic of Korea
- Department of Nano Fusion Technology, Pusan National University, Busan, Republic of Korea
- Korea Nanobiotechnology Center, Pusan National University, Busan, Republic of Korea
- Department of Nanoenergy Engineering and Research Center for Energy Convergence Technology, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
125
|
Ma M, Lu Y, Di D, Kronzucker HJ, Dong G, Shi W. The nitrification inhibitor 1,9-decanediol from rice roots promotes root growth in Arabidopsis through involvement of ABA and PIN2-mediated auxin signaling. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153891. [PMID: 36495813 DOI: 10.1016/j.jplph.2022.153891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/03/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
1,9-decanediol (1,9-D) is a biological nitrification inhibitor secreted in roots, which effectively inhibits soil nitrifier activity and reduces nitrogen loss from agricultural fields. However, the effects of 1,9-D on plant root growth and the involvement of signaling pathways in the plant response to 1,9-D have not been investigated. Here, we report that 1,9-D, in the 100-400 μM concentration range, promotes primary root length in Arabidopsis seedlings at 3d and 5d, by 10.1%-33.3% and 6.9%-32.6%, and, in a range of 50-200 μM, leads to an increase in the number of lateral roots. 150 μM 1,9-D was found optimum for the positive regulation of root growth. qRT-PCR analysis reveals that 1,9-D can significantly increase AtABA3 gene expression and that a mutation in ABA3 results in insensitivity of root growth to 1,9-D. Moreover, through pharmacological experiments, we show that exogenous addition of ABA (abscisic acid) with 1,9-D enhances primary root length by 23.5%-63.3%, and an exogenous supply of 1,9-D with the ABA inhibitor Flu reduces primary root length by 1.0%-14.3%. Primary root length of the pin2/eir1-1 is shown to be insensitive to both exogenous addition of 1,9-D and ABA, indicating that the auxin carrier PIN2/EIR1 is involved in promotion of root growth by 1,9-D. These results suggest a novel for 1,9-D in regulating plant root growth through ABA and auxin signaling.
Collapse
Affiliation(s)
- Mingkun Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yufang Lu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Dongwei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Herbert J Kronzucker
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | | | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
126
|
Qin D, Liu G, Liu R, Wang C, Xu F, Xu Q, Ling Y, Dong G, Peng Y, Ge S, Guo G, Dong J, Li C. Positional cloning identified HvTUBULIN8 as the candidate gene for round lateral spikelet (RLS) in barley (Hordeum vulgare L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:7. [PMID: 36656367 PMCID: PMC9852219 DOI: 10.1007/s00122-023-04272-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Map-based cloning, subcellular localization, virus-induced-gene-silencing and transcriptomic analysis reveal HvTUB8 as a candidate gene with pleiotropic effects on barley spike and leaf development via ethylene and chlorophyll metabolism. Barley lateral spikelet morphology and grain shape play key roles in grain physical quality and yield. Several genes and QTLs for these traits have been cloned or fine mapped previously. Here, we report the phenotypic and genotypic analysis of a barley mutant with round lateral spikelet (rls) from cv. Edamai 934. rls had round lateral spikelet, short but round grain, shortened awn, thick glume and dark green leaves. Histocytologic and ultrastructural analysis revealed that the difference of grain shape of rls was caused by change of cell arrangement in glume, and the dark leaf color resulted from enlarged chloroplast. HvTUBULIN8 (HvTUB8) was identified as the candidate gene for rls by combination of RNA-Seq, map-based-cloning, virus-induced-gene-silencing (VIGS) and protein subcellular location. A single G-A substitution at the third exon of HvTUB8 resulted in change of Cysteine 354 to tyrosine. Furthermore, the mutant isoform Hvtub8 could be detected in both nucleus and cytoplasm, whereas the wild-type protein was only in cytoplasm and granular organelles of wheat protoplasts. Being consistent with the rare phenotype, the "A" allele of HvTUB8 was only detected in rls, but not in a worldwide barley germplasm panel with 400 accessions. VIGS confirmed that HvTUB8 was essential to maintain spike integrity. RNA-Seq results suggested that HvTUB8 may control spike morphogenesis via ethylene homeostasis and signaling, and control leaf color through chlorophyll metabolism. Collectively, our results support HvTUB8 as a candidate gene for barley spike and leaf morphology and provide insight of a novel mechanism of it in barley development.
Collapse
Affiliation(s)
- Dandan Qin
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
- Key Laboratory for Crop Molecular, Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, 430064, Hubei, China
| | - Gang Liu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
- Key Laboratory for Crop Molecular, Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, 430064, Hubei, China
| | - Rui Liu
- Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
| | - Chunchao Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fuchao Xu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
- Key Laboratory for Crop Molecular, Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, 430064, Hubei, China
| | - Qing Xu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
- Key Laboratory for Crop Molecular, Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, 430064, Hubei, China
| | - Yu Ling
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
| | - Guoqing Dong
- Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
| | - Yanchun Peng
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
- Key Laboratory for Crop Molecular, Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, 430064, Hubei, China
| | - Shuangtao Ge
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
- Key Laboratory for Crop Molecular, Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, 430064, Hubei, China
| | - Ganggang Guo
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Dong
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
- Key Laboratory for Crop Molecular, Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, 430064, Hubei, China
| | - Chengdao Li
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Western Australia, WA, 6150, Australia.
| |
Collapse
|
127
|
Construction of a Hierarchical Gene Regulatory Network to Reveal the Drought Tolerance Mechanism of Shanxin Poplar. Int J Mol Sci 2022; 24:ijms24010384. [PMID: 36613845 PMCID: PMC9820611 DOI: 10.3390/ijms24010384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Drought stress is a common adverse environment that plants encounter, and many drought-tolerant genes have been characterized. The gene regulatory network (GRN) is important in revealing the drought tolerance mechanism. Here, to investigate the regulatory mechanism of Shanxin poplar (Populus davidiana × P. bolleana) responding to drought stress, a three-layered GRN was built, and the regulatory relationship between genes in the GRN were predicted from expression correlation using a partial correlation coefficient-based algorithm. The GRN contains 1869 regulatory relationships, and includes 11 and 19 transcription factors (TFs) in the first and second layers, respectively, and 158 structural genes in the bottom layers involved in eight enriched biological processes. ChIP-PCR and qRT-PCR based on transient transformation were performed to validate the reliability of the GRN. About 88.0% of predicted interactions between the first and second layers, and 82.0% of predicted interactions between the second and third layers were correct, suggesting that the GRN is reliable. Six TFs were randomly selected from the top layer for characterizing their function in drought, and all of these TFs can confer drought tolerance. The important biological processes related to drought tolerance were identified, including "response to jasmonic acid", "response to oxidative stress", and "response to osmotic stress". In this GRN, PdbERF3 is predicted to play an important role in drought tolerance. Our data revealed the key regulators, TF-DNA interactions, and the main biological processes involved in adaption of drought stress in Shanxin poplar.
Collapse
|
128
|
Chen N, Shao Q, Lu Q, Li X, Gao Y. Transcriptome analysis reveals differential transcription in tomato (Solanum lycopersicum) following inoculation with Ralstonia solanacearum. Sci Rep 2022; 12:22137. [PMID: 36550145 PMCID: PMC9780229 DOI: 10.1038/s41598-022-26693-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Tomato (Solanum lycopersicum L.) is a major Solanaceae crop worldwide and is vulnerable to bacterial wilt (BW) caused by Ralstonia solanacearum during the production process. BW has become a growing concern that could enormously deplete the tomato yield from 50 to 100% and decrease the quality. Research on the molecular mechanism of tomato regulating BW resistance is still limited. In this study, two tomato inbred lines (Hm 2-2, resistant to BW; and BY 1-2, susceptible to BW) were used to explore the molecular mechanism of tomato in response to R. solanacearum infection by RNA-sequencing (RNA-seq) technology. We identified 1923 differentially expressed genes (DEGs) between Hm 2-2 and BY 1-2 after R. solanacearum inoculation. Among these DEGs, 828 were up-regulated while 1095 were down-regulated in R-3dpi (Hm 2-2 at 3 days post-inoculation with R. solanacearum) vs. R-mock (mock-inoculated Hm 2-2); 1087 and 2187 were up- and down-regulated, respectively, in S-3dpi (BY 1-2 at 3 days post-inoculation with R. solanacearum) vs. S-mock (mock-inoculated BY 1-2). Moreover, Gene Ontology (GO) enrichment analysis revealed that the largest amount of DEGs were annotated with the Biological Process terms, followed by Cellular Component and Molecular Function terms. A total of 114, 124, 85, and 89 regulated (or altered) pathways were identified in R-3dpi vs. R-mock, S-3dpi vs. S-mock, R-mock vs. S-mock, and R-3dpi vs. S-3dpi comparisons, respectively, by Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis. These clarified the molecular function and resistance pathways of DEGs. Furthermore, quantitative RT-PCR (qRT-PCR) analysis confirmed the expression patterns of eight randomly selected DEGs, which suggested that the RNA-seq results were reliable. Subsequently, in order to further verify the reliability of the transcriptome data and the accuracy of qRT-PCR results, WRKY75, one of the eight DEGs was silenced by virus-induced gene silencing (VIGS) and the defense response of plants to R. solanacearum infection was analyzed. In conclusion, the findings of this study provide profound insight into the potential mechanism of tomato in response to R. solanacearum infection, which lays an important foundation for future studies on BW.
Collapse
Affiliation(s)
- Na Chen
- grid.449868.f0000 0000 9798 3808College of Life Science and Resources and Environment, Yichun University, Yichun, 336000 China
| | - Qin Shao
- grid.449868.f0000 0000 9798 3808College of Life Science and Resources and Environment, Yichun University, Yichun, 336000 China
| | - Qineng Lu
- grid.449868.f0000 0000 9798 3808College of Life Science and Resources and Environment, Yichun University, Yichun, 336000 China
| | - Xiaopeng Li
- grid.449868.f0000 0000 9798 3808College of Life Science and Resources and Environment, Yichun University, Yichun, 336000 China
| | - Yang Gao
- grid.449868.f0000 0000 9798 3808College of Life Science and Resources and Environment, Yichun University, Yichun, 336000 China
| |
Collapse
|
129
|
Alinia M, Kazemeini SA, Dadkhodaie A, Sepehri M, Mahjenabadi VAJ, Amjad SF, Poczai P, El-Ghareeb D, Bassouny MA, Abdelhafez AA. Co-application of ACC deaminase-producing rhizobial bacteria and melatonin improves salt tolerance in common bean (Phaseolus vulgaris L.) through ion homeostasis. Sci Rep 2022; 12:22105. [PMID: 36543813 PMCID: PMC9772384 DOI: 10.1038/s41598-022-26084-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
A comprehensive body of scientific evidence indicates that rhizobial bacteria and melatonin enhance salt tolerance of crop plants. The overall goal of this research was to evaluate the ability of Rhizobium leguminoserum bv phaseoli to suppress salinity stress impacts in common bean treated with melatonin. Treatments included bacterial inoculations (inoculated (RI) and non-inoculated (NI)), different salinity levels (non-saline (NS), 4 (S1) and 8 (S2) dS m-1 of NaCl) and priming (dry (PD), melatonin (PM100) and hydro (PH) priming) with six replications in growing media containing sterile sand and perlite (1:1). The results showed that the bacterial strain had the ability to produce indole acetic acid (IAA), ACC deaminase and siderophore. Plants exposed to salinity stress indicated a significant decline in growth, yield, yield components, nitrogen fixation and selective transport (ST), while showed a significant increase in sodium uptake. However, the combination of PM100 and RI treatments by improving growth, photosynthesis rate and nitrogen fixation positively influenced plant performance in saline conditions. The combined treatment declined the negative impacts of salinity by improving the potassium translocation, potassium to sodium ratio in the shoot and root and ST. In conclusion, the combination of melatonin and ACC deaminase producing rhizobium mitigated the negative effects of salinity. This result is attributed to the increased ST and decreased sodium uptake, which significantly reduced the accumulation of sodium ions in shoot.
Collapse
Affiliation(s)
- Mozhgan Alinia
- grid.412573.60000 0001 0745 1259Plant Production and Genetics Department, Shiraz University, Shiraz, Iran
| | - Seyed A. Kazemeini
- grid.412573.60000 0001 0745 1259Plant Production and Genetics Department, Shiraz University, Shiraz, Iran
| | - Ali Dadkhodaie
- grid.412573.60000 0001 0745 1259Plant Production and Genetics Department, Shiraz University, Shiraz, Iran
| | - Mozhgan Sepehri
- grid.412573.60000 0001 0745 1259Soil Science Department, Shiraz University, Shiraz, Iran
| | | | - Syeda F. Amjad
- grid.413016.10000 0004 0607 1563Department of Botany, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Peter Poczai
- grid.7737.40000 0004 0410 2071Botany Unit, Finnish Museum of Natural History, University of Helsinki, 00014 Helsinki, Finland
| | - Doaa El-Ghareeb
- grid.419725.c0000 0001 2151 8157Agriculture Genetic Engineering Research Institute (AGERI), Agriculture Research Centre, Giza, Egypt
| | - Mohamed A. Bassouny
- grid.411660.40000 0004 0621 2741Soils and Water Department, Faculty of Agriculture, Benha University, P.O. Box 13736, Moshtohor, Toukh, Qalyoubia Egypt
| | - Ahmed A. Abdelhafez
- grid.252487.e0000 0000 8632 679XDepartment of Soils and Water, Faculty of Agriculture, New Valley University, Kharga, Egypt ,grid.423564.20000 0001 2165 2866National Committee of Soil Sciences, Academy of Scientific Research and Technology, Cairo, Egypt
| |
Collapse
|
130
|
Impact of Plant-Beneficial Bacterial Inocula on the Resident Bacteriome: Current Knowledge and Future Perspectives. Microorganisms 2022; 10:microorganisms10122462. [PMID: 36557714 PMCID: PMC9781654 DOI: 10.3390/microorganisms10122462] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
The inoculation of plant growth-promoting bacteria (PGPB) as biofertilizers is one of the most efficient and sustainable strategies of rhizosphere manipulation leading to increased plant biomass and yield and improved plant health, as well as the ameliorated nutritional value of fruits and edible seeds. During the last decades, exciting, but heterogeneous, results have been obtained growing PGPB inoculated plants under controlled, stressful, and open field conditions. On the other hand, the possible impact of the PGPB deliberate release on the resident microbiota has been less explored and the little available information is contradictory. This review aims at filling this gap: after a brief description of the main mechanisms used by PGPB, we focus our attention on the process of PGPB selection and formulation and we provide some information on the EU regulation for microbial inocula. Then, the concept of PGPB inocula as a tool for rhizosphere engineering is introduced and the possible impact of bacterial inoculant on native bacterial communities is discussed, focusing on those bacterial species that are included in the EU regulation and on other promising bacterial species that are not yet included in the EU regulation.
Collapse
|
131
|
Yu B, Liu N, Tang S, Qin T, Huang J. Roles of Glutamate Receptor-Like Channels (GLRs) in Plant Growth and Response to Environmental Stimuli. PLANTS (BASEL, SWITZERLAND) 2022; 11:3450. [PMID: 36559561 PMCID: PMC9782139 DOI: 10.3390/plants11243450] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Plant glutamate receptor-like channels (GLRs) are the homologues of ionotropic glutamate receptors (iGluRs) that mediate neurotransmission in mammals, and they play important roles in various plant-specific physiological processes, such as pollen tube growth, sexual reproduction, root meristem proliferation, internode cell elongation, stomata aperture regulation, and innate immune and wound responses. Notably, these biological functions of GLRs have been mostly linked to the Ca2+-permeable channel activity as GLRs can directly channel the transmembrane flux of Ca2+, which acts as a key second messenger in plant cell responses to both endogenous and exogenous stimuli. Thus, it was hypothesized that GLRs are mainly involved in Ca2+ signaling processes in plant cells. Recently, great progress has been made in GLRs for their roles in long-distance signal transduction pathways mediated by electrical activity and Ca2+ signaling. Here, we review the recent progress on plant GLRs, and special attention is paid to recent insights into the roles of GLRs in response to environmental stimuli via Ca2+ signaling, electrical activity, ROS, as well as hormone signaling networks. Understanding the roles of GLRs in integrating internal and external signaling for plant developmental adaptations to a changing environment will definitely help to enhance abiotic stress tolerance.
Collapse
|
132
|
Pisarčik M, Hakl J, Szabó O, Nerušil P. Efficacy of Pythium oligandrum on improvement of lucerne yield, root development and disease score under field conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:1045225. [PMID: 36570933 PMCID: PMC9774032 DOI: 10.3389/fpls.2022.1045225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Biological control of root diseases of lucerne (Medicago sativa L.) has potential benefits for stand performance but this remains unsupported by evidence from practical field studies. METHODS In field experiments at three sites our objectives were to determine the effect of Pythium oligandrum, as spring, autumn and intensive regime treatments on (i) lucerne plant density and root traits development, and (ii) forage yield and forage traits. Lucerne stands were managed under two or three treatments: non-treated control and P. oligandrum applied at two intensities of application under four-cut utilization. RESULTS AND DISCUSSION Under relatively dry conditions (annual mean 10°C and <500 mm precipitation) lucerne dry matter yield was significantly reduced by 6%, which could be related to mechanisms of inappropriate stimulation and disturbance of the balance between auxins and ethylene. Under annual precipitation of >500 mm, positive impacts on stand height or fine root mass were observed for the autumn and intensive treatments where positive root response was visible only in alluvial soil. However, these changes did not result in higher yield and probably more applications per year will be needed for significant forage yield improvement. This study highlights the limits of field-scale biological control in which the potential of P. oligandrum for lucerne productivity improvement was realised only under a humid environment or deep alluvial soils, where higher root disease infestation may also be expected.
Collapse
Affiliation(s)
- Martin Pisarčik
- Department of Agroecology and Crop Production, Czech University of Life Sciences Prague, Prague, Czechia
| | - Josef Hakl
- Department of Agroecology and Crop Production, Czech University of Life Sciences Prague, Prague, Czechia
| | - Ondřej Szabó
- Department of Agroecology and Crop Production, Czech University of Life Sciences Prague, Prague, Czechia
| | - Pavel Nerušil
- Research Station of Grassland Ecosystems Jevíčko, Crop Research Institute, Jevíčko, Czechia
| |
Collapse
|
133
|
Xiang L, Harindintwali JD, Wang F, Redmile-Gordon M, Chang SX, Fu Y, He C, Muhoza B, Brahushi F, Bolan N, Jiang X, Ok YS, Rinklebe J, Schaeffer A, Zhu YG, Tiedje JM, Xing B. Integrating Biochar, Bacteria, and Plants for Sustainable Remediation of Soils Contaminated with Organic Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16546-16566. [PMID: 36301703 PMCID: PMC9730858 DOI: 10.1021/acs.est.2c02976] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 05/06/2023]
Abstract
The contamination of soil with organic pollutants has been accelerated by agricultural and industrial development and poses a major threat to global ecosystems and human health. Various chemical and physical techniques have been developed to remediate soils contaminated with organic pollutants, but challenges related to cost, efficacy, and toxic byproducts often limit their sustainability. Fortunately, phytoremediation, achieved through the use of plants and associated microbiomes, has shown great promise for tackling environmental pollution; this technology has been tested both in the laboratory and in the field. Plant-microbe interactions further promote the efficacy of phytoremediation, with plant growth-promoting bacteria (PGPB) often used to assist the remediation of organic pollutants. However, the efficiency of microbe-assisted phytoremediation can be impeded by (i) high concentrations of secondary toxins, (ii) the absence of a suitable sink for these toxins, (iii) nutrient limitations, (iv) the lack of continued release of microbial inocula, and (v) the lack of shelter or porous habitats for planktonic organisms. In this regard, biochar affords unparalleled positive attributes that make it a suitable bacterial carrier and soil health enhancer. We propose that several barriers can be overcome by integrating plants, PGPB, and biochar for the remediation of organic pollutants in soil. Here, we explore the mechanisms by which biochar and PGPB can assist plants in the remediation of organic pollutants in soils, and thereby improve soil health. We analyze the cost-effectiveness, feasibility, life cycle, and practicality of this integration for sustainable restoration and management of soil.
Collapse
Affiliation(s)
- Leilei Xiang
- CAS
Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Jean Damascene Harindintwali
- CAS
Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Wang
- CAS
Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Institute
for Environmental Research, RWTH Aachen
University, 52074 Aachen, Germany
| | - Marc Redmile-Gordon
- Department
of Environmental Horticulture, Royal Horticultural
Society, Wisley, Surrey GU23 6QB, U.K.
| | - Scott X. Chang
- Department
of Renewable Resources, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Yuhao Fu
- CAS
Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao He
- CAS
Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- Zhejiang University, Hangzhou 310058, China
| | - Bertrand Muhoza
- College
of Food Science, Northeast Agricultural
University, Harbin, Heilongjiang 150030, China
| | - Ferdi Brahushi
- Department
of Agroenvironment and Ecology, Agricultural
University of Tirana, Tirana 1029, Albania
| | - Nanthi Bolan
- School of
Agriculture and Environment, The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6001, Australia
| | - Xin Jiang
- CAS
Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Sik Ok
- Korea
Biochar Research Center, APRU Sustainable Waste Management Program
& Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic
of Korea
| | - Jörg Rinklebe
- Department
of Soil and Groundwater Management, Bergische
Universität, 42285 Wuppertal, Germany
| | - Andreas Schaeffer
- Institute
for Environmental Research, RWTH Aachen
University, 52074 Aachen, Germany
- School
of the Environment, State Key Laboratory of Pollution Control and
Resource Reuse, Nanjing University, 210023 Nanjing, China
- Key
Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Chongqing University, 400045 Chongqing, China
| | - Yong-guan Zhu
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Key
Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- State
Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
| | - James M. Tiedje
- Center
for Microbial Ecology, Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, United States
| | - Baoshan Xing
- Stockbridge
School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
134
|
Response of root endosphere bacterial communities of typical rice cultivars to nitrogen fertilizer reduction at the jointing stage. Arch Microbiol 2022; 204:722. [DOI: 10.1007/s00203-022-03334-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 10/16/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022]
|
135
|
Curci PL, Zhang J, Mähler N, Seyfferth C, Mannapperuma C, Diels T, Van Hautegem T, Jonsen D, Street N, Hvidsten TR, Hertzberg M, Nilsson O, Inzé D, Nelissen H, Vandepoele K. Identification of growth regulators using cross-species network analysis in plants. PLANT PHYSIOLOGY 2022; 190:2350-2365. [PMID: 35984294 PMCID: PMC9706488 DOI: 10.1093/plphys/kiac374] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/05/2022] [Indexed: 05/11/2023]
Abstract
With the need to increase plant productivity, one of the challenges plant scientists are facing is to identify genes that play a role in beneficial plant traits. Moreover, even when such genes are found, it is generally not trivial to transfer this knowledge about gene function across species to identify functional orthologs. Here, we focused on the leaf to study plant growth. First, we built leaf growth transcriptional networks in Arabidopsis (Arabidopsis thaliana), maize (Zea mays), and aspen (Populus tremula). Next, known growth regulators, here defined as genes that when mutated or ectopically expressed alter plant growth, together with cross-species conserved networks, were used as guides to predict novel Arabidopsis growth regulators. Using an in-depth literature screening, 34 out of 100 top predicted growth regulators were confirmed to affect leaf phenotype when mutated or overexpressed and thus represent novel potential growth regulators. Globally, these growth regulators were involved in cell cycle, plant defense responses, gibberellin, auxin, and brassinosteroid signaling. Phenotypic characterization of loss-of-function lines confirmed two predicted growth regulators to be involved in leaf growth (NPF6.4 and LATE MERISTEM IDENTITY2). In conclusion, the presented network approach offers an integrative cross-species strategy to identify genes involved in plant growth and development.
Collapse
Affiliation(s)
- Pasquale Luca Curci
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
- Institute of Biosciences and Bioresources, National Research Council (CNR), Via Amendola 165/A, 70126 Bari, Italy
| | - Jie Zhang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Niklas Mähler
- Department of Plant Physiology, Umea Plant Science Centre (UPSC), Umeå University, 90187 Umeå, Sweden
| | - Carolin Seyfferth
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
- Department of Plant Physiology, Umea Plant Science Centre (UPSC), Umeå University, 90187 Umeå, Sweden
| | - Chanaka Mannapperuma
- Department of Plant Physiology, Umea Plant Science Centre (UPSC), Umeå University, 90187 Umeå, Sweden
| | - Tim Diels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Tom Van Hautegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - David Jonsen
- SweTree Technologies AB, Skogsmarksgränd 7, SE-907 36 Umeå, Sweden
| | - Nathaniel Street
- Department of Plant Physiology, Umea Plant Science Centre (UPSC), Umeå University, 90187 Umeå, Sweden
| | - Torgeir R Hvidsten
- Department of Plant Physiology, Umea Plant Science Centre (UPSC), Umeå University, 90187 Umeå, Sweden
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Magnus Hertzberg
- SweTree Technologies AB, Skogsmarksgränd 7, SE-907 36 Umeå, Sweden
| | - Ove Nilsson
- Department of Forest Genetics and Plant Physiology, Umea Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
| |
Collapse
|
136
|
Kumar R, Swapnil P, Meena M, Selpair S, Yadav BG. Plant Growth-Promoting Rhizobacteria (PGPR): Approaches to Alleviate Abiotic Stresses for Enhancement of Growth and Development of Medicinal Plants. SUSTAINABILITY 2022; 14:15514. [DOI: 10.3390/su142315514] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Plants are constantly exposed to both biotic and abiotic stresses which limit their growth and development and reduce productivity. In order to tolerate them, plants initiate a multitude of stress-specific responses which modulate different physiological, molecular and cellular mechanisms. However, many times the natural methods employed by plants for overcoming the stresses are not sufficient and require external assistance from the rhizosphere. The microbial community in the rhizosphere (known as the rhizomicrobiome) undergoes intraspecific as well as interspecific interaction and signaling. The rhizomicrobiome, as biostimulants, play a pivotal role in stimulating the growth of plants and providing resilience against abiotic stress. Such rhizobacteria which promote the development of plants and increase their yield and immunity are known as PGPR (plant growth promoting rhizobacteria). On the basis of contact, they are classified into two categories, extracellular (in soil around root, root surface and cellular space) and intracellular (nitrogen-fixing bacteria). They show their effects on plant growth directly (i.e., in absence of pathogens) or indirectly. Generally, they make their niche in concentrated form around roots, as the latter exude several nutrients, such as amino acids, lipids, proteins, etc. Rhizobacteria build a special symbiotic relationship with the plant or a section of the plant’s inner tissues. There are free-living PGPRs with the potential to work as biofertilizers. Additionally, studies show that PGPRs can ameliorate the effect of abiotic stresses and help in enhanced growth and development of plants producing therapeutically important compounds. This review focuses on the various mechanisms which are employed by PGPRs to mitigate the effect of different stresses in medicinal plants and enhance tolerance against these stress conditions.
Collapse
Affiliation(s)
- Rahul Kumar
- Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
- Metabolic Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, New Delhi, India
| | - Prashant Swapnil
- School of Basic Sciences, Department of Botany, Central University of Punjab, Bhatinda 151401, Punjab, India
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Shweta Selpair
- Regional Institute of Education, Ajmer 305004, Rajasthan, India
| | - Bal Govind Yadav
- Metabolic Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, New Delhi, India
| |
Collapse
|
137
|
Jiang S, Zheng W, Li Z, Tan J, Wu M, Li X, Hong SB, Deng J, Zhu Z, Zang Y. Enhanced Resistance to Sclerotinia sclerotiorum in Brassica rapa by Activating Host Immunity through Exogenous Verticillium dahliae Aspf2-like Protein (VDAL) Treatment. Int J Mol Sci 2022; 23:13958. [PMID: 36430439 PMCID: PMC9694685 DOI: 10.3390/ijms232213958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Sclerotinia stem rot caused by Sclerotinia sclerotiorum is one of the most destructive diseases in Brassica rapa. Verticillium dahliae Aspf2-like protein (VDAL) is a secretory protein of V. dahliae which has been shown to enhance the resistance against fungal infections in several plants. Nonetheless, the molecular mechanisms of VDAL-primed disease resistance are still poorly understood. In this study, we performed physiological, biochemical, and transcriptomic analyses of Brassica rapa in order to understand how VDAL confers resistance to S. sclerotiorumn infections in plants. The results showed that foliar application of VDAL significantly reduced the plaque area on leaves inoculated with S. sclerotiorum. It also enhanced antioxidant capacity by increasing activities of superoxide dismutase (SOD), peroxidase (POD), peroxidase (APX), glutathione reductase (GR), protoporphyrinogen oxidase (PPO), and defense-related enzymes β-1,3-glucanase and chitinase during the infection periods. This occurred in parallel with significantly reduced relative conductivity at different periods and lower malondialdehyde (MDA) content as compared to sole S. sclerotiorum inoculation. Transcriptomic analysis showed a total of 146 (81 up-regulated and 65 down-regulated) differentially expressed genes (DEGs) in VDAL-treated leaves compared to the control. The most enriched three Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were the mitogen-activated protein kinase (MAPK) signaling pathway, plant hormone signal transduction, and plant-pathogen interaction, all of which were associated with plant immunity. DEGs associated with MAPK and hormone signal transduction pathways were ethylene response sensor ERS2, EIN3 (Ethylene Insensitive3)-binding F-box protein 2 (EBF2), ethylene-responsive transcription factor ERF94, MAPK 9 (MKK9), protein phosphatase 2C (PP2C37), auxin-responsive proteins (AUX/IAA1 and 19), serine/threonine-protein kinase CTR1, and abscisic acid receptors (PLY 4 and 5). Among the DEGs linked with the plant-pathogen interaction pathway were calmodulin-like proteins (CML5, 24, 27), PTI1-like tyrosine protein kinase 3 (Pti13) and transcription factor MYB30, all of which are known to play key roles in pathogen-associated molecular pattern (PAMP)-triggered immunity and effector-triggered immunity (ETI) for hypersensitive response (HR), cell wall reinforcement, and stomatal closure in plants. Overall, VDLA treatment triggered repression of the auxin and ABA signaling pathways and de-repression of the ethylene signaling pathways in young B. rapa seedlings to increase plant innate immunity. Our results showed that VDAL holds great potential to enhance fungal disease resistance in B. rapa crop.
Collapse
Affiliation(s)
- Shufang Jiang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Weiwei Zheng
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Zewei Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Jingru Tan
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Meifang Wu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Xinyuan Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Seung-Beom Hong
- Department of Biotechnology, University of Houston Clear Lake, Houston, TX 77058-1098, USA
| | - Jianyu Deng
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhujun Zhu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Yunxiang Zang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
138
|
Asati R, Tripathi MK, Tiwari S, Yadav RK, Tripathi N. Molecular Breeding and Drought Tolerance in Chickpea. Life (Basel) 2022; 12:1846. [PMID: 36430981 PMCID: PMC9698494 DOI: 10.3390/life12111846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Cicer arietinum L. is the third greatest widely planted imperative pulse crop worldwide, and it belongs to the Leguminosae family. Drought is the utmost common abiotic factor on plants, distressing their water status and limiting their growth and development. Chickpea genotypes have the natural ability to fight drought stress using certain strategies viz., escape, avoidance and tolerance. Assorted breeding methods, including hybridization, mutation, and marker-aided breeding, genome sequencing along with omics approaches, could be used to improve the chickpea germplasm lines(s) against drought stress. Root features, for instance depth and root biomass, have been recognized as the greatest beneficial morphological factors for managing terminal drought tolerance in the chickpea. Marker-aided selection, for example, is a genomics-assisted breeding (GAB) strategy that can considerably increase crop breeding accuracy and competence. These breeding technologies, notably marker-assisted breeding, omics, and plant physiology knowledge, underlined the importance of chickpea breeding and can be used in future crop improvement programmes to generate drought-tolerant cultivars(s).
Collapse
Affiliation(s)
- Ruchi Asati
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Manoj Kumar Tripathi
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology & Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Sushma Tiwari
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology & Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Rakesh Kumar Yadav
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Niraj Tripathi
- Directorate of Research Services, Jawaharlal Nehru Agricultural University, Jabalpur 482004, India
| |
Collapse
|
139
|
Gu X, Smaill SJ, Wang B, Liu Z, Xu X, Hao Y, Kardol P, Zhou X. Reducing plant-derived ethylene concentrations increases the resistance of temperate grassland to drought. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157408. [PMID: 35850345 DOI: 10.1016/j.scitotenv.2022.157408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/23/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Model predictions indicate that extreme drought events will occur more frequently by the end of this century, with major implications for terrestrial ecosystem functions such as plant productivity and soil respiration. Previous studies have shown that drought-induced ethylene produced by plants is a key factor affecting plant growth and development, but the impact of drought-induced ethylene on ecosystem functions in natural settings has not yet been tested. Here, we reduced the amount of plant-derived ethylene concentrations by adding the ethylene inhibitor aminoethoxyvinylglycine (AVG), and investigated in situ plant productivity, soil respiration and ethylene concentrations for two years in a semi-arid temperate grassland in Inner Mongolia, China. Drought significantly reduced plant productivity and soil respiration, but the application of AVG reduced ethylene concentrations and significantly increased aboveground plant productivity and soil respiration, effectively enhancing resistance to drought. The reason for this could be that AVG application increased the activity of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase and abundance of the acdS gene (the key gene for ACC deaminase), facilitating reduced ACC concentrations in the plant tissue and reduced in planta ethylene synthesis. In addition, there was a significant correlation between soil ACC deaminase activity and plant productivity. Given the global distribution of arid and semi-arid areas, and the expected increases in the frequency and intensity of drought stress, this is a significant concern. These results provide novel evidence of the impact of drought-induced plant ethylene production on ecosystem functions in semi-arid temperate grassland ecosystems.
Collapse
Affiliation(s)
- Xinyun Gu
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Institute of Eco-Chongming, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Simeon J Smaill
- Scion, PO Box 29237, Riccarton, Christchurch 8440, New Zealand
| | - Bo Wang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Institute of Eco-Chongming, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zhaoying Liu
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Institute of Eco-Chongming, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xingliang Xu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanbin Hao
- School of Life Sciences, University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Paul Kardol
- Swedish University of Agricultural Science, Department of Forest Ecology & Management, Umea, Sweden
| | - Xiaoqi Zhou
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Institute of Eco-Chongming, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
140
|
Yi N, Yang H, Zhang X, Pian R, Li H, Zeng W, Wu AM. The physiological and transcriptomic study of secondary growth in Neolamarckia cadamba stimulated by the ethylene precursor ACC. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 190:35-46. [PMID: 36096025 DOI: 10.1016/j.plaphy.2022.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/14/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Though many biological roles of ethylene have been investigated intensively, the molecular mechanism of ethylene's action in woody plants remains unclear. In this study, we investigated the effects of exogenous 1-aminocyclopropane-1-carboxylic acid (ACC), the precursor of ethylene, on the growth of Neolamarckia cadamba seedlings, a fast-growing tropical tree. After 14 days of ACC treatment, the plants showed a reduced physiological morphology while stem diameter increased; however, this did not occur after the addition of 1-MCP. Meanwhile, the lignin content of N. cadamba also increased. Transcriptome analysis revealed that the expression of the ethylene biosynthesis and signaling genes ACC oxidase (ACO) and ethylene insensitive 3 (EIN3) were up-regulated mainly at the 6th hour and the 3rd day of the ACC treatment, respectively. The transcription levels of transcription factors, mainly in the basic helix-loop-helix (bHLH), ethylene response factor (ERF), WRKY and v-myb avian myeloblastosis viral oncogene homolog (MYB) families, involved in the ethylene signaling and secondary growth also increased significantly. Furthermore, in accordance to the increased lignification of the stem, the transcriptional level of key enzymes in the phenylalanine pathway were elevated after the ACC treatment. Our results revealed the physiological and molecular mechanisms underlying the secondary growth stimulated by exogenous ACC treatment on N. cadamba seedlings.
Collapse
Affiliation(s)
- Na Yi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Haoqiang Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xintong Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Ruiqi Pian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Huiling Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Wei Zeng
- The State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China.
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
141
|
Yang Y, Hao C, Du J, Xu L, Guo Z, Li D, Cai H, Guo H, Li L. The carboxy terminal transmembrane domain of SPL7 mediates interaction with RAN1 at the endoplasmic reticulum to regulate ethylene signalling in Arabidopsis. THE NEW PHYTOLOGIST 2022; 236:878-892. [PMID: 35832006 DOI: 10.1111/nph.18376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
In Arabidopsis, copper (Cu) transport to the ethylene receptor ETR1 mediated using RAN1, a Cu transporter located at the endoplasmic reticulum (ER), and Cu homeostasis mediated using SPL7, the key Cu-responsive transcription factor, are two deeply conserved vital processes. However, whether and how the two processes interact to regulate plant development remain elusive. We found that its C-terminal transmembrane domain (TMD) anchors SPL7 to the ER, resulting in dual compartmentalisation of the transcription factor. Immunoprecipitation coupled mass spectrometry, yeast-two-hybrid assay, luciferase complementation imaging and subcellular co-localisation analyses indicate that SPL7 interacts with RAN1 at the ER via the TMD. Genetic analysis revealed that the ethylene-induced triple response was significantly compromised in the spl7 mutant, a phenotype rescuable by RAN1 overexpression but not by SPL7 without the TMD. The genetic interaction was corroborated by molecular analysis showing that SPL7 modulates RAN1 abundance in a TMD-dependent manner. Moreover, SPL7 is feedback regulated by ethylene signalling via EIN3, which binds the SPL7 promoter and represses its transcription. These results demonstrate that ER-anchored SPL7 constitutes a cellular mechanism to regulate RAN1 in ethylene signalling and lay the foundation for investigating how Cu homeostasis conditions ethylene sensitivity in the developmental context.
Collapse
Affiliation(s)
- Yanzhi Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Chen Hao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Jianmei Du
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Lei Xu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Zhonglong Guo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Dong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huaqing Cai
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongwei Guo
- Department of Biology, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Lei Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| |
Collapse
|
142
|
Evaluation of reactive oxygen species and photocatalytic degradation of ethylene using β-Ag2MoO4/g-C3N4 composites. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
143
|
Zhang C, Shang D, Zhang Y, Gao X, Liu D, Gao Y, Li Y, Qi Y, Qiu L. Two Hybrid Histidine Kinases Involved in the Ethylene Regulation of the Mycelial Growth and Postharvest Fruiting Body Maturation and Senescence of Agaricus bisporus. Microbiol Spectr 2022; 10:e0241122. [PMID: 36125274 PMCID: PMC9603746 DOI: 10.1128/spectrum.02411-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/02/2022] [Indexed: 01/04/2023] Open
Abstract
Ethylene regulates mycelial growth, primordium formation, and postharvest mushroom maturation and senescence in the white button mushroom, Agaricus bisporus. However, it remains unknown how ethylene is detected by the mushroom. In this study, we found that two hybrid histidine kinases in the mushroom, designated AbETR1 and AbETR2, showed domain structures similar to those of plant ethylene receptors. The transmembrane helices of AbETR1 and AbETR2 were expressed in yeast cells and showed ethylene-binding activities. Mushroom strains with downregulated expressions of AbETR1 and AbETR2 showed reduced sensitivity to the ethylene inhibition of mycelial growth, ethylene regulation of their own synthesis, postharvest mushroom maturation, and senescence and expression of maturation- and senescence-related genes. Therefore, AbETR1 and AbETR2 are expected to be biologically functional ethylene receptors and exhibit a different mode of action from that of the receptors of plants. Here, we fill gaps in the knowledge pertaining to higher fungus ethylene receptors, discover a novel mode of action of ethylene receptors, confirm ethylene as a novel fungal hormone, and provide a facilitated approach for preventing the maturation and senescence of postharvest button mushrooms. IMPORTANCE Ethylene regulates diverse physiological activities in bacteria, cyanobacteria, fungi, and plants, but how to perceive ethylene by fungi only remains unknown. In this study, we identify two biologically functional ethylene receptors in the basidiomycete fungus Agaricus bisporus, which fills the gaps of deficient fungal ethylene receptors. Furthermore, we found that decreased expression of the ethylene receptors facilitates preventing the maturation and senescence of postharvest button mushrooms, indicating that the two fungal ethylene receptors positively regulate the ethylene response, in contrast to that in plants.
Collapse
Affiliation(s)
- Chaohui Zhang
- College of Life Sciences, Henan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Zhengzhou, China
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Di Shang
- College of Life Sciences, Henan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Zhengzhou, China
| | - Yan Zhang
- College of Life Sciences, Henan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Zhengzhou, China
| | - Xiyang Gao
- College of Life Sciences, Henan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Zhengzhou, China
| | - Dehai Liu
- Institute of Biology Co., Ltd., Henan Academy of Science, Zhengzhou, China
| | - Yuqian Gao
- College of Life Sciences, Henan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Zhengzhou, China
| | - Yanan Li
- College of Life Sciences, Henan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Zhengzhou, China
| | - Yuancheng Qi
- College of Life Sciences, Henan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Zhengzhou, China
| | - Liyou Qiu
- College of Life Sciences, Henan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Zhengzhou, China
| |
Collapse
|
144
|
Guo Z, Ma W, Cai L, Guo T, Liu H, Wang L, Liu J, Ma B, Feng Y, Liu C, Pan G. Comparison of anther transcriptomes in response to cold stress at the reproductive stage between susceptible and resistant Japonica rice varieties. BMC PLANT BIOLOGY 2022; 22:500. [PMID: 36284279 PMCID: PMC9597962 DOI: 10.1186/s12870-022-03873-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Rice is one of the most important cereal crops in the world but is susceptible to cold stress (CS). In this study, we carried out parallel transcriptomic analysis at the reproductive stage on the anthers of two Japonica rice varieties with contrasting CS resistance: cold susceptible Longjing11 (LJ11) and cold resistant Longjing25 (LJ25). RESULTS According to the obtained results, a total of 16,762 differentially expressed genes (DEGs) were identified under CS, including 7,050 and 14,531 DEGs in LJ25 and LJ11, respectively. Examining gene ontology (GO) enrichment identified 35 up- and 39 down-regulated biological process BP GO terms were significantly enriched in the two varieties, with 'response to heat' and 'response to cold' being the most enriched. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified 33 significantly enriched pathways. Only the carbon metabolism and amino acid biosynthesis pathways with down-regulated DEGs were enriched considerably in LJ11, while the plant hormone signal transduction pathway (containing 153 DEGs) was dramatically improved. Eight kinds of plant hormones were detected in the pathway, while auxin, abscisic acid (ABA), salicylic acid (SA), and ethylene (ETH) signaling pathways were found to be the top four pathways with the most DEGs. Furthermore, the protein-protein interaction (PPI) network analysis identified ten hub genes (co-expressed gene number ≥ 30), including six ABA-related genes. Various DEGs (such as OsDREB1A, OsICE1, OsMYB2, OsABF1, OsbZIP23, OsCATC, and so on) revealed distinct expression patterns among rice types when the DEGs between LJ11 and LJ25 were compared, indicating that they are likely responsible for CS resistance of rice in cold region. CONCLUSION Collectively, our findings provide comprehensive insights into complex molecular mechanisms of CS response and can aid in CS resistant molecular breeding of rice in cold regions.
Collapse
Affiliation(s)
- Zhenhua Guo
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, 154026, Jiamusi, Heilongjiang, China
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, 510642, Guangzhou, Guangdong, China
| | - Wendong Ma
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, 154026, Jiamusi, Heilongjiang, China
| | - Lijun Cai
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, 154007, Jiamusi, Heilongjiang, China.
| | - Tao Guo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, 510642, Guangzhou, Guangdong, China
| | - Hao Liu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, 510640, Guangzhou, Guangdong, China
| | - Linan Wang
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, 154026, Jiamusi, Heilongjiang, China
| | - Junliang Liu
- Jiamusi Longjing Seed Industry Co., LTD, 154026, Jiamusi, Heilongjiang, China
| | - Bo Ma
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, 161006, Qiqihar, Heilongjiang, China
| | - Yanjiang Feng
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, 154026, Jiamusi, Heilongjiang, China.
| | - Chuanxue Liu
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, 154026, Jiamusi, Heilongjiang, China.
| | - Guojun Pan
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, 154026, Jiamusi, Heilongjiang, China.
| |
Collapse
|
145
|
Yasir M, Kanwal HH, Hussain Q, Riaz MW, Sajjad M, Rong J, Jiang Y. Status and prospects of genome-wide association studies in cotton. FRONTIERS IN PLANT SCIENCE 2022; 13:1019347. [PMID: 36330239 PMCID: PMC9623101 DOI: 10.3389/fpls.2022.1019347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Over the last two decades, the use of high-density SNP arrays and DNA sequencing have allowed scientists to uncover the majority of the genotypic space for various crops, including cotton. Genome-wide association study (GWAS) links the dots between a phenotype and its underlying genetics across the genomes of populations. It was first developed and applied in the field of human disease genetics. Many areas of crop research have incorporated GWAS in plants and considerable literature has been published in the recent decade. Here we will provide a comprehensive review of GWAS studies in cotton crop, which includes case studies on biotic resistance, abiotic tolerance, fiber yield and quality traits, current status, prospects, bottlenecks of GWAS and finally, thought-provoking question. This review will serve as a catalog of GWAS in cotton and suggest new frontiers of the cotton crop to be studied with this important tool.
Collapse
Affiliation(s)
- Muhammad Yasir
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Hafiza Hamrah Kanwal
- School of Computer Science, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Quaid Hussain
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Muhammad Waheed Riaz
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Muhammad Sajjad
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Junkang Rong
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Yurong Jiang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
146
|
Bharadwaj PS, Sanchez L, Li D, Enyi D, Van de Poel B, Chang C. The plant hormone ethylene promotes abiotic stress tolerance in the liverwort Marchantia polymorpha. FRONTIERS IN PLANT SCIENCE 2022; 13:998267. [PMID: 36340412 PMCID: PMC9632724 DOI: 10.3389/fpls.2022.998267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/29/2022] [Indexed: 06/13/2023]
Abstract
Plants are often faced with an array of adverse environmental conditions and must respond appropriately to grow and develop. In angiosperms, the plant hormone ethylene is known to play a protective role in responses to abiotic stress. Here we investigated whether ethylene mediates resistance to abiotic stress in the liverwort Marchantia polymorpha, one of the most distant land plant relatives of angiosperms. Using existing M. polymorpha knockout mutants of Mpein3, and Mpctr1, two genes in the ethylene signaling pathway, we examined responses to heat, salinity, nutrient deficiency, and continuous far-red light. The Mpein3 and Mpctr1 mutants were previously shown to confer ethylene insensitivity and constitutive ethylene responses, respectively. Using mild or sub-lethal doses of each stress treatment, we found that Mpctr1 mutants displayed stress resilience similar to or greater than the wild type. In contrast, Mpein3 mutants showed less resilience than the wild type. Consistent with ethylene being a stress hormone, we demonstrated that ethylene production is enhanced by each stress treatment. These results suggest that ethylene plays a role in protecting against abiotic stress in M. polymorpha, and that ethylene has likely been conserved as a stress hormone since before the evolutionary divergence of bryophytes from the land plant lineage approximately 450 Ma.
Collapse
Affiliation(s)
- Priyanka S. Bharadwaj
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Lizbeth Sanchez
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Dongdong Li
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Leuven, Belgium
| | - Divine Enyi
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Bram Van de Poel
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Leuven, Belgium
- KU Leuven Plant Institute, University of Leuven, Leuven, Belgium
| | - Caren Chang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| |
Collapse
|
147
|
Ahmad S, Yang K, Chen G, Huang J, Hao Y, Tu S, Zhou Y, Zhao K, Chen J, Shi X, Lan S, Liu Z, Peng D. Transcriptome mining of hormonal and floral integrators in the leafless flowers of three cymbidium orchids. FRONTIERS IN PLANT SCIENCE 2022; 13:1043099. [PMID: 36311107 PMCID: PMC9608508 DOI: 10.3389/fpls.2022.1043099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Flowering is the most studied ornamental trait in orchids where long vegetative phase may span up to three years. Cymbidium orchids produce beautiful flowers with astonishing shapes and pleasant scent. However, an unusually long vegetative phase is a major drawback to their ornamental value. We observed that under certain culture conditions, three cymbidium species (Cymbidium ensifolium, C. goeringii and C. sinense) skipped vegetative growth phase and directly flowered within six months, that could be a breakthrough for future orchids with limited vegetative growth. Hormonal and floral regulators could be the key factors arresting vegetative phase. Therefore, transcriptomic analyses were performed for leafless flowers and normal vegetative leaves to ascertain differentially expressed genes (DEGs) related to hormones (auxin, cytokinin, gibberellin, abscisic acid and ethylene), floral integrators and MADS-box genes. A significant difference of cytokinin and floral regulators was observed among three species as compared to other hormones. The MADS-box genes were significantly expressed in the leafless flowers of C. sinense as compared to other species. Among the key floral regulators, CONSTANS and AGAMOUS-like genes showed the most differential expression in the leafless flowers as compared to leaves where the expression was negligible. However, CONSTANS also showed downregulation. Auxin efflux carriers were mainly downregulated in the leafless flowers of C. ensifolium and C. sinense, while they were upregulated in C. goeringii. Moreover, gibberellin and cytokinin genes were also downregulated in C. ensifolium and C. sinense flowers, while they were upregulated in C. goeringii, suggesting that species may vary in their responses. The data mining thus, outsources the valuable information to direct future research on orchids at industrial levels.
Collapse
Affiliation(s)
- Sagheer Ahmad
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kang Yang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guizhen Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Huang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yang Hao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Song Tu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuzhen Zhou
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kai Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Jinliao Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoling Shi
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhongjian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Donghui Peng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
148
|
Comprehensive Phytohormone Profiling of Kohlrabi during In Vitro Growth and Regeneration: The Interplay with Cytokinin and Sucrose. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101585. [PMID: 36295020 PMCID: PMC9604816 DOI: 10.3390/life12101585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/26/2022] [Accepted: 10/08/2022] [Indexed: 11/21/2022]
Abstract
The establishment of an efficient protocol for in vitro growth and regeneration of kohlrabi (Brassica oleracea var. gongylodes) allowed us to closely examine the phytohormone profiles of kohlrabi seedlings at four growth stages (T1-T4), additionally including the effects of cytokinins (CKs)-trans-zeatin (transZ) and thidiazuron (TDZ)-and high sucrose concentrations (6% and 9%). Resulting phytohormone profiles showed complex time-course patterns. At the T2 stage of control kohlrabi plantlets (with two emerged true leaves), levels of endogenous CK free bases and gibberellin GA20 increased, while increases in jasmonic acid (JA), JA-isoleucine (JA-Ile), indole-3-acetic acid (IAA) and indole-3-acetamide (IAM) peaked later, at T3. At the same time, the content of most of the analyzed IAA metabolites decreased. Supplementing growth media with CK induced de novo formation of shoots, while both CK and sucrose treatments caused important changes in most of the phytohormone groups at each developmental stage, compared to control. Principal component analysis (PCA) showed that sucrose treatment, especially at 9%, had a stronger effect on the content of endogenous hormones than CK treatments. Correlation analysis showed that the dynamic balance between the levels of certain bioactive phytohormone forms and some of their metabolites could be lost or reversed at particular growth stages and under certain CK or sucrose treatments, with correlation values changing between strongly positive and strongly negative. Our results indicate that the kohlrabi phytohormonome is a highly dynamic system that changes greatly along the developmental time scale and also during de novo shoot formation, depending on exogenous factors such as the presence of growth regulators and different sucrose concentrations in the growth media, and that it interacts intensively with these factors to facilitate certain responses.
Collapse
|
149
|
Zhu BS, Zhu YX, Zhang YF, Zhong X, Pan KY, Jiang Y, Wen CK, Yang ZN, Yao X. Ethylene Activates the EIN2- EIN3/EIL1 Signaling Pathway in Tapetum and Disturbs Anther Development in Arabidopsis. Cells 2022; 11:cells11193177. [PMID: 36231139 PMCID: PMC9563277 DOI: 10.3390/cells11193177] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/08/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022] Open
Abstract
Ethylene was previously reported to repress stamen development in both cucumber and Arabidopsis. Here, we performed a detailed analysis of the effect of ethylene on anther development. After ethylene treatment, stamens but not pistils display obvious developmental defects which lead to sterility. Both tapetum and microspores (or microsporocytes) degenerated after ethylene treatment. In ein2-1 and ein3-1 eil1-1 mutants, ethylene treatment did not affect their fertility, indicating the effects of ethylene on anther development are mediated by EIN2 and EIN3/EIL1 in vivo. The transcription of EIN2 and EIN3 are activated by ethylene in the tapetum layer. However, ectopic expression of EIN3 in tapetum did not induce significant anther defects, implying that the expression of EIN3 are regulated post transcriptional level. Consistently, ethylene treatment induced the accumulation of EIN3 in the tapetal cells. Thus, ethylene not only activates the transcription of EIN2 and EIN3, but also stabilizes of EIN3 in the tapetum to disturb its development. The expression of several ethylene related genes was significantly increased, and the expression of the five key transcription factors required for tapetum development was decreased after ethylene treatment. Our results thus point out that ethylene inhibits anther development through the EIN2-EIN3/EIL1 signaling pathway. The activation of this signaling pathway in anther wall, especially in the tapetum, induces the degeneration of the tapetum and leads to pollen abortion.
Collapse
Affiliation(s)
- Ben-Shun Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ying-Xiu Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yan-Fei Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiang Zhong
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Keng-Yu Pan
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yu Jiang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Chi-Kuang Wen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhong-Nan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- Correspondence: (Z.-N.Y.); (X.Y.)
| | - Xiaozhen Yao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- Correspondence: (Z.-N.Y.); (X.Y.)
| |
Collapse
|
150
|
Bublyk OM, Andreev IO, Kunakh VA. Comparative Analysis of Promoters of DREB2B Transcription Factor Genes in Deschampsia antarctica and Other Grasses. CYTOL GENET+ 2022. [DOI: 10.3103/s0095452722050048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|