101
|
Jiao L, Liu Y, Yu XY, Pan X, Zhang Y, Tu J, Song YH, Li Y. Ribosome biogenesis in disease: new players and therapeutic targets. Signal Transduct Target Ther 2023; 8:15. [PMID: 36617563 PMCID: PMC9826790 DOI: 10.1038/s41392-022-01285-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 01/10/2023] Open
Abstract
The ribosome is a multi-unit complex that translates mRNA into protein. Ribosome biogenesis is the process that generates ribosomes and plays an essential role in cell proliferation, differentiation, apoptosis, development, and transformation. The mTORC1, Myc, and noncoding RNA signaling pathways are the primary mediators that work jointly with RNA polymerases and ribosome proteins to control ribosome biogenesis and protein synthesis. Activation of mTORC1 is required for normal fetal growth and development and tissue regeneration after birth. Myc is implicated in cancer development by enhancing RNA Pol II activity, leading to uncontrolled cancer cell growth. The deregulation of noncoding RNAs such as microRNAs, long noncoding RNAs, and circular RNAs is involved in developing blood, neurodegenerative diseases, and atherosclerosis. We review the similarities and differences between eukaryotic and bacterial ribosomes and the molecular mechanism of ribosome-targeting antibiotics and bacterial resistance. We also review the most recent findings of ribosome dysfunction in COVID-19 and other conditions and discuss the consequences of ribosome frameshifting, ribosome-stalling, and ribosome-collision. We summarize the role of ribosome biogenesis in the development of various diseases. Furthermore, we review the current clinical trials, prospective vaccines for COVID-19, and therapies targeting ribosome biogenesis in cancer, cardiovascular disease, aging, and neurodegenerative disease.
Collapse
Affiliation(s)
- Lijuan Jiao
- grid.263761.70000 0001 0198 0694Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital and Medical College of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123 P. R. China
| | - Yuzhe Liu
- grid.452829.00000000417660726Department of Orthopedics, the Second Hospital of Jilin University, Changchun, Jilin 130000 P. R. China
| | - Xi-Yong Yu
- grid.410737.60000 0000 8653 1072Key Laboratory of Molecular Target & Clinical Pharmacology and the NMPA State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong 511436 P. R. China
| | - Xiangbin Pan
- grid.506261.60000 0001 0706 7839Department of Structural Heart Disease, National Center for Cardiovascular Disease, China & Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China ,Key Laboratory of Cardiovascular Appratus Innovation, Beijing, 100037 P. R. China
| | - Yu Zhang
- grid.263761.70000 0001 0198 0694Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital and Medical College of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123 P. R. China
| | - Junchu Tu
- grid.263761.70000 0001 0198 0694Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital and Medical College of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123 P. R. China
| | - Yao-Hua Song
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, P. R. China. .,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China.
| | - Yangxin Li
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital and Medical College of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
| |
Collapse
|
102
|
Caiati C, Jirillo E. Transplantation of Mesenchymal Stem Cells as a New Approach for Cardiovascular Diseases: From Bench to Bedside: A Perspective. Endocr Metab Immune Disord Drug Targets 2023; 23:1359-1364. [PMID: 37055907 DOI: 10.2174/1871530323666230411142308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/01/2023] [Indexed: 04/15/2023]
Affiliation(s)
- Carlo Caiati
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Emilio Jirillo
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
103
|
Tian CX, Li MY, Shuai XX, Jiang F, Dong YL, Gui Y, Zhang ZL, Qin RJ, Kang ZY, Lin L, Sarapultsev A, Wu B, Luo SS, Hu DS. Berberine plays a cardioprotective role by inhibiting macrophage Wnt5a/β-catenin pathway in the myocardium of mice after myocardial infarction. Phytother Res 2023; 37:50-61. [PMID: 36218220 PMCID: PMC10092487 DOI: 10.1002/ptr.7592] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/16/2022] [Accepted: 08/07/2022] [Indexed: 01/19/2023]
Abstract
Myocardial infarction (MI) is one of the diseases with high fatality rate. Berberine (BBR) is a monomer compound with various biological functions. And some studies have confirmed that BBR plays an important role in alleviating cardiomyocyte injury after MI. However, the specific mechanism is unclear. In this study, we induced a model of MI by ligation of the left anterior descending coronary artery and we surprisingly found that BBR significantly improved ventricular remodeling, with a minor inflammatory and oxidative stress injury, and stronger angiogenesis. Moreover, BBR inhibited the secretion of Wnt5a/β-catenin pathway in macrophages after MI, thus promoting the differentiation of macrophages into M2 type. In summary, BBR effectively improved cardiac function of mice after MI, and the potential protective mechanism was associated with the regulation of inflammatory responses and the inhibition of macrophage Wnt5a/β-catenin pathway in the infarcted heart tissues. Importantly, these findings supported BBR as an effective cardioprotective drug after MI.
Collapse
Affiliation(s)
- Chun-Xia Tian
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Cardiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Ming-Yue Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Xin-Xin Shuai
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Jiang
- Department of International Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ya-Lan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Gui
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zi-Li Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ren-Jie Qin
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen-Yu Kang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lan Lin
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Alexey Sarapultsev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, Ekaterinburg, Russia
| | - Bin Wu
- Department of Cardiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Shan-Shan Luo
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - De-Sheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, China
| |
Collapse
|
104
|
Gao L, Qiu F, Cao H, Li H, Dai G, Ma T, Gong Y, Luo W, Zhu D, Qiu Z, Zhu P, Chu S, Yang H, Liu Z. Therapeutic delivery of microRNA-125a-5p oligonucleotides improves recovery from myocardial ischemia/reperfusion injury in mice and swine. Theranostics 2023; 13:685-703. [PMID: 36632217 PMCID: PMC9830430 DOI: 10.7150/thno.73568] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 12/12/2022] [Indexed: 01/04/2023] Open
Abstract
Rationale: Clinical application of mesenchymal stem cells (MSCs) and MSC-derived exosomes (MSC-Exos) to alleviate myocardial ischemia/reperfusion (I/R) injury is compromised by the low cell engraftment rate and uncontrolled exosomal content. As one of their active ingredients, single-component microRNA therapy may have more inherent advantages. We sought to find an ideal microRNA candidate and determine whether it could reproduce the cardioprotective effects of MSCs and MSC-Exos. Methods: Cardiac function and myocardial remodeling in MSC, MSC-Exo, or microRNA oligonucleotide-treated mouse hearts were investigated after I/R injury. The effects of microRNA oligonucleotides on cardiac cells (macrophages, cardiomyocytes, fibroblasts, and endothelial cells) and their downstream mechanisms were confirmed. Large animals were also employed to investigate the safety of microRNA therapy. Results: The results showed that microRNA-125a-5p (miR-125a-5p) is enriched in MSC-Exos, and intramyocardial delivery of their modified oligonucleotides (agomir) in mouse I/R myocardium, as well as MSCs or MSC-Exos, exerted obvious cardioprotection by increasing cardiac function and limiting adverse remodeling. In addition, miR-125a-5p agomir treatment increased M2 macrophage polarization, promoted angiogenesis, and attenuated fibroblast proliferation and activation, which subsequently contributed to the improvements in cardiomyocyte apoptosis and inflammation. Mechanistically, Klf13, Tgfbr1, and Daam1 are considered the targets of miR-125a-5p for regulating the function of macrophages, fibroblasts, and endothelial cells, respectively. Similar results were observed following miR-125a-5p agomir treatment in a porcine model, with no increase in the risk of arrhythmia or hepatic, renal, or cardiac toxicity. Conclusions: This targeted microRNA delivery presents an effective and safe strategy as a stem cell and exosomal therapy in I/R cardiac repair.
Collapse
Affiliation(s)
- Ling Gao
- Translational Medical Center for Stem Cell Therapy & Institutes for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China.,✉ Corresponding authors: Ling Gao, PhD, Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Rd., Shanghai, 200123, China. E-mail: ; Zhongmin Liu, MD, PhD, Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd., Shanghai, 200120, China. E-mail: ; Huangtian Yang, PhD, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, 320 Yueyang Rd., Shanghai, 200031, China. E-mail: ; Shuguang Chu, PhD, Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China. E-mail:
| | - Fan Qiu
- Department of Thoracic Cardiovascular Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518033, China
| | - Hao Cao
- Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Hao Li
- Translational Medical Center for Stem Cell Therapy & Institutes for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Gonghua Dai
- Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Teng Ma
- Translational Medical Center for Stem Cell Therapy & Institutes for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Yanshan Gong
- Translational Medical Center for Stem Cell Therapy & Institutes for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Wei Luo
- Translational Medical Center for Stem Cell Therapy & Institutes for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Dongling Zhu
- Translational Medical Center for Stem Cell Therapy & Institutes for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Zhixuan Qiu
- Translational Medical Center for Stem Cell Therapy & Institutes for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
| | - Shuguang Chu
- Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,✉ Corresponding authors: Ling Gao, PhD, Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Rd., Shanghai, 200123, China. E-mail: ; Zhongmin Liu, MD, PhD, Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd., Shanghai, 200120, China. E-mail: ; Huangtian Yang, PhD, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, 320 Yueyang Rd., Shanghai, 200031, China. E-mail: ; Shuguang Chu, PhD, Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China. E-mail:
| | - Huangtian Yang
- Translational Medical Center for Stem Cell Therapy & Institutes for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China.,Research Institute of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai 200031, China.,✉ Corresponding authors: Ling Gao, PhD, Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Rd., Shanghai, 200123, China. E-mail: ; Zhongmin Liu, MD, PhD, Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd., Shanghai, 200120, China. E-mail: ; Huangtian Yang, PhD, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, 320 Yueyang Rd., Shanghai, 200031, China. E-mail: ; Shuguang Chu, PhD, Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China. E-mail:
| | - Zhongmin Liu
- Translational Medical Center for Stem Cell Therapy & Institutes for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China.,Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Research Institute of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Shanghai Institute of Stem Cell Research and Clinical translation, Shanghai East Hospital, Tongji University, Shanghai 200120, China.,✉ Corresponding authors: Ling Gao, PhD, Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Rd., Shanghai, 200123, China. E-mail: ; Zhongmin Liu, MD, PhD, Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd., Shanghai, 200120, China. E-mail: ; Huangtian Yang, PhD, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, 320 Yueyang Rd., Shanghai, 200031, China. E-mail: ; Shuguang Chu, PhD, Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China. E-mail:
| |
Collapse
|
105
|
Soni SS, D'Elia AM, Alsasa A, Cho S, Tylek T, O'Brien EM, Whitaker R, Spiller KL, Rodell CB. Sustained release of drug-loaded nanoparticles from injectable hydrogels enables long-term control of macrophage phenotype. Biomater Sci 2022; 10:6951-6967. [PMID: 36341688 PMCID: PMC9724601 DOI: 10.1039/d2bm01113a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Injectable hydrogels may be pre-formed through dynamic crosslinks, allowing for injection and subsequent retention in the tissue by shear-thinning and self-healing processes, respectively. These properties enable the site-specific delivery of encapsulated therapeutics; yet, the sustained release of small-molecule drugs and their cell-targeted delivery remains challenging due to their rapid diffusive release and non-specific cellular biodistribution. Herein, we develop an injectable hydrogel system composed of a macrophage-targeted nanoparticle (cyclodextrin nanoparticles, CDNPs) crosslinked by adamantane-modified hyaluronic acid (Ad-HA). The polymer-nanoparticle hydrogel uniquely leverages cyclodextrin's interaction with small molecule drugs to create a spatially discrete drug reservoir and with adamantane to yield dynamic, injectable hydrogels. Through an innovative two-step drug screening approach and examination of 45 immunomodulatory drugs with subsequent in-depth transcriptional profiling of both murine and human macrophages, we identify celastrol as a potent inhibitor of pro-inflammatory (M1-like) behavior that furthermore promotes a reparatory (M2-like) phenotype. Celastrol encapsulation within the polymer-nanoparticle hydrogels permitted shear-thinning injection and sustained release of drug-laden nanoparticles that targeted macrophages to modulate cell behavior for greater than two weeks in vitro. The modular hydrogel system is a promising approach to locally modulate cell-specific phenotype in a range of applications for immunoregenerative medicine.
Collapse
Affiliation(s)
- Shreya S Soni
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Arielle M D'Elia
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Abdulrahman Alsasa
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Sylvia Cho
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Tina Tylek
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Erin M O'Brien
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Ricardo Whitaker
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Kara L Spiller
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Christopher B Rodell
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
106
|
Inflammation in myocardial infarction: roles of mesenchymal stem cells and their secretome. Cell Death Dis 2022; 8:452. [DOI: 10.1038/s41420-022-01235-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 09/25/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022]
Abstract
AbstractInflammation plays crucial roles in the regulation of pathophysiological processes involved in injury, repair and remodeling of the infarcted heart; hence, it has become a promising target to improve the prognosis of myocardial infarction (MI). Mesenchymal stem cells (MSCs) serve as an effective and innovative treatment option for cardiac repair owing to their paracrine effects and immunomodulatory functions. In fact, transplanted MSCs have been shown to accumulate at injury sites of heart, exerting multiple effects including immunomodulation, regulating macrophages polarization, modulating the activation of T cells, NK cells and dendritic cells and alleviating pyroptosis of non-immune cells. Many studies also proved that preconditioning of MSCs can enhance their inflammation-regulatory effects. In this review, we provide an overview on the current understanding of the mechanisms on MSCs and their secretome regulating inflammation and immune cells after myocardial infarction and shed light on the applications of MSCs in the treatment of cardiac infarction.
Collapse
|
107
|
Zhou X, Zhang C, Wu X, Hu X, Zhang Y, Wang X, Zheng L, Gao P, Du J, Zheng W, Shang H, Hu K, Jiang Z, Nie Y, Hu S, Xiao RP, Zhu X, Xiong JW. Dusp6 deficiency attenuates neutrophil-mediated cardiac damage in the acute inflammatory phase of myocardial infarction. Nat Commun 2022; 13:6672. [PMID: 36335128 PMCID: PMC9637103 DOI: 10.1038/s41467-022-33631-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/27/2022] [Indexed: 11/07/2022] Open
Abstract
Dual-specificity phosphatase 6 (DUSP6) serves a specific and conserved function on the dephosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2). We previously identified Dusp6 as a regenerative repressor during zebrafish heart regeneration, therefore we propose to investigate the role of this repressor in mammalian cardiac repair. Utilizing a rat strain harboring Dusp6 nonsense mutation, rat neutrophil-cardiomyocyte co-culture, bone marrow transplanted rats and neutrophil-specific Dusp6 knockout mice, we find that Dusp6 deficiency improves cardiac outcomes by predominantly attenuating neutrophil-mediated myocardial damage in acute inflammatory phase after myocardial infarction. Mechanistically, Dusp6 is transcriptionally activated by p38-C/EBPβ signaling and acts as an effector for maintaining p-p38 activity by down-regulating pERK and p38-targeting phosphatases DUSP1/DUSP16. Our findings provide robust animal models and novel insights for neutrophil-mediated cardiac damage and demonstrate the potential of DUSP6 as a therapeutic target for post-MI cardiac remodeling and other relevant inflammatory diseases.
Collapse
Affiliation(s)
- Xiaohai Zhou
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China
| | - Chenyang Zhang
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China ,grid.11135.370000 0001 2256 9319PKU-Nanjing Institute of Translational Medicine, Nanjing, 211800 China
| | - Xueying Wu
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China
| | - Xinli Hu
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China
| | - Yan Zhang
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China
| | - Xuelian Wang
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China
| | - Lixia Zheng
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China
| | - Peng Gao
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China
| | - Jianyong Du
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China
| | - Wen Zheng
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China
| | - Haibao Shang
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China
| | - Keping Hu
- grid.506261.60000 0001 0706 7839Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193 China
| | - Zhengfan Jiang
- grid.11135.370000 0001 2256 9319School of Life Sciences, Peking University, Beijing, 100871 China
| | - Yu Nie
- grid.506261.60000 0001 0706 7839State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
| | - Shengshou Hu
- grid.506261.60000 0001 0706 7839State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
| | - Rui-Ping Xiao
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China ,grid.11135.370000 0001 2256 9319PKU-Nanjing Institute of Translational Medicine, Nanjing, 211800 China
| | - Xiaojun Zhu
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China ,grid.11135.370000 0001 2256 9319PKU-Nanjing Institute of Translational Medicine, Nanjing, 211800 China
| | - Jing-Wei Xiong
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China ,grid.11135.370000 0001 2256 9319PKU-Nanjing Institute of Translational Medicine, Nanjing, 211800 China
| |
Collapse
|
108
|
Xu N, Yutzey KE. Therapeutic CCR2 Blockade Prevents Inflammation and Alleviates Myxomatous Valve Disease in Marfan Syndrome. JACC Basic Transl Sci 2022; 7:1143-1157. [PMID: 36687269 PMCID: PMC9849467 DOI: 10.1016/j.jacbts.2022.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 11/05/2022]
Abstract
Myxomatous valve disease (MVD) can lead to cardiac dysfunction and heart failure, yet medical therapies are lacking. C-C chemokine receptor type 2 (CCR2)+ immune cell infiltration promotes mitral valve inflammation in a Marfan syndrome (MFS) mouse model. The CCR2 genetic knockout reduces inflammation with downregulated proteases and improved extracellular matrix integrity. Pharmacological inhibition of CCR2+ cell infiltration by RS504393 prevents the initiation and progression of MVD, indicated by restored protease expression, improved extracellular matrix organization, and reduced valve leaflet thickness in MFS mice. Thus, the CCR2 antagonist RS504393 is a promising therapy for the treatment of MVD in MFS.
Collapse
Affiliation(s)
- Na Xu
- Division of Molecular Cardiovascular Biology, the Heart Institute, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Katherine E. Yutzey
- Division of Molecular Cardiovascular Biology, the Heart Institute, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
109
|
Zhu F, Chen Y, Li J, Yang Z, Lin Y, Jiang B, Shao L, Hu S, Shen Z. Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Attenuate Myocardial Infarction Injury via miR-24-3p-Promoted M2 Macrophage Polarization. Adv Biol (Weinh) 2022; 6:e2200074. [PMID: 35818695 DOI: 10.1002/adbi.202200074] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/22/2022] [Indexed: 01/28/2023]
Abstract
Exosomes derived from human umbilical cord mesenchymal stem cells (UMSC-Exos) have shown encouraging effects in regulating inflammation and attenuating myocardial injury. Macrophages are regulated dynamically in response to environmental cues. However, the underlying mechanisms by which UMSC-Exos regulate macrophage polarization are still not well understood. Herein, it is aimed to explore the effects of UMSC-Exos on macrophage polarization and their roles in cardiac repair after myocardial infarction (MI). These results show that UMSC-Exos improve cardiac function by increasing M2 macrophage polarization and reducing excessive inflammation. RNA-sequencing results identify Plcb3 as a key gene involved in UMSC-Exo-facilitated M2 macrophage polarization. Further bioinformatic analysis identifies exosomal miR-24-3p as a potential effector mediating Plcb3 downregulation in macrophages. Increasing miR-24-3p expression in macrophages effectively enhances M2 macrophage polarization by suppressing Plcb3 expression and NF-κB pathway activation in the inflammatory environment. Furthermore, reducing miR-24-3p expression in UMSC-Exos attenuates the effects of UMSC-Exos on M2 macrophage polarization. This study demonstrates that the cardiac therapeutic effects of UMSC-Exos are at least partially through promoting M2 macrophage polarization in an inflammatory microenvironment. Mechanistically, exosomal miR-24-3p is found to inhibit Plcb3 expression and NF-κB pathway activation to promote M2 macrophage polarization.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Soochow University, Suzhou, 215000, China
| | - Yihuan Chen
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Soochow University, Suzhou, 215000, China
| | - Jingjing Li
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Soochow University, Suzhou, 215000, China
| | - Ziying Yang
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Soochow University, Suzhou, 215000, China
| | - Yang Lin
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Soochow University, Suzhou, 215000, China
| | - Boxuan Jiang
- School of Medicine, Nantong University, Nantong, 226007, China
| | - Lianbo Shao
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Soochow University, Suzhou, 215000, China
| | - Shengshou Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Soochow University, Suzhou, 215000, China.,Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Soochow University, Suzhou, 215000, China
| |
Collapse
|
110
|
Li XC, Luo SJ, Fan W, Zhou TL, Huang CM, Wang MS. M2 macrophage-conditioned medium inhibits intervertebral disc degeneration in a tumor necrosis factor-α-rich environment. J Orthop Res 2022; 40:2488-2501. [PMID: 35170802 DOI: 10.1002/jor.25292] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023]
Abstract
Inflammation is the primary pathological phenomenon associated with disc degeneration; the inflammatory cytokine tumor necrosis factor (TNF-α) plays a crucial role in this pathology. The anti-inflammatory and regenerative effects of M2 macrophages on nucleus pulposus cells (NPCs) in intervertebral disc degeneration (IDD) progression remain unknown. Here, M2 conditioned medium (M2CM) was harvested and purified from human acute monocytic leukaemia cell line (THP-1) cells and mouse peritoneal macrophages, respectively; it was used for culturing human NPCs and a mouse intervertebral disc (IVD) organ culture model. NPCs and IVD organ models were divided into three groups: group 1 treated with 10% fetal bovine serum (control); group 2 treated with 10 ng/ml TNF-α; and group 3 treated with 10 ng/ml TNF-α and M2CM (coculture group). After 2-14 days, cell proliferation, extracellular matrix synthesis, apoptosis, and NPC senescence were assessed. Cell proliferation was reduced in TNF-α-treated NPCs and inhibited in the M2CM co-culture treatment. Moreover, TNF-α treatment enhanced apoptosis, senescence, and expression of inflammatory factor-related genes, including interleukin-6, MMP-13, ADAMTS-4, and ADAMTS-5, whereas M2CM coculture significantly reversed these effects. In addition, co-culture with M2CM promoted aggrecan and collagen II synthesis, but reduced collagen Iα1 levels in TNF-α treatment groups. Using our established three-dimensional murine IVD organ culture model, we show that M2CM suppressed the inhibitory effect of TNF-α-rich environment. Therefore, co-culture with M2CM promotes cell proliferation and extracellular matrix synthesis and inhibits inflammation, apoptosis, and NPC senescence. This study highlights the therapeutic potential of M2CM for IDD.
Collapse
Affiliation(s)
- Xiao-Chuan Li
- Postdoctoral Innovation Practice Base of Gaozhou People's Hospital, Gaozhou People's Hospital, Maoming, Guangdong, China.,Department of Cell Biology, Southern Medical University, Guangzhou, China.,Department of Orthopedic Surgery, Gaozhou People's Hospital, Maoming, Guangdong, China
| | - Shao-Jian Luo
- Department of Orthopedic Surgery, Gaozhou People's Hospital, Maoming, Guangdong, China
| | - Wu Fan
- Department of Orthopedic Surgery, Gaozhou People's Hospital, Maoming, Guangdong, China
| | - Tian-Li Zhou
- Department of Orthopedic Surgery, Gaozhou People's Hospital, Maoming, Guangdong, China
| | - Chun-Ming Huang
- Postdoctoral Innovation Practice Base of Gaozhou People's Hospital, Gaozhou People's Hospital, Maoming, Guangdong, China.,Department of Orthopedic Surgery, Gaozhou People's Hospital, Maoming, Guangdong, China
| | - Mao-Sheng Wang
- Postdoctoral Innovation Practice Base of Gaozhou People's Hospital, Gaozhou People's Hospital, Maoming, Guangdong, China.,Department of Cell Biology, Southern Medical University, Guangzhou, China
| |
Collapse
|
111
|
Identification of the Immune Status of Hypertrophic Cardiomyopathy by Integrated Analysis of Bulk- and Single-Cell RNA Sequencing Data. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7153491. [PMID: 36238494 PMCID: PMC9553329 DOI: 10.1155/2022/7153491] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022]
Abstract
Objectives Hypertrophic cardiomyopathy (HCM) is the most common hereditary cardiomyopathy and immune infiltration is considered an indispensable factor involved in its pathogenesis. In this study, we attempted to combine bulk sequencing and single-cell sequencing to map the immune infiltration-related genes in hypertrophic cardiomyopathy. Methods The GSE36961, GSE160997, and GSE122930 datasets were obtained from the Gene Expression Omnibus database. The compositional patterns of the 18 types of immune cell fraction and pathway enrichment score in control and HCM patients were estimated based on the GSE36961 cohort using xCell algorithm. The Weighted Gene Coexpression Network Analysis (WGCNA) was performed to identify genes associated with immune infiltration for hypertrophic cardiomyopathy. The area under the curve (AUC) value was obtained and used to evaluate the discriminatory ability of common immune-related DEGs. “NetworkAnalyst” platform was used to identify TF-gene and TF-miRNA interaction with identified common genes. Heat map was used to determine the association between common DEGs and various immune cells. Results Immune infiltration analysis by the xCell algorithm showed a higher level of CD8+ naive T cells, CD8+ T cells, as well as a lower level of activated dendritic cells (aDC), dendritic cells (DC), immature dendritic cells (iDC), conventional dendritic cells (cDC), macrophages, M1 macrophages, monocytes, and NKT cell in HCM compared with the control group in GSE36961 dataset. aDC, macrophages, and M1 macrophages were the top three discriminators between HCM and control groups with the area under the curve (AUC) of 0.907, 0.867, and 0.941. WGCNA analysis showed that 1258 immune-related genes were included in four different modules. Of these modules, the turquoise module showed a pivotal correlation with HCM. 13 common immune-related DEGs were found by intersecting common DEGs in GSE36961 and GSE160997 datasets with genes from the genes in turquoise module. 5 hub immune-related genes (S100A9, TYROBP, FCER1G, CD14, and S100A8) were identified by protein interaction network. Through analysis of single-cell sequencing data, S100a9, TYROBP, FCER1G, and S100a8 were mainly expressed by infiltrated M1 proinflammatory cells, especially Ccr2-M1 proinflammatory macrophage cells in the heart immune microenvironment while Cd14 was expressed by infiltrated M1 proinflammatory macrophage cells and M2 macrophages in transverse aortic constriction (TAC) mice at 1 week. Higher M2 macrophage and M1 proinflammatory macrophage infiltration as well as lower Ccr2-M1 proinflammatory macrophage and dendritic cells were shown in TAC 1week mice compared with sham mice. Conclusions There was a difference in immune infiltration between HCM patients and normal groups. aDC, macrophages, and M1 macrophages were the top three discriminator immune cell subsets between HCM and control groups. S100A9, TYROBP, FCER1G, CD14, and S100A8 were identified as potential biomarkers to discriminate HCM from the control group. S100a9, TYROBP, FCER1G, and S100a8 were mainly expressed by infiltrated M1 proinflammatory cells, especially Ccr2-M1 proinflammatory cells in the heart immune microenvironment while Cd14 was expressed by M2 macrophages in transverse aortic constriction (TAC) mice at 1 week.
Collapse
|
112
|
Fang J, Zhang Y, Chen D, Zheng Y, Jiang J. Exosomes and Exosomal Cargos: A Promising World for Ventricular Remodeling Following Myocardial Infarction. Int J Nanomedicine 2022; 17:4699-4719. [PMID: 36217495 PMCID: PMC9547598 DOI: 10.2147/ijn.s377479] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022] Open
Abstract
Exosomes are a pluripotent group of extracellular nanovesicles secreted by all cells that mediate intercellular communications. The effective information within exosomes is primarily reflected in exosomal cargos, including proteins, lipids, DNAs, and non-coding RNAs (ncRNAs), the most intensively studied molecules. Cardiac resident cells (cardiomyocytes, fibroblasts, and endothelial cells) and foreign cells (infiltrated immune cells, cardiac progenitor cells, cardiosphere-derived cells, and mesenchymal stem cells) are involved in the progress of ventricular remodeling (VR) following myocardial infarction (MI) via transferring exosomes into target cells. Here, we summarize the pathological mechanisms of VR following MI, including cardiac myocyte hypertrophy, cardiac fibrosis, inflammation, pyroptosis, apoptosis, autophagy, angiogenesis, and metabolic disorders, and the roles of exosomal cargos in these processes, with a focus on proteins and ncRNAs. Continued research in this field reveals a novel diagnostic and therapeutic strategy for VR.
Collapse
Affiliation(s)
- Jiacheng Fang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, People’s Republic of China
| | - Yuxuan Zhang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, People’s Republic of China
| | - Delong Chen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, People’s Republic of China
| | - Yiyue Zheng
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, People’s Republic of China
| | - Jun Jiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, People’s Republic of China,Correspondence: Jun Jiang, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, Zhejiang, 310009, People’s Republic of China, Tel/Fax +86 135 8870 6891, Email
| |
Collapse
|
113
|
Kubota A, Frangogiannis NG. Macrophages in myocardial infarction. Am J Physiol Cell Physiol 2022; 323:C1304-C1324. [PMID: 36094436 PMCID: PMC9576166 DOI: 10.1152/ajpcell.00230.2022] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022]
Abstract
The heart contains a population of resident macrophages that markedly expands following injury through recruitment of monocytes and through proliferation of macrophages. In myocardial infarction, macrophages have been implicated in both injurious and reparative responses. In coronary atherosclerotic lesions, macrophages have been implicated in disease progression and in the pathogenesis of plaque rupture. Following myocardial infarction, resident macrophages contribute to initiation and regulation of the inflammatory response. Phagocytosis and efferocytosis are major functions of macrophages during the inflammatory phase of infarct healing, and mediate phenotypic changes, leading to acquisition of an anti-inflammatory macrophage phenotype. Infarct macrophages respond to changes in the cytokine content and extracellular matrix composition of their environment and secrete fibrogenic and angiogenic mediators, playing a central role in repair of the infarcted heart. Macrophages may also play a role in scar maturation and may contribute to chronic adverse remodeling of noninfarcted segments. Single cell studies have revealed a remarkable heterogeneity of macrophage populations in infarcted hearts; however, the relations between transcriptomic profiles and functional properties remain poorly defined. This review manuscript discusses the fate, mechanisms of expansion and activation, and role of macrophages in the infarcted heart. Considering their critical role in injury, repair, and remodeling, macrophages are important, but challenging, targets for therapeutic interventions in myocardial infarction.
Collapse
Affiliation(s)
- Akihiko Kubota
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, New York
| | - Nikolaos G Frangogiannis
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, New York
| |
Collapse
|
114
|
Sepe JJ, Gardner RT, Blake MR, Brooks DM, Staffenson MA, Betts CB, Sivagnanam S, Larson W, Kumar S, Bayles RG, Jin H, Cohen MS, Coussens LM, Habecker BA. Therapeutics That Promote Sympathetic Reinnervation Modulate the Inflammatory Response After Myocardial Infarction. JACC Basic Transl Sci 2022; 7:915-930. [PMID: 36317132 PMCID: PMC9617125 DOI: 10.1016/j.jacbts.2022.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 02/05/2023]
Abstract
Myocardial infarction (MI) triggers an inflammatory response that transitions from pro-inflammatory to reparative over time. Restoring sympathetic nerves in the heart after MI prevents arrhythmias. This study investigated if reinnervation altered the immune response after MI. This study used quantitative multiplex immunohistochemistry to identify the immune cells present in the heart 2 weeks after ischemia-reperfusion. Two therapeutics stimulated reinnervation, preventing arrhythmias and shifting the immune response from inflammatory to reparative, with fewer pro-inflammatory macrophages and more regulatory T cells and reparative macrophages. Treatments did not alter macrophage phenotype in vitro, which suggested reinnervation contributed to the altered immune response.
Collapse
Key Words
- ACh, acetylcholine
- IP, intraperitoneal
- ISP, intracellular sigma peptide
- MI, myocardial infarction
- NE, norepinephrine
- PBS, phosphate-buffered saline
- TH, tyrosine hydroxylase
- Tregs, regulatory T cells
- VEH, vehicle
- inflammation
- mIHC, multiplex immunohistochemistry
- macrophages
- multiplex IHC
- myocardial infarction
- sympathetic nervous system
- β1-AR, adrenergic receptor
Collapse
Affiliation(s)
- Joseph J. Sepe
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Ryan T. Gardner
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Matthew R. Blake
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Deja M. Brooks
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Melanie A. Staffenson
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Courtney B. Betts
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Sam Sivagnanam
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - William Larson
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Sushil Kumar
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Richard G. Bayles
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Haihong Jin
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Michael S. Cohen
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Lisa M. Coussens
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Beth A. Habecker
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
115
|
Margkarian A, Bogossian H, Bandorski D, Khan A, Hasan F, Fortmann T, Jahaj K, Lemke B, Zarse M. Long-term prognosis of successful left ventricular substrate modification of electrical storm. Front Cardiovasc Med 2022; 9:981985. [PMID: 36119735 PMCID: PMC9473541 DOI: 10.3389/fcvm.2022.981985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction The Electrical storm (ES) subsumes a state of electrical instability of the heart, which manifests itself in repeated and potentially fatal ventricular arrhythmias (VA). We examine the long-term effects of substrate modification with regards to mortality, ventricular tachycardia (VT) recurrences and hospitalization depending on age, gender, heart function, scare location, VT documentation, postprocedural electrical stimulation (PES) and induced VTs. Methods From 08/2008 and 09/2019 160 consecutive patients admitted for ES ablation via electroanatomical mapping were followed up until 04/2021. Results 50/160 patients showed VT recurrences after 13.8 ± 21.7 (0.0-80.3) months, with a characteristic steep curve directly after ES and then a rapid decline leading to a plateau (first month 10/50 (20%), first year 35/50 VT recurrences (70%) Mortality rates followed a similar pattern also the initial decline was not as steep. 42 patients died during the observation period (26%) after 16.6 ± 16.1 (0.0-67.9) months after ablation day (first month (n = 7, 16.7%) first year (n = 21, 50%). Gender, age, scare localization, missing VT documentation did not worsen outcome. Induction of >3 VTs and lack of PES due to hemodynamic instability significantly decreased effectiveness. Finding the entry significantly increased long-term effects. Conclusion Ablation of ES is safe and feasible independent of a variety of factors. Employing more sophisticated tools to understand the reentry mechanism will further improve the long-term outcome.
Collapse
Affiliation(s)
- Artak Margkarian
- Helios Klinik Attendorn, Attendorn, Germany
- Cardiology Department, Witten/Herdecke University, Witten, Germany
| | - Harilaos Bogossian
- Cardiology Department, Witten/Herdecke University, Witten, Germany
- Evangelical Hospital Hagen-Haspe, Hagen, Germany
| | - Dirk Bandorski
- Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Atisha Khan
- Klinikum Luedenscheid, Luedenscheid, Germany
| | - Fuad Hasan
- Cardiology Department, Witten/Herdecke University, Witten, Germany
- Klinikum Luedenscheid, Luedenscheid, Germany
| | | | | | - Bernd Lemke
- Klinikum Luedenscheid, Luedenscheid, Germany
| | - Markus Zarse
- Cardiology Department, Witten/Herdecke University, Witten, Germany
- Klinikum Luedenscheid, Luedenscheid, Germany
| |
Collapse
|
116
|
Rocker AJ, Cavasin M, Johnson NR, Shandas R, Park D. Sulfonated Thermoresponsive Injectable Gel for Sequential Release of Therapeutic Proteins to Protect Cardiac Function after Myocardial Infarction. ACS Biomater Sci Eng 2022; 8:3883-3898. [PMID: 35950643 DOI: 10.1021/acsbiomaterials.2c00616] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Myocardial infarction causes cardiomyocyte death and persistent inflammatory responses, which generate adverse pathological remodeling. Delivering therapeutic proteins from injectable materials in a controlled-release manner may present an effective biomedical approach for treating this disease. A thermoresponsive injectable gel composed of chitosan, conjugated with poly(N-isopropylacrylamide) and sulfonate groups, was developed for spatiotemporal protein delivery to protect cardiac function after myocardial infarction. The thermoresponsive gel delivered vascular endothelial growth factor (VEGF), interleukin-10 (IL-10), and platelet-derived growth factor (PDGF) in a sequential and sustained manner in vitro. An acute myocardial infarction mouse model was used to evaluate polymer biocompatibility and to determine therapeutic effects from the delivery system on cardiac function. Immunohistochemistry showed biocompatibility of the hydrogel, while the controlled delivery of the proteins reduced macrophage infiltration and increased vascularization. Echocardiography showed an improvement in ejection fraction and fractional shortening after injecting the thermal gel and proteins. A factorial design of experimental study was implemented to optimize the delivery system for the best combination and doses of proteins for further increasing stable vascularization and reducing inflammation using a subcutaneous injection mouse model. The results showed that VEGF, IL-10, and FGF-2 demonstrated significant contributions toward promoting long-term vascularization, while PDGF's effect was minimal.
Collapse
Affiliation(s)
- Adam J Rocker
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Maria Cavasin
- Department of Medicine, Division of Cardiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Noah R Johnson
- Department of Neurology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Robin Shandas
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Daewon Park
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| |
Collapse
|
117
|
Luo Y, Zhang Y, Han X, Yuan Y, Zhou Y, Gao Y, Yu H, Zhang J, Shi Y, Duan Y, Zhao X, Yan S, Hao H, Dai C, Zhao S, Shi J, Li W, Zhang S, Xu W, Fang N, Gong Y, Li Y. Akkermansia muciniphila prevents cold-related atrial fibrillation in rats by modulation of TMAO induced cardiac pyroptosis. EBioMedicine 2022; 82:104087. [PMID: 35797768 PMCID: PMC9270211 DOI: 10.1016/j.ebiom.2022.104087] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
Background Cold exposure is one of the most important risk factors for atrial fibrillation (AF), and closely related to the poor prognosis of AF patients. However, the mechanisms underlying cold-related AF are poorly understood. Methods Various techniques including 16S rRNA gene sequencing, fecal microbiota transplantation, and electrophysiological examination were used to determine whether gut microbiota dysbiosis promotes cold-related AF. Metabonomics were performed to investigate changes in fecal trimethylamine (TMA) and plasma trimethylamine N-oxide (TMAO) during cold exposure. The detailed mechanism underlying cold-related AF were examined in vitro. Transgenic mice were constructed to explore the role of pyroptosis in cold-related AF. The human cohort was used to evaluate the correlation between A. muciniphila and cold-related AF. Findings We found that cold exposure caused elevated susceptibility to AF and reduced abundance of Akkermansia muciniphila (A. muciniphila) in rats. Intriguingly, oral supplementation of A. muciniphila ameliorated the pro-AF property induced by cold exposure. Mechanistically, cold exposure disrupted the A. muciniphila, by which elevated the level of trimethylamine N-oxide (TMAO) through modulation of the microbial enzymes involved in trimethylamine (TMA) synthesis. Correspondingly, progressively increased plasma TMAO levels were validated in human subjects during cold weather. Raised TMAO enhanced the infiltration of M1 macrophages in atria and increased the expression of Casp1-p20 and cleaved-GSDMD, ultimately causing atrial structural remodeling. Furthermore, the mice with conditional deletion of caspase1 exhibited resistance to cold-related AF. More importantly, a cross-sectional clinical study revealed that the reduction of A. muciniphila abundance was an independent risk factor for cold-related AF in human subjects. Interpretation Our findings revealed a novel causal role of aberrant gut microbiota and metabolites in pathogenesis of cold-related AF, which raises the possibility of selectively targeting microbiota and microbial metabolites as a potential therapeutic strategy for cold-related AF. Funding This work was supported by grants from the State Key Program of National Natural Science Foundation of China (No.81830012), and National Natural Science Foundation of China (No.82070336, No.81974024), Youth Program of the National Natural Science Foundation of China (No.81900374, No.81900302), and Excellent Young Medical Talents supporting project in the First Affiliated Hospital of Harbin Medical University (No. HYD2020YQ0001).
Collapse
Affiliation(s)
- Yingchun Luo
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Yun Zhang
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China; Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xuejie Han
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Yue Yuan
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Yun Zhou
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Yunlong Gao
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Hui Yu
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Jiawei Zhang
- Department of Cardiology, Qingdao Central Hospital, Qingdao, China
| | - Yiya Shi
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu Duan
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Xinbo Zhao
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Sen Yan
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Hongting Hao
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Chenguang Dai
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Shiqi Zhao
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Jing Shi
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Wenpeng Li
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Song Zhang
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Wei Xu
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Ning Fang
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Yongtai Gong
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China.
| | - Yue Li
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China; NHC Key Laboratory of Cell Translation, Harbin Medical University, Heilongjiang 150001, China; Key Laboratory of Hepatosplenic Surgery, Harbin Medical University, Ministry of Education, Harbin 150001, China; Key Laboratory of Cardiac Diseases and Heart Failure, Harbin Medical University, Harbin 150001, China; Heilongjiang Key Laboratory for Metabolic Disorder & Cancer Related Cardiovascular Diseases, Harbin 150081, China.
| |
Collapse
|
118
|
Lv Q, Ma B, Li W, Fu G, Wang X, Xiao Y. Nanomaterials-Mediated Therapeutics and Diagnosis Strategies for Myocardial Infarction. Front Chem 2022; 10:943009. [PMID: 35873037 PMCID: PMC9301085 DOI: 10.3389/fchem.2022.943009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022] Open
Abstract
The alarming mortality and morbidity rate of myocardial infarction (MI) is becoming an important impetus in the development of early diagnosis and appropriate therapeutic approaches, which are critical for saving patients' lives and improving post-infarction prognosis. Despite several advances that have been made in the treatment of MI, current strategies are still far from satisfactory. Nanomaterials devote considerable contribution to tackling the drawbacks of conventional therapy of MI by improving the homeostasis in the cardiac microenvironment via targeting, immune modulation, and repairment. This review emphasizes the strategies of nanomaterials-based MI treatment, including cardiac targeting drug delivery, immune-modulation strategy, antioxidants and antiapoptosis strategy, nanomaterials-mediated stem cell therapy, and cardiac tissue engineering. Furthermore, nanomaterials-based diagnosis strategies for MI was presented in term of nanomaterials-based immunoassay and nano-enhanced cardiac imaging. Taken together, although nanomaterials-based strategies for the therapeutics and diagnosis of MI are both promising and challenging, such a strategy still explores the immense potential in the development of the next generation of MI treatment.
Collapse
Affiliation(s)
- Qingbo Lv
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Boxuan Ma
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wujiao Li
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guosheng Fu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
| | - Yun Xiao
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
119
|
PCSK9 Modulates Macrophage Polarization-Mediated Ventricular Remodeling after Myocardial Infarction. J Immunol Res 2022; 2022:7685796. [PMID: 35832650 PMCID: PMC9273409 DOI: 10.1155/2022/7685796] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/08/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
Background and Aims An increasing number of high-risk patients with coronary heart disease (similar to acute myocardial infarction (AMI)) are using PCSK9 inhibitors. However, whether PCSK9 affects myocardial repair and the molecular mechanism of PCSK9 modulation of immune inflammation after AMI are not known. The present research investigated the role of PCSK9 in the immunomodulation of macrophages after AMI and provided evidence for the clinical application of PCSK9 inhibitors after AMI to improve cardiac repair. Methods and Results Wild-type C57BL6/J (WT) and PCSK9−/− mouse hearts were subjected to left anterior descending (LAD) coronary artery occlusion to establish an AMI model. Correlation analysis showed that higher PCSK9 expression indicated worse cardiac function after AMI, and PCSK9 knockout reduced infarct size, improved cardiac function, and attenuated inflammatory cell infiltration compared to WT mice. Notably, the curative effects of PCSK9 inhibition were abolished after the systemic depletion of macrophages using clodronate liposomes. PCSK9 showed a regulatory effect on macrophage polarization in vivo and in vitro. Our studies also revealed that activation of the TLR4/MyD88/NF-κB axis was a possible mechanism of PCSK9 regulation of macrophage polarization. Conclusion Our data suggested that PCSK9 modulated macrophage polarization-mediated ventricular remodeling after myocardial infarction.
Collapse
|
120
|
Xiang K, Akram M, Elbossaty WF, Yang J, Fan C. Exosomes in atrial fibrillation: therapeutic potential and role as clinical biomarkers. Heart Fail Rev 2022; 27:1211-1221. [PMID: 34251579 DOI: 10.1007/s10741-021-10142-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 12/21/2022]
Abstract
Atrial fibrillation (AF), the most common cardiac arrhythmia, is a global epidemic. AF can cause heart failure and myocardial infarction and increase the risk of stroke, disability, and thromboembolic events. AF is becoming increasingly ubiquitous and is associated with increased morbidity and mortality at higher ages, resulting in an increasing threat to human health as well as substantial medical and social costs. Currently, treatment strategies for AF focus on controlling heart rate and rhythm with medications to restore and maintain sinus rhythm, but this approach has limitations. Catheter ablation is not entirely satisfactory and does not address the issues underlying AF. Research exploring the mechanisms causing AF is urgently needed for improved prevention, diagnosis, and treatment of AF. Exosomes are small vesicles (30-150 nm) released by cells that transmit information between cells. MicroRNAs in exosomes play an important role in the pathogenesis of AF and are established as a biomarker for AF. In this review, a summary of the role of exosomes in AF is presented. The role of exosomes and microRNAs in AF occurrence, their therapeutic potential, and their potential role as clinical biomarkers is considered. A better understanding of exosomes has the potential to improve the prognosis of AF patients worldwide, reducing the global medical burden of this disease.
Collapse
Affiliation(s)
- Kun Xiang
- Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Jinfu Yang
- Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Chengming Fan
- Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China.
| |
Collapse
|
121
|
Li J, Li R, Tuleta I, Hernandez SC, Humeres C, Hanna A, Chen B, Frangogiannis NG. The role of endogenous Smad7 in regulating macrophage phenotype following myocardial infarction. FASEB J 2022; 36:e22400. [PMID: 35695814 DOI: 10.1096/fj.202101956rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 12/24/2022]
Abstract
Smad7 restrains TGF-β responses, and has been suggested to exert both pro- and anti-inflammatory actions that may involve effects on macrophages. Myocardial infarction triggers a macrophage-driven inflammatory response that not only plays a central role in cardiac repair, but also contributes to adverse remodeling and fibrosis. We hypothesized that macrophage Smad7 expression may regulate inflammation and fibrosis in the infarcted heart through suppression of TGF-β responses, or via TGF-independent actions. In a mouse model of myocardial infarction, infiltration with Smad7+ macrophages peaked 7 days after coronary occlusion. Myeloid cell-specific Smad7 loss in mice had no effects on homeostatic functions and did not affect baseline macrophage gene expression. RNA-seq predicted that Smad7 may promote TREM1-mediated inflammation in infarct macrophages. However, these alterations in the transcriptional profile of macrophages were associated with a modest and transient reduction in infarct myofibroblast infiltration, and did not affect dysfunction, chamber dilation, scar remodeling, collagen deposition, and macrophage recruitment. In vitro, RNA-seq and PCR arrays showed that TGF-β has profound effects on macrophage profile, attenuating pro-inflammatory cytokine/chemokine expression, modulating synthesis of matrix remodeling genes, inducing genes associated with sphingosine-1 phosphate activation and integrin signaling, and inhibiting cholesterol biosynthesis genes. However, Smad7 loss did not significantly affect TGF-β-mediated macrophage responses, modulating synthesis of only a small fraction of TGF-β-induced genes, including Itga5, Olfml3, and Fabp7. Our findings suggest a limited role for macrophage Smad7 in regulation of post-infarction inflammation and repair, and demonstrate that the anti-inflammatory effects of TGF-β in macrophages are not restrained by endogenous Smad7 induction.
Collapse
Affiliation(s)
- Jun Li
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, New York, USA.,Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Ruoshui Li
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, New York, USA
| | - Izabela Tuleta
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, New York, USA
| | - Silvia C Hernandez
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, New York, USA
| | - Claudio Humeres
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, New York, USA
| | - Anis Hanna
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, New York, USA
| | - Bijun Chen
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, New York, USA
| | - Nikolaos G Frangogiannis
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, New York, USA
| |
Collapse
|
122
|
Chen B, Li R, Hernandez SC, Hanna A, Su K, Shinde AV, Frangogiannis NG. Differential effects of Smad2 and Smad3 in regulation of macrophage phenotype and function in the infarcted myocardium. J Mol Cell Cardiol 2022; 171:1-15. [PMID: 35780861 DOI: 10.1016/j.yjmcc.2022.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 02/08/2023]
Abstract
TGF-βs regulate macrophage responses, by activating Smad2/3. We have previously demonstrated that macrophage-specific Smad3 stimulates phagocytosis and mediates anti-inflammatory macrophage transition in the infarcted heart. However, the role of macrophage Smad2 signaling in myocardial infarction remains unknown. We studied the role of macrophage-specific Smad2 signaling in healing mouse infarcts, and we explored the basis for the distinct effects of Smad2 and Smad3. In infarct macrophages, Smad3 activation preceded Smad2 activation. In contrast to the effects of Smad3 loss, myeloid cell-specific Smad2 disruption had no effects on mortality, ventricular dysfunction and adverse remodeling, after myocardial infarction. Macrophage Smad2 loss modestly, but transiently increased myofibroblast density in the infarct, but did not affect phagocytic removal of dead cells, macrophage infiltration, collagen deposition, and scar remodeling. In isolated macrophages, TGF-β1, -β2 and -β3, activated both Smad2 and Smad3, whereas BMP6 triggered only Smad3 activation. Smad2 and Smad3 had similar patterns of nuclear translocation in response to TGF-β1. RNA-sequencing showed that Smad3, and not Smad2, was the main mediator of transcriptional effects of TGF-β on macrophages. Smad3 loss resulted in differential expression of genes associated with RAR/RXR signaling, cholesterol biosynthesis and lipid metabolism. In both isolated bone marrow-derived macrophages and in infarct macrophages, Smad3 mediated synthesis of Nr1d2 and Rara, two genes encoding nuclear receptors, that may be involved in regulation of their phagocytic and anti-inflammatory properties. In conclusion, the in vivo and in vitro effects of TGF-β on macrophage function involve Smad3, and not Smad2.
Collapse
Affiliation(s)
- Bijun Chen
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Ruoshui Li
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Silvia C Hernandez
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Anis Hanna
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Kai Su
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Arti V Shinde
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States of America.
| |
Collapse
|
123
|
Xia R, Tomsits P, Loy S, Zhang Z, Pauly V, Schüttler D, Clauss S. Cardiac Macrophages and Their Effects on Arrhythmogenesis. Front Physiol 2022; 13:900094. [PMID: 35812333 PMCID: PMC9257039 DOI: 10.3389/fphys.2022.900094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
Cardiac electrophysiology is a complex system established by a plethora of inward and outward ion currents in cardiomyocytes generating and conducting electrical signals in the heart. However, not only cardiomyocytes but also other cell types can modulate the heart rhythm. Recently, cardiac macrophages were demonstrated as important players in both electrophysiology and arrhythmogenesis. Cardiac macrophages are a heterogeneous group of immune cells including resident macrophages derived from embryonic and fetal precursors and recruited macrophages derived from circulating monocytes from the bone marrow. Recent studies suggest antiarrhythmic as well as proarrhythmic effects of cardiac macrophages. The proposed mechanisms of how cardiac macrophages affect electrophysiology vary and include both direct and indirect interactions with other cardiac cells. In this review, we provide an overview of the different subsets of macrophages in the heart and their possible interactions with cardiomyocytes under both physiologic conditions and heart disease. Furthermore, we elucidate similarities and differences between human, murine and porcine cardiac macrophages, thus providing detailed information for researchers investigating cardiac macrophages in important animal species for electrophysiologic research. Finally, we discuss the pros and cons of mice and pigs to investigate the role of cardiac macrophages in arrhythmogenesis from a translational perspective.
Collapse
Affiliation(s)
- Ruibing Xia
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Philipp Tomsits
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Simone Loy
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Zhihao Zhang
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Valerie Pauly
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Dominik Schüttler
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Sebastian Clauss
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| |
Collapse
|
124
|
Li M, Zheng C, Kawada T, Uemura K, Inagaki M, Saku K, Sugimachi M. Early donepezil monotherapy or combination with metoprolol significantly prevents subsequent chronic heart failure in rats with reperfused myocardial infarction. J Physiol Sci 2022; 72:12. [PMID: 35725377 PMCID: PMC10717938 DOI: 10.1186/s12576-022-00836-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/24/2022] [Indexed: 11/10/2022]
Abstract
Despite the presence of clinical guidelines recommending that β-blocker treatment be initiated early after reperfused myocardial infarction (RMI), acute myocardial infarction remains a leading cause of chronic heart failure (CHF). In this study, we compared the effects of donepezil, metoprolol, and their combination on the progression of cardiac remodeling in rats with RMI. The animals were randomly assigned to untreated (UT), donepezil-treated (DT), metoprolol-treated (MT), and a combination of donepezil and metoprolol (DMT) groups. On day 8 after surgery, compared to the UT, the DT and DMT significantly improved myocardial salvage, owing to the suppression of macrophage infiltration and apoptosis. After the 10-week treatment, the DT and DMT exhibited decreased heart rate, reduced myocardial infarct size, attenuated cardiac dysfunction, and decreased plasma levels of brain natriuretic peptide and catecholamine, thereby preventing subsequent CHF. These results suggest that donepezil monotherapy or combined therapy with β-blocker may be an alternative pharmacotherapy post-RMI.
Collapse
Affiliation(s)
- Meihua Li
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan.
| | - Can Zheng
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Toru Kawada
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Kazunori Uemura
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Masashi Inagaki
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Keita Saku
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Masaru Sugimachi
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| |
Collapse
|
125
|
Yan P, Song X, Tran J, Zhou R, Cao X, Zhao G, Yuan H. Dapagliflozin Alleviates Coxsackievirus B3-induced Acute Viral Myocarditis by Regulating the Macrophage Polarization Through Stat3-related Pathways. Inflammation 2022; 45:2078-2090. [PMID: 35676606 PMCID: PMC9499897 DOI: 10.1007/s10753-022-01677-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/06/2022] [Accepted: 04/24/2022] [Indexed: 11/25/2022]
Abstract
Viral myocarditis (VMC), which is most prevalently caused by Coxsackievirus B3 (CVB3) infection, is a serious clinical condition characterized by cardiac inflammation. Dapagliflozin, a kind of sodium glucose co-transporters 2(SGLT-2) inhibitor, exhibited protective effects on plenty of inflammatory diseases, while its effect on viral myocarditis has not been studied. Recently, we found the protective effect of dapagliflozin on VMC. After CVB3 infection, dapagliflozin and STATTIC (a kind of stat3 inhibitor) were given to Balb/c male mice for 8 days, and then the severity of myocarditis was assessed. Our results indicated that dapagliflozin significantly alleviated the severity of viral myocarditis, elevated the survival rate, and ameliorated cardiac function. Besides, dapagliflozin can decrease the level of pro-inflammatory cytokines including IL-1β, IL-6, and TNF-α. Furthermore, dapagliflozin can inhibit macrophages differentiate to classically activated macrophages (M1) in cardiac tissue and activate the Stat3 signal pathway which is reported to promote polarization of the alternatively activated macrophage (M2). And STATTIC can reverse these changes caused by dapagliflozin. In conclusion, we found that dapagliflozin treatment increased anti-inflammatory macrophage polarization and reduced cardiac injury following VMC via activating Stat3 signal pathway.
Collapse
Affiliation(s)
- Pengcheng Yan
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Xiaoning Song
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Joanne Tran
- University of Portland, Portland, Oregon, 97239, USA
| | - Runfa Zhou
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Xinran Cao
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, People's Republic of China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Gang Zhao
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, People's Republic of China.
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China.
| | - Haitao Yuan
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, People's Republic of China.
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China.
| |
Collapse
|
126
|
Bozzi M, Parisi V, Poggio P. Macrophages in the heart: Active players or simple bystanders? INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 368:109-141. [PMID: 35636926 DOI: 10.1016/bs.ircmb.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Today, more and more studies focus on the processes in which macrophages are involved. These discoveries provide new perspectives on the cellular mechanisms that regulate the physiological functions of the healthy heart. Moreover, they offer a deeper knowledge of the pathologic processes underlying the onset and the evolution of specific cardiac impairment. The heterogeneous population of macrophages within the heart can be divided by origin, expression profile, and function. The pool of cardiac macrophages includes at least two distinct subsets with different ontogeny. The first one has an embryonic origin, deriving from the yolk sac and the fetal liver, while the other macrophage subset results from the postnatal recruitment of monocytes produced in the bone marrow. This review will focus on new phenotypes and functions of cardiac macrophages that have been identified in the last years and that need to be deeply studied to unveil new potential therapies aimed at treating cardiac diseases.
Collapse
Affiliation(s)
- Michele Bozzi
- Unit for the Study of Aortic, Valvular, and Coronary Pathologies, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Valentina Parisi
- Department of Translational Medical Sciences, University of Naples 'Federico II', Naples, Italy
| | - Paolo Poggio
- Unit for the Study of Aortic, Valvular, and Coronary Pathologies, Centro Cardiologico Monzino IRCCS, Milan, Italy.
| |
Collapse
|
127
|
Wang Y, Wang K, Bao Y, Zhang T, Ainiwaer D, Xiong X, Wang G, Sun Z. The serum soluble Klotho alleviates cardiac aging and regulates M2a/M2c macrophage polarization via inhibiting TLR4/Myd88/NF-κB pathway. Tissue Cell 2022; 76:101812. [DOI: 10.1016/j.tice.2022.101812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/15/2022] [Accepted: 04/26/2022] [Indexed: 11/27/2022]
|
128
|
Yakupova EI, Maleev GV, Krivtsov AV, Plotnikov EY. Macrophage polarization in hypoxia and ischemia/reperfusion: Insights into the role of energetic metabolism. Exp Biol Med (Maywood) 2022; 247:958-971. [PMID: 35220781 PMCID: PMC9189569 DOI: 10.1177/15353702221080130] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023] Open
Abstract
Macrophages, the key cells of innate immunity, possess wide phenotypical and functional heterogeneity. In vitro studies showed that microenvironment signals could induce the so-called polarization of macrophages into two phenotypes: classically activated macrophages (M1) or alternatively activated macrophages (M2). Functionally, they are considered as proinflammatory and anti-inflammatory/pro-regenerative, respectively. However, in vivo studies into macrophage states revealed a continuum of phenotypes from M1 to M2 state instead of the clearly distinguished extreme phenotypes. An important role in determining the type of polarization of macrophages is played by energy metabolism, including the activity of oxidative phosphorylation. In this regard, hypoxia and ischemia that affect cellular energetics can modulate macrophage polarization. Here, we overview the data on macrophage polarization during metabolic shift-associated pathologies including ischemia and ischemia/reperfusion in various organs and discuss the role of energy metabolism potentially triggering the macrophage polarization.
Collapse
Affiliation(s)
- Elmira I Yakupova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Grigoriy V Maleev
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Andrei V Krivtsov
- Center for Pediatric Cancer Therapeutics, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Egor Y Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow 117997, Russia
| |
Collapse
|
129
|
Puspitasari YM, Ministrini S, Schwarz L, Karch C, Liberale L, Camici GG. Modern Concepts in Cardiovascular Disease: Inflamm-Aging. Front Cell Dev Biol 2022; 10:882211. [PMID: 35663390 PMCID: PMC9158480 DOI: 10.3389/fcell.2022.882211] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/13/2022] [Indexed: 11/18/2022] Open
Abstract
The improvements in healthcare services and quality of life result in a longer life expectancy and a higher number of aged individuals, who are inevitably affected by age-associated cardiovascular (CV) diseases. This challenging demographic shift calls for a greater effort to unravel the molecular mechanisms underlying age-related CV diseases to identify new therapeutic targets to cope with the ongoing aging "pandemic". Essential for protection against external pathogens and intrinsic degenerative processes, the inflammatory response becomes dysregulated with aging, leading to a persistent state of low-grade inflammation known as inflamm-aging. Of interest, inflammation has been recently recognized as a key factor in the pathogenesis of CV diseases, suggesting inflamm-aging as a possible driver of age-related CV afflictions and a plausible therapeutic target in this context. This review discusses the molecular pathways underlying inflamm-aging and their involvement in CV disease. Moreover, the potential of several anti-inflammatory approaches in this context is also reviewed.
Collapse
Affiliation(s)
| | - Stefano Ministrini
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- Internal Medicine, Angiology and Atherosclerosis, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Lena Schwarz
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Caroline Karch
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Luca Liberale
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa—Italian Cardiovascular Network, Genoa, Italy
| | - Giovanni G. Camici
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
- Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
130
|
Engineering-Induced Pluripotent Stem Cells for Cancer Immunotherapy. Cancers (Basel) 2022; 14:cancers14092266. [PMID: 35565395 PMCID: PMC9100203 DOI: 10.3390/cancers14092266] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/23/2022] [Accepted: 04/29/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Induced pluripotent stem cells (iPSCs) that can be genetically engineered and differentiated into different types of immune cells, providing an unlimited resource for developing off-the-shelf cell therapies. Here, we present a comprehensive review that describes the current stages of iPSC-based cell therapies, including iPSC-derived T, nature killer (NK), invariant natural killer T (iNKT), gamma delta T (γδ T), mucosal-associated invariant T (MAIT) cells, and macrophages (Mφs). Abstract Cell-based immunotherapy, such as chimeric antigen receptor (CAR) T cell therapy, has revolutionized the treatment of hematological malignancies, especially in patients who are refractory to other therapies. However, there are critical obstacles that hinder the widespread clinical applications of current autologous therapies, such as high cost, challenging large-scale manufacturing, and inaccessibility to the therapy for lymphopenia patients. Therefore, it is in great demand to generate the universal off-the-shelf cell products with significant scalability. Human induced pluripotent stem cells (iPSCs) provide an “unlimited supply” for cell therapy because of their unique self-renewal properties and the capacity to be genetically engineered. iPSCs can be differentiated into different immune cells, such as T cells, natural killer (NK) cells, invariant natural killer T (iNKT) cells, gamma delta T (γδ T), mucosal-associated invariant T (MAIT) cells, and macrophages (Mφs). In this review, we describe iPSC-based allogeneic cell therapy, the different culture methods of generating iPSC-derived immune cells (e.g., iPSC-T, iPSC-NK, iPSC-iNKT, iPSC-γδT, iPSC-MAIT and iPSC-Mφ), as well as the recent advances in iPSC-T and iPSC-NK cell therapies, particularly in combinations with CAR-engineering. We also discuss the current challenges and the future perspectives in this field towards the foreseeable applications of iPSC-based immune therapy.
Collapse
|
131
|
Pathak V, Roemhild K, Schipper S, Groß-Weege N, Nolte T, Ruetten S, Buhl EM, El Shafei A, Weiler M, Martin L, Marx G, Schulz V, Kiessling F, Lammers T, Koczera P. Theranostic Trigger-Responsive Carbon Monoxide-Generating Microbubbles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200924. [PMID: 35363403 DOI: 10.1002/smll.202200924] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Carbon monoxide (CO) is a gaseous signaling molecule that modulates inflammation, cell survival, and recovery after myocardial infarction. However, handling and dosing of CO as a compressed gas are difficult. Here, light-triggerable and magnetic resonance imaging (MRI)-detectable CO release from dimanganese decacarbonyl (CORM-1) are demonstrated, and the development of CORM-1-loaded polymeric microbubbles (COMB) is described as an ultrasound (US)- and MRI-imageable drug delivery platform for triggerable and targeted CO therapy. COMB are synthesized via a straightforward one-step loading protocol, present a narrow size distribution peaking at 2 µm, and show excellent performance as a CORM-1 carrier and US contrast agent. Light irradiation of COMB induces local production and release of CO, as well as enhanced longitudinal and transversal relaxation rates, enabling MRI monitoring of CO delivery. Proof-of-concept studies for COMB-enabled light-triggered CO release show saturation of hemoglobin with CO in human blood, anti-inflammatory differentiation of macrophages, reduction of hypoxia-induced reactive oxygen species (ROS) production, and inhibition of ischemia-induced apoptosis in endothelial cells and cardiomyocytes. These findings indicate that CO-generating MB are interesting theranostic tools for attenuating hypoxia-associated and ROS-mediated cell and tissue damage in cardiovascular disease.
Collapse
Affiliation(s)
- Vertika Pathak
- Institute for Experimental Molecular Imaging, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
| | - Karolin Roemhild
- Institute for Experimental Molecular Imaging, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
- Institute of Pathology, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
| | - Sandra Schipper
- Institute for Experimental Molecular Imaging, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
- Department of General, Visceral and Transplantation Surgery, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
| | - Nicolas Groß-Weege
- Institute for Experimental Molecular Imaging, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
| | - Teresa Nolte
- Institute for Experimental Molecular Imaging, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
| | - Stephan Ruetten
- Electron Microscopy, Institute of Pathology, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
| | - Eva Miriam Buhl
- Electron Microscopy, Institute of Pathology, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
| | - Asmaa El Shafei
- Institute for Experimental Molecular Imaging, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
| | - Marek Weiler
- Institute for Experimental Molecular Imaging, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
| | - Lukas Martin
- Department of Intensive Care Medicine, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
| | - Gernot Marx
- Department of Intensive Care Medicine, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
| | - Volkmar Schulz
- Institute for Experimental Molecular Imaging, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
- Department of Pharmaceutics, Utrecht University, Utrecht, 3584CG, The Netherlands
- Department of Targeted Therapeutics, University of Twente, Enschede, 7522 NB, The Netherlands
| | - Patrick Koczera
- Institute for Experimental Molecular Imaging, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
- Department of Intensive Care Medicine, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
| |
Collapse
|
132
|
The Vascular Niche for Adult Cardiac Progenitor Cells. Antioxidants (Basel) 2022; 11:antiox11050882. [PMID: 35624750 PMCID: PMC9137669 DOI: 10.3390/antiox11050882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 01/27/2023] Open
Abstract
Research on cardiac progenitor cell populations has generated expectations about their potential for cardiac regeneration capacity after acute myocardial infarction and during physiological aging; however, the endogenous capacity of the adult mammalian heart is limited. The modest efficacy of exogenous cell-based treatments can guide the development of new approaches that, alone or in combination, can be applied to boost clinical efficacy. The identification and manipulation of the adult stem cell environment, termed niche, will be critical for providing new evidence on adult stem cell populations and improving stem-cell-based therapies. Here, we review and discuss the state of our understanding of the interaction of adult cardiac progenitor cells with other cardiac cell populations, with a focus on the description of the B-CPC progenitor population (Bmi1+ cardiac progenitor cell), which is a strong candidate progenitor for all main cardiac cell lineages, both in the steady state and after cardiac damage. The set of all interactions should be able to define the vascular cardiac stem cell niche, which is associated with low oxidative stress domains in vasculature, and whose manipulation would offer new hope in the cardiac regeneration field.
Collapse
|
133
|
Kaveh A, Bruton FA, Oremek MEM, Tucker CS, Taylor JM, Mullins JJ, Rossi AG, Denvir MA. Selective Cdk9 inhibition resolves neutrophilic inflammation and enhances cardiac regeneration in larval zebrafish. Development 2022; 149:272181. [PMID: 34523672 PMCID: PMC8601713 DOI: 10.1242/dev.199636] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/20/2021] [Indexed: 11/23/2022]
Abstract
Sustained neutrophilic inflammation is detrimental for cardiac repair and associated with adverse outcomes following myocardial infarction (MI). An attractive therapeutic strategy to treat MI is to reduce or remove infiltrating neutrophils to promote downstream reparative mechanisms. CDK9 inhibitor compounds enhance the resolution of neutrophilic inflammation; however, their effects on cardiac repair/regeneration are unknown. We have devised a cardiac injury model to investigate inflammatory and regenerative responses in larval zebrafish using heartbeat-synchronised light-sheet fluorescence microscopy. We used this model to test two clinically approved CDK9 inhibitors, AT7519 and flavopiridol, examining their effects on neutrophils, macrophages and cardiomyocyte regeneration. We found that AT7519 and flavopiridol resolve neutrophil infiltration by inducing reverse migration from the cardiac lesion. Although continuous exposure to AT7519 or flavopiridol caused adverse phenotypes, transient treatment accelerated neutrophil resolution while avoiding these effects. Transient treatment with AT7519, but not flavopiridol, augmented wound-associated macrophage polarisation, which enhanced macrophage-dependent cardiomyocyte number expansion and the rate of myocardial wound closure. Using cdk9−/− knockout mutants, we showed that AT7519 is a selective CDK9 inhibitor, revealing the potential of such treatments to promote cardiac repair/regeneration. Summary: This study is the first to show that resolving neutrophilic inflammation using a clinically approved immunomodulatory drug (AT7519) improves heart regeneration in zebrafish.
Collapse
Affiliation(s)
- Aryan Kaveh
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Finnius A Bruton
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Magdalena E M Oremek
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Carl S Tucker
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | | | - John J Mullins
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Adriano G Rossi
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Martin A Denvir
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
134
|
Deciphering Cardiac Biology and Disease by Single-Cell Transcriptomic Profiling. Biomolecules 2022; 12:biom12040566. [PMID: 35454155 PMCID: PMC9032111 DOI: 10.3390/biom12040566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022] Open
Abstract
By detecting minute molecular changes in hundreds to millions of single cells, single-cell RNA sequencing allows for the comprehensive characterization of the diversity and dynamics of cells in the heart. Our understanding of the heart has been transformed through the recognition of cellular heterogeneity, the construction of regulatory networks, the building of lineage trajectories, and the mapping of intercellular crosstalk. In this review, we introduce cardiac progenitors and their transcriptional regulation during embryonic development, highlight cellular heterogeneity and cell subtype functions in cardiac health and disease, and discuss insights gained from the study of pluripotent stem-cell-derived cardiomyocytes.
Collapse
|
135
|
Besse S, Nadaud S, Balse E, Pavoine C. Early Protective Role of Inflammation in Cardiac Remodeling and Heart Failure: Focus on TNFα and Resident Macrophages. Cells 2022; 11:1249. [PMID: 35406812 PMCID: PMC8998130 DOI: 10.3390/cells11071249] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 02/24/2022] [Accepted: 04/01/2022] [Indexed: 12/13/2022] Open
Abstract
Cardiac hypertrophy, initiated by a variety of physiological or pathological stimuli (hemodynamic or hormonal stimulation or infarction), is a critical early adaptive compensatory response of the heart. The structural basis of the progression from compensated hypertrophy to pathological hypertrophy and heart failure is still largely unknown. In most cases, early activation of an inflammatory program reflects a reparative or protective response to other primary injurious processes. Later on, regardless of the underlying etiology, heart failure is always associated with both local and systemic activation of inflammatory signaling cascades. Cardiac macrophages are nodal regulators of inflammation. Resident macrophages mostly attenuate cardiac injury by secreting cytoprotective factors (cytokines, chemokines, and growth factors), scavenging damaged cells or mitochondrial debris, and regulating cardiac conduction, angiogenesis, lymphangiogenesis, and fibrosis. In contrast, excessive recruitment of monocyte-derived inflammatory macrophages largely contributes to the transition to heart failure. The current review examines the ambivalent role of inflammation (mainly TNFα-related) and cardiac macrophages (Mφ) in pathophysiologies from non-infarction origin, focusing on the protective signaling processes. Our objective is to illustrate how harnessing this knowledge could pave the way for innovative therapeutics in patients with heart failure.
Collapse
Affiliation(s)
| | | | | | - Catherine Pavoine
- INSERM, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, UMR_S1166, F-75013 Paris, France; (S.B.); (S.N.); (E.B.)
| |
Collapse
|
136
|
Moise N, Friedman A. A mathematical model of immunomodulatory treatment in myocardial infarction. J Theor Biol 2022; 544:111122. [DOI: 10.1016/j.jtbi.2022.111122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/16/2022] [Accepted: 04/01/2022] [Indexed: 10/18/2022]
|
137
|
Spadaccio C, Nenna A, Rose D, Piccirillo F, Nusca A, Grigioni F, Chello M, Vlahakes GJ. The Role of Angiogenesis and Arteriogenesisin Myocardial Infarction and Coronary Revascularization. J Cardiovasc Transl Res 2022; 15:1024-1048. [PMID: 35357670 DOI: 10.1007/s12265-022-10241-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 03/18/2022] [Indexed: 12/25/2022]
Abstract
Surgical myocardial revascularization is associated with long-term survival benefit in patients with multivessel coronary artery disease. However, the exact biological mechanisms underlying the clinical benefits of myocardial revascularization have not been elucidated yet. Angiogenesis and arteriogenesis biologically leading to vascular collateralization are considered one of the endogenous mechanisms to preserve myocardial viability during ischemia, and the presence of coronary collateralization has been regarded as one of the predictors of long-term survival in patients with coronary artery disease (CAD). Some experimental studies and indirect clinical evidence on chronic CAD confirmed an angiogenetic response induced by myocardial revascularization and suggested that revascularization procedures could constitute an angiogenetic trigger per se. In this review, the clinical and basic science evidence regarding arteriogenesis and angiogenesis in both CAD and coronary revascularization is analyzed with the aim to better elucidate their significance in the clinical arena and potential therapeutic use.
Collapse
Affiliation(s)
- Cristiano Spadaccio
- Cardiac Surgery, Massachusetts General Hospital & Harvard Medical School, Boston, USA. .,Cardiac Surgery, Golden Jubilee National Hospital & University of Glasgow, Glasgow, UK.
| | - Antonio Nenna
- Cardiac Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - David Rose
- Cardiac Surgery, Lancashire Cardiac Centre, Blackpool Victoria Hospital, Blackpool, UK
| | | | | | | | - Massimo Chello
- Cardiac Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Gus J Vlahakes
- Cardiac Surgery, Massachusetts General Hospital & Harvard Medical School, Boston, USA
| |
Collapse
|
138
|
Identification of macrophages in normal and injured mouse tissues using reporter lines and antibodies. Sci Rep 2022; 12:4542. [PMID: 35296717 PMCID: PMC8927419 DOI: 10.1038/s41598-022-08278-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/04/2022] [Indexed: 12/20/2022] Open
Abstract
Reliable tools for macrophage identification in mouse tissues are critical for studies investigating inflammatory and reparative responses. Transgenic reporter mice and anti-macrophage antibodies have been used as “specific pan-macrophage” markers in many studies; however, organ-specific patterns of expression and non-specific labeling of other cell types, such as fibroblasts, may limit their usefulness. Our study provides a systematic comparison of macrophage labeling patterns in normal and injured mouse tissues, using the CX3CR1 and CSF1R macrophage reporter lines and anti-macrophage antibodies. Moreover, we tested the specificity of macrophage antibodies using the fibroblast-specific PDGFR\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm{\alpha }$$\end{document}α reporter line. Mouse macrophages exhibit organ-specific differences in expression of macrophage markers. Hepatic macrophages are labeled for CSF1R, Mac2 and F4/80, but lack CX3CR1 expression, whereas in the lung, the CSF1R+/Mac2+/Mac3+ macrophage population is not labeled with F4/80. In the splenic red pulp, subpopulations of CSF1R+/F4/80+/Mac3+cells were labeled with Mac2, CX3CR1 and lysozyme M. In the kidney, Mac2, Mac3 and lysozyme M labeled a fraction of the CSF1R+ and CX3CR1+ macrophages, but also stained tubular epithelial cells. In normal hearts, the majority of CSF1R+ and CX3CR1+ cells were not detected with anti-macrophage antibodies. Myocardial infarction was associated with marked expansion of the CSF1R+ and CX3CR1+ populations that peaked during the proliferative phase of cardiac repair, and also expressed Mac2, Mac3 and lysozyme M. In normal mouse tissues, a small fraction of cells labeled with anti-macrophage antibodies were identified as PDGFR\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm{\alpha }$$\end{document}α+ fibroblasts, using a reporter system. The population of PDGFR\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm{\alpha }$$\end{document}α+ cells expressing macrophage markers expanded following injury, likely reflecting emergence of cellular phenotypes with both fibroblast and macrophage characteristics. In conclusion, mouse macrophages exhibit remarkable heterogeneity. Selection of the most appropriate markers for identification of macrophages in mouse tissues is dependent on the organ and the pathologic condition studied.
Collapse
|
139
|
Paracrine signal emanating from stressed cardiomyocytes aggravates inflammatory microenvironment in diabetic cardiomyopathy. iScience 2022; 25:103973. [PMID: 35281739 PMCID: PMC8905320 DOI: 10.1016/j.isci.2022.103973] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/17/2021] [Accepted: 02/18/2022] [Indexed: 11/21/2022] Open
Abstract
Myocardial inflammation contributes to cardiomyopathy in diabetic patients through incompletely defined underlying mechanisms. In both human and time-course experimental samples, diabetic hearts exhibited abnormal ER, with a maladaptive shift over time in rodents. Furthermore, as a cardiac ER dysfunction model, mice with cardiac-specific p21-activated kinase 2 (PAK2) deletion exhibited heightened myocardial inflammatory response in diabetes. Mechanistically, maladaptive ER stress-induced CCAAT/enhancer-binding protein homologous protein (CHOP) is a novel transcriptional regulator of cardiac high-mobility group box-1 (HMGB1). Cardiac stress-induced release of HMGB1 facilitates M1 macrophage polarization, aggravating myocardial inflammation. Therapeutically, sequestering the extracellular HMGB1 using glycyrrhizin conferred cardioprotection through its anti-inflammatory action. Our findings also indicated that an intact cardiac ER function and protective effects of the antidiabetic drug interdependently attenuated the cardiac inflammation-induced dysfunction. Collectively, we introduce an ER stress-mediated cardiomyocyte-macrophage link, altering the macrophage response, thereby providing insight into therapeutic prospects for diabetes-associated cardiac dysfunction.
Collapse
|
140
|
Peterson EA, Sun J, Wang J. Leukocyte-Mediated Cardiac Repair after Myocardial Infarction in Non-Regenerative vs. Regenerative Systems. J Cardiovasc Dev Dis 2022; 9:63. [PMID: 35200716 PMCID: PMC8877434 DOI: 10.3390/jcdd9020063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Innate and adaptive leukocytes rapidly mobilize to ischemic tissues after myocardial infarction in response to damage signals released from necrotic cells. Leukocytes play important roles in cardiac repair and regeneration such as inflammation initiation and resolution; the removal of dead cells and debris; the deposition of the extracellular matrix and granulation tissue; supporting angiogenesis and cardiomyocyte proliferation; and fibrotic scar generation and resolution. By organizing and comparing the present knowledge of leukocyte recruitment and function after cardiac injury in non-regenerative to regenerative systems, we propose that the leukocyte response to cardiac injury differs in non-regenerative adult mammals such as humans and mice in comparison to cardiac regenerative models such as neonatal mice and adult zebrafish. Specifically, extensive neutrophil, macrophage, and T-cell persistence contributes to a lengthy inflammatory period in non-regenerative systems for adverse cardiac remodeling and heart failure development, whereas their quick removal supports inflammation resolution in regenerative systems for new contractile tissue formation and coronary revascularization. Surprisingly, other leukocytes have not been examined in regenerative model systems. With this review, we aim to encourage the development of improved immune cell markers and tools in cardiac regenerative models for the identification of new immune targets in non-regenerative systems to develop new therapies.
Collapse
Affiliation(s)
| | | | - Jinhu Wang
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (E.A.P.); (J.S.)
| |
Collapse
|
141
|
Gokce C, Gurcan C, Delogu LG, Yilmazer A. 2D Materials for Cardiac Tissue Repair and Regeneration. Front Cardiovasc Med 2022; 9:802551. [PMID: 35224044 PMCID: PMC8873146 DOI: 10.3389/fcvm.2022.802551] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) have a massive impact on human health. Due to the limited regeneration capacity of adult heart tissue, CVDs are the leading cause of death and disability worldwide. Even though there are surgical and pharmacological treatments for CVDs, regenerative strategies are the most promising approaches and have the potential to benefit millions of people. As in any other tissue engineering approach, the repair and regeneration of damaged cardiac tissues generally involve scaffolds made up of biodegradable and biocompatible materials, cellular components such as stem cells, and growth factors. This review provides an overview of biomaterial-based tissue engineering approaches for CVDs with a specific focus on the potential of 2D materials. It is essential to consider both physicochemical and immunomodulatory properties for evaluating the applicability of 2D materials in cardiac tissue repair and regeneration. As new members of the 2D materials will be explored, they will quickly become part of cardiac tissue engineering technologies.
Collapse
Affiliation(s)
- Cemile Gokce
- Department of Biomedical Engineering, Ankara University, Ankara, Turkey
| | - Cansu Gurcan
- Department of Biomedical Engineering, Ankara University, Ankara, Turkey
- Stem Cell Institute, Ankara University, Ankara, Turkey
| | | | - Acelya Yilmazer
- Department of Biomedical Engineering, Ankara University, Ankara, Turkey
- Stem Cell Institute, Ankara University, Ankara, Turkey
- *Correspondence: Acelya Yilmazer
| |
Collapse
|
142
|
de Lucia C, Grisanti LA, Borghetti G, Piedepalumbo M, Ibetti J, Lucchese AM, Barr EW, Roy R, Okyere AD, Murphy HC, Gao E, Rengo G, Houser SR, Tilley DG, Koch WJ. G protein-coupled receptor kinase 5 (GRK5) contributes to impaired cardiac function and immune cell recruitment in post-ischemic heart failure. Cardiovasc Res 2022; 118:169-183. [PMID: 33560342 PMCID: PMC8752360 DOI: 10.1093/cvr/cvab044] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/15/2020] [Accepted: 02/05/2021] [Indexed: 12/25/2022] Open
Abstract
AIMS Myocardial infarction (MI) is the most common cause of heart failure (HF) worldwide. G protein-coupled receptor kinase 5 (GRK5) is upregulated in failing human myocardium and promotes maladaptive cardiac hypertrophy in animal models. However, the role of GRK5 in ischemic heart disease is still unknown. In this study, we evaluated whether myocardial GRK5 plays a critical role post-MI in mice and included the examination of specific cardiac immune and inflammatory responses. METHODS AND RESULTS Cardiomyocyte-specific GRK5 overexpressing transgenic mice (TgGRK5) and non-transgenic littermate control (NLC) mice as well as cardiomyocyte-specific GRK5 knockout mice (GRK5cKO) and wild type (WT) were subjected to MI and, functional as well as structural changes together with outcomes were studied. TgGRK5 post-MI mice showed decreased cardiac function, augmented left ventricular dimension and decreased survival rate compared to NLC post-MI mice. Cardiac hypertrophy and fibrosis as well as fetal gene expression were increased post-MI in TgGRK5 compared to NLC mice. In TgGRK5 mice, GRK5 elevation produced immuno-regulators that contributed to the elevated and long-lasting leukocyte recruitment into the injured heart and ultimately to chronic cardiac inflammation. We found an increased presence of pro-inflammatory neutrophils and macrophages as well as neutrophils, macrophages and T-lymphocytes at 4-days and 8-weeks respectively post-MI in TgGRK5 hearts. Conversely, GRK5cKO mice were protected from ischemic injury and showed reduced early immune cell recruitment (predominantly monocytes) to the heart, improved contractility and reduced mortality compared to WT post-MI mice. Interestingly, cardiomyocyte-specific GRK2 transgenic mice did not share the same phenotype of TgGRK5 mice and did not have increased cardiac leukocyte migration and cytokine or chemokine production post-MI. CONCLUSIONS Our study shows that myocyte GRK5 has a crucial and GRK-selective role on the regulation of leucocyte infiltration into the heart, cardiac function and survival in a murine model of post-ischemic HF, supporting GRK5 inhibition as a therapeutic target for HF.
Collapse
Affiliation(s)
- Claudio de Lucia
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Laurel A Grisanti
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Giulia Borghetti
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Michela Piedepalumbo
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Jessica Ibetti
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Anna Maria Lucchese
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Eric W Barr
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Rajika Roy
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Ama Dedo Okyere
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Haley Christine Murphy
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Erhe Gao
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, Division of Geriatrics, Federico II University, Via S. Pansini, 5, Naples, Italy
- Laboratory of neurovegetative system pathophysiology, Istituti Clinici Scientifici ICS Maugeri, IRCCS Istituto Scientifico di Telese Terme, Benevento, Italy
| | - Steven R Houser
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Douglas G Tilley
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Walter J Koch
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
143
|
Waleczek FJG, Sansonetti M, Xiao K, Jung M, Mitzka S, Dendorfer A, Weber N, Perbellini F, Thum T. Chemical and mechanical activation of resident cardiac macrophages in the living myocardial slice ex vivo model. Basic Res Cardiol 2022; 117:63. [PMID: 36449104 PMCID: PMC9712328 DOI: 10.1007/s00395-022-00971-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022]
Abstract
Resident cardiac macrophages (rcMACs) are among the most abundant immune cells in the heart. Plasticity and activation are hallmarks of rcMACs in response to changes in the microenvironment, which is essential for in vitro experimentation. The in vivo investigation is confounded by the infiltration of other cells hindering direct studies of rcMACs. As a tool to investigate rcMACs, we applied the ex vivo model of living myocardial slices (LMS). LMS are ultrathin ex vivo multicellular cardiac preparations in which the circulatory network is interrupted. The absence of infiltration in this model enables the investigation of the rcMACs response to immunomodulatory and mechanical stimulations. Such conditions were generated by applying interferon-gamma (IFN-γ) or interleukine-4 (IL-4) and altering the preload of cultured LMS, respectively. The immunomodulatory stimulation of the LMS induced alterations of the gene expression pattern without affecting tissue contractility. Following 24 h culture, low input RNA sequencing of rcMACs isolated from LMS was used for gene ontology analysis. Reducing the tissue stretch (unloading) of LMS altered the gene ontology clusters of isolated rcMACs with intermediate semantic similarity to IFN-γ triggered reaction. Through the overlap of genes affected by IFN-γ and unloading, we identified Allograft inflammatory factor 1 (AIF-1) as a potential marker gene for inflammation of rcMACs as significantly altered in whole immunomodulated LMS. MicroRNAs associated with the transcriptomic changes of rcMACs in unloaded LMS were identified in silico. Here, we demonstrate the approach of LMS to understand load-triggered cardiac inflammation and, thus, identify potential translationally important therapeutic targets.
Collapse
Affiliation(s)
- F. J. G. Waleczek
- grid.10423.340000 0000 9529 9877Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - M. Sansonetti
- grid.10423.340000 0000 9529 9877Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - K. Xiao
- grid.10423.340000 0000 9529 9877Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany ,grid.4561.60000 0000 9261 3939Fraunhofer Institute ITEM, Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany
| | - M. Jung
- grid.10423.340000 0000 9529 9877Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - S. Mitzka
- grid.10423.340000 0000 9529 9877Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany ,grid.4561.60000 0000 9261 3939Fraunhofer Institute ITEM, Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany
| | - A. Dendorfer
- grid.5252.00000 0004 1936 973XWalter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University München, Marchioninistraße 27, 81377 Munich, Germany
| | - N. Weber
- grid.10423.340000 0000 9529 9877Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - F. Perbellini
- grid.10423.340000 0000 9529 9877Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - T. Thum
- grid.10423.340000 0000 9529 9877Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany ,grid.4561.60000 0000 9261 3939Fraunhofer Institute ITEM, Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany
| |
Collapse
|
144
|
Eren F, Yildogan AT, Ongun G, Ozdemir G, Ozturk S. Monocyte/High Density Lipoprotein Ratio in Patients with Symptomatic Carotid Artery Stenosis and Its Relationship with Stenosis Degree. HASEKI TIP BÜLTENI 2022. [DOI: 10.4274/haseki.galenos.2021.7578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
145
|
Vafaee T, Walker F, Thomas D, Roderjan JG, Veiga Lopes S, da Costa FDA, Desai A, Rooney P, Jennings LM, Fisher J, Berry HE, Ingham E. Repopulation of decellularised porcine pulmonary valves in the right ventricular outflow tract of sheep: Role of macrophages. J Tissue Eng 2022; 13:20417314221102680. [PMID: 35782993 PMCID: PMC9243591 DOI: 10.1177/20417314221102680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
The primary objective was to evaluate performance of low concentration SDS decellularised porcine pulmonary roots in the right ventricular outflow tract of juvenile sheep. Secondary objectives were to explore the cellular population of the roots over time. Animals were monitored by echocardiography and roots explanted at 1, 3, 6 (n = 4) and 12 months (n = 8) for gross analysis. Explanted roots were subject to histological, immunohistochemical and quantitative calcium analysis (n = 4 at 1, 3 and 12 months) and determination of material properties (n = 4; 12 months). Cryopreserved ovine pulmonary root allografts (n = 4) implanted for 12 months, and non-implanted cellular ovine roots were analysed for comparative purposes. Decellularised porcine pulmonary roots functioned well and were in very good condition with soft, thin and pliable leaflets. Morphometric analysis showed cellular population by 1 month. However, by 12 months the total number of cells was less than 50% of the total cells in non-implanted native ovine roots. Repopulation of the decellularised porcine tissues with stromal (α-SMA+; vimentin+) and progenitor cells (CD34+; CD271+) appeared to be orchestrated by macrophages (MAC 387+/ CD163low and CD163+/MAC 387-). The calcium content of the decellularised porcine pulmonary root tissues increased over the 12-month period but remained low (except suture points) at 401 ppm (wet weight) or below. The material properties of the decellularised porcine pulmonary root wall were unchanged compared to pre-implantation. There were some changes in the leaflets but importantly, the porcine tissues did not become stiffer. The decellularised porcine pulmonary roots showed good functional performance in vivo and were repopulated with ovine cells of the appropriate phenotype in a process orchestrated by M2 macrophages, highlighting the importance of these cells in the constructive tissue remodelling of cardiac root tissues.
Collapse
Affiliation(s)
- Tayyebeh Vafaee
- Institute of Medical and Biological
Engineering, School of Biomedical Sciences, Faculty of Biological Sciences,
University of Leeds, Leeds, UK
| | - Fiona Walker
- Institute of Medical and Biological
Engineering, School of Biomedical Sciences, Faculty of Biological Sciences,
University of Leeds, Leeds, UK
| | - Dan Thomas
- Institute of Medical and Biological
Engineering, School of Biomedical Sciences, Faculty of Biological Sciences,
University of Leeds, Leeds, UK
| | - João Gabriel Roderjan
- Department of Cardiac Surgery, Santa
Casa de Curitiba, Pontifica Universidade Catolica do Parana, Curitiba, Brazil
| | - Sergio Veiga Lopes
- Department of Cardiac Surgery, Santa
Casa de Curitiba, Pontifica Universidade Catolica do Parana, Curitiba, Brazil
| | - Francisco DA da Costa
- Department of Cardiac Surgery, Santa
Casa de Curitiba, Pontifica Universidade Catolica do Parana, Curitiba, Brazil
| | - Amisha Desai
- Institute of Medical and Biological
Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK
| | - Paul Rooney
- NHS Blood and Transplant, Tissue and
Eye Services, Estuary Banks, Liverpool, UK
| | - Louise M Jennings
- Institute of Medical and Biological
Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK
| | - John Fisher
- Institute of Medical and Biological
Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK
| | - Helen E Berry
- Institute of Medical and Biological
Engineering, School of Biomedical Sciences, Faculty of Biological Sciences,
University of Leeds, Leeds, UK
| | - Eileen Ingham
- Institute of Medical and Biological
Engineering, School of Biomedical Sciences, Faculty of Biological Sciences,
University of Leeds, Leeds, UK
| |
Collapse
|
146
|
Shi H, Li D, Shi Q, Han Z, Tan Y, Mu X, Qin M, Li Z. Three-Dimensional Culture Decreases the Angiogenic Ability of Mouse Macrophages. Front Immunol 2021; 12:795066. [PMID: 35003117 PMCID: PMC8727350 DOI: 10.3389/fimmu.2021.795066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Macrophages play important roles in angiogenesis; however, previous studies on macrophage angiogenesis have focused on traditional 2D cultures. In this study, we established a 3D culture system for macrophages using collagen microcarriers and assessed the effect of 3D culture on their angiogenic capabilities. Macrophages grown in 3D culture displayed a significantly different morphology and arrangement under electron microscopy compared to those grown in 2D culture. Tube formation assays and chick embryo chorioallantoic membrane assays further revealed that 3D-cultured macrophages were less angiogenic than those in 2D culture. Whole-transcriptome sequencing showed that nearly 40% of genes were significantly differently expressed, including nine important angiogenic factors of which seven had been downregulated. In addition, the expression of almost all genes related to two important angiogenic pathways was decreased in 3D-cultured macrophages, including the two key angiogenic factors, VEGFA and ANG2. Together, the findings of our study improve our understanding of angiogenesis and 3D macrophage culture in tissues, and provide new avenues and methods for future research on macrophages.
Collapse
Affiliation(s)
- Haoxin Shi
- Endoscopy Room, Department of Gastroenterology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| | - Dong Li
- Cryomedicine Lab of Qilu Hospital, Shandong University, Jinan, China
| | - Qing Shi
- Cryomedicine Lab of Qilu Hospital, Shandong University, Jinan, China
| | - Zhenxia Han
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yuwei Tan
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaodong Mu
- College of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, China
| | - Miao Qin
- Endoscopy Room, Department of Gastroenterology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| | - Zengjun Li
- Endoscopy Room, Department of Gastroenterology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
- *Correspondence: Zengjun Li,
| |
Collapse
|
147
|
Zhou F, Dai O, Peng C, Xiong L, Ao H, Liu F, Zhou QM. Pro-Angiogenic Effects of Essential Oil from Perilla frutescens and Its Main Component (Perillaldehyde) on Zebrafish Embryos and Human Umbilical Vein Endothelial Cells. Drug Des Devel Ther 2021; 15:4985-4999. [PMID: 34924753 PMCID: PMC8674578 DOI: 10.2147/dddt.s336826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/03/2021] [Indexed: 12/14/2022] Open
Abstract
Purpose Perilla frutescens (L.) Britt., a traditional edible-medicinal herb in China, has been used to treat cardiovascular and cerebrovascular (cardio-cerebrovascular) diseases for thousands of years. However, knowledge of the mechanisms underlying the effects of essential oil from P. frutescens (EOPF) in the treatment of cardio-cerebrovascular diseases is lacking. The promotion of angiogenesis is beneficial in the treatment of ischemic cardio-cerebrovascular diseases. The current study investigated the pro-angiogenic role of EOPF and its main component perillaldehyde in sunitinib-injured transgenic Tg (flk1:EGFP) zebrafish embryos and human umbilical vein endothelial cells (HUVECs) for the first time. Materials and Methods The pro-angiogenic effects of EOPF and perillaldehyde were observed in vivo using transgenic Tg (flk1:EGFP) zebrafish embryos and in vitro using HUVECs. Cell viability, proliferation, migration, tube formation, and protein levels were detected by MTT, EdU staining, wound healing, transwell chamber, and Western blot assays, respectively. Results EOPF and perillaldehyde exerted a significant stimulatory effect on the formation of zebrafish intersegmental vessels (ISVs). Moreover, EOPF and perillaldehyde promoted proliferation, migration, and tube formation in sunitinib-treated HUVECs. Additionally, our findings uncovered that the pro-angiogenic effects of EOPF and perillaldehyde were mediated by increases in the expression ratios of p-ERK1/2 to ERK1/2 and Bcl-2 to Bax. Conclusion The present study is the first report to provide clear evidence that EOPF and perillaldehyde promote angiogenesis by stimulating repair of sunitinib-injured ISVs in zebrafish embryos and promoting proliferation, migration, and tube formation in sunitinib-injured HUVECs. The underlying mechanisms are related to increased p-ERK1/2 to ERK1/2 and Bcl-2 to Bax expression ratios. EOPF and perillaldehyde may be used in the treatment of cardio-cerebrovascular diseases, which is consistent with the traditional application of P. frutescens.
Collapse
Affiliation(s)
- Fei Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Ou Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Liang Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China.,Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Fei Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China.,Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Qin-Mei Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China.,Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| |
Collapse
|
148
|
Nordquist EM, Dutta P, Kodigepalli KM, Mattern C, McDermott MR, Trask AJ, LaHaye S, Lindner V, Lincoln J. Tgfβ1-Cthrc1 Signaling Plays an Important Role in the Short-Term Reparative Response to Heart Valve Endothelial Injury. Arterioscler Thromb Vasc Biol 2021; 41:2923-2942. [PMID: 34645278 PMCID: PMC8612994 DOI: 10.1161/atvbaha.121.316450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/23/2021] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Aortic valve disease is a common worldwide health burden with limited treatment options. Studies have shown that the valve endothelium is critical for structure-function relationships, and disease is associated with its dysfunction, damage, or injury. Therefore, therapeutic targets to maintain a healthy endothelium or repair damaged endothelial cells could hold promise. In this current study, we utilize a surgical mouse model of heart valve endothelial cell injury to study the short-term response at molecular and cellular levels. The goal is to determine if the native heart valve exhibits a reparative response to injury and identify the mechanisms underlying this process. Approach and Results: Mild aortic valve endothelial injury and abrogated function was evoked by inserting a guidewire down the carotid artery of young (3 months) and aging (16-18 months) wild-type mice. Short-term cellular responses were examined at 6 hours, 48 hours, and 4 weeks following injury, whereas molecular profiles were determined after 48 hours by RNA-sequencing. Within 48 hours following endothelial injury, young wild-type mice restore endothelial barrier function in association with increased cell proliferation, and upregulation of transforming growth factor beta 1 (Tgfβ1) and the glycoprotein, collagen triple helix repeat containing 1 (Cthrc1). Interestingly, this beneficial response to injury was not observed in aging mice with known underlying endothelial dysfunction. CONCLUSIONS Data from this study suggests that the healthy valve has the capacity to respond to mild endothelial injury, which in short term has beneficial effects on restoring endothelial barrier function through acute activation of the Tgfβ1-Cthrc1 signaling axis and cell proliferation.
Collapse
Affiliation(s)
- Emily M. Nordquist
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA
- Department of Pediatrics, Section of Pediatric Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA
- The Herma Heart Institute, Children’s Wisconsin, Milwaukee, WI, USA
| | - Punashi Dutta
- Department of Pediatrics, Section of Pediatric Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA
- The Herma Heart Institute, Children’s Wisconsin, Milwaukee, WI, USA
| | - Karthik M. Kodigepalli
- Department of Pediatrics, Section of Pediatric Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA
- The Herma Heart Institute, Children’s Wisconsin, Milwaukee, WI, USA
| | - Carol Mattern
- Department of Pediatrics, Section of Pediatric Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA
- The Herma Heart Institute, Children’s Wisconsin, Milwaukee, WI, USA
| | - Michael R. McDermott
- Center for Cardiovascular Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Aaron J. Trask
- Center for Cardiovascular Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Stephanie LaHaye
- The Institute for Genomic Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Volkhard Lindner
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, USA
| | - Joy Lincoln
- Department of Pediatrics, Section of Pediatric Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA
- The Herma Heart Institute, Children’s Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
149
|
El Farissi M, Buscone S, Bax NAM, van Rijswijk JW, Veenendaal T, Keulards DCJ, Zelis JM, van Tuijl S, Eerdekens R, Demandt J, Vervaat F, Zimmermann FM, Bouwmeester S, Rave Y, Zhu KS, Conrad C, van 't Veer M, Pijls NHJ, Klumperman J, Bouten CVC, Otterspoor LC. Ultrastructural Characteristics of Myocardial Reperfusion Injury and Effect of Selective Intracoronary Hypothermia: An Observational Study in Isolated Beating Porcine Hearts. Ther Hypothermia Temp Manag 2021; 12:129-137. [PMID: 34847796 DOI: 10.1089/ther.2021.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
In acute myocardial infarction (AMI), myocardial reperfusion injury may undo part of the recovery after revascularization of the occluded coronary artery. Selective intracoronary hypothermia is a novel method aimed at reducing myocardial reperfusion injury, but its presumed protective effects in AMI still await further elucidation. This proof-of-concept study assesses the potential protective effects of selective intracoronary hypothermia in an ex-vivo, isolated beating heart model of AMI. In four isolated Langendorff perfused beating pig hearts, an anterior wall myocardial infarction was created by inflating a balloon in the mid segment of the left anterior descending (LAD) artery. After one hour, two hearts were treated with selective intracoronary hypothermia followed by normal reperfusion (cooled hearts). In the other two hearts, the balloon was deflated after one hour, allowing normal reperfusion (control hearts). Biopsies for histologic and electron microscopic evaluation were taken from the myocardium at risk at different time points: before occlusion (t = BO); 5 minutes before reperfusion (t = BR); and 10 minutes after reperfusion (t = AR). Electron microscopic analysis was performed to evaluate the condition of the mitochondria. Histological analyses included evaluation of sarcomeric collapse and intramyocardial hematoma. Electron microscopic analysis revealed intact mitochondria in the hypothermia treated hearts compared to the control hearts where mitochondria were more frequently damaged. No differences in the prespecified histological parameters were observed between cooled and control hearts at t = AR. In the isolated beating porcine heart model of AMI, reperfusion was associated with additional myocardial injury beyond ischemic injury. Selective intracoronary hypothermia preserved mitochondrial integrity compared to nontreated controls.
Collapse
Affiliation(s)
- Mohamed El Farissi
- Department of Cardiology, Catharina Hospital, Eindhoven, The Netherlands
| | - Serena Buscone
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Noortje A M Bax
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Center for Care & Cure Technology Eindhoven (C3Te), Eindhoven University, Eindhoven, The Netherlands
| | - Jan Willem van Rijswijk
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Tineke Veenendaal
- Section Cell Biology, Center for Molecular Medicine, University Medical Center, Utrecht, The Netherlands
| | | | - Jo M Zelis
- Department of Cardiology, Catharina Hospital, Eindhoven, The Netherlands
| | | | - Rob Eerdekens
- Department of Cardiology, Catharina Hospital, Eindhoven, The Netherlands
| | - Jesse Demandt
- Department of Cardiology, Catharina Hospital, Eindhoven, The Netherlands
| | - Fabienne Vervaat
- Department of Cardiology, Catharina Hospital, Eindhoven, The Netherlands
| | | | - Sjoerd Bouwmeester
- Department of Cardiology, Catharina Hospital, Eindhoven, The Netherlands
| | - Yahav Rave
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Kwankwan S Zhu
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Cecile Conrad
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Marcel van 't Veer
- Department of Cardiology, Catharina Hospital, Eindhoven, The Netherlands.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Nico H J Pijls
- Department of Cardiology, Catharina Hospital, Eindhoven, The Netherlands.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Judith Klumperman
- Section Cell Biology, Center for Molecular Medicine, University Medical Center, Utrecht, The Netherlands
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Luuk C Otterspoor
- Department of Cardiology, Catharina Hospital, Eindhoven, The Netherlands
| |
Collapse
|
150
|
Natural Compound Resveratrol Attenuates TNF-Alpha-Induced Vascular Dysfunction in Mice and Human Endothelial Cells: The Involvement of the NF-κB Signaling Pathway. Int J Mol Sci 2021; 22:ijms222212486. [PMID: 34830366 PMCID: PMC8620472 DOI: 10.3390/ijms222212486] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 01/04/2023] Open
Abstract
Resveratrol, a natural compound in grapes and red wine, has drawn attention due to potential cardiovascular-related health benefits. However, its effect on vascular inflammation at physiologically achievable concentrations is largely unknown. In this study, resveratrol in concentrations as low as 1 μm suppressed TNF-α-induced monocyte adhesion to human EA.hy926 endothelial cells (ECs), a key event in the initiation and development of atherosclerosis. Low concentrations of resveratrol (0.25–2 μm) also significantly attenuated TNF-α-stimulated mRNA expressions of MCP-1/CCL2 and ICAM-1, which are vital mediators of EC-monocyte adhesion molecules and cytokines for cardiovascular plaque formation. Additionally, resveratrol diminished TNF-α-induced IκB-α degradation and subsequent nuclear translocation of NF-κB p65 in ECs. In the animal study, resveratrol supplementation in diet significantly diminished TNF-α-induced increases in circulating levels of adhesion molecules and cytokines, monocyte adhesion to mouse aortic ECs, F4/80-positive macrophages and VCAM-1 expression in mice aortas and restored the disruption in aortic elastin fiber caused by TNF-α treatment. The animal study also confirmed that resveratrol blocks the activation of NF-κB In Vivo. In conclusion, resveratrol at physiologically achievable concentrations displayed protective effects against TNF-α-induced vascular endothelial inflammation in vitro and In Vivo. The ability of resveratrol in reducing inflammation may be associated with its role as a down-regulator of the NF-κB pathway.
Collapse
|