101
|
Gassmann K, Abel J, Bothe H, Haarmann-Stemmann T, Merk HF, Quasthoff KN, Rockel TD, Schreiber T, Fritsche E. Species-specific differential AhR expression protects human neural progenitor cells against developmental neurotoxicity of PAHs. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:1571-7. [PMID: 20570779 PMCID: PMC2974695 DOI: 10.1289/ehp.0901545] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 05/21/2010] [Accepted: 06/22/2010] [Indexed: 05/07/2023]
Abstract
BACKGROUND Because of their lipophilicity, persistent organic pollutants (POPs) cross the human placenta, possibly affecting central nervous system development. Most POPs are known aryl hydrocarbon receptor (AhR) ligands and activators of AhR signaling. Therefore, AhR activation has been suggested to cause developmental neurotoxicity (DNT). OBJECTIVE We studied the effects of AhR ligands on basic processes of brain development in two comparative in vitro systems to determine whether AhR-activation is the underlying mechanism for reported DNT of POPs in humans. METHODS We employed neurosphere cultures based on human neural progenitor cells (hNPCs) and wild-type and AhR-deficient mouse NPCs (mNPCs) and studied the effects of different AhR agonists [3-methylcholanthrene (3-MC), benzo(a)pyrene [B(a)P], and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)] and an antagonist [3'-methoxy-4'-nitroflavone (MNF)] on neurosphere development. Moreover, we analyzed expression of AhR and genes involved in AhR signaling. RESULTS In contrast to wild-type mNPCs, hNPCs and AhR-deficient mNPCs were insensitive to AhR agonism or antagonism. Although AhR modulation attenuated wild-type mNPC proliferation and migration, hNPCs and AhR-deficient mNPCs remained unaffected. Results also suggest that species-specific differences resulted from nonfunctional AhR signaling in hNPCs. CONCLUSION Our findings suggest that in contrast to wild-type mNPCs, hNPCs were protected against polycyclic aromatic hydrocarbon-induced DNT because of an absence of AhR This difference may contribute to species-specific differences in sensitivity to POPs.
Collapse
Affiliation(s)
- Kathrin Gassmann
- Department of Molecular Toxicology, Institut für umweltmedizinische Forschung gGmbH, Heinrich Heine University, Düsseldorf, Germany
| | - Josef Abel
- Department of Molecular Toxicology, Institut für umweltmedizinische Forschung gGmbH, Heinrich Heine University, Düsseldorf, Germany
| | - Hanno Bothe
- Department of Molecular Toxicology, Institut für umweltmedizinische Forschung gGmbH, Heinrich Heine University, Düsseldorf, Germany
| | - Thomas Haarmann-Stemmann
- Department of Molecular Toxicology, Institut für umweltmedizinische Forschung gGmbH, Heinrich Heine University, Düsseldorf, Germany
| | - Hans F. Merk
- Department of Dermatology, University Hospital, RWTH Aachen, Aachen, Germany
| | - Kim N. Quasthoff
- Department of Molecular Toxicology, Institut für umweltmedizinische Forschung gGmbH, Heinrich Heine University, Düsseldorf, Germany
| | - Thomas Dino Rockel
- Department of Molecular Toxicology, Institut für umweltmedizinische Forschung gGmbH, Heinrich Heine University, Düsseldorf, Germany
| | - Timm Schreiber
- Department of Molecular Toxicology, Institut für umweltmedizinische Forschung gGmbH, Heinrich Heine University, Düsseldorf, Germany
| | - Ellen Fritsche
- Department of Molecular Toxicology, Institut für umweltmedizinische Forschung gGmbH, Heinrich Heine University, Düsseldorf, Germany
- Department of Dermatology, University Hospital, RWTH Aachen, Aachen, Germany
- Address correspondence to E. Fritsche, Institut für umweltmedizinische Forschung gGmbH, Heinrich Heine University, Department of Molecular Toxicology, Auf’m Hennekamp 50, 40225 Dusseldorf, Germany. Telephone: 00492113389217. Fax: 00492113190910. E-mail:
| |
Collapse
|
102
|
Dioxins, the aryl hydrocarbon receptor and the central regulation of energy balance. Front Neuroendocrinol 2010; 31:452-78. [PMID: 20624415 DOI: 10.1016/j.yfrne.2010.07.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 06/15/2010] [Accepted: 07/05/2010] [Indexed: 01/03/2023]
Abstract
Dioxins are ubiquitous environmental contaminants that have attracted toxicological interest not only for the potential risk they pose to human health but also because of their unique mechanism of action. This mechanism involves a specific, phylogenetically old intracellular receptor (the aryl hydrocarbon receptor, AHR) which has recently proven to have an integral regulatory role in a number of physiological processes, but whose endogenous ligand is still elusive. A major acute impact of dioxins in laboratory animals is the wasting syndrome, which represents a puzzling and dramatic perturbation of the regulatory systems for energy balance. A single dose of the most potent dioxin, TCDD, can permanently readjust the defended body weight set-point level thus providing a potentially useful tool and model for physiological research. Recent evidence of response-selective modulation of AHR action by alternative ligands suggests further that even therapeutic implications might be possible in the future.
Collapse
|
103
|
Leung MCK, Goldstone JV, Boyd WA, Freedman JH, Meyer JN. Caenorhabditis elegans generates biologically relevant levels of genotoxic metabolites from aflatoxin B1 but not benzo[a]pyrene in vivo. Toxicol Sci 2010; 118:444-53. [PMID: 20864627 DOI: 10.1093/toxsci/kfq295] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There is relatively little information regarding the critical xenobiotic-metabolizing cytochrome P450 (CYP) enzymes in Caenorhabditis elegans, despite this organism's increasing use as a model in toxicology and pharmacology. We carried out experiments to elucidate the capacity of C. elegans to metabolically activate important promutagens via CYPs. Phylogenetic comparisons confirmed an earlier report indicating a lack of CYP1 family enzymes in C. elegans. Exposure to aflatoxin B(1) (AFB(1)), which is metabolized in mammals by CYP1, CYP2, and CYP3 family enzymes, resulted in significant DNA damage in C. elegans. However, exposure to benzo[a]pyrene (BaP), which is metabolized in mammals by CYP1 family enzymes only, produced no detectable damage. To further test whether BaP exposure caused DNA damage, the toxicities of AFB(1) and BaP were compared in nucleotide excision repair (NER)-deficient (xpa-1) and NER-proficient (N2) strains of C. elegans. Exposure to AFB(1) inhibited growth more in xpa-1 than N2 nematodes, but the growth-inhibitory effects of BaP were indistinguishable in the two strains. Finally, a CYP-nicotinamide adenine dinucleotide phosphate reductase-deficient strain (emb-8) of C. elegans was found to be more resistant to the growth-inhibitory effect of AFB(1) exposure than N2, confirming that the AFB(1)-mediated growth inhibition resulted from CYP-mediated metabolism. Together, these results indicate that C. elegans lacks biologically significant CYP1 family-mediated enzymatic metabolism of xenobiotics. Interestingly, we also found that xpa-1 nematodes were slightly more sensitive to chlorpyrifos than were wild type. Our results highlight the importance of considering differences between xenobiotic metabolism in C. elegans and mammals when using this alternative model in pharmaceutical and toxicological research.
Collapse
Affiliation(s)
- Maxwell C K Leung
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708-0328, USA
| | | | | | | | | |
Collapse
|
104
|
Fernandez-Salguero PM. A remarkable new target gene for the dioxin receptor: The Vav3 proto-oncogene links AhR to adhesion and migration. Cell Adh Migr 2010; 4:172-5. [PMID: 20190565 DOI: 10.4161/cam.4.2.10387] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The dioxin receptor (AhR) is possibly the best characterized xenobiotic receptor because of its essential role in mediating the harmful effects of highly toxic environmental pollutants. Despite the fact that AhR-dependent toxicity is a major environmental concern, compelling evidence has recently been produced unveiling novel and remarkable endogenous functions of AhR in cell physiology and tissue homeostasis. Adding to its role in cell proliferation and differentiation, AhR is also involved in the control of cell adhesion and migration, both highly relevant tasks in development and in disease states such as cancer. Interestingly, the effect of AhR on cell migration is cell-type specific because it can sustain or slow down cell motility. Here, I will comment on our recent report showing that AhR is a positive regulator of fibroblast cells migration. Besides characterizing the phenotype of such mesenchymal cells, the most important single finding of our study is that AhR uses the cytoskeleton regulator and oncogen Vav3 to signal through small Rho GTPases, ultimately leading to the physiological control of cell adhesion and migration. These data reveal that AhR activity is required to maintain signaling pathways governing normal cell function and open the question of whether AhR plays a role in cell migration during development and in pathological conditions such as tumor metastasis.
Collapse
Affiliation(s)
- Pedro M Fernandez-Salguero
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain.
| |
Collapse
|
105
|
Aarnio V, Storvik M, Lehtonen M, Asikainen S, Reisner K, Callaway J, Rudgalvyte M, Lakso M, Wong G. Fatty acid composition and gene expression profiles are altered in aryl hydrocarbon receptor-1 mutant Caenorhabditis elegans. Comp Biochem Physiol C Toxicol Pharmacol 2010; 151:318-24. [PMID: 20045492 DOI: 10.1016/j.cbpc.2009.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 12/18/2009] [Accepted: 12/21/2009] [Indexed: 12/16/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is a eukaryotic transcription factor that plays an essential role in neuronal, immune, vascular, hepatic and hematopoietic development. In mammals, AHR induces metabolism-associated genes in response to xenobiotics. AHR is evolutionarily conserved, and the C. elegans AHR ortholog likely shares many physiologic functions with the mammalian version. While the role of AHR in development is known, the molecular basis of AHR action is less well understood. To understand the physiologic role of AHR in C. elegans, a combination of fatty acid profiling, transcriptomics, and phenotyping approaches was used. Fatty acid profiles from L4 larval stage whole animals indicated that C17isoA, C18:1n9t, C20:3n6 and C20:4n6 were significantly increased in an ahr-1 mutant compared to wild-type. Consistent with these changes, we observed a significant 5.8 fold increase in fat-7, and 1.7-1.9 fold increases in elo-5, nhr-49, and mdt-15 gene expression during the L4 stage. The ahr-1(ju145) mutant displayed deficits in growth and development including a reduced number of eggs laid, a higher proportion of dead embryos, delay in time to reach L4 stage, and movement deficits including a fewer number of body bends and a longer defecation cycle. To understand global effects of AHR-1 on transcription, microarray analysis was performed on L1 stage animals. Expression changes (324 under- and 238 over-expressed) were found in genes associated with metabolism, growth, and development. These results indicate a role for C. elegans AHR in regulating fatty acid composition and in contributing to some aspects of development. Since the transcriptional control of AHR targets may be evolutionarily conserved, these results provide a deeper understanding of the molecular actions of AHR in a model invertebrate system that may be informative for higher organisms.
Collapse
Affiliation(s)
- Vuokko Aarnio
- Department of Biosciences, University of Kuopio, 70211 Kuopio, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Wang Y, Fan Y, Puga A. Dioxin exposure disrupts the differentiation of mouse embryonic stem cells into cardiomyocytes. Toxicol Sci 2010; 115:225-37. [PMID: 20130022 DOI: 10.1093/toxsci/kfq038] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Experimental exposure of fish, birds, and rodents to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; dioxin) causes multiple Ah receptor-mediated developmental abnormalities, an observation consistent with compelling evidence in human populations that TCDD exposure is responsible for a significant incidence of birth defects. To characterize molecular mechanisms that might explain the developmental effects of dioxin, we have studied the consequences of TCDD exposure on the differentiation of mouse embryonic stem (ES) cells in culture and on the expression of genes, including those coding for homeodomain containing transcription factors, with a role in progression of tissue differentiation and embryonic identity during development. We find that TCDD treatment causes expression changes in a number of homeobox genes concomitant with Ah receptor recruitment to the promoters of many of these genes, whether under naïve or dioxin-activated conditions. TCDD exposure also derails temporal expression trajectories of developmentally regulated genes in a wide diversity of differentiation pathways, including genes with functions in neural and cardiovascular development, self-renewal, hematopoiesis and mesenchymal lineage specification, and Notch and Wnt pathways. Among these, we find that TCDD represses the expression of the cardiac development-specific Nkx2.5 homeobox transcription factor, of cardiac troponin-T and of alpha- and beta-myosin heavy chains, inhibiting the formation of beating cardiomyocytes, a characteristic phenotype of differentiating mouse ES cells in culture. These data identify potential pathways for dioxin to act as a developmental teratogen, possibly critical to cardiovascular development and disease, and provide molecular targets that may help us understand the molecular basis of Ah receptor-mediated developmental toxicity.
Collapse
Affiliation(s)
- Ying Wang
- Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, Ohio 45267-0056, USA
| | | | | |
Collapse
|
107
|
Hall JM, Barhoover MA, Kazmin D, McDonnell DP, Greenlee WF, Thomas RS. Activation of the aryl-hydrocarbon receptor inhibits invasive and metastatic features of human breast cancer cells and promotes breast cancer cell differentiation. Mol Endocrinol 2010; 24:359-69. [PMID: 20032195 PMCID: PMC2817602 DOI: 10.1210/me.2009-0346] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 11/16/2009] [Indexed: 02/01/2023] Open
Abstract
The current statistics associated with breast cancer continue to show a relatively high recurrence rate together with a poor survival for aggressive metastatic disease. These findings reflect, in part, the pharmaceutical intractability of processes involved in the metastatic process and highlight the need to identify additional drug targets for the treatment of late-stage disease. In the current study, we report that ligand activation of the aryl-hydrocarbon receptor (AhR) inhibits multiple aspects of the metastatic process in a panel of breast cancer cell lines that represent the major breast cancer subtypes. Specifically, it was observed that treatment with exogenous AhR agonists significantly inhibited cell invasiveness and motility in the Boyden chamber assay and inhibited colony formation in soft agar regardless of estrogen receptor (ER), progesterone receptor, or human epidermal growth factor receptor 2 status. Knockdown of the AhR using small interfering RNA duplexes demonstrated that the inhibition of invasiveness was receptor dependent and that endogenous receptor activity was protective in each cell type examined. The inhibition of invasiveness and anchorage-independent growth correlated with the ability of exogenous AhR agonists to promote differentiation. Finally, exogenous AhR agonists were able to promote differentiation in a putative mammary cancer stem cell line. Cumulatively, these results suggest that the AhR plays an important role in mammary epithelial differentiation and, as such, represent a promising therapeutic target for a range of phenotypically distinct human breast cancers.
Collapse
Affiliation(s)
- Julie M Hall
- The Hamner Institutes for Health Sciences, Genomic Biology and Bioinformatics, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | |
Collapse
|
108
|
Barouki R, Coumoul X. Cell migration and metastasis markers as targets of environmental pollutants and the Aryl hydrocarbon receptor. Cell Adh Migr 2010; 4:72-6. [PMID: 20009531 DOI: 10.4161/cam.4.1.10313] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
During the last few years, several studies have pointed to a surprising link between environmental pollutants cellular signaling and important cell functions such as plasticity, adhesion and migration. This unexpected link could be related to endogenous functions of pollutants receptors that may be disrupted by environmental factors, which is supported by observations in invertebrate species. It could also reveal novel toxic end-points and mechanisms of those pollutants, such as teratogenesis and cancer metastasis that are highly relevant from a public health point of view. In the present short article, we will review our recent observations on the aryl hydrocarbon receptor and its new molecular and cellular targets. We identified HEF1/NEDD9/CAS-L, a multifunctional protein involved in integrin-based signaling as a transcriptional target of the receptor, and showed that its induction was critical for cell plasticity mediated by environmental pollutants. We will put our studies in perspective with other observations made by several groups.
Collapse
|
109
|
Wells PG, Lee CJJ, McCallum GP, Perstin J, Harper PA. Receptor- and reactive intermediate-mediated mechanisms of teratogenesis. Handb Exp Pharmacol 2010:131-162. [PMID: 20020262 DOI: 10.1007/978-3-642-00663-0_6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Drugs and environmental chemicals can adversely alter the development of the fetus at critical periods during pregnancy, resulting in death, or in structural and functional birth defects in the surviving offspring. This process of teratogenesis may not be evident until a decade or more after birth. Postnatal functional abnormalities include deficits in brain function, a variety of metabolic diseases, and cancer. Due to the high degree of fetal cellular division and differentiation, and to differences from the adult in many biochemical pathways, the fetus is highly susceptible to teratogens, typically at low exposure levels that do not harm the mother. Insights into the mechanisms of teratogenesis come primarily from animal models and in vitro systems, and involve either receptor-mediated or reactive intermediate-mediated processes. Receptor-mediated mechanisms involving the reversible binding of xenobiotic substrates to a specific receptor are exemplified herein by the interaction of the environmental chemical 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD or "dioxin") with the cytosolic aryl hydrocarbon receptor (AHR), which translocates to the nucleus and, in association with other proteins, binds to AH-responsive elements (AHREs) in numerous genes, initiating changes in gene transcription that can perturb development. Alternatively, many xenobiotics are bioactivated by fetal enzymes like the cytochromes P450 (CYPs) and prostaglandin H synthases (PHSs) to highly unstable electrophilic or free radical reactive intermediates. Electrophilic reactive intermediates can covalently (irreversibly) bind to and alter the function of essential cellular macromolecules (proteins, DNA), causing developmental anomalies. Free radical reactive intermediates can enhance the formation of reactive oxygen species (ROS), resulting in oxidative damage to cellular macromolecules and/or altered signal transduction. The teratogenicity of reactive intermediates is determined to a large extent by the balance among embryonic and fetal pathways of xenobiotic bioactivation, detoxification of the xenobiotic reactive intermediate, detoxification of ROS, and repair of oxidative macromolecular damage.
Collapse
Affiliation(s)
- Peter G Wells
- Division of Biomolecular Sciences, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|
110
|
Lin CH, Chen CC, Chou CM, Wang CY, Hung CC, Chen JY, Chang HW, Chen YC, Yeh GC, Lee YH. Knockdown of the aryl hydrocarbon receptor attenuates excitotoxicity and enhances NMDA-induced BDNF expression in cortical neurons. J Neurochem 2009; 111:777-89. [DOI: 10.1111/j.1471-4159.2009.06364.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
111
|
Guo SW, Simsa P, Kyama CM, Mihalyi A, Fulop V, Othman EER, D'Hooghe TM. Reassessing the evidence for the link between dioxin and endometriosis: from molecular biology to clinical epidemiology. Mol Hum Reprod 2009; 15:609-24. [DOI: 10.1093/molehr/gap075] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
112
|
Bradshaw TD, Bell DR. Relevance of the aryl hydrocarbon receptor (AhR) for clinical toxicology. Clin Toxicol (Phila) 2009; 47:632-42. [PMID: 19640236 DOI: 10.1080/15563650903140423] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION The aryl hydrocarbon receptor (AhR) is a cellular signaling molecule infamous for mediating the toxicity of dioxins and related compounds. AIM The aim of this review is to provide a background of AhR and to examine critically its role in chemical toxicity, in physiological systems, and its interaction with drugs and other compounds. TOXICITY The AhR is essential for the toxicity of dioxins and related chemicals. The AhR mediates the exquisite sensitivity of animals to dioxins, where as little as 2 ng/kg/day can yield striking adverse effects. PHYSIOLOGICAL ROLE OF AHR: The wide variety of adverse effects of dioxin argues for an important role of the AhR in a variety of physiological systems. Recent investigations have highlighted the role of AhR in the development of the brain and vasculature. DRUGS AND OTHER CHEMICAL ACTIVATORS OF AHR: The development of AhR agonists during drug development programs is sometimes inadvertent, but sometimes the target of development, and is yet further confirmation of the likely importance of AhR signaling in constitutive physiology. The presence of AhR agonists in the diet such as indolo-(3,2-b)-carbazole and 3,3'-diindolylmethane (metabolized from indole 3-carbinol), flavonoids, and sulforaphane and of endogenous activators of this signaling system such as eicosanoids, indirubin, bilirubin, cAMP, and tryptophan are suggestive that AhR activation is a normal physiological process and that it is the persistent and high-level stimulation of AhR by dioxins that is responsible for toxicity. CONCLUSIONS AhR-mediated toxicity and physiology are highly relevant to clinical toxicology and drug development.
Collapse
|
113
|
Jovelin R. Rapid sequence evolution of transcription factors controlling neuron differentiation in Caenorhabditis. Mol Biol Evol 2009; 26:2373-86. [PMID: 19589887 DOI: 10.1093/molbev/msp142] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Whether phenotypic evolution proceeds predominantly through changes in regulatory sequences is a controversial issue in evolutionary genetics. Ample evidence indicates that the evolution of gene regulatory networks via changes in cis-regulatory sequences is an important determinant of phenotypic diversity. However, recent experimental work suggests that the role of transcription factor (TF) divergence in developmental evolution may be underestimated. In order to help understand what levels of constraints are acting on the coding sequence of developmental regulatory genes, evolutionary rates were investigated among 48 TFs required for neuronal development in Caenorhabditis elegans. Allelic variation was then sampled for 28 of these genes within a population of the related species Caenorhabditis remanei. Neuronal TFs are more divergent, both within and between species, than structural genes. TFs affecting different neuronal classes are under different levels of selective constraints. The regulatory genes controlling the differentiation of chemosensory neurons evolve particularly fast and exhibit higher levels of within- and between-species nucleotide variation than TFs required for the development of several neuronal classes and TFs required for motorneuron differentiation. The TFs affecting chemosensory neuron development are also more divergent than chemosensory genes expressed in the neurons they differentiate. These results illustrate that TFs are not as highly constrained as commonly thought and suggest that the role of divergence in developmental regulatory genes during the evolution of gene regulatory networks requires further attention.
Collapse
Affiliation(s)
- Richard Jovelin
- Center for Ecology and Evolutionary Biology, University of Oregon, Oregon, USA.
| |
Collapse
|
114
|
Sartor MA, Schnekenburger M, Marlowe JL, Reichard JF, Wang Y, Fan Y, Ma C, Karyala S, Halbleib D, Liu X, Medvedovic M, Puga A. Genomewide analysis of aryl hydrocarbon receptor binding targets reveals an extensive array of gene clusters that control morphogenetic and developmental programs. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:1139-46. [PMID: 19654925 PMCID: PMC2717142 DOI: 10.1289/ehp.0800485] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2008] [Accepted: 03/24/2009] [Indexed: 05/18/2023]
Abstract
BACKGROUND The vertebrate aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that regulates cellular responses to environmental polycyclic and halogenated compounds. The naive receptor is believed to reside in an inactive cytosolic complex that translocates to the nucleus and induces transcription of xenobiotic detoxification genes after activation by ligand. OBJECTIVES We conducted an integrative genomewide analysis of AHR gene targets in mouse hepatoma cells and determined whether AHR regulatory functions may take place in the absence of an exogenous ligand. METHODS The network of AHR-binding targets in the mouse genome was mapped through a multipronged approach involving chromatin immunoprecipitation/chip and global gene expression signatures. The findings were integrated into a prior functional knowledge base from Gene Ontology, interaction networks, Kyoto Encyclopedia of Genes and Genomes pathways, sequence motif analysis, and literature molecular concepts. RESULTS We found the naive receptor in unstimulated cells bound to an extensive array of gene clusters with functions in regulation of gene expression, differentiation, and pattern specification, connecting multiple morphogenetic and developmental programs. Activation by the ligand displaced the receptor from some of these targets toward sites in the promoters of xenobiotic metabolism genes. CONCLUSIONS The vertebrate AHR appears to possess unsuspected regulatory functions that may be potential targets of environmental injury.
Collapse
Affiliation(s)
| | - Michael Schnekenburger
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jennifer L. Marlowe
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - John F. Reichard
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ying Wang
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Yunxia Fan
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ci Ma
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Saikumar Karyala
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Danielle Halbleib
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Xiangdong Liu
- Laboratory for Statistical Genomics and Systems Biology and
| | | | - Alvaro Puga
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Address correspondence to A. Puga, Department of Environmental Health, University of Cincinnati College of Medicine, 3223 Eden Ave., Cincinnati, OH 45220 USA. Telephone: (513) 558-0916. Fax: (513) 558-0925. E-mail:
| |
Collapse
|
115
|
Gohlke JM, Stockton PS, Sieber S, Foley J, Portier CJ. AhR-mediated gene expression in the developing mouse telencephalon. Reprod Toxicol 2009; 28:321-8. [PMID: 19465110 DOI: 10.1016/j.reprotox.2009.05.067] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 05/05/2009] [Accepted: 05/15/2009] [Indexed: 12/12/2022]
Abstract
We hypothesize that TCDD-induced developmental neurotoxicity is modulated through an AhR-dependent interaction with key regulatory neuronal differentiation pathways during telencephalon development. To test this hypothesis we examined global gene expression in both dorsal and ventral telencephalon tissues in E13.5 AhR-/- and wildtype mice exposed to TCDD or vehicle. Consistent with previous biochemical, pathological and behavioral studies, our results suggest TCDD initiated changes in gene expression in the developing telencephalon are primarily AhR-dependent, as no statistically significant gene expression changes are evident after TCDD exposure in AhR-/- mice. Based on a gene regulatory network for neuronal specification in the developing telencephalon, the present analysis suggests differentiation of GABAergic neurons in the ventral telencephalon is compromised in TCDD exposed and AhR-/- mice. In addition, our analysis suggests Sox11 may be directly regulated by AhR based on gene expression and comparative genomics analyses. In conclusion, this analysis supports the hypothesis that AhR has a specific role in the normal development of the telencephalon and provides a mechanistic framework for neurodevelopmental toxicity of chemicals that perturb AhR signaling.
Collapse
Affiliation(s)
- Julia M Gohlke
- Environmental Systems Biology Group, Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, RTP, NC 27709, USA
| | | | | | | | | |
Collapse
|
116
|
Hirabayashi Y, Inoue T. Aryl hydrocarbon receptor biology and xenobiotic responses in hematopoietic progenitor cells. Biochem Pharmacol 2009; 77:521-35. [DOI: 10.1016/j.bcp.2008.09.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 08/29/2008] [Accepted: 09/19/2008] [Indexed: 11/28/2022]
|
117
|
MacNeil LT, Hardy WR, Pawson T, Wrana JL, Culotti JG. UNC-129 regulates the balance between UNC-40 dependent and independent UNC-5 signaling pathways. Nat Neurosci 2009; 12:150-5. [PMID: 19169249 PMCID: PMC2745997 DOI: 10.1038/nn.2256] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 12/08/2008] [Indexed: 11/25/2022]
Abstract
The UNC-5 receptor mediates axon repulsion from UNC-6/netrin through UNC-40 dependent (‘UNC-5+UNC-40’) and independent (‘UNC-5-alone’) signaling pathways. A requirement for UNC-40 dependent signaling has been shown in long-range repulsion from UNC-6/netrin, however, the mechanisms used to regulate distinct UNC-5 signaling pathways are poorly understood. Here we demonstrate that the C. elegans TGF-β family ligand UNC-129, graded opposite to UNC-6/netrin, functions independent of the canonical TGF-β receptors to regulate UNC-5 cellular responses. We provide evidence that UNC-129 facilitates long-range repulsive guidance of UNC-6 by enhancing ‘UNC-5+UNC-40’ signaling at the expense of ‘UNC-5-alone’ signaling through interaction with the UNC-5 receptor. This increases the set point sensitivity of growth cones to UNC-6/netrin as they simultaneously migrate up the UNC-129 gradient and down the UNC-6 gradient. Similar regulatory interactions between oppositely graded extracellular cues may be a common theme in guided cell and axon migrations.
Collapse
Affiliation(s)
- Lesley T MacNeil
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | | | | | | | | |
Collapse
|
118
|
Carvajal-Gonzalez JM, Mulero-Navarro S, Roman AC, Sauzeau V, Merino JM, Bustelo XR, Fernandez-Salguero PM. The dioxin receptor regulates the constitutive expression of the vav3 proto-oncogene and modulates cell shape and adhesion. Mol Biol Cell 2009; 20:1715-27. [PMID: 19158396 DOI: 10.1091/mbc.e08-05-0451] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The dioxin receptor (AhR) modulates cell plasticity and migration, although the signaling involved remains unknown. Here, we report a mechanism that integrates AhR into these cytoskeleton-related functions. Immortalized and mouse embryonic fibroblasts lacking AhR (AhR-/-) had increased cell area due to spread cytoplasms that reverted to wild-type morphology upon AhR re-expression. The AhR-null phenotype included increased F-actin stress fibers, depolarized focal adhesions, and enhanced spreading and adhesion. The cytoskeleton alterations of AhR-/- cells were due to down-regulation of constitutive Vav3 expression, a guanosine diphosphate/guanosine triphosphate exchange factor for Rho/Rac GTPases and a novel transcriptional target of AhR. AhR was recruited to the vav3 promoter and maintained constitutive mRNA expression in a ligand-independent manner. Consistently, AhR-/- fibroblasts had reduced Rac1 activity and increased activation of the RhoA/Rho kinase (Rock) pathway. Pharmacological inhibition of Rac1 shifted AhR+/+ fibroblasts to the null phenotype, whereas Rock inhibition changed AhR-null cells to the AhR+/+ morphology. Knockdown of vav3 transcripts by small interfering RNA induced cytoskeleton defects and changes in adhesion and spreading mimicking those of AhR-null cells. Moreover, vav3-/- MEFs, as AhR-/- mouse embryonic fibroblasts, had increased cell area and enhanced stress fibers. By modulating Vav3-dependent signaling, AhR could regulate cell shape, adhesion, and migration under physiological conditions and, perhaps, in certain pathological states.
Collapse
Affiliation(s)
- Jose M Carvajal-Gonzalez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | | | | | | | | | | | | |
Collapse
|
119
|
Singh KP, Casado FL, Opanashuk LA, Gasiewicz TA. The aryl hydrocarbon receptor has a normal function in the regulation of hematopoietic and other stem/progenitor cell populations. Biochem Pharmacol 2008; 77:577-87. [PMID: 18983985 DOI: 10.1016/j.bcp.2008.10.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 10/01/2008] [Accepted: 10/01/2008] [Indexed: 12/17/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is known mainly as the mediator for the toxicity of certain xenobiotics. However, there is also much information to indicate that this transcription factor has important biological functions. Here we review the evidence that the AhR has a significant role in the regulation of hematopoietic stem cells (HSCs). Data to support this come from studies with xenobiotic AhR ligands, phenotypic analyses of mice lacking AhR, examining the presence and regulation of the AhR within HSCs, knowledge of genes and signaling pathways regulated by the AhR, and investigations of hematopoietic disorders. Based on this information, we hypothesize that AhR expression is necessary for the proper maintenance of quiescence in HSCs, and that AhR down-regulation is essential for "escape" from quiescence and subsequent proliferation of these cells. This implicates the AhR as a negative regulator of hematopoiesis with a function of curbing excessive or unnecessary proliferation. This provides an important advantage by preventing the premature exhaustion of HSCs and sensitivity to genetic alterations, thus preserving HSC function and long-term multi-lineage generation over the lifespan of the organism. This also implicates a role of the AhR in aging processes. AhR dysregulation may result in the altered ability of HSCs to sense appropriate signals in the bone marrow microenvironment leading to hematopoietic disease. It is also reasonable to hypothesize that this protein has an important function in the regulation of other tissue stem cell populations. Suggestive evidence is consistent with a role in skin and neural stem cells.
Collapse
Affiliation(s)
- Kameshwar P Singh
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
120
|
Vuori KA, Nordlund E, Kallio J, Salakoski T, Nikinmaa M. Tissue-specific expression of aryl hydrocarbon receptor and putative developmental regulatory modules in Baltic salmon yolk-sac fry. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2008; 87:19-27. [PMID: 18294709 DOI: 10.1016/j.aquatox.2008.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 12/21/2007] [Accepted: 01/03/2008] [Indexed: 05/25/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is an ancient protein that is conserved in vertebrates and invertebrates, indicating its important function throughout evolution. AhR has been studied largely because of its role in toxicology-gene expression via AhR is induced by many aromatic hydrocarbons in mammals. Recently, however, it has become clear that AhR is involved in various aspects of development such as cell proliferation and differentiation, and cell motility and migration. The mechanisms by which AhR regulates these various functions remain poorly understood. Across-species comparative studies of AhR in invertebrates, non-mammalian vertebrates and mammals may help to reveal the multiple functions of AhR. Here, we have studied AhR during larval development of Baltic salmon (Salmon salar). Our results indicate that AhR protein is expressed in nervous system, liver and muscle tissues. We also present putative regulatory modules and module-matching genes, produced by chromatin immunoprecipitation (ChIP) cloning and in silico analysis, which may be associated with evolutionarily conserved functions of AhR during development. For example, the module NFKB-AHRR-CREB found from salmon ChIP sequences is present in human ULK3 (regulating formation of granule cell axons in mouse and axon outgrowth in Caernohabditis elegans) and SRGAP1 (GTPase-activating protein involved in the Slit/Robo pathway) promoters. We suggest that AhR may have an evolutionarily conserved role in neuronal development and nerve cell targeting, and in Wnt signaling pathway.
Collapse
Affiliation(s)
- Kristiina A Vuori
- Centre of Excellence in Evolutionary Genetics and Physiology, Department of Biology, University of Turku, FI-20014 Turku, Finland.
| | | | | | | | | |
Collapse
|
121
|
Grove CA, Walhout AJM. Transcription factor functionality and transcription regulatory networks. MOLECULAR BIOSYSTEMS 2008; 4:309-14. [PMID: 18354784 DOI: 10.1039/b715909a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Now that numerous high-quality complete genome sequences are available, many efforts are focusing on the "second genomic code", namely the code that determines how the precise temporal and spatial expression of each gene in the genome is achieved. In this regard, the elucidation of transcription regulatory networks that describe combined transcriptional circuits for an organism of interest has become valuable to our understanding of gene expression at a systems level. Such networks describe physical and regulatory interactions between transcription factors (TFs) and the target genes they regulate under different developmental, physiological, or pathological conditions. The mapping of high-quality transcription regulatory networks depends not only on the accuracy of the experimental or computational method chosen, but also relies on the quality of TF predictions. Moreover, the total repertoire of TFs is not only determined by the protein-coding capacity of the genome, but also by different protein properties, including dimerization, co-factor interactions and post-translational modifications. Here, we discuss the factors that influence TF functionality and, hence, the functionality of the networks in which they operate.
Collapse
Affiliation(s)
- Christian A Grove
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
122
|
Antipsychotic drugs alter neuronal development including ALM neuroblast migration and PLM axonal outgrowth in Caenorhabditis elegans. Int J Dev Neurosci 2008; 26:371-80. [PMID: 18282677 DOI: 10.1016/j.ijdevneu.2007.08.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 01/07/2008] [Accepted: 08/21/2007] [Indexed: 02/05/2023] Open
Abstract
Antipsychotic drugs are increasingly being prescribed for children and adolescents, and are used in pregnant women without a clear demonstration of safety in these populations. Global effects of these drugs on neurodevelopment (e.g., decreased brain size) have been reported in rats, but detailed knowledge about neuronal effects and mechanisms of action are lacking. Here we report on the evaluation of a comprehensive panel of antipsychotic drugs in a model organism (Caenorhabditis elegans) that is widely used to study neuronal development. Specifically, we examined the effects of the drugs on neuronal migration and axonal outgrowth in mechanosensory neurons visualized with green fluorescent protein expressed from the mec-3 promoter. Clozapine, fluphenazine, and haloperidol produced deficits in the development and migration of ALM neurons and axonal outgrowth in PLM neurons. The defects included failure of neuroblasts to migrate to the proper location, and excessive growth of axons past their normal termination point, together with abnormal morphological features of the processes. Although the antipsychotic drugs are potent antagonists of dopamine and serotonin receptors, the neurodevelopmental deficits were not rescued by co-incubation with serotonin or the dopaminergic agonist, quinpirole. Other antipsychotic drugs, risperidone, aripiprazole, quetiapine, trifluoperazine and olanzapine, also produced modest, but detectable, effects on neuronal development. This is the first report that antipsychotic drugs interfere with neuronal migration and axonal outgrowth in a developing nervous system.
Collapse
|
123
|
Nguyen LP, Bradfield CA. The search for endogenous activators of the aryl hydrocarbon receptor. Chem Res Toxicol 2007; 21:102-16. [PMID: 18076143 DOI: 10.1021/tx7001965] [Citation(s) in RCA: 561] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The primary design of this perspective is to describe the major ligand classes of the aryl hydrocarbon receptor (AHR). A grander objective is to provide models that may help define the physiological activator or "endogenous ligand" of the AHR. We present evidence supporting a developmental role for the AHR and propose mechanisms by which an endogenous ligand and consequent AHR activation might be important during normal physiology and development. From this vista, we survey the known xenobiotic, endogenous, dietary, and "unconventional" activators of the AHR, including, when possible, information about their induction potency, receptor binding affinity, and potential for exposure. In light of the essential function of the AHR in embryonic development, we discuss the candidacy of each of these compounds as physiologically important activators.
Collapse
Affiliation(s)
- Linh P Nguyen
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
124
|
Simsa P, Járási ZE, Fülöp V. [Environmental dioxin compounds as the cause of endometriosis and other diseases]. Orv Hetil 2007; 148:1745-50. [PMID: 17827083 DOI: 10.1556/oh.2007.28172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There has been much debate of late about whether or not dioxin, an industrial toxin, could be a causative agent in the onset of endometriosis, a gynaecological disease associated with infertility and pain. Studies found either no difference in serum dioxin concentrations when cases were compared to controls or a non-significant increase, or reached low statistical power. The introductory results on Rhesus monkey contradict with the observations on mice fed with dioxin and oestrogen simultaneously. Genetic comparison shows that human belongs to the dioxin resistant races so dioxin concentrations measured in the population could not cause disease especially not an oestrogen dependent one, like endometriosis.
Collapse
Affiliation(s)
- Péter Simsa
- Országos Gyógyintézeti Központ, Nogyógyászati Osztály, Budapest.
| | | | | |
Collapse
|
125
|
McMillan BJ, Bradfield CA. The aryl hydrocarbon receptor sans xenobiotics: endogenous function in genetic model systems. Mol Pharmacol 2007; 72:487-98. [PMID: 17535977 DOI: 10.1124/mol.107.037259] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
For more than 30 years, the aryl hydrocarbon receptor [Ah receptor (AHR)] has been extensively scrutinized as the cellular receptor for numerous environmental contaminants, including polychlorinated dioxins, dibenzofurans, and biphenyls. Recent evidence argues that this description is incomplete and perhaps myopic. Ah receptor orthologs have been demonstrated to mediate diverse endogenous functions in our close vertebrate relatives as well as our distant invertebrate ancestors. Moreover, these endogenous functions suggest that xenobiotic toxicity may be best understood in the context of intrinsic AHR physiology. In this literature review, we survey the emerging picture of endogenous AHR biology from work in the vertebrate and invertebrate model systems Mus musculus, Caenorhabditis elegans, and Drosophila melanogaster.
Collapse
Affiliation(s)
- Brian J McMillan
- McArdle Laboratory for Cancer Research, University of Wisconsin Shool of Medicine and Public Health, Madison, Wisconsin, USA
| | | |
Collapse
|
126
|
Chang X, Fan Y, Karyala S, Schwemberger S, Tomlinson CR, Sartor MA, Puga A. Ligand-independent regulation of transforming growth factor beta1 expression and cell cycle progression by the aryl hydrocarbon receptor. Mol Cell Biol 2007; 27:6127-39. [PMID: 17606626 PMCID: PMC1952156 DOI: 10.1128/mcb.00323-07] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that mediates the toxic effects of its xenobiotic ligands and acts as an environmental checkpoint during the cell cycle. We expressed stably integrated, Tet-Off-regulated AHR variants in fibroblasts from AHR-null mice to further investigate the AHR role in cell cycle regulation. Ahr+/+ fibroblasts proliferated significantly faster than Ahr-/- fibroblasts did, and exposure to a prototypical AHR ligand or deletion of the ligand-binding domain did not change their proliferation rates, indicating that the AHR function in cell cycle was ligand independent. Growth-promoting genes, such as cyclin and cyclin-dependent kinase genes, were significantly down-regulated in Ahr-/- cells, whereas growth-arresting genes, such as the transforming growth factor beta1 (TGF-beta1) gene, extracellular matrix (ECM)-related genes, and cyclin-dependent kinase inhibitor genes, were up-regulated. Ahr-/- fibroblasts secreted significantly more TGF-beta1 into the culture medium than Ahr+/+ fibroblasts did, and Ahr-/- showed increased levels of activated Smad4 and TGF-beta1 mRNA. Inhibition of TGF-beta1 signaling by overexpression of Smad7 reversed the proliferative and gene expression phenotype of Ahr-/- fibroblasts. Changes in TGF-beta1 mRNA accumulation were due to stabilization resulting from decreased activity of TTP, the tristetraprolin RNA-binding protein responsible for mRNA destabilization through AU-rich motifs. These results show that the Ah receptor possesses interconnected intrinsic cellular functions, such as ECM formation, cell cycle control, and TGF-beta1 regulation, that are independent of activation by either exogenous or endogenous ligands and that may play a crucial role during tumorigenesis.
Collapse
Affiliation(s)
- Xiaoqing Chang
- Department of Environmental Health, University of Cincinnati Medical Center, and Shriners Hospital for Children, Cincinnati, OH 45267-0056, USA
| | | | | | | | | | | | | |
Collapse
|
127
|
Vuori KAM, Nikinmaa M. M74 syndrome in Baltic salmon and the possible role of oxidative stresses in its development: present knowledge and perspectives for future studies. AMBIO 2007; 36:168-72. [PMID: 17520930 DOI: 10.1579/0044-7447(2007)36[168:msibsa]2.0.co;2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Baltic salmon suffer from maternally transmitted yolk-sac fry mortality syndrome--M74. The incidence of M74 varies considerably on a year to year basis. In the 1990s the mortalities were 50-80% but in 2003-2005, below 10%. Before death, M74-affected fry have several typical symptoms. M74-eggs are characterized by low thiamine and carotenoid content, and affected fry show signs of oxidative stress. Although M74 is associated with thiamine deficiency and the symptoms of the fry can be alleviated with thiamine, the underlying causes of the syndrome have remained a mystery. We have studied the symptoms of M74 at the molecular level by investigating the global gene expression patterns using cDNA microarray and have quantified the changes in transcriptional regulation in M74-affected and healthy yolk-sac fry. Our and previous results suggest that M74 in Baltic salmon yolk-sac fry results from oxidative stresses disturbing several different developmental molecular pathways. Because the M74 syndrome is of maternal origin, factors in the Baltic Sea during salmon feeding and migration, i.e., the chemical composition of food, may be decisive in the development of M74. The possible mechanisms by which oxidative stresses may develop in adult salmon are discussed in the review.
Collapse
Affiliation(s)
- Kristiina A M Vuori
- Center of Excellence in Evoluationary Genetics and Physiology, Department of Biology, University of Turku, Finland.
| | | |
Collapse
|
128
|
Barouki R, Coumoul X, Fernandez-Salguero PM. The aryl hydrocarbon receptor, more than a xenobiotic-interacting protein. FEBS Lett 2007; 581:3608-15. [PMID: 17412325 DOI: 10.1016/j.febslet.2007.03.046] [Citation(s) in RCA: 294] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 03/15/2007] [Accepted: 03/19/2007] [Indexed: 12/20/2022]
Abstract
The aryl hydrocarbon (dioxin) receptor (AhR) has been studied for several decades largely because of its critical role in xenobiotic-induced toxicity and carcinogenesis. Albeit this is a major issue in basic and clinical research, an increasing number of investigators are turning their efforts to try to understand the physiology of the AhR under normal cellular conditions. This is an exciting area that covers cell proliferation and differentiation, endogenous mechanisms of activation, gene regulation, tumor development and cell motility and migration, among others. In this review, we will attempt to summarize the studies supporting the implication of the AhR in those endogenous cellular processes.
Collapse
|
129
|
Goldstone J, Hamdoun A, Cole B, Howard-Ashby M, Nebert D, Scally M, Dean M, Epel D, Hahn M, Stegeman J. The chemical defensome: environmental sensing and response genes in the Strongylocentrotus purpuratus genome. Dev Biol 2006; 300:366-84. [PMID: 17097629 PMCID: PMC3166225 DOI: 10.1016/j.ydbio.2006.08.066] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2006] [Revised: 08/18/2006] [Accepted: 08/28/2006] [Indexed: 01/08/2023]
Abstract
Metazoan genomes contain large numbers of genes that participate in responses to environmental stressors. We surveyed the sea urchin Strongylocentrotus purpuratus genome for homologs of gene families thought to protect against chemical stressors; these genes collectively comprise the 'chemical defensome.' Chemical defense genes include cytochromes P450 and other oxidases, various conjugating enzymes, ATP-dependent efflux transporters, oxidative detoxification proteins, and transcription factors that regulate these genes. Together such genes account for more than 400 genes in the sea urchin genome. The transcription factors include homologs of the aryl hydrocarbon receptor, hypoxia-inducible factor, nuclear factor erythroid-derived 2, heat shock factor, and nuclear hormone receptors, which regulate stress-response genes in vertebrates. Some defense gene families, including the ABCC, the UGT, and the CYP families, have undergone expansion in the urchin relative to other deuterostome genomes, whereas the stress sensor gene families do not show such expansion. More than half of the defense genes are expressed during embryonic or larval life stages, indicating their importance during development. This genome-wide survey of chemical defense genes in the sea urchin reveals evolutionary conservation of this network combined with lineage-specific diversification that together suggest the importance of these chemical stress sensing and response mechanisms in early deuterostomes. These results should facilitate future studies on the evolution of chemical defense gene networks and the role of these networks in protecting embryos from chemical stress during development.
Collapse
Affiliation(s)
- J.V. Goldstone
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - A. Hamdoun
- Hopkins Marine Station, Stanford University, Oceanview Blvd. Pacific Grove, CA 93950, USA
| | - B.J. Cole
- Hopkins Marine Station, Stanford University, Oceanview Blvd. Pacific Grove, CA 93950, USA
| | - M. Howard-Ashby
- Department of Biology, California Institute of Technology, CA, USA
| | - D.W. Nebert
- Department of Environmental Health, University Cincinnati Medical Center, Cincinnati, OH 45267-0056, USA
| | - M. Scally
- Human Genetics Section, Laboratory of Genomic Diversity, NCI-Frederick, Frederick, MD 21702, USA
| | - M. Dean
- Human Genetics Section, Laboratory of Genomic Diversity, NCI-Frederick, Frederick, MD 21702, USA
| | - D. Epel
- Hopkins Marine Station, Stanford University, Oceanview Blvd. Pacific Grove, CA 93950, USA
| | - M.E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - J.J. Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| |
Collapse
|
130
|
Sodergren E, Weinstock GM, Davidson EH, Cameron RA, Gibbs RA, Angerer RC, Angerer LM, Arnone MI, Burgess DR, Burke RD, Coffman JA, Dean M, Elphick MR, Ettensohn CA, Foltz KR, Hamdoun A, Hynes RO, Klein WH, Marzluff W, McClay DR, Morris RL, Mushegian A, Rast JP, Smith LC, Thorndyke MC, Vacquier VD, Wessel GM, Wray G, Zhang L, Elsik CG, Ermolaeva O, Hlavina W, Hofmann G, Kitts P, Landrum MJ, Mackey AJ, Maglott D, Panopoulou G, Poustka AJ, Pruitt K, Sapojnikov V, Song X, Souvorov A, Solovyev V, Wei Z, Whittaker CA, Worley K, Durbin KJ, Shen Y, Fedrigo O, Garfield D, Haygood R, Primus A, Satija R, Severson T, Gonzalez-Garay ML, Jackson AR, Milosavljevic A, Tong M, Killian CE, Livingston BT, Wilt FH, Adams N, Bellé R, Carbonneau S, Cheung R, Cormier P, Cosson B, Croce J, Fernandez-Guerra A, Genevière AM, Goel M, Kelkar H, Morales J, Mulner-Lorillon O, Robertson AJ, Goldstone JV, Cole B, Epel D, Gold B, Hahn ME, Howard-Ashby M, Scally M, Stegeman JJ, Allgood EL, Cool J, Judkins KM, McCafferty SS, Musante AM, Obar RA, Rawson AP, Rossetti BJ, Gibbons IR, Hoffman MP, Leone A, Istrail S, Materna SC, Samanta MP, Stolc V, Tongprasit W, et alSodergren E, Weinstock GM, Davidson EH, Cameron RA, Gibbs RA, Angerer RC, Angerer LM, Arnone MI, Burgess DR, Burke RD, Coffman JA, Dean M, Elphick MR, Ettensohn CA, Foltz KR, Hamdoun A, Hynes RO, Klein WH, Marzluff W, McClay DR, Morris RL, Mushegian A, Rast JP, Smith LC, Thorndyke MC, Vacquier VD, Wessel GM, Wray G, Zhang L, Elsik CG, Ermolaeva O, Hlavina W, Hofmann G, Kitts P, Landrum MJ, Mackey AJ, Maglott D, Panopoulou G, Poustka AJ, Pruitt K, Sapojnikov V, Song X, Souvorov A, Solovyev V, Wei Z, Whittaker CA, Worley K, Durbin KJ, Shen Y, Fedrigo O, Garfield D, Haygood R, Primus A, Satija R, Severson T, Gonzalez-Garay ML, Jackson AR, Milosavljevic A, Tong M, Killian CE, Livingston BT, Wilt FH, Adams N, Bellé R, Carbonneau S, Cheung R, Cormier P, Cosson B, Croce J, Fernandez-Guerra A, Genevière AM, Goel M, Kelkar H, Morales J, Mulner-Lorillon O, Robertson AJ, Goldstone JV, Cole B, Epel D, Gold B, Hahn ME, Howard-Ashby M, Scally M, Stegeman JJ, Allgood EL, Cool J, Judkins KM, McCafferty SS, Musante AM, Obar RA, Rawson AP, Rossetti BJ, Gibbons IR, Hoffman MP, Leone A, Istrail S, Materna SC, Samanta MP, Stolc V, Tongprasit W, Tu Q, Bergeron KF, Brandhorst BP, Whittle J, Berney K, Bottjer DJ, Calestani C, Peterson K, Chow E, Yuan QA, Elhaik E, Graur D, Reese JT, Bosdet I, Heesun S, Marra MA, Schein J, Anderson MK, Brockton V, Buckley KM, Cohen AH, Fugmann SD, Hibino T, Loza-Coll M, Majeske AJ, Messier C, Nair SV, Pancer Z, Terwilliger DP, Agca C, Arboleda E, Chen N, Churcher AM, Hallböök F, Humphrey GW, Idris MM, Kiyama T, Liang S, Mellott D, Mu X, Murray G, Olinski RP, Raible F, Rowe M, Taylor JS, Tessmar-Raible K, Wang D, Wilson KH, Yaguchi S, Gaasterland T, Galindo BE, Gunaratne HJ, Juliano C, Kinukawa M, Moy GW, Neill AT, Nomura M, Raisch M, Reade A, Roux MM, Song JL, Su YH, Townley IK, Voronina E, Wong JL, Amore G, Branno M, Brown ER, Cavalieri V, Duboc V, Duloquin L, Flytzanis C, Gache C, Lapraz F, Lepage T, Locascio A, Martinez P, Matassi G, Matranga V, Range R, Rizzo F, Röttinger E, Beane W, Bradham C, Byrum C, Glenn T, Hussain S, Manning G, Miranda E, Thomason R, Walton K, Wikramanayke A, Wu SY, Xu R, Brown CT, Chen L, Gray RF, Lee PY, Nam J, Oliveri P, Smith J, Muzny D, Bell S, Chacko J, Cree A, Curry S, Davis C, Dinh H, Dugan-Rocha S, Fowler J, Gill R, Hamilton C, Hernandez J, Hines S, Hume J, Jackson L, Jolivet A, Kovar C, Lee S, Lewis L, Miner G, Morgan M, Nazareth LV, Okwuonu G, Parker D, Pu LL, Thorn R, Wright R. The genome of the sea urchin Strongylocentrotus purpuratus. Science 2006; 314:941-52. [PMID: 17095691 PMCID: PMC3159423 DOI: 10.1126/science.1133609] [Show More Authors] [Citation(s) in RCA: 816] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We report the sequence and analysis of the 814-megabase genome of the sea urchin Strongylocentrotus purpuratus, a model for developmental and systems biology. The sequencing strategy combined whole-genome shotgun and bacterial artificial chromosome (BAC) sequences. This use of BAC clones, aided by a pooling strategy, overcame difficulties associated with high heterozygosity of the genome. The genome encodes about 23,300 genes, including many previously thought to be vertebrate innovations or known only outside the deuterostomes. This echinoderm genome provides an evolutionary outgroup for the chordates and yields insights into the evolution of deuterostomes.
Collapse
|
131
|
Hahn ME, Karchner SI, Evans BR, Franks DG, Merson RR, Lapseritis JM. Unexpected diversity of aryl hydrocarbon receptors in non-mammalian vertebrates: insights from comparative genomics. ACTA ACUST UNITED AC 2006; 305:693-706. [PMID: 16902966 DOI: 10.1002/jez.a.323] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ligand-activated receptors are well-known targets of environmental chemicals that disrupt endocrine signaling. Genomic approaches are providing new opportunities to understand the comparative biology and molecular evolution of these receptors. One example of this is the aryl hydrocarbon receptor (AHR), a basic-helix-loop-helix (bHLH)-Per-Arnt-Sim (PAS) transcription factor through which planar aromatic hydrocarbons cause altered gene expression and toxicity. In contrast to humans and other mammals, which possess a single AHR, teleosts such as the Atlantic killifish (Fundulus heteroclitus) have at least two AHRs (AHR1 and AHR2). Analysis of sequenced genomes has revealed additional, unexpected AHR diversity in non-mammalian vertebrates, including the chicken Gallus gallus (three predicted AHR genes), bony fishes such as the pufferfish Takifugu (formerly Fugu) rubripes (five AHR genes) and zebrafish Danio rerio (three AHR genes), and cartilaginous fishes such as the spiny dogfish Squalus acanthias (three AHR genes). In contrast, invertebrates appear to possess single AHRs that do not bind typical ligands of vertebrate AHRs. We suggest that AHR diversity in vertebrates arose through both gene and whole-genome duplications combined with lineage-specific gene loss, and that sensitivity to the developmental toxicity of planar aromatic hydrocarbons may have had its origin in the evolution of the ligand-binding capacity of the AHR in the chordate lineage. Comparative molecular and genomic studies are providing new insights into AHR diversity and function in non-mammalian species, revealing additional complexity in mechanisms by which environmental chemicals interfere with receptor-dependent signaling.
Collapse
Affiliation(s)
- Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA.
| | | | | | | | | | | |
Collapse
|
132
|
Kim MD, Jan LY, Jan YN. The bHLH-PAS protein Spineless is necessary for the diversification of dendrite morphology of Drosophila dendritic arborization neurons. Genes Dev 2006; 20:2806-19. [PMID: 17015425 PMCID: PMC1619948 DOI: 10.1101/gad.1459706] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Dendrites exhibit a wide range of morphological diversity, and their arborization patterns are critical determinants of proper neural connectivity. How different neurons acquire their distinct dendritic branching patterns during development is not well understood. Here we report that Spineless (Ss), the Drosophila homolog of the mammalian aryl hydrocarbon (dioxin) receptor (Ahr), regulates dendrite diversity in the dendritic arborization (da) sensory neurons. In loss-of-function ss mutants, class I and II da neurons, which are normally characterized by their simple dendrite morphologies, elaborate more complex arbors, whereas the normally complex class III and IV da neurons develop simpler dendritic arbors. Consequently, different classes of da neurons elaborate dendrites with similar morphologies. In its control of dendritic diversity among da neurons, ss likely acts independently of its known cofactor tango and through a regulatory program distinct from those involving cut and abrupt. These findings suggest that one evolutionarily conserved role for Ahr in neuronal development concerns the diversification of dendrite morphology.
Collapse
Affiliation(s)
- Michael D Kim
- Howard Hughes Medical Institute, Department of Physiology, University of California at San Francisco, San Francisco, California 94143, USA
| | | | | |
Collapse
|
133
|
Diry M, Tomkiewicz C, Koehle C, Coumoul X, Bock KW, Barouki R, Transy C. Activation of the dioxin/aryl hydrocarbon receptor (AhR) modulates cell plasticity through a JNK-dependent mechanism. Oncogene 2006; 25:5570-4. [PMID: 16619036 DOI: 10.1038/sj.onc.1209553] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 01/31/2006] [Accepted: 02/22/2006] [Indexed: 02/01/2023]
Abstract
Environmental chemicals such as dioxin adversely affect immune, neurological and reproductive functions and have been implicated in cancer development. However, the mechanisms responsible for dioxin toxicity are still poorly understood. Here, we show that dioxin and related pollutants trigger a marked morphological change in epithelial cells that remodel their cytoskeleton to increase interaction with extra cellular matrix while loosening cell-cell contacts. Furthermore, dioxin-treated cells show increased motility. These dioxin-mediated effects are mimicked by constitutive expression and activation of the intracellular dioxin receptor (aryl hydrocarbon receptor (AhR)). They correlate with activation of the Jun NH2-terminal kinase (JNK) and are reverted by treatment with a JNK inhibitor. Dioxin-induced effects occur 48 h post-treatment initiation, a time scale, which argues for a genomic effect of the AhR, linked to induction of target genes. This novel Ahr action on cell plasticity points to a role in cancer progression.
Collapse
Affiliation(s)
- M Diry
- UMR-S 490 INSERM, UFR Biomédicale des Saints Pères, Paris, Cedex, France
| | | | | | | | | | | | | |
Collapse
|
134
|
Held JM, White MP, Fisher AL, Gibson BW, Lithgow GJ, Gill MS. DAF-12-dependent rescue of dauer formation in Caenorhabditis elegans by (25S)-cholestenoic acid. Aging Cell 2006; 5:283-91. [PMID: 16913876 DOI: 10.1111/j.1474-9726.2006.00218.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Population density, temperature and food availability all regulate the formation of the Caenorhabditis elegans dauer larva by modulating endocrine signaling pathways. The orphan nuclear receptor DAF-12 is pivotal for the decision to form a dauer or to undergo normal reproductive development. The DAF-12 ligand has been predicted to be a sterol that is metabolized by DAF-9, a cytochrome P450. Here we chemically characterize purified lipophilic nematode extracts and show that the ligand for DAF-12 contains a carboxyl moiety and is likely to be derived from a sterol. Using a candidate ligand approach we find that the C27 bile acid cholestenoic acid (5-cholesten-3beta-ol-(25S)-carboxylic acid) promotes reproductive growth in dauer-constitutive mutants in a daf-9- and daf-12-dependent manner. Furthermore, we find that cholestenoic acid can act as a DAF-12 ligand by activating DAF-12 in a cell-based transcription assay. Analysis of dauer-rescuing lipophilic extracts from nematodes by gas chromatography-mass spectrometry indicates the presence of several regioisomers of cholestenoic acid that are distinct from Delta(5)-cholestenoic acid and are not present in extracts from daf-9 mutants. These data suggest that carboxylated sterols may be key determinants of life history.
Collapse
Affiliation(s)
- Jason M Held
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | | | | | | | | | | |
Collapse
|
135
|
Qin H, Zhai Z, Powell-Coffman JA. The Caenorhabditis elegans AHR-1 transcription complex controls expression of soluble guanylate cyclase genes in the URX neurons and regulates aggregation behavior. Dev Biol 2006; 298:606-15. [PMID: 16919260 DOI: 10.1016/j.ydbio.2006.07.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 06/27/2006] [Accepted: 07/14/2006] [Indexed: 11/30/2022]
Abstract
C. elegans ahr-1 is orthologous to the mammalian aryl hydrocarbon receptor, and it functions as a transcription factor to regulate the development of certain neurons. Here, we describe the role of ahr-1 in a specific behavior: the aggregation of C. elegans on lawns of bacterial food. This behavior is modulated by nutritional cues and ambient oxygen levels, and aggregation is inhibited by the npr-1 G protein-coupled neuropeptide receptor gene. Loss-of-function mutations in ahr-1 or its transcription partner aha-1 (ARNT) suppress aggregation behavior in npr-1-deficient animals. This behavioral defect is not irreparable. Aggregation behavior can be restored to ahr-1-deficient animals by heat-shock induction of ahr-1 transcription several hours after ahr-1-expressing neurons have normally differentiated. We show that ahr-1 and aha-1 promote cell-type-specific expression of soluble guanylate cyclase genes that have key roles in aggregation behavior and hyperoxia avoidance. Aggregation behavior can be partially restored to ahr-1 mutant animals by expression of ahr-1 in only 4 neurons, including URXR and URXL. We conclude that the AHR-1:AHA-1 transcription complex regulates the expression of soluble guanylate cyclase genes and other unidentified genes that are essential for acute regulation of aggregation behavior.
Collapse
Affiliation(s)
- Hongtao Qin
- Department of Genetics, Development, and Cell Biology, 2108 Molecular Biology Building, Iowa State University, Ames, IA 50011-3260, USA
| | | | | |
Collapse
|
136
|
Blondheim NR, Levy YS, Ben-Zur T, Burshtein A, Cherlow T, Kan I, Barzilai R, Bahat-Stromza M, Barhum Y, Bulvik S, Melamed E, Offen D. Human Mesenchymal Stem Cells Express Neural Genes, Suggesting a Neural Predisposition. Stem Cells Dev 2006; 15:141-64. [PMID: 16646662 DOI: 10.1089/scd.2006.15.141] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Because of their unique attributes of plasticity and accessibility, bone marrow-derived mesenchymal stem cells (MSCs) may find use for therapy of neurodegenerative disorders. Our previous studies of adult human MSCs demonstrated that these cells express an extensive assortment of neural genes at a low but clearly detectable level. Here, we report expression of 12 neural genes, 8 genes related to the neuro-dopaminergic system, and 11 transcription factors with neural significance by human MSCs. Our results suggest that, as opposed to cells that do not express neural genes, human MSCs are predisposed to differentiate to neuronal and glial lineages, given the proper conditions. Our findings add a new dimension in which to view adult stem cell plasticity, and may explain the relative ease with which MSCs, transplanted into the central nervous system (CNS) differentiate to a variety of functional neural cell types. Our results further promote the possibility that adult human MSCs are promising candidates for cell-based therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- Netta R Blondheim
- Laboratory of Neurosciences, Felsenstein Medical Research Center and Department of Neurology, Rabin Medical Center, Beilinson Campus Tel Aviv University, Sackler School of Medicine, Petah-Tikva 49100, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Vuori KAM, Koskinen H, Krasnov A, Koivumäki P, Afanasyev S, Vuorinen PJ, Nikinmaa M. Developmental disturbances in early life stage mortality (M74) of Baltic salmon fry as studied by changes in gene expression. BMC Genomics 2006; 7:56. [PMID: 16545121 PMCID: PMC1435884 DOI: 10.1186/1471-2164-7-56] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Accepted: 03/17/2006] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND We have studied alterations of gene expression associated with naturally-occurring early life stage mortality (M74) in Baltic salmon using a cDNA microarray and real time PCR. M74-affected fry have several typical neurological, cardiovascular and pathological symptoms. They are also characterized by low thiamine content and show signs of oxidative stress. RESULTS Affected fry can be divided into three major groups with early, intermediate or late onset of mortality. If mortality starts during the first third of the yolk-sac stage, virtually all the responses are compatible with stress, which rapidly leads to the common terminal responses. If death occurs during the second third of the yolk sac stage, the terminal stage is preceded by a decrease in globin gene expression, which leads to internal hypoxia when the animals grow and shift from skin- to gill-breathing. Fry will eventually proceed to the terminal responses. The group developing M74 most slowly appears to compensate for reduced oxygen delivery by downregulation of metabolism, and hence some fry can escape death. CONCLUSION Our study is the first demonstration of diverse transcriptional responses to a naturally-occurring developmental disturbance. Since many of the genes differentially expressed in M74-fry are evolutionarily conserved, the M74 of Baltic salmon can serve as a model for developmental disturbances and environmental stress responses in vertebrates in general.
Collapse
Affiliation(s)
- Kristiina AM Vuori
- Centre of Exellence in Evolutionary Genetics and Physiology, Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Heikki Koskinen
- Institute of Applied Biotechnology, University of Kuopio, P.O.B. 1627, 70211 Kuopio, Finland
| | - Aleksei Krasnov
- Institute of Applied Biotechnology, University of Kuopio, P.O.B. 1627, 70211 Kuopio, Finland
| | - Paula Koivumäki
- Centre of Exellence in Evolutionary Genetics and Physiology, Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Sergey Afanasyev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, M.Toreza av. 44, Petersburg, 194223, Russia
| | - Pekka J Vuorinen
- Finnish Game and Fisheries Research Institute, P.O. Box 2, FI-00791 Helsinki, Finland
| | - Mikko Nikinmaa
- Centre of Exellence in Evolutionary Genetics and Physiology, Department of Biology, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
138
|
Caruso JA, Mathieu PA, Joiakim A, Zhang H, Reiners JJ. Aryl hydrocarbon receptor modulation of tumor necrosis factor-alpha-induced apoptosis and lysosomal disruption in a hepatoma model that is caspase-8-independent. J Biol Chem 2006; 281:10954-67. [PMID: 16446372 DOI: 10.1074/jbc.m508383200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Recent studies suggest that the aryl hydrocarbon receptor (AhR) modulates susceptibilities to some pro-apoptotic agents. AhR-containing murine hepatoma 1c1c7 cultures underwent apoptosis following exposure to tumor necrosis factor-alpha (TNFalpha) + cycloheximide (CHX). In contrast, Tao cells, an AhR-deficient variant of the 1c1c7 line, were refractory to this treatment. AhR sense/antisense transfection studies demonstrated that AhR contents influenced susceptibility to the pro-apoptotic effects of TNFalpha + CHX. 1c1c7 cells and all variants expressed comparable amounts of TNF receptor-1 and TRADD. However, no cell line expressed FADD, and consequently pro-caspase-8 was not activated. AhR content did not influence JNK and NF-kappaB activation. However, Bid and pro-caspase-9, -3, and -12 processing occurred only in AhR-containing cells. Analyses of cathepsin B and D activities in digitonin-permeabilized cultures and the monitoring of cathepsin B/D co-localization with Lamp-1 indicated that TNFalpha + CHX disrupted late endosomes/lysosomes in only AhR-containing cells. Stabilization of acidic organelles with 3-O-methylsphingomyelin inhibited TNFalpha + CHX-induced apoptosis. The cathepsin D inhibitor pepstatin A suppressed in vitro cleavage of Bid by 1c1c7 lysosomal extracts. It also delayed the induction of apoptosis and partially prevented Bid cleavage and the activation of pro-caspases-3/7 in cultures treated with TNFalpha + CHX. Similar suppressive effects occurred in cultures transfected with murine Bid antisense oligonucleotides. These studies showed that in cells where pro-caspase-8 is not activated, TNFalpha + CHX can initiate apoptosis through lysosomal disruption. Released proteases such as cathepsin D trigger the apoptotic program by activating Bid. Furthermore, in the absence of exogenous ligand, the AhR modulates lysosomal disruption/permeability.
Collapse
Affiliation(s)
- Joseph A Caruso
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | | | |
Collapse
|
139
|
Menzel R, Rödel M, Kulas J, Steinberg CEW. CYP35: xenobiotically induced gene expression in the nematode Caenorhabditis elegans. Arch Biochem Biophys 2005; 438:93-102. [PMID: 15910738 DOI: 10.1016/j.abb.2005.03.020] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 03/29/2005] [Accepted: 03/29/2005] [Indexed: 10/25/2022]
Abstract
Although over 80 cytochrome P450 (CYP) encoding genes have been identified in the genome of the nematode Caenorhabditis elegans very little is known about their involvement in biotransformation. This paper demonstrates a concentration-dependent relationship of C. elegans CYP35A1, A2, A5, and C1 gene expression in response to four organic xenobiotics, namely atrazine, PCB52, fluoranthene, and lansoprazole. The toxicity of these xenobiotics was determined using a reproduction assay. CYP-specific messenger RNA expression was analyzed by semi-quantitative RT-PCR resulting in a strongly increasing, concentration-dependent induction well below the EC50 for reproduction. For PCB52, approximately 0.5% of the EC50 induces a 2-fold increase of CYP35 gene expression. Using a double mutant and multiple RNAi of CYP35A/C it was possible to diminish the reproduction decline caused by PCB52 and fluoranthene.
Collapse
Affiliation(s)
- Ralph Menzel
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587 Berlin, Germany.
| | | | | | | |
Collapse
|
140
|
Puga A, Tomlinson CR, Xia Y. Ah receptor signals cross-talk with multiple developmental pathways. Biochem Pharmacol 2004; 69:199-207. [PMID: 15627472 DOI: 10.1016/j.bcp.2004.06.043] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Accepted: 06/02/2004] [Indexed: 11/21/2022]
Abstract
For many years, the Ah receptor (AHR) has been a favorite of toxicologists and molecular biologists studying the connections between genes and the changes in the control of gene expression resulting from environmental exposures. Much of the attention given to the Ah receptor has focused on the nature of its ligands, many of which are known or suspected carcinogens, and on the role that its best studied regulatory product, the CYP1A1 enzyme, plays in toxic responses and carcinogen activation. This understandable bias has resulted in a disproportionate amount of Ah receptor research being directed at toxicological or adaptive end points. In recent times, it has become evident that Ah receptor functions are also involved in molecular cascades that lead to inhibition of proliferation, promotion of differentiation, or apoptosis, with an important bearing in development. Developmental and toxicological AHR functions may not always be related. The ancestral AHR protein in invertebrates directs the developmental fate of a few specific neurons and does not bind xenobiotic ligands. The mammalian AHR maintains normal liver function in the absence of exogenous ligands and, when activated by dioxin, cross-talks with morphogenetic and developmental signals. Toxic end points, such as the induction of cleft palate by dioxin in mice embryos, might be at the crossroads of these signals and provide important clues as to the developmental role of the AHR.
Collapse
Affiliation(s)
- Alvaro Puga
- Center for Environmental Genetics and Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267-0056, USA.
| | | | | |
Collapse
|