101
|
Ben-Yair R, Butty VL, Busby M, Qiu Y, Levine SS, Goren A, Boyer LA, Burns CG, Burns CE. H3K27me3-mediated silencing of structural genes is required for zebrafish heart regeneration. Development 2019; 146:dev178632. [PMID: 31427288 PMCID: PMC6803378 DOI: 10.1242/dev.178632] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/07/2019] [Indexed: 12/13/2022]
Abstract
Deciphering the genetic and epigenetic regulation of cardiomyocyte proliferation in organisms that are capable of robust cardiac renewal, such as zebrafish, represents an attractive inroad towards regenerating the human heart. Using integrated high-throughput transcriptional and chromatin analyses, we have identified a strong association between H3K27me3 deposition and reduced sarcomere and cytoskeletal gene expression in proliferative cardiomyocytes following cardiac injury in zebrafish. To move beyond an association, we generated an inducible transgenic strain expressing a mutant version of histone 3, H3.3K27M, that inhibits H3K27me3 catalysis in cardiomyocytes during the regenerative window. Hearts comprising H3.3K27M-expressing cardiomyocytes fail to regenerate, with wound edge cells showing heightened expression of structural genes and prominent sarcomeres. Although cell cycle re-entry was unperturbed, cytokinesis and wound invasion were significantly compromised. Collectively, our study identifies H3K27me3-mediated silencing of structural genes as requisite for zebrafish heart regeneration and suggests that repression of similar structural components in the border zone of an infarcted human heart might improve its regenerative capacity.
Collapse
Affiliation(s)
- Raz Ben-Yair
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Vincent L Butty
- Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Michele Busby
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yutong Qiu
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Stuart S Levine
- Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Alon Goren
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Laurie A Boyer
- Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - C Geoffrey Burns
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Caroline E Burns
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
102
|
Myocardial regeneration: role of epicardium and implicated genes. Mol Biol Rep 2019; 46:6661-6674. [PMID: 31549371 DOI: 10.1007/s11033-019-05075-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/10/2019] [Indexed: 11/27/2022]
Abstract
Lower invertebrates' hearts such as those of zebrafish have the capacity for scarless myocardial regeneration which is lost by mammalian hearts as they form a fibrotic scar tissue instead of regenerating the injured area. However, neonatal mammalian hearts have a remarkable capacity for regeneration highlighting conserved evolutionary mechanisms underlying such a process. Studies investigated the underlying mechanism of myocardial regeneration in species capable to do so, to see its applicability on mammals. The epicardium, the mesothelial outer layer of the vertebrate heart, has proven to play an important role in the process of repair and regeneration. It serves as an important source of smooth muscle cells, cardiac fibroblasts, endothelial cells, stem cells, and signaling molecules that are involved in this process. Here we review the role of the epicardium in myocardial regeneration focusing on the different involved; Activation, epithelial to mesenchymal transition, and differentiation. In addition, we will discuss its contributory role to different aspects that support myocardial regeneration. Of these we will discuss angiogenesis and the formation of a regenerate extracellular matrix. Moreover, we will discuss several factors that act on the epicardium to affect regeneration. Finally, we will highlight the utility of the epicardium as a mode of cell therapy in the treatment of myocardial injury.
Collapse
|
103
|
Abstract
The Hippo-YAP (Yes-associated protein) pathway is an evolutionarily and functionally conserved regulator of organ size and growth with crucial roles in cell proliferation, apoptosis, and differentiation. This pathway has great potential for therapeutic manipulation in different disease states and to promote organ regeneration. In this Review, we summarize findings from the past decade revealing the function and regulation of the Hippo-YAP pathway in cardiac development, growth, homeostasis, disease, and regeneration. In particular, we highlight the roles of the Hippo-YAP pathway in endogenous heart muscle renewal, including the pivotal role of the Hippo-YAP pathway in regulating cardiomyocyte proliferation and differentiation, stress response, and mechanical signalling. The human heart lacks the capacity to self-repair; therefore, the loss of cardiomyocytes after injury such as myocardial infarction can result in heart failure and death. Despite substantial advances in the treatment of heart failure, an enormous unmet clinical need exists for alternative treatment options. Targeting the Hippo-YAP pathway has tremendous potential for developing therapeutic strategies for cardiac repair and regeneration for currently intractable cardiovascular diseases such as heart failure. The lessons learned from cardiac repair and regeneration studies will also bring new insights into the regeneration of other tissues with limited regenerative capacity.
Collapse
|
104
|
Garcia-Puig A, Mosquera JL, Jiménez-Delgado S, García-Pastor C, Jorba I, Navajas D, Canals F, Raya A. Proteomics Analysis of Extracellular Matrix Remodeling During Zebrafish Heart Regeneration. Mol Cell Proteomics 2019; 18:1745-1755. [PMID: 31221719 PMCID: PMC6731076 DOI: 10.1074/mcp.ra118.001193] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 06/03/2019] [Indexed: 12/13/2022] Open
Abstract
Adult zebrafish, in contrast to mammals, are able to regenerate their hearts in response to injury or experimental amputation. Our understanding of the cellular and molecular bases that underlie this process, although fragmentary, has increased significantly over the last years. However, the role of the extracellular matrix (ECM) during zebrafish heart regeneration has been comparatively rarely explored. Here, we set out to characterize the ECM protein composition in adult zebrafish hearts, and whether it changed during the regenerative response. For this purpose, we first established a decellularization protocol of adult zebrafish ventricles that significantly enriched the yield of ECM proteins. We then performed proteomic analyses of decellularized control hearts and at different times of regeneration. Our results show a dynamic change in ECM protein composition, most evident at the earliest (7 days postamputation) time point analyzed. Regeneration associated with sharp increases in specific ECM proteins, and with an overall decrease in collagens and cytoskeletal proteins. We finally tested by atomic force microscopy that the changes in ECM composition translated to decreased ECM stiffness. Our cumulative results identify changes in the protein composition and mechanical properties of the zebrafish heart ECM during regeneration.
Collapse
Affiliation(s)
- Anna Garcia-Puig
- ‡Center of Regenerative Medicine in Barcelona (CMRB), 3rd Floor Hospital Duran i Reynals, Avinguda de la Gran Via 199-203, 08908 Hospitalet de Llobregat (Barcelona), Spain; §Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08908 Hospitalet de Llobregat (Barcelona), Spain
| | - Jose Luis Mosquera
- ¶Bioinformatics Unit, Institut d'Investigació Biomèdica de Bellvitge IDIBELL), 3rd Floor Hospital Duran i Reynals, Avinguda de la Gran Via 199-203, 08908 Hospitalet de Llobregat (Barcelona), Spain
| | - Senda Jiménez-Delgado
- ‡Center of Regenerative Medicine in Barcelona (CMRB), 3rd Floor Hospital Duran i Reynals, Avinguda de la Gran Via 199-203, 08908 Hospitalet de Llobregat (Barcelona), Spain
| | - Cristina García-Pastor
- ‡Center of Regenerative Medicine in Barcelona (CMRB), 3rd Floor Hospital Duran i Reynals, Avinguda de la Gran Via 199-203, 08908 Hospitalet de Llobregat (Barcelona), Spain
| | - Ignasi Jorba
- ‖Institute for Bioengineering of Catalonia (IBEC), Barcelona Science Park, Baldiri Reixac 15-21, 08028 Barcelona, Spain; **Unit of Biophysics and Bioengineering, Department of Physiological Sciences I, School of Medicine, University of Barcelona, Casanova 143, 08036 Barcelona, Spain; ‡‡Center for Networked Biomedical Research on Respiratory Diseases (CIBERES), 08036 Barcelona, Spain
| | - Daniel Navajas
- ‖Institute for Bioengineering of Catalonia (IBEC), Barcelona Science Park, Baldiri Reixac 15-21, 08028 Barcelona, Spain; **Unit of Biophysics and Bioengineering, Department of Physiological Sciences I, School of Medicine, University of Barcelona, Casanova 143, 08036 Barcelona, Spain; ‡‡Center for Networked Biomedical Research on Respiratory Diseases (CIBERES), 08036 Barcelona, Spain
| | - Francesc Canals
- §§Proteomics group, Vall d'Hebron Institut of Oncology (VHIO), Cellex center, Natzaret 115-117, 08035 Barcelona, Spain
| | - Angel Raya
- ‡Center of Regenerative Medicine in Barcelona (CMRB), 3rd Floor Hospital Duran i Reynals, Avinguda de la Gran Via 199-203, 08908 Hospitalet de Llobregat (Barcelona), Spain; §Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08908 Hospitalet de Llobregat (Barcelona), Spain; ¶¶Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain.
| |
Collapse
|
105
|
Pattar SS, Fatehi Hassanabad A, Fedak PWM. Application of Bioengineered Materials in the Surgical Management of Heart Failure. Front Cardiovasc Med 2019; 6:123. [PMID: 31482096 PMCID: PMC6710326 DOI: 10.3389/fcvm.2019.00123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/06/2019] [Indexed: 01/01/2023] Open
Abstract
The epicardial surface of the heart is readily accessible during cardiac surgery and presents an opportunity for therapeutic intervention for cardiac repair and regeneration. As an important anatomic niche for endogenous mechanisms of repair, targeting the epicardium using decellularized extracellular matrix (ECM) bioscaffold therapy may provide the necessary environmental cues to promote functional recovery. Following ischemic injury to the heart caused by myocardial infarction (MI), epicardium derived progenitor cells (EPDCs) become activated and migrate to the site of injury. EPDC differentiation has been shown to contribute to endothelial cell, cardiac fibroblast, cardiomyocyte, and vascular smooth muscle cell populations. Post-MI, it is largely the activation of cardiac fibroblasts and the resultant dysregulation of ECM turnover which leads to maladaptive structural cardiac remodeling and loss of cardiac function. Decellularized ECM bioscaffolds not only provide structural support, but have also been shown to act as a bioactive reservoir for growth factors, cytokines, and matricellular proteins capable of attenuating maladaptive cardiac remodeling. Targeting the epicardium post-MI using decellularized ECM bioscaffold therapy may provide the necessary bioinductive cues to promote differentiation toward a pro-regenerative phenotype and attenuate cardiac fibroblast activation. There is an opportunity to leverage the clinical benefits of this innovative technology with an aim to improve the prognosis of patients suffering from progressive heart failure. An enhanced understanding of the utility of decellularized ECM bioscaffolds in epicardial repair will facilitate their growth and transition into clinical practice. This review will provide a summary of decellularized ECM bioscaffolds being developed for epicardial infarct repair in coronary artery bypass graft (CABG) surgery.
Collapse
Affiliation(s)
- Simranjit S Pattar
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| | - Ali Fatehi Hassanabad
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| | - Paul W M Fedak
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
106
|
Cardiac Fibroblasts and the Extracellular Matrix in Regenerative and Nonregenerative Hearts. J Cardiovasc Dev Dis 2019; 6:jcdd6030029. [PMID: 31434209 PMCID: PMC6787677 DOI: 10.3390/jcdd6030029] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 12/15/2022] Open
Abstract
During the postnatal period in mammals, the heart undergoes significant remodeling and cardiac cells progressively lose their embryonic characteristics. At the same time, notable changes in the extracellular matrix (ECM) composition occur with a reduction in the components considered facilitators of cellular proliferation, including fibronectin and periostin, and an increase in collagen fiber organization. Not much is known about the postnatal cardiac fibroblast which is responsible for producing the majority of the ECM, but during the days after birth, mammalian hearts can regenerate after injury with only a transient scar formation. This phenomenon has also been described in adult urodeles and teleosts, but relatively little is known about their cardiac fibroblasts or ECM composition. Here, we review the pre-existing knowledge about cardiac fibroblasts and the ECM during the postnatal period in mammals as well as in regenerative environments.
Collapse
|
107
|
Bargehr J, Ong LP, Colzani M, Davaapil H, Hofsteen P, Bhandari S, Gambardella L, Le Novère N, Iyer D, Sampaziotis F, Weinberger F, Bertero A, Leonard A, Bernard WG, Martinson A, Figg N, Regnier M, Bennett MR, Murry CE, Sinha S. Epicardial cells derived from human embryonic stem cells augment cardiomyocyte-driven heart regeneration. Nat Biotechnol 2019; 37:895-906. [PMID: 31375810 PMCID: PMC6824587 DOI: 10.1038/s41587-019-0197-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/24/2019] [Indexed: 02/02/2023]
Abstract
The epicardium and its derivatives provide trophic and structural support for the developing and adult heart. Here we tested the ability of human embryonic stem cell (hESC)-derived epicardium to augment the structure and function of engineered heart tissue in vitro and to improve efficacy of hESC-cardiomyocyte grafts in infarcted athymic rat hearts. Epicardial cells markedly enhanced the contractility, myofibril structure and calcium handling of human engineered heart tissues, while reducing passive stiffness compared with mesenchymal stromal cells. Transplanted epicardial cells formed persistent fibroblast grafts in infarcted hearts. Cotransplantation of hESC-derived epicardial cells and cardiomyocytes doubled graft cardiomyocyte proliferation rates in vivo, resulting in 2.6-fold greater cardiac graft size and simultaneously augmenting graft and host vascularization. Notably, cotransplantation improved systolic function compared with hearts receiving either cardiomyocytes alone, epicardial cells alone or vehicle. The ability of epicardial cells to enhance cardiac graft size and function makes them a promising adjuvant therapeutic for cardiac repair.
Collapse
Affiliation(s)
- Johannes Bargehr
- The Anne McLaren Laboratory, Wellcome Trust - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Lay Ping Ong
- The Anne McLaren Laboratory, Wellcome Trust - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Maria Colzani
- The Anne McLaren Laboratory, Wellcome Trust - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Hongorzul Davaapil
- The Anne McLaren Laboratory, Wellcome Trust - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Peter Hofsteen
- Department of Pathology, Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Shiv Bhandari
- Department of Pathology, Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Laure Gambardella
- The Anne McLaren Laboratory, Wellcome Trust - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | | | - Dharini Iyer
- The Anne McLaren Laboratory, Wellcome Trust - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Fotios Sampaziotis
- The Anne McLaren Laboratory, Wellcome Trust - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Florian Weinberger
- Department of Pathology, Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Alessandro Bertero
- Department of Pathology, Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Andrea Leonard
- Department of Pathology, Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - William G Bernard
- The Anne McLaren Laboratory, Wellcome Trust - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Amy Martinson
- Department of Pathology, Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Nichola Figg
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Martin R Bennett
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Charles E Murry
- Department of Pathology, Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA.
| | - Sanjay Sinha
- The Anne McLaren Laboratory, Wellcome Trust - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
108
|
Abstract
The ECM (extracellular matrix) network plays a crucial role in cardiac homeostasis, not only by providing structural support, but also by facilitating force transmission, and by transducing key signals to cardiomyocytes, vascular cells, and interstitial cells. Changes in the profile and biochemistry of the ECM may be critically implicated in the pathogenesis of both heart failure with reduced ejection fraction and heart failure with preserved ejection fraction. The patterns of molecular and biochemical ECM alterations in failing hearts are dependent on the type of underlying injury. Pressure overload triggers early activation of a matrix-synthetic program in cardiac fibroblasts, inducing myofibroblast conversion, and stimulating synthesis of both structural and matricellular ECM proteins. Expansion of the cardiac ECM may increase myocardial stiffness promoting diastolic dysfunction. Cardiomyocytes, vascular cells and immune cells, activated through mechanosensitive pathways or neurohumoral mediators may play a critical role in fibroblast activation through secretion of cytokines and growth factors. Sustained pressure overload leads to dilative remodeling and systolic dysfunction that may be mediated by changes in the interstitial protease/antiprotease balance. On the other hand, ischemic injury causes dynamic changes in the cardiac ECM that contribute to regulation of inflammation and repair and may mediate adverse cardiac remodeling. In other pathophysiologic conditions, such as volume overload, diabetes mellitus, and obesity, the cell biological effectors mediating ECM remodeling are poorly understood and the molecular links between the primary insult and the changes in the matrix environment are unknown. This review article discusses the role of ECM macromolecules in heart failure, focusing on both structural ECM proteins (such as fibrillar and nonfibrillar collagens), and specialized injury-associated matrix macromolecules (such as fibronectin and matricellular proteins). Understanding the role of the ECM in heart failure may identify therapeutic targets to reduce geometric remodeling, to attenuate cardiomyocyte dysfunction, and even to promote myocardial regeneration.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- From the Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
109
|
Lai SL, Marín-Juez R, Stainier DYR. Immune responses in cardiac repair and regeneration: a comparative point of view. Cell Mol Life Sci 2019; 76:1365-1380. [PMID: 30578442 PMCID: PMC6420886 DOI: 10.1007/s00018-018-2995-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 11/26/2018] [Accepted: 12/10/2018] [Indexed: 12/13/2022]
Abstract
Immediately after cardiac injury, the immune system plays major roles in repair and regeneration as it becomes involved in a number of processes including damage-associated signaling, inflammation, revascularization, cardiomyocyte dedifferentiation and replenishment, and fibrotic scar formation/resolution. Recent studies have revealed that different immune responses occur in the various experimental models capable or incapable of cardiac regeneration, and that harnessing these immune responses might improve cardiac repair. In light of this concept, this review analyzes current knowledge about the immune responses to cardiac injury from a comparative perspective. Insights gained from such comparative analyses may provide ways to modulate the immune response as a potential therapeutic strategy for cardiac disease.
Collapse
Affiliation(s)
- Shih-Lei Lai
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Rubén Marín-Juez
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
| |
Collapse
|
110
|
Jewhurst K, McLaughlin KA. Recovery of the Xenopus laevis heart from ROS-induced stress utilizes conserved pathways of cardiac regeneration. Dev Growth Differ 2019; 61:212-227. [PMID: 30924142 DOI: 10.1111/dgd.12602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/31/2019] [Accepted: 02/12/2019] [Indexed: 01/22/2023]
Abstract
Urodele amphibians and some fish are capable of regenerating up to a quarter of their heart tissue after cardiac injury. While many anuran amphibians like Xenopus laevis are not capable of such feats, they are able to repair lesser levels of cardiac damage, such as that caused by oxidative stress, to a far greater degree than mammals. Using an optogenetic stress induction model that utilizes the protein KillerRed, we have investigated the extent to which mechanisms of cardiac regeneration are conserved during the restoration of normal heart morphology post oxidative stress in X. laevis tadpoles. We focused particularly on the processes of cardiomyocyte proliferation and dedifferentiation, as well as the pathways that facilitate the regulation of these processes. The cardiac response to KillerRed-induced injury in X. laevis tadpole hearts consists of a phase dominated by indicators of cardiac stress, followed by a repair-like phase with characteristics similar to mechanisms of cardiac regeneration in urodeles and fish. In the latter phase, we found markers associated with partial dedifferentiation and cardiomyocyte proliferation in the injured tadpole heart, which, unlike in regenerating hearts, are not dependent on Notch or retinoic acid signaling. Ultimately, the X. laevis cardiac response to KillerRed-induced oxidative stress shares characteristics with both mammalian and urodele/fish repair mechanisms, but is nonetheless a unique form of recovery, occupying an intermediate place on the spectrum of cardiac regenerative ability. An understanding of how Xenopus repairs cardiac damage can help bridge the gap between mammals and urodeles and contribute to new methods of treating heart disease.
Collapse
Affiliation(s)
- Kyle Jewhurst
- Department of Biology, Allen Discovery Center at Tufts University, Medford, Massachusetts
| | - Kelly A McLaughlin
- Department of Biology, Allen Discovery Center at Tufts University, Medford, Massachusetts
| |
Collapse
|
111
|
Stage-dependent cardiac regeneration in Xenopus is regulated by thyroid hormone availability. Proc Natl Acad Sci U S A 2019; 116:3614-3623. [PMID: 30755533 DOI: 10.1073/pnas.1803794116] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite therapeutic advances, heart failure is the major cause of morbidity and mortality worldwide, but why cardiac regenerative capacity is lost in adult humans remains an enigma. Cardiac regenerative capacity widely varies across vertebrates. Zebrafish and newt hearts regenerate throughout life. In mice, this ability is lost in the first postnatal week, a period physiologically similar to thyroid hormone (TH)-regulated metamorphosis in anuran amphibians. We thus assessed heart regeneration in Xenopus laevis before, during, and after TH-dependent metamorphosis. We found that tadpoles display efficient cardiac regeneration, but this capacity is abrogated during the metamorphic larval-to-adult switch. Therefore, we examined the consequence of TH excess and deprivation on the efficiently regenerating tadpole heart. We found that either acute TH treatment or blocking TH production before resection significantly but differentially altered gene expression and kinetics of extracellular matrix components deposition, and negatively impacted myocardial wall closure, both resulting in an impeded regenerative process. However, neither treatment significantly influenced DNA synthesis or mitosis in cardiac tissue after amputation. Overall, our data highlight an unexplored role of TH availability in modulating the cardiac regenerative outcome, and present X. laevis as an alternative model to decipher the developmental switches underlying stage-dependent constraint on cardiac regeneration.
Collapse
|
112
|
Emerging Roles for Immune Cells and MicroRNAs in Modulating the Response to Cardiac Injury. J Cardiovasc Dev Dis 2019; 6:jcdd6010005. [PMID: 30650599 PMCID: PMC6462949 DOI: 10.3390/jcdd6010005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 01/13/2023] Open
Abstract
Stimulating cardiomyocyte regeneration after an acute injury remains the central goal in cardiovascular regenerative biology. While adult mammals respond to cardiac damage with deposition of rigid scar tissue, adult zebrafish and salamander unleash a regenerative program that culminates in new cardiomyocyte formation, resolution of scar tissue, and recovery of heart function. Recent studies have shown that immune cells are key to regulating pro-inflammatory and pro-regenerative signals that shift the injury microenvironment toward regeneration. Defining the genetic regulators that control the dynamic interplay between immune cells and injured cardiac tissue is crucial to decoding the endogenous mechanism of heart regeneration. In this review, we discuss our current understanding of the extent that macrophage and regulatory T cells influence cardiomyocyte proliferation and how microRNAs (miRNAs) regulate their activity in the injured heart.
Collapse
|
113
|
Genes involved in angiogenesis and circulatory system development are differentially expressed in porcine epithelial oviductal cells during long-term primary in vitro culture – a transcriptomic study. ACTA ACUST UNITED AC 2019. [DOI: 10.2478/acb-2018-0026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Abstract
An oviduct is an essential organ for gamete transport, oocyte maturation, fertilization, spermatozoon capacitation and early embryo development. The epithelium plays an important role in oviduct functioning. The products of secretory cells provide an optimal environment and influence gamete activities and embryonic development. The oviduct physiology changes during the female cycle, thus, the ratio of the secreted molecules in the oviduct fluid differs between phases. In this study, a differential gene expression in porcine oviduct epithelial cells was examined during the long-term primary in vitro culture. The microarray expression analysis revealed 2552 genes, 1537 of which were upregulated and 995 were downregulated after 7 days of culture, with subsequent changes in expression during 30 day-long culture. The obtained genes were classified into 8 GO BP terms, connected with angiogenesis and circulatory system development, extracted by DAVID software. Among all genes, 10 most up-regulated and 10 most down-regulated genes were selected for further investigation. Interactions between genes were indicated by STRING software and REACTOME FIViz application to the Cytoscape 3.6.0 software. Most of the genes belonged to more than one ontology group. Although studied genes are mostly responsible for angiogenesis and circulatory system development, they can also be found to be expressed in processes connected with fertilization and early embryo development. The latter function is focused on more, considering the fact that these genes were expressed in epithelial cells of the fallopian tube which is largely responsible for reproductive processes.
Collapse
|
114
|
Abstract
Regeneration of lost body parts is essential to regain the fitness of the organism for successful living. In the animal kingdom, organisms from different clades exhibit varied regeneration abilities. Hydra is one of the few organisms that possess tremendous regeneration potential, capable of regenerating complete organism from small tissue fragments or even from dissociated cells. This peculiar property has made this genus one of the most invaluable model organisms for understanding the process of regeneration. Multiple studies in Hydra led to the current understanding of gross morphological changes, basic cellular dynamics, and the role of molecular signalling such as the Wnt signalling pathway. However, cell-to-cell communication by cell adhesion, role of extracellular components such as extracellular matrix (ECM), and nature of cell types that contribute to the regeneration process need to be explored in depth. Additionally, roles of developmental signalling pathways need to be elucidated to enable more comprehensive understanding of regeneration in Hydra. Further research on cross communication among extracellular, cellular, and molecular signalling in Hydra will advance the field of regeneration biology. Here, we present a review of the existing literature on Hydra regeneration biology and outline the future perspectives.
Collapse
Affiliation(s)
- Puli Chandramouli Reddy
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, India.
| | - Akhila Gungi
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, India
| | - Manu Unni
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, India
| |
Collapse
|
115
|
Schmidt JR, Geurtzen K, von Bergen M, Schubert K, Knopf F. Glucocorticoid Treatment Leads to Aberrant Ion and Macromolecular Transport in Regenerating Zebrafish Fins. Front Endocrinol (Lausanne) 2019; 10:674. [PMID: 31636606 PMCID: PMC6787175 DOI: 10.3389/fendo.2019.00674] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022] Open
Abstract
Long-term glucocorticoid administration in patients undergoing immunosuppressive and anti-inflammatory treatment is accompanied by impaired bone formation and increased fracture risk. Furthermore, glucocorticoid treatment can lead to impaired wound healing and altered cell metabolism. Recently, we showed that exposure of zebrafish to the glucocorticoid prednisolone during fin regeneration impacts negatively on the length, bone formation, and osteoblast function of the regenerate. The underlying cellular and molecular mechanisms of impairment, however, remain incompletely understood. In order to further elucidate the anti-regenerative effects of continued glucocorticoid exposure on fin tissues, we performed proteome profiling of fin regenerates undergoing prednisolone treatment, in addition to profiling of homeostatic fin tissue and fins undergoing undisturbed regeneration. By using LC-MS (liquid chromatography-mass spectrometry) we identified more than 6,000 proteins across all tissue samples. In agreement with previous reports, fin amputation induces changes in chromatin structure and extracellular matrix (ECM) composition within the tissue. Notably, prednisolone treatment leads to impaired expression of selected ECM components in the fin regenerate. Moreover, the function of ion transporting ATPases and other proteins involved in macromolecule and vesicular transport mechanisms of the cell appears to be altered by prednisolone treatment. In particular, acidification of membrane-enclosed organelles such as lysosomes is inhibited. Taken together, our data indicate that continued synthetic glucocorticoid exposure in zebrafish deteriorates cellular trafficking processes in the regenerating fin, which interferes with appropriate tissue restoration upon injury.
Collapse
Affiliation(s)
- Johannes R. Schmidt
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH—UFZ, Leipzig, Germany
| | - Karina Geurtzen
- CRTD—Center for Regenerative Therapies Dresden, Technische Universität (TU) Dresden, Dresden, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH—UFZ, Leipzig, Germany
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH—UFZ, Leipzig, Germany
- *Correspondence: Kristin Schubert
| | - Franziska Knopf
- CRTD—Center for Regenerative Therapies Dresden, Technische Universität (TU) Dresden, Dresden, Germany
- Center for Healthy Aging, Technische Universität (TU) Dresden, Dresden, Germany
- Franziska Knopf
| |
Collapse
|
116
|
Cao Y, Cao J. Covering and Re-Covering the Heart: Development and Regeneration of the Epicardium. J Cardiovasc Dev Dis 2018; 6:jcdd6010003. [PMID: 30586891 PMCID: PMC6463056 DOI: 10.3390/jcdd6010003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/13/2018] [Accepted: 12/19/2018] [Indexed: 12/23/2022] Open
Abstract
The epicardium, a mesothelial layer that envelops vertebrate hearts, has become a therapeutic target in cardiac repair strategies because of its vital role in heart development and cardiac injury response. Epicardial cells serve as a progenitor cell source and signaling center during both heart development and regeneration. The importance of the epicardium in cardiac repair strategies has been reemphasized by recent progress regarding its requirement for heart regeneration in zebrafish, and by the ability of patches with epicardial factors to restore cardiac function following myocardial infarction in mammals. The live surveillance of epicardial development and regeneration using zebrafish has provided new insights into this topic. In this review, we provide updated knowledge about epicardial development and regeneration.
Collapse
Affiliation(s)
- Yingxi Cao
- Cardiovascular Research Institute, Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10021, USA.
| | - Jingli Cao
- Cardiovascular Research Institute, Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10021, USA.
| |
Collapse
|
117
|
Abstract
After decades of directed research, no effective regenerative therapy is currently available to repair the injured human heart. The epicardium, a layer of mesothelial tissue that envelops the heart in all vertebrates, has emerged as a new player in cardiac repair and regeneration. The epicardium is essential for muscle regeneration in the zebrafish model of innate heart regeneration, and the epicardium also participates in fibrotic responses in mammalian hearts. This structure serves as a source of crucial cells, such as vascular smooth muscle cells, pericytes, and fibroblasts, during heart development and repair. The epicardium also secretes factors that are essential for proliferation and survival of cardiomyocytes. In this Review, we describe recent advances in our understanding of the biology of the epicardium and the effect of these findings on the candidacy of this structure as a therapeutic target for heart repair and regeneration.
Collapse
Affiliation(s)
- Jingli Cao
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
- Regeneration Next, Duke University, Durham, NC, USA.
- Cardiovascular Research Institute, Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA.
| | - Kenneth D Poss
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
- Regeneration Next, Duke University, Durham, NC, USA.
| |
Collapse
|
118
|
Liu S, Martin JF. The regulation and function of the Hippo pathway in heart regeneration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 8:e335. [PMID: 30169913 DOI: 10.1002/wdev.335] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/30/2018] [Accepted: 07/25/2018] [Indexed: 12/31/2022]
Abstract
Heart failure caused by cardiomyocyte loss and fibrosis is a leading cause of death worldwide. Although current treatments for heart failure such as heart transplantation and left ventricular assist device implantation have obvious value, new approaches are needed. Endogenous adult cardiomyocyte renewal is measurable but inefficient and inadequate in response to extensive acute heart damage. Stimulating self-renewal of endogenous cardiomyocytes holds great promise for heart repair. Uncovering the genetic mechanisms underlying cardiomyocyte renewal is a critical step in developing new approaches to repairing the heart. Recent studies have revealed that the inhibition of the Hippo pathway is sufficient to promote the proliferation of endogenous cardiomyocytes, indicating that the manipulation of the Hippo pathway in the heart may be a promising treatment for heart failure in the future. We summarize recent findings that have shed light on the function of the Hippo pathway in heart regeneration. We also discuss the mechanisms by which Hippo pathway inhibition promotes heart regeneration and how the Hippo pathway responds to different types of injury or stress during the regenerative process. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration.
Collapse
Affiliation(s)
- Shijie Liu
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, Texas
| | - James F Martin
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, Texas.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
119
|
Dubé KN, Smart N. Thymosin β4 and the vasculature: multiple roles in development, repair and protection against disease. Expert Opin Biol Ther 2018; 18:131-139. [DOI: 10.1080/14712598.2018.1459558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Karina N. Dubé
- BHF Centre of Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Nicola Smart
- BHF Centre of Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
120
|
King BL, Rosenstein MC, Smith AM, Dykeman CA, Smith GA, Yin VP. RegenDbase: a comparative database of noncoding RNA regulation of tissue regeneration circuits across multiple taxa. NPJ Regen Med 2018; 3:10. [PMID: 29872545 PMCID: PMC5973935 DOI: 10.1038/s41536-018-0049-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/17/2018] [Accepted: 05/04/2018] [Indexed: 12/16/2022] Open
Abstract
Regeneration is an endogenous process of tissue repair that culminates in complete restoration of tissue and organ function. While regenerative capacity in mammals is limited to select tissues, lower vertebrates like zebrafish and salamanders are endowed with the capacity to regenerate entire limbs and most adult tissues, including heart muscle. Numerous profiling studies have been conducted using these research models in an effort to identify the genetic circuits that accompany tissue regeneration. Most of these studies, however, are confined to an individual injury model and/or research organism and focused primarily on protein encoding transcripts. Here we describe RegenDbase, a new database with the functionality to compare and contrast gene regulatory pathways within and across tissues and research models. RegenDbase combines pipelines that integrate analysis of noncoding RNAs in combination with protein encoding transcripts. We created RegenDbase with a newly generated comprehensive dataset for adult zebrafish heart regeneration combined with existing microarray and RNA-sequencing studies on multiple injured tissues. In this current release, we detail microRNA-mRNA regulatory circuits and the biological processes these interactions control during the early stages of heart regeneration. Moreover, we identify known and putative novel lncRNAs and identify their potential target genes based on proximity searches. We postulate that these candidate factors underscore robust regenerative capacity in lower vertebrates. RegenDbase provides a systems-level analysis of tissue regeneration genetic circuits across injury and animal models and addresses the growing need to understand how noncoding RNAs influence these changes in gene expression.
Collapse
Affiliation(s)
- Benjamin L. King
- Kathryn Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672 USA
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469 USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469 USA
| | - Michael C. Rosenstein
- Kathryn Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672 USA
- Present Address: RockStep Solutions, Portland, ME 04101 USA
| | - Ashley M. Smith
- Kathryn Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672 USA
| | - Christina A. Dykeman
- Kathryn Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672 USA
| | - Grace A. Smith
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469 USA
- University of Maine Honors College, University of Maine, Orono, ME 04469 USA
| | - Viravuth P. Yin
- Kathryn Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672 USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469 USA
| |
Collapse
|
121
|
Romano N, Ceci M. Heart regeneration is regulates by key micro RNAs from fish to mammals: what it can learned about the epicardial cells activation during the regeneration in zebrafish. Cell Death Dis 2018; 9:650. [PMID: 29844326 PMCID: PMC5973931 DOI: 10.1038/s41419-018-0609-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 04/19/2018] [Indexed: 11/26/2022]
Affiliation(s)
- Nicla Romano
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy.
| | - Marcello Ceci
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| |
Collapse
|
122
|
Romano N, Ceci M. The face of epicardial and endocardial derived cells in zebrafish. Exp Cell Res 2018; 369:166-175. [PMID: 29807022 DOI: 10.1016/j.yexcr.2018.05.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/15/2018] [Accepted: 05/21/2018] [Indexed: 02/09/2023]
Abstract
Zebrafish hearts can regenerate through activation of growth factors and trans-differentiation of fibroblasts, epicardial, myocardial and endocardial cells, all positive for GATA4 during the process. A possible model of regeneration of the whole heart and the regenerating cells in ex-vivo culture is presented here by a stimulation of cocktail of growth factors. In ex-vivo growth-factors-supplemented culture the heart regeneration was quite complete without signs of fibrosis. Epicardial- and endocardial-derived cells have been analyzed by electron microscopy evidencing two main types: 1) larger/prismatic and 2) small/rounded. Type (1) showed on the surface protein-sculptures, while type(2) was smooth with sparse globular proteins. To confirm their nature we have contemporarily analyzed their proliferative capability and markers-positivity. The cells treated by growth factors have at least two-fold more proliferation with GATA4-positivity. The type (1) cell evidenced WT1+(marker of embryonic epicardium); the type (2) showed NFTA2+(marker of embryonic endocardium); whereas cTNT-cardiotroponin was negative. Under growth factors stimulation, GATA4+/WT1+ and GATA4+/NFTA2+ could be suitable candidates to be the cells with capability to move in/out of the tissue, probably by using their integrins, and it opens the possibility to have long term selected culture to future characterization.
Collapse
Affiliation(s)
- Nicla Romano
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy.
| | - Marcello Ceci
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| |
Collapse
|
123
|
Sánchez-Iranzo H, Galardi-Castilla M, Sanz-Morejón A, González-Rosa JM, Costa R, Ernst A, Sainz de Aja J, Langa X, Mercader N. Transient fibrosis resolves via fibroblast inactivation in the regenerating zebrafish heart. Proc Natl Acad Sci U S A 2018; 115:4188-4193. [PMID: 29610343 PMCID: PMC5910827 DOI: 10.1073/pnas.1716713115] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In the zebrafish (Danio rerio), regeneration and fibrosis after cardiac injury are not mutually exclusive responses. Upon cardiac cryoinjury, collagen and other extracellular matrix (ECM) proteins accumulate at the injury site. However, in contrast to the situation in mammals, fibrosis is transient in zebrafish and its regression is concomitant with regrowth of the myocardial wall. Little is known about the cells producing this fibrotic tissue or how it resolves. Using novel genetic tools to mark periostin b- and collagen 1alpha2 (col1a2)-expressing cells in combination with transcriptome analysis, we explored the sources of activated fibroblasts and traced their fate. We describe that during fibrosis regression, fibroblasts are not fully eliminated but become inactivated. Unexpectedly, limiting the fibrotic response by genetic ablation of col1a2-expressing cells impaired cardiomyocyte proliferation. We conclude that ECM-producing cells are key players in the regenerative process and suggest that antifibrotic therapies might be less efficient than strategies targeting fibroblast inactivation.
Collapse
Affiliation(s)
- Héctor Sánchez-Iranzo
- Development of the Epicardium and Its Role During Regeneration Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain
| | - María Galardi-Castilla
- Development of the Epicardium and Its Role During Regeneration Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain
| | - Andrés Sanz-Morejón
- Development of the Epicardium and Its Role During Regeneration Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain
- Institute of Anatomy, University of Bern, 3000 Bern 9, Switzerland
| | - Juan Manuel González-Rosa
- Development of the Epicardium and Its Role During Regeneration Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain
| | - Ricardo Costa
- Development of the Epicardium and Its Role During Regeneration Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain
- Centre for Research in Agricultural Genomics (CRAG) Consejo Superior de Investigaciones Científica (CSIC)-Institut de Recerca i Tecnologia Agroalimentaries (IRTA)-Universitat Autonoma de Barcelona (UAB)-Universitat de Barcelona (UB), Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Alexander Ernst
- Institute of Anatomy, University of Bern, 3000 Bern 9, Switzerland
| | - Julio Sainz de Aja
- Functional Genomics Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain
| | - Xavier Langa
- Institute of Anatomy, University of Bern, 3000 Bern 9, Switzerland
| | - Nadia Mercader
- Development of the Epicardium and Its Role During Regeneration Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain;
- Institute of Anatomy, University of Bern, 3000 Bern 9, Switzerland
| |
Collapse
|
124
|
Simões FC, Riley PR. The ontogeny, activation and function of the epicardium during heart development and regeneration. Development 2018; 145:145/7/dev155994. [DOI: 10.1242/dev.155994] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The epicardium plays a key role during cardiac development, homeostasis and repair, and has thus emerged as a potential target in the treatment of cardiovascular disease. However, therapeutically manipulating the epicardium and epicardium-derived cells (EPDCs) requires insights into their developmental origin and the mechanisms driving their activation, recruitment and contribution to both the embryonic and adult injured heart. In recent years, studies of various model systems have provided us with a deeper understanding of the microenvironment in which EPDCs reside and emerge into, of the crosstalk between the multitude of cardiovascular cell types that influence the epicardium, and of the genetic programmes that orchestrate epicardial cell behaviour. Here, we review these discoveries and discuss how technological advances could further enhance our knowledge of epicardium-based repair mechanisms and ultimately influence potential therapeutic outcomes in cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Filipa C. Simões
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3PT, UK
| | - Paul R. Riley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
125
|
Micro RNAs are involved in activation of epicardium during zebrafish heart regeneration. Cell Death Discov 2018; 4:41. [PMID: 29560280 PMCID: PMC5849881 DOI: 10.1038/s41420-018-0041-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/21/2018] [Accepted: 02/05/2018] [Indexed: 12/26/2022] Open
Abstract
Zebrafish could be an interesting translational model to understand and improve the post-infarction trial and possible regeneration in humans. The adult zebrafish is able to regenerate efficiently after resecting nearly 20% of the ventricular apex. This process requires the concert activation of the epicardium and endocardium, as well as trans-differentiation of pre-existing cardiomyocytes that together replace the lost tissue. The molecular mechanisms involved in this activation process are not completely clarified. In this work, in order to investigate if the downregulation of these miRNAs (miRs) are linked with the activation of epicardium, the expressions of miR-133a, b and miR-1 during regeneration were analysed. qPCR analyses in whole-heart, or from distinct dissected epicardial cells comparing to regenerative clot (containing cardiomyocytes, fibroblasts and endocardial cells) by a laser-micro-dissector, have indicated that already at 24 h there is a downregulation of miRs: (1) miR-133a and miR-1 in the epicardium and (2) miR-133b and miR-1 in the regenerative clot. All the miRs remain downregulated until 7 days post-surgery. With the aim to visualize the activations of heart component in combination with miRs, we developed immunohistochemistry using antibodies directed against common markers in mammals as well as zebrafish: Wilms tumour 1 (WT1), a marker of epicardium; heat-shock protein 70 (HSP70), a chaperon activated during regeneration; and the Cardiac Troponin T (cTnT), a marker of differentiated cardiomyocytes. All these markers are directly or indirectly linked to the investigated miRs. WT1 and HSP70 strongly marked the regeneration site just at 2–3 days postventricular resection. In coherence, cTnT intensively marked the regenerative portion from 7 days onwards. miRs-1 and -133 (a,b) have been strongly involved in the activation of epicardium and regenerative clot during the regeneration process in zebrafish. This study can be a useful translational model to understand the early epicardial activation in which miRs-133a and miR-1 seem to play a central role as observed in the human heart.
Collapse
|
126
|
Missinato MA, Saydmohammed M, Zuppo DA, Rao KS, Opie GW, Kühn B, Tsang M. Dusp6 attenuates Ras/MAPK signaling to limit zebrafish heart regeneration. Development 2018; 145:dev.157206. [PMID: 29444893 DOI: 10.1242/dev.157206] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 01/29/2018] [Indexed: 01/10/2023]
Abstract
Zebrafish regenerate cardiac tissue through proliferation of pre-existing cardiomyocytes and neovascularization. Secreted growth factors such as FGFs, IGF, PDGFs and Neuregulin play essential roles in stimulating cardiomyocyte proliferation. These factors activate the Ras/MAPK pathway, which is tightly controlled by the feedback attenuator Dual specificity phosphatase 6 (Dusp6), an ERK phosphatase. Here, we show that suppressing Dusp6 function enhances cardiac regeneration. Inactivation of Dusp6 by small molecules or by gene inactivation increased cardiomyocyte proliferation, coronary angiogenesis, and reduced fibrosis after ventricular resection. Inhibition of Erbb or PDGF receptor signaling suppressed cardiac regeneration in wild-type zebrafish, but had a milder effect on regeneration in dusp6 mutants. Moreover, in rat primary cardiomyocytes, NRG1-stimulated proliferation can be enhanced upon chemical inhibition of Dusp6 with BCI. Our results suggest that Dusp6 attenuates Ras/MAPK signaling during regeneration and that suppressing Dusp6 can enhance cardiac repair.
Collapse
Affiliation(s)
- Maria A Missinato
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Manush Saydmohammed
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Daniel A Zuppo
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Krithika S Rao
- Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), Richard King Mellon Foundation Institute for Pediatric Research and Division of Cardiology, Children's Hospital of Pittsburgh of UPMC and Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Graham W Opie
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Bernhard Kühn
- Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), Richard King Mellon Foundation Institute for Pediatric Research and Division of Cardiology, Children's Hospital of Pittsburgh of UPMC and Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA.,McGowan Institute of Regenerative Medicine, Pittsburgh, PA 15219, USA
| | - Michael Tsang
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
127
|
Unravelling the effects of mechanical physiological conditioning on cardiac adipose tissue-derived progenitor cells in vitro and in silico. Sci Rep 2018; 8:499. [PMID: 29323152 PMCID: PMC5764962 DOI: 10.1038/s41598-017-18799-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 12/14/2017] [Indexed: 01/08/2023] Open
Abstract
Mechanical conditioning is incompletely characterized for stimulating therapeutic cells within the physiological range. We sought to unravel the mechanism of action underlying mechanical conditioning of adipose tissue-derived progenitor cells (ATDPCs), both in vitro and in silico. Cardiac ATDPCs, grown on 3 different patterned surfaces, were mechanically stretched for 7 days at 1 Hz. A custom-designed, magnet-based, mechanical stimulator device was developed to apply ~10% mechanical stretching to monolayer cell cultures. Gene and protein analyses were performed for each cell type and condition. Cell supernatants were also collected to analyze secreted proteins and construct an artificial neural network. Gene and protein modulations were different for each surface pattern. After mechanostimulation, cardiac ATDPCs increased the expression of structural genes and there was a rising trend on cardiac transcription factors. Finally, secretome analyses revealed upregulation of proteins associated with both myocardial infarction and cardiac regeneration, such as regulators of the immune response, angiogenesis or cell adhesion. To conclude, mechanical conditioning of cardiac ATDPCs enhanced the expression of early and late cardiac genes in vitro. Additionally, in silico analyses of secreted proteins showed that mechanical stimulation of cardiac ATDPCs was highly associated with myocardial infarction and repair.
Collapse
|
128
|
Patra C, Boccaccini A, Engel F. Vascularisation for cardiac tissue engineering: the extracellular matrix. Thromb Haemost 2017; 113:532-47. [DOI: 10.1160/th14-05-0480] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 09/03/2014] [Indexed: 02/07/2023]
Abstract
SummaryCardiovascular diseases present a major socio-economic burden. One major problem underlying most cardiovascular and congenital heart diseases is the irreversible loss of contractile heart muscle cells, the cardiomyocytes. To reverse damage incurred by myocardial infarction or by surgical correction of cardiac malformations, the loss of cardiac tissue with a thickness of a few millimetres needs to be compensated. A promising approach to this issue is cardiac tissue engineering. In this review we focus on the problem of in vitro vascularisation as implantation of cardiac patches consisting of more than three layers of cardiomyocytes (> 100 μm thick) already results in necrosis. We explain the need for vascularisation and elaborate on the importance to include non-myocytes in order to generate functional vascularised cardiac tissue. We discuss the potential of extracellular matrix molecules in promoting vascularisation and introduce nephronectin as an example of a new promising candidate. Finally, we discuss current biomaterial- based approaches including micropatterning, electrospinning, 3D micro-manufacturing technology and porogens. Collectively, the current literature supports the notion that cardiac tissue engineering is a realistic option for future treatment of paediatric and adult patients with cardiac disease.
Collapse
|
129
|
Dubé KN, Thomas TM, Munshaw S, Rohling M, Riley PR, Smart N. Recapitulation of developmental mechanisms to revascularize the ischemic heart. JCI Insight 2017; 2:96800. [PMID: 29202457 PMCID: PMC5752387 DOI: 10.1172/jci.insight.96800] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/11/2017] [Indexed: 11/18/2022] Open
Abstract
Restoring blood flow after myocardial infarction (MI) is essential for survival of existing and newly regenerated tissue. Endogenous vascular repair processes are deployed following injury but are poorly understood. We sought to determine whether developmental mechanisms of coronary vessel formation are intrinsically reactivated in the adult mouse after MI. Using pulse-chase genetic lineage tracing, we establish that de novo vessel formation constitutes a substantial component of the neovascular response, with apparent cellular contributions from the endocardium and coronary sinus. The adult heart reverts to its former hypertrabeculated state and repeats the process of compaction, which may facilitate endocardium-derived neovascularization. The capacity for angiogenic sprouting of the coronary sinus vein, the adult derivative of the sinus venosus, may also reflect its embryonic origin. The quiescent epicardium is reactivated and, while direct cellular contribution to new vessels is minimal, it supports the directional expansion of the neovessel network toward the infarcted myocardium. Thymosin β4, a peptide with roles in vascular development, was required for endocardial compaction, epicardial vessel expansion, and smooth muscle cell recruitment. Insight into pathways that regulate endogenous vascular repair, drawing on comparisons with development, may reveal novel targets for therapeutically enhancing neovascularization. Embryonic mechanisms are redeployed to revascularize the ischemic heart, with contributions primarily from the endocardium and coronary sinus and processes that require thymosin β4.
Collapse
Affiliation(s)
- Karina N Dubé
- UCL Institute of Child Health, London, United Kingdom
| | - Tonia M Thomas
- British Heart Foundation Centre of Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Sonali Munshaw
- British Heart Foundation Centre of Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Mala Rohling
- British Heart Foundation Centre of Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Paul R Riley
- British Heart Foundation Centre of Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Nicola Smart
- British Heart Foundation Centre of Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
130
|
Louie KW, Saera-Vila A, Kish PE, Colacino JA, Kahana A. Temporally distinct transcriptional regulation of myocyte dedifferentiation and Myofiber growth during muscle regeneration. BMC Genomics 2017; 18:854. [PMID: 29121865 PMCID: PMC5680785 DOI: 10.1186/s12864-017-4236-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 10/23/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Tissue regeneration requires a series of steps, beginning with generation of the necessary cell mass, followed by cell migration into damaged area, and ending with differentiation and integration with surrounding tissues. Temporal regulation of these steps lies at the heart of the regenerative process, yet its basis is not well understood. The ability of zebrafish to dedifferentiate mature "post-mitotic" myocytes into proliferating myoblasts that in turn regenerate lost muscle tissue provides an opportunity to probe the molecular mechanisms of regeneration. RESULTS Following subtotal excision of adult zebrafish lateral rectus muscle, dedifferentiating residual myocytes were collected at two time points prior to cell cycle reentry and compared to uninjured muscles using RNA-seq. Functional annotation (GAGE or K-means clustering followed by GO enrichment) revealed a coordinated response encompassing epigenetic regulation of transcription, RNA processing, and DNA replication and repair, along with protein degradation and translation that would rewire the cellular proteome and metabolome. Selected candidate genes were phenotypically validated in vivo by morpholino knockdown. Rapidly induced gene products, such as the Polycomb group factors Ezh2 and Suz12a, were necessary for both efficient dedifferentiation (i.e. cell reprogramming leading to cell cycle reentry) and complete anatomic regeneration. In contrast, the late activated gene fibronectin was important for efficient anatomic muscle regeneration but not for the early step of myocyte cell cycle reentry. CONCLUSIONS Reprogramming of a "post-mitotic" myocyte into a dedifferentiated myoblast requires a complex coordinated effort that reshapes the cellular proteome and rewires metabolic pathways mediated by heritable yet nuanced epigenetic alterations and molecular switches, including transcription factors and non-coding RNAs. Our studies show that temporal regulation of gene expression is programmatically linked to distinct steps in the regeneration process, with immediate early expression driving dedifferentiation and reprogramming, and later expression facilitating anatomical regeneration.
Collapse
Affiliation(s)
- Ke'ale W Louie
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, 1000 Wall St, Ann Arbor, MI, 48105, USA
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, 1011 N. University, Ann Arbor, MI, 48109, USA
| | - Alfonso Saera-Vila
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, 1000 Wall St, Ann Arbor, MI, 48105, USA.
| | - Phillip E Kish
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, 1000 Wall St, Ann Arbor, MI, 48105, USA
| | - Justin A Colacino
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
- University of Michigan Comprehensive Cancer Center, 1500 E Medical Center Dr, Ann Arbor, MI, 48109, USA
- Department of Nutritional Sciences, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Alon Kahana
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, 1000 Wall St, Ann Arbor, MI, 48105, USA.
- University of Michigan Comprehensive Cancer Center, 1500 E Medical Center Dr, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
131
|
Tazaki A, Tanaka EM, Fei JF. Salamander spinal cord regeneration: The ultimate positive control in vertebrate spinal cord regeneration. Dev Biol 2017; 432:63-71. [PMID: 29030146 DOI: 10.1016/j.ydbio.2017.09.034] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/21/2017] [Accepted: 09/28/2017] [Indexed: 11/16/2022]
Abstract
Repairing injured tissues / organs is one of the major challenges for the maintenance of proper organ function in adulthood. In mammals, the central nervous system including the spinal cord, once established during embryonic development, has very limited capacity to regenerate. In contrast, salamanders such as axolotls can fully regenerate the injured spinal cord, making this a very powerful vertebrate model system for studying this process. Here we discuss the cellular and molecular requirements for spinal cord regeneration in the axolotl. The recent development of tools to test molecular function, including CRISPR-mediated gene editing, has lead to the identification of key players involved in the cell response to injury that ultimately leads to outgrowth of neural stem cells that are competent to replay the process of spinal cord development to replace the damaged/missing tissue.
Collapse
Affiliation(s)
- Akira Tazaki
- Research Institute for Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna Biocenter, 1030 Vienna, Austria.
| | - Elly M Tanaka
- Research Institute for Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna Biocenter, 1030 Vienna, Austria
| | - Ji-Feng Fei
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| |
Collapse
|
132
|
González-Rosa JM, Burns CE, Burns CG. Zebrafish heart regeneration: 15 years of discoveries. ACTA ACUST UNITED AC 2017; 4:105-123. [PMID: 28979788 PMCID: PMC5617908 DOI: 10.1002/reg2.83] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease is the leading cause of death worldwide. Compared to other organs such as the liver, the adult human heart lacks the capacity to regenerate on a macroscopic scale after injury. As a result, myocardial infarctions are responsible for approximately half of all cardiovascular related deaths. In contrast, the zebrafish heart regenerates efficiently upon injury through robust myocardial proliferation. Therefore, deciphering the mechanisms that underlie the zebrafish heart's endogenous regenerative capacity represents an exciting avenue to identify novel therapeutic strategies for inducing regeneration of the human heart. This review provides a historical overview of adult zebrafish heart regeneration. We summarize 15 years of research, with a special focus on recent developments from this fascinating field. We discuss experimental findings that address fundamental questions of regeneration research. What is the origin of regenerated muscle? How is regeneration controlled from a genetic and molecular perspective? How do different cell types interact to achieve organ regeneration? Understanding natural models of heart regeneration will bring us closer to answering the ultimate question: how can we stimulate myocardial regeneration in humans?
Collapse
Affiliation(s)
- Juan Manuel González-Rosa
- Cardiovascular Research Center Massachusetts General Hospital Charlestown MA 02129 USA.,Harvard Medical School Boston MA 02115 USA
| | - Caroline E Burns
- Cardiovascular Research Center Massachusetts General Hospital Charlestown MA 02129 USA.,Harvard Medical School Boston MA 02115 USA.,Harvard Stem Cell Institute Cambridge MA 02138 USA
| | - C Geoffrey Burns
- Cardiovascular Research Center Massachusetts General Hospital Charlestown MA 02129 USA.,Harvard Medical School Boston MA 02115 USA
| |
Collapse
|
133
|
Dettman RW, Simon HG. Rebooting the collagen gel: Artificial hydrogels for the study of epithelial mesenchymal transformation. Dev Dyn 2017; 247:332-339. [PMID: 28786157 DOI: 10.1002/dvdy.24560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 12/11/2022] Open
Abstract
The collagen gel has been used to study epithelial-mesenchymal transformation (EMT) for over 30 years. With advances in the field of materials sciences, new options are available to design optically clear, three-dimensional nature-inspired matrix mimetics to study EMT. Here, we review the history of the collagen gel assay, discuss its current use and how newer artificial matrices can be built to simulate in vivo extracellular environments and investigate important current questions in the EMT field. We suggest that further collaborations between materials scientists and biologists will be critical to move the field of EMT forward. Developmental Dynamics 247:332-339, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Robert W Dettman
- Department of Urology, Feinberg School of Medicine, Northwestern University and Stanley Manne Children's Research Institute, Chicago, Illinois
| | - Hans-Georg Simon
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Stanley Manne Children's Research Institute, Chicago, Illinois
| |
Collapse
|
134
|
Shenoy AT, Brissac T, Gilley RP, Kumar N, Wang Y, Gonzalez-Juarbe N, Hinkle WS, Daugherty SC, Shetty AC, Ott S, Tallon LJ, Deshane J, Tettelin H, Orihuela CJ. Streptococcus pneumoniae in the heart subvert the host response through biofilm-mediated resident macrophage killing. PLoS Pathog 2017; 13:e1006582. [PMID: 28841717 PMCID: PMC5589263 DOI: 10.1371/journal.ppat.1006582] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/07/2017] [Accepted: 08/15/2017] [Indexed: 11/18/2022] Open
Abstract
For over 130 years, invasive pneumococcal disease has been associated with the presence of extracellular planktonic pneumococci, i.e. diplococci or short chains in affected tissues. Herein, we show that Streptococcus pneumoniae that invade the myocardium instead replicate within cellular vesicles and transition into non-purulent biofilms. Pneumococci within mature cardiac microlesions exhibited salient biofilm features including intrinsic resistance to antibiotic killing and the presence of an extracellular matrix. Dual RNA-seq and subsequent principal component analyses of heart- and blood-isolated pneumococci confirmed the biofilm phenotype in vivo and revealed stark anatomical site-specific differences in virulence gene expression; the latter having major implications on future vaccine antigen selection. Our RNA-seq approach also identified three genomic islands as exclusively expressed in vivo. Deletion of one such island, Region of Diversity 12, resulted in a biofilm-deficient and highly inflammogenic phenotype within the heart; indicating a possible link between the biofilm phenotype and a dampened host-response. We subsequently determined that biofilm pneumococci released greater amounts of the toxin pneumolysin than did planktonic or RD12 deficient pneumococci. This allowed heart-invaded wildtype pneumococci to kill resident cardiac macrophages and subsequently subvert cytokine/chemokine production and neutrophil infiltration into the myocardium. This is the first report for pneumococcal biofilm formation in an invasive disease setting. We show that biofilm pneumococci actively suppress the host response through pneumolysin-mediated immune cell killing. As such, our findings contradict the emerging notion that biofilm pneumococci are passively immunoquiescent.
Collapse
Affiliation(s)
- Anukul T. Shenoy
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, The University of Texas Health San Antonio, San Antonio, TX, United States of America
| | - Terry Brissac
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Ryan P. Gilley
- Department of Microbiology, Immunology, and Molecular Genetics, The University of Texas Health San Antonio, San Antonio, TX, United States of America
| | - Nikhil Kumar
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Yong Wang
- Division of Pulmonary, Allergy & Critical Care Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Norberto Gonzalez-Juarbe
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Whitney S. Hinkle
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Sean C. Daugherty
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Amol C. Shetty
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Sandra Ott
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Luke J. Tallon
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Jessy Deshane
- Division of Pulmonary, Allergy & Critical Care Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Hervé Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Carlos J. Orihuela
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, The University of Texas Health San Antonio, San Antonio, TX, United States of America
- * E-mail:
| |
Collapse
|
135
|
Cahill TJ, Choudhury RP, Riley PR. Heart regeneration and repair after myocardial infarction: translational opportunities for novel therapeutics. Nat Rev Drug Discov 2017; 16:699-717. [DOI: 10.1038/nrd.2017.106] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
136
|
Zeng WR, Beh SJ, Bryson-Richardson RJ, Doran PM. Production of zebrafish cardiospheres and cardiac progenitor cells in vitro and three-dimensional culture of adult zebrafish cardiac tissue in scaffolds. Biotechnol Bioeng 2017; 114:2142-2148. [PMID: 28475237 DOI: 10.1002/bit.26331] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 04/28/2017] [Accepted: 05/03/2017] [Indexed: 11/12/2022]
Abstract
The hearts of adult zebrafish (Danio rerio) are capable of complete regeneration in vivo even after major injury, making this species of particular interest for understanding the growth and differentiation processes required for cardiac tissue engineering. To date, little research has been carried out on in vitro culture of adult zebrafish cardiac cells. In this work, progenitor-rich cardiospheres suitable for cardiomyocyte differentiation and myocardial regeneration were produced from adult zebrafish hearts. The cardiospheres contained a mixed population of c-kit+ and Mef2c+ cells; proliferative peripheral cells of possible mesenchymal lineage were also observed. Cellular outgrowth from cardiac explants and cardiospheres was enhanced significantly using conditioned medium harvested from cultures of a rainbow trout cell line, suggesting that fish-specific trophic factors are required for zebrafish cardiac cell expansion. Three-dimensional culture of zebrafish heart cells in fibrous polyglycolic acid (PGA) scaffolds was carried out under dynamic fluid flow conditions. High levels of cell viability and cardiomyocyte differentiation were maintained within the scaffolds. Expression of cardiac troponin T, a marker of differentiated cardiomyocytes, increased during the first 7 days of scaffold culture; after 15 days, premature disintegration of the biodegradable scaffolds led to cell detachment and a decline in differentiation status. This work expands our technical capabilities for three-dimensional zebrafish cardiac cell culture with potential applications in tissue engineering, drug and toxicology screening, and ontogeny research. Biotechnol. Bioeng. 2017;114: 2142-2148. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wendy R Zeng
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, Melbourne, Victoria, 3122, Australia
| | - Siew-Joo Beh
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, Melbourne, Victoria, 3122, Australia
| | | | - Pauline M Doran
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, Melbourne, Victoria, 3122, Australia
| |
Collapse
|
137
|
Scuderi GJ, Butcher J. Naturally Engineered Maturation of Cardiomyocytes. Front Cell Dev Biol 2017; 5:50. [PMID: 28529939 PMCID: PMC5418234 DOI: 10.3389/fcell.2017.00050] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 04/18/2017] [Indexed: 12/11/2022] Open
Abstract
Ischemic heart disease remains one of the most prominent causes of mortalities worldwide with heart transplantation being the gold-standard treatment option. However, due to the major limitations associated with heart transplants, such as an inadequate supply and heart rejection, there remains a significant clinical need for a viable cardiac regenerative therapy to restore native myocardial function. Over the course of the previous several decades, researchers have made prominent advances in the field of cardiac regeneration with the creation of in vitro human pluripotent stem cell-derived cardiomyocyte tissue engineered constructs. However, these engineered constructs exhibit a functionally immature, disorganized, fetal-like phenotype that is not equivalent physiologically to native adult cardiac tissue. Due to this major limitation, many recent studies have investigated approaches to improve pluripotent stem cell-derived cardiomyocyte maturation to close this large functionality gap between engineered and native cardiac tissue. This review integrates the natural developmental mechanisms of cardiomyocyte structural and functional maturation. The variety of ways researchers have attempted to improve cardiomyocyte maturation in vitro by mimicking natural development, known as natural engineering, is readily discussed. The main focus of this review involves the synergistic role of electrical and mechanical stimulation, extracellular matrix interactions, and non-cardiomyocyte interactions in facilitating cardiomyocyte maturation. Overall, even with these current natural engineering approaches, pluripotent stem cell-derived cardiomyocytes within three-dimensional engineered heart tissue still remain mostly within the early to late fetal stages of cardiomyocyte maturity. Therefore, although the end goal is to achieve adult phenotypic maturity, more emphasis must be placed on elucidating how the in vivo fetal microenvironment drives cardiomyocyte maturation. This information can then be utilized to develop natural engineering approaches that can emulate this fetal microenvironment and thus make prominent progress in pluripotent stem cell-derived maturity toward a more clinically relevant model for cardiac regeneration.
Collapse
Affiliation(s)
- Gaetano J Scuderi
- Meinig School of Biomedical Engineering, Cornell UniversityIthaca, NY, USA
| | - Jonathan Butcher
- Meinig School of Biomedical Engineering, Cornell UniversityIthaca, NY, USA
| |
Collapse
|
138
|
Frangogiannis NG. The extracellular matrix in myocardial injury, repair, and remodeling. J Clin Invest 2017; 127:1600-1612. [PMID: 28459429 DOI: 10.1172/jci87491] [Citation(s) in RCA: 356] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The cardiac extracellular matrix (ECM) not only provides mechanical support, but also transduces essential molecular signals in health and disease. Following myocardial infarction, dynamic ECM changes drive inflammation and repair. Early generation of bioactive matrix fragments activates proinflammatory signaling. The formation of a highly plastic provisional matrix facilitates leukocyte infiltration and activates infarct myofibroblasts. Deposition of matricellular proteins modulates growth factor signaling and contributes to the spatial and temporal regulation of the reparative response. Mechanical stress due to pressure and volume overload and metabolic dysfunction also induce profound changes in ECM composition that contribute to the pathogenesis of heart failure. This manuscript reviews the role of the ECM in cardiac repair and remodeling and discusses matrix-based therapies that may attenuate remodeling while promoting repair and regeneration.
Collapse
|
139
|
Mokalled MH, Patra C, Dickson AL, Endo T, Stainier DYR, Poss KD. Injury-induced ctgfa directs glial bridging and spinal cord regeneration in zebrafish. Science 2017; 354:630-634. [PMID: 27811277 DOI: 10.1126/science.aaf2679] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 09/27/2016] [Indexed: 12/14/2022]
Abstract
Unlike mammals, zebrafish efficiently regenerate functional nervous system tissue after major spinal cord injury. Whereas glial scarring presents a roadblock for mammalian spinal cord repair, glial cells in zebrafish form a bridge across severed spinal cord tissue and facilitate regeneration. We performed a genome-wide profiling screen for secreted factors that are up-regulated during zebrafish spinal cord regeneration. We found that connective tissue growth factor a (ctgfa) is induced in and around glial cells that participate in initial bridging events. Mutations in ctgfa disrupted spinal cord repair, and transgenic ctgfa overexpression or local delivery of human CTGF recombinant protein accelerated bridging and functional regeneration. Our study reveals that CTGF is necessary and sufficient to stimulate glial bridging and natural spinal cord regeneration.
Collapse
Affiliation(s)
- Mayssa H Mokalled
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Chinmoy Patra
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Amy L Dickson
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Toyokazu Endo
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Kenneth D Poss
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
140
|
Li Y, Urban A, Midura D, Simon HG, Wang QT. Proteomic characterization of epicardial-myocardial signaling reveals novel regulatory networks including a role for NF-κB in epicardial EMT. PLoS One 2017; 12:e0174563. [PMID: 28358917 PMCID: PMC5373538 DOI: 10.1371/journal.pone.0174563] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/10/2017] [Indexed: 01/09/2023] Open
Abstract
Signaling between the epicardium and underlying myocardium is crucial for proper heart development. The complex molecular interactions and regulatory networks involved in this communication are not well understood. In this study, we integrated mass spectrometry with bioinformatics to systematically characterize the secretome of embryonic chicken EPDC-heart explant (EHE) co-cultures. The 150-protein secretome dataset established greatly expands the knowledge base of the molecular players involved in epicardial-myocardial signaling. We identified proteins and pathways that are implicated in epicardial-myocardial signaling for the first time, as well as new components of pathways that are known to regulate the crosstalk between epicardium and myocardium. The large size of the dataset enabled bioinformatics analysis to deduce networks for the regulation of specific biological processes and predicted signal transduction nodes within the networks. We performed functional analysis on one of the predicted nodes, NF-κB, and demonstrate that NF-κB activation is an essential step in TGFβ2/PDGFBB-induced cardiac epithelial-to-mesenchymal transition. In summary, we have generated a global perspective of epicardial-myocardial signaling for the first time, and our findings open exciting new avenues for investigating the molecular basis of heart development and regeneration.
Collapse
Affiliation(s)
- Yanyang Li
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Alexander Urban
- Department of Pediatrics, The Feinberg School of Medicine, Northwestern University, Stanley Manne Children’s Research Institute, Chicago, Illinois, United States of America
| | - Devin Midura
- Department of Pediatrics, The Feinberg School of Medicine, Northwestern University, Stanley Manne Children’s Research Institute, Chicago, Illinois, United States of America
| | - Hans-Georg Simon
- Department of Pediatrics, The Feinberg School of Medicine, Northwestern University, Stanley Manne Children’s Research Institute, Chicago, Illinois, United States of America
- * E-mail: (QTW); (HGS)
| | - Q. Tian Wang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail: (QTW); (HGS)
| |
Collapse
|
141
|
The UK Biobank Cardio-metabolic Traits Consortium Blood Pressure Working Group, Warren HR, Evangelou E, Cabrera CP, Gao H, Ren M, Mifsud B, Ntalla I, Surendran P, Liu C, Cook JP, Kraja AT, Drenos F, Loh M, Verweij N, Marten J, Karaman I, Segura Lepe MP, O’Reilly PF, Knight J, Snieder H, Kato N, He J, Tai ES, Said MA, Porteous D, Alver M, Poulter N, Farrall M, Gansevoort RT, Padmanabhan S, Mägi R, Stanton A, Connell J, Bakker SJL, Metspalu A, Shields DC, Thom S, Brown M, Sever P, Esko T, Hayward C, van der Harst P, Saleheen D, Chowdhury R, Chambers JC, Chasman DI, Chakravarti A, Newton-Cheh C, Lindgren CM, Levy D, Kooner JS, Keavney B, Tomaszewski M, Samani NJ, Howson JMM, Tobin MD, Munroe PB, Ehret GB, Wain LV, Barnes MR, Tzoulaki I, Caulfield MJ, Elliott P, collaboration with The International Consortium of Blood Pressure #, (ICBP) 1000G Analyses, The CHD Exome+ Consortium, The ExomeBP Consortium, The T2D-GENES Consortium, The GoT2DGenes Consortium, The Cohorts for Heart and Ageing Research in Genome Epidemiology (CHARGE) BP Exome Consortium, The International Genomics of Blood Pressure (iGEN-BP) Consortium. Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk. Nat Genet 2017; 49:403-415. [PMID: 28135244 PMCID: PMC5972004 DOI: 10.1038/ng.3768] [Citation(s) in RCA: 410] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/14/2016] [Indexed: 11/21/2022]
Abstract
Elevated blood pressure is the leading heritable risk factor for cardiovascular disease worldwide. We report genetic association of blood pressure (systolic, diastolic, pulse pressure) among UK Biobank participants of European ancestry with independent replication in other cohorts, and robust validation of 107 independent loci. We also identify new independent variants at 11 previously reported blood pressure loci. In combination with results from a range of in silico functional analyses and wet bench experiments, our findings highlight new biological pathways for blood pressure regulation enriched for genes expressed in vascular tissues and identify potential therapeutic targets for hypertension. Results from genetic risk score models raise the possibility of a precision medicine approach through early lifestyle intervention to offset the impact of blood pressure-raising genetic variants on future cardiovascular disease risk.
Collapse
Affiliation(s)
| | - Helen R Warren
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, UK
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Claudia P Cabrera
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, UK
| | - He Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| | - Meixia Ren
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, UK
| | - Borbala Mifsud
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ioanna Ntalla
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Praveen Surendran
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Chunyu Liu
- Population Sciences Branch, National Heart Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Boston University School of Public Health, Boston, MA, USA
- National Heart, Lung and Blood Institute's Framingham Heart Study, Framingham, MA, USA
| | - James P Cook
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Aldi T Kraja
- Division of Statistical Genomics, Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis MO, USA
| | - Fotios Drenos
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK
- Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, Rayne Building, University College London, London, WC1E 6JF, UK
| | - Marie Loh
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Niek Verweij
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, USA
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Jonathan Marten
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Ibrahim Karaman
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
| | - Marcelo P Segura Lepe
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
- Bayer Pharma AG, Berlin, Germany
| | - Paul F O’Reilly
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Joanne Knight
- Data Science Institute, Lancester University, Lancaster, UK
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - E Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - M Abdullah Said
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - David Porteous
- Centre for Genomic & Experimental Medicine, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Maris Alver
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Neil Poulter
- Imperial Clinical Trials Unit, School of Public Health, Imperial College London, London, UK
| | - Martin Farrall
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Ron T Gansevoort
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Reedik Mägi
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Alice Stanton
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - John Connell
- Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| | - Stephan J L Bakker
- Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Denis C Shields
- School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Simon Thom
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Morris Brown
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, UK
| | - Peter Sever
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Tõnu Esko
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, USA
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Caroline Hayward
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Pim van der Harst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Danish Saleheen
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, USA
- Centre for Non-Communicable Diseases, Karachi, Pakistan
- Department of Public Health and Primary Care, University of Cambridge, UK
| | - Rajiv Chowdhury
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - John C Chambers
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
- Ealing Hospital National Health Service (NHS) Trust, Middlesex, UK
- Imperial College Healthcare NHS Trust, London, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Aravinda Chakravarti
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher Newton-Cheh
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, USA
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Cecilia M Lindgren
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, USA
- Wellcome Trust Center for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- The Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7BN, UK
| | - Daniel Levy
- Population Sciences Branch, National Heart Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- National Heart, Lung and Blood Institute's Framingham Heart Study, Framingham, MA, USA
| | - Jaspal S Kooner
- Imperial College Healthcare NHS Trust, London, UK
- Department of Cardiology, Ealing Hospital NHS Trust, Southall, Middlesex, UK
- National Heart and Lung Institute, Cardiovascular Sciences, Hammersmith Campus, Imperial College London, London, UK
| | - Bernard Keavney
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Division of Medicine, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Division of Medicine, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
- NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Joanna M M Howson
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Martin D Tobin
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Patricia B Munroe
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, UK
| | - Georg B Ehret
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cardiology, Department of Medicine, Geneva University Hospital, Geneva, Switzerland
| | - Louise V Wain
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Michael R Barnes
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, UK
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| | - Mark J Caulfield
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, UK
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Münch J, Grivas D, González-Rajal Á, Torregrosa-Carrión R, de la Pompa JL. Notch signalling restricts inflammation and serpine1 expression in the dynamic endocardium of the regenerating zebrafish heart. Development 2017; 144:1425-1440. [PMID: 28242613 DOI: 10.1242/dev.143362] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 02/20/2017] [Indexed: 01/13/2023]
Abstract
The zebrafish heart regenerates after ventricular damage through a process involving inflammation, fibrotic tissue deposition/removal and myocardial regeneration. Using 3D whole-mount imaging, we reveal a highly dynamic endocardium during cardiac regeneration, including changes in cell morphology, behaviour and gene expression. These events lay the foundation for an initial expansion of the endocardium that matures to form a coherent endocardial structure within the injury site. We studied two important endocardial molecules, Serpine1 and Notch, which are implicated in different aspects of endocardial regeneration. Notch signalling regulates developmental gene expression and features of endocardial maturation. Also, Notch manipulation interferes with attenuation of the inflammatory response and cardiomyocyte proliferation and dedifferentiation. serpine1 is strongly expressed very early in the wound endocardium, with decreasing expression at later time points. serpine1 expression persists in Notch-abrogated hearts, via what appears to be a conserved mechanism. Functional inhibition studies show that Serpine1 controls endocardial maturation and proliferation and cardiomyocyte proliferation. Thus, we describe a highly dynamic endocardium in the regenerating zebrafish heart, with two key endocardial players, Serpine1 and Notch signalling, regulating crucial regenerative processes.
Collapse
Affiliation(s)
- Juliane Münch
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, Madrid E-28029, Spain.,Institute of Biochemistry and Biology, Potsdam University, Karl-Liebknecht-Straße 24-25, Potsdam D-14476, Germany
| | - Dimitrios Grivas
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, Madrid E-28029, Spain.,CIBER CV, 28029 Madrid, Spain
| | - Álvaro González-Rajal
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, Madrid E-28029, Spain.,Cancer Division, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, 370 Victoria Street, Darlinghurst NSW 2010, Australia
| | - Rebeca Torregrosa-Carrión
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, Madrid E-28029, Spain.,CIBER CV, 28029 Madrid, Spain
| | - José Luis de la Pompa
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, Madrid E-28029, Spain .,CIBER CV, 28029 Madrid, Spain
| |
Collapse
|
143
|
Bickley LK, van Aerle R, Brown AR, Hargreaves A, Huby R, Cammack V, Jackson R, Santos EM, Tyler CR. Bioavailability and Kidney Responses to Diclofenac in the Fathead Minnow (Pimephales promelas). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:1764-1774. [PMID: 28068076 DOI: 10.1021/acs.est.6b05079] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Diclofenac is one of the most widely prescribed nonsteroidal anti-inflammatory drugs worldwide. It is frequently detected in surface waters; however, whether this pharmaceutical poses a risk to aquatic organisms is debated. Here we quantified the uptake of diclofenac by the fathead minnow (Pimephales promelas) following aqueous exposure (0.2-25.0 μg L-1) for 21 days, and evaluated the tissue and biomolecular responses in the kidney. Diclofenac accumulated in a concentration- and time-dependent manner in the plasma of exposed fish. The highest plasma concentration observed (for fish exposed to 25 μg L-1 diclofenac) was within the therapeutic range for humans. There was a strong positive correlation between exposure concentration and the number of developing nephrons observed in the posterior kidney. Diclofenac was not found to modulate the expression of genes in the kidney associated with its primary mode of action in mammals (prostaglandin-endoperoxide synthases) but modulated genes associated with kidney repair and regeneration. There were no significant adverse effects following 21 days exposure to concentrations typical of surface waters. The combination of diclofenac's uptake potential, effects on kidney nephrons and relatively small safety margin for some surface waters may warrant a longer term chronic health effects analysis for diclofenac in fish.
Collapse
Affiliation(s)
- Lisa K Bickley
- Biosciences, College of Life and Environmental Sciences, University of Exeter , Exeter, EX4 4QD, U.K
| | - Ronny van Aerle
- Biosciences, College of Life and Environmental Sciences, University of Exeter , Exeter, EX4 4QD, U.K
- Centre for Environment, Fisheries, and Aquaculture Science (Cefas), Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, U.K
| | - A Ross Brown
- Biosciences, College of Life and Environmental Sciences, University of Exeter , Exeter, EX4 4QD, U.K
| | - Adam Hargreaves
- AstraZeneca Drug Safety and Metabolism, Alderley Park, Macclesfield, Cheshire SK10 4TF, U.K
- PathCelerate Ltd. The BioHub at Alderley Park, Alderley Edge, Cheshire SK10 4TG, U.K
| | - Russell Huby
- Bioscript, St Peter's Institute , Macclesfield, Cheshire SK11 7HS, U.K
| | - Victoria Cammack
- AstraZeneca Global Environment, Alderley Park, Macclesfield, Cheshire SK10 4TF, U.K
| | - Richard Jackson
- AstraZeneca Drug Safety and Metabolism, Alderley Park, Macclesfield, Cheshire SK10 4TF, U.K
- Institute of Psychiatry, Psychology and Neuroscience, King's College London , De Crespigny Park, Box 63, SE5 8AF, London, U.K
| | - Eduarda M Santos
- Biosciences, College of Life and Environmental Sciences, University of Exeter , Exeter, EX4 4QD, U.K
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter , Exeter, EX4 4QD, U.K
| |
Collapse
|
144
|
Ramjee V, Li D, Manderfield LJ, Liu F, Engleka KA, Aghajanian H, Rodell CB, Lu W, Ho V, Wang T, Li L, Singh A, Cibi DM, Burdick JA, Singh MK, Jain R, Epstein JA. Epicardial YAP/TAZ orchestrate an immunosuppressive response following myocardial infarction. J Clin Invest 2017; 127:899-911. [PMID: 28165342 DOI: 10.1172/jci88759] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 12/12/2016] [Indexed: 12/27/2022] Open
Abstract
Ischemic heart disease resulting from myocardial infarction (MI) is the most prevalent form of heart disease in the United States. Post-MI cardiac remodeling is a multifaceted process that includes activation of fibroblasts and a complex immune response. T-regulatory cells (Tregs), a subset of CD4+ T cells, have been shown to suppress the innate and adaptive immune response and limit deleterious remodeling following myocardial injury. However, the mechanisms by which injured myocardium recruits suppressive immune cells remain largely unknown. Here, we have shown a role for Hippo signaling in the epicardium in suppressing the post-infarct inflammatory response through recruitment of Tregs. Mice deficient in epicardial YAP and TAZ, two core Hippo pathway effectors, developed profound post-MI pericardial inflammation and myocardial fibrosis, resulting in cardiomyopathy and death. Mutant mice exhibited fewer suppressive Tregs in the injured myocardium and decreased expression of the gene encoding IFN-γ, a known Treg inducer. Furthermore, controlled local delivery of IFN-γ following MI rescued Treg infiltration into the injured myocardium of YAP/TAZ mutants and decreased fibrosis. Collectively, these results suggest that epicardial Hippo signaling plays a key role in adaptive immune regulation during the post-MI recovery phase.
Collapse
|
145
|
Bonar NA, Petersen CP. Integrin suppresses neurogenesis and regulates brain tissue assembly in planarian regeneration. Development 2017; 144:784-794. [PMID: 28126842 DOI: 10.1242/dev.139964] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 12/30/2016] [Indexed: 12/30/2022]
Abstract
Animals capable of adult regeneration require specific signaling to control injury-induced cell proliferation, specification and patterning, but comparatively little is known about how the regeneration blastema assembles differentiating cells into well-structured functional tissues. Using the planarian Schmidtea mediterranea as a model, we identify β1-integrin as a crucial regulator of blastema architecture. β1-integrin(RNAi) animals formed small head blastemas with severe tissue disorganization, including ectopic neural spheroids containing differentiated neurons normally found in distinct organs. By mimicking aspects of normal brain architecture but without normal cell-type regionalization, these spheroids bore a resemblance to mammalian tissue organoids synthesized in vitro We identified one of four planarian integrin-alpha subunits inhibition of which phenocopied these effects, suggesting that a specific receptor controls brain organization through regeneration. Neoblast stem cells and progenitor cells were mislocalized in β1-integrin(RNAi) animals without significantly altered body-wide patterning. Furthermore, tissue disorganization phenotypes were most pronounced in animals undergoing brain regeneration and not homeostatic maintenance or regeneration-induced remodeling of the brain. These results suggest that integrin signaling ensures proper progenitor recruitment after injury, enabling the generation of large-scale tissue organization within the regeneration blastema.
Collapse
Affiliation(s)
- Nicolle A Bonar
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Christian P Petersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA .,Robert Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
146
|
Duffey OJ, Smart N. Approaches to augment vascularisation and regeneration of the adult heart via the reactivated epicardium. Glob Cardiol Sci Pract 2016; 2016:e201628. [PMID: 28979901 PMCID: PMC5624183 DOI: 10.21542/gcsp.2016.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 12/15/2016] [Indexed: 11/05/2022] Open
Abstract
Survival rates following myocardial infarction have increased in recent years but current treatments for post-infarction recovery are inadequate and cannot induce regeneration of damaged hearts. Regenerative medicine could provide disease-reversing treatments by harnessing modern concepts in cell and developmental biology. A recently-established paradigm in regenerative medicine is that regeneration of a tissue can be achieved by reactivation of the coordinated developmental processes that originally formed the tissue. In the heart, the epicardium has emerged as an important regulator of cardiac development and reactivation of epicardial developmental processes may provide a means to enable cardiac regeneration. Indeed, in adult mouse hearts, treatment with thymosin β4 and other drug-like molecules reactivates the epicardium and improves outcomes after myocardial infarction by inducing regenerative paracrine signalling, neovascularisation and de novo cardiomyocyte production. However, there are considerable limitations to current methods of epicardial reactivation that prevent direct translation into clinical practice. Here, we describe the rationale for targeting the epicardium and the successes and limitations of this approach. We consider how several recent advances in epicardial biology could be used to overcome these limitations. These advances include insight into epicardial signalling and heterogeneity, epicardial modulation of inflammation and epicardial remodelling of extracellular matrix.
Collapse
Affiliation(s)
- Owen J. Duffey
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Nicola Smart
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
147
|
Marro J, Pfefferli C, de Preux Charles AS, Bise T, Jaźwińska A. Collagen XII Contributes to Epicardial and Connective Tissues in the Zebrafish Heart during Ontogenesis and Regeneration. PLoS One 2016; 11:e0165497. [PMID: 27783651 PMCID: PMC5081208 DOI: 10.1371/journal.pone.0165497] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/12/2016] [Indexed: 12/25/2022] Open
Abstract
Zebrafish heart regeneration depends on cardiac cell proliferation, epicardium activation and transient reparative tissue deposition. The contribution and the regulation of specific collagen types during the regenerative process, however, remain poorly characterized. Here, we identified that the non-fibrillar type XII collagen, which serves as a matrix-bridging component, is expressed in the epicardium of the zebrafish heart, and is boosted after cryoinjury-induced ventricular damage. During heart regeneration, an intense deposition of Collagen XII covers the outer epicardial cap and the interstitial reparative tissue. Analysis of the activated epicardium and fibroblast markers revealed a heterogeneous cellular origin of Collagen XII. Interestingly, this matrix-bridging collagen co-localized with fibrillar type I collagen and several glycoproteins in the post-injury zone, suggesting its role in tissue cohesion. Using SB431542, a selective inhibitor of the TGF-β receptor, we showed that while the inhibitor treatment did not affect the expression of collagen 12 and collagen 1a2 in the epicardium, it completely suppressed the induction of both genes in the fibrotic tissue. This suggests that distinct mechanisms might regulate collagen expression in the outer heart layer and the inner injury zone. On the basis of this study, we postulate that the TGF-β signaling pathway induces and coordinates formation of a transient collagenous network that comprises fibril-forming Collagen I and fiber-associated Collagen XII, both of which contribute to the reparative matrix of the regenerating zebrafish heart.
Collapse
Affiliation(s)
- Jan Marro
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Catherine Pfefferli
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | | | - Thomas Bise
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Anna Jaźwińska
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
- * E-mail:
| |
Collapse
|
148
|
Rubin N, Harrison MR, Krainock M, Kim R, Lien CL. Recent advancements in understanding endogenous heart regeneration-insights from adult zebrafish and neonatal mice. Semin Cell Dev Biol 2016; 58:34-40. [PMID: 27132022 PMCID: PMC5028242 DOI: 10.1016/j.semcdb.2016.04.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/13/2016] [Accepted: 04/17/2016] [Indexed: 02/06/2023]
Abstract
Enhancing the endogenous regenerative capacity of the mammalian heart is a promising strategy that can lead to potential treatment of injured cardiac tissues. Studies on heart regeneration in zebrafish and neonatal mice have shown that cardiomyocyte proliferation is essential for replenishing myocardium. We will review recent advancements that have demonstrated the importance of Neuregulin 1/ErbB2 and innervation in regulating cardiomyocyte proliferation using both adult zebrafish and neonatal mouse heart regeneration models. Emerging findings suggest that different populations of macrophages and inflammation might contribute to regenerative versus fibrotic responses. Finally, we will discuss variation in the severity of the cardiac injury and size of the wound, which may explain the range of outcomes observed in different injury models.
Collapse
Affiliation(s)
- Nicole Rubin
- Heart Institute and Program of Developmental Biology and Regenerative Medicine, The Saban Research Institute of Children's Hospital Los Angeles, United States; Division of Cardiothoracic Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, United States
| | - Michael R Harrison
- Heart Institute and Program of Developmental Biology and Regenerative Medicine, The Saban Research Institute of Children's Hospital Los Angeles, United States; Division of Cardiothoracic Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, United States
| | - Michael Krainock
- Heart Institute and Program of Developmental Biology and Regenerative Medicine, The Saban Research Institute of Children's Hospital Los Angeles, United States; Division of Cardiothoracic Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, United States
| | - Richard Kim
- Heart Institute and Program of Developmental Biology and Regenerative Medicine, The Saban Research Institute of Children's Hospital Los Angeles, United States; Division of Cardiothoracic Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, United States
| | - Ching-Ling Lien
- Heart Institute and Program of Developmental Biology and Regenerative Medicine, The Saban Research Institute of Children's Hospital Los Angeles, United States; Division of Cardiothoracic Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, United States; Department of Biochemistry & Molecular Biology, Keck School of Medicine, University of Southern California, United States.
| |
Collapse
|
149
|
Uygur A, Lee RT. Mechanisms of Cardiac Regeneration. Dev Cell 2016; 36:362-74. [PMID: 26906733 DOI: 10.1016/j.devcel.2016.01.018] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/13/2016] [Accepted: 01/25/2016] [Indexed: 02/07/2023]
Abstract
Adult humans fail to regenerate their hearts following injury, and this failure to regenerate myocardium is a leading cause of heart failure and death worldwide. Although all adult mammals appear to lack significant cardiac regeneration potential, some vertebrates can regenerate myocardium throughout life. In addition, new studies indicate that mammals have cardiac regeneration potential during development and very soon after birth. The mechanisms of heart regeneration among model organisms, including neonatal mice, appear remarkably similar. Orchestrated waves of inflammation, matrix deposition and remodeling, and cardiomyocyte proliferation are commonly seen in heart regeneration models. Understanding why adult mammals develop extensive scarring instead of regeneration is a crucial goal for regenerative biology.
Collapse
Affiliation(s)
- Aysu Uygur
- Department of Stem Cell and Regenerative Biology, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Harvard University, Cambridge, MA 02139, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Richard T Lee
- Department of Stem Cell and Regenerative Biology, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Harvard University, Cambridge, MA 02139, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
150
|
Xiang MSW, Kikuchi K. Endogenous Mechanisms of Cardiac Regeneration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 326:67-131. [PMID: 27572127 DOI: 10.1016/bs.ircmb.2016.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Zebrafish possess a remarkable capacity for cardiac regeneration throughout their lifetime, providing a model for investigating endogenous cellular and molecular mechanisms regulating myocardial regeneration. By contrast, adult mammals have an extremely limited capacity for cardiac regeneration, contributing to mortality and morbidity from cardiac diseases such as myocardial infarction and heart failure. However, the viewpoint of the mammalian heart as a postmitotic organ was recently revised based on findings that the mammalian heart contains multiple undifferentiated cell types with cardiogenic potential as well as a robust regenerative capacity during a short period early in life. Although it occurs at an extremely low level, continuous cardiomyocyte turnover has been detected in adult mouse and human hearts, which could potentially be enhanced to restore lost myocardium in damaged human hearts. This review summarizes and discusses recent advances in the understanding of endogenous mechanisms of cardiac regeneration.
Collapse
Affiliation(s)
- M S W Xiang
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst NSW, Australia
| | - K Kikuchi
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst NSW, Australia; St. Vincent's Clinical School, University of New South Wales, Kensington NSW, Australia.
| |
Collapse
|