101
|
GluN2D subunit-containing NMDA receptors control tissue plasminogen activator-mediated spatial memory. J Neurosci 2012; 32:12726-34. [PMID: 22972996 DOI: 10.1523/jneurosci.6202-11.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tissue plasminogen activator (tPA) is a serine protease with pleiotropic actions in the CNS, such as synaptic plasticity and neuronal death. Some effects of tPA require its interaction with the GluN1 subunit of the NMDA receptor (NMDAR), leading to a potentiation of NMDAR signaling. We have reported previously that the pro-neurotoxic effect of tPA is mediated through GluN2D subunit-containing NMDARs. Thus, the aim of the present study was to determine whether GluN2D subunit-containing NMDARs drive tPA-mediated cognitive functions. To address this issue, a strategy of immunization designed to prevent the in vivo interaction of tPA with NMDARs and GluN2D-deficient mice were used in a set of behavioral tasks. Altogether, our data provide the first evidence that tPA influences spatial memory through its preferential interaction with GluN2D subunit-containing NMDARs.
Collapse
|
102
|
Makino N, Madoiwa S, Ohmori T, Katoh K, Ookawara S, Kanazawa T, Matsuo O, Ichikawa M, Mimuro J, Ichimura K, Sakata Y. Tissue plasminogen activator deficiency promotes early phase regeneration in the olfactory epithelium after bulbectomy. Int Forum Allergy Rhinol 2012. [PMID: 23193078 DOI: 10.1002/alr.21124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Tissue type plasminogen activator (tPA) functions as a fibrinolytic factor in the blood and has unique roles in the nervous system. However, the role of tPA in the olfactory epithelium (OE) is still unclear. Generally, surgical ablation of the olfactory bulb (bulbectomy) triggers degeneration followed by regeneration of OE. In this experimental study, we investigated the role of tPA in OE regeneration. METHODS Wild-type (WT) mice and tPA-knockout (tPA(-/-) ) mice were subjected to bulbectomy. Reverse-transcription polymerase chain reaction (RT-PCR), in situ hybridization, and immunohistochemical examination was done to detect tPA expression in the olfactory bulb and OE. Cellular proliferation and apoptosis was also monitored in the OE. RESULTS Before bulbectomy, tPA was found to be expressed in the olfactory bulb and OE. OE degenerated to a similar extent in both strains between 0 and 3 days after bulbectomy. However, OE was thicker and contained more cells in tPA(-/-) mice than in WT mice at 7 days after bulbectomy. Moreover, the number of apoptotic bodies was reduced and the number of proliferating cells was increased in the OE of tPA(-/-) mice compared to WT mice, after bulbectomy. Transmission electron microscopy revealed continuous degeneration of the OE for up to 7 days after bulbectomy in WT mice. In contrast, we observed some intact olfactory vesicles and almost normal supporting cells in the OE of tPA(-/-) mice, at 7 days after bulbectomy. CONCLUSION The current findings show that the tPA-plasmin system plays an inhibitory role in the regulation of regeneration in the OE.
Collapse
Affiliation(s)
- Nobuko Makino
- Department of Otolaryngology-Head and Neck Surgery, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Gonzalez-Gronow M, Ray R, Wang F, Pizzo SV. The voltage-dependent anion channel (VDAC) binds tissue-type plasminogen activator and promotes activation of plasminogen on the cell surface. J Biol Chem 2012; 288:498-509. [PMID: 23161549 DOI: 10.1074/jbc.m112.412502] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The voltage-dependent anion channel (VDAC), a major pore-forming protein in the outer membrane of mitochondria, is also found in the plasma membrane of a large number of cells where in addition to its role in regulating cellular ATP release and volume control it is important for maintaining redox homeostasis. Cell surface VDAC is a receptor for plasminogen kringle 5, which promotes partial closure of the channel. In this study, we demonstrate that VDAC binds tissue-type plasminogen activator (t-PA) on human neuroblastoma SK-N-SH cells. Binding of t-PA to VDAC induced a decrease in K(m) and an increase in the V(max) for activation of its substrate, plasminogen (Pg). This resulted in accelerated Pg activation when VDAC, t-PA, and Pg were bound together. VDAC is also a substrate for plasmin; hence, it mimics fibrin activity. Binding of t-PA to VDAC occurs between a t-PA fibronectin type I finger domain located between amino acids Ile(5) and Asn(37) and a VDAC region including amino acids (20)GYGFG(24). These VDAC residues correspond to a GXXXG repeat motif commonly found in amyloid β peptides that is necessary for aggregation when these peptides form fibrillar deposits on the cell surface. Furthermore, we also show that Pg kringle 5 is a substrate for the NADH-dependent reductase activity of VDAC. This ternary complex is an efficient proteolytic complex that may facilitate removal of amyloid β peptide deposits from the normal brain and cell debris from injured brain tissue.
Collapse
Affiliation(s)
- Mario Gonzalez-Gronow
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | |
Collapse
|
104
|
Henry VJ, Lecointre M, Laudenbach V, Ali C, Macrez R, Jullienne A, Berezowski V, Carmeliet P, Vivien D, Marret S, Gonzalez BJ, Leroux P. High t-PA release by neonate brain microvascular endothelial cells under glutamate exposure affects neuronal fate. Neurobiol Dis 2012; 50:201-8. [PMID: 23103420 DOI: 10.1016/j.nbd.2012.10.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 10/11/2012] [Accepted: 10/19/2012] [Indexed: 02/06/2023] Open
Abstract
Glutamate excitotoxicity is a consolidated hypothesis in neonatal brain injuries and tissue plasminogen activator (t-PA) participates in the processes through proteolytic and receptor mediated effects. In brain microvascular endothelial cell (nBMEC) cultures from neonates, t-PA content and release upon glutamate are higher than in adult (aBMECs) cultures. Owing to the variety of t-PA substrates and receptor targets, the study was aimed at determining the putative roles of endothelial t-PA in the neonatal brain parenchyma under glutamate challenge. Basal t-PA release was 4.4 fold higher in nBMECs vs aBMECs and glutamate was 20 fold more potent to allow Evans blue vascular permeability in neonate microvessels indicating that, under noxious glutamate (50 μM) exposure, high amounts of endothelial t-PA stores may be mobilized and may access the nervous parenchyma. Culture media from nBMECS or aBMECs challenged by excitotoxic glutamate were applied to neuron cultures at DIV 11. While media from adult cells did not evoke more LDH release in neuronal cultures that under glutamate alone, media from nBMECs enhanced 2.2 fold LDH release. This effect was not observed with media from t-PA(-/-) nBMECs and was inhibited by hr-PAI-1. In Cortical slices from 10 day-old mice, hrt-PA associated with glutamate evoked neuronal necrosis in deeper (more mature) layers, an effect reversed by NMDA receptor GluN1 amino-terminal domain antibody capable of inhibiting t-PA potentiation of the receptor. In superficial layers (less mature), hrt-PA alone inhibited apoptosis, an effect reversed by the EGF receptor antagonist AG1478. Applied to immature neurons in culture (DIV5), media from nBMEC rescued 85.1% of neurons from cell death induced by serum deprivation. In cortical slices, the anti-apoptotic effect of t-PA fitted with age dependent localization of less mature neurons. These data suggest that in the immature brain, propensity of vessels to release high amounts of t-PA may not only impact vascular integrity but may also influence neuronal fate, via regulation of apoptosis in immature cells and, as in adult by potentiating glutamate toxicity in mature neurons. The data point out putative implication of microvessels in glutamate neurotoxicity in the development, and justify research towards vessel oriented neuroprotection strategies in neonates.
Collapse
Affiliation(s)
- Vincent Jean Henry
- Region INSERM Team, ERI28 NeoVasc, Laboratory of Microvascular Endothelium and Neonate Brain Lesions, University of Rouen, Institute for Research and Innovation in Biomedicine, Rouen, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Simard B, Ratel D, Dupré I, Pautre V, Berger F. Shark cartilage extract induces cytokines expression and release in endothelial cells and induces E-selectin, plasminogen and t-PA genes expression through an antioxidant-sensitive mechanism. Cytokine 2012; 61:104-11. [PMID: 23063000 DOI: 10.1016/j.cyto.2012.08.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 08/01/2012] [Accepted: 08/30/2012] [Indexed: 11/24/2022]
Abstract
Neovastat® is a standardized extract of marine cartilage, an avascular tissue, which contains many biologically active molecules and has multiple antiangiogenic properties. In addition to VEGFR2 and MMPs inhibition, shark cartilage extract (SCE) has recently been shown to induce tissue plasminogen activator gene (PLAT) expression in bovine endothelial cells in a TNF like manner, by inducing the typical mediators NF-κB and JNK. There is now compelling evidences that the NF-κB and JNK pathways are activated by cytokines induced generation of reactive oxygen species (ROS). We used macroarray genes expression analysis on human umbilical vein endothelial cells, to investigate if that mechanism could mediate the effect of SCE. Transcriptomic results showed that SCE induced expression of several cytokines. Their impact must be important, given that treatment of endothelial cells with the cytokine TNF-α was able to reproduce most of the effects of cartilage extract on genes expression. In addition, most of the genes, known to be inducible by NF-κB or JNK following cytokines stimulation, were less induced by SCE when endothelial cells were pretreated with the antioxidant N-Acetylcysteine (NAC), suggesting a role of ROS in endothelial cell activation by SCE. Finally, the possible effects of PLAT, PLG, SELE, IL8 and PRDX2 (those validated by q-PCR) on angiogenesis, will also be discussed.
Collapse
Affiliation(s)
- Bryan Simard
- Grenoble Institut des Neurosciences, INSERM U 836, Équipe 7, BP 170, F38042 Grenoble Cedex 9, France.
| | | | | | | | | |
Collapse
|
106
|
Cell surface remodeling by plasmin: a new function for an old enzyme. J Biomed Biotechnol 2012; 2012:564259. [PMID: 23097597 PMCID: PMC3477900 DOI: 10.1155/2012/564259] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 06/01/2012] [Indexed: 12/23/2022] Open
Abstract
Plasmin, one of the most potent and reactive serine proteases, is involved in various physiological processes, including embryo development, thrombolysis, wound healing and cancer progression. The proteolytic activity of plasmin is tightly regulated through activation of its precursor, plasminogen, only at specific times and in defined locales as well as through inhibition of active plasmin by its abundant natural inhibitors. By exploiting the plasminogen activating system and overexpressing distinct components of the plasminogen activation cascade, such as pro-uPA, uPAR and plasminogen receptors, malignant cells can enhance the generation of plasmin which in turn, modifies the tumor microenvironment to sustain cancer progression. While plasmin-mediated degradation and modification of extracellular matrix proteins, release of growth factors and cytokines from the stroma as well as activation of several matrix metalloproteinase zymogens, all have been a focus of cancer research studies for decades, the ability of plasmin to cleave transmembrane molecules and thereby to generate functionally important cleaved products which induce outside-in signal transduction, has just begun to receive sufficient attention. Herein, we highlight this relatively understudied, but important function of the plasmin enzyme as it is generated de novo at the interface between cross-talking cancer and host cells.
Collapse
|
107
|
Caspase-3 mediates in part hippocampal apoptosis in sepsis. Mol Neurobiol 2012; 47:394-8. [PMID: 23054679 DOI: 10.1007/s12035-012-8354-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 09/19/2012] [Indexed: 10/27/2022]
Abstract
The brain is one of the first organs affected during sepsis development resulting in apoptosis for a short-term and cognitive impairment for a long-term. Despite its importance, the mechanisms of brain dysfunction during sepsis are not fully elucidated. Thus, we here, in an animal model of sepsis, evaluated apoptosis in the dentate gyrus cell layer of the hippocampus to document the involvement of caspase-3 in the pathogenesis of neuronal apoptosis. Wistar rats sham-operated or submitted to the cecal ligation and perforation (CLP) procedure were killed at 12, 24, 48 h, and 10 days after surgery for the determination of caspase-3 and apoptosis rate. In a separate cohort of animals, a caspase-3-specific inhibitor was administered and animals were killed at 12 h after sepsis. An increase in the number of apoptotic cells 12, 24, and 48 h by histopathological evaluations and an increase of caspase-3 apoptotic cells 12 and 24 h after sepsis induction were observed. The caspase-3 inhibitor decreases the number of apoptotic cells by histopathological evaluations but not by immunohistochemistry evaluations. Caspase-3 is involved in part in apoptosis in the dentate gyrus cell layer of the hippocampus in septic rats submitted by CLP.
Collapse
|
108
|
Morphological evaluation of the cerebral blood vessels in the late gestation fetal sheep following hypoxia in utero. Microvasc Res 2012; 85:1-9. [PMID: 23041509 DOI: 10.1016/j.mvr.2012.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 09/03/2012] [Accepted: 09/25/2012] [Indexed: 11/22/2022]
Abstract
Hypoxia can significantly contribute to the development of permanent brain injury in the term neonate; however the response of cerebral blood vessels is not well understood. This study aimed to quantitatively measure vascular density and morphology using laminin immunohistochemistry as a marker of blood vessels, and determine the effects of a single, severe bout of hypoxia (umbilical cord occlusion, UCO) late in gestation on the developing cerebrovasculature in fetal sheep. At 124-126 days gestation singleton fetal sheep underwent surgery for implantation of catheters and placement of an inflatable cuff around the umbilical cord. A 10 min UCO or sham UCO (n=5) occurred at 132 days gestation. Fetal brains were collected at 24 h (n=5) or 48 h (n=4) after UCO for vascular density and morphology analysis of laminin immunohistochemistry. 48 h following a single, brief bout of severe hypoxia late in gestation decreased vascular density was seen in the caudate nucleus and no changes in vascular morphology occurred. However closer analysis revealed a significant shift in the frequency of smaller (≤10 μm) to larger (≤100 μm) perimeter blood vessels in periventricular and subcortical white matter. Close examination of the frequency distribution of vascular perimeter highlights that alterations in vascular morphology persist in the near term fetal brain for up to 48 h following a brief (10 min) hypoxia in white but not gray matter. These findings suggest that the near term brain may still be vulnerable to white matter injury following in utero hypoxia.
Collapse
|
109
|
Abstract
The blood-spinal cord barrier (BSCB) regulates molecular exchange between blood and spinal cord. Pericytes are presumed to be important cellular constituents of the BSCB. However, the regional abundance and vascular functions of spinal cord pericytes have yet to be determined. Utilizing wild-type mice, we show that spinal cord pericyte capillary coverage and number compared with the brain regions are reduced most prominently in the anterior horn. Regional pericyte variations are highly correlated with: (1) increased capillary permeability to 350 Da, 40,000 Da, and 150,000 Da, but not 2,000,000 Da fluorescent vascular tracers in cervical, thoracic, and lumbar regions and (2) diminished endothelial zonula occludens-1 (ZO-1) and occludin tight junction protein expression. Pericyte-deficient mutations (Pdgfrβ(F7/F7) mice) resulted in additional pericyte reductions in spinal cord capillaries leading to overt BSCB disruption to serum proteins, accumulation in motor neurons of cyotoxic thrombin and fibrin and motor neuron loss. Barrier disruption in perciyte-deficient mice coincided with further reductions in ZO-1 and occludin. These data suggest that pericytes contribute to proper function of the BSCB at the capillary level. Regional reductions in spinal cord pericytes may provide a cellular basis for heightened spinal cord barrier capillary permeability and motor neuron loss.
Collapse
|
110
|
Abstract
Alteplase (Actilyse(®), Activase(®)) is a recombinant tissue-type plasminogen activator that activates plasminogen directly to plasmin. It is the only pharmacological treatment currently approved for patients with acute ischaemic stroke. This article reviews the efficacy and tolerability of alteplase, focusing on data relevant to treatment between 0 and 4.5 hours after onset of stroke, and summarizes its pharmacological properties. Well designed clinical trials showed that alteplase administered within 3 hours (in the NINDS trial) and between 3 and 4.5 hours (in the ECASS III trial) after stroke onset significantly improved clinical outcomes at 90 days relative to placebo. Alteplase was generally well tolerated in these trials, with no significant difference observed between alteplase and placebo recipients in the 90-day mortality rates, despite significantly higher incidences of any and symptomatic intracranial haemorrhages in alteplase recipients. These results were generally supported by those of the SITS-MOST and SITS-ISTR observational studies, which showed that alteplase was effective and generally well tolerated when administered within 4.5 hours of stroke onset in routine clinical practice. However, results from SITS-ISTR indicated that the safety and functional outcomes were generally less favourable when alteplase was administered 3-4.5 hours after stroke onset than within 3 hours of stroke onset. Additionally, results from pooled analyses of randomized clinical trials indicated that the benefit of alteplase therapy over placebo decreased as the time between stroke onset and treatment initiation increased, with no significant benefit observed when treatment was initiated >4.5 hours after stroke onset. Moreover, the odds of mortality increased as the time between stroke onset and treatment initiation increased. Thus, the greatest benefit of alteplase therapy is gained with early treatment. Based on these results, current EU labelling and treatment guidelines recommend that alteplase should be administered as early as possible within 4.5 hours of symptom onset in patients with acute ischaemic stroke. However, recent results from a meta-analysis and IST-3 suggest that some patients may benefit from treatment up to 6 hours after stroke onset. Patients for whom alteplase therapy is contraindicated as per current EU licensing criteria, such as those aged >80 years, may also benefit from therapy. Further randomized trials of alteplase administered >4.5 hours after stroke in selected patients are required to confirm these findings.
Collapse
|
111
|
Colognato H, Tzvetanova ID. Glia unglued: how signals from the extracellular matrix regulate the development of myelinating glia. Dev Neurobiol 2012; 71:924-55. [PMID: 21834081 DOI: 10.1002/dneu.20966] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The health and function of the nervous system relies on glial cells that ensheath neuronal axons with a specialized plasma membrane termed myelin. The molecular mechanisms by which glial cells target and enwrap axons with myelin are only beginning to be elucidated, yet several studies have implicated extracellular matrix proteins and their receptors as being important extrinsic regulators. This review provides an overview of the extracellular matrix proteins and their receptors that regulate multiple steps in the cellular development of Schwann cells and oligodendrocytes, the myelinating glia of the PNS and CNS, respectively, as well as in the construction and maintenance of the myelin sheath itself. The first part describes the relevant cellular events that are influenced by particular extracellular matrix proteins and receptors, including laminins, collagens, integrins, and dystroglycan. The second part describes the signaling pathways and effector molecules that have been demonstrated to be downstream of Schwann cell and oligodendroglial extracellular matrix receptors, including FAK, small Rho GTPases, ILK, and the PI3K/Akt pathway, and the roles that have been ascribed to these signaling mediators. Throughout, we emphasize the concept of extracellular matrix proteins as environmental sensors that act to integrate, or match, cellular responses, in particular to those downstream of growth factors, to appropriate matrix attachment.
Collapse
Affiliation(s)
- Holly Colognato
- Department of Pharmacology, Stony Brook University, Stony Brook, New York 11794, USA.
| | | |
Collapse
|
112
|
Prostate Cancer Cell Surface-Associated Keratin 8 and Its Implications for Enhanced Plasmin Activity. Protein J 2012; 31:195-205. [DOI: 10.1007/s10930-011-9388-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
113
|
Murase S, McKay RD. Matrix metalloproteinase-9 regulates survival of neurons in newborn hippocampus. J Biol Chem 2012; 287:12184-94. [PMID: 22351756 DOI: 10.1074/jbc.m111.297671] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The number of neurons in the adult rodent brain is strongly influenced by events in early postnatal life that eliminate approximately half of the neurons. Recently, we reported that neurotrophins induced survival of neonatal rat hippocampal neurons by promoting neural activity and activation of the Ser/Thr kinase, Akt. The survival of neurons also depended on integrin signaling, but a role for the extracellular matrix (ECM) in this mechanism was yet to be explored. Here, we show that levels of the matrix metalloproteinase-9 (MMP9) decrease, and the level of the ECM protein laminin increases in rat hippocampus during the period of neuronal death. Hippocampi from MMP9 null mice showed higher levels of laminin expression than wild type at P1 and no further increase at P10. In vitro, the matrix metalloproteinase inhibitor FN-439 promoted survival of neurons in a laminin-integrin β1-dependent manner. Blocking laminin signaling attenuated activation of Akt by depolarization. In vivo, injecting FN-439 into the neonatal hippocampus increased the level of laminin and promoted neuronal survival through an integrin-dependent mechanism. These results show signals from the ECM are not simply permissive but rather actively regulated, and they interact with neuronal activity to control the number of hippocampal neurons. This work is the first to report a role for MMP9 in regulating neuronal survival through the developmental process that establishes the functional brain.
Collapse
Affiliation(s)
- Sachiko Murase
- Laboratory of Molecular Biology, NINDS, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
114
|
Jensen LT, Møller TH, Larsen SA, Jakobsen H, Olsen A. A new role for laminins as modulators of protein toxicity in Caenorhabditis elegans. Aging Cell 2012; 11:82-92. [PMID: 22051349 DOI: 10.1111/j.1474-9726.2011.00767.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Protein misfolding is a common theme in aging and several age-related diseases such as Alzheimer's and Parkinson's disease. The processes involved in the development of these diseases are many and complex. Here, we show that components of the basement membrane (BM), particularly laminin, affect protein integrity of the muscle cells they support. We knocked down gene expression of epi-1, a laminin α-chain, and found that this resulted in increased proteotoxicity in different Caenorhabditis elegans transgenic models, expressing aggregating proteins in the body wall muscle. The effect could partially be rescued by decreased insulin-like signaling, known to slow the aging process and the onset of various age-related diseases. Our data points to an underlying molecular mechanism involving proteasomal degradation and HSP-16 chaperone activity. Furthermore, epi-1-depleted animals had altered synaptic function and displayed hypersensitivity to both levamisole and aldicarb, an acetylcholine receptor agonist and an acetylcholinesterase inhibitor, respectively. Our results implicate the BM as an extracellular modulator of protein homeostasis in the adjacent muscle cells. This is in agreement with previous research showing that imbalance in neuromuscular signaling disturbs protein homeostasis in the postsynaptic cell. In our study, proteotoxicity may indeed be mediated by the neuromuscular junction which is part of the BM, where laminins are present in high concentration, ensuring the proper microenvironment for neuromuscular signaling. Laminins are evolutionarily conserved, and thus the BM may play a much more causal role in protein misfolding diseases than currently recognized.
Collapse
Affiliation(s)
- Louise T Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
115
|
Cho E, Lee KJ, Seo JW, Byun CJ, Chung SJ, Suh DC, Carmeliet P, Koh JY, Kim JS, Lee JY. Neuroprotection by urokinase plasminogen activator in the hippocampus. Neurobiol Dis 2012; 46:215-24. [PMID: 22293605 DOI: 10.1016/j.nbd.2012.01.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 01/04/2012] [Accepted: 01/12/2012] [Indexed: 01/01/2023] Open
Abstract
Tissue plasminogen activator (tPA) and urokinase plasminogen activator (uPA), which are both used for thrombolytic treatment of acute ischemic stroke, are serine proteases that convert plasminogen to active plasmin. Although recent experimental evidences have raised controversy about the neurotoxic versus neuroprotective roles of tPA in acute brain injury, uPA remains unexplored in this context. In this study, we evaluated the effect of uPA on neuronal death in the hippocampus of mice after kainate-induced seizures. In the normal brain, uPA was localized to both nuclei and cytosol of neurons. Following severe kainate-induced seizures, uPA completely disappeared in degenerating neurons, whereas uPA-expressing astrocytes substantially increased, suggesting reactive astrogliosis. uPA-knockout mice were more vulnerable to kainate-induced neuronal death than wild-type mice. Consistent with this, inhibition of uPA by intracerebral injection of the uPA inhibitor UK122 increased the level of neuronal death. In contrast, prior administration of recombinant uPA significantly attenuated neuronal death. Collectively, these results indicate that uPA renders neurons resistant to kainate-induced excitotoxicity. Moreover, recombinant uPA suppressed cell death in primary cultures of hippocampal neurons exposed to H2O2, zinc, or various excitotoxins, suggesting that uPA protects against neuronal injuries mediated by the glutamate receptor, or by oxidation- or zinc-induced death signaling pathways. Considering that tPA may facilitate neurodegeneration in acute brain injury, we suggest that uPA, as a neuroprotectant, might be beneficial for the treatment of acute brain injuries such as ischemic stroke.
Collapse
Affiliation(s)
- Eunsil Cho
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 138-736, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Pineda D, AmpurdanÉS C, Medina MG, Serratosa J, Tusell JM, Saura J, Planas AM, Navarro P. Tissue plasminogen activator induces microglial inflammation via a noncatalytic molecular mechanism involving activation of mitogen-activated protein kinases and Akt signaling pathways and AnnexinA2 and Galectin-1 receptors. Glia 2011; 60:526-40. [DOI: 10.1002/glia.22284] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 11/22/2011] [Indexed: 01/03/2023]
|
117
|
Lemarchant S, Docagne F, Emery E, Vivien D, Ali C, Rubio M. tPA in the injured central nervous system: different scenarios starring the same actor? Neuropharmacology 2011; 62:749-56. [PMID: 22079561 DOI: 10.1016/j.neuropharm.2011.10.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/19/2011] [Accepted: 10/27/2011] [Indexed: 11/19/2022]
Abstract
When in 1947, Astrup and Permin reported that animal tissues contain fibrinokinase, a plasminogen activator, and when Pennica and colleagues (Pennica et al., 1983) cloned and expressed human tissue plasminogen activator (tPA) in Escherichia coli in 1983, they might did not realize how much their pioneer work would impact the life of millions of patients suffering from myocardial infarction or ischemic stroke. Some years after, accumulating evidence shows that tPA is not just a plasminogen activator of endothelial origin. Indeed, the main function of tPA released from the endothelium is to convert fibrin-bound plasminogen into active plasmin, thus dissolving the fibrin meshwork of blood clots. But this serine protease is also expressed by several cell types, and its beneficial and deleterious actions stand beyond fibrinolysis or even proteolysis. We will review here the reported effects and mechanisms of action of tPA in the course of three different pathologies of the central nervous system (CNS): spinal cord injury, ischemic stroke and multiple sclerosis. While these three disorders have distinct aetiologies, they share some pathogenic mechanisms. We will depict the main "good" and "bad" sides of tPA described to date during each of these pathological situations, as well as the proposed mechanisms explaining these effects. We speculate that due to common pathogenic pathways, tPA's actions described in one particular disease could in fact occur in the others. Finally, we will evaluate if tPA could be a therapeutic target for these pathologies. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.
Collapse
Affiliation(s)
- Sighild Lemarchant
- INSERM U919, "Serine Proteases and Pathophysiology of the Neurovascular Unit", UMR CNRS 6232 Cinaps, GIP Cyceron, University of Caen, Bd H. Becquerel, BP 5229, 14074 Caen Cedex, France
| | | | | | | | | | | |
Collapse
|
118
|
Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders. Nat Rev Neurosci 2011; 12:723-38. [PMID: 22048062 DOI: 10.1038/nrn3114] [Citation(s) in RCA: 2124] [Impact Index Per Article: 151.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The neurovascular unit (NVU) comprises brain endothelial cells, pericytes or vascular smooth muscle cells, glia and neurons. The NVU controls blood-brain barrier (BBB) permeability and cerebral blood flow, and maintains the chemical composition of the neuronal 'milieu', which is required for proper functioning of neuronal circuits. Recent evidence indicates that BBB dysfunction is associated with the accumulation of several vasculotoxic and neurotoxic molecules within brain parenchyma, a reduction in cerebral blood flow, and hypoxia. Together, these vascular-derived insults might initiate and/or contribute to neuronal degeneration. This article examines mechanisms of BBB dysfunction in neurodegenerative disorders, notably Alzheimer's disease, and highlights therapeutic opportunities relating to these neurovascular deficits.
Collapse
Affiliation(s)
- Berislav V Zlokovic
- Department of Physiology and Biophysics, and Center for Neurodegeneration and Regeneration at the Zilkha Neurogenetic Institute, University of Southern California, Keck School of Medicine, 1501 San Pablo Street, Los Angeles, California 90089, USA.
| |
Collapse
|
119
|
Winkler EA, Bell RD, Zlokovic BV. Central nervous system pericytes in health and disease. Nat Neurosci 2011; 14:1398-1405. [PMID: 22030551 DOI: 10.1038/nn.2946] [Citation(s) in RCA: 738] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Pericytes are uniquely positioned within the neurovascular unit to serve as vital integrators, coordinators and effectors of many neurovascular functions, including angiogenesis, blood-brain barrier (BBB) formation and maintenance, vascular stability and angioarchitecture, regulation of capillary blood flow and clearance of toxic cellular byproducts necessary for proper CNS homeostasis and neuronal function. New studies have revealed that pericyte deficiency in the CNS leads to BBB breakdown and brain hypoperfusion resulting in secondary neurodegenerative changes. Here we review recent progress in understanding the biology of CNS pericytes and their role in health and disease.
Collapse
Affiliation(s)
- Ethan A Winkler
- Center for Neurodegenerative and Vascular Brain Disorders, Department of Neurosurgery and Neurology, University of Rochester Medical Center, Rochester, New York, USA
| | - Robert D Bell
- Center for Neurodegenerative and Vascular Brain Disorders, Department of Neurosurgery and Neurology, University of Rochester Medical Center, Rochester, New York, USA
| | - Berislav V Zlokovic
- Center for Neurodegenerative and Vascular Brain Disorders, Department of Neurosurgery and Neurology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
120
|
Extracellular proteases in epilepsy. Epilepsy Res 2011; 96:191-206. [DOI: 10.1016/j.eplepsyres.2011.08.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 07/10/2011] [Accepted: 08/03/2011] [Indexed: 11/20/2022]
|
121
|
Obiang P, Maubert E, Bardou I, Nicole O, Launay S, Bezin L, Vivien D, Agin V. Enriched housing reverses age-associated impairment of cognitive functions and tPA-dependent maturation of BDNF. Neurobiol Learn Mem 2011; 96:121-9. [DOI: 10.1016/j.nlm.2011.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 02/22/2011] [Accepted: 03/21/2011] [Indexed: 01/19/2023]
|
122
|
Marchi N, Johnson AJ, Puvenna V, Johnson HL, Tierney W, Ghosh C, Cucullo L, Fabene PF, Janigro D. Modulation of peripheral cytotoxic cells and ictogenesis in a model of seizures. Epilepsia 2011; 52:1627-34. [PMID: 21627645 PMCID: PMC3728674 DOI: 10.1111/j.1528-1167.2011.03080.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE A link between seizure susceptibility, blood-brain barrier (BBB) failure, and the activation of peripheral white blood cells has been recently proposed. However, the molecular players involved in this cascade of events are unknown. We tested the hypothesis that immunosupression by splenectomy or lack of perforin, a downstream factor of natural killer (NK) and cytotoxic T cells, could reduce seizure onset. METHODS Pilocarpine was used to induce seizures in adult rats wild-type and perforin-deficient mice. Splenectomy was performed prior to pilocarpine injection. Seizure onset was evaluated by electroencephalography (EEG) and joint time-frequency analysis. Spleens from control and pilocarpine-treated groups were analyzed for anatomical changes and CD3+ cell content. BBB damage was assessed by measuring albumin parenchymal extravasation. Fluorescence-activated cell sorting (FACS) analysis was performed on spleen and brain tissue of wild-type and perforin-deficient mice treated, or not, with pilocarpine. KEY FINDINGS Splenectomy significantly reduced seizure-associated mortality. Histologic analysis of the spleens exposed to pilocarpine revealed altered white and red pulp anatomy and an increase in CD3+ T cells. Onset of status epilepticus (SE) and mortality were significantly decreased in perforin-deficient mice. Pilocarpine significantly increased spleen NK 1.1 and CD8+ cell percentage; in contrast, the brain inflammatory cell profile remained unchanged at the time of pilocarpine SE. BBB damage was reduced in the perforin-deficient pilocarpine-treated mice. SIGNIFICANCE Immunosuppressant maneuvers such as splenectomy or lack of perforin decrease the onset or the severity of pilocarpine SE. Our results suggest that cytotoxic lymphocytes, and specifically the cytolytic factor perforin, may be key molecular players involved in the axis between peripheral intravascular inflammation and seizures.
Collapse
Affiliation(s)
- Nicola Marchi
- Department of Cell Biology, Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
- Cerebrovascular Research, Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
| | - Aaron J. Johnson
- Department Neurology University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - Vikram Puvenna
- Department of Cell Biology, Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
- Cerebrovascular Research, Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
| | - Holly L. Johnson
- Department Neurology University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - William Tierney
- Department of Cell Biology, Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
| | - Chaitali Ghosh
- Department of Cell Biology, Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
- Cerebrovascular Research, Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
| | - Luca Cucullo
- Department of Cell Biology, Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
- Cerebrovascular Research, Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
| | - Paolo F. Fabene
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences, University of Verona, Verona, Italy
| | - Damir Janigro
- Department of Cell Biology, Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
- Cerebrovascular Research, Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
- Department of Neurological Surgery, Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
- Department of Molecular Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
| |
Collapse
|
123
|
Arai K, Lok J, Guo S, Hayakawa K, Xing C, Lo EH. Cellular mechanisms of neurovascular damage and repair after stroke. J Child Neurol 2011; 26:1193-8. [PMID: 21628695 PMCID: PMC3530192 DOI: 10.1177/0883073811408610] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The biological processes underlying stroke are complex, and patients have a narrow repertoire of therapeutic opportunities. After the National Institutes of Health (NIH) convened the Stroke Progress Review Group in 2001, stroke research shifted from having a purely neurocentric focus to adopting a more integrated view wherein dynamic interactions between all cell types contribute to function and dysfunction in the brain. This so-called "neurovascular unit" provides a conceptual framework that emphasizes cell-cell interactions between neuronal, glial, and vascular elements. Under normal conditions, signaling within the neurovascular unit helps maintain homeostasis. After stroke, cell-cell signaling is disturbed, leading to pathophysiology. More recently, emerging data now suggest that these cell-cell signaling mechanisms may also mediate parallel processes of neurovascular remodeling during stroke recovery. Because plasticity is a signature feature of the young and developing brain, these concepts may have special relevance to how the pediatric brain responds after stroke.
Collapse
Affiliation(s)
- Ken Arai
- The Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | | | |
Collapse
|
124
|
Hwang IY, Sun ES, An JH, Im H, Lee SH, Lee JY, Han PL, Koh JY, Kim YH. Zinc-triggered induction of tissue plasminogen activator by brain-derived neurotrophic factor and metalloproteinases. J Neurochem 2011; 118:855-63. [DOI: 10.1111/j.1471-4159.2011.07322.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
125
|
Gebbink MFBG. Tissue-type plasminogen activator-mediated plasminogen activation and contact activation, implications in and beyond haemostasis. J Thromb Haemost 2011; 9 Suppl 1:174-81. [PMID: 21781253 DOI: 10.1111/j.1538-7836.2011.04278.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Due to its discovery as initiator of fibrinolysis and its well-studied activation by fibrin, tissue-type plasminogen activator (tPA) and the fibrinolytic system are generally associated with the dissolution of blood clots. However, it has been demonstrated over the years that (i) tPA can be activated by multiple proteins, (ii) plasmin has many substrates other than fibrin and (iii) tPA and plasmin have biological functions independent of fibrin and distinct from their role in blood clot lysis. We here review the data with respect to the activation of tPA by fibrin and its multiple other cofactors, in relation to tPA's role in pathophysiology, notably fibrinolysis and amyloidosis, with emphasis on Alzheimer's disease. We demonstrate a common structural element, termed cross-β structure, in misfolded proteins that is causal to tPA activation. The implications for protein misfolding diseases that are known to be associated with the deposition of amyloid and for diseases for which this has not (yet) been established are discussed.
Collapse
Affiliation(s)
- M F B G Gebbink
- Crossbeta Biosciences BV, Utrecht Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
126
|
Correa F, Gauberti M, Parcq J, Macrez R, Hommet Y, Obiang P, Hernangómez M, Montagne A, Liot G, Guaza C, Maubert E, Ali C, Vivien D, Docagne F. Tissue plasminogen activator prevents white matter damage following stroke. ACTA ACUST UNITED AC 2011; 208:1229-42. [PMID: 21576385 PMCID: PMC3173251 DOI: 10.1084/jem.20101880] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tissue plasminogen activator (tPA) is the only available treatment for acute stroke. In addition to its vascular fibrinolytic action, tPA exerts various effects within the brain, ranging from synaptic plasticity to control of cell fate. To date, the influence of tPA in the ischemic brain has only been investigated on neuronal, microglial, and endothelial fate. We addressed the mechanism of action of tPA on oligodendrocyte (OL) survival and on the extent of white matter lesions in stroke. We also investigated the impact of aging on these processes. We observed that, in parallel to reduced levels of tPA in OLs, white matter gets more susceptible to ischemia in old mice. Interestingly, tPA protects murine and human OLs from apoptosis through an unexpected cytokine-like effect by the virtue of its epidermal growth factor-like domain. When injected into aged animals, tPA, although toxic to the gray matter, rescues white matter from ischemia independently of its proteolytic activity. These studies reveal a novel mechanism of action of tPA and unveil OL as a target cell for cytokine effects of tPA in brain diseases. They show overall that tPA protects white matter from stroke-induced lesions, an effect which may contribute to the global benefit of tPA-based stroke treatment.
Collapse
Affiliation(s)
- Fernando Correa
- Institut National de la Santé et de la Recherche Médicale (INSERM), INSERM-U919, Caen Cedex, F-14074 France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Alam M, Mohammad A, Rahman S, Todd K, Shuaib A. Hyperthermia up-regulates matrix metalloproteinases and accelerates basement membrane degradation in experimental stroke. Neurosci Lett 2011; 495:135-9. [DOI: 10.1016/j.neulet.2011.03.056] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 03/08/2011] [Accepted: 03/19/2011] [Indexed: 10/18/2022]
|
128
|
Zlokovic BV, Griffin JH. Cytoprotective protein C pathways and implications for stroke and neurological disorders. Trends Neurosci 2011; 34:198-209. [PMID: 21353711 PMCID: PMC3491752 DOI: 10.1016/j.tins.2011.01.005] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 01/22/2011] [Accepted: 01/24/2011] [Indexed: 02/06/2023]
Abstract
Recent studies indicate that single-action-single-target agents are unlikely to cure CNS disorders sharing a pathogenic triad consisting of vascular damage, neuronal injury/neurodegeneration and neuroinflammation. Here we focus on a recent example of a multiple-action-multiple-target approach for CNS disorders based on newly discovered biological properties of activated protein C (APC), an endogenous plasma protease with antithrombotic, cytoprotective and anti-inflammatory activities in the CNS. We propose that APC-mediated signaling through the protease activated receptor-1 (PAR1) can favorably regulate multiple pathways within the neurovascular unit in non-neuronal cells and neurons during acute or chronic CNS insults, leading to stabilization of the blood-brain barrier (BBB), neuroprotection and control of neuroinflammation. Although much remains to be understood regarding the biology of APC, preclinical studies suggest that APC has promising applications as disease-modifying therapy for ischemic stroke and other neuropathologies whose underlying pathology involves deficits in the vasculo-neuronal-inflammatory triad.
Collapse
Affiliation(s)
- Berislav V Zlokovic
- Center for Neurodegenerative and Vascular Brain Disorders, Department of Neurological Surgery, University of Rochester Medical Center, Rochester, New York, USA.
| | | |
Collapse
|
129
|
Yang Y, Tian SJ, Wu L, Huang DH, Wu WP. Fibrinogen depleting agent batroxobin has a beneficial effect on experimental autoimmune encephalomyelitis. Cell Mol Neurobiol 2011; 31:437-48. [PMID: 21165693 PMCID: PMC11498529 DOI: 10.1007/s10571-010-9637-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 12/02/2010] [Indexed: 10/18/2022]
Abstract
Multiple sclerosis (MS) was characterized with widespread demyelination and axonal loss of central nervous system (CNS). Fibrinogen (fibrin) deposition was considered as one of the pathogenesis of MS. Therefore, we explored the effects of fibrinogen depleting agent batroxobin in experimental autoimmune encephalomyelitis (EAE) mice model. Our study showed that prevention and suppression with batroxobin significantly ameliorated clinical severity of EAE, reduced inflammatory cells infiltration, and demyelination, and suppressed the activation of astrocytes and macrophages comprising the CD11b(+) population. Batroxobin treatment leads to reduced expression of p-Akt and increased expression of MBP as compared to control. In addition, batroxobin treatment partly reversed the dendric-like formation of macrophages irritated by fibrinogen in vitro. The reduced severity of EAE mice treated with batroxobin suggests that strategy targeting fibrin as a potential therapy for EAE may be beneficial for the treatment of MS patients.
Collapse
Affiliation(s)
- Yang Yang
- Department of Neurology, The General Hospital of Chinese PLA, Beijing, China.
| | | | | | | | | |
Collapse
|
130
|
The etiological role of blood-brain barrier dysfunction in seizure disorders. Cardiovasc Psychiatry Neurol 2011; 2011:482415. [PMID: 21541221 PMCID: PMC3085334 DOI: 10.1155/2011/482415] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 01/28/2011] [Indexed: 11/18/2022] Open
Abstract
A wind of change characterizes epilepsy research efforts. The traditional approach, based on a neurocentric view of seizure generation, promoted understanding of the neuronal mechanisms of seizures; this resulted in the development of potent anti-epileptic drugs (AEDs). The fact that a significant number of individuals with epilepsy still fail to respond to available AEDs restates the need for an alternative approach. Blood-brain barrier (BBB) dysfunction is an important etiological player in seizure disorders, and combination therapies utilizing an AED in conjunction with a “cerebrovascular” drug could be used to control seizures more effectively than AED therapy alone. The fact that the BBB plays an etiologic role in other neurological diseases will be discussed in the context of a more “holistic” approach to the patient with epilepsy, where comorbidity variables are also encompassed by drug therapy.
Collapse
|
131
|
Zhong Z, Winkler EA, Zlokovic BV. Microhemorrhages: undetectable but clinically meaningful the question persists. ACTA ACUST UNITED AC 2011; 12:231-2; author reply 233-4. [PMID: 21413850 DOI: 10.3109/17482968.2011.565776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
132
|
Simard B, Bouamrani A, Jourdes P, Pernod G, Dimitriadou V, Berger F. Induction of the fibrinolytic system by cartilage extract mediates its antiangiogenic effect in mouse glioma. Microvasc Res 2011; 82:6-17. [PMID: 21406197 DOI: 10.1016/j.mvr.2011.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 02/18/2011] [Accepted: 03/03/2011] [Indexed: 11/24/2022]
Abstract
Both the antiangiogenic and antitumoral activity of shark cartilage extracts (SCE) have been demonstrated in animal models and clinical trials. Studies reported that SCE induces the expression of tissue plasminogen activator gene (PLAT) in endothelial cells and increases the activity of the protein (t-PA) in vitro. The aim of this study was to demonstrate the crucial role of t-PA induction in the antiangiogenic and antitumor activity of SCE in experimental glioma. This study showed antiangiogenic and antitumoral effects of SCE in three mice glioma models (C6, HGD and GL26). Histological examination suggested perivascular proteolysis and edema as well as important intratumoral necrosis, which artefactually increased the tumor volume at high doses. Thus, the antiangiogenic effect of SCE correlated with the presence of t-PA and angiostatin in degenerating vessels. Functional in vivo experiments were conducted to modulate the plasminogen pathway. No antiangiogenic effect was observed on tumors overexpressing the plasminogen activator inhibitor-1 (PAI-1). Moreover, therapeutical effects were neutralized in mice that were cotreated with ε-aminocaproic acid (EACA, 120 mg/kg p.o.), an inhibitor that blocks the high-affinity lysine binding sites of both plasminogen and plasmin. In contrast, cotreatment with N-acetylcysteine (NAC, 7,5mg/kg i.p.), a sulfhydril donor that reduces plasmin into angiostatin or other antiangiogenic fragments, increased the benefit of SCE on mice survival. In subcutaneous models, NAC prevented the increase in tumor volume caused by high doses of cartilage extract. In conclusion, this study indicates that induction of t-PA by shark cartilage extract plays an essential role in its antiangiogenic activity, but that control of excessive proteolysis by a plasmin reductor could prevent edema and uncover the full benefit of shark cartilage extract in the treatment of intracranial tumors.
Collapse
Affiliation(s)
- Bryan Simard
- Grenoble Institut des Neurosciences, INSERM U 836, équipe 7, BP 170, F38042, Grenoble Cedex 9, France.
| | | | | | | | | | | |
Collapse
|
133
|
Tissue plasminogen activator is required for the development of fetal alcohol syndrome in mice. Proc Natl Acad Sci U S A 2011; 108:5069-74. [PMID: 21383198 DOI: 10.1073/pnas.1017608108] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ethanol exposure during developmental synaptogenesis can lead to brain defects referred to as fetal alcohol syndrome (FAS), which can include mental health problems such as cognitive deficits and mental retardation. In FAS, widespread neuronal death and brain mass loss precedes behavioral and cognitive impairments in adulthood. Because tissue plasminogen activator (tPA) has been implicated in neurodegeneration, we examined whether it mediates FAS. Neonatal WT and tPA-/- mice were injected with ethanol to mimic FAS in humans. In WT mice, ethanol elicited caspase-3 activation, significant forebrain neurodegeneration, and decreased contextual fear conditioning in adults. However, tPA-deficient mice were protected from these neurotoxicities, and this protection could be abrogated by exogenous tPA. Selective pharmacological modulators of NMDA and GABAA receptor pathways revealed that the effects of tPA were mediated by the NR2B subunit of the NMDA receptor. This study identifies tPA as a critical signaling component in FAS.
Collapse
|
134
|
Yágüez L, Shaw KN, Morris R, Matthews D. The effects on cognitive functions of a movement-based intervention in patients with Alzheimer's type dementia: a pilot study. Int J Geriatr Psychiatry 2011; 26:173-81. [PMID: 20878665 DOI: 10.1002/gps.2510] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 02/08/2010] [Indexed: 01/11/2023]
Abstract
OBJECTIVE To explore the effect of a non-aerobic movement based activity on cognition in people with Alzheimer's type dementia (AD). METHODS The sample consisted of 27 patients fulfilling the AD ICD-10 diagnostic criteria. The patient sample was randomly divided into two groups: The Exercise Group received 6 weeks movement training and comprised 15 participants with a mean age of 70.5 years (SD: 8). Control Group participated in a standard care group, which served as a control intervention, and consisted of 12 patients with an average age of 75.7 years (SD: 6.90). Cognitive functions were assessed using six computerised tests from the CANTAB, pre and post training. Data were analysed using t-tests. The false discovery rate (FDR) for multiple comparisons as well as Cohen's d effect size was used to assess the significant effects. RESULTS Significant improvements in sustained attention, visual memory and a trend in working memory were found in the Exercise Group compared to Control Group after the 6 weeks training. In addition, after 6 weeks the Control Group deteriorated significantly in attention, while the AD patients who undertook the physical exercise showed a discrete improvement. CONCLUSIONS The present study shows that a short course of non-aerobic movement based exercise is already effective at least in some aspects of cognitive functioning in patients with AD. Although the present study is a pilot study with small samples, nevertheless, the results are promising for the further investigation and development of non-aerobic movement programmes.
Collapse
Affiliation(s)
- Lidia Yágüez
- Department of Psychology, King's College London, Institute of Psychiatry, UK.
| | | | | | | |
Collapse
|
135
|
A. Zervos I, Nikolaidis E, N. Lavrentiadou S, P. Tsantarliotou M, K. Eleftheriadou E, P. Papapanagiotou E, J. Fletouris D, Georgiadis M, A. Taitzoglou I. Endosulfan-induced lipid peroxidation in rat brain and its effect on t-PA and PAI-1: ameliorating effect of vitamins C and E. J Toxicol Sci 2011; 36:423-33. [DOI: 10.2131/jts.36.423] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Ioannis A. Zervos
- Laboratory of Physiology, Faculty of Veterinary Medicine, Aristotle University
| | | | | | | | | | - Elias P. Papapanagiotou
- Department of Food Hygiene & Technology, Faculty of Veterinary Medicine, Aristotle University
| | - Dimitrios J. Fletouris
- Department of Food Hygiene & Technology, Faculty of Veterinary Medicine, Aristotle University
| | - Marios Georgiadis
- Department of Animal Production, Ichthyology, Ecology and Protection of the Environment, Faculty of Veterinary Medicine, Aristotle University,
| | | |
Collapse
|
136
|
Abstract
Cell activation by stressors is characterized by a sequence of detectable phenotypic cell changes. A given stimulus, depending on its strength, induces modifications in the activity of membrane phospholipid transporters and calpains, which lead to phosphatidylserine exposure, membrane blebbing and the release of microparticles (nanoscale membrane vesicles). This vesiculation could be considered as a warning signal that may be followed, if the stimulus is maintained, by cell detachment-induced apoptosis. In the present study, plasminogen incubated with adherent cells is converted into plasmin by constitutively expressed tPA (tissue-type plasminogen activator) or uPA (urokinase-type plasminogen activator). Plasmin formed on the cell membrane then induces a unique response characterized by membrane blebbing and vesiculation. Hitherto unknown for plasmin, these membrane changes are similar to those induced by thrombin on platelets. If plasmin formation persists, matrix proteins are then degraded, cells lose their attachments and enter the apoptotic process, characterized by DNA fragmentation and specific ultrastructural features. Since other proteolytic or inflammatory stimuli may evoke similar responses in different types of adherent cells, the proposed experimental procedure can be used to distinguish activated adherent cells from cells entering the apoptotic process. Such a distinction is crucial for evaluating the effects of mediators, inhibitors and potential therapeutic agents.
Collapse
|
137
|
Taniguchi Y, Inoue N, Morita S, Nikaido Y, Nakashima T, Nagai N, Okada K, Matsuo O, Miyata S. Localization of plasminogen in mouse hippocampus, cerebral cortex, and hypothalamus. Cell Tissue Res 2010; 343:303-17. [PMID: 21190118 DOI: 10.1007/s00441-010-1110-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 11/29/2010] [Indexed: 01/15/2023]
Abstract
Although the tissue plasminogen activator/plasminogen system contributes to numerous brain functions, such as learning, memory, and anxiety behavior, little attention has as yet been given to the localization of plasminogen in the brain. We have investigated the localization of plasminogen in the adult mouse brain by using immunohistochemistry. In the hippocampus, plasminogen immunoreactivity was seen in the pyramidal cell layer as numerous punctate structures in neuronal somata. An electron-microscopic study further demonstrated that the plasminogen-immunoreactive punctate structures represented secretory vesicles and/or vesicle clusters. In the cerebral cortex, plasminogen immunoreactivity was evident in the somata of the layer II/III and V neurons. A quantitative analysis revealed that parvalbumin (PV)-positive neurons had more plasminogen-immunoreactive puncta compared with those of PV-negative neurons in the hippocampus and cerebral cortex. Plasminogen immunoreactivity was present throughout the hypothalamus, being particularly prominent in the neuronal somata of the organum vasculosum laminae terminalis, ventromedial preoptic nucleus, supraoptic nucleus, subfornical organ, medial part of the paraventricular nucleus (PVN), posterior part of the PVN, and arcuate hypothalamic nucleus. Thus, plasminogen is highly expressed in specific populations of hippocampal, cortical, and hypothalamic neurons, and plasminogen-containing vesicles are mainly observed at neuronal somata.
Collapse
Affiliation(s)
- Yuki Taniguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B, Deane R, Zlokovic BV. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 2010; 68:409-27. [PMID: 21040844 PMCID: PMC3056408 DOI: 10.1016/j.neuron.2010.09.043] [Citation(s) in RCA: 1148] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2010] [Indexed: 12/13/2022]
Abstract
Pericytes play a key role in the development of cerebral microcirculation. The exact role of pericytes in the neurovascular unit in the adult brain and during brain aging remains, however, elusive. Using adult viable pericyte-deficient mice, we show that pericyte loss leads to brain vascular damage by two parallel pathways: (1) reduction in brain microcirculation causing diminished brain capillary perfusion, cerebral blood flow, and cerebral blood flow responses to brain activation that ultimately mediates chronic perfusion stress and hypoxia, and (2) blood-brain barrier breakdown associated with brain accumulation of serum proteins and several vasculotoxic and/or neurotoxic macromolecules ultimately leading to secondary neuronal degenerative changes. We show that age-dependent vascular damage in pericyte-deficient mice precedes neuronal degenerative changes, learning and memory impairment, and the neuroinflammatory response. Thus, pericytes control key neurovascular functions that are necessary for proper neuronal structure and function, and pericyte loss results in a progressive age-dependent vascular-mediated neurodegeneration.
Collapse
Affiliation(s)
- Robert D. Bell
- Center for Neurodegenerative and Vascular Brain Disorders, Departments of Neurosurgery and Neurology, University of Rochester Medical Center, Rochester, New York, 14642
| | - Ethan A. Winkler
- Center for Neurodegenerative and Vascular Brain Disorders, Departments of Neurosurgery and Neurology, University of Rochester Medical Center, Rochester, New York, 14642
| | - Abhay P. Sagare
- Center for Neurodegenerative and Vascular Brain Disorders, Departments of Neurosurgery and Neurology, University of Rochester Medical Center, Rochester, New York, 14642
| | - Itender Singh
- Center for Neurodegenerative and Vascular Brain Disorders, Departments of Neurosurgery and Neurology, University of Rochester Medical Center, Rochester, New York, 14642
| | - Barb LaRue
- Center for Neurodegenerative and Vascular Brain Disorders, Departments of Neurosurgery and Neurology, University of Rochester Medical Center, Rochester, New York, 14642
| | - Rashid Deane
- Center for Neurodegenerative and Vascular Brain Disorders, Departments of Neurosurgery and Neurology, University of Rochester Medical Center, Rochester, New York, 14642
| | - Berislav V. Zlokovic
- Center for Neurodegenerative and Vascular Brain Disorders, Departments of Neurosurgery and Neurology, University of Rochester Medical Center, Rochester, New York, 14642
| |
Collapse
|
139
|
Suofu Y, Clark J, Broderick J, Wagner KR, Tomsick T, Sa Y, Lu A. Peroxynitrite decomposition catalyst prevents matrix metalloproteinase activation and neurovascular injury after prolonged cerebral ischemia in rats. J Neurochem 2010; 115:1266-76. [PMID: 20883517 DOI: 10.1111/j.1471-4159.2010.07026.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Matrix metalloproteinases (MMPs) play an important role in reperfusion-induced brain injury following ischemia. To define the effects of peroxynitrite decomposition catalyst on MMP activation and neurovascular reperfusion injury, 5,10,15,20-tetrakis (2,4,6-trimethyl-3,5-disulfonatophenyl)-porphyrin iron (III) (FeTMPyP) was administered intravenously 30 min prior to reperfusion following a middle cerebral artery occlusion. Activation of MMP was assessed by in situ and gel zymography. Neurovascular injury was assessed using endothelial barrier antigen, collagen IV immunohistochemistry and Cresyl violet staining. Results were compared with sham and ischemia alone groups. We found that administration of FeTMPyP just before reperfusion after ischemia inhibited MMP-9 activation and total MMP-2 increases in the cortex and decreased active MMP-9 along with the total amounts of active MMP-9 and active MMP-2 in the striatum. Reperfusion-induced injury to the basal lamina of collagen IV-immunopositive microvasculature and neural cells in cortex and striatum was ameliorated by FeTMPyP. Losses of blood vessel endothelium produced by ischemia or reperfusion were also decreased in the cortex. These results suggest that administration of FeTMPy prior to reperfusion decreases MMP activation and neurovascular injury after prolonged cerebral ischemia. This strategy may be useful for future therapies targeted at preventing breakdown of the blood-brain barrier and hemorrhagic transformation.
Collapse
Affiliation(s)
- Yalikun Suofu
- Department of Neurology, University of Cincinnati, Cincinnati, OH 45267-0532, USA
| | | | | | | | | | | | | |
Collapse
|
140
|
Plasminogen and plasmin in Alzheimer's disease. Brain Res 2010; 1355:7-15. [DOI: 10.1016/j.brainres.2010.08.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 08/06/2010] [Accepted: 08/06/2010] [Indexed: 11/23/2022]
|
141
|
Cesari M, Pahor M, Incalzi RA. Plasminogen activator inhibitor-1 (PAI-1): a key factor linking fibrinolysis and age-related subclinical and clinical conditions. Cardiovasc Ther 2010; 28:e72-91. [PMID: 20626406 PMCID: PMC2958211 DOI: 10.1111/j.1755-5922.2010.00171.x] [Citation(s) in RCA: 318] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
INTRODUCTION The close relationship existing between aging and thrombosis has growingly been studied in this last decade. The age-related development of a prothrombotic imbalance in the fibrinolysis homeostasis has been hypothesized as the basis of this increased cardiovascular and cerebrovascular risk. Fibrinolysis is the result of the interactions among multiple plasminogen activators and inhibitors constituting the enzymatic cascade, and ultimately leading to the degradation of fibrin. The plasminogen activator system plays a key role in a wide range of physiological and pathological processes. METHODS Narrative review. RESULTS Plasminogen activator inhibitor-1 (PAI-1) is a member of the superfamily of serine-protease inhibitors (or serpins), and the principal inhibitor of both the tissue-type and the urokinase-type plasminogen activator, the two plasminogen activators able to activate plasminogen. Current evidence describing the central role played by PAI-1 in a number of age-related subclinical (i.e., inflammation, atherosclerosis, insulin resistance) and clinical (i.e., obesity, comorbidities, Werner syndrome) conditions is presented. CONCLUSIONS Despite some controversial and unclear issues, PAI-1 represents an extremely promising marker that may become a biological parameter to be progressively considered in the prognostic evaluation, in the disease monitoring, and as treatment target of age-related conditions in the future.
Collapse
Affiliation(s)
- Matteo Cesari
- Area di Geriatria, Università Campus Bio-Medico, Rome, Italy.
| | | | | |
Collapse
|
142
|
Doucet A, Overall CM. Broad coverage identification of multiple proteolytic cleavage site sequences in complex high molecular weight proteins using quantitative proteomics as a complement to edman sequencing. Mol Cell Proteomics 2010; 10:M110.003533. [PMID: 20876890 PMCID: PMC3098582 DOI: 10.1074/mcp.m110.003533] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Proteolytic processing modifies the pleiotropic functions of many large, complex, and modular proteins and can generate cleavage products with new biological activity. The identification of exact proteolytic cleavage sites in the extracellular matrix laminins, fibronectin, and other extracellular matrix proteins is not only important for understanding protein turnover but is needed for the identification of new bioactive cleavage products. Several such products have recently been recognized that are suggested to play important cellular regulatory roles in processes, including angiogenesis. However, identifying multiple cleavage sites in extracellular matrix proteins and other large proteins is challenging as N-terminal Edman sequencing of multiple and often closely spaced cleavage fragments on SDS-PAGE gels is difficult, thus limiting throughput and coverage. We developed a new liquid chromatography-mass spectrometry approach we call amino-terminal oriented mass spectrometry of substrates (ATOMS) for the N-terminal identification of protein cleavage fragments in solution. ATOMS utilizes efficient and low cost dimethylation isotopic labeling of original N-terminal and proteolytically generated N termini of protein cleavage fragments followed by quantitative tandem mass spectrometry analysis. Being a peptide-centric approach, ATOMS is not dependent on the SDS-PAGE resolution limits for protein fragments of similar mass. We demonstrate that ATOMS reliably identifies multiple proteolytic sites per reaction in complex proteins. Fifty-five neutrophil elastase cleavage sites were identified in laminin-1 and fibronectin-1 with 34 more identified by matrix metalloproteinase cleavage. Hence, our degradomics approach offers a complimentary alternative to Edman sequencing with broad applicability in identifying N termini such as cleavage sites in complex high molecular weight extracellular matrix proteins after in vitro cleavage assays. ATOMS can therefore be useful in identifying new cleavage products of extracellular matrix proteins cleaved by proteases in pathology for bioactivity screening.
Collapse
Affiliation(s)
- Alain Doucet
- Department of Biochemistry and Oral Biological and Medical Sciences, Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | |
Collapse
|
143
|
Imamura Y, Morita S, Nakatani Y, Okada K, Ueshima S, Matsuo O, Miyata S. Tissue plasminogen activator and plasminogen are critical for osmotic homeostasis by regulating vasopressin secretion. J Neurosci Res 2010; 88:1995-2006. [PMID: 20175210 DOI: 10.1002/jnr.22370] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Systemic osmotic homeostasis is regulated mainly by neuroendocrine system of arginine-vasopressin (AVP) in mammalians. In the present study, we demonstrated that the immunoreactivity of tissue plasminogen activator (tPA) was observed specifically at neurosecretory granules of AVP-positive magnocellular terminals and that of plasminogen was seen at astrocytes in the neurohypophysis (NH). Both tPA and plasminogen knockout (KO) mice revealed higher plasma osmolarity upon water deprivation, a chronic osmotic stimulation, as compared with their wild-type (WT) animals, indicating abnormal osmotic control in these KO mice. tPA KO mice but not plasminogen ones revealed lower ability in secreting AVP into the blood circulation upon an acute osmotic stimulation. Both tPA and plasminogen KO animals showed lower ability in secreting AVP into the blood circulation upon a chronic osmotic stimulation. The recombinant tPA was able to promote the release of AVP from isolated NH. Chronic osmotic stimulation decreased the laminin expression level of neurohypophysial microvessel in WT mice but not in plasminogen KO ones. We suggest that AVP secretion is critically regulated by tPA-dependent facilitation of AVP release from terminals and plasminogen-dependent increase of AVP permeability across microvessels possibly via laminin degradation.
Collapse
Affiliation(s)
- Yuhki Imamura
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
144
|
Wang H, Imamura Y, Ishibashi R, Chandana EPS, Yamamoto M, Noda M. The Reck tumor suppressor protein alleviates tissue damage and promotes functional recovery after transient cerebral ischemia in mice. J Neurochem 2010; 115:385-98. [PMID: 20796170 DOI: 10.1111/j.1471-4159.2010.06933.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The extracellular matrix (ECM) is important for both structural integrity and functions of the brain. Matrix metalloproteinases (MMPs) play major roles in ECM-remodeling under both physiological and pathological conditions. Reversion-inducing cysteine-rich protein with Kazal motifs (Reck) is a membrane-anchored MMP-regulator implicated in coordinated regulation of pericellular proteolysis. Although patho-physiological importance of MMPs and another group of MMP-regulators, tissue inhibitor of metalloproteinases, in brain ischemia has been demonstrated, little is known about the role of Reck in this process. In this study, we found that Reck is up-regulated in hippocampus and penumbra of subventricular zone after transient cerebral ischemia in mice. Most of the Reck-positive cells found at day 2 after ischemia are positive for Nestin as well as Ki67 and localized to the CA2 region of the hippocampus. At day 7 after ischemia, the Reck-positive cells increased in number, extended processes, expressed the reactive astrocyte marker GFAP and the neuronal marker NF200, and were widely distributed in the hippocampus. In the mutant mice carrying single functional Reck allele (Reck+/-), tissue damage and cell death after cerebral ischemia were augmented, the recovery of long-term potentiation in the hippocampus was compromised, NR2C subunit of NMDA receptor was up-regulated, gelatinolytic activity of MMPs were up-regulated and laminin-immunoreactivity was reduced. Our data implicate Reck in protection of ECM/tissue integrity and promotion of functional recovery in the brain after transient cerebral ischemia.
Collapse
Affiliation(s)
- Huan Wang
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
145
|
Tissue-type plasminogen activator induces plasmin-dependent proteolysis of intracellular neuronal nitric oxide synthase. Biol Cell 2010; 102:539-47. [PMID: 20636282 DOI: 10.1042/bc20100072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION Despite its pro-fibrinolytic activity, tPA (tissue plasminogen activator) is a serine protease known to influence a number of physiological and pathological functions in the central nervous system. Accordingly, tPA was reported to mediate some of its functions in the central nervous system through NMDA (N-methyl-D-aspartate) receptors, LRP (low-density lipoprotein receptor-related protein) or annexin II. RESULTS We provide here both in vitro and in vivo evidence that tPA could mediate proteolysis and subsequent delocalization of neuronal nitric oxide synthase, thereby reducing endogenous neuronal nitric oxide release. We also demonstrate that although this effect is independent of NMDA receptors, LRP signalling and calpain-mediated proteolysis, it is dependent on the ability of tPA to promote the conversion of plasminogen into plasmin. CONCLUSION Altogether, these results demonstrate a new function for tPA in the central nervous system, which most likely contributes to its pleiotropic functions.
Collapse
|
146
|
Vasudevan A, Ho MSP, Weiergräber M, Nischt R, Schneider T, Lie A, Smyth N, Köhling R. Basement membrane protein nidogen-1 shapes hippocampal synaptic plasticity and excitability. Hippocampus 2010; 20:608-20. [PMID: 19530222 DOI: 10.1002/hipo.20660] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The basement membrane (BM) is a specialized form of extracellular matrix (ECM) underlying epithelia and endothelia and surrounding many types of mesenchymal cells. Nidogen, along with collagen IV and laminin, is a major component of BMs. Although certain ECM proteins such as laminin or reelin influence neuronal function via interactions with cell-surface receptors such as integrins, behavioral neurological impairments due to deficits of BM components have been recognized only recently. Here, alterations in neuronal network function underlying these behavioral changes are revealed. Using nidogen-1 knockout mice, with or without additional heterozygous nidogen-2 knockout (NID1(-/-)/NID2(+/+) or NID1(-/-)/NID2(+/-)), we demonstrate that nidogen is essential for normal neuronal network excitability and plasticity. In nidogen-1 knockouts, seizurelike behavior occurs, and epileptiform spiking was seen in hippocampal in vivo EEG recordings. In vitro, hippocampal field potential recordings revealed that lack of nidogen-1, while not causing conspicuous morphological changes, led to the appearance of spontaneous and evoked epileptiform activity, significant increase of the input/output ratio of synaptically evoked responses in CA1 and dentate gyrus, as well as of paired pulse accentuation, and loss of perforant-path long-term synaptic potentiation. Nidogen-1 is thus essential for normal network excitability and plasticity.
Collapse
Affiliation(s)
- Anju Vasudevan
- Center for Biochemistry and Center for Molecular Medicine Cologne, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Köln, Germany
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Park KI, Chu K, Jung KH, Kim JH, Kang KM, Lee ST, Park HK, Kim M, Lee SK, Roh JK. Role of cortical dysplasia in epileptogenesis following prolonged febrile seizure. Epilepsia 2010; 51:1809-19. [DOI: 10.1111/j.1528-1167.2010.02676.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
148
|
Brouns R, Van Hemelrijck A, Drinkenburg WH, Van Dam D, De Surgeloose D, De Deyn PP. Excitatory amino acids and monoaminergic neurotransmitters in cerebrospinal fluid of acute ischemic stroke patients. Neurochem Int 2010; 56:865-70. [DOI: 10.1016/j.neuint.2009.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Revised: 12/13/2009] [Accepted: 12/17/2009] [Indexed: 11/15/2022]
|
149
|
Nagai N, Matsuo O. Roles of fibrinolytic system components in the nervous system. PATHOPHYSIOLOGY 2010; 17:141-7. [DOI: 10.1016/j.pathophys.2009.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 03/10/2009] [Accepted: 03/23/2009] [Indexed: 10/20/2022] Open
|
150
|
Suemitsu S, Watanabe M, Yokobayashi E, Usui S, Ishikawa T, Matsumoto Y, Yamada N, Okamoto M, Kuroda S. Fcgamma receptors contribute to pyramidal cell death in the mouse hippocampus following local kainic acid injection. Neuroscience 2010; 166:819-31. [PMID: 20074624 DOI: 10.1016/j.neuroscience.2010.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 01/05/2010] [Accepted: 01/05/2010] [Indexed: 01/26/2023]
Abstract
Recent studies have demonstrated the contribution of the gamma subunit of the Fc receptor of IgG (FcRgamma) to neuronal death following ischemic injury and Parkinson's disease. We examined the role of FcRgamma in hippocampal pyramidal cell death induced by kainic acid (KA). FcRgamma-deficient mice (FcRgamma-/-) and their FcRgamma+/+ littermates (wild type, B6) received an injection of KA into the dorsal hippocampus. Pyramidal cell death was quantified 24 and 72 h after the injection. The number of survived pyramidal cells was significantly larger in FcRgamma-/- mice than in B6 mice in both the CA1 and CA3. Immunohistochemical and immunofluorescent studies detected FcgammaRIIB protein in parvalbumin neurons, whereas FcgammaRIII and FcgammaRI proteins were detected in microglial cells. No activated microglial cells were detected 24 h after the KA injection in FcRgamma-/- mice, whereas many activated microglial cells were present in B6 mice. The production of nitrotyrosine as well as of the inducible nitric oxide synthase and cyclooxygenase-2 proteins, increased by 16 h after the KA injection in B6 mice. In addition, tissue plasminogen activator and metalloproteinase-2 proteins increased. By contrast, the magnitude of oxidative stress and the increase in protease expression were mild in FcRgamma-/- mice. Co-injection of a neutralizing antibody against FcgammaRll and FcgammaRlll with KA abolished pyramidal cell death and microglial activation. In addition, the neutralizing antibody reduced oxidative stress and expression of proteases. These observations suggested a role for FcgammaRllB in parvalbumin neurons as well as FcRgamma in microglia in pyramidal cell death.
Collapse
Affiliation(s)
- S Suemitsu
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 2-5-1 Shikatacho, Kitaku, 700-8558 Japan
| | | | | | | | | | | | | | | | | |
Collapse
|