101
|
Nakamura Y, Inoue T. Tolerogenic dendritic cells: promising cell therapy for acute kidney injury. Kidney Int 2023; 104:420-422. [PMID: 37599014 DOI: 10.1016/j.kint.2023.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 08/22/2023]
Abstract
There is still no established treatment for acute kidney injury (AKI), and the intervention of AKI remains limited to supportive treatments. Li et al. demonstrated the mechanism by which immune tolerance by dendritic cell ameliorates AKI in a mouse ischemia-reperfusion injury model. The phase I/II clinical trials of tolerogenic dendritic cell therapy have been conducted for kidney transplantation, so it is expected to have potential as a cell therapy for AKI in the future.
Collapse
Affiliation(s)
- Yasuna Nakamura
- Department of Physiology of Visceral Function and Body Fluid, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tsuyoshi Inoue
- Department of Physiology of Visceral Function and Body Fluid, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| |
Collapse
|
102
|
Cassano A, Chong AS, Alegre ML. Tregs in transplantation tolerance: role and therapeutic potential. FRONTIERS IN TRANSPLANTATION 2023; 2:1217065. [PMID: 38993904 PMCID: PMC11235334 DOI: 10.3389/frtra.2023.1217065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/14/2023] [Indexed: 07/13/2024]
Abstract
CD4+ Foxp3+ regulatory T cells (Tregs) are indispensable for preventing autoimmunity, and they play a role in cancer and transplantation settings by restraining immune responses. In this review, we describe evidence for the importance of Tregs in the induction versus maintenance of transplantation tolerance, discussing insights into mechanisms of Treg control of the alloimmune response. Further, we address the therapeutic potential of Tregs as a clinical intervention after transplantation, highlighting engineered CAR-Tregs as well as expansion of donor and host Tregs.
Collapse
Affiliation(s)
- Alexandra Cassano
- Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Anita S. Chong
- Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Maria-Luisa Alegre
- Department of Medicine, University of Chicago, Chicago, IL, United States
| |
Collapse
|
103
|
Henn D, Zhao D, Sivaraj D, Trotsyuk A, Bonham CA, Fischer KS, Kehl T, Fehlmann T, Greco AH, Kussie HC, Moortgat Illouz SE, Padmanabhan J, Barrera JA, Kneser U, Lenhof HP, Januszyk M, Levi B, Keller A, Longaker MT, Chen K, Qi LS, Gurtner GC. Cas9-mediated knockout of Ndrg2 enhances the regenerative potential of dendritic cells for wound healing. Nat Commun 2023; 14:4729. [PMID: 37550295 PMCID: PMC10406832 DOI: 10.1038/s41467-023-40519-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/26/2023] [Indexed: 08/09/2023] Open
Abstract
Chronic wounds impose a significant healthcare burden to a broad patient population. Cell-based therapies, while having shown benefits for the treatment of chronic wounds, have not yet achieved widespread adoption into clinical practice. We developed a CRISPR/Cas9 approach to precisely edit murine dendritic cells to enhance their therapeutic potential for healing chronic wounds. Using single-cell RNA sequencing of tolerogenic dendritic cells, we identified N-myc downregulated gene 2 (Ndrg2), which marks a specific population of dendritic cell progenitors, as a promising target for CRISPR knockout. Ndrg2-knockout alters the transcriptomic profile of dendritic cells and preserves an immature cell state with a strong pro-angiogenic and regenerative capacity. We then incorporated our CRISPR-based cell engineering within a therapeutic hydrogel for in vivo cell delivery and developed an effective translational approach for dendritic cell-based immunotherapy that accelerated healing of full-thickness wounds in both non-diabetic and diabetic mouse models. These findings could open the door to future clinical trials using safe gene editing in dendritic cells for treating various types of chronic wounds.
Collapse
Affiliation(s)
- Dominic Henn
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, CA, USA
- Department of Plastic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Surgery, University of Arizona, Tucson, AZ, USA
| | - Dehua Zhao
- Department of Bioengineering, Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Dharshan Sivaraj
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, CA, USA
- Department of Surgery, University of Arizona, Tucson, AZ, USA
| | - Artem Trotsyuk
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, CA, USA
- Department of Surgery, University of Arizona, Tucson, AZ, USA
| | - Clark Andrew Bonham
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, CA, USA
| | - Katharina S Fischer
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, CA, USA
- Department of Surgery, University of Arizona, Tucson, AZ, USA
| | - Tim Kehl
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, Saarbrücken, Germany
| | - Tobias Fehlmann
- Chair for Clinical Bioinformatics, Saarland University, Saarbruecken, Germany
| | - Autumn H Greco
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, CA, USA
| | - Hudson C Kussie
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, CA, USA
- Department of Burn, Trauma, Acute and Critical Care Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sylvia E Moortgat Illouz
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, CA, USA
| | - Jagannath Padmanabhan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, CA, USA
| | - Janos A Barrera
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, CA, USA
| | - Ulrich Kneser
- Department of Hand, Plastic, and Reconstructive Surgery, BG Trauma Center Ludwigshafen, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
| | - Hans-Peter Lenhof
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, Saarbrücken, Germany
| | - Michael Januszyk
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, CA, USA
| | - Benjamin Levi
- Department of Burn, Trauma, Acute and Critical Care Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andreas Keller
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, Saarbrücken, Germany
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, CA, USA
| | - Kellen Chen
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, CA, USA
- Department of Surgery, University of Arizona, Tucson, AZ, USA
| | - Lei S Qi
- Department of Bioengineering, Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| | - Geoffrey C Gurtner
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, CA, USA.
- Department of Surgery, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
104
|
Nahm DH. Regulatory T Cell-Targeted Immunomodulatory Therapy for Long-Term Clinical Improvement of Atopic Dermatitis: Hypotheses and Perspectives. Life (Basel) 2023; 13:1674. [PMID: 37629531 PMCID: PMC10455293 DOI: 10.3390/life13081674] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
Atopic dermatitis (AD) is a chronically relapsing inflammatory skin disorder characterized by itching and eczematous lesions. It is often associated with a personal or familial history of allergic diseases. Allergic inflammation induced by immunoglobulin E and T-helper type 2 (Th2) cell responses to common environmental agents has been suggested to play an essential role in AD pathogenesis. The standard therapies for AD, including topical or systemic agents, focus on controlling skin inflammation. Recently developed monoclonal antibody to interleukin-4 receptor alpha or Janus kinase inhibitors can provide significant clinical improvements in patients with AD by inhibiting Th2 cell-mediated skin inflammation. However, the clinical efficacy of the Th2 cell-targeted therapy is transient and incomplete in patients with AD. Patients with AD are seeking a permanent cure. Therefore, the development of novel immunomodulatory strategies that can improve a long-term clinical outcome and provide a long-term treatment-free clinical remission of AD (disease-modifying therapy) is needed. Regulatory T (Treg) cells play a critical role in the maintenance of immune tolerance and suppress the development of autoimmune and allergic diseases. This review provides three working hypotheses and perspectives for the treatment of AD by Treg cell activation. (1) A decreased number or function of Treg cells is a critical event that causes the activation of Th2 cells, leading to the development and maintenance of AD. (2) Activation of Treg cells is an effective therapeutic approach for AD. (3) Many different immunomodulatory strategies activating Treg cells can provide a long-term clinical improvement of AD by induction of immune tolerance. The Treg cell-targeted immunomodulatory therapies for AD include allergen immunotherapy, microbiota, vitamin D, polyvalent human immunoglobulin G, monoclonal antibodies to the surface antigens of T cell or antigen-presenting cell, and adoptive transfer of autologous Treg cells or genetically engineered Treg cells expanded in vitro.
Collapse
Affiliation(s)
- Dong-Ho Nahm
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
105
|
Cai S, Dai S, Lin R, Huang C, Zeng Y, Diao L, Lian R, Tu W. The effectiveness and safety of intrauterine infusion of autologous regulatory T cells (Tregs) in patients with recurrent pregnancy loss and low levels of endometrial FoxP3 + cells: A retrospective cohort study. Am J Reprod Immunol 2023; 90:e13735. [PMID: 37491931 DOI: 10.1111/aji.13735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/25/2023] [Accepted: 06/02/2023] [Indexed: 07/27/2023] Open
Abstract
PROBLEM Regulatory T cells (Tregs) are a specialized type of T cells that help maintain immune tolerance and homeostasis. The potential of Tregs cell-based therapies in treating diseases has been demonstrated in several clinical trials, which have shown promising outcomes and high safety in autoimmune diseases, transplant rejection, and graft-versus-host disease. However, their effectiveness and safety in improving endometrial receptivity and reducing pregnancy loss in human reproduction are unknown. METHOD OF STUDY The study used a retrospective design and included patients with recurrent pregnancy loss (RPL) and lower levels of endometrial FoxP3+ Tregs. Patients in the Tregs group (n = 33) received intrauterine Tregs infusion three times during the follicular phase, while the control group (n = 28) did not receive any intrauterine infusion. RESULTS The intrauterine infusion of autologous Tregs increased the levels of FoxP3+ Tregs and CD56+ NK cells. Patients in the Treg group had higher live birth rates and lower miscarriage rates, especially early miscarriage rates. However, the two groups had no differences in the implantation rate, clinical pregnancy rate, and percentage of preterm delivery. CONCLUSIONS The findings suggest that intrauterine Tregs infusion may be a potential therapeutic approach for RPL. Further research in larger clinical trials is needed to confirm these findings.
Collapse
Affiliation(s)
- Songchen Cai
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Su Dai
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Rong Lin
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Chunyu Huang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Yong Zeng
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Ruochun Lian
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Wenwei Tu
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
106
|
Jovisic M, Mambetsariev N, Singer BD, Morales-Nebreda L. Differential roles of regulatory T cells in acute respiratory infections. J Clin Invest 2023; 133:e170505. [PMID: 37463441 PMCID: PMC10348770 DOI: 10.1172/jci170505] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Acute respiratory infections trigger an inflammatory immune response with the goal of pathogen clearance; however, overexuberant inflammation causes tissue damage and impairs pulmonary function. CD4+FOXP3+ regulatory T cells (Tregs) interact with cells of both the innate and the adaptive immune system to limit acute pulmonary inflammation and promote its resolution. Tregs also provide tissue protection and coordinate lung tissue repair, facilitating a return to homeostatic pulmonary function. Here, we review Treg-mediated modulation of the host response to respiratory pathogens, focusing on mechanisms underlying how Tregs promote resolution of inflammation and repair of acute lung injury. We also discuss potential strategies to harness and optimize Tregs as a cellular therapy for patients with severe acute respiratory infection and discuss open questions in the field.
Collapse
Affiliation(s)
- Milica Jovisic
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Simpson Querrey Lung Institute for Translational Science
| | | | - Benjamin D. Singer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Simpson Querrey Lung Institute for Translational Science
- Department of Biochemistry and Molecular Genetics, and
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Luisa Morales-Nebreda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Simpson Querrey Lung Institute for Translational Science
| |
Collapse
|
107
|
Schaier M, Morath C, Wang L, Kleist C, Opelz G, Tran TH, Scherer S, Pham L, Ekpoom N, Süsal C, Ponath G, Kälble F, Speer C, Benning L, Nusshag C, Mahler CF, Pego da Silva L, Sommerer C, Hückelhoven-Krauss A, Czock D, Mehrabi A, Schwab C, Waldherr R, Schnitzler P, Merle U, Schwenger V, Krautter M, Kemmner S, Fischereder M, Stangl M, Hauser IA, Kälsch AI, Krämer BK, Böhmig GA, Müller-Tidow C, Reiser J, Zeier M, Schmitt M, Terness P, Schmitt A, Daniel V. Five-year follow-up of a phase I trial of donor-derived modified immune cell infusion in kidney transplantation. Front Immunol 2023; 14:1089664. [PMID: 37483623 PMCID: PMC10361653 DOI: 10.3389/fimmu.2023.1089664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Background The administration of modified immune cells (MIC) before kidney transplantation led to specific immunosuppression against the allogeneic donor and a significant increase in regulatory B lymphocytes. We wondered how this approach affected the continued clinical course of these patients. Methods Ten patients from a phase I clinical trial who had received MIC infusions prior to kidney transplantation were retrospectively compared to 15 matched standard-risk recipients. Follow-up was until year five after surgery. Results The 10 MIC patients had an excellent clinical course with stable kidney graft function, no donor-specific human leukocyte antigen antibodies (DSA) or acute rejections, and no opportunistic infections. In comparison, a retrospectively matched control group receiving standard immunosuppressive therapy had a higher frequency of DSA (log rank P = 0.046) and more opportunistic infections (log rank P = 0.033). Importantly, MIC patients, and in particular the four patients who had received the highest cell number 7 days before surgery and received low immunosuppression during follow-up, continued to show a lack of anti-donor T lymphocyte reactivity in vitro and high CD19+CD24hiCD38hi transitional and CD19+CD24hiCD27+ memory B lymphocytes until year five after surgery. Conclusions MIC infusions together with reduced conventional immunosuppression were associated with good graft function during five years of follow-up, no de novo DSA development and no opportunistic infections. In the future, MIC infusions might contribute to graft protection while reducing the side effects of immunosuppressive therapy. However, this approach needs further validation in direct comparison with prospective controls. Trial registration https://clinicaltrials.gov/, identifier NCT02560220 (for the TOL-1 Study). EudraCT Number: 2014-002086-30.
Collapse
Affiliation(s)
- Matthias Schaier
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, ;Germany
- TolerogenixX GmbH, Heidelberg, ;Germany
| | - Christian Morath
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, ;Germany
- TolerogenixX GmbH, Heidelberg, ;Germany
- German Center for Infection Research, German Center for Infection Research (DZIF), Thematic Translational Unit (TTU)-Infections of the Immunocompromised Host (IICH), Partner Site Heidelberg, Heidelberg, ;Germany
| | - Lei Wang
- TolerogenixX GmbH, Heidelberg, ;Germany
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, ;Germany
| | - Christian Kleist
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, ;Germany
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, ;Germany
| | - Gerhard Opelz
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, ;Germany
| | - Thuong Hien Tran
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, ;Germany
| | - Sabine Scherer
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, ;Germany
| | - Lien Pham
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, ;Germany
| | - Naruemol Ekpoom
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, ;Germany
| | - Caner Süsal
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, ;Germany
- Transplant Immunology Research Center of Excellence, Koç University, Istanbul, ;Türkiye
| | - Gerald Ponath
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, ;Germany
- TolerogenixX GmbH, Heidelberg, ;Germany
| | - Florian Kälble
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, ;Germany
| | - Claudius Speer
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, ;Germany
| | - Louise Benning
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, ;Germany
| | - Christian Nusshag
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, ;Germany
| | - Christoph F. Mahler
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, ;Germany
| | - Luiza Pego da Silva
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, ;Germany
| | - Claudia Sommerer
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, ;Germany
- German Center for Infection Research, German Center for Infection Research (DZIF), Thematic Translational Unit (TTU)-Infections of the Immunocompromised Host (IICH), Partner Site Heidelberg, Heidelberg, ;Germany
| | - Angela Hückelhoven-Krauss
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, ;Germany
| | - David Czock
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, ;Germany
| | - Arianeb Mehrabi
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, ;Germany
| | - Constantin Schwab
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, ;Germany
| | - Rüdiger Waldherr
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, ;Germany
| | - Paul Schnitzler
- Center for Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, ;Germany
| | - Uta Merle
- Department of Gastroenterology, Heidelberg University Hospital, Heidelberg, ;Germany
| | - Vedat Schwenger
- Department of Nephrology, Klinikum der Landeshauptstadt Stuttgart, Stuttgart, ;Germany
| | - Markus Krautter
- Department of Nephrology, Klinikum der Landeshauptstadt Stuttgart, Stuttgart, ;Germany
| | - Stephan Kemmner
- Transplant Center, University Hospital Munich, Ludwig-Maximilians University (LMU), Munich, ;Germany
| | - Michael Fischereder
- Division of Nephrology, Department of Internal Medicine IV, University Hospital Munich, Ludwig-Maximilians-Universität München (LMU), Munich, ;Germany
| | - Manfred Stangl
- Department of General, Visceral, and Transplant Surgery, University Hospital Munich, Ludwig-Maximilians-Universität München (LMU), Munich, ;Germany
| | - Ingeborg A. Hauser
- Medical Clinic III, Department of Nephrology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, ;Germany
| | - Anna-Isabelle Kälsch
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, ;Germany
| | - Bernhard K. Krämer
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, ;Germany
| | - Georg A. Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, ;Austria
| | - Carsten Müller-Tidow
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, ;Germany
| | - Jochen Reiser
- Department of Medicine, Rush University, Chicago, IL, ;United States
| | - Martin Zeier
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, ;Germany
| | - Michael Schmitt
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, ;Germany
| | - Peter Terness
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, ;Germany
| | - Anita Schmitt
- TolerogenixX GmbH, Heidelberg, ;Germany
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, ;Germany
| | - Volker Daniel
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, ;Germany
| |
Collapse
|
108
|
Sadozai H, Rojas-Luengas V, Farrokhi K, Moshkelgosha S, Guo Q, He W, Li A, Zhang J, Chua C, Ferri D, Mian M, Adeyi O, Seidman M, Gorczynski RM, Juvet S, Atkins H, Levy GA, Chruscinski A. Congenic hematopoietic stem cell transplantation promotes survival of heart allografts in murine models of acute and chronic rejection. Clin Exp Immunol 2023; 213:138-154. [PMID: 37004176 PMCID: PMC10324556 DOI: 10.1093/cei/uxad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/19/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
The ability to induce tolerance would be a major advance in the field of solid organ transplantation. Here, we investigated whether autologous (congenic) hematopoietic stem cell transplantation (HSCT) could promote tolerance to heart allografts in mice. In an acute rejection model, fully MHC-mismatched BALB/c hearts were heterotopically transplanted into C57BL/6 (CD45.2) mice. One week later, recipient mice were lethally irradiated and reconstituted with congenic B6 CD45.1 Lin-Sca1+ckit+ cells. Recipient mice received a 14-day course of rapamycin both to prevent rejection and to expand regulatory T cells (Tregs). Heart allografts in both untreated and rapamycin-treated recipients that did not undergo HSCT were rejected within 33 days (median survival time = 8 days for untreated recipients, median survival time = 32 days for rapamycin-treated recipients), whereas allografts in HSCT-treated recipients had a median survival time of 55 days (P < 0.001 vs. both untreated and rapamycin-treated recipients). Enhanced allograft survival following HSCT was associated with increased intragraft Foxp3+ Tregs, reduced intragraft B cells, and reduced serum donor-specific antibodies. In a chronic rejection model, Bm12 hearts were transplanted into C57BL/6 (CD45.2) mice, and congenic HSCT was performed two weeks following heart transplantation. HSCT led to enhanced survival of allografts (median survival time = 70 days vs. median survival time = 28 days in untreated recipients, P < 0.01). Increased allograft survival post-HSCT was associated with prevention of autoantibody development and absence of vasculopathy. These data support the concept that autologous HSCT can promote immune tolerance in the setting of allotransplantation. Further studies to optimize HSCT protocols should be performed before this procedure is adopted clinically.
Collapse
Affiliation(s)
- Hassan Sadozai
- Center for Sport, Exercise and Life Sciences, Coventry University, Coventry, UK
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Vanessa Rojas-Luengas
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Kaveh Farrokhi
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Sajad Moshkelgosha
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Qinli Guo
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Wei He
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Angela Li
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jianhua Zhang
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Conan Chua
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Dario Ferri
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Muhtashim Mian
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Oyedele Adeyi
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Michael Seidman
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| | - Reginald M Gorczynski
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Stephen Juvet
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Harold Atkins
- Division of Hematology, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Gary A Levy
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Andrzej Chruscinski
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
109
|
Turolo S, Edefonti A, Syren ML, Montini G. Pharmacogenomics of Old and New Immunosuppressive Drugs for Precision Medicine in Kidney Transplantation. J Clin Med 2023; 12:4454. [PMID: 37445489 DOI: 10.3390/jcm12134454] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Kidney transplantation is the preferred therapeutic option for end-stage kidney disease, but, despite major therapeutic advancements, allograft rejection continues to endanger graft survival. Every patient is unique due to his or her clinical history, drug metabolism, genetic background, and epigenetics. For this reason, examples of "personalized medicine" and "precision medicine" have steadily increased in recent decades. The final target of precision medicine is to maximize drug efficacy and minimize toxicity for each individual patient. Immunosuppressive drugs, in the setting of kidney transplantation, require a precise dosage to avoid either adverse events (overdosage) or a lack of efficacy (underdosage). In this review, we will explore the knowledge regarding the pharmacogenomics of the main immunosuppressive medications currently utilized in kidney transplantation. We will focus on clinically relevant pharmacogenomic data, that is, the polymorphisms of the genes that metabolize immunosuppressive drugs.
Collapse
Affiliation(s)
- Stefano Turolo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pediatric Nephrology, Dialysis and Transplant Unit, 20122 Milan, Italy
| | - Alberto Edefonti
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pediatric Nephrology, Dialysis and Transplant Unit, 20122 Milan, Italy
| | - Marie Luise Syren
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Giovanni Montini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pediatric Nephrology, Dialysis and Transplant Unit, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| |
Collapse
|
110
|
Dart SJ, Prosser AC, Huang WH, Liu L, Lucas AD, Delriviere L, Gaudieri S, Jeffrey GP, Lucas M. Subset-specific Retention of Donor Myeloid Cells After Major Histocompatibility Complex-matched and Mismatched Liver Transplantation. Transplantation 2023; 107:1502-1512. [PMID: 36584373 PMCID: PMC10508270 DOI: 10.1097/tp.0000000000004481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/14/2022] [Accepted: 11/03/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND During solid organ transplantation, donor leukocytes, including myeloid cells, are transferred within the organ to the recipient. Both tolerogenic and alloreactive roles have been attributed to donor myeloid cells; however, their subset-specific retention posttransplantation has not been investigated in detail. METHODS Major histocompatibility complex (MHC)-matched and mismatched liver transplants were performed in mice, and the fate of donor and recipient myeloid cells was assessed. RESULTS Following MHC-matched transplantation, a proportion of donor myeloid cells was retained in the graft, whereas others egressed and persisted in the blood, spleen, and bone marrow but not the lymph nodes. In contrast, after MHC-mismatched transplantation, all donor myeloid cells, except Kupffer cells, were depleted. This depletion was caused by recipient T and B cells because all donor myeloid subsets were retained in MHC-mismatched grafts when recipients lacked T and B cells. Recipient myeloid cells rapidly infiltrated MHC-matched and, to a greater extent, MHC-mismatched liver grafts. MHC-mismatched grafts underwent a transient rejection episode on day 7, coinciding with a transition in macrophages to a regulatory phenotype, after which rejection resolved. CONCLUSIONS Phenotypic and kinetic differences in the myeloid cell responses between MHC-matched and mismatched grafts were identified. A detailed understanding of the dynamics of immune responses to transplantation is critical to improving graft outcomes.
Collapse
Affiliation(s)
- Sarah J. Dart
- Medical School, The University of Western Australia, Perth, WA, Australia
| | - Amy C. Prosser
- Medical School, The University of Western Australia, Perth, WA, Australia
| | - Wen Hua Huang
- Medical School, The University of Western Australia, Perth, WA, Australia
- Western Australian Liver Transplant Service, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Liu Liu
- Medical School, The University of Western Australia, Perth, WA, Australia
| | - Andrew D. Lucas
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Luc Delriviere
- Medical School, The University of Western Australia, Perth, WA, Australia
- Western Australian Liver Transplant Service, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Silvana Gaudieri
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
| | - Gary P. Jeffrey
- Medical School, The University of Western Australia, Perth, WA, Australia
- Western Australian Liver Transplant Service, Sir Charles Gairdner Hospital, Perth, WA, Australia
- Department of Hepatology, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Michaela Lucas
- Medical School, The University of Western Australia, Perth, WA, Australia
- Department of Immunology, Sir Charles Gairdner Hospital and PathWest Laboratory Medicine, Perth, WA, Australia
| |
Collapse
|
111
|
Duan M, Liu X, Yang Y, Zhang Y, Wu R, Lv Y, Lei H. Orchestrated regulation of immune inflammation with cell therapy in pediatric acute liver injury. Front Immunol 2023; 14:1194588. [PMID: 37426664 PMCID: PMC10323196 DOI: 10.3389/fimmu.2023.1194588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/26/2023] [Indexed: 07/11/2023] Open
Abstract
Acute liver injury (ALI) in children, which commonly leads to acute liver failure (ALF) with the need for liver transplantation, is a devastating life-threatening condition. As the orchestrated regulation of immune hemostasis in the liver is essential for resolving excess inflammation and promoting liver repair in a timely manner, in this study we focused on the immune inflammation and regulation with the functional involvement of both innate and adaptive immune cells in acute liver injury progression. In the context of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic, it was also important to incorporate insights from the immunological perspective for the hepatic involvement with SARS-CoV-2 infection, as well as the acute severe hepatitis of unknown origin in children since it was first reported in March 2022. Furthermore, molecular crosstalk between immune cells concerning the roles of damage-associated molecular patterns (DAMPs) in triggering immune responses through different signaling pathways plays an essential role in the process of liver injury. In addition, we also focused on DAMPs such as high mobility group box 1 (HMGB1) and cold-inducible RNA-binding protein (CIRP), as well as on macrophage mitochondrial DNA-cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway in liver injury. Our review also highlighted novel therapeutic approaches targeting molecular and cellular crosstalk and cell-based therapy, providing a future outlook for the treatment of acute liver injury.
Collapse
Affiliation(s)
- Mingyue Duan
- Department of Clinical Laboratory, The Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Shaanxi Institute for Pediatric Diseases, The Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoguai Liu
- Department of Infectious Diseases, The Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ying Yang
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Shaanxi Institute for Pediatric Diseases, The Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yanmin Zhang
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Shaanxi Institute for Pediatric Diseases, The Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Hong Lei
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Shaanxi Institute for Pediatric Diseases, The Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
112
|
Tamargo CL, Kant S. Pathophysiology of Rejection in Kidney Transplantation. J Clin Med 2023; 12:4130. [PMID: 37373823 PMCID: PMC10299312 DOI: 10.3390/jcm12124130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Kidney transplantation has been the optimal treatment for end-stage kidney disease for almost 70 years, with increasing frequency over this period. Despite the prevalence of the procedure, allograft rejection continues to impact transplant recipients, with consequences ranging from hospitalization to allograft failure. Rates of rejection have declined over time, which has been largely attributed to developments in immunosuppressive therapy, understanding of the immune system, and monitoring. Developments in these therapies, as well as an improved understanding of rejection risk and the epidemiology of rejection, are dependent on a foundational understanding of the pathophysiology of rejection. This review explains the interconnected mechanisms behind antibody-mediated and T-cell-mediated rejection and highlights how these processes contribute to outcomes and can inform future progress.
Collapse
Affiliation(s)
- Christina L. Tamargo
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA;
| | - Sam Kant
- Division of Nephrology & Comprehensive Transplant Center, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| |
Collapse
|
113
|
Giannoukakis N. Tolerogenic dendritic cells in type 1 diabetes: no longer a concept. Front Immunol 2023; 14:1212641. [PMID: 37388741 PMCID: PMC10303908 DOI: 10.3389/fimmu.2023.1212641] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
Tolerogenic dendritic cells (tDC) arrest the progression of autoimmune-driven dysglycemia into clinical, insulin-requiring type 1 diabetes (T1D) and preserve a critical mass of β cells able to restore some degree of normoglycemia in new-onset clinical disease. The safety of tDC, generated ex vivo from peripheral blood leukocytes, has been demonstrated in phase I clinical studies. Accumulating evidence shows that tDC act via multiple layers of immune regulation arresting the action of pancreatic β cell-targeting effector lymphocytes. tDC share a number of phenotypes and mechanisms of action, independent of the method by which they are generated ex vivo. In the context of safety, this yields confidence that the time has come to test the best characterized tDC in phase II clinical trials in T1D, especially given that tDC are already being tested for other autoimmune conditions. The time is also now to refine purity markers and to "universalize" the methods by which tDC are generated. This review summarizes the current state of tDC therapy for T1D, presents points of intersection of the mechanisms of action that the different embodiments use to induce tolerance, and offers insights into outstanding matters to address as phase II studies are imminent. Finally, we present a proposal for co-administration and serially-alternating administration of tDC and T-regulatory cells (Tregs) as a synergistic and complementary approach to prevent and treat T1D.
Collapse
Affiliation(s)
- Nick Giannoukakis
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
114
|
Qiu Y, Tang J, Zhao Q, Jiang Y, Liu YN, Liu WJ. From Diabetic Nephropathy to End-Stage Renal Disease: The Effect of Chemokines on the Immune System. J Diabetes Res 2023; 2023:3931043. [PMID: 37287620 PMCID: PMC10243947 DOI: 10.1155/2023/3931043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 06/09/2023] Open
Abstract
Background Diabetic nephropathy (DN) is a major cause of end-stage renal disease (ESRD), and there is growing evidence to support the role of immunity in the progression of DN to ESRD. Chemokines and chemokine receptors (CCRs) can recruit immune cells to sites of inflammation or injury. Currently, no studies have reported the effect of CCRs on the immune environment during the progression of DN to ESRD. Methods Differentially expressed genes (DEGs) from the GEO database were identified in DN patients versus ESRD patients. GO and KEGG enrichment analyses were performed using DEGs. A protein-protein interaction (PPI) network was constructed to identify hub CCRs. Differentially expressed immune cells were screened by immune infiltration analysis, and the correlation between immune cells and hub CCRs was also calculated. Result In this study, a total of 181 DEGs were identified. Enrichment analysis showed that chemokines, cytokines, and inflammation-related pathways were significantly enriched. Combining the PPI network and CCRs, four hub CCRs (CXCL2, CXCL8, CXCL10, and CCL20) were identified. These hub CCRs showed an upregulation trend in DN patients and a downregulation trend in ESRD patients. Immune infiltration analysis identified a variety of immune cells that underwent significant changes during disease progression. Among them, CD56bright natural killer cell, effector memory CD8 T cell, memory B cell, monocyte, regulatory T cell, and T follicular helper cell were significantly associated with all hub CCR correlation. Conclusion The effect of CCRs on the immune environment may contribute to the progression of DN to ESRD.
Collapse
Affiliation(s)
- Yuheng Qiu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jingyi Tang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Qihan Zhao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yuhua Jiang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yu Ning Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Wei Jing Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
115
|
Wang J, Metheny L. Umbilical cord blood derived cellular therapy: advances in clinical development. Front Oncol 2023; 13:1167266. [PMID: 37274288 PMCID: PMC10232824 DOI: 10.3389/fonc.2023.1167266] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023] Open
Abstract
While cord blood (CB) is primarily utilized in allogeneic hematopoietic cell transplantation (HCT), the development of novel cell therapy products from CB is a growing and developing field. Compared to adult blood, CB is characterized by a higher percentage of hematopoietic stem cells (HSCs) and progenitor cells, less mature immune cells that retain a high capacity of proliferation, and stronger immune tolerance that requires less stringent HLA-matching when used in the allogenic setting. Given that CB is an FDA regulated product and along with its unique cellular composition, CB lends itself as a readily available and safe starting material for the development of off-the-shelf cell therapies. Moreover, non-hematologic cells such as mesenchymal stem cell (MSCs) residing in CB or CB tissue also have potential in regenerative medicine and inflammatory and autoimmune conditions. In this review, we will focus on recent clinical development on CB-derived cellular therapies in the field of oncology, including T-cell therapies such as chimeric antigen receptor (CAR) T-cells, regulatory T-cells, and virus-specific T-cells; NK-cell therapies, such as NK cell engagers and CAR NK-cells; CB-HCT and various modifications; as well as applications of MSCs in HCT.
Collapse
|
116
|
Mazinani M, Rahbarizadeh F. New cell sources for CAR-based immunotherapy. Biomark Res 2023; 11:49. [PMID: 37147740 PMCID: PMC10163725 DOI: 10.1186/s40364-023-00482-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/04/2023] [Indexed: 05/07/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy, in which a patient's own T lymphocytes are engineered to recognize and kill cancer cells, has achieved striking success in some hematological malignancies in preclinical and clinical trials, resulting in six FDA-approved CAR-T products currently available in the market. Despite impressive clinical outcomes, concerns about treatment failure associated with low efficacy or high cytotoxicity of CAR-T cells remain. While the main focus has been on improving CAR-T cells, exploring alternative cellular sources for CAR generation has garnered growing interest. In the current review, we comprehensively evaluated other cell sources rather than conventional T cells for CAR generation.
Collapse
Affiliation(s)
- Marzieh Mazinani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran.
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
117
|
Lackner K, Ebner S, Watschinger K, Maglione M. Multiple Shades of Gray-Macrophages in Acute Allograft Rejection. Int J Mol Sci 2023; 24:8257. [PMID: 37175964 PMCID: PMC10179242 DOI: 10.3390/ijms24098257] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Long-term results following solid organ transplantation do not mirror the excellent short-term results achieved in recent decades. It is therefore clear that current immunosuppressive maintenance protocols primarily addressing the adaptive immune system no longer meet the required clinical need. Identification of novel targets addressing this shortcoming is urgently needed. There is a growing interest in better understanding the role of the innate immune system in this context. In this review, we focus on macrophages, which are known to prominently infiltrate allografts and, during allograft rejection, to be involved in the surge of the adaptive immune response by expression of pro-inflammatory cytokines and direct cytotoxicity. However, this active participation is janus-faced and unspecific targeting of macrophages may not consider the different subtypes involved. Under this premise, we give an overview on macrophages, including their origins, plasticity, and important markers. We then briefly describe their role in acute allograft rejection, which ranges from sustaining injury to promoting tolerance, as well as the impact of maintenance immunosuppressants on macrophages. Finally, we discuss the observed immunosuppressive role of the vitamin-like compound tetrahydrobiopterin and the recent findings that suggest the innate immune system, particularly macrophages, as its target.
Collapse
Affiliation(s)
- Katharina Lackner
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.L.); (S.E.)
| | - Susanne Ebner
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.L.); (S.E.)
| | - Katrin Watschinger
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Manuel Maglione
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.L.); (S.E.)
- Department of Visceral, Transplant, and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
118
|
Dudreuilh C, Jarvis P, Beadle N, Pilecka I, Shaw O, Gardner L, Scottà C, Mamode N, Game DS, Sanchez-Fueyo A, Lombardi G, Learoyd A, Douiri A, Dorling A. Can regulatory T cells improve outcomes of sensitised patients after HLA-Ab incompatible renal transplantation: study protocol for the Phase IIa GAMECHANgER-1 trial. BMC Nephrol 2023; 24:117. [PMID: 37118685 PMCID: PMC10140710 DOI: 10.1186/s12882-023-03157-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/06/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Kidney transplantation is the gold-standard treatment for patients with kidney failure. However, one-third of patients awaiting a kidney transplant are highly sensitized to human leukocyte antigens (HLA), resulting in an increased waiting time for a suitable kidney, more acute and chronic rejection, and a shorter graft survival compared to non-highly sensitised patients. Current standard immunosuppression protocols do not adequately suppress memory responses, and so alternative strategies are needed. Autologous polyclonally expanded regulatory T cells (Tregs) have been demonstrated to be safe in transplant settings and could be a potential alternative to modulate memory immune alloresponses. METHODS The aim of this trial is to determine whether adoptive transfer of autologous Tregs into HLA sensitised patients can suppress memory T and B cell responses against specific HLA antigens. This is a two-part, multi-centre, prospective clinical trial, comprising an observational phase (Part 1) aiming to identify patients with unregulated cellular memory responses to HLA (Pure HLA Proteins) followed by an interventional phase (Part 2). The first 9 patients identified as being eligible in Part 1 will undergo baseline immune monitoring for 2 months to inform statistical analysis of the primary endpoint. Part 2 is an adaptive, open labelled trial based on Simon's two-stage design, with 21 patients receiving Good Manufacturing Practice (GMP)-grade polyclonally expanded Tregs to a dose of 5-10 × 106 cells/kg body weight. The primary EP is suppression of in vitro memory responses for 2 months post-infusion. 12 patients will receive treatment in stage 1 of Part 2, and 9 patients will receive treatment in stage 2 of Part 2 if ≥ 50% patients pass the primary EP in stage 1. DISCUSSION This is a prospective study aiming to identify patients with unregulated cellular memory responses to Pure HLA Proteins and determine baseline variation in these patterns of response. Part 2 will be an adaptive phase IIa clinical trial with 21 patients receiving a single infusion of GMP-grade polyclonally expanded Tregs in two stages. It remains to be demonstrated that modulating memory alloresponses clinically using Treg therapy is achievable. TRIAL REGISTRATION EudraCT Number: 2021-001,664-23. REC Number: 21/SC/0253. Trial registration number ISRCTN14582152.
Collapse
Affiliation(s)
- C Dudreuilh
- Centre for Nephrology, Urology and Transplantation, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London & NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.
- Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, UK.
| | - P Jarvis
- Centre for Nephrology, Urology and Transplantation, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London & NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
- Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - N Beadle
- Centre for Nephrology, Urology and Transplantation, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London & NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
- Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - I Pilecka
- Centre for Nephrology, Urology and Transplantation, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London & NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
- Clinical Trials Unit, King's College London, London, UK
| | - O Shaw
- Guy's and St Thomas's Hospital Trust, London, UK
| | - L Gardner
- Centre for Nephrology, Urology and Transplantation, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London & NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
- Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - C Scottà
- Peter Gorer Department of Immunobiology, King's College London, London, UK
| | - N Mamode
- Centre for Nephrology, Urology and Transplantation, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London & NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
- Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - D S Game
- Department of Transplantation, Guys and St, Thomas's Hospital NHS Trust, London, UK
| | - A Sanchez-Fueyo
- Institute of Liver Studies, King's College London University and King's College Hospital, London, UK
| | - G Lombardi
- Peter Gorer Department of Immunobiology, King's College London, London, UK
| | - A Learoyd
- School of Population Health and Environmental Sciences, King's College London, London, UK
| | - A Douiri
- School of Population Health and Environmental Sciences, King's College London, London, UK
| | - A Dorling
- Centre for Nephrology, Urology and Transplantation, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London & NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
- Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, UK
| |
Collapse
|
119
|
Abraham AR, Maghsoudlou P, Copland DA, Nicholson LB, Dick AD. CAR-Treg cell therapies and their future potential in treating ocular autoimmune conditions. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1184937. [PMID: 38983082 PMCID: PMC11182176 DOI: 10.3389/fopht.2023.1184937] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 04/03/2023] [Indexed: 07/11/2024]
Abstract
Ophthalmic autoimmune and autoinflammatory conditions cause significant visual morbidity and require complex medical treatment complicated by significant side effects and lack of specificity. Regulatory T cells (Tregs) have key roles in immune homeostasis and in the resolution of immune responses. Polyclonal Treg therapy has shown efficacy in treating autoimmune disease. Genetic engineering approaches to produce antigen-specific Treg therapy has the potential for enhanced treatment responses and fewer systemic side effects. Cell therapy using chimeric antigen receptor modified T cell (CAR-T) therapy, has had significant success in treating haematological malignancies. By modifying Tregs specifically, a CAR-Treg approach has been efficacious in preclinical models of autoimmune conditions leading to current phase 1-2 clinical trials. This review summarises CAR structure and design, Treg cellular biology, developments in CAR-Treg therapies, and discusses future strategies to apply CAR-Treg therapy in the treatment of ophthalmic conditions.
Collapse
Affiliation(s)
- Alan R. Abraham
- Ophthalmology Research Group, Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Panayiotis Maghsoudlou
- Ophthalmology Research Group, Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
- University of Bath, Bath, United Kingdom
| | - David A. Copland
- Ophthalmology Research Group, Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Lindsay B. Nicholson
- Ophthalmology Research Group, Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Andrew D. Dick
- Ophthalmology Research Group, Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
- UCL-Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
120
|
Zahorchak AF, DeRiggi ML, Muzzio JL, Sutherland V, Humar A, Lakkis FG, Hsu YMS, Thomson AW. Manufacturing and validation of Good Manufacturing Practice-compliant regulatory dendritic cells for infusion into organ transplant recipients. Cytotherapy 2023; 25:432-441. [PMID: 36639251 DOI: 10.1016/j.jcyt.2022.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/28/2022] [Accepted: 11/18/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND AIMS Regulatory (or "tolerogenic") dendritic cells (DCregs) are a highly promising, innovative cell therapy for the induction or restoration of antigen-specific tolerance in immune-mediated inflammatory disorders. These conditions include organ allograft rejection, graft-versus-host disease following bone marrow transplantation and various autoimmune disorders. DCregs generated for adoptive transfer have potential to reduce patients' dependence on non-specific immunosuppressive drugs that can induce serious side effects and enhance the risk of infection and certain types of cancer. Here, our aim was to provide a detailed account of our experience manufacturing and validating comparatively large numbers of Good Manufacturing Practice-grade DCregs for systemic (intravenous) infusion into 28 organ (liver) transplant recipients and to discuss factors that influence the satisfaction of release criteria and attainment of target cell numbers. RESULTS DCregs were generated in granulocyte-macrophage colony stimulating factor and interleukin (IL)-4 from elutriated monocyte fractions isolated from non-mobilized leukapheresis products of consenting healthy adult prospective liver transplant donors. Vitamin D3 was added on day 0 and 4 and IL-10 on day 4 during the 7-day culture period. Release and post-release criteria included cell viability, purity, phenotype, sterility and functional assessment. The overall conversion rate of monocytes to DCregs was 28 ± 8.2%, with 94 ± 5.1% product viability. The mean cell surface T-cell co-inhibitory to co-stimulatory molecule (programmed death ligand-1:CD86) mean fluorescence intensity ratio was 3.9 ± 2.2, and the mean ratio of anti-inflammatory:pro-inflammatory cytokine product (IL-10:IL-12p70) secreted upon CD40 ligation was 60 ± 63 (median = 40). The mean total number of DCregs generated from a single leukapheresis product (n = 25 donors) and from two leukapheresis products (n = 3 donors) was 489 ± 223 × 106 (n = 28). The mean total number of DCregs infused was 5.9 ± 2.8 × 106 per kg body weight. DCreg numbers within a target cell range of 2.5-10 × 106/kg were achieved for 25 of 27 (92.6%) of products generated. CONCLUSIONS High-purity DCregs meeting a range of quality criteria were readily generated from circulating blood monocytes under Good Manufacturing Practice conditions to meet target cell numbers for infusion into prospective organ transplant recipients.
Collapse
Affiliation(s)
- Alan F Zahorchak
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Misty L DeRiggi
- Immunologic Monitoring & Cellular Products Laboratory, University of Pittsburgh Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Jennifer L Muzzio
- Immunologic Monitoring & Cellular Products Laboratory, University of Pittsburgh Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Veronica Sutherland
- Immunologic Monitoring & Cellular Products Laboratory, University of Pittsburgh Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Abhinav Humar
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Fadi G Lakkis
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Medicine, Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yen-Michael S Hsu
- Immunologic Monitoring & Cellular Products Laboratory, University of Pittsburgh Hillman Cancer Center, Pittsburgh, Pennsylvania, USA; Department of Medicine, Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| | - Angus W Thomson
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
121
|
Murakami N, Borges TJ, Win TS, Abarzua P, Tasigiorgos S, Kollar B, Barrera V, Ho Sui S, Teague JE, Bueno E, Clark RA, Lian CG, Murphy GF, Pomahac B, Riella LV. Low-dose interleukin-2 promotes immune regulation in face transplantation: A pilot study. Am J Transplant 2023; 23:549-558. [PMID: 36740193 PMCID: PMC10318113 DOI: 10.1016/j.ajt.2023.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023]
Abstract
Face transplantation is a life-changing procedure for patients with severe composite facial defects. However, it is hampered by high acute rejection rates due to the immunogenicity of skin allograft and toxicity linked to high doses of immunosuppression. To reduce immunosuppression-associated complications, we, for the first time in face transplant recipients, used low-dose interleukin 2 (IL-2) therapy to expand regulatory T cells (Tregs) in vivo and to enhance immune modulation, under close immunological monitoring of peripheral blood and skin allograft. Low-dose IL-2 achieved a sustained expansion (∼4-fold to 5-fold) of circulating Tregs and a reduction (∼3.5-fold) of B cells. Post-IL-2 Tregs exhibited greater suppressive function, characterized by higher expression of TIM-3 and LAG3co-inhibitory molecules. In the skin allograft, Tregs increased after low-dose IL-2 therapy. IL-2 induced a distinct molecular signature in the allograft with reduced cytotoxicity-associated genes (granzyme B and perforin). Two complications were observed during the trial: one rejection event and an episode of autoimmune hemolytic anemia. In summary, this initial experience demonstrated that low-dose IL-2 therapy was not only able to promote immune regulation in face transplant recipients but also highlighted challenges related to its narrow therapeutic window. More specific targeted Treg expansion strategies are needed to translate this approach to the clinic.
Collapse
Affiliation(s)
- Naoka Murakami
- Transplant Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Maryland, USA
| | - Thiago J Borges
- Transplant Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Maryland, USA; Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, Maryland, USA
| | - Thet Su Win
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Maryland, USA; Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Maryland, USA
| | - Phammela Abarzua
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Maryland, USA
| | - Sotirios Tasigiorgos
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Maryland, USA
| | - Branislav Kollar
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Maryland, USA; Department of Plastic and Hand Surgery, University of Freiburg Medical Center, Medical Faculty of the University of Freiburg, Freiburg, Germany
| | - Victor Barrera
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Maryland, USA
| | - Shannan Ho Sui
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Maryland, USA
| | - Jessica E Teague
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Maryland, USA
| | - Ericka Bueno
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Maryland, USA
| | - Rachael A Clark
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Maryland, USA
| | - Christine G Lian
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Maryland, USA
| | - George F Murphy
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Maryland, USA
| | - Bohdan Pomahac
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Maryland, USA; Department of Surgery, Division of Plastic and Reconstructive Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, Connecticut, USA.
| | - Leonardo V Riella
- Transplant Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Maryland, USA; Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, Maryland, USA.
| |
Collapse
|
122
|
Ichimura H, Chino S, Shiba Y. Cardiac Regeneration Using Pluripotent Stem Cells and Controlling Immune Responses. Heart Lung Circ 2023:S1443-9506(23)00108-7. [PMID: 37029069 DOI: 10.1016/j.hlc.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/02/2022] [Accepted: 12/05/2022] [Indexed: 04/08/2023]
Abstract
Pluripotent stem cell (PSC)-derived cardiomyocytes are a promising source of cells in myocardial regeneration therapy for end-stage heart failure. Because most previous reports have focussed on xenotransplantation models using immunocompromised animals, studies on immune rejection in allogeneic transplantation models are needed for preclinical and clinical applications. Human leukocyte antigen (HLA) plays an important role in allogeneic transplantation, and cell bank projects are currently underway worldwide to stock induced pluripotent stem cells (iPSCs) generated from healthy individuals with homozygous HLA haplotypes. However, it is difficult to stock iPSCs that match the entire population in these cell banks; thus, several groups have produced hypoimmunogenic PSCs by knocking out HLA. These HLA-knockout PSCs were able to avoid rejection by T cells but still suffered rejection by natural killer (NK) cells caused by 'missing self-recognition'. Recent studies have attempted to generate hypoimmunogenic PSCs with gene editing to inhibit NK cell activation. Regenerative medicine using autologous iPSCs can be an ideal transplantation therapy, but, currently, there are major hurdles to its practical application. Hopefully, further research will resolve these issues. This review provides an overview of the current understanding and progress in this field.
Collapse
Affiliation(s)
- Hajime Ichimura
- Department of Regenerative Science and Medicine, Shinshu University School of Medicine, Matsumoto, Japan; Department of Surgery, Division of Cardiovascular Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shuji Chino
- Department of Surgery, Division of Cardiovascular Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yuji Shiba
- Department of Regenerative Science and Medicine, Shinshu University School of Medicine, Matsumoto, Japan; Institute for Biomedical Sciences, Shinshu University, Matsumoto, Japan.
| |
Collapse
|
123
|
Ott LC, Cuenca AG. Innate immune cellular therapeutics in transplantation. FRONTIERS IN TRANSPLANTATION 2023; 2:1067512. [PMID: 37994308 PMCID: PMC10664839 DOI: 10.3389/frtra.2023.1067512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Successful organ transplantation provides an opportunity to extend the lives of patients with end-stage organ failure. Selectively suppressing the donor-specific alloimmune response, however, remains challenging without the continuous use of non-specific immunosuppressive medications, which have multiple adverse effects including elevated risks of infection, chronic kidney injury, cardiovascular disease, and cancer. Efforts to promote allograft tolerance have focused on manipulating the adaptive immune response, but long-term allograft survival rates remain disappointing. In recent years, the innate immune system has become an attractive therapeutic target for the prevention and treatment of transplant organ rejection. Indeed, contemporary studies demonstrate that innate immune cells participate in both the initial alloimmune response and chronic allograft rejection and undergo non-permanent functional reprogramming in a phenomenon termed "trained immunity." Several types of innate immune cells are currently under investigation as potential therapeutics in transplantation, including myeloid-derived suppressor cells, dendritic cells, regulatory macrophages, natural killer cells, and innate lymphoid cells. In this review, we discuss the features and functions of these cell types, with a focus on their role in the alloimmune response. We examine their potential application as therapeutics to prevent or treat allograft rejection, as well as challenges in their clinical translation and future directions for investigation.
Collapse
Affiliation(s)
- Leah C Ott
- Department of General Surgery, Boston Children's Hospital, Boston, MA, United States
| | - Alex G Cuenca
- Department of General Surgery, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
124
|
Paek JH, Kim YN, Shin HS, Jung Y, Rim H. Expansion and characterization of regulatory T cell populations from Korean kidney transplant recipients. Medicine (Baltimore) 2023; 102:e33058. [PMID: 36930095 PMCID: PMC10019245 DOI: 10.1097/md.0000000000033058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/01/2023] [Indexed: 03/18/2023] Open
Abstract
The development of immunosuppressants has enabled remarkable progress in kidney transplantation (KT). However, current immunosuppressants cannot induce immune tolerance, and their nonspecific immunosuppressive effects result in many adverse effects. Regulatory T cells (Tregs) play crucial roles in controlling all specific immune responses. This study evaluated the distribution of Tregs and their effects on kidney allograft function in Korean KT recipients. We enrolled 113 KT recipients with stable graft function. The differentiation and expansion of Tregs were examined by flow cytometry to compare the Tregs subpopulations. Among the 113 patients, 73 (64.6%) were males, and the mean follow-up period from KT to Tregs collection was 147.5 + 111.3 months. Patients receiving lower doses of cyclosporine had higher proportions of Tregs than those with higher doses of cyclosporine (36.3 + 21.6 vs 17.0 + 12.7, P = .010, respectively). Patients taking cyclosporine tended to have higher Tregs numbers than those taking tacrolimus (94.7 + 158.1 vs 49.3 + 69.4, P = .095, respectively). However, no significant association was observed between Tregs and allograft dysfunction in the cox proportional hazard model. Tregs counts may be associated with the type and dose of immunosuppressants. However, no significant relationship was found between Tregs and kidney allograft function in stable KT recipients.
Collapse
Affiliation(s)
- Jin Hyuk Paek
- Renal Division, Department of Internal Medicine, Keimyung University School of Medicine, Daegu, South Korea
| | - Ye Na Kim
- Renal Division, Department of Internal Medicine, Gospel Hospital, Kosin University College of Medicine, Busan, South Korea
- Transplantation Research Institute, Kosin University College of Medicine, Busan, South Korea
| | - Ho Sik Shin
- Renal Division, Department of Internal Medicine, Gospel Hospital, Kosin University College of Medicine, Busan, South Korea
- Transplantation Research Institute, Kosin University College of Medicine, Busan, South Korea
| | - Yeonsoon Jung
- Renal Division, Department of Internal Medicine, Gospel Hospital, Kosin University College of Medicine, Busan, South Korea
- Transplantation Research Institute, Kosin University College of Medicine, Busan, South Korea
| | - Hark Rim
- Renal Division, Department of Internal Medicine, Gospel Hospital, Kosin University College of Medicine, Busan, South Korea
- Transplantation Research Institute, Kosin University College of Medicine, Busan, South Korea
| |
Collapse
|
125
|
Pham HL, Yang DH, Chae WR, Jung JH, Hoang TX, Lee NY, Kim JY. PDMS Micropatterns Coated with PDA and RGD Induce a Regulatory Macrophage-like Phenotype. MICROMACHINES 2023; 14:673. [PMID: 36985080 PMCID: PMC10052727 DOI: 10.3390/mi14030673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Regulatory macrophages (Mreg) are a special cell type that present a potential therapeutic strategy for various inflammatory diseases. In vitro, Mreg generation mainly takes 7-10 days of treatment with chemicals, including cytokines. In the present study, we established a new approach for Mreg generation using a three-dimensional (3D) micropatterned polydimethylsiloxane (PDMS) surface coated with a natural biopolymer adhesive polydopamine (PDA) and the common cell adhesion peptide motif arginylglycylaspartic acid (RGD). The 3D PDMS surfaces were fabricated by photolithography and soft lithography techniques and were subsequently coated with an RGD+PDA mixture to form a surface that facilitates cell adhesion. Human monocytes (THP-1 cells) were cultured on different types of 2D or 3D micropatterns for four days, and the cell morphology, elongation, and Mreg marker expression were assessed using microscopic and flow cytometric analyses. The cells grown on the PDA+RGD-coated 3D micropatterns (20-µm width/20-µm space) exhibited the most elongated morphology and strongest expression levels of Mreg markers, such as CD163, CD206, CD209, CD274, MER-TK, TREM2, and DHRS9. The present study demonstrated that PDA+RGD-coated 3D PDMS micropatterns successfully induced Mreg-like cells from THP-1 cells within four days without the use of cytokines, suggesting a time- and cost-effective method to generate Mreg-like cells in vitro.
Collapse
Affiliation(s)
- Hoang Lan Pham
- Department of Life Science, Gachon University, Seongnam 13120, Gyeonggi-Do, Republic of Korea
| | - Da Hyun Yang
- Department of BioNano Technology, Gachon University, Seongnam 13120, Gyeonggi-Do, Republic of Korea
| | - Woo Ri Chae
- Department of BioNano Technology, Gachon University, Seongnam 13120, Gyeonggi-Do, Republic of Korea
| | - Jong Hyeok Jung
- Department of Life Science, Gachon University, Seongnam 13120, Gyeonggi-Do, Republic of Korea
| | - Thi Xoan Hoang
- Department of Life Science, Gachon University, Seongnam 13120, Gyeonggi-Do, Republic of Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, Seongnam 13120, Gyeonggi-Do, Republic of Korea
| | - Jae Young Kim
- Department of Life Science, Gachon University, Seongnam 13120, Gyeonggi-Do, Republic of Korea
| |
Collapse
|
126
|
Steiner R, Pilat N. The potential for Treg-enhancing therapies in transplantation. Clin Exp Immunol 2023; 211:122-137. [PMID: 36562079 PMCID: PMC10019131 DOI: 10.1093/cei/uxac118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/21/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022] Open
Abstract
Since the discovery of regulatory T cells (Tregs) as crucial regulators of immune tolerance against self-antigens, these cells have become a promising tool for the induction of donor-specific tolerance in transplantation medicine. The therapeutic potential of increasing in vivoTreg numbers for a favorable Treg to Teff cell ratio has already been demonstrated in several sophisticated pre-clinical models and clinical pilot trials. In addition to improving cell quantity, enhancing Treg function utilizing engineering techniques led to encouraging results in models of autoimmunity and transplantation. Here we aim to discuss the most promising approaches for Treg-enhancing therapies, starting with adoptive transfer approaches and ex vivoexpansion cultures (polyclonal vs. antigen specific), followed by selective in vivostimulation methods. Furthermore, we address next generation concepts for Treg function enhancement (CARs, TRUCKs, BARs) as well as the advantages and caveats inherit to each approach. Finally, this review will discuss the clinical experience with Treg therapy in ongoing and already published clinical trials; however, data on long-term results and efficacy are still very limited and many questions that might complicate clinical translation remain open. Here, we discuss the hurdles for clinical translation and elaborate on current Treg-based therapeutic options as well as their potencies for improving long-term graft survival in transplantation.
Collapse
Affiliation(s)
- Romy Steiner
- Department of General Surgery, Medical University of Vienna, Vienna, Austria
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Nina Pilat
- Correspondence: Nina Pilat, PhD, Department of Cardiac Surgery, Center for Biomedical Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| |
Collapse
|
127
|
McCallion O, Bilici M, Hester J, Issa F. Regulatory T-cell therapy approaches. Clin Exp Immunol 2023; 211:96-107. [PMID: 35960852 PMCID: PMC10019137 DOI: 10.1093/cei/uxac078] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Regulatory T cells (Tregs) have enormous therapeutic potential to treat a variety of immunopathologies characterized by aberrant immune activation. Adoptive transfer of ex vivo expanded autologous Tregs continues to progress through mid- to late-phase clinical trials in several disease spaces and has generated promising preliminary safety and efficacy signals to date. However, the practicalities of this strategy outside of the clinical trial setting remain challenging. Here, we review the current landscape of regulatory T-cell therapy, considering emergent approaches and technologies presenting novel ways to engage Tregs, and reflect on the progress necessary to deliver their therapeutic potential to patients.
Collapse
Affiliation(s)
- Oliver McCallion
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Merve Bilici
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Joanna Hester
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Fadi Issa
- Correspondence. Fadi Issa, Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK.
| |
Collapse
|
128
|
Moreau A, Kervella D, Bouchet-Delbos L, Braudeau C, Saïagh S, Guérif P, Limou S, Moreau A, Bercegeay S, Streitz M, Sawitzki B, James B, Harden PN, Game D, Tang Q, Markmann JF, Roberts ISD, Geissler EK, Dréno B, Josien R, Cuturi MC, Blancho G, Branchereau J, Cantarovich D, Chapelet A, Dantal J, Deltombe C, Figueres L, Gaisne R, Garandeau C, Giral M, Gourraud-Vercel C, Hourmant M, Karam G, Kerleau C, Kervella D, Masset C, Meurette A, Ville S, Kandell C, Moreau A, Renaudin K, Delbos F, Walencik A, Devis A. A Phase I/IIa study of autologous tolerogenic dendritic cells immunotherapy in kidney transplant recipients. Kidney Int 2023; 103:627-637. [PMID: 36306921 DOI: 10.1016/j.kint.2022.08.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/09/2022]
Abstract
Kidney transplant survival is shortened by chronic rejection and side effects of standard immunosuppressive drugs. Cell-based immunotherapy with tolerogenic dendritic cells has long been recognized as a promising approach to reduce general immunosuppression. Published trials report the safety and the absence of therapy-related adverse reactions in patients treated with tolerogenic dendritic cells suffering from several inflammatory diseases. Here, we present the first phase I clinical trial results using human autologous tolerogenic dendritic cells (ATDC) in kidney transplantation. Eight patients received ATDC the day before transplantation in conjunction with standard steroids, mycophenolate mofetil and tacrolimus immunosuppression with an option to taper mycophenolate mofetil. ATDC preparations were manufactured in a Good Manufacturing Practice-compliant facility and fulfilled cell count, viability, purity and identity criteria for release. A control group of nine patients received the same standard immunosuppression, except basiliximab induction replaced ATDC therapy and mycophenolate tapering was not allowed. During the three-year follow-up, no deaths occurred and there was 100% graft survival. No significant increase of adverse events was associated with ATDC infusion. Episodes of rejection were observed in two patients from the ATDC group and one patient from the control group. However, all rejections were successfully treated by glucocorticoids. Mycophenolate was successfully reduced/stopped in five patients from the ATDC group, allowing tacrolimus monotherapy for two of them. Regarding immune monitoring, reduced CD8 T cell activation markers and increased Foxp3 expression were observed in the ATDC group. Thus, our results demonstrate ATDC administration safety in kidney-transplant recipients.
Collapse
Affiliation(s)
- Aurélie Moreau
- Inserm, Nantes Université, Centre Hospitalier Universitaire Nantes, Centre de Recherche Translationnelle en Transplantation et Immunologie, Unite Mixte de Recherche 1064, Institut de Transplantation Urologie Nephrologie, Nantes, France.
| | - Delphine Kervella
- Inserm, Nantes Université, Centre Hospitalier Universitaire Nantes, Centre de Recherche Translationnelle en Transplantation et Immunologie, Unite Mixte de Recherche 1064, Institut de Transplantation Urologie Nephrologie, Nantes, France; Centre Hospitalier Universitaire Nantes, Nantes Université, Service de Néphrologie et d'immunologie clinique, Institut de Transplantation Urologie Nephrologie, Nantes, France
| | - Laurence Bouchet-Delbos
- Inserm, Nantes Université, Centre Hospitalier Universitaire Nantes, Centre de Recherche Translationnelle en Transplantation et Immunologie, Unite Mixte de Recherche 1064, Institut de Transplantation Urologie Nephrologie, Nantes, France
| | - Cécile Braudeau
- Inserm, Nantes Université, Centre Hospitalier Universitaire Nantes, Centre de Recherche Translationnelle en Transplantation et Immunologie, Unite Mixte de Recherche 1064, Institut de Transplantation Urologie Nephrologie, Nantes, France; Centre Hospitalier Universitaire Nantes, Nantes Université, Laboratoire d'Immunologie, Center for Immuno Monitoring Nantes Atlantic, Nantes, France
| | - Soraya Saïagh
- Centre Hospitalier Universitaire Nantes, Nantes Université, Unité de Thérapie Cellulaire et Génique Good Manufacturing Practice, Nantes, France
| | - Pierrick Guérif
- Centre Hospitalier Universitaire Nantes, Nantes Université, Service de Néphrologie et d'immunologie clinique, Institut de Transplantation Urologie Nephrologie, Nantes, France
| | - Sophie Limou
- Inserm, Nantes Université, Centre Hospitalier Universitaire Nantes, Centre de Recherche Translationnelle en Transplantation et Immunologie, Unite Mixte de Recherche 1064, Institut de Transplantation Urologie Nephrologie, Nantes, France
| | - Anne Moreau
- Centre Hospitalier Universitaire Nantes, Nantes Université, Laboratoire d'anatomopathologie, Nantes, France
| | - Sylvain Bercegeay
- Centre Hospitalier Universitaire Nantes, Nantes Université, Unité de Thérapie Cellulaire et Génique Good Manufacturing Practice, Nantes, France
| | - Mathias Streitz
- Institute of Medical Immunology, Charité University of Medicine, Berlin, Germany; Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler Institut, Greifswald-Insel Riems, Greifswald, Germany
| | - Birgit Sawitzki
- Institute of Medical Immunology, Charité University of Medicine, Berlin, Germany
| | - Ben James
- Department of surgery, Division of Experimental Surgery, University of Regensburg, Regensburg, Germany
| | - Paul N Harden
- Oxford Transplant Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - David Game
- Department of Transplantation, Guys and St Thomas's Hospital NHS Trust, London, UK
| | - Qizhi Tang
- Department of Surgery, University of California San Francisco Transplantation Research Lab, University of California, San Francisco, California, USA
| | - James F Markmann
- Center for Transplantation Sciences, Mass General Hospital, Boston, Massachusetts, USA
| | - Ian S D Roberts
- Department of Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Edward K Geissler
- Department of surgery, Division of Experimental Surgery, University of Regensburg, Regensburg, Germany
| | - Brigitte Dréno
- Centre Hospitalier Universitaire Nantes, Nantes Université, Unité de Thérapie Cellulaire et Génique Good Manufacturing Practice, Nantes, France
| | - Régis Josien
- Inserm, Nantes Université, Centre Hospitalier Universitaire Nantes, Centre de Recherche Translationnelle en Transplantation et Immunologie, Unite Mixte de Recherche 1064, Institut de Transplantation Urologie Nephrologie, Nantes, France; Centre Hospitalier Universitaire Nantes, Nantes Université, Laboratoire d'Immunologie, Center for Immuno Monitoring Nantes Atlantic, Nantes, France
| | - Maria-Cristina Cuturi
- Inserm, Nantes Université, Centre Hospitalier Universitaire Nantes, Centre de Recherche Translationnelle en Transplantation et Immunologie, Unite Mixte de Recherche 1064, Institut de Transplantation Urologie Nephrologie, Nantes, France
| | - Gilles Blancho
- Inserm, Nantes Université, Centre Hospitalier Universitaire Nantes, Centre de Recherche Translationnelle en Transplantation et Immunologie, Unite Mixte de Recherche 1064, Institut de Transplantation Urologie Nephrologie, Nantes, France; Centre Hospitalier Universitaire Nantes, Nantes Université, Service de Néphrologie et d'immunologie clinique, Institut de Transplantation Urologie Nephrologie, Nantes, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Shi ZY, Yang C, Lu LY, Lin CX, Liang S, Li G, Zhou HM, Zheng JM. Inhibition of hexokinase 2 with 3-BrPA promotes MDSCs differentiation and immunosuppressive function. Cell Immunol 2023; 385:104688. [PMID: 36774675 DOI: 10.1016/j.cellimm.2023.104688] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/08/2022] [Accepted: 02/03/2023] [Indexed: 02/08/2023]
Abstract
The adoptive transfer of ex vivo generated myeloid-derived suppressor cells (MDSCs) may be a promising therapeutic strategy for preventing allograft rejection after solid organ transplantation. Currently, the precise role of immune-metabolic pathways in the differentiation and function of MDSCs is not fully understood. Hexokinase 2 (HK2) is an isoform of hexokinase and is a key enzyme involved in the increased aerobic glycolysis of different immune cells during their activation and function. Here, we demonstrate that the addition of HK2 inhibitor 3-Bromopyruvic acid (3-BrPA) into traditional MDSCs induction system in vitro significantly promoted MDSCs production and enhanced their immunosuppressive function. Treatment with 3-BrPA increased the expression of MDSC-related immunosuppressive molecules, such as iNOS, Arg1, and CXCR2. Moreover, the adoptive transfer of 3-BrPA-treated MDSCs significantly prolonged the survival time of mouse heart allografts. This study provides a novel strategy to solve the problems of harvesting enough autologous cells for MDSC production from sick patients, and producing functionally enhanced MDSCs for preventing graft rejection and inducing tolerance.
Collapse
Affiliation(s)
- Zhan-Yue Shi
- Department of Cardiothoracic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chao Yang
- Department of Organ Transplantation, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Liu-Yi Lu
- Department of Cardiothoracic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Can-Xiang Lin
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shi Liang
- Department of Cardiothoracic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Gen Li
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Min Zhou
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jun-Meng Zheng
- Department of Cardiothoracic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
130
|
Jacob J, Volpe A, Peng Q, Lechler RI, Smyth LA, Lombardi G, Fruhwirth GO. Radiolabelling of Polyclonally Expanded Human Regulatory T Cells (Treg) with 89Zr-oxine for Medium-Term In Vivo Cell Tracking. Molecules 2023; 28:1482. [PMID: 36771148 PMCID: PMC9920634 DOI: 10.3390/molecules28031482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Regulatory T cells (Tregs) are a promising candidate cell therapy to treat autoimmune diseases and aid the longevity of transplanted solid organs. Despite increasing numbers of clinical trials using human Treg therapy, important questions pertaining to their in vivo fate, distribution, and function remain unanswered. Treg accumulation in relevant tissues was found to be crucial for Treg therapy efficacy, but existing blood-borne biomarkers are unlikely to accurately reflect the tissue state. Non-invasive Treg tracking by whole-body imaging is a promising alternative and can be achieved by direct radiolabelling of Tregs and following the radiolabelled cells with positron emission tomography (PET). Our goal was to evaluate the radiolabelling of polyclonal Tregs with 89Zr to permit their in vivo tracking by PET/CT for longer than one week with current preclinical PET instrumentation. We used [89Zr]Zr(oxinate)4 as the cell-labelling agent and achieved successful radiolabelling efficiency of human Tregs spanning 0.1-11.1 Bq 89Zr/Treg cell, which would be compatible with PET tracking beyond one week. We characterized the 89Zr-Tregs, assessing their phenotypes, and found that they were not tolerating these intracellular 89Zr amounts, as they failed to survive or expand in a 89Zr-dose-dependent manner. Even at 0.1 Bq 89Zr per Treg cell, while 89Zr-Tregs remained functional as determined by a five-day-long effector T cell suppression assay, they failed to expand beyond day 3 in vitro. Moreover, PET imaging revealed signs of 89Zr-Treg death after adoptive transfer in vivo. In summary, 89Zr labelling of Tregs at intracellular radioisotope amounts compatible with cell tracking over several weeks did not achieve the desired outcomes, as 89Zr-Tregs failed to expand and survive. Consequently, we conclude that indirect Treg labelling is likely to be the most effective alternative method to satisfy the requirements of this cell tracking scenario.
Collapse
Affiliation(s)
- Jacinta Jacob
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science, King’s College London, Guy’s Hospital, Tower Wing, 5th Floor, Great Maze Pond, London SE1 9RT, UK
| | - Alessia Volpe
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Campus, New Hunt’s House, 2nd Floor, Great Maze Pond, London SE1 1UL, UK
| | - Qi Peng
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science, King’s College London, Guy’s Hospital, Tower Wing, 5th Floor, Great Maze Pond, London SE1 9RT, UK
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Campus, New Hunt’s House, 2nd Floor, Great Maze Pond, London SE1 1UL, UK
| | - Robert I. Lechler
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science, King’s College London, Guy’s Hospital, Tower Wing, 5th Floor, Great Maze Pond, London SE1 9RT, UK
| | - Lesley A. Smyth
- School of Health, Sport and Bioscience, Stratford Campus, University of East London, London E15 4LZ, UK
| | - Giovanna Lombardi
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science, King’s College London, Guy’s Hospital, Tower Wing, 5th Floor, Great Maze Pond, London SE1 9RT, UK
| | - Gilbert O. Fruhwirth
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Campus, New Hunt’s House, 2nd Floor, Great Maze Pond, London SE1 1UL, UK
| |
Collapse
|
131
|
Atallah N, Beckett J, Issa F. Research Highlights. Transplantation 2023; 107:287-288. [PMID: 37779394 DOI: 10.1097/tp.0000000000004523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Nora Atallah
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
132
|
Amini L, Kaeda J, Fritsche E, Roemhild A, Kaiser D, Reinke P. Clinical adoptive regulatory T Cell therapy: State of the art, challenges, and prospective. Front Cell Dev Biol 2023; 10:1081644. [PMID: 36794233 PMCID: PMC9924129 DOI: 10.3389/fcell.2022.1081644] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/29/2022] [Indexed: 02/01/2023] Open
Abstract
Rejection of solid organ transplant and graft versus host disease (GvHD) continue to be challenging in post transplantation management. The introduction of calcineurin inhibitors dramatically improved recipients' short-term prognosis. However, long-term clinical outlook remains poor, moreover, the lifelong dependency on these toxic drugs leads to chronic deterioration of graft function, in particular the renal function, infections and de-novo malignancies. These observations led investigators to identify alternative therapeutic options to promote long-term graft survival, which could be used concomitantly, but preferably, replace pharmacologic immunosuppression as standard of care. Adoptive T cell (ATC) therapy has evolved as one of the most promising approaches in regenerative medicine in the recent years. A range of cell types with disparate immunoregulatory and regenerative properties are actively being investigated as potential therapeutic agents for specific transplant rejection, autoimmunity or injury-related indications. A significant body of data from preclinical models pointed to efficacy of cellular therapies. Significantly, early clinical trial observations have confirmed safety and tolerability, and yielded promising data in support of efficacy of the cellular therapeutics. The first class of these therapeutic agents commonly referred to as advanced therapy medicinal products have been approved and are now available for clinical use. Specifically, clinical trials have supported the utility of CD4+CD25+FOXP3+ regulatory T cells (Tregs) to minimize unwanted or overshooting immune responses and reduce the level of pharmacological immunosuppression in transplant recipients. Tregs are recognized as the principal orchestrators of maintaining peripheral tolerance, thereby blocking excessive immune responses and prevent autoimmunity. Here, we summarize rationale for the adoptive Treg therapy, challenges in manufacturing and clinical experiences with this novel living drug and outline future perspectives of its use in transplantation.
Collapse
Affiliation(s)
- Leila Amini
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany,Berlin Institute of Health—Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jaspal Kaeda
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Enrico Fritsche
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andy Roemhild
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel Kaiser
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Petra Reinke
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany,Berlin Institute of Health—Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany,*Correspondence: Petra Reinke,
| |
Collapse
|
133
|
Hennessy C, Deptula M, Hester J, Issa F. Barriers to Treg therapy in Europe: From production to regulation. Front Med (Lausanne) 2023; 10:1090721. [PMID: 36744143 PMCID: PMC9892909 DOI: 10.3389/fmed.2023.1090721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
There has been an increased interest in cell based therapies for a range of medical conditions in the last decade. This explosion in novel therapeutics research has led to the development of legislation specifically focused on cell and gene based therapies. In Europe, the European medicines agency (EMA) designates any medicines for human use which are based on genes, tissues, or cells as advanced therapy medicinal products or advanced therapy medicinal products (ATMPs). In this article we discuss the hurdles to widespread adoption of ATMPs in Europe, with a focus on regulatory T cells (Tregs). There are numerous barriers which must be overcome before mainstream adoption of Treg therapy becomes a reality. The source of the cells, whether to use autologous or allogenic cells, and the methods through which they are isolated and expanded, must all meet strict good manufacturing practice (GMP) standards to allow use of the products in humans. GMP compliance is costly, with the equipment and reagents providing a significant cost barrier and requiring specialized facilities and personnel. Conforming to the regulations set centrally by the EMA is difficult, and the different interpretations of the regulations across the various member states further complicates the regulatory approval process. The end products then require a complex and robust distribution network to ensure timely delivery of potentially life saving treatments to patients. In a European market whose logistics networks have been hammered by COVID and Brexit, ensuring rapid and reliable delivery systems is a more complex task than ever. In this article we will examine the impact of these barriers on the development and adoption of Tregs in Europe, and potential approaches which could facilitate more widespread use of Tregs, instead of its current concentration in a few very specialized centers.
Collapse
Affiliation(s)
- Conor Hennessy
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Milena Deptula
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
- Laboratory of Tissue Engineering and Regenerative Medicine, Division of Embryology, Medical University of Gdańsk, Gdańsk, Poland
| | - Joanna Hester
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Fadi Issa
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
134
|
Pilat N, Steiner R, Sprent J. Treg Therapy for the Induction of Immune Tolerance in Transplantation-Not Lost in Translation? Int J Mol Sci 2023; 24:ijms24021752. [PMID: 36675265 PMCID: PMC9861925 DOI: 10.3390/ijms24021752] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
The clinical success of solid organ transplantation is still limited by the insufficiency of immunosuppressive regimens to control chronic rejection and late graft loss. Moreover, serious side effects caused by chronic immunosuppressive treatment increase morbidity and mortality in transplant patients. Regulatory T cells (Tregs) have proven to be efficient in the induction of allograft tolerance and prolongation of graft survival in numerous preclinical models, and treatment has now moved to the clinics. The results of the first Treg-based clinical trials seem promising, proving the feasibility and safety of Treg therapy in clinical organ transplantation. However, many questions regarding Treg phenotype, optimum dosage, antigen-specificity, adjunct immunosuppressants and efficacy remain open. This review summarizes the results of the first Treg-based clinical trials for tolerance induction in solid organ transplantation and recapitulates what we have learnt so far and which questions need to be resolved before Treg therapy can become part of daily clinical practice. In addition, we discuss new strategies being developed for induction of donor-specific tolerance in solid organ transplantation with the clinical aims of prolonged graft survival and minimization of immunosuppression.
Collapse
Affiliation(s)
- Nina Pilat
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Center for Biomedical Research, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence: (N.P.); (J.S.); Tel.: +43-1-40400-52120 (N.P.)
| | - Romy Steiner
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Center for Biomedical Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Jonathan Sprent
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- St Vincent’s Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
- Correspondence: (N.P.); (J.S.); Tel.: +43-1-40400-52120 (N.P.)
| |
Collapse
|
135
|
Piñeiro GJ, Lazo-Rodriguez M, Ventura-Aguiar P, Ramirez-Bajo MJ, Banon-Maneus E, Lozano M, Cid J, Hierro-Garcia N, Cucchiari D, Revuelta I, Montagud-Marrahi E, Palou E, Bayés-Genís B, Campistol JM, Diekmann F, Rovira J. Extracorporeal Photopheresis Improves Graft Survival in a Full-Mismatch Rat Model of Kidney Transplantation. Transpl Int 2023; 36:10840. [PMID: 36713113 PMCID: PMC9876976 DOI: 10.3389/ti.2023.10840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023]
Abstract
Extracorporeal photopheresis (ECP) is an immunomodulatory therapy based on the infusion of autologous cellular products exposed to ultraviolet light (UV) in the presence of a photosensitizer. The study evaluates the ECP efficacy as induction therapy in a full-mismatch kidney transplant rat model. Dark Agouti to Lewis (DA-L) kidney transplant model has been established. ECP product was obtained from Lewis rat recipients after DA kidney graft transplantation (LewDA). Leukocytes of those LewDA rats were exposed to 8-methoxy psoralen, and illuminated with UV-A. The ECP doses assessed were 10 × 106 and 100 × 106 cells/time point. Lewis recipients received seven ECP infusions. DA-L model was characterized by the appearance of donor-specific antibodies (DSA) and kidney function deterioration from day three after kidney transplant. The dysfunction progressed rapidly until graft loss (6.1 ± 0.5 days). Tacrolimus at 0.25 mg/kg prolonged rat survival until 11.4 ± 0.7 days (p = 0.0004). In this context, the application of leukocytes from LewDA sensitized rats accelerated the rejection (8.7 ± 0.45, p = 0.0012), whereas ECP product at high dose extended kidney graft survival until 26.3 ± 7.3 days, reducing class I and II DSA in surviving rats. ECP treatment increases kidney graft survival in full-mismatch rat model of acute rejection and is a suitable immunomodulatory therapy to be explored in kidney transplantation.
Collapse
Affiliation(s)
- Gaston J. Piñeiro
- Department of Nephrology and Kidney Transplantation, Hospital Clinic de Barcelona, Barcelona, Spain,Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marta Lazo-Rodriguez
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Pedro Ventura-Aguiar
- Department of Nephrology and Kidney Transplantation, Hospital Clinic de Barcelona, Barcelona, Spain,Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Maria J. Ramirez-Bajo
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Elisenda Banon-Maneus
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Miquel Lozano
- Apheresis Unit, Department of Hemotherapy and Hemostasis, IDIBAPS, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Joan Cid
- Apheresis Unit, Department of Hemotherapy and Hemostasis, IDIBAPS, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Natalia Hierro-Garcia
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - David Cucchiari
- Department of Nephrology and Kidney Transplantation, Hospital Clinic de Barcelona, Barcelona, Spain,Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ignacio Revuelta
- Department of Nephrology and Kidney Transplantation, Hospital Clinic de Barcelona, Barcelona, Spain,Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Enrique Montagud-Marrahi
- Department of Nephrology and Kidney Transplantation, Hospital Clinic de Barcelona, Barcelona, Spain,Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Eduard Palou
- Department of Immunology, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Beatriu Bayés-Genís
- Department of Nephrology and Kidney Transplantation, Hospital Clinic de Barcelona, Barcelona, Spain,Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Josep M. Campistol
- Department of Nephrology and Kidney Transplantation, Hospital Clinic de Barcelona, Barcelona, Spain,Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Fritz Diekmann
- Department of Nephrology and Kidney Transplantation, Hospital Clinic de Barcelona, Barcelona, Spain,Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain,*Correspondence: Fritz Diekmann, ; Jordi Rovira,
| | - Jordi Rovira
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,*Correspondence: Fritz Diekmann, ; Jordi Rovira,
| |
Collapse
|
136
|
Bluestone JA, McKenzie BS, Beilke J, Ramsdell F. Opportunities for Treg cell therapy for the treatment of human disease. Front Immunol 2023; 14:1166135. [PMID: 37153574 PMCID: PMC10154599 DOI: 10.3389/fimmu.2023.1166135] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/22/2023] [Indexed: 05/09/2023] Open
Abstract
Regulatory T (Treg) cells are essential for maintaining peripheral tolerance, preventing autoimmunity, and limiting chronic inflammatory diseases. This small CD4+ T cell population can develop in the thymus and in the peripheral tissues of the immune system through the expression of an epigenetically stabilized transcription factor, FOXP3. Treg cells mediate their tolerogenic effects using multiple modes of action, including the production of inhibitory cytokines, cytokine starvation of T effector (e.g., IL-2), Teff suppression by metabolic disruption, and modulation of antigen-presenting cell maturation or function. These activities together result in the broad control of various immune cell subsets, leading to the suppression of cell activation/expansion and effector functions. Moreover, these cells can facilitate tissue repair to complement their suppressive effects. In recent years, there has been an effort to harness Treg cells as a new therapeutic approach to treat autoimmune and other immunological diseases and, importantly, to re-establish tolerance. Recent synthetic biological advances have enabled the cells to be genetically engineered to achieve tolerance and antigen-specific immune suppression by increasing their specific activity, stability, and efficacy. These cells are now being tested in clinical trials. In this review, we highlight both the advances and the challenges in this arena, focusing on the efforts to develop this new pillar of medicine to treat and cure a variety of diseases.
Collapse
|
137
|
Zhang D, Ye Y, Hu X. A non-invasive piTreg-related gene signature for spontaneous tolerance in renal transplantation. Gene X 2023; 848:146901. [DOI: 10.1016/j.gene.2022.146901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022] Open
|
138
|
Kaljanac M, Abken H. Do Treg Speed Up with CARs? Chimeric Antigen Receptor Treg Engineered to Induce Transplant Tolerance. Transplantation 2023; 107:74-85. [PMID: 36226849 PMCID: PMC9746345 DOI: 10.1097/tp.0000000000004316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 02/07/2023]
Abstract
Adoptive transfer of regulatory T cells (Treg) can induce transplant tolerance in preclinical models by suppressing alloantigen-directed inflammatory responses; clinical translation was so far hampered by the low abundance of Treg with allo-specificity in the peripheral blood. In this situation, ex vivo engineering of Treg with a T-cell receptor (TCR) or chimeric antigen receptor (CAR) provides a cell population with predefined specificity that can be amplified and administered to the patient. In contrast to TCR-engineered Treg, CAR Treg can be redirected toward a broad panel of targets in an HLA-unrestricted fashion' making these cells attractive to provide antigen-specific tolerance toward the transplanted organ. In preclinical models, CAR Treg accumulate and amplify at the targeted transplant, maintain their differentiated phenotype, and execute immune repression more vigorously than polyclonal Treg. With that, CAR Treg are providing hope in establishing allospecific, localized immune tolerance in the long term' and the first clinical trials administering CAR Treg for the treatment of transplant rejection are initiated. Here, we review the current platforms for developing and manufacturing alloantigen-specific CAR Treg and discuss the therapeutic potential and current hurdles in translating CAR Treg into clinical exploration.
Collapse
Affiliation(s)
- Marcell Kaljanac
- Division Genetic Immunotherapy, and Chair Genetic Immunotherapy, Leibniz Institute for Immunotherapy, University Regensburg, Regensburg, Germany
| | - Hinrich Abken
- Division Genetic Immunotherapy, and Chair Genetic Immunotherapy, Leibniz Institute for Immunotherapy, University Regensburg, Regensburg, Germany
| |
Collapse
|
139
|
Griffin MD, Perico N, Casiraghi F. Immune Modulatory Cell Therapy in Kidney Transplantation: Hints of a Durable Mechanism of Action. J Am Soc Nephrol 2023; 34:4-7. [PMID: 36719144 PMCID: PMC10101553 DOI: 10.1681/asn.0000000000000007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Matthew D. Griffin
- Regenerative Medicine Institute at CÚRAM SFI Centre for Research in Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Norberto Perico
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | | |
Collapse
|
140
|
O'Neil A, Brook M, Abdul-Wahab S, Hester J, Lombardi G, Issa F. A GMP Protocol for the Manufacture of Tregs for Clinical Application. Methods Mol Biol 2023; 2559:205-227. [PMID: 36180635 DOI: 10.1007/978-1-0716-2647-4_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Infusion of regulatory T cells is a promising therapeutic strategy in organ transplantation to modulate the immune system, prevent rejection, minimize the need for pharmaceutical immunosuppression, and improve long-term transplant outcomes. Here we describe a GMP-compliant method we have used for the manufacture of ex vivo expanded autologous regulatory T cells for use in clinical trials.
Collapse
Affiliation(s)
- Alice O'Neil
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Matthew Brook
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Seetha Abdul-Wahab
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Joanna Hester
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Giovanna Lombardi
- MRC Centre for Transplantation, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London, UK
| | - Fadi Issa
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
141
|
Wan S, Xu W, Xie B, Guan C, Song X. The potential of regulatory T cell-based therapies for alopecia areata. Front Immunol 2023; 14:1111547. [PMID: 37205097 PMCID: PMC10186346 DOI: 10.3389/fimmu.2023.1111547] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/07/2023] [Indexed: 05/21/2023] Open
Abstract
Cytotoxic T lymphocyte has been a concern for the etiopathogenesis of alopecia areata (AA), some recent evidence suggests that the regulatory T (Treg) cell deficiency is also a contributing factor. In the lesional scalp of AA, Treg cells residing in the follicles are impaired, leading to dysregulated local immunity and hair follicle (HF) regeneration disorders. New strategies are emerging to modulate Treg cells' number and function for autoimmune diseases. There is much interest to boost Treg cells in AA patients to suppress the abnormal autoimmunity of HF and stimulate hair regeneration. With few satisfactory therapeutic regimens available for AA, Treg cell-based therapies could be the way forward. Specifically, CAR-Treg cells and novel formulations of low-dose IL-2 are the alternatives.
Collapse
Affiliation(s)
- Sheng Wan
- Department of Dermatology, Hangzhou Third People’s Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wen Xu
- School of Medicine, Zhejiang University, Yuhangtang, Hangzhou, China
| | - Bo Xie
- Department of Dermatology, Hangzhou Third People’s Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cuiping Guan
- Department of Dermatology, Hangzhou Third People’s Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Xiuzu Song, ; Cuiping Guan,
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People’s Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Xiuzu Song, ; Cuiping Guan,
| |
Collapse
|
142
|
Morath C, Schaier M, Ibrahim E, Wang L, Kleist C, Opelz G, Süsal C, Ponath G, Aly M, Alvarez CM, Kälble F, Speer C, Benning L, Nusshag C, Pego da Silva L, Sommerer C, Hückelhoven-Krauss A, Czock D, Mehrabi A, Schwab C, Waldherr R, Schnitzler P, Merle U, Tran TH, Scherer S, Böhmig GA, Müller-Tidow C, Reiser J, Zeier M, Schmitt M, Terness P, Schmitt A, Daniel V. Induction of Long-Lasting Regulatory B Lymphocytes by Modified Immune Cells in Kidney Transplant Recipients. J Am Soc Nephrol 2023; 34:160-174. [PMID: 36137752 PMCID: PMC10101591 DOI: 10.1681/asn.2022020210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND We recently demonstrated that donor-derived modified immune cells (MICs)-PBMCs that acquire immunosuppressive properties after a brief treatment-induced specific immunosuppression against the allogeneic donor when administered before kidney transplantation. We found up to a 68-fold increase in CD19 + CD24 hi CD38 hi transitional B lymphocytes compared with transplanted controls. METHODS Ten patients from a phase 1 clinical trial who had received MIC infusions before kidney transplantation were followed to post-transplant day 1080. RESULTS Patients treated with MICs had a favorable clinical course, showing no donor-specific human leukocyte antigen antibodies or acute rejections. The four patients who had received the highest dose of MICs 7 days before surgery and were on reduced immunosuppressive therapy showed an absence of in vitro lymphocyte reactivity against stimulatory donor blood cells, whereas reactivity against third party cells was preserved. In these patients, numbers of transitional B lymphocytes were 75-fold and seven-fold higher than in 12 long-term survivors on minimal immunosuppression and four operationally tolerant patients, respectively ( P <0.001 for both). In addition, we found significantly higher numbers of other regulatory B lymphocyte subsets and a gene expression signature suggestive of operational tolerance in three of four patients. In MIC-treated patients, in vitro lymphocyte reactivity against donor blood cells was restored after B lymphocyte depletion, suggesting a direct pathophysiologic role of regulatory B lymphocytes in donor-specific unresponsiveness. CONCLUSIONS These results indicate that donor-specific immunosuppression after MIC infusion is long-lasting and associated with a striking increase in regulatory B lymphocytes. Donor-derived MICs appear to be an immunoregulatory cell population that when administered to recipients before transplantation, may exert a beneficial effect on kidney transplants. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER MIC Cell Therapy for Individualized Immunosuppression in Living Donor Kidney Transplant Recipients (TOL-1), NCT02560220.
Collapse
Affiliation(s)
- Christian Morath
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
- TolerogenixX GmbH, Heidelberg, Germany
| | - Matthias Schaier
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
- TolerogenixX GmbH, Heidelberg, Germany
| | - Eman Ibrahim
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Pathology Department, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Lei Wang
- TolerogenixX GmbH, Heidelberg, Germany
- Department of Hematology, Oncology, and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Kleist
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Gerhard Opelz
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Caner Süsal
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Transplant Immunology Research Center of Excellence, Koç University, Istanbul, Turkey
| | - Gerald Ponath
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
- TolerogenixX GmbH, Heidelberg, Germany
| | - Mostafa Aly
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Nephrology Unit, Internal Medicine Department, Assiut University, Assiut, Egypt
| | - Cristiam M. Alvarez
- Cellular Immunology and Immunogenetics Group, Faculty of Medicine, University of Antioquia, Medellin, Colombia
| | - Florian Kälble
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Claudius Speer
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Louise Benning
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Nusshag
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Luiza Pego da Silva
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Claudia Sommerer
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Angela Hückelhoven-Krauss
- Department of Hematology, Oncology, and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - David Czock
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Arianeb Mehrabi
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Constantin Schwab
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Rüdiger Waldherr
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Paul Schnitzler
- Center for Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Uta Merle
- Department of Gastroenterology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thuong Hien Tran
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sabine Scherer
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Georg A. Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Carsten Müller-Tidow
- Department of Hematology, Oncology, and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jochen Reiser
- Department of Medicine, Rush University, Chicago, Illinois
| | - Martin Zeier
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Schmitt
- Department of Hematology, Oncology, and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Peter Terness
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Anita Schmitt
- TolerogenixX GmbH, Heidelberg, Germany
- Department of Hematology, Oncology, and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Volker Daniel
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
143
|
Muckenhuber M, Mucha J, Mengrelis K, How C, Reindl-Schwaighofer R, Heinzel A, Kainz V, Worel N, Berlakovich G, Edinger M, Oberbauer R, Wekerle T. Optimum timing of antithymocyte globulin in relation to adoptive regulatory T cell therapy. Am J Transplant 2023; 23:84-92. [PMID: 36695625 DOI: 10.1016/j.ajt.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 01/13/2023]
Abstract
Reducing the recipient's T cell repertoire is considered to increase the efficacy of regulatory T cell (Treg) therapy. This necessitates timing the administration of antithymocyte globulin (ATG) early enough before adoptive cell therapy (ACT) so that residual serum ATG does not deplete the transferred Tregs. The optimum time point in this regard has not been defined. Herein, we report the effects of residual serum ATG on the viability of an in vitro expanded Treg cell product used in a clinical trial of ACT in kidney transplant recipients (NCT03867617). Patients received ATG monotherapy (either 6 or 3 mg/kg body weight) without concomitant immunosuppression 2 to 3 weeks before transplantation and Treg transfer. An anti-ATG immunoglobulin G (IgG) immune response was elicited in all patients within 14 days. In turn, the elimination of total and Treg-specific ATG was accelerated substantially over control patients receiving the same dose of ATG with concomitant immunosuppression. However, ATG serum concentrations of <1 μg/mL, which had previously been reported as subtherapeutic threshold, triggered apoptosis of Tregs in vitro. Therefore, ATG levels need to decline to lower levels than those previously thought for efficacious Treg transfer. In 5 of 6 patients, such low levels of serum ATG considered safe for Treg transfer were reached within 2 weeks after ATG administration.
Collapse
Affiliation(s)
- Moritz Muckenhuber
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Jasmin Mucha
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Konstantinos Mengrelis
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Christopher How
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Roman Reindl-Schwaighofer
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Andreas Heinzel
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Verena Kainz
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Nina Worel
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Gabriela Berlakovich
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Matthias Edinger
- Leibniz Institute of Immunotherapy, Regensburg, Germany; Department of Internal Medicine 3 (Hematology and Oncology), University Hospital Regensburg, Regensburg, Germany
| | - Rainer Oberbauer
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas Wekerle
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
144
|
Regulatory T Cells: Liquid and Living Precision Medicine for the Future of VCA. Transplantation 2023; 107:86-97. [PMID: 36210500 DOI: 10.1097/tp.0000000000004342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transplant rejection remains a challenge especially in the field of vascularized composite allotransplantation (VCA). To blunt the alloreactive immune response' stable levels of maintenance immunosupression are required. However' the need for lifelong immunosuppression poses the risk of severe side effects, such as increased risk of infection, metabolic complications, and malignancies. To balance therapeutic efficacy and medication side effects, immunotolerance promoting immune cells (especially regulatory T cells [Treg]) have become of great scientific interest. This approach leverages immune system mechanisms that usually ensure immunotolerance toward self-antigens and prevent autoimmunopathies. Treg can be bioengineered to express a chimeric antigen receptor or a T-cell receptor. Such bioengineered Treg can target specific antigens and thereby reduce unwanted off-target effects. Treg have demonstrated beneficial clinical effects in solid organ transplantation and promising in vivo data in VCAs. In this review, we summarize the functional, phenotypic, and immunometabolic characteristics of Treg and outline recent advancements and current developments regarding Treg in the field of VCA and solid organ transplantation.
Collapse
|
145
|
Kremer J, Henschel P, Simon D, Riet T, Falk C, Hardtke-Wolenski M, Wedemeyer H, Noyan F, Jaeckel E. Membrane-bound IL-2 improves the expansion, survival, and phenotype of CAR Tregs and confers resistance to calcineurin inhibitors. Front Immunol 2022; 13:1005582. [PMID: 36618378 PMCID: PMC9816406 DOI: 10.3389/fimmu.2022.1005582] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Background Regulatory T cells (Tregs) play an important role in the maintenance of immune homeostasis and the establishment of immune tolerance. Since Tregs do not secrete endogenous IL-2, they are especially dependent on external IL-2. IL-2 deficiency leads to lower Treg numbers, instability of the Treg phenotype and loss of immune regulation. After organ transplantation, patients are treated with calcineurin inhibitors (CNIs), which further limits available IL-2. Application of low-dose IL-2 expands Tregs but also activates NK and CD8+ T cells. It was recently shown that graft-specific Tregs recognizing mismatched MHC I molecules via a chimeric antigen receptor were far more potent than polyclonal Tregs in the regulation of immune responses after solid organ transplantation in a humanized mouse model. Methods Therefore, our aim was to enhance the function and stability of transferred CAR-Tregs via expression of membrane-associated IL-2 (mbIL-2). Results mbIL-2 promoted higher survival, phenotypic stability, and function among CAR-Tregs than observed in clinical trials. The cells were also more stable under inflammatory conditions. In a preclinical humanized mouse model, we demonstrated that mbIL-2 CAR Tregs survive better in the Treg niche than control CAR Tregs and are even resistant to CNI therapy without affecting other Tregs, thus acting mainly in cis. Discussion The functional and phenotypic improvements observed after membrane-attached IL-2 expression in CAR-Tregs will be important step for enhancing CAR-Treg therapies currently being tested in clinical trials for use after kidney and liver transplantation as well as in autoimmune diseases.
Collapse
Affiliation(s)
- Jakob Kremer
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Pierre Henschel
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Daniel Simon
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Tobias Riet
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
- Department I of Internal Medicine, Tumor Genetics, University Hospital of Cologne and Center for Molecular Medicine, Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Christine Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Matthias Hardtke-Wolenski
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
- Institute of Medical Microbiology, Essen University Hospital, University Duisburg-Essen, Essen, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Fatih Noyan
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Elmar Jaeckel
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
- Department of liver transplantation, Multi Organ Transplant Program, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
146
|
Chandran S, Tang Q. Impact of interleukin-6 on T cells in kidney transplant recipients. Am J Transplant 2022; 22 Suppl 4:18-27. [PMID: 36453710 DOI: 10.1111/ajt.17209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/23/2022] [Indexed: 12/02/2022]
Abstract
Interleukin-6 (IL-6), a multifunctional proinflammatory cytokine, plays a key role in T cell activation, survival, and differentiation. Acting as a switch that induces the differentiation of naïve T cells into Th17 cells and inhibits their development into regulatory T cells, IL-6 promotes rejection and abrogates tolerance. Therapies that target IL-6 signaling include antibodies to IL-6 and the IL-6 receptor and inhibitors of janus kinases; several of these therapeutics have demonstrated robust clinical efficacy in autoimmune and inflammatory diseases. Clinical trials of IL-6 inhibition in kidney transplantation have focused primarily on its effects on B cells, plasma cells, and HLA antibodies. In this review, we summarize the impact of IL-6 on T cells in experimental models of transplant and describe the effects of IL-6 inhibition on the T cell compartment in kidney transplant recipients.
Collapse
Affiliation(s)
- Sindhu Chandran
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Qizhi Tang
- Department of Surgery, Diabetes Center, Gladstone-UCSF Institute of Genome Immunology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
147
|
Macrophage immunotherapy: overcoming impediments to realize promise. Trends Immunol 2022; 43:959-968. [PMID: 36441083 DOI: 10.1016/j.it.2022.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/27/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
As an essential component of immunity, macrophages have key roles in mammalian host defense, tissue homeostasis, and repair, as well as in disease pathogenesis and pathophysiology. A source of fascination and extensive research, in this Opinion we challenge the utility of the M1-M2 paradigm, and discuss the importance of accurate characterization of human macrophages. We comment on the application of single cell analytics to define macrophage subpopulations and how this could advance therapeutic options. We argue that human macrophage cell therapy can be used to alleviate many diseases, and offer a viewpoint on the knowledge gaps that must be filled to render such a therapeutic approach a reality and, ideally, a common future practice in precision medicine.
Collapse
|
148
|
Hirai T, Lin PY, Ramos TL, Simonetta F, Su LL, Picton LK, Baker J, Lohmeyer JK, Garcia KC, Negrin RS. IL-2 receptor engineering enhances regulatory T cell function suppressed by calcineurin inhibitor. Am J Transplant 2022; 22:3061-3068. [PMID: 36031344 PMCID: PMC10184573 DOI: 10.1111/ajt.17181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/27/2022] [Accepted: 08/15/2022] [Indexed: 01/25/2023]
Abstract
Clinical trials utilizing regulatory T cell (Treg) therapy in organ transplantation have shown promising results, however, the choice of a standard immunosuppressive regimen is still controversial. Calcineurin inhibitors (CNIs) are one of the most common immunosuppressants for organ transplantation, although they may negatively affect Tregs by inhibiting IL-2 production by conventional T cells. As a strategy to replace IL-2 signaling selectively in Tregs, we have introduced an engineered orthogonal IL-2 (ortho IL-2) cytokine/cytokine receptor (R) pair that specifically binds with each other but does not bind with their wild-type counterparts. Murine Tregs were isolated from recipients and retrovirally transduced with ortho IL-2Rβ during ex vivo expansion. Transduced Tregs (ortho Tregs) were transferred into recipient mice in a mixed hematopoietic chimerism model with tacrolimus administration. Ortho IL-2 treatment significantly increased the ortho IL-2Rβ(+) Treg population in the presence of tacrolimus without stimulating other T cell subsets. All the mice treated with tacrolimus plus ortho IL-2 achieved heart allograft tolerance, even after tacrolimus cessation, whereas those receiving tacrolimus treatment alone did not. These data demonstrate that Treg therapy can be adopted into a CNI-based regimen by utilizing cytokine receptor engineering.
Collapse
Affiliation(s)
- Toshihito Hirai
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University, Stanford, California, USA
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Po-Yu Lin
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University, Stanford, California, USA
| | - Teresa L. Ramos
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University, Stanford, California, USA
| | - Federico Simonetta
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University, Stanford, California, USA
| | - Leon L. Su
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Lora K. Picton
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Jeanette Baker
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University, Stanford, California, USA
| | - Juliane K. Lohmeyer
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University, Stanford, California, USA
| | - K. Christopher Garcia
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Robert S. Negrin
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
149
|
Petrosyan A, Martins PN, Solez K, Uygun BE, Gorantla VS, Orlando G. Regenerative medicine applications: An overview of clinical trials. Front Bioeng Biotechnol 2022; 10:942750. [PMID: 36507264 PMCID: PMC9732032 DOI: 10.3389/fbioe.2022.942750] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
Insights into the use of cellular therapeutics, extracellular vesicles (EVs), and tissue engineering strategies for regenerative medicine applications are continually emerging with a focus on personalized, patient-specific treatments. Multiple pre-clinical and clinical trials have demonstrated the strong potential of cellular therapies, such as stem cells, immune cells, and EVs, to modulate inflammatory immune responses and promote neoangiogenic regeneration in diseased organs, damaged grafts, and inflammatory diseases, including COVID-19. Over 5,000 registered clinical trials on ClinicalTrials.gov involve stem cell therapies across various organs such as lung, kidney, heart, and liver, among other applications. A vast majority of stem cell clinical trials have been focused on these therapies' safety and effectiveness. Advances in our understanding of stem cell heterogeneity, dosage specificity, and ex vivo manipulation of stem cell activity have shed light on the potential benefits of cellular therapies and supported expansion into clinical indications such as optimizing organ preservation before transplantation. Standardization of manufacturing protocols of tissue-engineered grafts is a critical first step towards the ultimate goal of whole organ engineering. Although various challenges and uncertainties are present in applying cellular and tissue engineering therapies, these fields' prospect remains promising for customized patient-specific treatments. Here we will review novel regenerative medicine applications involving cellular therapies, EVs, and tissue-engineered constructs currently investigated in the clinic to mitigate diseases and possible use of cellular therapeutics for solid organ transplantation. We will discuss how these strategies may help advance the therapeutic potential of regenerative and transplant medicine.
Collapse
Affiliation(s)
- Astgik Petrosyan
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Division of Urology, Children’s Hospital Los Angeles, Saban Research Institute, Los Angeles, CA, United States
| | - Paulo N. Martins
- Department of Surgery, Transplant Division, UMass Memorial Medical Center, University of Massachusetts, Worcester, MA, United States
| | - Kim Solez
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Basak E. Uygun
- Massachusetts General Hospital, Shriners Hospitals for Children in Boston and Harvard Medical School, Boston, MA, United States
| | - Vijay S. Gorantla
- Wake Forest Baptist Medical Center and Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| | - Giuseppe Orlando
- Wake Forest Baptist Medical Center and Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| |
Collapse
|
150
|
Rovira J, Ramirez-Bajo MJ, Bañón-Maneus E, Hierro-Garcia N, Lazo-Rodriguez M, Piñeiro GJ, Montagud-Marrahi E, Cucchiari D, Revuelta I, Cuatrecasas M, Campistol JM, Ricart MJ, Diekmann F, Garcia-Criado A, Ventura-Aguiar P. Immune Profiling of Peripheral Blood Mononuclear Cells at Pancreas Acute Rejection Episodes in Kidney-Pancreas Transplant Recipients. Transpl Int 2022; 35:10639. [PMID: 36466442 PMCID: PMC9715609 DOI: 10.3389/ti.2022.10639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022]
Abstract
Profiling of circulating immune cells provides valuable insight to the pathophysiology of acute rejection in organ transplantation. Herein we characterized the peripheral blood mononuclear cells in simultaneous kidney-pancreas transplant recipients. We conducted a retrospective analysis in a biopsy-matched cohort (n = 67) and compared patients with biopsy proven acute rejection (BPAR; 41%) to those without rejection (No-AR). We observed that CD3+ T cells, both CD8+ and CD4+, as well as CD19+ B cells were increased in patients with BPAR, particularly in biopsies performed in the early post-transplant period (<3 months). During this period immune subsets presented a good discriminative ability (CD4+ AUC 0.79; CD8+ AUC 0.80; B cells AUC 0.86; p < 0.05) and outperformed lipase (AUC 0.62; p = 0.12) for the diagnosis of acute rejection. We further evaluated whether this could be explained by differences in frequencies prior to transplantation. Patients presenting with early post-transplant rejection (<3 months) had a significant increase in T-cell frequencies pre-transplant, both CD4+ T cells and CD8+ T cells (p < 0.01), which were associated with a significant inferior rejection-free graft survival. T cell frequencies in peripheral blood correlated with pancreas acute rejection episodes, and variations prior to transplantation were associated with pancreas early acute rejection.
Collapse
Affiliation(s)
- Jordi Rovira
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Maria Jose Ramirez-Bajo
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Elisenda Bañón-Maneus
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Natalia Hierro-Garcia
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Marta Lazo-Rodriguez
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Gaston J. Piñeiro
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Renal Transplant Unit, Nephrology and Kidney Transplant Department, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Enrique Montagud-Marrahi
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Renal Transplant Unit, Nephrology and Kidney Transplant Department, Hospital Clinic de Barcelona, Barcelona, Spain
| | - David Cucchiari
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Renal Transplant Unit, Nephrology and Kidney Transplant Department, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Ignacio Revuelta
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Red de Investigación Renal (REDinREN), Madrid, Spain,Renal Transplant Unit, Nephrology and Kidney Transplant Department, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Miriam Cuatrecasas
- Pathology Department, Center for Biomedical Diagnosis, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Josep M. Campistol
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Renal Transplant Unit, Nephrology and Kidney Transplant Department, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Maria Jose Ricart
- Renal Transplant Unit, Nephrology and Kidney Transplant Department, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Fritz Diekmann
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Red de Investigación Renal (REDinREN), Madrid, Spain,Renal Transplant Unit, Nephrology and Kidney Transplant Department, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Angeles Garcia-Criado
- Radiology Department, Center for Imaging Diagnosis, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Pedro Ventura-Aguiar
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Renal Transplant Unit, Nephrology and Kidney Transplant Department, Hospital Clinic de Barcelona, Barcelona, Spain,*Correspondence: Pedro Ventura-Aguiar,
| |
Collapse
|