101
|
R
eduction of
GAPDH
in lenses of
P
arkinson's disease patients:
A
possible new biomarker. Mov Disord 2016; 32:459-462. [DOI: 10.1002/mds.26863] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/07/2016] [Accepted: 10/10/2016] [Indexed: 01/02/2023] Open
|
102
|
Liebel S, Regina Grötzner S, Dietrich Moura Costa D, Antônio Ferreira Randi M, Alberto de Oliveira Ribeiro C, Filipak Neto F. Cylindrospermopsin effects on protein profile of HepG2 cells. Toxicol Mech Methods 2016; 26:554-563. [PMID: 27494769 DOI: 10.1080/15376516.2016.1216209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Human hepatoma cells (HepG2) were exposed to purified cylindrospermopsin (CYN), a potent toxicant for eukaryotic cells produced by several cyanobacteria. Exposure to 10 μg l-1 of CYN for 24 h resulted in alteration of expression of 48 proteins, from which 26 were identified through mass spectrometry. Exposure to 100 μg l-1 of CYN for 24 h affected nuclear area and actin filaments intensity, which can be associated with cell proliferation and toxicity. The proteins are implicated in different biological processes: protein folding, xenobiotic efflux, antioxidant defense, energy metabolism and cell anabolism, cell signaling, tumorigenic potential, and cytoskeleton structure. Protein profile indicates that CYN exposure may lead to alteration of glucose metabolism that can be associated with the supply of useful energy to cells respond to chemical stress and proliferate. Increase of G protein-coupled receptors (GPCRs), heterogeneous nuclear ribonucleoproteins (hnRNP), and reactive oxygen species (ROS) levels observed in HepG2 cells can associate with cell proliferation and resistance. Increase of MRP3 and glutathione peroxidase can protect cells against some chemicals and ROS. CYN exposure also led to alteration of the expression of cytoskeleton proteins, which may be associated with cell proliferation and toxicity.
Collapse
Affiliation(s)
- Samuel Liebel
- a Departamento De Biologia Celular , Universidade Federal Do Paraná , Curitiba , Brazil
| | - Sonia Regina Grötzner
- a Departamento De Biologia Celular , Universidade Federal Do Paraná , Curitiba , Brazil
| | | | | | | | | |
Collapse
|
103
|
Meira-Strejevitch CS, Pereira-Chioccola VL, Maia MM, Carnietto de Hipólito DD, Wang HTL, Motoie G, de Souza Gomes AH, Kanamura CT, Martines RB, de Mattos CCB, Frederico FB, de Mattos LC, de Mattos CCB, Frederico FB, Siqueira RC, Previato M, Barbosa AP, Murata FHA. WITHDRAWN: Selection of reference genes in five types of human tissues for normalization of gene expression studies in infectious diseases. Gene 2016:S0378-1119(16)30816-2. [PMID: 27743995 DOI: 10.1016/j.gene.2016.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 10/09/2016] [Indexed: 11/23/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
| | | | - Marta Marques Maia
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Sao Paulo Brazil
| | | | - Hui-Tzu Lin Wang
- Laboratório de Investigação Molecular em Cardiologia, Instituto Dante Pazzanese de Cardiologia, Sao Paulo Brazil
| | - Gabriela Motoie
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Sao Paulo Brazil
| | | | | | | | - Cinara Cássia Brandão de Mattos
- Laboratório de Imunogenética, Departamento de Biologia Molecular, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
| | - Fábio Batista Frederico
- Ambulatório de Oftalmologia, Fundação Faculdade Regional de Medicina-Hospital de Base, São José do Rio Preto, Brazil
| | - Luiz Carlos de Mattos
- Laboratório de Imunogenética, Departamento de Biologia Molecular, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
| | - Cinara Cássia Brandão de Mattos
- Laboratório de Imunogenética, Departamento de Biologia Molecular, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
| | - Fábio Batista Frederico
- Ambulatório de Oftalmologia, Fundação Faculdade Regional de Medicina-Hospital de Base, São José do Rio Preto, Brazil
| | - Rubens Camargo Siqueira
- Laboratório de Imunogenética, Departamento de Biologia Molecular, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
| | - Mariana Previato
- Laboratório de Imunogenética, Departamento de Biologia Molecular, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
| | - Amanda Pires Barbosa
- Ambulatório de Oftalmologia, Fundação Faculdade Regional de Medicina-Hospital de Base, São José do Rio Preto, Brazil
| | - Fernando Henrique Antunes Murata
- Laboratório de Imunogenética, Departamento de Biologia Molecular, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
| |
Collapse
|
104
|
Mih N, Brunk E, Bordbar A, Palsson BO. A Multi-scale Computational Platform to Mechanistically Assess the Effect of Genetic Variation on Drug Responses in Human Erythrocyte Metabolism. PLoS Comput Biol 2016; 12:e1005039. [PMID: 27467583 PMCID: PMC4965186 DOI: 10.1371/journal.pcbi.1005039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/27/2016] [Indexed: 12/31/2022] Open
Abstract
Progress in systems medicine brings promise to addressing patient heterogeneity and individualized therapies. Recently, genome-scale models of metabolism have been shown to provide insight into the mechanistic link between drug therapies and systems-level off-target effects while being expanded to explicitly include the three-dimensional structure of proteins. The integration of these molecular-level details, such as the physical, structural, and dynamical properties of proteins, notably expands the computational description of biochemical network-level properties and the possibility of understanding and predicting whole cell phenotypes. In this study, we present a multi-scale modeling framework that describes biological processes which range in scale from atomistic details to an entire metabolic network. Using this approach, we can understand how genetic variation, which impacts the structure and reactivity of a protein, influences both native and drug-induced metabolic states. As a proof-of-concept, we study three enzymes (catechol-O-methyltransferase, glucose-6-phosphate dehydrogenase, and glyceraldehyde-3-phosphate dehydrogenase) and their respective genetic variants which have clinically relevant associations. Using all-atom molecular dynamic simulations enables the sampling of long timescale conformational dynamics of the proteins (and their mutant variants) in complex with their respective native metabolites or drug molecules. We find that changes in a protein's structure due to a mutation influences protein binding affinity to metabolites and/or drug molecules, and inflicts large-scale changes in metabolism.
Collapse
Affiliation(s)
- Nathan Mih
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, California, United States of America
| | - Elizabeth Brunk
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
- * E-mail: (EB); (BOP)
| | - Aarash Bordbar
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
- Department of Pediatrics, University of California, San Diego, La Jolla, California, United States of America
- * E-mail: (EB); (BOP)
| |
Collapse
|
105
|
Srivastava S. Emerging therapeutic roles for NAD(+) metabolism in mitochondrial and age-related disorders. Clin Transl Med 2016; 5:25. [PMID: 27465020 PMCID: PMC4963347 DOI: 10.1186/s40169-016-0104-7] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/26/2016] [Indexed: 12/12/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a central metabolic cofactor in eukaryotic cells that plays a critical role in regulating cellular metabolism and energy homeostasis. NAD+ in its reduced form (i.e. NADH) serves as the primary electron donor in mitochondrial respiratory chain, which involves adenosine triphosphate production by oxidative phosphorylation. The NAD+/NADH ratio also regulates the activity of various metabolic pathway enzymes such as those involved in glycolysis, Kreb’s cycle, and fatty acid oxidation. Intracellular NAD+ is synthesized de novo from l-tryptophan, although its main source of synthesis is through salvage pathways from dietary niacin as precursors. NAD+ is utilized by various proteins including sirtuins, poly ADP-ribose polymerases (PARPs) and cyclic ADP-ribose synthases. The NAD+ pool is thus set by a critical balance between NAD+ biosynthetic and NAD+ consuming pathways. Raising cellular NAD+ content by inducing its biosynthesis or inhibiting the activity of PARP and cADP-ribose synthases via genetic or pharmacological means lead to sirtuins activation. Sirtuins modulate distinct metabolic, energetic and stress response pathways, and through their activation, NAD+ directly links the cellular redox state with signaling and transcriptional events. NAD+ levels decline with mitochondrial dysfunction and reduced NAD+/NADH ratio is implicated in mitochondrial disorders, various age-related pathologies as well as during aging. Here, I will provide an overview of the current knowledge on NAD+ metabolism including its biosynthesis, utilization, compartmentalization and role in the regulation of metabolic homoeostasis. I will further discuss how augmenting intracellular NAD+ content increases oxidative metabolism to prevent bioenergetic and functional decline in multiple models of mitochondrial diseases and age-related disorders, and how this knowledge could be translated to the clinic for human relevance.
Collapse
Affiliation(s)
- Sarika Srivastava
- Virginia Tech Carilion Research Institute, 2 Riverside Circle, Roanoke, VA, 24016, USA.
| |
Collapse
|
106
|
A novel algorithm for detecting multiple covariance and clustering of biological sequences. Sci Rep 2016; 6:30425. [PMID: 27451921 PMCID: PMC4958985 DOI: 10.1038/srep30425] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 07/05/2016] [Indexed: 12/14/2022] Open
Abstract
Single genetic mutations are always followed by a set of compensatory mutations. Thus, multiple changes commonly occur in biological sequences and play crucial roles in maintaining conformational and functional stability. Although many methods are available to detect single mutations or covariant pairs, detecting non-synchronous multiple changes at different sites in sequences remains challenging. Here, we develop a novel algorithm, named Fastcov, to identify multiple correlated changes in biological sequences using an independent pair model followed by a tandem model of site-residue elements based on inter-restriction thinking. Fastcov performed exceptionally well at harvesting co-pairs and detecting multiple covariant patterns. By 10-fold cross-validation using datasets of different scales, the characteristic patterns successfully classified the sequences into target groups with an accuracy of greater than 98%. Moreover, we demonstrated that the multiple covariant patterns represent co-evolutionary modes corresponding to the phylogenetic tree, and provide a new understanding of protein structural stability. In contrast to other methods, Fastcov provides not only a reliable and effective approach to identify covariant pairs but also more powerful functions, including multiple covariance detection and sequence classification, that are most useful for studying the point and compensatory mutations caused by natural selection, drug induction, environmental pressure, etc.
Collapse
|
107
|
Oxidative modifications of glyceraldehyde 3-phosphate dehydrogenase regulate metabolic reprogramming of stored red blood cells. Blood 2016; 128:e32-42. [PMID: 27405778 DOI: 10.1182/blood-2016-05-714816] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/08/2016] [Indexed: 02/07/2023] Open
Abstract
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) plays a key regulatory function in glucose oxidation by mediating fluxes through glycolysis or the pentose phosphate pathway (PPP) in an oxidative stress-dependent fashion. Previous studies documented metabolic reprogramming in stored red blood cells (RBCs) and oxidation of GAPDH at functional residues upon exposure to pro-oxidants diamide and H2O2 Here we hypothesize that routine storage of erythrocyte concentrates promotes metabolic modulation of stored RBCs by targeting functional thiol residues of GAPDH. Progressive increases in PPP/glycolysis ratios were determined via metabolic flux analysis after spiking (13)C1,2,3-glucose in erythrocyte concentrates stored in Additive Solution-3 under blood bank conditions for up to 42 days. Proteomics analyses revealed a storage-dependent oxidation of GAPDH at functional Cys152, 156, 247, and His179. Activity loss by oxidation occurred with increasing storage duration and was progressively irreversible. Irreversibly oxidized GAPDH accumulated in stored erythrocyte membranes and supernatants through storage day 42. By combining state-of-the-art ultra-high-pressure liquid chromatography-mass spectrometry metabolic flux analysis with redox and switch-tag proteomics, we identify for the first time ex vivo functionally relevant reversible and irreversible (sulfinic acid; Cys to dehydroalanine) oxidations of GAPDH without exogenous supplementation of excess pro-oxidant compounds in clinically relevant blood products. Oxidative and metabolic lesions, exacerbated by storage under hyperoxic conditions, were ameliorated by hypoxic storage. Storage-dependent reversible oxidation of GAPDH represents a mechanistic adaptation in stored erythrocytes to promote PPP activation and generate reducing equivalents. Removal of irreversibly oxidized, functionally compromised GAPDH identifies enhanced vesiculation as a self-protective mechanism in ex vivo aging erythrocytes.
Collapse
|
108
|
Chaturvedi S, Seo JK, Rao A. Functionality of host proteins in Cucumber mosaic virus replication: GAPDH is obligatory to promote interaction between replication-associated proteins. Virology 2016; 494:47-55. [DOI: 10.1016/j.virol.2016.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 12/11/2022]
|
109
|
Diagonal two-dimensional electrophoresis (D-2DE): a new approach to study the effect of osmotic stress induced by polyethylene glycol in durum wheat (Triticum durum Desf.). Mol Biol Rep 2016; 43:897-909. [PMID: 27317377 DOI: 10.1007/s11033-016-4028-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 06/10/2016] [Indexed: 12/23/2022]
Abstract
Acclimatization to stress is associated with profound changes in proteome composition. The use of plant cell and tissue culture offers a means to investigate the physiological and biochemical processes involved in the adaptation to osmotic stress. We employed a new proteomic approach to further understand the response of calli to dehydration induced by polyethylene glycol (PEG6000). Calli of three durum wheat genotypes Djenah Khetifa, Oued Zenati and Waha were treated with two concentrations of polyethylene glycol to mimic osmotic stress. Changes in protein relative abundance were analyzed using a new electrophoretic approach named diagonal two-dimensional electrophoresis (D-2DE), combined with mass spectrometry. Total proteins were extracted from 30-day-old calli from three durum wheat genotypes that showed contrasting levels of drought stress tolerance in the field. The combination of one-dimensional electrophoresis and D-2DE gave a specific imprint of the protein extracts under osmotic stress, as well as characterizing and identifying individual target proteins. Of the variously expressed proteins, three were selected (globulin, GAPDH and peroxidase) and further analyzed using qRT-PCR at the transcriptome level in order to compare the results with the proteomic data. Western blot analysis was used to further validate the differences in relative abundance pattern. The proteins identified through this technique provide new insights as to how calli respond to osmotic stress. Our method of study provides an original and relevant approach of analyzing the osmotic-responsive mechanisms at the cellular level of durum wheat with agronomic perspectives.
Collapse
|
110
|
Love DT, Barrett TJ, White MY, Cordwell SJ, Davies MJ, Hawkins CL. Cellular targets of the myeloperoxidase-derived oxidant hypothiocyanous acid (HOSCN) and its role in the inhibition of glycolysis in macrophages. Free Radic Biol Med 2016; 94:88-98. [PMID: 26898502 DOI: 10.1016/j.freeradbiomed.2016.02.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/12/2016] [Accepted: 02/15/2016] [Indexed: 12/20/2022]
Abstract
Myeloperoxidase (MPO) released at sites of inflammation catalyzes the formation of the oxidants hypochlorous acid (HOCl) and hypothiocyanous acid (HOSCN) from H2O2 and halide and pseudo-halide ions. HOCl, a major oxidant produced under physiological conditions reacts rapidly with many biological molecules, and is strongly linked with tissue damage during inflammatory disease. The role of HOSCN in disease is less clear, though it can initiate cellular damage by pathways involving the selective oxidation of thiol-containing proteins. Utilizing a thiol-specific proteomic approach, we explored the cellular targets of HOSCN in macrophages (J774A.1). We report that multiple thiol-containing proteins involved in metabolism and glycolysis; fructose bisphosphate aldolase, triosephosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and creatine kinase, together with a number of chaperone, antioxidant and structural proteins, were modified in a reversible manner in macrophages treated with HOSCN. The modification of the metabolic enzymes was associated with a decrease in basal glycolysis, glycolytic reserve, glycolytic capacity and lactate release, which was only partly reversible on further incubation in the absence of HOSCN. Inhibition of glycolysis preceded cell death and was seen in cells exposed to low concentrations (≤25µM) of HOSCN. The ability of HOSCN to inhibit glycolysis and perturb energy production is likely to contribute to the cell death seen in macrophages on further incubation after the initial treatment period, which may be relevant for the propagation of inflammatory disease in smokers, who have elevated plasma levels of the HOSCN precursor, thiocyanate.
Collapse
Affiliation(s)
- Dominic T Love
- The Heart Research Institute, 7 Eliza St., Newtown, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Tessa J Barrett
- The Heart Research Institute, 7 Eliza St., Newtown, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Melanie Y White
- School of Molecular Bioscience, School of Medical Sciences, and Charles Perkins Centre, University of Sydney, 2006, Australia
| | - Stuart J Cordwell
- School of Molecular Bioscience, School of Medical Sciences, and Charles Perkins Centre, University of Sydney, 2006, Australia
| | - Michael J Davies
- The Heart Research Institute, 7 Eliza St., Newtown, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia; Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200, Denmark
| | - Clare L Hawkins
- The Heart Research Institute, 7 Eliza St., Newtown, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
111
|
Krtková J, Benáková M, Schwarzerová K. Multifunctional Microtubule-Associated Proteins in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:474. [PMID: 27148302 PMCID: PMC4838777 DOI: 10.3389/fpls.2016.00474] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 03/24/2016] [Indexed: 05/21/2023]
Abstract
Microtubules (MTs) are involved in key processes in plant cells, including cell division, growth and development. MT-interacting proteins modulate MT dynamics and organization, mediating functional and structural interaction of MTs with other cell structures. In addition to conventional microtubule-associated proteins (MAPs) in plants, there are many other MT-binding proteins whose primary function is not related to the regulation of MTs. This review focuses on enzymes, chaperones, or proteins primarily involved in other processes that also bind to MTs. The MT-binding activity of these multifunctional MAPs is often performed only under specific environmental or physiological conditions, or they bind to MTs only as components of a larger MT-binding protein complex. The involvement of multifunctional MAPs in these interactions may underlie physiological and morphogenetic events, e.g., under specific environmental or developmental conditions. Uncovering MT-binding activity of these proteins, although challenging, may contribute to understanding of the novel functions of the MT cytoskeleton in plant biological processes.
Collapse
Affiliation(s)
- Jana Krtková
- Department of Biology, University of WashingtonSeattle, WA, USA
- Katerina Schwarzerová Lab, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| | - Martina Benáková
- Katerina Schwarzerová Lab, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
- Department of Biology, Faculty of Science, University of Hradec KrálovéRokitanského, Czech Republic
| | - Kateřina Schwarzerová
- Katerina Schwarzerová Lab, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| |
Collapse
|
112
|
Hong Y, Zhao J, Guo L, Kim SC, Deng X, Wang G, Zhang G, Li M, Wang X. Plant phospholipases D and C and their diverse functions in stress responses. Prog Lipid Res 2016; 62:55-74. [DOI: 10.1016/j.plipres.2016.01.002] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 12/23/2015] [Accepted: 01/01/2016] [Indexed: 12/25/2022]
|
113
|
Zaffagnini M, Fermani S, Calvaresi M, Orrù R, Iommarini L, Sparla F, Falini G, Bottoni A, Trost P. Tuning Cysteine Reactivity and Sulfenic Acid Stability by Protein Microenvironment in Glyceraldehyde-3-Phosphate Dehydrogenases of Arabidopsis thaliana. Antioxid Redox Signal 2016; 24:502-17. [PMID: 26650776 DOI: 10.1089/ars.2015.6417] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AIMS Cysteines and H2O2 are fundamental players in redox signaling. Cysteine thiol deprotonation favors the reaction with H2O2 that generates sulfenic acids with dual electrophilic/nucleophilic nature. The protein microenvironment surrounding the target cysteine is believed to control whether sulfenic acid can be reversibly regulated by disulfide formation or irreversibly oxidized to sulfinates/sulfonates. In this study, we present experimental oxidation kinetics and a quantum mechanical/molecular mechanical (QM/MM) investigation to elucidate the reaction of H2O2 with glycolytic and photosynthetic glyceraldehyde-3-phosphate dehydrogenase from Arabidopsis thaliana (cytoplasmic AtGAPC1 and chloroplastic AtGAPA, respectively). RESULTS Although AtGAPC1 and AtGAPA have almost identical 3D structure and similar acidity of their catalytic Cys149, AtGAPC1 is more sensitive to H2O2 and prone to irreversible oxidation than AtGAPA. As a result, sulfenic acid is more stable in AtGAPA. INNOVATION Based on crystallographic structures of AtGAPC1 and AtGAPA, the reaction potential energy surface for Cys149 oxidation by H2O2 was calculated by QM. In both enzymes, sulfenic acid formation was characterized by a lower energy barrier than sulfinate formation, and sulfonate formation was prevented by very high energy barriers. Activation energies for both oxidation steps were lower in AtGAPC1 than AtGAPA, supporting the higher propensity of AtGAPC1 toward irreversible oxidation. CONCLUSIONS QM/MM calculations coupled to fingerprinting analyses revealed that two Arg of AtGAPA (substituted by Gly and Val in AtGAPC1), located at 8-15 Å distance from Cys149, are the major factors responsible for sulfenic acid stability, underpinning the importance of long-distance polar interactions in tuning sulfenic acid stability in native protein microenvironments.
Collapse
Affiliation(s)
- Mirko Zaffagnini
- 1 Department of Pharmacy and Biotechnology, University of Bologna , Bologna, Italy
| | - Simona Fermani
- 2 Department of Chemistry "G. Ciamician," University of Bologna , Bologna, Italy
| | - Matteo Calvaresi
- 2 Department of Chemistry "G. Ciamician," University of Bologna , Bologna, Italy
| | - Roberto Orrù
- 1 Department of Pharmacy and Biotechnology, University of Bologna , Bologna, Italy
| | - Luisa Iommarini
- 1 Department of Pharmacy and Biotechnology, University of Bologna , Bologna, Italy
| | - Francesca Sparla
- 1 Department of Pharmacy and Biotechnology, University of Bologna , Bologna, Italy
| | - Giuseppe Falini
- 2 Department of Chemistry "G. Ciamician," University of Bologna , Bologna, Italy
| | - Andrea Bottoni
- 2 Department of Chemistry "G. Ciamician," University of Bologna , Bologna, Italy
| | - Paolo Trost
- 1 Department of Pharmacy and Biotechnology, University of Bologna , Bologna, Italy
| |
Collapse
|
114
|
Bień J, Sałamatin R, Sulima A, Savijoki K, Bruce Conn D, Näreaho A, Młocicki D. Mass spectrometry analysis of the excretory-secretory (E-S) products of the model cestode Hymenolepis diminut a reveals their immunogenic properties and the presence of new E-S proteins in cestodes. Acta Parasitol 2016; 61:429-42. [PMID: 27078671 DOI: 10.1515/ap-2016-0058] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/16/2016] [Indexed: 12/24/2022]
Abstract
Hymenolepis diminuta is an important model species in studies of therapeutics, biochemical processes, immune responses and other aspects of cestodiasis. The parasite produces numerous excretory-secretory (E-S) proteins and a glycocalyx covering its body. Our study focused on the mass spectrometry analysis of the E-S material with an objective to determine if E-S contains any new proteins, in particular those that can be identified as: antigens, vaccine candidates and drug targets. These proteins might engage directly in host-parasite interactions. Adult parasites collected from experimentally infected rats were cultured in vitro for 5 and 18h. Immunoblotting was used to verify which E-S protein bands separated in SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) react with specific antibodies from sera of infected rats. We identified thirty-nine proteins by LC-MS/MS (liquid chromatography mass spectrometry). Results indicated the presence of proteins that have never been identified in cestode E-S material. Immunoblotting showed the immunogenicity of E-S products of H. diminuta, most probably associated with the presence of proteins known as antigens in other flatworm species. Among identified proteins are those engaged in immunomodulatory processes (eg. HSP), in response to oxidative stress (peroxidasin) or metabolism (eg. GAPDH). The predominant functions are associated with metabolism and catalytic activity. This is the first study identifying E-S-proteins in adult tapeworms, thus providing information for better understanding host-parasite interrelationships, and may point out potential targets for vaccines or drug discovery studies, as among the proteins observed in our study are those known to be antigens.
Collapse
|
115
|
Li M, Chen Y, Su Y, Wan R, Zheng X. Effect of fulvic acids with different characteristics on biological denitrification. RSC Adv 2016. [DOI: 10.1039/c5ra26885k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fulvic acids with different molecular structures pose different effect on microbial denitrificationviacarbon source utilization and enzyme activity.
Collapse
Affiliation(s)
- Mu Li
- State Key Laboratory of Pollution Control and Resource Reuse
- School of Environmental Science and Engineering
- Tongji University
- Shanghai 200092
- China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse
- School of Environmental Science and Engineering
- Tongji University
- Shanghai 200092
- China
| | - Yinglong Su
- State Key Laboratory of Pollution Control and Resource Reuse
- School of Environmental Science and Engineering
- Tongji University
- Shanghai 200092
- China
| | - Rui Wan
- State Key Laboratory of Pollution Control and Resource Reuse
- School of Environmental Science and Engineering
- Tongji University
- Shanghai 200092
- China
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse
- School of Environmental Science and Engineering
- Tongji University
- Shanghai 200092
- China
| |
Collapse
|
116
|
Perez-Casal J, Potter AA. Glyceradehyde-3-phosphate dehydrogenase as a suitable vaccine candidate for protection against bacterial and parasitic diseases. Vaccine 2015; 34:1012-7. [PMID: 26686572 DOI: 10.1016/j.vaccine.2015.11.072] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/04/2015] [Accepted: 11/27/2015] [Indexed: 11/26/2022]
Abstract
The enzyme glyceraldehyde-3-P-dehydrogenase (GAPDH) has been identified as having other properties in addition to its key role in glycolysis. The ability of GAPDH to bind to numerous extracellular matrices, modulation of host-immune responses, a role in virulence and surface location has prompted numerous investigators to postulate that GAPDH may be a good vaccine candidate for protection against numerous pathogens. Although immune responses against GAPDH have been described for many microorganisms, vaccines containing GAPDH have been successfully tested in few cases including those against the trematode-Schistosoma mansoni, the helminth-Enchinococcus multilocularis; the nematode filaria- Litomosoides sigmodontis; fish pathogens such as Aeromonas spp., Vibrio spp., Edwarsiella spp., and Streptococcus iniae; and environmental streptococci, namely, Streptococcus uberis and Streptococcus dysgalactiae. Before GAPDH-based vaccines are considered viable options for protection against numerous pathogens, we need to take into account the homology between the host and pathogen GAPDH proteins to prevent potential autoimmune reactions, thus protective GAPDH epitopes unique to the pathogen protein must be identified.
Collapse
Affiliation(s)
- Jose Perez-Casal
- Vaccine and Infectious Disease Organization, 120 Veterinary Rd. , Saskatoon, Saskatchewan S7N 5E3, Canada.
| | - Andrew A Potter
- Vaccine and Infectious Disease Organization, 120 Veterinary Rd. , Saskatoon, Saskatchewan S7N 5E3, Canada
| |
Collapse
|
117
|
Li X, Fang T, Zong M, Shi X, Xu X, Dai C, Li C, Zhou G. Phosphorproteome Changes of Myofibrillar Proteins at Early Post-mortem Time in Relation to Pork Quality As Affected by Season. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10287-10294. [PMID: 26549830 DOI: 10.1021/acs.jafc.5b03997] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The effect of season on phosphorylation of myofibrillar proteins and meat quality of pork longissimus muscles was investigated. Muscle samples were obtained from 40 pork carcasses (10 for each season) at 45 min and 3 and 9 h post-mortem. Myofibrillar proteins were extracted, separated by SDS-PAGE, quantified by phosphor-specific staining, and finally identified by LC-MS/MS. Muscle pH, glycogen, and ATP were measured, and pale, soft, and exudative (PSE) meat was identified by pH value at 45 min post-mortem. A total of 23 bands were detected on SDS-PAGE gels. The phosphorylation levels of bands did not differ between PSE and normal meat. However, the phosphorylation levels of 22 bands were significantly changed by season. Nine of them showed different changes from 45 min to 9 h post-mortem, which were identified to be involved in energy metabolism and sarcomere contraction. Correlation analysis indicated the regulatory progress of these proteins during rigor mortis. These observations contribute to a better understanding of the biochemical processes for the conversion of muscle to meat varying with season.
Collapse
Affiliation(s)
- Xiao Li
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Animal Products Processing, MOA; and Jiangsu Synergetic Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University , Nanjing 210095, People's Republic of China
| | - Tian Fang
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Animal Products Processing, MOA; and Jiangsu Synergetic Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University , Nanjing 210095, People's Republic of China
| | - Menghuan Zong
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Animal Products Processing, MOA; and Jiangsu Synergetic Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University , Nanjing 210095, People's Republic of China
| | - Xiaoqin Shi
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Animal Products Processing, MOA; and Jiangsu Synergetic Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University , Nanjing 210095, People's Republic of China
| | - Xinglian Xu
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Animal Products Processing, MOA; and Jiangsu Synergetic Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University , Nanjing 210095, People's Republic of China
| | - Chen Dai
- Experimental Teaching Center of Life Science, Nanjing Agricultural University , Nanjing 210095, People's Republic of China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Animal Products Processing, MOA; and Jiangsu Synergetic Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University , Nanjing 210095, People's Republic of China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Animal Products Processing, MOA; and Jiangsu Synergetic Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University , Nanjing 210095, People's Republic of China
| |
Collapse
|
118
|
White MR, Garcin ED. The sweet side of RNA regulation: glyceraldehyde-3-phosphate dehydrogenase as a noncanonical RNA-binding protein. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 7:53-70. [PMID: 26564736 DOI: 10.1002/wrna.1315] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 01/26/2023]
Abstract
The glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), has a vast array of extraglycolytic cellular functions, including interactions with nucleic acids. GAPDH has been implicated in the translocation of transfer RNA (tRNA), the regulation of cellular messenger RNA (mRNA) stability and translation, as well as the regulation of replication and gene expression of many single-stranded RNA viruses. A growing body of evidence supports GAPDH-RNA interactions serving as part of a larger coordination between intermediary metabolism and RNA biogenesis. Despite the established role of GAPDH in nucleic acid regulation, it is still unclear how and where GAPDH binds to its RNA targets, highlighted by the absence of any conserved RNA-binding sequences. This review will summarize our current understanding of GAPDH-mediated regulation of RNA function. WIREs RNA 2016, 7:53-70. doi: 10.1002/wrna.1315 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Michael R White
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, USA
| | - Elsa D Garcin
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, USA
| |
Collapse
|
119
|
Savreux-Lenglet G, Depauw S, David-Cordonnier MH. Protein Recognition in Drug-Induced DNA Alkylation: When the Moonlight Protein GAPDH Meets S23906-1/DNA Minor Groove Adducts. Int J Mol Sci 2015; 16:26555-81. [PMID: 26556350 PMCID: PMC4661830 DOI: 10.3390/ijms161125971] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/25/2015] [Accepted: 10/27/2015] [Indexed: 12/11/2022] Open
Abstract
DNA alkylating drugs have been used in clinics for more than seventy years. The diversity of their mechanism of action (major/minor groove; mono-/bis-alkylation; intra-/inter-strand crosslinks; DNA stabilization/destabilization, etc.) has undoubtedly major consequences on the cellular response to treatment. The aim of this review is to highlight the variety of established protein recognition of DNA adducts to then particularly focus on glyceraldehyde-3-phosphate dehydrogenase (GAPDH) function in DNA adduct interaction with illustration using original experiments performed with S23906-1/DNA adduct. The introduction of this review is a state of the art of protein/DNA adducts recognition, depending on the major or minor groove orientation of the DNA bonding as well as on the molecular consequences in terms of double-stranded DNA maintenance. It reviews the implication of proteins from both DNA repair, transcription, replication and chromatin maintenance in selective DNA adduct recognition. The main section of the manuscript is focusing on the implication of the moonlighting protein GAPDH in DNA adduct recognition with the model of the peculiar DNA minor groove alkylating and destabilizing drug S23906-1. The mechanism of action of S23906-1 alkylating drug and the large variety of GAPDH cellular functions are presented prior to focus on GAPDH direct binding to S23906-1 adducts.
Collapse
Affiliation(s)
- Gaëlle Savreux-Lenglet
- UMR-S1172-Jean-Pierre Aubert Research Centre (JPARC), INSERM, University of Lille, Lille Hospital, Institut pour la Recherche sur le Cancer de Lille, Place de Verdun F-59045 Lille cedex, France.
| | - Sabine Depauw
- UMR-S1172-Jean-Pierre Aubert Research Centre (JPARC), INSERM, University of Lille, Lille Hospital, Institut pour la Recherche sur le Cancer de Lille, Place de Verdun F-59045 Lille cedex, France.
| | - Marie-Hélène David-Cordonnier
- UMR-S1172-Jean-Pierre Aubert Research Centre (JPARC), INSERM, University of Lille, Lille Hospital, Institut pour la Recherche sur le Cancer de Lille, Place de Verdun F-59045 Lille cedex, France.
| |
Collapse
|
120
|
Kuma KM, Lopes-Caitar VS, Romero CCT, Silva SMH, Kuwahara MK, Carvalho MCCG, Abdelnoor RV, Dias WP, Marcelino-Guimarães FC. A high efficient protocol for soybean root transformation by Agrobacterium rhizogenes and most stable reference genes for RT-qPCR analysis. PLANT CELL REPORTS 2015; 34:1987-2000. [PMID: 26232349 DOI: 10.1007/s00299-015-1845-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/13/2015] [Accepted: 07/15/2015] [Indexed: 05/10/2023]
Abstract
KEY MESSAGE A 55% transformation efficiency was obtained by our optimized protocol; and we showed that GmELF1 - β and GmELF1 - α are the most stable reference genes for expression analyses under this specific condition. Gene functional analyses are essential to the validation of results obtained from in silico and/or gene-prospecting studies. Genetic transformation methods that yield tissues of transient expression quickly have been of considerable interest to researchers. Agrobacterium rhizogenes-mediated transformation methods, which are employed to generate plants with transformed roots, have proven useful for the study of stress caused by root phytopathogens via gene overexpression and/or silencing. While some protocols have been adapted to soybean plants, transformation efficiencies remain limited; thus, few viable plants are available for performing bioassays. Furthermore, mRNA analyses that employ reverse transcription quantitative polymerase chain reactions (RT-qPCR) require the use of reference genes with stable expression levels across different organs, development steps and treatments. In the present study, an A. rhizogenes-mediated soybean root transformation approach was optimized. The method delivers significantly higher transformation efficiency levels and rates of transformed plant recovery, thus enhancing studies of soybean abiotic conditions or interactions between phytopathogens, such as nematodes. A 55% transformation efficiency was obtained following the addition of an acclimation step that involves hydroponics and different selection processes. The present study also validated the reference genes GmELF1-β and GmELF1-α as the most stable to be used in RT-qPCR analysis in composite plants, mainly under nematode infection.
Collapse
Affiliation(s)
- K M Kuma
- Department of Biochemistry and Biotechnology, Universidade Estadual de Londrina, Londrina, Brazil
- Brazilian Agricultural Research Corporation (Empresa Brasileira de Pesquisa Agropecuária-EMBRAPA Soybean), Londrina, Brazil
| | - V S Lopes-Caitar
- Genetics and Molecular Biology Department, Universidade Estadual de Londrina, Londrina, Brazil
- Brazilian Agricultural Research Corporation (Empresa Brasileira de Pesquisa Agropecuária-EMBRAPA Soybean), Londrina, Brazil
| | - C C T Romero
- Brazilian Agricultural Research Corporation (Empresa Brasileira de Pesquisa Agropecuária-EMBRAPA Soybean), Londrina, Brazil
| | - S M H Silva
- Department of Biochemistry and Biotechnology, Universidade Estadual de Londrina, Londrina, Brazil
- Brazilian Agricultural Research Corporation (Empresa Brasileira de Pesquisa Agropecuária-EMBRAPA Soybean), Londrina, Brazil
| | - M K Kuwahara
- Brazilian Agricultural Research Corporation (Empresa Brasileira de Pesquisa Agropecuária-EMBRAPA Soybean), Londrina, Brazil
| | | | - R V Abdelnoor
- Brazilian Agricultural Research Corporation (Empresa Brasileira de Pesquisa Agropecuária-EMBRAPA Soybean), Londrina, Brazil
| | - W P Dias
- Brazilian Agricultural Research Corporation (Empresa Brasileira de Pesquisa Agropecuária-EMBRAPA Soybean), Londrina, Brazil
| | - F C Marcelino-Guimarães
- Brazilian Agricultural Research Corporation (Empresa Brasileira de Pesquisa Agropecuária-EMBRAPA Soybean), Londrina, Brazil.
| |
Collapse
|
121
|
Suarez S, McCollum GW, Jayagopal A, Penn JS. High Glucose-induced Retinal Pericyte Apoptosis Depends on Association of GAPDH and Siah1. J Biol Chem 2015; 290:28311-28320. [PMID: 26438826 DOI: 10.1074/jbc.m115.682385] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Indexed: 11/06/2022] Open
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness worldwide, and its prevalence is growing. Current therapies for DR address only the later stages of the disease, are invasive, and have limited effectiveness. Retinal pericyte death is an early pathologic feature of DR. Although it has been observed in diabetic patients and in animal models of DR, the cause of pericyte death remains unknown. A novel pro-apoptotic pathway initiated by the interaction between glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the E3 ubiquitin ligase, seven in absentia homolog 1 (Siah1), was recently identified in ocular tissues. In this article we examined the involvement of the GAPDH/Siah1 interaction in human retinal pericyte (hRP) apoptosis. HRP were cultured in 5 mm normal glucose, 25 mm l- or d-glucose for 48 h (osmotic control and high glucose treatments, respectively). Siah1 siRNA was used to down-regulate Siah1 expression. TAT-FLAG GAPDH and/or Siah1-directed peptides were used to block GAPDH and Siah1 interaction. Co-immunoprecipitation assays were conducted to analyze the effect of high glucose on the association of GAPDH and Siah1. Apoptosis was measured by Annexin V staining and caspase-3 enzymatic activity assay. High glucose increased Siah1 total protein levels, induced the association between GAPDH and Siah1, and led to GAPDH nuclear translocation. Our findings demonstrate that dissociation of the GAPDH/Siah1 pro-apoptotic complex can block high glucose-induced pericyte apoptosis, widely considered a hallmark feature of DR. Thus, the work presented in this article can provide a foundation to identify novel targets for early treatment of DR.
Collapse
Affiliation(s)
- Sandra Suarez
- Departments of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8808.
| | - Gary W McCollum
- Departments of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8808
| | - Ashwath Jayagopal
- Pharma Research and Early Development (pRED), F. Hoffman-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - John S Penn
- Departments of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8808; Departments of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8808
| |
Collapse
|
122
|
Dengue Virus NS1 Protein Modulates Cellular Energy Metabolism by Increasing Glyceraldehyde-3-Phosphate Dehydrogenase Activity. J Virol 2015; 89:11871-83. [PMID: 26378175 DOI: 10.1128/jvi.01342-15] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/08/2015] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Dengue is one of the main public health concerns worldwide. Recent estimates indicate that over 390 million people are infected annually with the dengue virus (DENV), resulting in thousands of deaths. Among the DENV nonstructural proteins, the NS1 protein is the only one whose function during replication is still unknown. NS1 is a 46- to 55-kDa glycoprotein commonly found as both a membrane-associated homodimer and a soluble hexameric barrel-shaped lipoprotein. Despite its role in the pathogenic process, NS1 is essential for proper RNA accumulation and virus production. In the present study, we identified that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interacts with intracellular NS1. Molecular docking revealed that this interaction occurs through the hydrophobic protrusion of NS1 and the hydrophobic residues located at the opposite side of the catalytic site. Moreover, addition of purified recombinant NS1 enhanced the glycolytic activity of GAPDH in vitro. Interestingly, we observed that DENV infection promoted the relocalization of GAPDH to the perinuclear region, where NS1 is commonly found. Both DENV infection and expression of NS1 itself resulted in increased GAPDH activity. Our findings indicate that the NS1 protein acts to increase glycolytic flux and, consequently, energy production, which is consistent with the recent finding that DENV induces and requires glycolysis for proper replication. This is the first report to propose that NS1 is an important modulator of cellular energy metabolism. The data presented here provide new insights that may be useful for further drug design and the development of alternative antiviral therapies against DENV. IMPORTANCE Dengue represents a serious public health problem worldwide and is caused by infection with dengue virus (DENV). Estimates indicate that half of the global population is at risk of infection, with almost 400 million cases occurring per year. The NS1 glycoprotein is found in both the intracellular and the extracellular milieus. Despite the fact that NS1 has been commonly associated with DENV pathogenesis, it plays a pivotal but unknown role in the replication process. In an effort to understand the role of intracellular NS1, we demonstrate that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interacts with NS1. Our results indicate that NS1 increases the glycolytic activity of GAPDH in vitro. Interestingly, the GAPDH activity was increased during DENV infection, and NS1 expression alone was sufficient to enhance intracellular GAPDH activity in BHK-21 cells. Overall, our findings suggest that NS1 is an important modulator of cellular energy metabolism by increasing glycolytic flux.
Collapse
|
123
|
Kosová K, Vítámvás P, Urban MO, Klíma M, Roy A, Prášil IT. Biological Networks Underlying Abiotic Stress Tolerance in Temperate Crops--A Proteomic Perspective. Int J Mol Sci 2015; 16:20913-42. [PMID: 26340626 PMCID: PMC4613235 DOI: 10.3390/ijms160920913] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/16/2015] [Accepted: 08/10/2015] [Indexed: 12/26/2022] Open
Abstract
Abiotic stress factors, especially low temperatures, drought, and salinity, represent the major constraints limiting agricultural production in temperate climate. Under the conditions of global climate change, the risk of damaging effects of abiotic stresses on crop production increases. Plant stress response represents an active process aimed at an establishment of novel homeostasis under altered environmental conditions. Proteins play a crucial role in plant stress response since they are directly involved in shaping the final phenotype. In the review, results of proteomic studies focused on stress response of major crops grown in temperate climate including cereals: common wheat (Triticum aestivum), durum wheat (Triticum durum), barley (Hordeum vulgare), maize (Zea mays); leguminous plants: alfalfa (Medicago sativa), soybean (Glycine max), common bean (Phaseolus vulgaris), pea (Pisum sativum); oilseed rape (Brassica napus); potato (Solanum tuberosum); tobacco (Nicotiana tabaccum); tomato (Lycopersicon esculentum); and others, to a wide range of abiotic stresses (cold, drought, salinity, heat, imbalances in mineral nutrition and heavy metals) are summarized. The dynamics of changes in various protein functional groups including signaling and regulatory proteins, transcription factors, proteins involved in protein metabolism, amino acid metabolism, metabolism of several stress-related compounds, proteins with chaperone and protective functions as well as structural proteins (cell wall components, cytoskeleton) are briefly overviewed. Attention is paid to the differences found between differentially tolerant genotypes. In addition, proteomic studies aimed at proteomic investigation of multiple stress factors are discussed. In conclusion, contribution of proteomic studies to understanding the complexity of crop response to abiotic stresses as well as possibilities to identify and utilize protein markers in crop breeding processes are discussed.
Collapse
Affiliation(s)
- Klára Kosová
- Laboratory of Plant Stress Biology and Biotechnology, Division of Crop Genetics and Breeding, Crop Research Institute, Drnovská 507/73, 16106 Prague, Czech Republic.
| | - Pavel Vítámvás
- Laboratory of Plant Stress Biology and Biotechnology, Division of Crop Genetics and Breeding, Crop Research Institute, Drnovská 507/73, 16106 Prague, Czech Republic.
| | - Milan Oldřich Urban
- Laboratory of Plant Stress Biology and Biotechnology, Division of Crop Genetics and Breeding, Crop Research Institute, Drnovská 507/73, 16106 Prague, Czech Republic.
| | - Miroslav Klíma
- Laboratory of Plant Stress Biology and Biotechnology, Division of Crop Genetics and Breeding, Crop Research Institute, Drnovská 507/73, 16106 Prague, Czech Republic.
| | - Amitava Roy
- Research Institute of Agricultural Engineering, Drnovská 507, 16106 Prague, Czech Republic.
| | - Ilja Tom Prášil
- Laboratory of Plant Stress Biology and Biotechnology, Division of Crop Genetics and Breeding, Crop Research Institute, Drnovská 507/73, 16106 Prague, Czech Republic.
| |
Collapse
|
124
|
Hao L, Zhou X, Liu S, Sun M, Song Y, Du S, Sun B, Guo C, Gong L, Hu J, Guan H, Shao S. Elevated GAPDH expression is associated with the proliferation and invasion of lung and esophageal squamous cell carcinomas. Proteomics 2015; 15:3087-100. [PMID: 25944651 DOI: 10.1002/pmic.201400577] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 03/23/2015] [Accepted: 04/30/2015] [Indexed: 01/01/2023]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase, is one of the most investigated housekeeping genes and widely used as an internal control in analysis of gene expression levels. The present study was designed to assess whether GAPDH is associated with cancer cell growth and progression and, therefore may not be a good internal control in cancer research. Our results from clinical tissue studies showed that the levels of GAPDH protein were significantly up-regulated in lung squamous cell carcinoma tissues, compared with the adjacent normal lung tissues, and this was confirmed by western blotting and immunohistochemistry. GAPDH knockdown by siRNA resulted in significant reductions in proliferation, migration, and invasion of lung squamous carcinoma cells in vitro. In a nude mouse cancer xenograft model, GAPDH knockdown significantly inhibited the cell proliferation and migration/invasion in vivo. In summary, GAPDH may not be an appropriate internal control for gene expression studies, especially in cancer research. The role of GAPDH in cancer development and progression should be further examined in pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Lihong Hao
- Key Laboratory for Proteomics of Liaoning Province, Dalian Medical University, Dalian, Liaoning, P. R. China
- Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Xin Zhou
- Key Laboratory for Proteomics of Liaoning Province, Dalian Medical University, Dalian, Liaoning, P. R. China
- Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Shuqing Liu
- Key Laboratory for Proteomics of Liaoning Province, Dalian Medical University, Dalian, Liaoning, P. R. China
- Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Mingzhong Sun
- Key Laboratory for Proteomics of Liaoning Province, Dalian Medical University, Dalian, Liaoning, P. R. China
- Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Yang Song
- Key Laboratory for Proteomics of Liaoning Province, Dalian Medical University, Dalian, Liaoning, P. R. China
- Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Sha Du
- Key Laboratory for Proteomics of Liaoning Province, Dalian Medical University, Dalian, Liaoning, P. R. China
- Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Bing Sun
- Department of Chest Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Chunmei Guo
- Key Laboratory for Proteomics of Liaoning Province, Dalian Medical University, Dalian, Liaoning, P. R. China
- Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Linlin Gong
- Key Laboratory for Proteomics of Liaoning Province, Dalian Medical University, Dalian, Liaoning, P. R. China
- Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Jun Hu
- Key Laboratory for Proteomics of Liaoning Province, Dalian Medical University, Dalian, Liaoning, P. R. China
- Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Hongwei Guan
- Department of Pathology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Shujuan Shao
- Key Laboratory for Proteomics of Liaoning Province, Dalian Medical University, Dalian, Liaoning, P. R. China
- Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning, P. R. China
| |
Collapse
|
125
|
Sangolgi PB, Balaji C, Dutta S, Jindal N, Jarori GK. Cloning, expression, purification and characterization of Plasmodium spp. glyceraldehyde-3-phosphate dehydrogenase. Protein Expr Purif 2015; 117:17-25. [PMID: 26341815 DOI: 10.1016/j.pep.2015.08.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/28/2015] [Accepted: 08/29/2015] [Indexed: 10/23/2022]
Abstract
Plasmodium spp. solely rely on glycolysis for their energy needs during asexual multiplication in human RBCs, making the enzymes of this pathway potential drug targets. We have cloned, over-expressed and purified Plasmodium falciparum glyceraldehyde-3-phosphate dehydrogenase (PfGapdh) for its kinetic and structural characterization. ∼ 30-40 mg pure recombinant enzyme with a specific activity of 12.6 units/mg could be obtained from a liter of Escherichia coli culture. This enzyme is a homotetramer with an optimal pH ∼ 9. Kinetic measurements gave KmNAD=0.28 ± 0.3 mM and KmG3P=0.25 ± 0.03 mM. Polyclonal antibodies raised in mice showed high specificity as was evident from their non-reactivity to rabbit muscle Gapdh. Western blot of Plasmodium yoelii cell extract showed three bands at MW ∼ 27, ∼ 37 and ∼ 51 kDa. Presence of PyGapdh in all the three bands was confirmed by LC-ESI-MS. Interestingly, the ∼ 51 kDa form was present only in the soluble fraction of the extract. Subcellular distribution of Gapdh in P. yoelii was examined using differential detergent fractionation method. Each fraction was analyzed on a two-dimensional gel and visualized by Western blotting. All four subcellular fractions (i.e., cytosol, nucleus, cytoskeleton and cell membranes) examined had Gapdh associated with them. Each fraction had multiple molecular species associated with them. Such species could arise only by multiple post-translational modifications. Structural heterogeneity observed among molecular species of PyGapdh and their diverse subcellular distribution, supports the view that Gapdh is likely to have multiple non-glycolytic functions in the parasite and could be an effective target for anti-malarial chemotherapeutics.
Collapse
Affiliation(s)
- Prakash B Sangolgi
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| | - Chinthapalli Balaji
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| | - Sneha Dutta
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| | - Nitin Jindal
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| | - Gotam K Jarori
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India.
| |
Collapse
|
126
|
Ball RL, Knapp CM, Whitehead KA. Lipidoid Nanoparticles for siRNA Delivery to the Intestinal Epithelium: In Vitro Investigations in a Caco-2 Model. PLoS One 2015; 10:e0133154. [PMID: 26192592 PMCID: PMC4508104 DOI: 10.1371/journal.pone.0133154] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/24/2015] [Indexed: 02/07/2023] Open
Abstract
Short interfering ribonucleic acid (siRNA) therapeutics show promise for the treatment of intestinal diseases by specifically suppressing the expression of disease relevant proteins. Recently, a class of lipid-like materials termed "lipidoids" have been shown to potently deliver siRNA to the liver and immune cells. Here, we seek to establish the utility of lipidoid nanoparticles (LNPs) in the context of siRNA delivery to the intestinal epithelium. Initial studies demonstrated that the siRNA-loaded LNPs mediated potent, dose dependent, and durable gene silencing in Caco-2 intestinal epithelial cells, with a single 10 nM dose depressing GAPDH mRNA expression for one week. Transfection with siRNA-loaded LNPs did not induce significant cytotoxicity in Caco-2 cells or alter intestinal barrier function. Protein silencing was confirmed by Western blotting, with the lowest levels of GAPDH protein expression observed five days post-transfection. Together, these data underscore the potential of LNPs for the treatment of intestinal disorders.
Collapse
Affiliation(s)
- Rebecca L. Ball
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Christopher M. Knapp
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Kathryn A. Whitehead
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
127
|
Abstract
Apurinic/apyrimidinic (AP) sites are some of the most frequent DNA damages and the key intermediates of base excision repair. Certain proteins can interact with the deoxyribose of the AP site to form a Schiff base, which can be stabilized by NaBH4 treatment. Several types of DNA containing the AP site were used to trap proteins in human cell extracts by this method. In the case of single-stranded AP DNA and AP DNA duplex with both 5' and 3' dangling ends, the major crosslinking product had an apparent molecular mass of 45 kDa. Using peptide mass mapping based on mass spectrometry data, we identified the protein forming this adduct as an isoform of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) called "uracil-DNA glycosylase". GAPDH is a glycolytic enzyme with many additional putative functions, which include interaction with nucleic acids, different DNA damages and DNA repair enzymes. We investigated interaction of GAPDH purified from HeLa cells and rabbit muscles with different AP DNAs. In spite of the ability to form a Schiff-base intermediate with the deoxyribose of the AP site, GAPDH does not display the AP lyase activity. In addition, along with the borohydride-dependent adducts with AP DNAs containing single-stranded regions, GAPDH was also shown to form the stable borohydride-independent crosslinks with these AP DNAs. GAPDH was proven to crosslink preferentially to AP DNAs cleaved via the β-elimination mechanism (spontaneously or by AP lyases) as compared to DNAs containing the intact AP site. The level of GAPDH-AP DNA adduct formation depends on oxidation of the protein SH-groups; disulfide bond reduction in GAPDH leads to the loss of its ability to form the adducts with AP DNA. A possible role of formation of the stable adducts with AP sites by GAPDH is discussed.
Collapse
|
128
|
Ito A, Nagai M, Tajino J, Yamaguchi S, Iijima H, Zhang X, Aoyama T, Kuroki H. Culture temperature affects human chondrocyte messenger RNA expression in monolayer and pellet culture systems. PLoS One 2015; 10:e0128082. [PMID: 26010859 PMCID: PMC4444092 DOI: 10.1371/journal.pone.0128082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 04/22/2015] [Indexed: 11/19/2022] Open
Abstract
Cell-based therapy has been explored for articular cartilage regeneration. Autologous chondrocyte implantation is a promising cell-based technique for repairing articular cartilage defects. However, there are several issues such as chondrocyte de-differentiation. While numerous studies have been designed to overcome some of these issues, only a few have focused on the thermal environment that can affect chondrocyte metabolism and phenotype. In this study, the effects of different culture temperatures on human chondrocyte metabolism- and phenotype-related gene expression were investigated in 2D and 3D environments. Human chondrocytes were cultured in a monolayer or in a pellet culture system at three different culture temperatures (32°C, 37°C, and 41°C) for 3 days. The results showed that the total RNA level, normalized to the threshold cycle value of internal reference genes, was higher at lower temperatures in both culture systems. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and citrate synthase (CS), which are involved in glycolysis and the citric acid cycle, respectively, were expressed at similar levels at 32°C and 37°C in pellet cultures, but the levels were significantly lower at 41°C. Expression of the chondrogenic markers, collagen type IIA1 (COL2A1) and aggrecan (ACAN), was higher at 37°C than at 32°C and 41°C in both culture systems. However, this phenomenon did not coincide with SRY (sex-determining region Y)-box 9 (SOX9), which is a fundamental transcription factor for chondrogenesis, indicating that a SOX9-independent pathway might be involved in this phenomenon. In conclusion, the expression of chondrocyte metabolism-related genes at 32°C was maintained or enhanced compared to that at 37°C. However, chondrogenesis-related genes were further induced at 37°C in both culture systems. Therefore, manipulating the culture temperature may be an advantageous approach for regulating human chondrocyte metabolic activity and chondrogenesis.
Collapse
Affiliation(s)
- Akira Ito
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Momoko Nagai
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Junichi Tajino
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shoki Yamaguchi
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hirotaka Iijima
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Xiangkai Zhang
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoki Aoyama
- Department of Development and Rehabilitation of Motor Function, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Kuroki
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
129
|
Thieulin-Pardo G, Avilan L, Kojadinovic M, Gontero B. Fairy "tails": flexibility and function of intrinsically disordered extensions in the photosynthetic world. Front Mol Biosci 2015; 2:23. [PMID: 26042223 PMCID: PMC4436894 DOI: 10.3389/fmolb.2015.00023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/04/2015] [Indexed: 12/22/2022] Open
Abstract
Intrinsically Disordered Proteins (IDPs), or protein fragments also called Intrinsically Disordered Regions (IDRs), display high flexibility as the result of their amino acid composition. They can adopt multiple roles. In globular proteins, IDRs are usually found as loops and linkers between secondary structure elements. However, not all disordered fragments are loops: some proteins bear an intrinsically disordered extension at their C- or N-terminus, and this flexibility can affect the protein as a whole. In this review, we focus on the disordered N- and C-terminal extensions of globular proteins from photosynthetic organisms. Using the examples of the A2B2-GAPDH and the α Rubisco activase isoform, we show that intrinsically disordered extensions can help regulate their “host” protein in response to changes in light, thereby participating in photosynthesis regulation. As IDPs are famous for their large number of protein partners, we used the examples of the NAC, bZIP, TCP, and GRAS transcription factor families to illustrate the fact that intrinsically disordered extremities can allow a protein to have an increased number of partners, which directly affects its regulation. Finally, for proteins from the cryptochrome light receptor family, we describe how a new role for the photolyase proteins may emerge by the addition of an intrinsically disordered extension, while still allowing the protein to absorb blue light. This review has highlighted the diverse repercussions of the disordered extension on the regulation and function of their host protein and outlined possible future research avenues.
Collapse
Affiliation(s)
- Gabriel Thieulin-Pardo
- UMR 7281, Centre National de la Recherche Scientifique, Aix-Marseille Université Marseille, France
| | - Luisana Avilan
- UMR 7281, Centre National de la Recherche Scientifique, Aix-Marseille Université Marseille, France
| | - Mila Kojadinovic
- UMR 7281, Centre National de la Recherche Scientifique, Aix-Marseille Université Marseille, France
| | - Brigitte Gontero
- UMR 7281, Centre National de la Recherche Scientifique, Aix-Marseille Université Marseille, France
| |
Collapse
|
130
|
Takeda T, Fukui Y. Possible role of NAD-dependent glyceraldehyde-3-phosphate dehydrogenase in growth promotion of Arabidopsis seedlings by low levels of selenium. Biosci Biotechnol Biochem 2015; 79:1579-86. [PMID: 25988618 DOI: 10.1080/09168451.2015.1045826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We explored functional significance of selenium (Se) in Arabidopsis physiology. Se at very low concentrations in cultivation exerted a considerable positive effect on Arabidopsis growth with no indication of oxidative stress, whereas Se at higher concentrations significantly suppressed the growth and brought serious oxidative damage. Respiration, ATP levels, and the activity of NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (NAD-GAPDH) were enhanced in Arabidopsis grown in the medium containing 1.0 μM Se. Addition of an inhibitor of glutathione (GSH) synthesis to the medium abolished both of the Se-dependent growth promotion and NAD-GAPDH up-regulation. Assay of NAD-GAPDH purified from seedlings subjected to Se interventions raised the possibility of a direct connection between the activity of this enzyme and Arabidopsis growth. These results reveal that trace amounts of Se accelerate Arabidopsis growth, and suggest that this pro-growth effect of Se arises enhancing mitochondrial performance in a GSH-dependent manner, in which NAD-GAPDH may serve as a key regulator.
Collapse
Affiliation(s)
- Toru Takeda
- a Faculty of Agriculture, Department of Advanced Bioscience , Kinki University , Nara , Japan
| | | |
Collapse
|
131
|
Nazari F, Parham A, Maleki AF. GAPDH, β-actin and β2-microglobulin, as three common reference genes, are not reliable for gene expression studies in equine adipose- and marrow-derived mesenchymal stem cells. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2015; 57:18. [PMID: 26290738 PMCID: PMC4540241 DOI: 10.1186/s40781-015-0050-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 04/15/2015] [Indexed: 01/16/2023]
Abstract
Background Quantitative real time reverse transcription PCR (qRT-PCR) is one of the most important techniques for gene-expression analysis in molecular based studies. Selecting a proper internal control gene for normalizing data is a crucial step in gene expression analysis via this method. The expression levels of reference genes should be remained constant among cells in different tissues. However, it seems that the location of cells in different tissues might influence their expression. The purpose of this study was to determine whether the source of mesenchymal stem cells (MSCs) has any effect on expression level of three common reference genes (GAPDH, β-actin and β2-microglobulin) in equine marrow- and adipose- derived undifferentiated MSCs and consequently their reliability for comparative qRT-PCR. Materials and methods Adipose tissue (AT) and bone marrow (BM) samples were harvested from 3 mares. MSCs were isolated and cultured until passage 3 (P3). Total RNA of P3 cells was extracted for cDNA synthesis. The generated cDNAs were analyzed by quantitative real-time PCR. The PCR reactions were ended with a melting curve analysis to verify the specificity of amplicon. Results The expression levels of GAPDH were significantly different between AT- and BM- derived MSCs (p < 0.05). Differences in expression level of β-actin (P < 0.001) and B2M (P < 0.006.) between MSCs derived from AT and BM were substantially higher than GAPDH. In addition, the fold change in expression levels of GAPDH, β-actin and B2M in AT-derived MSCs compared to BM-derived MSCs were 2.38, 6.76 and 7.76, respectively. Conclusion This study demonstrated that GAPDH and especially β-actin and B2M express in different levels in equine AT- and BM- derived MSCs. Thus they cannot be considered as reliable reference genes for comparative quantitative gene expression analysis in MSCs derived from equine bone marrow and adipose tissue.
Collapse
Affiliation(s)
- Fatemeh Nazari
- Division of Physiology, Department of Basic Sciences, Veterinary Faculty, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abbas Parham
- Division of Physiology, Department of Basic Sciences, Veterinary Faculty, Ferdowsi University of Mashhad, Mashhad, Iran ; Embryonic and Stem Cell Biology and Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Adham Fani Maleki
- Division of Physiology, Department of Basic Sciences, Veterinary Faculty, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
132
|
LIU SHUANG, ZHU PENGFEI, ZHANG LING, LI ZHUO, LV QUANJUN, ZHENG SUJUN, WANG YANG, LU FENGMIN. Increased glyceraldehyde-3-phosphate dehydrogenase expression indicates higher survival rates in male patients with hepatitis B virus-accociated hepatocellular carcinoma and cirrhosis. Exp Ther Med 2015; 9:1597-1604. [PMID: 26136865 PMCID: PMC4471696 DOI: 10.3892/etm.2015.2309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 01/15/2015] [Indexed: 12/22/2022] Open
Abstract
Elevated expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been reported in different human malignancies. To understand its role in hepatitis B virus (HBV) infection-associated hepatocellular carcinoma (HCC), the expression of GAPDH was quantitatively measured in a cohort of 72 male HCC patients without preoperative treatment, all with evidence of chronic HBV infection. Using C-terminal banding protein 1 (CTBP1) or hypoxanthine phosphori-bosyltransferase 1 (HPRT1) as reference genes, the level of GAPDH mRNA in tumor tissue was found to be significantly higher compared with that in paired non tumor tissues (P=0.0087 for CTBP1; P=0.0116 for HPRT1). Accordingly, compared with the non-tumor tissue, 37.5% (27/72) of patients' tumor tissues had a more than 2-fold increase of GAPDH expression. Furthermore, following knockdown GAPDH expression via siRNA transient transfection, HepG2 cells exhibited enhanced resistance to cytosine arabinoside (IC50, 308.28 µM vs. 67.68 µM in the control; P=0.01). Notably, higher GAPDH expression was significantly associated with lower liver fibrosis score (P=0.0394) and a tendency towards higher survival rates for patients with HCC. To the best of our knowledge, the present study is the first study to report that the elevated expression levels of GAPDH in HCC tumor tissue may be relevant to an improved fibrosis score and survival probability in male patients with HBV infection; however, the underlying mechanism requires further investigation.
Collapse
Affiliation(s)
- SHUANG LIU
- Beijing Artificial Liver Treatment and Training Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - PENGFEI ZHU
- Beijing Artificial Liver Treatment and Training Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - LING ZHANG
- Department of Hepatobiliary Surgery, Henan Cancer Hospital, Zhengzhou, Henan 450008, P.R. China
| | - ZHUO LI
- Beijing Artificial Liver Treatment and Training Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - QUANJUN LV
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - SUJUN ZHENG
- Beijing Artificial Liver Treatment and Training Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - YANG WANG
- Beijing Artificial Liver Treatment and Training Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - FENGMIN LU
- Department of Microbiology and Infectious Disease Center, Peking University Health Science Center, Beijing 100086, P.R. China
| |
Collapse
|
133
|
Costa-Lima BR, Suman SP, Li S, Beach CM, Silva TJ, Silveira ET, Bohrer BM, Boler DD. Dietary ractopamine influences sarcoplasmic proteome profile of pork Longissimus thoracis. Meat Sci 2015; 103:7-12. [DOI: 10.1016/j.meatsci.2014.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 08/27/2014] [Accepted: 12/19/2014] [Indexed: 11/29/2022]
|
134
|
Tian M, Sasvari Z, Gonzalez PA, Friso G, Rowland E, Liu XM, van Wijk KJ, Nagy PD, Klessig DF. Salicylic Acid Inhibits the Replication of Tomato bushy stunt virus by Directly Targeting a Host Component in the Replication Complex. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:379-86. [PMID: 25584724 DOI: 10.1094/mpmi-09-14-0259-r] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Although the plant hormone salicylic acid (SA) plays a central role in signaling resistance to viral infection, the underlying mechanisms are only partially understood. Identification and characterization of SA's direct targets have been shown to be an effective strategy for dissecting the complex SA-mediated defense signaling network. In search of additional SA targets, we previously developed two sensitive approaches that utilize SA analogs in conjunction with either a photoaffinity labeling technique or surface plasmon resonance-based technology to identify and evaluate candidate SA-binding proteins (SABPs) from Arabidopsis. Using these approaches, we have now identified several members of the Arabidopsis glyceraldehyde 3-phosphate dehydrogenase (GAPDH) protein family, including two chloroplast-localized and two cytosolic isoforms, as SABPs. Cytosolic GAPDH is a well-known glycolytic enzyme; it also is an important host factor involved in the replication of Tomato bushy stunt virus (TBSV), a single-stranded RNA virus. Using a yeast cell-free extract, an in vivo yeast replication system, and plant protoplasts, we demonstrate that SA inhibits TBSV replication. SA does so by inhibiting the binding of cytosolic GAPDH to the negative (-)RNA strand of TBSV. Thus, this study reveals a novel molecular mechanism through which SA regulates virus replication.
Collapse
Affiliation(s)
- Miaoying Tian
- 1 Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A
| | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Guelke E, Bucan V, Liebsch C, Lazaridis A, Radtke C, Vogt PM, Reimers K. Identification of reference genes and validation for gene expression studies in diverse axolotl (Ambystoma mexicanum) tissues. Gene 2015; 560:114-23. [DOI: 10.1016/j.gene.2015.01.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 01/14/2015] [Indexed: 11/15/2022]
|
136
|
Ludvigsen M, Madsen C, Kamper P, Hamilton-Dutoit SJ, Bendix K, d'Amore F, Honoré B. Histologically transformed follicular lymphoma exhibits protein profiles different from both non-transformed follicular and de novo diffuse large B-cell lymphoma. Blood Cancer J 2015; 5:e293. [PMID: 25768407 PMCID: PMC4382659 DOI: 10.1038/bcj.2015.18] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- M Ludvigsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - C Madsen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - P Kamper
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | | | - K Bendix
- Institute of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - F d'Amore
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - B Honoré
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
137
|
S-Nitrosylation in neurogenesis and neuronal development. Biochim Biophys Acta Gen Subj 2014; 1850:1588-93. [PMID: 25527866 DOI: 10.1016/j.bbagen.2014.12.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/03/2014] [Accepted: 12/10/2014] [Indexed: 12/27/2022]
Abstract
BACKGROUND Nitric oxide (NO) is a pleiotropic messenger molecule. The multidimensional actions of NO species are, in part, mediated by their redox nature. Oxidative posttranslational modification of cysteine residues to regulate protein function, termed S-nitrosylation, constitutes a major form of redox-based signaling by NO. SCOPE OF REVIEW S-Nitrosylation directly modifies a number of cytoplasmic and nuclear proteins in neurons. S-Nitrosylation modulates neuronal development by reaction with specific proteins, including the transcription factor MEF2. This review focuses on the impact of S-nitrosylation on neurogenesis and neuronal development. MAJOR CONCLUSIONS Functional characterization of S-nitrosylated proteins that regulate neuronal development represents a rapidly emerging field. Recent studies reveal that S-nitrosylation-mediated redox signaling plays an important role in several biological processes essential for neuronal differentiation and maturation. GENERAL SIGNIFICANCE Investigation of S-nitrosylation in the nervous system has elucidated new molecular and cellular mechanisms for neuronal development. S-Nitrosylated proteins in signaling networks modulate key events in brain development. Dysregulation of this redox-signaling pathway may contribute to neurodevelopmental disabilities such as autism spectrum disorder (ASD). Thus, further elucidation of the involvement of S-nitrosylation in brain development may offer potential therapeutic avenues for neurodevelopmental disorders. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
|
138
|
White MR, Khan MM, Deredge D, Ross CR, Quintyn R, Zucconi BE, Wysocki VH, Wintrode PL, Wilson GM, Garcin ED. A dimer interface mutation in glyceraldehyde-3-phosphate dehydrogenase regulates its binding to AU-rich RNA. J Biol Chem 2014; 290:1770-85. [PMID: 25451934 DOI: 10.1074/jbc.m114.618165] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an enzyme best known for its role in glycolysis. However, extra-glycolytic functions of GAPDH have been described, including regulation of protein expression via RNA binding. GAPDH binds to numerous adenine-uridine rich elements (AREs) from various mRNA 3'-untranslated regions in vitro and in vivo despite its lack of a canonical RNA binding motif. How GAPDH binds to these AREs is still unknown. Here we discovered that GAPDH binds with high affinity to the core ARE from tumor necrosis factor-α mRNA via a two-step binding mechanism. We demonstrate that a mutation at the GAPDH dimer interface impairs formation of the second RNA-GAPDH complex and leads to changes in the RNA structure. We investigated the effect of this interfacial mutation on GAPDH oligomerization by crystallography, small-angle x-ray scattering, nano-electrospray ionization native mass spectrometry, and hydrogen-deuterium exchange mass spectrometry. We show that the mutation does not significantly affect GAPDH tetramerization as previously proposed. Instead, the mutation promotes short-range and long-range dynamic changes in regions located at the dimer and tetramer interface and in the NAD(+) binding site. These dynamic changes are localized along the P axis of the GAPDH tetramer, suggesting that this region is important for RNA binding. Based on our results, we propose a model for sequential GAPDH binding to RNA via residues located at the dimer and tetramer interfaces.
Collapse
Affiliation(s)
- Michael R White
- From the Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250
| | - Mohd M Khan
- From the Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250
| | - Daniel Deredge
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | - Christina R Ross
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, and
| | - Royston Quintyn
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210
| | - Beth E Zucconi
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, and
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210
| | - Patrick L Wintrode
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | - Gerald M Wilson
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, and
| | - Elsa D Garcin
- From the Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250,
| |
Collapse
|
139
|
Arias DG, Reinoso A, Sasoni N, Hartman MD, Iglesias AA, Guerrero SA. Kinetic and structural characterization of a typical two-cysteine peroxiredoxin from Leptospira interrogans exhibiting redox sensitivity. Free Radic Biol Med 2014; 77:30-40. [PMID: 25236736 DOI: 10.1016/j.freeradbiomed.2014.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 08/09/2014] [Accepted: 08/12/2014] [Indexed: 12/20/2022]
Abstract
Little is known about the mechanisms by which Leptospira interrogans, the causative agent of leptospirosis, copes with oxidative stress at the time it establishes persistent infection within its human host. We report the molecular cloning of a gene encoding a 2-Cys peroxiredoxin (LinAhpC) from this bacterium. After bioinformatic analysis we found that LinAhpC contains the characteristic GGIG and YF motifs present in peroxiredoxins that are sensitive to overoxidation (mainly eukaryotic proteins). These motifs are absent in insensitive prokaryotic enzymes. Recombinant LinAhpC showed activity as a thioredoxin peroxidase with sensitivity to overoxidation by H2O2 (Chyp 1% ~30 µM at pH 7.0 and 30°C). So far, Anabaena 2-Cys peroxiredoxin, Helicobacter pylori AhpC, and LinAhpC are the only prokaryotic enzymes studied with these characteristics. The properties determined for LinAhpC suggest that the protein could be critical for the antioxidant defense capacity in L. interrogans.
Collapse
Affiliation(s)
- Diego G Arias
- Instituto de Agrobiotecnología del Litoral (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, S3000ZAA Santa Fe, Argentina
| | - Anahí Reinoso
- Instituto de Agrobiotecnología del Litoral (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, S3000ZAA Santa Fe, Argentina
| | - Natalia Sasoni
- Instituto de Agrobiotecnología del Litoral (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, S3000ZAA Santa Fe, Argentina
| | - Matías D Hartman
- Instituto de Agrobiotecnología del Litoral (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, S3000ZAA Santa Fe, Argentina
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, S3000ZAA Santa Fe, Argentina
| | - Sergio A Guerrero
- Instituto de Agrobiotecnología del Litoral (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, S3000ZAA Santa Fe, Argentina.
| |
Collapse
|
140
|
Maeda K, Nagata H, Ojima M, Amano A. Proteomic and Transcriptional Analysis of Interaction between Oral Microbiota Porphyromonas gingivalis and Streptococcus oralis. J Proteome Res 2014; 14:82-94. [DOI: 10.1021/pr500848e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Kazuhiko Maeda
- Department
of Preventive
Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Hideki Nagata
- Department
of Preventive
Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Miki Ojima
- Department
of Preventive
Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Atsuo Amano
- Department
of Preventive
Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| |
Collapse
|
141
|
Kaido M, Abe K, Mine A, Hyodo K, Taniguchi T, Taniguchi H, Mise K, Okuno T. GAPDH--a recruits a plant virus movement protein to cortical virus replication complexes to facilitate viral cell-to-cell movement. PLoS Pathog 2014; 10:e1004505. [PMID: 25411849 PMCID: PMC4239097 DOI: 10.1371/journal.ppat.1004505] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 10/06/2014] [Indexed: 01/15/2023] Open
Abstract
The formation of virus movement protein (MP)-containing punctate structures on the cortical endoplasmic reticulum is required for efficient intercellular movement of Red clover necrotic mosaic virus (RCNMV), a bipartite positive-strand RNA plant virus. We found that these cortical punctate structures constitute a viral replication complex (VRC) in addition to the previously reported aggregate structures that formed adjacent to the nucleus. We identified host proteins that interacted with RCNMV MP in virus-infected Nicotiana benthamiana leaves using a tandem affinity purification method followed by mass spectrometry. One of these host proteins was glyceraldehyde 3-phosphate dehydrogenase-A (NbGAPDH-A), which is a component of the Calvin-Benson cycle in chloroplasts. Virus-induced gene silencing of NbGAPDH-A reduced RCNMV multiplication in the inoculated leaves, but not in the single cells, thereby suggesting that GAPDH-A plays a positive role in cell-to-cell movement of RCNMV. The fusion protein of NbGAPDH-A and green fluorescent protein localized exclusively to the chloroplasts. In the presence of RCNMV RNA1, however, the protein localized to the cortical VRC as well as the chloroplasts. Bimolecular fluorescence complementation assay and GST pulldown assay confirmed in vivo and in vitro interactions, respectively, between the MP and NbGAPDH-A. Furthermore, gene silencing of NbGAPDH-A inhibited MP localization to the cortical VRC. We discuss the possible roles of NbGAPDH-A in the RCNMV movement process.
Collapse
Affiliation(s)
- Masanori Kaido
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kazutomo Abe
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Akira Mine
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kiwamu Hyodo
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takako Taniguchi
- Institute for Enzyme Research, The University of Tokushima, Tokushima, Japan
| | - Hisaaki Taniguchi
- Institute for Enzyme Research, The University of Tokushima, Tokushima, Japan
| | - Kazuyuki Mise
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tetsuro Okuno
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
142
|
Shen H, Wang H, Liu Q, Liu H, Teng M, Li X. Structural insights into RNA recognition properties of glyceraldehyde-3-phosphate dehydrogenase 3 fromSaccharomyces cerevisiae. IUBMB Life 2014; 66:631-8. [DOI: 10.1002/iub.1313] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 09/08/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Hui Shen
- School of Life Sciences; University of Science and Technology of China, Hefei; Anhui People's Republic of China
| | - Hong Wang
- School of Life Sciences; University of Science and Technology of China, Hefei; Anhui People's Republic of China
| | - Qiao Liu
- School of Life Sciences; University of Science and Technology of China, Hefei; Anhui People's Republic of China
| | - Huihui Liu
- School of Life Sciences; University of Science and Technology of China, Hefei; Anhui People's Republic of China
| | - Maikun Teng
- School of Life Sciences; University of Science and Technology of China, Hefei; Anhui People's Republic of China
| | - Xu Li
- School of Life Sciences; University of Science and Technology of China, Hefei; Anhui People's Republic of China
| |
Collapse
|
143
|
Structural analysis of glyceraldehyde-3-phosphate dehydrogenase functional diversity. Int J Biochem Cell Biol 2014; 57:20-6. [PMID: 25286305 DOI: 10.1016/j.biocel.2014.09.026] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 09/26/2014] [Accepted: 09/27/2014] [Indexed: 11/23/2022]
Abstract
Multifunctional proteins provide a new mechanism to expand exponentially cell information and capability beyond that indicated by conventional gene analyses. As such, examination of their structure-function relationships provides a means to define the mechanisms through which cells accomplish critical yet disparate activities required for cell viability and survival. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) may be considered the quintessential multidimensional protein which exhibits a variety of functions unrelated to its classical role in energy production. This review discusses new insights into the structure-function mechanisms through which defined GAPDH amino acid domains are utilized for its diverse activities, the importance of its post-translational modification, and, intriguingly, the logic inherent in the presence or the absence of specific signaling domains.
Collapse
|
144
|
Baker BY, Shi W, Wang B, Palczewski K. High-resolution crystal structures of the photoreceptor glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with three and four-bound NAD molecules. Protein Sci 2014; 23:1629-39. [PMID: 25176140 DOI: 10.1002/pro.2543] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 11/09/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzes the oxidative phosphorylation of d-glyceraldehyde 3-phosphate (G3P) into 1,3-diphosphoglycerate (BGP) in the presence of the NAD cofactor. GAPDH is an important drug target because of its central role in glycolysis, and nonglycolytic processes such as nuclear RNA transport, DNA replication/repair, membrane fusion and cellular apoptosis. Recent studies found that GAPDH participates in the development of diabetic retinopathy and its progression after the cessation of hyperglycemia. Here, we report two structures for native bovine photoreceptor GAPDH as a homotetramer with differing occupancy by NAD, bGAPDH(NAD)4 , and bGAPDH(NAD)3 . The bGAPDH(NAD)4 was solved at 1.52 Å, the highest resolution for GAPDH. Structural comparison of the bGAPDH(NAD)4 and bGAPDH(NAD)3 models revealed novel details of conformational changes induced by cofactor binding, including a loop region (residues 54-56). Structure analysis of bGAPDH confirmed the importance of Phe34 in NAD binding, and demonstrated that Phe34 was stabilized in the presence of NAD but displayed greater mobility in its absence. The oxidative state of the active site Cys149 residue is regulated by NAD binding, because this residue was found oxidized in the absence of dinucleotide. The distance between Cys149 and His176 decreased upon NAD binding and Cys149 remained in a reduced state when NAD was bound. These findings provide an important structural step for understanding the mechanism of GAPDH activity in vision and its pathological role in retinopathies.
Collapse
Affiliation(s)
- Bo Y Baker
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, 44106
| | | | | | | |
Collapse
|
145
|
El Kadmiri N, Slassi I, El Moutawakil B, Nadifi S, Tadevosyan A, Hachem A, Soukri A. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Alzheimer's disease. ACTA ACUST UNITED AC 2014; 62:333-6. [PMID: 25246025 DOI: 10.1016/j.patbio.2014.08.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/29/2014] [Indexed: 01/23/2023]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a ubiquitous enzyme that catalyzes the sixth step of glycolysis and thus, serves to break down glucose for energy production. Beyond the traditional aerobic metabolism of glucose, recent studies have highlighted additional roles played by GAPDH in non-metabolic processes, such as control of gene expression and redox post-translational modifications. Neuroproteomics have revealed high affinity interactions between GAPDH and Alzheimer's disease-associated proteins, including the β-amyloid, β-amyloid precursor protein and tau. This neuronal protein interaction may lead to impairment of the GAPDH glycolytic function in Alzheimer's disease and may be a forerunner of its participation in apoptosis. The present review examines the crucial implication of GAPDH in neurodegenerative processes and clarifies its role in apoptotic cell death.
Collapse
Affiliation(s)
- N El Kadmiri
- Laboratory of Medical Genetics and Molecular Pathology, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco; Laboratory of Physiology and Molecular Genetics, Faculty of Sciences Aïn Chock, Hassan II University, Casablanca, Morocco.
| | - I Slassi
- Laboratory of Medical Genetics and Molecular Pathology, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco; Department of Neurology CHU IBN ROCHD, Casablanca, Morocco
| | - B El Moutawakil
- Laboratory of Medical Genetics and Molecular Pathology, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco; Department of Neurology CHU IBN ROCHD, Casablanca, Morocco
| | - S Nadifi
- Laboratory of Medical Genetics and Molecular Pathology, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - A Tadevosyan
- Department of Medicine, Université de Montréal, Montréal, Québec, H3C 3J7, Canada
| | - A Hachem
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Montreal, Quebec, H1T 1C8, Canada
| | - A Soukri
- Laboratory of Physiology and Molecular Genetics, Faculty of Sciences Aïn Chock, Hassan II University, Casablanca, Morocco
| |
Collapse
|
146
|
Martín JF. Calcium-containing phosphopeptides pave the secretory pathway for efficient protein traffic and secretion in fungi. Microb Cell Fact 2014; 13:117. [PMID: 25205075 PMCID: PMC4180148 DOI: 10.1186/s12934-014-0117-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/01/2014] [Indexed: 02/07/2023] Open
Abstract
Casein phosphopeptides (CPPs) containing chelated calcium drastically increase the secretion of extracellular homologous and heterologous proteins in filamentous fungi. Casein phosphopeptides released by digestion of alpha - and beta-casein are rich in phosphoserine residues (SerP). They stimulate enzyme secretion in the gastrointestinal tract and enhance the immune response in mammals, and are used as food supplements. It is well known that casein phosphopeptides transport Ca2+ across the membranes and play an important role in Ca2+ homeostasis in the cells. Addition of CPPs drastically increases the production of heterologous proteins in Aspergillus as host for industrial enzyme production. Recent proteomics studies showed that CPPs alter drastically the vesicle-mediated secretory pathway in filamentous fungi, apparently because they change the calcium concentration in organelles that act as calcium reservoirs. In the organelles calcium homeostasis a major role is played by the pmr1 gene, that encodes a Ca2+/Mn2+ transport ATPase, localized in the Golgi complex; this transporter controls the balance between intra-Golgi and cytoplasmic Ca2+ concentrations. A Golgi-located casein kinase (CkiA) governs the ER to Golgi directionality of the movement of secretory proteins by interacting with the COPII coat of secretory vesicles when they reach the Golgi. Mutants defective in the casein-2 kinase CkiA show abnormal targeting of some secretory proteins, including cytoplasmic membrane amino acid transporters that in ckiA mutants are miss-targeted to vacuolar membranes. Interestingly, addition of CPPs increases a glyceraldehyde-3-phpshate dehydrogenase protein that is known to associate with microtubules and act as a vesicle/membrane fusogenic agent. In summary, CPPs alter the protein secretory pathway in fungi adapting it to a deregulated protein traffic through the organelles and vesicles what results in a drastic increase in secretion of heterologous and also of some homologous proteins.
Collapse
Affiliation(s)
- Juan F Martín
- Área de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071 León, Spain
| |
Collapse
|
147
|
López-Landavery EA, Portillo-López A, Gallardo-Escárate C, Del Río-Portilla MA. Selection of reference genes as internal controls for gene expression in tissues of red abalone Haliotis rufescens (Mollusca, Vetigastropoda; Swainson, 1822). Gene 2014; 549:258-65. [PMID: 25101866 DOI: 10.1016/j.gene.2014.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 07/04/2014] [Accepted: 08/01/2014] [Indexed: 01/05/2023]
Abstract
The red abalone Haliotis rufescens is one of the most important species for aquaculture in Baja California, México, and despite this, few gene expression studies have been done in tissues such as gill, head and gonad. For this purpose, reverse transcription and quantitative real time PCR (RT-qPCR) is a powerful tool for gene expression evaluation. For a reliable analysis, however, it is necessary to select and validate housekeeping genes that allow proper transcription quantification. Stability of nine housekeeping genes (ACTB, BGLU, TUBB, CY, GAPDH, HPRTI, RPL5, SDHA and UBC) was evaluated in different tissues of red abalone (gill, head and gonad/digestive gland). Four-fold serial dilutions of cDNA (from 25 ngμL(-1) to 0.39 ngμL(-1)) were used to prepare the standard curve, and it showed gene efficiencies between 0.95 and 0.99, with R(2)=0.99. geNorm and NormFinder analysis showed that RPL5 and CY were the most stable genes considering all tissues, whereas in gill HPRTI and BGLU were most stable. In gonad/digestive gland, RPL5 and TUBB were the most stable genes with geNorm, while SDHA and HPRTI were the best using NormFinder. Similarly, in head the best genes were RPL5 and UBC with geNorm, and GAPDH and CY with NormFinder. The technical variability analysis with RPL5 and abalone gonad/digestive gland tissue indicated a high repeatability with a variation coefficient within groups ≤ 0.56% and between groups ≤ 1.89%. These results will help us for further research in reproduction, thermoregulation and endocrinology in red abalone.
Collapse
Affiliation(s)
- Edgar A López-Landavery
- Laboratorio de Genética, Departamento de Acuicultura, Centro de Investigación Científica y de Educación Superior de Ensenada, Carretera Tijuana-Ensenada N° 3918, Zona Playitas C.P 22860, Ensenada BC, Mexico
| | - Amelia Portillo-López
- Facultad de Ciencias, Universidad Autónoma de Baja California, Km 103 Carretera Tijuana-Ensenada, C.P 22860, Ensenada BC, Mexico
| | - Cristian Gallardo-Escárate
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P. O. Box 160-C, Concepción, Chile
| | - Miguel A Del Río-Portilla
- Laboratorio de Genética, Departamento de Acuicultura, Centro de Investigación Científica y de Educación Superior de Ensenada, Carretera Tijuana-Ensenada N° 3918, Zona Playitas C.P 22860, Ensenada BC, Mexico.
| |
Collapse
|
148
|
Perrotta I, Aquila S, Mazzulla S. Expression profile and subcellular localization of GAPDH in the smooth muscle cells of human atherosclerotic plaque: an immunohistochemical and ultrastructural study with biological therapeutic perspectives. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2014; 20:1145-1157. [PMID: 24851941 DOI: 10.1017/s1431927614001020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has long been considered a classical glycolytic enzyme involved exclusively in cytosolic energy production. Several recent studies, however, have demonstrated that GAPDH is a multifunctional protein whose presence and activity can be regulated by disease states and/or experimental manipulation. Expression levels of GAPDH have been shown to be altered in certain tumors as well as in proliferating and differentiating cells. Since dedifferentiation and proliferation of smooth muscle cells (SMCs) are important features of human atherosclerosis, we have characterized the expression profile of GAPDH in the SMCs of atherosclerotic plaques and its putative interrelationship with the synthetic/proliferative status of these cells utilizing the proliferating cell nuclear antigen (PCNA) antibody, a valuable marker of cell proliferation. Western blot data revealed that GAPDH was significantly upregulated in atherosclerotic plaque specimens. Immunohistochemical stains demonstrated that GAPDH accumulated in the nucleus of dedifferentiated SMCs that also showed positive immunoreactivity for PCNA, but remained cytoplasmatic in the contractile SMCs (PCNA-negative), thus reflecting the proliferative, structural and synthetic differences between them. We suggest that, in human atherosclerotic plaque, GAPDH might exert additional functions that are independent of its well-documented glycolytic activity and might play key roles in development of the disease.
Collapse
Affiliation(s)
- Ida Perrotta
- 1Department of Biology,Ecology and Earth Science (Di.B.E.S.T.),University of Calabria - Arcavacata,Rende 87036,Cosenza,Italy
| | - Saveria Aquila
- 2Centro Sanitario - Department of Pharmacy and Sciences of Health and Nutrition,University of Calabria - Arcavacata,Rende 87036,Cosenza,Italy
| | - Sergio Mazzulla
- 1Department of Biology,Ecology and Earth Science (Di.B.E.S.T.),University of Calabria - Arcavacata,Rende 87036,Cosenza,Italy
| |
Collapse
|
149
|
The glyceraldehyde 3-phosphate dehydrogenase gene (GAPDH) is regulated by myeloid zinc finger 1 (MZF-1) and is induced by calcitriol. Biochem Biophys Res Commun 2014; 451:137-41. [PMID: 25065746 DOI: 10.1016/j.bbrc.2014.07.082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 07/17/2014] [Indexed: 11/22/2022]
Abstract
Recently, new tissue-specific functions for glyceraldehyde 3-phosphate dehydrogenase (GAPDH) have been discovered, aside from its archetypal function in glycolysis. This casts doubt on the legitimacy of using GAPDH as a normalization control for gene expression analysis. We report the binding of the myeloid zinc finger-1 (MZF-1) transcription factor to the human GAPDH promoter. Furthermore, we show that up-regulation of MZF-1 by 1,25-dihydroxyvitamin D3 (calcitriol) induces GAPDH in HS-5 stromal fibroblasts, while knockdown of MZF1 by shRNA leads to a concomitant reduction in GAPDH expression. This argues that MZF-1 regulates GAPDH, indicating a role for GAPDH in calcitriol-mediated signaling.
Collapse
|
150
|
Seasonal variations in developmental competence and relative abundance of gene transcripts in buffalo (Bubalus bubalis) oocytes. Theriogenology 2014; 82:1055-67. [PMID: 25156970 DOI: 10.1016/j.theriogenology.2014.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 06/29/2014] [Accepted: 07/03/2014] [Indexed: 11/20/2022]
Abstract
Hot season is a major constraint to production and reproduction in buffaloes. The present work aimed to investigate the effect of season on ovarian function, developmental competence, and the relative abundance of gene expression in buffalo oocytes. Three experiments were conducted. In experiment 1, pairs of buffalo ovaries were collected during cold season (CS, autumn and winter) and hot season (HS, spring and summer), and the number of antral follicles was recorded. Cumulus oocyte complexes (COCs) were aspirated and evaluated according to their morphology into four Grades. In experiment 2, Grade A and B COCs collected during CS and HS were in vitro matured (IVM) for 24 hours under standard conditions at 38.5 °C in a humidified air of 5% CO2. After IVM, cumulus cells were removed and oocytes were fixed, stained with 1% aceto-orcein, and evaluated for nuclear configuration. In vitro matured buffalo oocytes harvested during CS or HS were in vitro fertilized (IVF) using frozen-thawed buffalo semen and cultured in vitro to the blastocyst stage. In experiment 3, buffalo COCs and in vitro matured oocytes were collected during CS and HS, and then snap frozen in liquid nitrogen for gene expression analysis. Total RNA was extracted from COCs and in vitro matured oocytes, and complementary DNA was synthesized; quantitative Reverse Transcription-Polymerase Chain Reaction was performed for eight candidate genes including GAPDH, ACTB, B2M, GDF9, BMP15, HSP70, and SOD2. The results indicated that HS significantly (P < 0.01) decreased the number of antral follicles and the number of COCs recovered per ovary. The number of Grade A, B, and C COCs was lower (P < 0.05) during HS than CS. In vitro maturation of buffalo oocytes during HS significantly (P < 0.01) reduced the number of oocytes reaching the metaphase II stage and increased the percentage of degenerated oocytes compared with CS. Oocytes collected during HS also showed signs of cytoplasmic degeneration. After IVF, cleavage rate was lower (P < 0.01) for oocytes collected during HS, and the percentage of oocytes arrested at the two-cell stage was higher (P < 0.01) than oocytes IVF during CS. Oocytes matured during CS showed a higher (P < 0.01) blastocyst rate than those matured during HS. Also, COCs recovered in HS showed significant (P < 0.05) upregulation of HSP70 mRNA expression compared with those recovered in CS. For in vitro matured oocytes, CS down regulated the transcript abundance of ACTB and upregulated GAPDH and HSP70 mRNA levels compared with HS condition. In conclusion, HS could impair buffalo fertility by reducing the number of antral follicles and oocyte quality. In vitro maturation of buffalo oocytes during HS impairs their nuclear and cytoplasmic maturation, fertilization, and subsequent embryo development to the morula and blastocyst stages. This could be in part because of the altered gene expression found in COCs and in vitro matured oocytes.
Collapse
|