101
|
Burger JA, Chiorazzi N. B cell receptor signaling in chronic lymphocytic leukemia. Trends Immunol 2013; 34:592-601. [PMID: 23928062 DOI: 10.1016/j.it.2013.07.002] [Citation(s) in RCA: 271] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/09/2013] [Accepted: 07/09/2013] [Indexed: 02/07/2023]
Abstract
B cell receptor (BCR) signaling plays an important pathogenic role in chronic lymphocytic leukemia (CLL) and B cell lymphomas, based on structural restrictions of the BCR, and BCR-dependent survival and growth of the malignant B cells. In CLL and lymphoma subtypes, ligand-independent ('tonic') and ligand-dependent BCR signaling have been characterized, which can involve mutations of BCR pathway components or be triggered by (auto)antigens present in the tissue microenvironment. In CLL, based on high response rates and durable remissions in early-stage clinical trials, there is rapid clinical development of inhibitors targeting BCR-associated kinases [Bruton's tyrosine kinase (BTK), phosphoinositide 3-kinase (PI3K)δ], which will change treatment paradigms in CLL and other B cell malignancies. Here, we discuss the evolution of this field, from BCR-related prognostic markers, to mechanisms of BCR activation, and targeting of BCR-associated kinases, the emerging Achilles' heel in CLL pathogenesis.
Collapse
MESH Headings
- Animals
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphocyte Activation/immunology
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction/immunology
Collapse
Affiliation(s)
- Jan A Burger
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| | | |
Collapse
|
102
|
Zheng Z, Li Z, Chen S, Pan J, Ma X. Tetramethylpyrazine attenuates TNF-α-induced iNOS expression in human endothelial cells: Involvement of Syk-mediated activation of PI3K-IKK-IκB signaling pathways. Exp Cell Res 2013; 319:2145-51. [PMID: 23726836 DOI: 10.1016/j.yexcr.2013.05.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/03/2013] [Accepted: 05/21/2013] [Indexed: 02/06/2023]
Abstract
Endothelial cells produce nitric oxide (NO) by activation of constitutive nitric oxide synthase (NOS) and transcription of inducible NO synthase (iNOS). We explored the effect of tetramethylpyrazine (TMP), a compound derived from chuanxiong, on tumor necrosis factor (TNF)-α-induced iNOS in human umbilical vein endothelial cells (HUVECs) and explored the signal pathways involved by using RT-PCR and Western blot. TMP suppressed TNF-α-induced expression of iNOS by inhibiting IκB kinase (IKK) phosphorylation, IκB degradation and nuclear factor κB (NF-κB) nuclear translocation, which were required for NO gene transcription. Exposure to wortmannin abrogated IKK/IκB/NF-κB-mediated iNOS expression, suggesting activation of such a signal pathway might be phosphoinositide-3-kinase (PI3K) dependent. Spleen tyrosine kinase (Syk) inhibitor piceatannol significantly inhibited NO production. Furthermore, piceatannol obviously suppressed TNF-α-induced IκB phosphorylation and the downstream NF-κB activation, suggesting that Syk is an upstream key regulator in the activation of PI3K/IKK/IκB-mediated signaling. TMP significantly inhibited TNF-α-induced phosphorylation of Syk and PI3K. Our data indicate that TMP might repress iNOS expression, at least in part, through its inhibitory effect of Syk-mediated PI3K phosphorylation in TNF-α-stimulated HUVECs.
Collapse
Affiliation(s)
- Zhen Zheng
- Department of Intensive Care Unit, the First Affiliated Hospital, China Medical University, Bei-er Road 92, Shenyang 110001, Liaoning Province, PR China
| | | | | | | | | |
Collapse
|
103
|
Yan D, Quan H, Wang L, Liu F, Liu H, Chen J, Cao X, Ge B. Enteropathogenic Escherichia coli Tir recruits cellular SHP-2 through ITIM motifs to suppress host immune response. Cell Signal 2013; 25:1887-94. [PMID: 23707390 DOI: 10.1016/j.cellsig.2013.05.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 05/09/2013] [Accepted: 05/12/2013] [Indexed: 11/26/2022]
Abstract
Immune responses to pathogens are regulated by immune receptors containing either an immunoreceptor tyrosine-based activation motif (ITAM) or an immunoreceptor tyrosine-based inhibitory motif (ITIM). The important diarrheal pathogen enteropathogenic Escherichia coli (EPEC) require delivery and insertion of the bacterial translocated intimin receptor (Tir) into the host plasma membrane for pedestal formation. The C-terminal region of Tir, encompassing Y483 and Y511, shares sequence similarity with cellular ITIMs. Here, we show that EPEC Tir suppresses the production of inflammatory cytokines by recruitment of SHP-2 and subsequent deubiquitination of TRAF6 in an ITIM dependent manner. Our findings revealed a novel mechanism by which the EPEC utilize its ITIM motifs to suppress and evade the host innate immune response, which could lead to the development of novel therapeutics to prevent bacterial infection.
Collapse
Affiliation(s)
- Dapeng Yan
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Abstract
Kawasaki disease (KD) is a diffuse vasculitis occurring in children and showing predilection for the coronary arteries. The etiology remains unknown, although some risk factors for susceptibility have been defined. Asian ethnicity is a primary risk factor. Several theories have circulated regarding the differences in KD ethnic incidence. Those theories implicating genetic differences among populations as the cause for this discrepancy have dominated and are areas of active investigation by multiple research groups. Differences in diet between Asians and Westerners are touted as reasons for certain ethnic-related discrepancies in susceptibility to cardiovascular disease and cancer in adults. Surprisingly, these cultural dietary differences have not been previously considered as the source of the discrepancy in KD incidence among these ethnic populations. Recent data from genetic studies have highlighted the role of specific immune receptors in the pathogenesis of KD. Functions of the Fcγ receptors (FcGRs) are modulated by isoflavones in soy, in particular, genistein. Epidemiological data from Hawaiian populations support an association between soy consumption and KD. These observations form the basis of a hypothesis: isoflavones participate in KD pathogenesis by modulating function of the FcGRs and by disrupting the balance between activation and inhibition of the inflammatory response.
Collapse
Affiliation(s)
- Michael A Portman
- Division of Cardiology, Department of Pediatrics, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
105
|
Spurgeon SE, Coffey G, Fletcher LB, Burke R, Tyner JW, Druker BJ, Betz A, DeGuzman F, Pak Y, Baker D, Pandey A, Hollenbach SJ, Sinha U, Loriaux MM. The selective SYK inhibitor P505-15 (PRT062607) inhibits B cell signaling and function in vitro and in vivo and augments the activity of fludarabine in chronic lymphocytic leukemia. J Pharmacol Exp Ther 2013; 344:378-87. [PMID: 23220742 PMCID: PMC3558816 DOI: 10.1124/jpet.112.200832] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/03/2012] [Indexed: 12/28/2022] Open
Abstract
B-cell receptor (BCR) associated kinases including spleen tyrosine kinase (SYK) contribute to the pathogenesis of B-cell malignancies. SYK is persistently phosphorylated in a subset of non-Hodgkin lymphoma (NHL) and chronic lymphocytic leukemia (CLL), and SYK inhibition results in abrogation of downstream kinase activity and apoptosis. P505-15 (also known as PRT062607) is a novel, highly selective, and orally bioavailable small molecule SYK inhibitor (SYK IC(50) = 1 nM) with anti-SYK activity that is at least 80-fold greater than its affinity for other kinases. We evaluated the preclinical characteristics of P505-15 in models of NHL and CLL. P505-15 successfully inhibited SYK-mediated B-cell receptor signaling and decreased cell viability in NHL and CLL. Oral dosing in mice prevented BCR-mediated splenomegaly and significantly inhibited NHL tumor growth in a xenograft model. In addition, combination treatment of primary CLL cells with P505-15 plus fludarabine produced synergistic enhancement of activity at nanomolar concentrations. Our findings support the ongoing development of P505-15 as a therapeutic agent for B-cell malignancies. A dose finding study in healthy volunteers has been completed.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/pharmacokinetics
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Apoptosis/drug effects
- B-Lymphocytes/drug effects
- B-Lymphocytes/enzymology
- B-Lymphocytes/pathology
- Cell Line, Tumor
- Cell Survival/drug effects
- Cyclohexylamines/administration & dosage
- Cyclohexylamines/pharmacokinetics
- Cyclohexylamines/pharmacology
- Cyclohexylamines/therapeutic use
- Dose-Response Relationship, Drug
- Drug Synergism
- Flow Cytometry
- Humans
- Intracellular Signaling Peptides and Proteins/antagonists & inhibitors
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/enzymology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphoma, Non-Hodgkin/drug therapy
- Lymphoma, Non-Hodgkin/enzymology
- Lymphoma, Non-Hodgkin/pathology
- Mice
- Mice, Inbred BALB C
- Mice, SCID
- Phosphorylation
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Pyrimidines/administration & dosage
- Pyrimidines/pharmacokinetics
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- Spleen/drug effects
- Spleen/enzymology
- Syk Kinase
- Vidarabine/administration & dosage
- Vidarabine/analogs & derivatives
- Vidarabine/pharmacokinetics
- Vidarabine/pharmacology
- Vidarabine/therapeutic use
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Stephen E Spurgeon
- Knight Cancer Institute, Oregon Health & Science University, 3181 Sam Jackson Park Road, Portland, OR 97239, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Stepanek O, Draber P, Drobek A, Horejsi V, Brdicka T. Nonredundant roles of Src-family kinases and Syk in the initiation of B-cell antigen receptor signaling. THE JOURNAL OF IMMUNOLOGY 2013; 190:1807-18. [PMID: 23335753 DOI: 10.4049/jimmunol.1202401] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
When a BCR on a mature B cell is engaged by its ligand, the cell becomes activated, and the Ab-mediated immune response can be triggered. The initiation of BCR signaling is orchestrated by kinases of the Src and Syk families. However, the proximal BCR-induced phosphorylation remains incompletely understood. According to a model of sequential activation of kinases, Syk acts downstream of Src family kinases (SFKs). In addition, signaling independent of SFKs and initiated by Syk has been proposed. Both hypotheses lack sufficient evidence from relevant B cell models, mainly because of the redundancy of Src family members and the importance of BCR signaling for B cell development. We addressed this issue by analyzing controlled BCR triggering ex vivo on primary murine B cells and on murine and chicken B cell lines. Chemical and Csk-based genetic inhibitor treatments revealed that SFKs are required for signal initiation and Syk activation. In addition, ligand and anti-BCR Ab-induced signaling differ in their sensitivity to the inhibition of SFKs.
Collapse
Affiliation(s)
- Ondrej Stepanek
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic
| | | | | | | | | |
Collapse
|
107
|
Kraskouskaya D, Duodu E, Arpin CC, Gunning PT. Progress towards the development of SH2 domain inhibitors. Chem Soc Rev 2013; 42:3337-70. [DOI: 10.1039/c3cs35449k] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
108
|
Williams JW, Tjota MY, Sperling AI. The contribution of allergen-specific IgG to the development of th2-mediated airway inflammation. J Allergy (Cairo) 2012; 2012:236075. [PMID: 23150737 PMCID: PMC3485540 DOI: 10.1155/2012/236075] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 09/18/2012] [Indexed: 01/01/2023] Open
Abstract
In both human asthmatics and animal models of allergy, allergen-specific IgG can contribute to Th2-mediated allergic inflammation. Mouse models have elucidated an important role for IgG and Fc-gamma receptor (FcγR) signaling on antigen presenting cells (APC) for the induction of airway inflammation. These studies suggest a positive feedback loop between IgG produced by the adaptive B cell response and FcγR signaling on innate immune cells. Studies of IgG and FcγRs in humans with asthma or allergic lung disease have been more controversial. Some reports have identified associations between allergen-specific IgG and severity of allergic responses, while other studies have found associations of IgG subclass IgG4 with allergic tolerance. In this paper, we review the literature to help define the nature of IgG and FcγR signaling on innate immune cells and how it contributes to the development of allergic immune responses.
Collapse
Affiliation(s)
- Jesse W. Williams
- Committee on Molecular Pathology and Molecular Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Melissa Y. Tjota
- Interdisciplinary Scientist Training Program and Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Anne I. Sperling
- Committee on Molecular Pathology and Molecular Medicine, University of Chicago, Chicago, IL 60637, USA
- Interdisciplinary Scientist Training Program and Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
109
|
Castillo M, Forns P, Erra M, Mir M, López M, Maldonado M, Orellana A, Carreño C, Ramis I, Miralpeix M, Vidal B. Highly potent aminopyridines as Syk kinase inhibitors. Bioorg Med Chem Lett 2012; 22:5419-23. [DOI: 10.1016/j.bmcl.2012.07.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/09/2012] [Accepted: 07/11/2012] [Indexed: 11/29/2022]
|
110
|
Effect of locally administered Syk siRNA on allergen-induced arthritis and asthma. Mol Immunol 2012; 53:52-9. [PMID: 22796951 DOI: 10.1016/j.molimm.2012.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/03/2012] [Accepted: 06/12/2012] [Indexed: 11/23/2022]
Abstract
New approaches for the treatment of inflammatory disorders such as rheumatic arthritis (RA) and inflammatory lung disease (asthma) are needed because a significant population of patients do not experience sustained relief with currently available therapies. The tyrosine kinase Syk plays a crucial role in inflammatory signaling pathways and has gained much attention as a potential target for treatment of inflammatory disorders. We have shown that our Syk siRNA injected directly into limb joints of arthritic mice, diminishes joint swelling and reduces levels of Syk kinase and inflammatory cytokines in joint tissue. Further, our Syk siRNA, administered via nasal instillation, inhibits recruitment of inflammatory cells to the bronchoalveolar fluid of allergen-sensitized mice. We propose that targeting Syk via localized application of Syk siRNA provides an opportunity for specific knockdown of Syk kinase with minimal potential for systemic effects.
Collapse
|
111
|
Robak T, Robak E. Tyrosine kinase inhibitors as potential drugs for B-cell lymphoid malignancies and autoimmune disorders. Expert Opin Investig Drugs 2012; 21:921-947. [PMID: 22612424 DOI: 10.1517/13543784.2012.685650] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION In the last few years, several tyrosine kinase inhibitors (TKIs) have been synthesized and become available for preclinical studies and clinical trials. This article summarizes recent achievements in the mechanism of action, pharmacological properties, and clinical activity and toxicity, as well as the emerging role of TKIs in lymphoid malignancies, allergic diseases, and autoimmune disorders. AREAS COVERED A literature review was conducted of the MEDLINE database PubMed for articles in English. Publications from 2000 through January 2012 were scrutinized. The search terms used were Bruton's tyrosine kinase (Btk) inhibitors, PCI-32765, GDC-0834, LFM-A13, AVL-101, AVL-292, spleen tyrosine kinase (Syk) inhibitors, R343, R406, R112, R788, fostamatinib, BAY-61-3606, C-61, piceatannol, Lyn, imatinib, nilotinib, bafetinib, dasatinib, GDC-0834, PP2, SU6656 in conjunction with lymphoid malignancy, NHL, CLL, autoimmune disease, allergic disease, asthma, and rheumatoid arthritis. Conference proceedings from the previous 5 years of the American Society of Hematology, European Hematology Association, American Society of Clinical Oncology, and ACR/ARHP Annual Scientific Meetings were searched manually. Additional relevant publications were obtained by reviewing the references from the chosen articles. EXPERT OPINION The use of TKIs, especially inhibitors of Btk, Syk, and Lyn, is a promising new strategy for targeted treatment of B-cell lymphoid malignancies, autoimmune disorders and allergic diseases. However, definitive data from ongoing and future clinical trials will aid in better defining the status of TKIs in the treatment of these disorders.
Collapse
Affiliation(s)
- Tadeusz Robak
- Medical University of Lodz, Department of Hematology, Lodz, Poland.
| | | |
Collapse
|
112
|
Osteosarcoma Phenotype Is Inhibited by 3,4-Methylenedioxy-β-nitrostyrene. Sarcoma 2012; 2012:479712. [PMID: 22701331 PMCID: PMC3371351 DOI: 10.1155/2012/479712] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 02/20/2012] [Indexed: 11/18/2022] Open
Abstract
β-nitrostyrene compounds, such as 3,4-methylenedioxy-β-nitrostyrene (MNS), inhibit growth and induce apoptosis in tumor cells, but no reports have investigated their role in osteosarcoma. In this study, human osteosarcoma cell families with cell lines of varying tumorigenic and metastatic potential were utilized. Scrape motility assays, colony formation assays, and colony survival assays were performed with osteosarcoma cell lines, both in the presence and absence of MNS. Effects of MNS on human osteoblasts and airway epithelial cells were assessed in monolayer cultures. MNS decreased metastatic cell line motility by 72–76% and colony formation by 95–100%. MNS consistently disrupted preformed colonies in a time-dependent and dose-dependent manner. MNS had similar effects on human osteoblasts but little effect on airway epithelial cells. An inactive analog of MNS had no detectable effects, demonstrating specificity. MNS decreases motility and colony formation of osteosarcoma cells and disrupts preformed cell colonies, while producing little effect on pulmonary epithelial cells.
Collapse
|
113
|
Hepper I, Schymeinsky J, Weckbach LT, Jakob SM, Frommhold D, Sixt M, Laschinger M, Sperandio M, Walzog B. The Mammalian Actin-Binding Protein 1 Is Critical for Spreading and Intraluminal Crawling of Neutrophils under Flow Conditions. THE JOURNAL OF IMMUNOLOGY 2012; 188:4590-601. [DOI: 10.4049/jimmunol.1100878] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
114
|
Balakrishnan K, Gandhi V. Protein kinases: emerging therapeutic targets in chronic lymphocytic leukemia. Expert Opin Investig Drugs 2012; 21:409-23. [PMID: 22409342 DOI: 10.1517/13543784.2012.668526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Although protein kinases are primary targets for inhibition in hematological malignancies, until recently their contribution to chronic lymphocytic leukemia (CLL) was poorly understood. Insights into B-cell receptor signaling and its role in regulating key cellular functions have shed light on candidate protein kinases that are aberrantly activated in CLL. In this regard, protein kinases are now considered as potential drug targets in CLL. AREA COVERED This review has covered signaling pathways and associated protein kinases in CLL and the kinase inhibitors currently available in preclinical and clinical investigations. Individual protein kinases that are abnormally active in CLL and the functional consequences of their inhibition are discussed. EXPERT OPINION A growing body of evidence suggests that protein kinases are druggable targets for patients with CLL. The emergence of novel and bio-available kinase inhibitors and their promising clinical activity in CLL underscore the oncogenic role of kinases in leukemogenesis. Further investigations directed towards their role as single agents or in combinations may provide insight into understanding the substantial role of kinase-mediated signal transduction pathways and their inhibition in B- CLL.
Collapse
Affiliation(s)
- Kumudha Balakrishnan
- The University of Texas MD Anderson Cancer Center, Department of Experimental Therapeutics, Houston, TX 77030, USA.
| | | |
Collapse
|
115
|
Sun X, Phan TN, Jung SH, Kim SY, Cho JU, Lee H, Woo SH, Park TK, Yang BS. LCB 03-0110, a novel pan-discoidin domain receptor/c-Src family tyrosine kinase inhibitor, suppresses scar formation by inhibiting fibroblast and macrophage activation. J Pharmacol Exp Ther 2012; 340:510-9. [PMID: 22128347 DOI: 10.1124/jpet.111.187328] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Wound healing generally induces an inflammatory response associated with tissue fibrosis in which activated macrophage and myofibroblast cells are primarily involved. Although this is known to be the underlying mechanism for scarring and various fibrotic pathologies, no effective intervention is currently available. We identified (3-(2-(3-(morpholinomethyl)phenyl)thieno[3,2-b]pyridin-7-ylamino)phenol (LCB 03-0110), a thienopyridine derivative, as a potent inhibitor of discoidin domain receptor family tyrosine kinases and discovered that this compound strongly inhibits several tyrosine kinases, including the c-Src family, spleen tyrosine kinase, Bruton's tyrosine kinase, and vascular endothelial growth factor receptor 2, which are important for immune cell signaling and inflammatory reactions. LCB 03-0110 suppressed the proliferation and migration of primary dermal fibroblasts induced by transforming growth factor β1 and type I collagen, and this result correlated with the inhibition ability of the compound against enhanced expression of α-smooth muscle actin and activation of Akt1 and focal adhesion kinase. In J774A.1 macrophage cells activated by lipopolysaccharide LCB 03-0110 inhibited cell migration and nitric oxide, inducible nitric-oxide synthase, cyclooxygenase 2, and tumor necrosis factor-α synthesis. LCB 03-0110 applied topically to full excisional wounds on rabbit ears suppressed the accumulation of myofibroblast and macrophage cells in the healing wound and reduced hypertrophic scar formation after wound closing, without delaying the wound closing process. Taken together, the pharmacological activities of LCB 03-0110 suggest that it could be an effective agent for suppressing fibroinflammation by simultaneously targeting activated fibroblasts and macrophages.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Korea Institute of Science and Technology, 39-1, Hawolgok-Dong, Sungbuk-Ku, Seoul 136-791, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
|
117
|
Singh R, Masuda ES, Payan DG. Discovery and development of spleen tyrosine kinase (SYK) inhibitors. J Med Chem 2012; 55:3614-43. [PMID: 22257213 DOI: 10.1021/jm201271b] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rajinder Singh
- Rigel, Inc., 1180 Veterans Boulevard, South San Francisco, California 94080, USA.
| | | | | |
Collapse
|
118
|
Coffey G, DeGuzman F, Inagaki M, Pak Y, Delaney SM, Ives D, Betz A, Jia ZJ, Pandey A, Baker D, Hollenbach SJ, Phillips DR, Sinha U. Specific inhibition of spleen tyrosine kinase suppresses leukocyte immune function and inflammation in animal models of rheumatoid arthritis. J Pharmacol Exp Ther 2012; 340:350-9. [PMID: 22040680 DOI: 10.1124/jpet.111.188441] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Based on genetic studies that establish the role of spleen tyrosine kinase (Syk) in immune function, inhibitors of this kinase are being investigated as therapeutic agents for inflammatory diseases. Because genetic studies eliminate both adapter functions and kinase activity of Syk, it is difficult to delineate the effect of kinase inhibition alone as would be the goal with small-molecule kinase inhibitors. We tested the hypothesis that specific pharmacological inhibition of Syk activity retains the immunomodulatory potential of Syk genetic deficiency. We report here on the discovery of (4-(3-(2H-1,2,3-triazol-2-yl)phenylamino)-2-((1R,2S)-2-aminocyclohexylamino) pyrimidine-5-carboxamide acetate (P505-15), a highly specific and potent inhibitor of purified Syk (IC50 1-2 nM). In human whole blood, P505-15 potently inhibited B cell antigen receptor-mediated B cell signaling and activation (IC50 0.27 and 0.28 μM, respectively) and Fcε receptor 1-mediated basophil degranulation (IC50 0.15 μM). Similar levels of ex vivo inhibition were measured after dosing in mice (Syk signaling IC50 0.32 μM). Syk-independent signaling and activation were unaffected at much higher concentrations, demonstrating the specificity of kinase inhibition in cellular systems. Oral administration of P505-15 produced dose-dependent anti-inflammatory activity in two rodent models of rheumatoid arthritis. Statistically significant efficacy was observed at concentrations that specifically suppressed Syk activity by ∼67%. Thus specific Syk inhibition can mimic Syk genetic deficiency to modulate immune function, providing a therapeutic strategy in P505-15 for the treatment of human diseases.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Arthritis, Experimental/complications
- Arthritis, Experimental/pathology
- Arthritis, Experimental/prevention & control
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Basophils/drug effects
- Basophils/immunology
- Biocatalysis/drug effects
- Blood/drug effects
- Blood/immunology
- Blood/metabolism
- Cell Degranulation/drug effects
- Cell Line
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cyclohexylamines/administration & dosage
- Cyclohexylamines/pharmacokinetics
- Cyclohexylamines/pharmacology
- Cyclohexylamines/therapeutic use
- Disease Models, Animal
- Edema/complications
- Edema/pathology
- Edema/prevention & control
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Female
- Foot/pathology
- Humans
- Inhibitory Concentration 50
- Intracellular Signaling Peptides and Proteins/antagonists & inhibitors
- Intracellular Signaling Peptides and Proteins/drug effects
- Intracellular Signaling Peptides and Proteins/metabolism
- Leukocytes/drug effects
- Leukocytes/immunology
- Leukocytes/metabolism
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred BALB C
- Molecular Structure
- Phosphorylation/drug effects
- Precursor Cells, B-Lymphoid/drug effects
- Precursor Cells, B-Lymphoid/immunology
- Precursor Cells, B-Lymphoid/metabolism
- Protein Kinase Inhibitors/administration & dosage
- Protein Kinase Inhibitors/pharmacokinetics
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/drug effects
- Protein-Tyrosine Kinases/metabolism
- Pyrimidines/administration & dosage
- Pyrimidines/pharmacokinetics
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- Rats
- Rats, Inbred Lew
- Receptors, Antigen, B-Cell/agonists
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction/drug effects
- Signal Transduction/immunology
- Syk Kinase
- Synovitis/etiology
- Synovitis/pathology
- Synovitis/prevention & control
Collapse
Affiliation(s)
- Greg Coffey
- Portola Pharmaceuticals, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
CIN85 is required for Cbl-mediated regulation of antigen receptor signaling in human B cells. Blood 2012; 119:2263-73. [PMID: 22262777 DOI: 10.1182/blood-2011-04-351965] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The aberrant regulation of B-cell receptor (BCR) signaling allows unwanted B cells to persist, thereby potentially leading to autoimmunity and B-cell malignancies. Casitas B-lineage lymphoma (Cbl) proteins suppress BCR signaling; however, the molecular mechanisms that control Cbl function in human B cells remain unclear. Here, we demonstrate that CIN85 (c-Cbl interacting protein of 85 kDa) is constitutively associated with c-Cbl, Cbl-b, and B-cell linker in B cells. Experiments using CIN85-overexpressing and CIN85-knockdown B-cell lines revealed that CIN85 increased c-Cbl phosphorylation and inhibited BCR-induced calcium flux and phosphorylation of Syk and PLCγ2, whereas it did not affect BCR internalization. The Syk phosphorylation in CIN85-overexpressing and CIN85-knockdown cells was inversely correlated with the ubiquitination and degradation of Syk. Moreover, CIN85 knockdown in primary B cells enhanced BCR-induced survival and growth, and increased the expression of BcLxL, A1, cyclin D2, and myc. Following the stimulation of BCR and Toll-like receptor 9, B-cell differentiation- associated molecules were up-regulated in CIN85-knockdown cells. Together, these results suggest that CIN85 is required for Cbl-mediated regulation of BCR signaling and for downstream events such as survival, growth, and differentiation of human B cells.
Collapse
|
120
|
Abstract
Cervical carcinoma is one of the major causes of death in women worldwide. It is difficult to foresee a dramatic increase in cure rate even with the most optimal combination of cytotoxic drugs, surgery, and radiation; therefore, testing of molecular targeted therapies against this malignancy is highly desirable. Cervical cancer is a multistep process with accumulation of genetic and epigenetic alterations in regulatory genes, leading to activation of oncogenes and inactivation or loss of tumor suppressor genes (TSGs). In the last decade, in addition to genetic alterations, epigenetic inactivation of TSGs by promoter hypermethylation has been recognized as an important and alternative mechanism in tumorigenesis. In cervical cancer, epigenetic alterations can affect the expression of papillomavirus as well as host genes in relation to stages representing the multistep process of carcinogenesis. Here we discuss these epigenetic alterations in cervical cancer focusing on DNA methylation.
Collapse
|
121
|
Smith SM. What is the best strategy for incorporating new agents into the current treatment of follicular lymphoma? Am Soc Clin Oncol Educ Book 2012:481-7. [PMID: 24451784 DOI: 10.14694/edbook_am.2012.32.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although there is increasing knowledge about the pathobiology of follicular lymphoma (FL), the incorporation of new agents is challenged by the long clinical course and inherent heterogeneity of the disease. Furthermore, a longstanding concept in FL is that although most patients have an indolent initial phase of disease, this is typically followed by sequentially shorter remission durations and justifies the continued intense search for new rationally designed agents. Ideally, there would be personalized prognostic tools, preemptive target identification, and means to predict response in individual patients. Short of having these tools, one conceptual approach is to consider FL as a series of clinical disease states divided between treatment-naïve (low tumor burden and high tumor burden), relapsed (typically still chemoimmunotherapy-sensitive), and multiply relapsed (usually chemoimmunotherapy-resistant) disease. By applying what is known about the biology of FL along with the available agents, new treatment options can be better defined and tested within these clinical contexts. During the last few years, novel chemotherapeutics, biologic agents, monoclonal antibodies, antibody drug conjugates, and maintenance strategies are all either replacing or adding onto existing strategies. These new agents and approaches challenge the notion of inevitably shorter response durations, and offer hope of improved clinical outcomes compared with traditional sequential cytotoxic therapy.
Collapse
Affiliation(s)
- Sonali M Smith
- From the Section of Hematology/Oncology, Lymphoma Program, The University of Chicago, Chicago, IL
| |
Collapse
|
122
|
Kim DS, Park JH, Kim JY, Kim D, Nam JH. A mechanism of immunoreceptor tyrosine-based activation motif (ITAM)-like sequences in the capsid protein VP2 in viral growth and pathogenesis of Coxsackievirus B3. Virus Genes 2011; 44:176-82. [DOI: 10.1007/s11262-011-0681-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 10/06/2011] [Indexed: 10/16/2022]
|
123
|
Xiang X, Sun J, Wu J, He HT, Wang Y, Zhu C. A FRET-Based Biosensor for Imaging SYK Activities in Living Cells. Cell Mol Bioeng 2011; 4:670-677. [PMID: 25541586 DOI: 10.1007/s12195-011-0211-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Spleen tyrosine kinase (SYK) is crucial to cellular functions mediated by immunoreceptors and integrins. We have developed and characterized a new genetically-encoded Förster resonance energy transfer (FRET)-based biosensor for studying the dynamics of SYK activities in living cells at a subcellular level. It contains an N-terminal ECFP, SH2 domain, a peptide derived from a SYK substrate VAV2, and a C-terminal YPet. Upon the specific phosphorylation by SYK in vitro, the biosensor substrate peptide bound to the intramolecular SH2 domain to reduce the FRET efficiency. Transfection of the biosensor did not affect activation of the endogenous SYK in host cells. Phosphorylation of the biosensor followed the same kinetics as the endogenous VAV2. Using FRET imaging and ratiometric analysis with this SYK biosensor, we visualized and quantified the realtime activation of SYK in K562 cells upon IgG Fc engagement of Fcc receptor IIA and in mouse embryonic fibroblasts upon stimulation by the platelet derived growth factor. These results demonstrate our biosensor as a powerful tool for studying cellular signaling that involves SYK.
Collapse
Affiliation(s)
- Xue Xiang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA ; School of Life Sciences, SUN YAT-SEN University, Guangzhou 510275, China
| | - Jie Sun
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA ; Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Jianhua Wu
- School of Bioscience & Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Hai-Tao He
- Centre d'Immunologie de Marseille-Luminy, INSERM-CNRS-Université de la Méditerranée, Case 906, 13288 Marseille Cedex 09, France
| | - Yingxiao Wang
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA ; Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| |
Collapse
|
124
|
Abstract
Spleen tyrosine kinase (Syk) is a cytoplasmic tyrosine kinase involved in signalling in many of the cells that drive immune inflammation. The development of small molecules that inhibit Syk kinase may change the way we treat disorders such as rheumatoid arthritis (RA), as well as a range of other inflammatory diseases. Fostamatinib (R-788) is an orally bioavailable small molecule. It is the prodrug of R406, which is a potent Syk inhibitor. Fostamatinib was developed because it has more favourable physiochemical properties. It is rapidly converted to R406 by intestinal enterocytes. It has been evaluated in experimental models of RA, such as collagen-induced arthritis. In these models, fostamatinib suppressed clinical arthritis, bone erosions, pannus formation and synovitis. A phase II programme with fostamatinib has largely been completed. Three key trials have been published, lasting 12-26 weeks and each enrolling 189-457 patients (875 in total). All these trials involved placebo therapy and patients continued to receive methotrexate in addition to active treatment with fostamatinib. The first dose-ranging trial evaluated three treatment doses in RA patients who had not fully responded to methotrexate therapy. The second trial compared two treatment doses in patients who had not responded to methotrexate therapy. The third trial compared a single treatment dose with placebo in patients who had not responded to biological therapy. The primary outcome measure was the number of patients achieving American College of Rheumatology (ACR) 20% (ACR20) responses. Placebo ACR20 response rates in all three trials were similar (35-38%). All three trials involved one treatment arm receiving fostamatinib 100 mg twice daily; ACR20 responses with this active treatment ranged from 38% to 67%. A meta-analysis of ACR responses in these trials, using responses to the highest dose in each trial for comparisons with placebo therapy in a random effects model, showed a borderline benefit with ACR20 responses. There were more significant differences with ACR50 and ACR70 responses. The reason that this meta-analysis was not more strongly positive is that the third trial, which evaluated patients who had failed to respond to biological treatments, gave negative results. Individual ACR response components, such as changes in swollen joint counts, showed significant differences in the first two trials, but there were no definite treatment benefits in the third trial. Overall, the differences were significant in a meta-analysis of all three trials. The most important adverse reactions were diarrhoea, neutropenia and raised ALT levels, which all showed significant excesses with active treatment compared with placebo. Too few patients have been studied for a definitive safety profile to be known. Overall, the results of the phase II trials were sufficiently encouraging for a phase III programme to be initiated. It will be some years before their definitive results are available.
Collapse
Affiliation(s)
- David L Scott
- Department of Rheumatology, King's College London School of Medicine, Weston Education Centre, UK.
| |
Collapse
|
125
|
Wex E, Bouyssou T, Duechs MJ, Erb KJ, Gantner F, Sanderson MP, Schnapp A, Stierstorfer BE, Wollin L. Induced Syk deletion leads to suppressed allergic responses but has no effect on neutrophil or monocyte migration in vivo. Eur J Immunol 2011; 41:3208-18. [PMID: 21830208 DOI: 10.1002/eji.201141502] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 06/30/2011] [Accepted: 08/05/2011] [Indexed: 12/12/2022]
Abstract
The spleen tyrosine kinase (Syk) is a key mediator of immunoreceptor signaling in immune cells. Thus, interfering with the function of Syk by genetic deletion or pharmacological inhibition might influence a variety of allergic and autoimmune processes. Since conventional Syk knockout mice are not viable, studies addressing the effect of Syk deletion in adult animals have been limited. To further explore functions of Syk in animal models of allergy and to shed light on the role of Syk in the in vivo migration of neutrophils and monocytes, we generated inducible Syk knockout mice. These mice harbor a floxed Syk gene and a tamoxifen-inducible Cre recombinase under the control of the ubiquitously active Rosa26-promoter. Thus, treatment of mice with tamoxifen leads to the deletion of Syk in all organs. Syk-deleted mice were analyzed in mast cell-dependent models and in models focusing on neutrophil and monocyte migration. We show that Syk deletion in adult mice reduces inflammatory responses in mast cell-driven animal models of allergy and asthma but has no effect on the migration of neutrophils and monocytes. Therefore, the inducible Syk knockout mice presented here provide a valuable tool to further explore the role of Syk in disease-related animal models.
Collapse
Affiliation(s)
- Eva Wex
- Department of Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Sundgren NC, Zhu W, Yuhanna IS, Chambliss KL, Ahmed M, Tanigaki K, Umetani M, Mineo C, Shaul PW. Coupling of Fcγ receptor I to Fcγ receptor IIb by SRC kinase mediates C-reactive protein impairment of endothelial function. Circ Res 2011; 109:1132-40. [PMID: 21940940 DOI: 10.1161/circresaha.111.254573] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RATIONALE Elevations in C-reactive protein (CRP) are associated with increased cardiovascular disease risk and endothelial dysfunction. CRP antagonizes endothelial nitric oxide synthase (eNOS) through processes mediated by the IgG receptor Fcγ receptor IIB (FcγRIIB), its immunoreceptor tyrosine-based inhibitory motif, and SH2 domain-containing inositol 5'-phosphatase 1. In mice, CRP actions on eNOS blunt carotid artery re-endothelialization. OBJECTIVE How CRP activates FcγRIIB in endothelium is not known. We determined the role of Fcγ receptor I (FcγRI) and the basis for coupling of FcγRI to FcγRIIB in endothelium. METHODS AND RESULTS In cultured endothelial cells, FcγRI-blocking antibodies prevented CRP antagonism of eNOS, and CRP activated Src via FcγRI. CRP-induced increases in FcγRIIB immunoreceptor tyrosine-based inhibitory motif phosphorylation and SH2 domain-containing inositol 5'-phosphatase 1 activation were Src-dependent, and Src inhibition prevented eNOS antagonism by CRP. Similar processes mediated eNOS antagonism by aggregated IgG used to mimic immune complex. Carotid artery re-endothelialization was evaluated in offspring from crosses of CRP transgenic mice (TG-CRP) with either mice lacking the γ subunit of FcγRI (FcRγ(-/-)) or FcγRIIB(-/-) mice. Whereas re-endothelialization was impaired in TG-CRP vs wild-type, it was normal in both FcRγ(-/-); TG-CRP and FcγRIIB(-/-); TG-CRP mice. CONCLUSIONS CRP antagonism of eNOS is mediated by the coupling of FcγRI to FcγRIIB by Src kinase and resulting activation of SH2 domain-containing inositol 5'-phosphatase 1, and consistent with this mechanism, both FcγRI and FcγRIIB are required for CRP to blunt endothelial repair in vivo. Similar mechanisms underlie eNOS antagonism by immune complex. FcγRI and FcγRIIB may be novel therapeutic targets for preventing endothelial dysfunction in inflammatory or immune complex-mediated conditions.
Collapse
Affiliation(s)
- Nathan C Sundgren
- Division of Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
127
|
de Keijzer S, Meddens MBM, Kilic D, Joosten B, Reinieren-Beeren I, Lidke DS, Cambi A. Interleukin-4 alters early phagosome phenotype by modulating class I PI3K dependent lipid remodeling and protein recruitment. PLoS One 2011; 6:e22328. [PMID: 21799824 PMCID: PMC3143135 DOI: 10.1371/journal.pone.0022328] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 06/24/2011] [Indexed: 11/19/2022] Open
Abstract
Phagocytosis is a complex process that involves membranelipid remodeling and the attraction and retention of key effector proteins. Phagosome phenotype depends on the type of receptor engaged and can be influenced by extracellular signals. Interleukin 4 (IL-4) is a cytokine that induces the alternative activation of macrophages (MΦs) upon prolonged exposure, triggering a different cell phenotype that has an altered phagocytic capacity. In contrast, the direct effects of IL-4 during phagocytosis remain unknown. Here, we investigate the impact of short-term IL-4 exposure (1 hour) during phagocytosis of IgG-opsonized yeast particles by MΦs. By time-lapse confocal microscopy of GFP-tagged lipid-sensing probes, we show that IL-4 increases the negative charge of the phagosomal membrane by prolonging the presence of the negatively charged second messenger PI(3,4,5)P3. Biochemical assays reveal an enhanced PI3K/Akt activity upon phagocytosis in the presence of IL-4. Blocking the specific class I PI3K after the onset of phagocytosis completely abrogates the IL-4-induced changes in lipid remodeling and concomitant membrane charge. Finally, we show that IL-4 direct signaling leads to a significantly prolonged retention profile of the signaling molecules Rac1 and Rab5 to the phagosomal membrane in a PI3K-dependent manner. This protracted early phagosome phenotype suggests an altered maturation, which is supported by the delayed phagosome acidification measured in the presence of IL-4. Our findings reveal that molecular differences in IL-4 levels, in the extracellular microenvironment, influence the coordination of lipid remodeling and protein recruitment, which determine phagosome phenotype and, eventually, fate. Endosomal and phagosomal membranes provide topological constraints to signaling molecules. Therefore, changes in the phagosome phenotype modulated by extracellular factors may represent an additional mechanism that regulates the outcome of phagocytosis and could have significant impact on the net biochemical output of a cell.
Collapse
Affiliation(s)
- Sandra de Keijzer
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Marjolein B. M. Meddens
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Dilek Kilic
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Ben Joosten
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Inge Reinieren-Beeren
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Diane S. Lidke
- Department of Pathology and Cancer Research and Treatment Center, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Alessandra Cambi
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
128
|
Aerobic training stimulates growth and promotes disease resistance in Atlantic salmon (Salmo salar). Comp Biochem Physiol A Mol Integr Physiol 2011; 160:278-90. [PMID: 21726657 DOI: 10.1016/j.cbpa.2011.06.013] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/20/2011] [Accepted: 06/20/2011] [Indexed: 11/20/2022]
Abstract
Improving fish robustness is of utmost relevance to reducing fish losses in farming. Although not previously examined, we hypothesized that aerobic training, as shown for human studies, could strengthen disease resistance in Atlantic salmon (Salmo salar). Thus, we exercised salmon pre-smolts for 6 weeks at two different aerobic training regimes; a continuous intensity training (CT; 0.8bls(-1)) and an interval training (IT; 0.8bl s(-1) 16h and 1.0bl s(-1) 8h) and compared them with untrained controls (C; 0.05bl s(-1)). The effects of endurance training on disease resistance were evaluated using an IPN virus challenge test, while the cardiac immune modulatory effects were characterized by qPCR and microarray gene expression analyses. In addition, swimming performance and growth parameters were investigated. Survival after the IPN challenge was higher for IT (74%) fish than for either CT (64%) or C (61%) fish. While both CT and IT groups showed lower cardiac transcription levels of TNF-α, IL-1β and IL-6 prior to the IPN challenge test, IT fish showed the strongest regulation of genes involved in immune responses and other processes known to affect disease resistance. Both CT and IT regimes resulted in better growth compared with control fish, with CT fish developing a better swimming efficiency during training. Overall, interval aerobic training improved growth and increased robustness of Atlantic salmon, manifested by better disease resistance, which we found was associated with a modulation of relevant gene classes on the cardiac transcriptome.
Collapse
|
129
|
Eberhard H, Diezmann F, Seitz O. DNA as a molecular ruler: interrogation of a tandem SH2 domain with self-assembled, bivalent DNA-peptide complexes. Angew Chem Int Ed Engl 2011; 50:4146-50. [PMID: 21455916 DOI: 10.1002/anie.201007593] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 01/18/2011] [Indexed: 01/01/2023]
Affiliation(s)
- Hendrik Eberhard
- Department of Chemistry, Humboldt University Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | | | | |
Collapse
|
130
|
Eberhard H, Diezmann F, Seitz O. DNA as a Molecular Ruler: Interrogation of a Tandem SH2 Domain with Self-Assembled, Bivalent DNA-Peptide Complexes. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201007593] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
131
|
Sinha R, DeJoubner N, Flowers C. Novel agents for diffuse large B-cell lymphoma. Expert Opin Investig Drugs 2011; 20:669-80. [PMID: 21443388 DOI: 10.1517/13543784.2011.565745] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Although diffuse large B-cell lymphoma (DLBCL) is commonly considered as a cancer with a high cure rate with conventional therapies recent studies demonstrate that different biological variants of DBLCL exist, and that patients with one DLBCL variant and DLBCL patients who relapse early following rituximab-based therapy have markedly poorer outcomes with conventional management strategies. Over the last decade, there has been an increasing exploration of novel therapies derived from improved understanding of DLBCL biology and tumor-host interactions. AREAS COVERED This review examines the biological basis for novel therapeutic approaches in DLBCL and the early clinical data on compounds derived from this research. A description of the expanding options of novel agents and combination therapies for patients with poor risk DLBCL is provided. EXPERT OPINION Several promising novel agents and novel therapeutic combinations are under development for patients with poor risk DLBCL. Carefully designed clinical trials that build on our improved understanding of DLBCL biology and utilize tissue samples to examine the activity of novel combination therapies should expand treatment options for DLBCL patients in the future.
Collapse
Affiliation(s)
- Rajni Sinha
- Emory University, Winship Cancer Institute, School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
132
|
Park H, Cox D. Syk regulates multiple signaling pathways leading to CX3CL1 chemotaxis in macrophages. J Biol Chem 2011; 286:14762-9. [PMID: 21388954 DOI: 10.1074/jbc.m110.185181] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several studies have clearly established the importance of the interaction between macrophages and CX3CL1 in the progression of disease. A previous study demonstrated that Syk was required for CX3CL1-mediated actin polymerization and chemotaxis. Here, we delineated the signaling cascade of Syk-mediated cell migration in response to CX3CL1. Inhibition of Syk in bone marrow-derived macrophages or reduction of Syk expression using siRNA in RAW/LR5 cells indicated that Syk was required for the activation of PI3K, Cdc42, and Rac1. Also, reduction in WASP or WAVE2 levels, common downstream effectors of Cdc42 or Rac1, resulted in impaired cell migration to CX3CL1. Syk indirectly regulated WASP tyrosine phosphorylation through Cdc42 activation. Altogether, our data identify that Syk mediated chemotaxis toward CX3CL1 by regulating both Rac1/WAVE2 and Cdc42/WASP pathways, whereas Src family kinases were required for proper WASP tyrosine phosphorylation.
Collapse
Affiliation(s)
- Haein Park
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10461, USA.
| | | |
Collapse
|
133
|
Hatterer E, Benon A, Chounlamountri N, Watrin C, Angibaud J, Jouanneau E, Boudin H, Honnorat J, Pellier-Monnin V, Noraz N. Syk kinase is phosphorylated in specific areas of the developing nervous system. Neurosci Res 2011; 70:172-82. [PMID: 21354221 DOI: 10.1016/j.neures.2011.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 01/31/2011] [Accepted: 02/16/2011] [Indexed: 11/26/2022]
Abstract
An increasing number of data involve immunoreceptors in brain development, synaptic plasticity and behavior. However it has yet to be determined whether these proteins in fact transmit an immunoreceptor-like signal in non-hematopoietic neuronal cells. The recruitment and activation of the Syk family tyrosine kinases, Syk and ZAP-70, being a critical step in this process, we conducted a thorough analysis of Syk/ZAP-70 expression pattern in nervous tissues. Syk/ZAP-70 is present in neurons of different structures including the cerebellum, the hippocampus, the visual system and the olfactory system. During the olfactory system ontogeny the protein is detected from the 16th embryonic day and persists in adulthood. Importantly, Syk was phosphorylated on tyrosine residues representative of an active form of the kinase in specialized neuronal subpopulations comprising rostral migratory stream neuronal progenitor cells, hippocampal pyramidal cells, retinal ganglion cells and cerebellar granular cells. Phospho-Syk staining was also observed in synapse-rich regions such as the olfactory bulb glomeruli and the retina inner plexiform layer. Furthermore, our work on cultured primary hippoccampal neurons indicates that as for hematopoietic cells, Syk phosphorylation is readily induced upon pervanadate treatment. Therefore, Syk appears to be a serious candidate in connecting immunoreceptors to downstream adaptor/effector molecules in neurons.
Collapse
Affiliation(s)
- Eric Hatterer
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Neuro-oncology & Neuro-inflammation Team, University of Lyon 1, Lyon F-69000, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Zarbock A, Ley K. Protein tyrosine kinases in neutrophil activation and recruitment. Arch Biochem Biophys 2011; 510:112-9. [PMID: 21338576 DOI: 10.1016/j.abb.2011.02.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 02/03/2011] [Accepted: 02/10/2011] [Indexed: 12/30/2022]
Abstract
Migration of leukocytes into tissue is a key element of innate and adaptive immunity. The first contact of leukocytes with endothelial cells is mediated by engagement of selectins with their counter-receptors which results in leukocyte rolling. During rolling, leukocytes collect different inflammatory signals that activate intracellular signaling pathways. Integration of these signals induces leukocyte activation, firm arrest, post-adhesion strengthening, intravascular crawling, and transmigration. In neutrophils, like in T-cells and platelets, both G-protein-coupled receptor-dependent and -independent activation pathways exist that lead to integrin activation. Accumulating evidence suggests that different protein tyrosine kinases play key roles in signal transduction pathways regulating neutrophil activation and recruitment to inflammatory sites. This review focuses on the role of protein tyrosine kinases of the Src, Syk, and Tec families for neutrophil activation and recruitment.
Collapse
Affiliation(s)
- Alexander Zarbock
- Department of Anesthesiology and Intensive Care Medicine, University of Münster, Germany.
| | | |
Collapse
|
135
|
Simard JC, Simon MM, Tessier PA, Girard D. Damage-associated molecular pattern S100A9 increases bactericidal activity of human neutrophils by enhancing phagocytosis. THE JOURNAL OF IMMUNOLOGY 2011; 186:3622-31. [PMID: 21325622 DOI: 10.4049/jimmunol.1002956] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The damage-associated molecular-pattern S100A9 is found at inflammatory sites in infections and various autoimmune diseases. It is released at very high concentrations in the extracellular milieu by activated neutrophils and monocytes in response to various agents. This proinflammatory protein is found in infected mucosae and tissue abscesses where it acts notably as a potent neutrophil activator. In this study, we examined the role of S100A9 in the control of infections. S100A9 was found to increase human neutrophil bactericidal activity toward Escherichia coli. Although S100A9 induced the accumulation of reactive oxygen species over time through the activation of NADPH oxidase, its antimicrobial activity was mediated mainly by enhancing the efficiency of neutrophil phagocytosis. Interestingly, S100A9 did not act by increasing cell surface expression of CD16, CD32, or CD64 in neutrophils, indicating that its biological effect in FcR-mediated phagocytosis is independent of upregulation of FcγR levels. However, S100A9-induced phagocytic activity required the phosphorylation of Erk1/2, Akt, and Syk. Taken together, our results demonstrate that S100A9 stimulates neutrophil microbicidal activity by promoting phagocytosis.
Collapse
Affiliation(s)
- Jean-Christophe Simard
- Laboratoire de Recherche en Inflammation et Physiologie des Granulocytes, Université du Québec, Institut National de la Recherche Scientifique-Institut Armand-Frappier, Laval, Québec City, Québec H7V 1B7, Canada
| | | | | | | |
Collapse
|
136
|
Huang ZY, Hunter S, Chien P, Kim MK, Han-Kim TH, Indik ZK, Schreiber AD. Interaction of two phagocytic host defense systems: Fcγ receptors and complement receptor 3. J Biol Chem 2011; 286:160-8. [PMID: 21044955 PMCID: PMC3012970 DOI: 10.1074/jbc.m110.163030] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 10/12/2010] [Indexed: 01/08/2023] Open
Abstract
Phagocytosis of foreign pathogens by cells of the immune system is a vitally important function of innate immunity. The phagocytic response is initiated when ligands on the surface of invading microorganisms come in contact with receptors on the surface of phagocytic cells such as neutrophils, monocytes/macrophages, and dendritic cells. The complement receptor CR3 (CD11b/CD18, Mac-1) mediates the phagocytosis of complement protein (C3bi)-coated particles. Fcγ receptors (FcγRs) bind IgG-opsonized particles and provide a mechanism for immune clearance and phagocytosis of IgG-coated particles. We have observed that stimulation of FcγRs modulates CR3-mediated phagocytosis and that FcγRIIA and FcγRI exert opposite (stimulatory and inhibitory) effects. We have also determined that an intact FcγR immunoreceptor tyrosine-based activation motif is required for these effects, and we have investigated the involvement of downstream effectors. The ability to up-regulate or down-regulate CR3 signaling has important implications for therapeutics in disorders involving the host defense system.
Collapse
Affiliation(s)
- Zhen-Yu Huang
- From the Department of Hematology/Oncology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Sharon Hunter
- From the Department of Hematology/Oncology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Paul Chien
- From the Department of Hematology/Oncology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Moo-Kyung Kim
- From the Department of Hematology/Oncology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Tae-Hee Han-Kim
- From the Department of Hematology/Oncology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Zena K. Indik
- From the Department of Hematology/Oncology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Alan D. Schreiber
- From the Department of Hematology/Oncology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| |
Collapse
|
137
|
Baluom M, Samara E, Grossbard EB, Lau DTW. Fostamatinib, a Syk-kinase inhibitor, does not affect methotrexate pharmacokinetics in patients with rheumatoid arthritis. J Clin Pharmacol 2011; 51:1310-8. [PMID: 21209239 DOI: 10.1177/0091270010381496] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fostamatinib (R788) is being investigated as an add-on therapy for the treatment of rheumatoid arthritis (RA) in patients with inadequate response to methotrexate (MTX). This study evaluated the potential pharmacokinetic interaction between R788 and MTX. Sixteen RA subjects on a stable weekly MTX regimen were enrolled and received MTX on days 1 and 8. Twelve subjects received 100 mg of R788 orally, and 4 subjects received a matching placebo twice daily from days 4 to 8 and once daily on days 3 and 9. Blood samples were collected on days 1 and 8 for MTX and 7-hydroxymethotrexate (7-OH-MTX), and days 3 and 9 for R788 and its active metabolite, R406. MTX and 7-OH-MTX pharmacokinetic parameters were similar on days 1 and 8. In the R788 group, the mean day 8 to day 1 ratios (90% confidence intervals) of maximum concentration and area under the plasma concentration-time curve estimates were 1.01 (0.85-1.20) and 1.12 (0.90-1.40) for MTX and 1.06 (0.82-1.35) and 1.06 (0.83-1.36) for 7-OH-MTX, respectively. Urinary excretion of MTX and 7-OH-MTX was also similar with or without R788, averaging 58% to 69% and 4% to 5% of the MTX dose, respectively. The data suggest that there is no clinically significant pharmacokinetic interaction of R788 and MTX in RA patients.
Collapse
Affiliation(s)
- Muhammad Baluom
- Rigel Pharmaceuticals, Inc, 1180 Veterans Blvd., South San Francisco, CA 94080, USA
| | | | | | | |
Collapse
|
138
|
Abstract
The non-receptor tyrosine kinase Syk has a diverse range of biological functions, including a critical role in the intracellular signalling cascade for the surface immunoglobulin receptor on B lymphocytes, and the Fc receptor expressed on numerous immune effector cells. It is therefore seen as a potential therapeutic target in a variety of conditions, including autoimmune, allergic and malignant diseases. Fostamatinib disodium is the orally bioavailable prodrug of R406, a relatively selective small molecule inhibitor of Syk, that has accordingly shown activity in numerous cell types in vitro, and efficacy in a remarkable range of animal models in vivo, including rodent models of asthma, inflammatory arthritis, lupus, glomerulonephritis, diabetes and lymphoma. Success in these models has translated to phase II clinical trials in autoimmune thrombocytopenia, lymphoma and, most notably, rheumatoid arthritis, in which larger phase III trials are currently in progress. Whilst the diverse biological functions of Syk, coupled to the potential off-target effects of this kinase inhibitor are a source of possible toxicity, the available data thus far augurs well for future clinical use of Fostamatinib in a wide range of human diseases.
Collapse
|
139
|
Gao Z, Cao L, Luo Q, Wang X, Yu L, Wang T, Liu H. Spleen tyrosine kinase modulates the proliferation and phenotypes of vascular smooth muscle cells induced by platelet-derived growth factor. DNA Cell Biol 2010; 30:149-55. [PMID: 21189061 DOI: 10.1089/dna.2010.1146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Platelet-derived growth factor BB (PDGF-BB) regulates vascular smooth muscle cells (VSMCs) by activating signaling cascades that promote vasoconstriction and growth, but the underlying mechanisms remain incompletely characterized. In this study, we aimed at investigating the role of spleen tyrosine kinase (Syk) in the proliferation and phenotypes in rat pulmonary arterial VSMCs. Our results demonstrate that PDGF-BB or Syk-adenovirus led to a substantial increase of proliferation of VSMCs and cytoskeleton rearrangement in rat VSMCs. Consistently, these cells underwent phenotype changes. Notably, Syk inhibitor piceatannol significantly inhibited those biological effects induced by PDGF-BB. Thus, we conclude that Syk plays an important role in vascular remodeling through the modulation of proliferation and phenotypes of VSMCs.
Collapse
Affiliation(s)
- Zhengxiang Gao
- The Pulmonary Vascular Remodeling Research Unit, Pediatric Department, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | | | | | | | | | | | | |
Collapse
|
140
|
Pamuk ON, Tsokos GC. Spleen tyrosine kinase inhibition in the treatment of autoimmune, allergic and autoinflammatory diseases. Arthritis Res Ther 2010; 12:222. [PMID: 21211067 PMCID: PMC3046528 DOI: 10.1186/ar3198] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Spleen tyrosine kinase (Syk) is involved in the development of the adaptive immune system and has been recognized as being important in the function of additional cell types, including platelets, phagocytes, fibroblasts, and osteoclasts, and in the generation of the inflammasome. Preclinical studies presented compelling evidence that Syk inhibition may have therapeutic value in the treatment of rheumatoid arthritis and other forms of arthritis, systemic lupus erythematosus, autoimmune cytopenias, and allergic and autoinflammatory diseases. In addition, Syk inhibition may have a place in limiting tissue injury associated with organ transplant and revascularization procedures. Clinical trials have documented exciting success in the treatment of patients with rheumatoid arthritis, autoimmune cytopenias, and allergic rhinitis. While the extent and severity of side effects appear to be limited so far, larger studies will unravel the risk involved with the clinical benefit.
Collapse
Affiliation(s)
- Omer N Pamuk
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS-928, Boston, MA 02115, USA
| | | |
Collapse
|
141
|
Ortiz S, Lee W, Smith D, Forman SJ, Lee TD, Liu CP. Comparative analyses of differentially induced T-cell receptor-mediated phosphorylation pathways in T lymphoma cells. Exp Biol Med (Maywood) 2010; 235:1450-63. [PMID: 21127342 PMCID: PMC3247199 DOI: 10.1258/ebm.2010.010056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation of T lymphoma cells expressing Syk, but not ZAP-70 tyrosine kinase, has been shown to negatively regulate cell activation and activation-induced cell death (AICD), perhaps due to differential induction of tyrosine phosphorylation modified proteins. To better understand the role of these proteins and their associated molecules/pathways, we studied a previously described model of T lymphoma cells expressing either a kinase-activated chimeric Syk or ZAP-70 genetically linked to T-cell receptor (TCR) ζ chain (Z/Syk or Z/ZAP cells, respectively). To help identify molecules and pathways linked to cell activation or AICD, a comparative semi-quantitative proteomics-based approach was utilized to analyze tyrosine-phosphorylated protein immunoprecipitates from two-minute short-term activated Z/Syk or Z/ZAP cells. Using the resulting bioinformatics data-sets, we identified several differentially immunoprecipitated proteins that could be validated biochemically. More tyrosine-phosphorylated and phosphotyrosine-associated proteins were found in Z/Syk than in Z/ZAP cells. Proteins involved in different unique functional pathways were induced in these cells and showed altered intermolecular interactions in varied pathways. Remarkably, 41% of differentially identified proteins in Z/Syk cells belonged to cell cycle or vesicle/trafficking pathways. In contrast, 21% of such proteins in Z/ZAP cells belonged to metabolism pathways. Therefore, molecular pathways involved in post-translational modifications linked to distinct cellular/physiological functions are differentially activated, which may contribute to varied activation and AICD responses of these cells. In summary, we identified proteins belonging to novel differentially activated pathways involved in TCR-mediated signaling, which may be targets for regulating activation and AICD of T lymphoma cells and for potential cancer therapy.
Collapse
Affiliation(s)
- Serina Ortiz
- Department of Immunology, Beckman Research Institute, City of Hope 1450 E. Duarte Rd., Duarte, CA 91010-3000
| | - Wenhui Lee
- Department of Immunology, Beckman Research Institute, City of Hope 1450 E. Duarte Rd., Duarte, CA 91010-3000
| | - David Smith
- Department of Information Sciences, Beckman Research Institute, City of Hope 1450 E. Duarte Rd., Duarte, CA 91010-3000
| | - Stephen J. Forman
- Department of Hematology, Beckman Research Institute, City of Hope 1450 E. Duarte Rd., Duarte, CA 91010-3000
| | - Terry D. Lee
- Department of Immunology, Beckman Research Institute, City of Hope 1450 E. Duarte Rd., Duarte, CA 91010-3000
| | - Chih-Pin Liu
- Department of Immunology, Beckman Research Institute, City of Hope 1450 E. Duarte Rd., Duarte, CA 91010-3000
- Department of Diabetes and Metabolism Research, Beckman Research Institute, City of Hope 1450 E. Duarte Rd., Duarte, CA 91010-3000
| |
Collapse
|
142
|
Identification of BCAR-1 as a new substrate of Syk tyrosine kinase through a determination of amino acid sequence preferences surrounding the substrate tyrosine residue. Immunol Lett 2010; 135:151-7. [PMID: 21047529 DOI: 10.1016/j.imlet.2010.10.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 10/06/2010] [Accepted: 10/23/2010] [Indexed: 12/27/2022]
Abstract
Syk, a non-receptor tyrosine kinase, is an essential signaling molecule in B cells and other hematopoietic cells. Recently, its unexpected diverse functions were recognized in the regulation of cellular adhesion, innate immune recognition, vascular development, and carcinogenesis. Despite its pleiotropic role, only a few substrate proteins have been identified. To find new substrate proteins for Syk, we performed a systemic in vitro kinase assay using GST fusion peptides to determine the substrate specificity surrounding the tyrosine residue to be phosphorylated. Substitution of amino acid residues surrounding tyrosine 178 of BLNK, a principal Syk substrate in B cell receptor-mediated signaling, revealed that acidic residues at sites -5 to -1 were necessary for phosphorylation by Syk. Valine at site +1 was also influential in phosphorylation and a substitution of Pro on site +3 to a basic amino acid residue, Lys, resulted in attenuated phosphorylation. On the basis of these results, a general consensus phosphorylation motif for Syk was determined and several new candidate target proteins were identified in protein database searches. Of the candidate proteins, BCAR-1 (breast cancer anti-estrogen resistance 1) was confirmed to be phosphorylated by Syk in an in vitro kinase assay using a full-length protein of BCAR-1. Furthermore, BCAR-1 was tyrosine phosphorylated upon the overexpression of Syk in HEK-293T cells. These results suggest that more Syk substrates can be found using an in vitro kinase approach and show for the first time that BCAR-1 is a physiological substrate of Syk.
Collapse
|
143
|
Chiou WF, Don MJ, Liao JF, Wei BL. Psoralidin inhibits LPS-induced iNOS expression via repressing Syk-mediated activation of PI3K-IKK-IκB signaling pathways. Eur J Pharmacol 2010; 650:102-9. [PMID: 20951127 DOI: 10.1016/j.ejphar.2010.10.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 09/06/2010] [Accepted: 10/03/2010] [Indexed: 10/18/2022]
Abstract
Psoralidin has been reported to inhibit lipopolysaccharide (LPS)-induced nitric oxide (NO) production, but the mechanisms of the action remain unclear. Thus, the impact of psoralidin on signaling pathways known to be implicated in NO synthesis was explored in LPS-activated RAW264.7 macrophages by using RT-PCR and Western blotting. Consistent with NO inhibition, psoralidin suppressed LPS-induced expression of inducible NO synthase (iNOS) by abolishing IκB kinase (IKK) phosphorylation, IκB degradation and nuclear factor κB (NF-κB) nuclear translocation without effecting mitogen-activated protein kinases (MAPKs) phosphorylation. Exposure to wortmannin abrogated IKK/IκB/NF-κB-mediated iNOS expression, suggesting activation of such a signal pathway might also be phosphoinositide-3-kinase (PI3K) dependent. By using Src inhibitor PP2, Janus kinase 2 (JAK-2) inhibitor AG490, Bruton's tyrosine kinase (Btk) inhibitor LFM-A13 and spleen tyrosine kinase (Syk) inhibitor piceatannol, the results showed that piceatannol clearly repressed NO production more potently than the other inhibitors. Furthermore, piceatannol significantly repressed LPS-induced PI3K/Akt phosphorylation and the downstream IKK/IκB activation, suggesting that Syk is an upstream key regulator in the activation of PI3K/Akt-mediated signaling. In fact, transfection with siRNA targeting Syk obviously reduced iNOS expression. Interestingly, LPS-induced phosphorylations of Syk and PI3K-p85 were both significantly blunted by psoralidin treatment. The present results show that interfering with Syk-mediated PI3K phosphorylation might contribute to the NO inhibitory effect of psoralidin via blocking IKK/IκB signaling propagation in LPS-stimulated RAW 264.7 macrophages.
Collapse
Affiliation(s)
- Wen-Fei Chiou
- National Research Institute of Chinese Medicine, Taipei, Taiwan.
| | | | | | | |
Collapse
|
144
|
Schokker D, Smits MA, Hoekman AJW, Parmentier HK, Rebel JMJ. Effects of Salmonella on spatial-temporal processes of jejunal development in chickens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:1090-1100. [PMID: 20541565 DOI: 10.1016/j.dci.2010.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 05/25/2010] [Accepted: 05/25/2010] [Indexed: 05/29/2023]
Abstract
To study effects of Salmonella enteritidis on morphological and functional changes in chicken jejunal development, we analysed gene expression profiles at seven points post-infection in 1-21 day-old broiler chickens. Nine clusters with different gene expression patterns were identified, and the genes in each cluster were further analyzed by a functional annotation clustering method (DAVID). Functional and morphological developmental processes dominated in all the nine clusters. Salmonella infection caused delays in several intestinal-morphological processes, whereas functional metabolic processes occurred in a similar spatial-temporal frame compared to normal jejunum development. A clear difference between normal developing- and Salmonella disturbed jejunum was the higher expression of genes involved in cell turn-over at early stages in the infected jejunum. Surprisingly, we found no clustered immune related processes in the infected birds. To compare the immunological processes between control and Salmonella infected chickens, the gene expression data was superimposed on known immunological KEGG pathways. Furthermore an in-depth analysis on the immune gene level was performed. As expected, we did find immunological processes in the Salmonella infected jejunum. Several of these processes could be verified by immunohistochemistry measurements of different immunological cell types. However, the well-ordered spatial-temporal development of the immune system, as observed in control non-infected animals, was completely abolished in the infected animals. Several immunological processes started much earlier in time, whereas other processes are disorganised. These data indicate that normal morphological and immunological development of jejunum is changed dramatically by a disturbance due to Salmonella infection. Due to the disturbance, the well-organized spatial-temporal development of morphological processes are delayed, those of the immunological development are scattered, whereas metabolic functional processes are almost not affected. This demonstrates the flexibility of developmental processes in the broiler chicken intestine.
Collapse
Affiliation(s)
- Dirkjan Schokker
- Wageningen UR Livestock Research, Animal Breeding and Genomics Centre, P.O. Box 65, 8200 AB, Lelystad, The Netherlands.
| | | | | | | | | |
Collapse
|
145
|
|
146
|
Jakus Z, Simon E, Balázs B, Mócsai A. Genetic deficiency of Syk protects mice from autoantibody-induced arthritis. ARTHRITIS AND RHEUMATISM 2010; 62:1899-910. [PMID: 20201079 PMCID: PMC2972644 DOI: 10.1002/art.27438] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 02/24/2010] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The Syk tyrosine kinase plays an important role in diverse functions in hematopoietic lineage cells. Although previous in vitro and pharmacologic analyses suggested Syk to be a possible player in the development of autoimmune arthritis, no in vivo genetic studies addressing that issue have yet been reported. The aim of the present study was to test whether genetic deficiency of Syk affects autoantibody-induced experimental arthritis in the K/BxN serum-transfer model. METHODS Syk(-/-) bone marrow chimeras carrying a Syk-deficient hematopoietic system were generated by transplanting Syk(-/-) fetal liver cells into lethally irradiated wild-type recipients. After complete repopulation of the hematopoietic compartment, autoantibody-mediated arthritis was induced by injection of arthritogenic K/BxN serum. Arthritis development was monitored by macroscopic and microscopic observation of the ankle joints, micro-computed tomography of bone morphology, as well as a joint function assay. RESULTS Genetic deficiency of Syk in the hematopoietic compartment completely blocked the development of all macroscopic and microscopic signs of arthritis. The Syk(-/-) mutation also prevented the appearance of periarticular bone erosions. Finally, Syk(-/-) bone marrow chimeras were completely protected from arthritis-induced loss of articular function. CONCLUSION Our results indicate that Syk is critically involved in the development of all clinically relevant aspects of autoantibody-mediated K/BxN serum-transfer arthritis in experimental mice. These results provide the first in vivo genetic evidence of the role of Syk in the development of autoimmune arthritis.
Collapse
Affiliation(s)
- Zoltán Jakus
- Semmelweis University School of Medicine, Budapest, Hungary
| | | | | | | |
Collapse
|
147
|
Sweeny DJ, Li W, Clough J, Bhamidipati S, Singh R, Park G, Baluom M, Grossbard E, Lau DTW. Metabolism of fostamatinib, the oral methylene phosphate prodrug of the spleen tyrosine kinase inhibitor R406 in humans: contribution of hepatic and gut bacterial processes to the overall biotransformation. Drug Metab Dispos 2010; 38:1166-76. [PMID: 20371637 DOI: 10.1124/dmd.110.032151] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
The metabolism of the spleen tyrosine kinase inhibitor N4-(2,2-dimethyl-3-oxo-4-pyrid[1,4]oxazin-6-yl)-5-fluoro-N2-(3,4,5-trimethyoxyphenyl)-2,4-pyrimidinediamine (R406) and its oral prodrug N4-(2,2-dimethyl-4-[(dihydrogenphosphonoxy)methyl]-3-oxo-5-pyrid[1,4]oxazin-6-yl)-5-fluoro-N2-(3,4,5-trimethyoxyphenyl)-2,4-pyrimidinediamine disodium hexahydrate (R788, fostamatinib) was determined in vitro and in humans. R788 was rapidly converted to R406 by human intestinal microsomes, and only low levels of R788 were observed in plasma of human subjects after oral administration of (14)C-R788. R406 was the major drug-related compound in plasma from human subjects, and only low levels of metabolites were observed in plasma. The plasma metabolites of R406 were identified as a sulfate conjugate and glucuronide conjugate of the para-O-demethylated metabolite of R406 (R529) and a direct N-glucuronide conjugate of R406. Elimination of drug-related material into the urine accounted for 19% of the administered dose, and the major metabolite in urine from all the human subjects was the lactam N-glucuronide of R406. On average, 80% of the total drug was recovered in feces. Two drug-related peaks were observed; one peak was identified as R406, and the other peak was identified as a unique 3,5-benzene diol metabolite of R406. The 3,5-benzene diol metabolite appeared to result from the subsequent O-demethylations and dehydroxylation of R529 by anaerobic gut bacteria because only R529 was converted to this metabolite after the in vitro incubation with human fecal samples. These data indicate that the major fecal metabolite of R406 observed in humans is a product of a hepatic cytochrome P450-mediated O-demethylation and subsequent O-demethylations and dehydroxylation by gut bacteria.
Collapse
Affiliation(s)
- David J Sweeny
- Department of Drug Metabolism, Rigel, Inc., South San Francisco, California 94080, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Expression and methylation status of the Syk gene in cervical carcinoma. Arch Gynecol Obstet 2010; 283:1113-9. [DOI: 10.1007/s00404-010-1546-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Accepted: 06/01/2010] [Indexed: 12/31/2022]
|
149
|
de Castro RO, Zhang J, Jamur MC, Oliver C, Siraganian RP. Tyrosines in the carboxyl terminus regulate Syk kinase activity and function. J Biol Chem 2010; 285:26674-84. [PMID: 20554527 DOI: 10.1074/jbc.m110.134262] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Syk tyrosine kinase family plays an essential role in immunoreceptor tyrosine-based activation motif (ITAM) signaling. The binding of Syk to tyrosine-phosphorylated ITAM subunits of immunoreceptors, such as FcepsilonRI on mast cells, results in a conformational change, with an increase of enzymatic activity of Syk. This conformational change exposes the COOH-terminal tail of Syk, which has three conserved Tyr residues (Tyr-623, Tyr-624, and Tyr-625 of rat Syk). To understand the role of these residues in signaling, wild-type and mutant Syk with these three Tyr mutated to Phe was expressed in Syk-deficient mast cells. There was decreased FcepsilonRI-induced degranulation, nuclear factor for T cell activation and NFkappaB activation with the mutated Syk together with reduced phosphorylation of MAP kinases p38 and p42/44 ERK. In non-stimulated cells, the mutated Syk was more tyrosine phosphorylated predominantly as a result of autophosphorylation. In vitro, there was reduced binding of mutated Syk to phosphorylated ITAM due to this increased phosphorylation. This mutated Syk from non-stimulated cells had significantly reduced kinase activity toward an exogenous substrate, whereas its autophosphorylation capacity was not affected. However, the kinase activity and the autophosphorylation capacity of this mutated Syk were dramatically decreased when the protein was dephosphorylated before the in vitro kinase reaction. Furthermore, mutation of these tyrosines in the COOH-terminal region of Syk transforms it to an enzyme, similar to its homolog ZAP-70, which depends on other tyrosine kinases for optimal activation. In testing Syk mutated singly at each one of the tyrosines, Tyr-624 but especially Tyr-625 had the major role in these reactions. Therefore, these results indicate that these tyrosines in the tail region play a critical role in regulating the kinase activity and function of Syk.
Collapse
Affiliation(s)
- Rodrigo O de Castro
- Receptors and Signal Transduction Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
150
|
Mócsai A, Ruland J, Tybulewicz VLJ. The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat Rev Immunol 2010; 10:387-402. [PMID: 20467426 PMCID: PMC4782221 DOI: 10.1038/nri2765] [Citation(s) in RCA: 1028] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Spleen tyrosine kinase (SYK) is known to have a crucial role in adaptive immune receptor signalling. However, recent reports indicate that SYK also mediates other, unexpectedly diverse biological functions, including cellular adhesion, innate immune recognition, osteoclast maturation, platelet activation and vascular development. SYK is activated by C-type lectins and integrins, and activates new targets, including the CARD9-BCL-10-MALT1 pathway and the NLRP3 inflammasome. Studies using Drosophila melanogaster suggest that there is an evolutionarily ancient origin of SYK-mediated signalling. Moreover, SYK has a crucial role in autoimmune diseases and haematological malignancies. This Review summarizes our current understanding of the diverse functions of SYK and how this is being translated for therapeutic purposes.
Collapse
Affiliation(s)
- Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary.
| | | | | |
Collapse
|