101
|
Analysis of the bacteriolytic enzymes of the autolytic lactococcus lactis subsp. cremoris strain AM2 by renaturing polyacrylamide gel electrophoresis: identification of a prophage-encoded enzyme. Appl Environ Microbiol 1998; 64:4142-8. [PMID: 9797258 PMCID: PMC106620 DOI: 10.1128/aem.64.11.4142-4148.1998] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactococcus lactis subsp. cremoris AM2 was previously shown to lyse early and extensively during cheese ripening (M.-P. Chapot-Chartier, C. Deniel, M. Rousseau, L. Vassal, and J.-C. Gripon, Int. Dairy J. 4:251-269, 1994). We analyzed the bacteriolytic activities of autolytic strain AM2 by using renaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis performed with two different substrates in the gel, Micrococcus lysodeikticus and L. lactis autoclaved cells. Several lytic activities were detected in L. lactis AM2; a major lytic activity, designated A2 (46 kDa), was found only with the L. lactis cell substrate. This activity appears to be different from major peptidoglycan hydrolase AcmA characterized previously (G. Buist, J. Kok, K. J. Leenhouts, M. Dabrowska, G. Venema, and A. J. Haandrickman, J. Bacteriol. 177:1554-1563, 1995), which has a similar molecular mass. The two enzymes differ in substrate specificity as well as in sensitivity to pH and different chemical compounds. L. lactis AM2 is lysogenic and mitomycin C inducible. Enzyme A2 was shown to be inducible by mitomycin C and to be prophage encoded. It was identified as an enzyme similar to the lysin encoded by lactococcal small isometric temperate bacteriophages. A prophage-cured derivative of L. lactis AM2 was obtained, and this isolate exhibited different autolytic properties than AM2. After prolonged incubation in the stationary phase after growth on M17 medium, the extent of lysis of an AM2 culture was 60%, whereas over the same period there was almost no lysis in a prophage-cured derivative strain culture. These results suggest that the prophage lytic system is involved in the strain AM2 lysis observed in liquid medium and that it could also be involved in the lysis observed during cheese ripening.
Collapse
|
102
|
Li Z, Clarke AJ, Beveridge TJ. Gram-negative bacteria produce membrane vesicles which are capable of killing other bacteria. J Bacteriol 1998; 180:5478-83. [PMID: 9765585 PMCID: PMC107602 DOI: 10.1128/jb.180.20.5478-5483.1998] [Citation(s) in RCA: 215] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Naturally produced membrane vesicles (MVs), isolated from 15 strains of gram-negative bacteria (Citrobacter, Enterobacter, Escherichia, Klebsiella, Morganella, Proteus, Salmonella, and Shigella strains), lysed many gram-positive (including Mycobacterium) and gram-negative cultures. Peptidoglycan zymograms suggested that MVs contained peptidoglycan hydrolases, and electron microscopy revealed that the murein sacculi were digested, confirming a previous modus operandi (J. L. Kadurugamuwa and T. J. Beveridge, J. Bacteriol. 174:2767-2774, 1996). MV-sensitive bacteria possessed A1alpha, A4alpha, A1gamma, A2alpha, and A4gamma peptidoglycan chemotypes, whereas A3alpha, A3beta, A3gamma, A4beta, B1alpha, and B1beta chemotypes were not affected. Pseudomonas aeruginosa PAO1 vesicles possessed the most lytic activity.
Collapse
Affiliation(s)
- Z Li
- Canadian Bacterial Disease Network, Department of Microbiology, College of Biological Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | |
Collapse
|
103
|
Fujimoto DF, Bayles KW. Opposing roles of the Staphylococcus aureus virulence regulators, Agr and Sar, in Triton X-100- and penicillin-induced autolysis. J Bacteriol 1998; 180:3724-6. [PMID: 9658022 PMCID: PMC107347 DOI: 10.1128/jb.180.14.3724-3726.1998] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The regulation of murein hydrolases is a critical aspect of peptidoglycan growth and metabolism. In the present study, we demonstrate that mutations within the Staphylococcus aureus virulence factor regulatory genes, agr and sar, affect autolysis, resulting in decreased and increased autolysis rates, respectively. Zymographic analyses of these mutant strains suggest that agr and sar exert their effects on autolysis, in part, by modulating murein hydrolase expression and/or activity.
Collapse
Affiliation(s)
- D F Fujimoto
- Department of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, Idaho 83844-3052, USA
| | | |
Collapse
|
104
|
Abstract
The gene for a novel endotype membrane-bound lytic transglycosylase, emtA, was mapped at 26.7 min of the E. coli chromosome. EmtA is a lipoprotein with an apparent molecular mass of 22kDa. Overexpression of the emtA gene did not result in bacteriolysis in vivo, but the enzyme was shown to hydrolyze glycan strands isolated from murein by amidase treatment. The formation of tetra- and hexasaccharides, but no disaccharides, reflects the endospecificity of the enzyme. The products are characterized by the presence of 1,6-anhydromuramic acid, indicating a lytic transglycosylase reaction mechanism. EmtA may function as a formatting enzyme that trims the nascent murein strands produced by the murein synthesis machinery into proper sizes, or it may be involved in the formation of tightly controlled minor holes in the murein sacculus to facilitate the export of bulky compounds across the murein barrier.
Collapse
Affiliation(s)
- A R Kraft
- Abteilung Biochemie, Max-Planck-Institut für Entwicklungsbiologie, Tübingen, Germany
| | | | | |
Collapse
|
105
|
Ishikawa S, Hara Y, Ohnishi R, Sekiguchi J. Regulation of a new cell wall hydrolase gene, cwlF, which affects cell separation in Bacillus subtilis. J Bacteriol 1998; 180:2549-55. [PMID: 9573210 PMCID: PMC107200 DOI: 10.1128/jb.180.9.2549-2555.1998] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bacillus subtilis produces a 35-kDa cell wall hydrolase, CwlF, during vegetative growth. The CwlF protein was extracted from B. subtilis cwlB sigD mutant cells and separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. N-terminal amino acid sequencing revealed that its sequence is completely identical to that of the internal region of the papQ gene product. Disruption of the papQ gene in the B. subtilis chromosome led to the complete loss of CwlF, indicating that papQ is identical to cwlF. CwlF exhibits high sequence similarity to the p60 proteins of Listeria species, NlpC proteins of Escherichia coli and Haemophilus influenzae, and Enp2 protein of Bacillus sphaericus. The beta-galactosidase activity of the cwlF-lacZ transcriptional fusion and Northern blot analysis of the cwlF gene indicated that the gene is expressed as a monocistronic operon during the exponential growth phase, and primer extension analysis suggested that the cwlF gene is transcribed mainly by EsigmaA RNA polymerase and weakly by EsigmaH RNA polymerase. While the cells of the cwlF-deficient mutant were about twice as long as those of the wild-type strain, the cwlF sigD double mutant cells exhibited extraordinary microfiber formation, in contrast to the filamentation of the sigD mutant. The CwlF production was not affected by the pleiotropic mutations flaD1 and degU32(Hy), which endow cells with the ability of extensive filamentation.
Collapse
Affiliation(s)
- S Ishikawa
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan
| | | | | | | |
Collapse
|
106
|
Abstract
The shape of Escherichia coli is strikingly simple compared to those of higher eukaryotes. In fact, the end result of E. coli morphogenesis is a cylindrical tube with hemispherical caps. It is argued that physical principles affect biological forms. In this view, genes code for products that contribute to the production of suitable structures for physical factors to act upon. After introduction of a physical model, the discussion is focused on the shape-maintaining (peptidoglycan) layer of E. coli. This is followed by a detailed analysis of the structural relationship of the cellular interior to the cytoplasmic membrane. A basic theme of this review is that the transcriptionally active nucleoid and the cytoplasmic translation machinery form a structural continuity with the growing cellular envelope. An attempt has been made to show how this dynamic relationship during the cell cycle affects cell polarity and how it leads to cell division.
Collapse
Affiliation(s)
- N Nanninga
- Institute for Molecular Cell Biology, BioCentrum Amsterdam, University of Amsterdam, The Netherlands.
| |
Collapse
|
107
|
Höltje JV. Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol Mol Biol Rev 1998; 62:181-203. [PMID: 9529891 PMCID: PMC98910 DOI: 10.1128/mmbr.62.1.181-203.1998] [Citation(s) in RCA: 868] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To withstand the high intracellular pressure, the cell wall of most bacteria is stabilized by a unique cross-linked biopolymer called murein or peptidoglycan. It is made of glycan strands [poly-(GlcNAc-MurNAc)], which are linked by short peptides to form a covalently closed net. Completely surrounding the cell, the murein represents a kind of bacterial exoskeleton known as the murein sacculus. Not only does the sacculus endow bacteria with mechanical stability, but in addition it maintains the specific shape of the cell. Enlargement and division of the murein sacculus is a prerequisite for growth of the bacterium. Two groups of enzymes, hydrolases and synthases, have to cooperate to allow the insertion of new subunits into the murein net. The action of these enzymes must be well coordinated to guarantee growth of the stress-bearing sacculus without risking bacteriolysis. Protein-protein interaction studies suggest that this is accomplished by the formation of a multienzyme complex, a murein-synthesizing machinery combining murein hydrolases and synthases. Enlargement of both the multilayered murein of gram-positive and the thin, single-layered murein of gram-negative bacteria seems to follow an inside-to-outside growth strategy. New material is hooked in a relaxed state underneath the stress-bearing sacculus before it becomes inserted upon cleavage of covalent bonds in the layer(s) under tension. A model is presented that postulates that maintenance of bacterial shape is achieved by the enzyme complex copying the preexisting murein sacculus that plays the role of a template.
Collapse
Affiliation(s)
- J V Höltje
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung Biochemie, Tübingen, Germany.
| |
Collapse
|
108
|
Ishikawa S, Yamane K, Sekiguchi J. Regulation and characterization of a newly deduced cell wall hydrolase gene (cwlJ) which affects germination of Bacillus subtilis spores. J Bacteriol 1998; 180:1375-80. [PMID: 9515903 PMCID: PMC107033 DOI: 10.1128/jb.180.6.1375-1380.1998] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The predicted amino acid sequence of Bacillus subtilis ycbQ (renamed cwlJ) exhibits high similarity to those of the deduced C-terminal catalytic domain of SleBs, the specific cortex-hydrolyzing enzyme of B. cereus and the deduced one of B. subtilis. We constructed a cwlJ::lacZ fusion in the B. subtilis chromosome. The beta-galactosidase activity and results of Northern hybridization and primer extension analyses of the cwlJ gene indicated that it is transcribed by EsigmaE RNA polymerase. cwlJ-deficient spores responded to both L-alanine and AGFK, the A580 values of spore suspensions decreased more slowly than in the case of the wild-type strain, and the mutant spores released less dipicolinic acid than did those of the wild-type strain during germination. However, the mutant spores released only slightly less hexosamine than did the wild-type spores. In contrast, B. subtilis sleB spores did not release hexosamine at a significant level. While cwlJ and sleB spores were able to germinate, CJSB (cwlJ sleB) spores could not germinate but exhibited initial germination reactions, e.g., partial decrease in A580 and slow release of dipicolinic acid. CJSB spores became slightly gray after 6 h in the germinant, but their refractility was much greater than that of sleB mutant spores. The roles of the sleB and cwlJ mutations in germination and spore maturation are also discussed.
Collapse
MESH Headings
- Alanine/pharmacology
- Amino Acid Sequence
- Bacillus cereus/genetics
- Bacillus subtilis/enzymology
- Bacillus subtilis/genetics
- Bacillus subtilis/physiology
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Sequence
- Chromosomes, Bacterial
- Cloning, Molecular
- DNA, Bacterial/analysis
- DNA, Bacterial/genetics
- Gene Expression Regulation, Bacterial
- Gene Expression Regulation, Enzymologic
- Hexosamines/metabolism
- Hydrolases/genetics
- Hydrolases/metabolism
- Lac Operon
- Molecular Sequence Data
- Picolinic Acids/metabolism
- Plasmids
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Recombination, Genetic
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Spores, Bacterial/enzymology
- Spores, Bacterial/genetics
- Spores, Bacterial/physiology
- Transcription, Genetic
- Transformation, Genetic
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- S Ishikawa
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan
| | | | | |
Collapse
|
109
|
Park JT, Raychaudhuri D, Li H, Normark S, Mengin-Lecreulx D. MppA, a periplasmic binding protein essential for import of the bacterial cell wall peptide L-alanyl-gamma-D-glutamyl-meso-diaminopimelate. J Bacteriol 1998; 180:1215-23. [PMID: 9495761 PMCID: PMC107010 DOI: 10.1128/jb.180.5.1215-1223.1998] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/1997] [Accepted: 12/30/1997] [Indexed: 02/06/2023] Open
Abstract
Mutants of a diaminopimelic acid (Dap)-requiring strain of Escherichia coli were isolated which failed to grow on media in which Dap was replaced by the cell wall murein tripeptide, L-alanyl-gamma-D-glutamyl-mesodiaminopimelate. In one such mutant, which is oligopeptide permease (Opp) positive, we have identified a new gene product, designated MppA (murein peptide permease A), that is about 46% identical to OppA, the periplasmic binding protein for Opp. A plasmid carrying the wild-type mppA gene allows the mutant to grow on tripeptide. Two other mutants that failed to grow on tripeptide were resistant to triornithine toxicity, indicating a defect in the opp operon. An E. coli strain whose entire opp operon was deleted but which carried the mppA locus was unable to grow on murein tripeptide unless it was provided with oppBCDF genes in trans. Our data suggest a model whereby the periplasmic MppA binds the murein tripeptide, which is then transported into the cytoplasm via membrane-bound and cytoplasmic OppBCDF. In assessing the affinity of MppA for non-cell wall peptides, we have found that proline auxotrophy can be satisfied with the peptide Pro-Phe-Lys, which utilizes either MppA or OppA in conjunction with OppBCDF for its uptake. Thus, MppA, OppA, and perhaps the third OppA paralog revealed by the E. coli genome sequence may each bind a particular family of peptides but interact with common membrane-associated components for transport of their bound ligands into the cell. As to the physiological function of MppA, the possibility that it may be involved in signal transduction pathway(s) is discussed.
Collapse
Affiliation(s)
- J T Park
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts 02111, USA.
| | | | | | | | | |
Collapse
|
110
|
Lommatzsch J, Templin MF, Kraft AR, Vollmer W, Höltje JV. Outer membrane localization of murein hydrolases: MltA, a third lipoprotein lytic transglycosylase in Escherichia coli. J Bacteriol 1997; 179:5465-70. [PMID: 9287002 PMCID: PMC179418 DOI: 10.1128/jb.179.17.5465-5470.1997] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Lytic transglycosylases are a unique lysozyme-like class of murein hydrolases believed to be important for growth of Escherichia coli. A membrane-bound lytic transglycosylase with an apparent molecular mass of 38 kDa, which was designated Mlt38, has previously been purified and characterized (A. Ursinus and J.-V. Höltje, J. Bacteriol. 176:338-343, 1994). On the basis of four tryptic peptides, the gene mltA was mapped at 63 min on the chromosomal map of E. coli K-12 and cloned by reverse genetics. The open reading frame was found to contain a typical lipoprotein consensus sequence, and the lipoprotein nature of the gene product was demonstrated by [3H]palmitate labeling. On the basis of the distribution of MltA in membrane fractions obtained by sucrose gradient centrifugation, a localization in the outer membrane is indicated. Overexpression of MltA at 30 degrees C, the optimal temperature for enzyme activity, but not at 37 degrees C results in the formation of spheroplasts. Not only a deletion mutant in mltA, but also double mutants in mltA and one of the two other well-characterized lytic transglycosylases (either sltY or mltB), as well as a triple mutant in all three enzymes, showed no obvious phenotype. However, dramatic changes in the structure of the murein sacculus indicate that lytic transglycosylases are involved in maturation of the murein sacculus.
Collapse
Affiliation(s)
- J Lommatzsch
- Abteilung Biochemie, Max-Planck-Institut für Entwicklungsbiologie, Tübingen, Germany
| | | | | | | | | |
Collapse
|
111
|
Beveridge TJ, Makin SA, Kadurugamuwa JL, Li Z. Interactions between biofilms and the environment. FEMS Microbiol Rev 1997; 20:291-303. [PMID: 9299708 DOI: 10.1111/j.1574-6976.1997.tb00315.x] [Citation(s) in RCA: 208] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The surfaces of bacteria are highly interactive with their environment. Whether the bacterium is Gram-negative or Gram-positive, most surfaces are charged at neutral pH because of the ionization of the reactive chemical groups which stud them. Since prokaryotes have a high surface area-to-volume ratio, this can have surprising ramifications. For example, many bacteria can concentrate dilute environmental metals on their surfaces and initiate the development of fine-grained minerals. In natural environments, it is not unusual to find such bacteria closely associated with the minerals which they have helped develop. Bacteria can be free-living (planktonic), but in most natural ecosystems they prefer to grow on interfaces as biofilms; supposedly to take advantage of the nutrient concentrative effect of the interface, although there must also be gained some protective value against predators and toxic agents. Using a Pseudomonas aeruginosa model system, we have determined that lipopolysaccharide is important in the initial attachment of this Gram-negative bacterium to interfaces and that this surface moiety subtly changes during biofilm formation. Using this same model system, we have also discovered that there is a natural tendency for Gram-negative bacteria to concentrate and package periplasmic components into membrane vesicles which bleb-off the surface. Since some of these components (e.g., peptidoglycan hydrolases) can degrade other surrounding cells, the vesicles could be predatory; i.e., a natural system by which neighboring bacteria are targeted and lysed, thereby liberating additional nutrients to the microbial community. This obviously would be of benefit to vesicle-producing bacteria living in biofilms containing mixed microbial populations.
Collapse
Affiliation(s)
- T J Beveridge
- Canadian Bacterial Disease Network-National Centre of Excellence, Guelph, Ont., Canada.
| | | | | | | |
Collapse
|
112
|
Ramadurai L, Jayaswal RK. Molecular cloning, sequencing, and expression of lytM, a unique autolytic gene of Staphylococcus aureus. J Bacteriol 1997; 179:3625-31. [PMID: 9171409 PMCID: PMC179157 DOI: 10.1128/jb.179.11.3625-3631.1997] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A gene encoding an autolytic activity was identified in an autolysis-deficient mutant (Lyt-) of Staphylococcus aureus which produces only a single band in autolytic-activity gels (N. Mani, P. Tobin, and R. K. Jayaswal, J. Bacteriol. 175:1493-1499, 1993). An open reading frame, designated lytM, of 948 bp that could encode a polypeptide of 316 amino acid residues was identified. The calculated molecular mass of the lytM gene product (34.4 kDa) corresponded to that of the autolytic activity detected (approximately 36 kDa) in the Lyt- mutant. Results deduced from amino acid sequence analysis and N-terminal amino acid sequencing data suggest that LytM is a secreted protein. The C-terminal region of the putative protein encoded by lytM showed 51% identity with the N-terminal region of the mature lysostaphin from Staphylococcus simulans and 50% identity with the N-terminal region of ALE-1 from Staphylococcus capitis EPK1. Northern blot analysis showed that lytM expresses a transcript of approximately 955 bp, as predicted from the DNA sequence. Escherichia coli clones carrying the lytM gene exhibited autolytic-activity bands of approximately 36 kDa as well as of 19 and 22 kDa in activity gels. The lytM gene was mapped to the SmaI-D fragment on the S. aureus chromosome. Mapping data and results of hybridization experiments with primers generated from gene sequences of known autolytic genes of S. aureus clearly indicate that the lytM gene is distinct from other staphylococcal autolytic genes reported to date.
Collapse
Affiliation(s)
- L Ramadurai
- Department of Biological Sciences, Illinois State University, Normal 61790-4120, USA
| | | |
Collapse
|
113
|
Abstract
Peptidoglycan (murein) segregation has been studied by means of a new labeling method. The method relies on the ability of Escherichia coli cells to incorporate D-Cys into macromolecular murein. The incorporation depends on a periplasmic amino acid exchange reaction. At low concentrations, D-Cys is innocuous to the cell. The distribution of modified murein in purified sacculi can be traced and visualized by immunodetection of the -SH groups by fluorescence and electron microscopy techniques. Analysis of murein segregation in wild-type and cell division mutant strains revealed that murein in polar caps is metabolically inert and is segregated in a conservative fashion. Elongation of the sacculus apparently occurs by diffuse insertion of precursors over the cylindrical part of the cell surface. At the initiation of cell division, there is a FtsZ-dependent localized activation of murein synthesis at the potential division sites. Penicillin-binding protein 3 and the products of the division genes ftsA and ftsQ are dispensable for the activation of division sites. As a consequence, under restrictive conditions ftsA,ftsI,or ftsQ mutants generate filamentous sacculi with rings of all-new murein at the positions where septa would otherwise develop.
Collapse
Affiliation(s)
- M A de Pedro
- Centro de Biología Molecular Severo Ochoa Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Facultad de Ciencias, Spain.
| | | | | | | |
Collapse
|
114
|
Abstract
In this report, the characterization of a Staphylococcus aureus operon containing two LytSR-regulated genes, lrgA and lrgB, is described. Sequence and mutagenesis studies of these genes suggest that lrgA encodes a murein hydrolase exporter similar to bacteriophage holin proteins while lrgB may encode a protein having murein hydrolase activity.
Collapse
Affiliation(s)
- E W Brunskill
- Program in Molecular and Cell Biology, University of Maryland, Baltimore County 21228, USA
| | | |
Collapse
|
115
|
Affiliation(s)
- A J Dijkstra
- Pharma Research Department, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | | |
Collapse
|
116
|
Massidda O, Kariyama R, Daneo-Moore L, Shockman GD. Evidence that the PBP 5 synthesis repressor (psr) of Enterococcus hirae is also involved in the regulation of cell wall composition and other cell wall-related properties. J Bacteriol 1996; 178:5272-8. [PMID: 8752348 PMCID: PMC178327 DOI: 10.1128/jb.178.17.5272-5278.1996] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
psr has been reported by M. Ligozzi, F. Pittaluga, and R. Fontana, (J. Bacteriol. 175:2046-2051, 1993) to be a genetic element located just upstream of the structural gene for the low-affinity penicillin-binding protein 5 (PBP 5) in the chromosome of Enterococcus hirae ATCC 9790 and to be involved in the repression of PBP 5 synthesis. By comparing properties of strains of E. hirae that contain a full-length, functional psr with those of strains that possess a truncated form of the gene, we have obtained data that indicate that psr is involved in the regulation of several additional surface-related properties. We observed that cells of strains that possessed a truncated psr were more sensitive to lysozyme-catalyzed protoplast formation, autolyzed more rapidly in 10 mM sodium phosphate (pH 6.8), and, in contrast to strains that possess a functional psr, retained these characteristics after the cultures entered the stationary growth phase. Cellular lytic properties did not correlate with differences in the cellular contents of muramidase-1 or muramidase-2, with the levels of PBP 5 produced, or with the penicillin susceptibilities of the strains. However, a strong correlation was observed with the amounts of rhamnose present in the cell walls of the various strains. All of the strains examined that possessed a truncated form of psr also possessed approximately one-half of the rhamnose content present in the walls of strains that possessed a functional psr. These data suggest that psr is also involved in the regulation of the synthesis of, or covalent linkage to the cell wall peptidoglycan of, a rhamnose-rich polysaccharide. These differences in cell wall composition could be responsible for the observed phenotypic differences. However, the multiple effects of psr suggest that it is part of a global regulatory system that, perhaps independently, affects several cell surface-related properties.
Collapse
Affiliation(s)
- O Massidda
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | |
Collapse
|
117
|
Mengin-Lecreulx D, van Heijenoort J, Park JT. Identification of the mpl gene encoding UDP-N-acetylmuramate: L-alanyl-gamma-D-glutamyl-meso-diaminopimelate ligase in Escherichia coli and its role in recycling of cell wall peptidoglycan. J Bacteriol 1996; 178:5347-52. [PMID: 8808921 PMCID: PMC178350 DOI: 10.1128/jb.178.18.5347-5352.1996] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A gene, mpl, encoding UDP-N-acetylmuramate:L-alanyl-gamma-D-glutamyl-meso-diaminopimelat e ligase was recognized by its amino acid sequence homology with murC as the open reading frame yjfG present at 96 min on the Escherichia coli map. The existence of such an enzymatic activity was predicted from studies indicating that reutilization of the intact tripeptide L-alanyl-gamma-D-glutamyl-meso-diaminopimelate occurred and accounted for well over 30% of new cell wall synthesis. Murein tripeptide ligase activity could be demonstrated in crude extracts, and greatly increased activity was produced when the gene was cloned and expressed under control of the trc promoter. A null mutant totally lacked activity but was viable, showing that the enzyme is not essential for growth.
Collapse
Affiliation(s)
- D Mengin-Lecreulx
- Unité de Recherche Associée 1131 du Centre National de la Recherche Scientifique, Université Paris-Sud, Orsay, France.
| | | | | |
Collapse
|
118
|
Kadurugamuwa JL, Beveridge TJ. Bacteriolytic effect of membrane vesicles from Pseudomonas aeruginosa on other bacteria including pathogens: conceptually new antibiotics. J Bacteriol 1996; 178:2767-74. [PMID: 8631663 PMCID: PMC178010 DOI: 10.1128/jb.178.10.2767-2774.1996] [Citation(s) in RCA: 250] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Pseudomonas aeruginosa releases membrane vesicles (MVs) filled with periplasmic components during normal growth, and the quantity of these vesicles can be increased by brief exposure to gentamicin. Natural and gentamicin-induced membrane vesicles (n-MVs and g-MVs, respectively) are subtly different from one another, but both contain several important virulence factors, including hydrolytic enzyme factors (J. L. Kadurugamuwa and T. J. Beveridge, J. Bacteriol. 177:3998-4008, 1995). Peptidoglycan hydrolases (autolysins) were detected in both MV types, especially a periplasmic 26-kDa autolysin whose expression has been related to growth phase (Z. Li, A. J. Clarke, and T. J. Beveridge, J. Bacteriol. 178:2479-2488, 1996). g-MVs possessed slightly higher autolysin activity and, at the same time, small quantities of gentamicin. Both MV types hydrolyzed isolated gram-positive and gram-negative murein sacculi and were also capable of hydrolyzing several glycyl peptides. Because the MVs were bilayered, they readily fused with the outer membrane of gram-negative bacteria. They also adhered to the cell wall of gram-positive bacteria. g-MVs were more effective in lysing other bacteria because, in addition to the autolysins, they also contained small amounts of gentamicin. The bactericidal activity was 2.5 times the MIC of gentamicin, which demonstrates the synergistic effect of the antibiotic with the autolysins. n-MVs were capable of killing cultures of P. aeruginosa with permeability resistance against gentamicin, indicating that the fusion of n-MV to the outer membrane liberated autolysins into the periplasm, where they degraded the peptidoglycan and lysed the cells. g-MVs had even greater killing power since they liberated both gentamicin and autolysins into these resistant cells. These findings may help develop a conceptually new group of antibiotics designed to be effective against hard-to-kill bacteria.
Collapse
Affiliation(s)
- J L Kadurugamuwa
- Department of Microbiology, College of Biological Science, University of Guelph, Ontario, Canada.
| | | |
Collapse
|
119
|
Li Z, Clarke AJ, Beveridge TJ. A major autolysin of Pseudomonas aeruginosa: subcellular distribution, potential role in cell growth and division and secretion in surface membrane vesicles. J Bacteriol 1996; 178:2479-88. [PMID: 8626312 PMCID: PMC177969 DOI: 10.1128/jb.178.9.2479-2488.1996] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A 26-kDa murein hydrolase is the major autolysin of Pseudomonas aeruginosa PAO1, and its expression can be correlated with the growth and division of cells in both batch and synchronously growing cultures. In batch cultures, it is detected primarily during the mid-exponential growth phase, and in synchronous cultures, it is detected primarily during the cell elongation and division phases. Immunogold labeling of thin sections of P. aeruginosa using antibodies raised against the 26-kDa autolysin revealed that it is associated mainly with the cell envelope and in particular within the periplasm. It is also tightly bound to the peptidoglycan layer, since murein sacculi, isolated by boiling 4% sodium dodecyl sulfate treatment, could also be immunogold labeled. Since division is due to cell constriction in this P. aeruginosa strain (septa are rarely seen), we cannot comment on the autolysin's contribution to septation, although constriction sites were always heavily labeled. Some labeling was also found in the cytoplasm, and this was thought to be due to the de novo synthesis of the enzyme before translocation to the periplasm. Interestingly, the autolysin was also found to be associated with natural membrane vesicles which blebbed from the surface during cell growth; the enzyme is therefore part of the complex makeup of these membrane packages of secreted materials (J. L. Kadurugamuwa and T. J. Beveridge, J. Bacteriol. 177:3998-4008, 1995). The expression of these membrane vesicles was correlated with the expression of B-band lipopolysaccharide.
Collapse
Affiliation(s)
- Z Li
- Center for Canadian Bacterial Diseases Network, Department of Microbiology, College of Biological Sciences, University of Guelph, Ontario, Canada
| | | | | |
Collapse
|
120
|
Fussenegger M, Kahrs AF, Facius D, Meyer TF. Tetrapac (tpc), a novel genotype of Neisseria gonorrhoeae affecting epithelial cell invasion, natural transformation competence and cell separation. Mol Microbiol 1996; 19:1357-72. [PMID: 8730876 DOI: 10.1111/j.1365-2958.1996.tb02479.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We characterized a novel mutant phenotype (tetrapac, tpc) of Neisseria gonorrhoeae (Ngo) associated with a distinctive rough-colony morphology and bacterial growth in clusters of four. This phenotype, suggesting a defect in cell division, was isolated from a mutant library of Ngo MS11 generated with the phoA minitransposon TnMax4. The tpc mutant shows a 30% reduction in the overall murein hydrolase activity using Escherichia coli murein as substrate. Tetrapacs can be resolved by co-cultivation with wild-type Ngo, indicating that Tpc is a diffusible protein. Interestingly, Tpc is absolutely required for the natural transformation competence of piliated Ngo. Mutants in tpc grow normally, but show a approximately 10-fold reduction in their ability to invade human epithelial cells. The tpc sequence reveals an open reading frame of approximately 1 kb encoding a protein (Tpc) of 37 kDa. The primary gene product exhibits an N-terminal leader sequence typical of lipoproteins, but palmitoylation of Tpc could not be demonstrated. The ribosomal binding site of tpc is immediately downstream of the translational stop codon of the folC gene coding for an enzyme involved in folic acid biosynthesis and one-carbon metabolism. The tpc gene is probably co-transcribed from the folC promoter and a promoter located within the folC gene. The latter promoter sequence shares significant homology with E. coli gearbox consensus promoters. All three mutant phenotypes, i.e. the cell separation defect, the transformation deficiency and the defect in cell invasion can be restored by complementation of the mutant with an intact tpc gene. To some extent the tcp phenotype is reminiscent of iap in Listeria, lytA in Streptococcus pneumoniae and lyt in Bacillus subtilis, all of which are considered to represent murein hydrolase defects.
Collapse
Affiliation(s)
- M Fussenegger
- Max-Planck-Institut für Biologie, Abteilung Infektionsbiologie, Tübingen, Germany
| | | | | | | |
Collapse
|
121
|
Yamada S, Sugai M, Komatsuzawa H, Nakashima S, Oshida T, Matsumoto A, Suginaka H. An autolysin ring associated with cell separation of Staphylococcus aureus. J Bacteriol 1996; 178:1565-71. [PMID: 8626282 PMCID: PMC177839 DOI: 10.1128/jb.178.6.1565-1571.1996] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
atl is a newly discovered autolysin gene in Staphylococcus aureus. The gene product, ATL, is a unique, bifunctional protein that has an amidase domain and a glucosaminidase domain. It undergoes proteolytic processing to generate two extracellular peptidoglycan hydrolases, a 59-kDa endo-beta-N-acetylglucosaminidase and a 62-kDa N-acetylmuramyl-L-alanine amidase. It has been suggested that these enzymes are involved in the separation of daughter cells after cell division. We recently demonstrated that atl gene products are cell associated (unpublished data). The cell surface localization of the atl gene products was investigated by immunoelectron microscopy using anti-62-kDa N-acetylmuramyl-L-alanine amidase or anti-51-kDa endo-beta-N-acetylglucosaminidase immunoglobulin G. Protein A-gold particles reacting with the antigen-antibody complex were found to form a ring structure on the cell surface at the septal region for the next cell division site. Electron microscopic examination of an ultrathin section of the preembedded sample revealed preferential distribution of the gold particles at the presumptive sites for cell separation where the new septa had not been completed. The distribution of the gold particles on the surface of protoplast cells and the association of the gold particles with fibrous materials extending from the cells suggested that some atl gene products were associated with a cellular component extending from the cell membrane, such as lipoteichoic acid. The formation of a ring structure of atl gene products may be required for efficient partitioning of daughter cells after cell division.
Collapse
Affiliation(s)
- S Yamada
- Department of Microbiology, Kawasaki Medical School, Okayama, Japan
| | | | | | | | | | | | | |
Collapse
|
122
|
Purification and Characterization of Cell Wall-associated N-Acetylmuramyl-L-alanine Amidase from Alkaliphilic Bacillus lentus C-125. Biosci Biotechnol Biochem 1996; 60:1140-5. [PMID: 27299715 DOI: 10.1271/bbb.60.1140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cells of the facultative alkaliphile Bacillus sp. C-125 grown at neutral pH autolyze rapidly in alkaline buffers of pH 9-10. Alkaline autolytic activity has been found mainly in the cell wall fraction. A peptidoglycanlytic enzyme was extracted from the cell wall fraction suspended in 4M LiCl. The enzyme was identified as N-acetylmuramyl-L-alanine amidase, with a molecular mass of 58kDa. At low salinity, the enzyme formed an aggregate of high molecular mass. The peptidoglycan lytic reaction of this enzyme happened at pH 9.0-10.5 at 37°C. Optimum pH for the reaction was 9.7-10.0. The enzyme was most active at 60°C when assayed at pH 9.0.
Collapse
|
123
|
Abstract
Lysozymes are found in many bacteria that are surrounded by a murein-(peptidoglycan) containing cell wall. Their physiological function for the bacteria is still a matter of debate. On the one hand they can autolyse the cell, on the other hand they may have an essential role during enlargement and division of the cell wall by the controlled splitting of bonds in the murein sacculus. Both beta-1.4-N,6-O-diacetylmuramidase and beta-1.4-N-acetylmuramidases have been described in bacteria. In some cases a modular design of the enzyme has been demonstrated with a catalytic domain and a substrate (murein)-binding and recognition domain consisting of repeated motifs.
Collapse
Affiliation(s)
- J V Höltje
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung Biochemie, Tübingen, Germany
| |
Collapse
|
124
|
Sekiguchi J, Akeo K, Yamamoto H, Khasanov FK, Alonso JC, Kuroda A. Nucleotide sequence and regulation of a new putative cell wall hydrolase gene, cwlD, which affects germination in Bacillus subtilis. . J Bacteriol 1995; 177:5582-9. [PMID: 7559346 PMCID: PMC177368 DOI: 10.1128/jb.177.19.5582-5589.1995] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
DNA sequencing of a region upstream of the mms223 gene of Bacillus subtilis showed the presence of two open reading frames, orf1 and orf2, which may encode 18- and 27-kDa polypeptides, respectively. The predicted amino acid sequence of the latter shows high similarity to a major autolysin of B. subtilis, CwlB, with 35% identity over 191 residues, as well as to other autolysins (CwlC, CwlM, and AmiB). The gene was tentatively named cwlD. Bright spores produced by a B. subtilis mutant with an insertionally inactivated cwlD gene were committed to germination by the addition of L-alanine, and spore darkening, a slow and partial decrease in A580, and 72% dipicolinic acid release compared with that of the wild-type strain were observed. However, degradation of the cortex was completely blocked. Spore germination of the cwlD mutant measured by colony formation after heat treatment was less than 3.7 x 10(-8). The germination deficiency of the cwlD mutant was only partially removed when the spores were treated with lysozyme. Analysis of the chromosomal transcription of cwlD demonstrated that a transcript (RNA2) appearing 3 h after initiation of sporulation may have originated from an internal sigma E-dependent promoter of the cwlD operon, and a longer transcript (RNA1) appearing 4.5 h after sporulation may have originated from a sigma G-dependent promoter upstream of the orf1 gene. The cwlD mutant harboring a B. subtilis vector plasmid containing the intact cwlD gene recovered germination at a frequency 26% of the wild-type level.
Collapse
MESH Headings
- Alanine/pharmacology
- Amino Acid Sequence
- Bacillus subtilis/drug effects
- Bacillus subtilis/enzymology
- Bacillus subtilis/genetics
- Bacillus subtilis/physiology
- Bacterial Proteins/biosynthesis
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Base Sequence
- Cell Wall/enzymology
- Gene Expression Regulation, Bacterial/genetics
- Genes, Bacterial/genetics
- Molecular Sequence Data
- Muramidase/pharmacology
- Mutagenesis, Insertional
- N-Acetylmuramoyl-L-alanine Amidase
- Open Reading Frames
- Picolinic Acids/metabolism
- RNA, Bacterial/biosynthesis
- RNA, Messenger/biosynthesis
- Restriction Mapping
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Spores, Bacterial/drug effects
- Spores, Bacterial/genetics
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- J Sekiguchi
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan
| | | | | | | | | | | |
Collapse
|
125
|
Rashid MH, Sato N, Sekiguchi J. Analysis of the minor autolysins ofBacillus subtilisduring vegetative growth by zymography. FEMS Microbiol Lett 1995. [DOI: 10.1111/j.1574-6968.1995.tb07822.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
126
|
Abstract
Murein hydrolases cleave bonds in the bacterial exoskeleton, the murein (peptidoglycan) sacculus, a covalently closed bag-shaped polymer made of glycan strands that are crosslinked by peptides. During growth and division of a bacterial cell, these enzymes are involved in the controlled metabolism of the murein sacculus. Murein hydrolases are believed to function as pacemaker enzymes for the enlargement of the murein sacculus since opening of bonds in the murein net is needed to allow the insertion of new subunits into the sacculus. Furthermore, they are responsible for splitting the septum during cell division. The murein turnover products that are released during growth are further degraded by these (1 --> 6)-anhydromuramic acid derivatives by an intramolecular transglycosylation reaction.
Collapse
Affiliation(s)
- J V Höltje
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung Biochemie, Tübingen, Germany
| |
Collapse
|
127
|
Quintela JC, Pittenauer E, Allmaier G, Arán V, de Pedro MA. Structure of peptidoglycan from Thermus thermophilus HB8. J Bacteriol 1995; 177:4947-62. [PMID: 7665471 PMCID: PMC177270 DOI: 10.1128/jb.177.17.4947-4962.1995] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The composition and structure of peptidoglycan (murein) extracted from the extreme thermophilic eubacterium Thermus thermophilus HB8 are presented. The structure of 29 muropeptides, accounting for more than 85% of total murein, is reported. The basic monomeric subunit consists of N-acetylglucosamine-N-acetylmuramic acid-L-Ala-D-Glu-L-Orn-D-Ala-D-Ala, acylated at the delta-NH2 group of Orn by a Gly-Gly dipeptide. In a significant proportion (about 23%) of total muropeptides, the N-terminal Gly is substituted by a residue of phenylacetic acid. This is the first time phenylacetic acid is described as a component of bacterial murein. Possible implications for murein physiology and biosynthesis are discussed. Murein cross-linking is mediated by D-Ala-Gly-Gly peptide cross-bridges. Glycan chains are apparently terminated by (1-->6) anhydro N-acetylmuramic acid residues. Neither reducing sugars nor murein-bound macromolecules were detected. Murein from T. thermophilus presents an intermediate complexity between those of gram-positive and gram-negative organisms. The murein composition and peptide cross-bridges of T. thermophilus are typical for a gram-positive bacterium. However, the murein content, degree of cross-linkage, and glycan chain length for T. thermophilus are closer to those for gram-negative organisms and could explain the gram-negative character of Thermus spp.
Collapse
Affiliation(s)
- J C Quintela
- Centro de Biología Molecular Severo Ochoa Consejo Superior de Investigaciones Cientificas-Universidad Autónoma de Madrid, Facultad de Ciencias, Campus de Cantoblanco, Madrid, Spain
| | | | | | | | | |
Collapse
|
128
|
Payie KG, Rather PN, Clarke AJ. Contribution of gentamicin 2'-N-acetyltransferase to the O acetylation of peptidoglycan in Providencia stuartii. J Bacteriol 1995; 177:4303-10. [PMID: 7635816 PMCID: PMC177177 DOI: 10.1128/jb.177.15.4303-4310.1995] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A collection of Providencia stuartii mutants which either underexpress or overexpress aac(2')-Ia, the chromosomal gene coding for gentamicin 2'-N-acetyltransferase (EC 2.3.1.59), have been characterized phenotypically as possessing either lower or higher levels of peptidoglycan O acetylation, respectively, than the wild type. These mutants were subjected to both negative-staining and thin-section electron microscopy. P. stuartii PR100, with 42% O acetylation of peptidoglycan compared with 52% O acetylation in the wild type, appeared as irregular rods. In direct contrast, P. stuartii strains PR50.LM3 and PR51, with increased levels of peptidoglycan O acetylation (65 and 63%, respectively), appeared as coccobacilli and chain formers, respectively. Membrane blebbing was also observed with the chain-forming strain PR51. Thin sectioning of this mutant indicated that it was capable of proper constriction and separation. P. stuartii PM1, when grown to mid-exponential phase, did not have altered peptidoglycan O-acetylation levels, and cellular morphology remained similar to that of wild-type strains. However, continued growth into stationary phase resulted in a 15% increase in peptidoglycan O acetylation concomitant with a change of some cells from a rod-shaped to a coccobacillus-shaped morphology. The fact that these apparent morphological changes were directly related to levels of O acetylation support the view that this modification plays a role in the maintenance of peptidoglycan structure, presumably through the control of autolytic activity.
Collapse
Affiliation(s)
- K G Payie
- Department of Microbiology, University of Guelph, Ontario, Canada
| | | | | |
Collapse
|
129
|
Ehlert K, Höltje JV, Templin MF. Cloning and expression of a murein hydrolase lipoprotein from Escherichia coli. Mol Microbiol 1995; 16:761-8. [PMID: 7476170 DOI: 10.1111/j.1365-2958.1995.tb02437.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
On the basis of the published N-terminal amino acid sequence of the soluble lytic transglycosylase 35 (Slt35) of Escherichia coli, an open reading frame (ORF) was cloned from the 60.8 min region of the E. coli chromosome. The nucleotide sequence of the ORF, containing a putative lipoprotein-processing site, was shown by [3H]-palmitate labelling to encode a lipoprotein with an apparent molecular mass of 36 kDa. A larger protein, presumably the prolipoprotein form, accumulated in the presence of globomycin. Over-expression of the gene, designated mltB (for membrane-bound lytic transglycosylase B), caused a 55-fold increase in murein hydrolase activity in the membrane fraction and resulted in rapid cell lysis. After membrane fractionation by sucrose-density-gradient centrifugation, most of the induced enzyme activity was present in the outer and intermediate membrane fractions. Murein hydrolase activity in the soluble fraction of a homogenate of cells induced for MltB increased with time. This release of enzyme activity into the supernatant could be inhibited by the addition of the serine-protease inhibitor phenylmethylsulphonyl fluoride. It is concluded that the previously isolated Slt35 protein is a proteolytic degradation product of the murein hydrolase lipoprotein MltB. Surprisingly, a deletion in the mltB gene showed no obvious phenotype.
Collapse
Affiliation(s)
- K Ehlert
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung Biochemie, Tübingen, Germany
| | | | | |
Collapse
|
130
|
Bernadsky G, Beveridge TJ, Clarke AJ. Analysis of the sodium dodecyl sulfate-stable peptidoglycan autolysins of select gram-negative pathogens by using renaturing polyacrylamide gel electrophoresis. J Bacteriol 1994; 176:5225-32. [PMID: 7915268 PMCID: PMC196705 DOI: 10.1128/jb.176.17.5225-5232.1994] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
For the first time, peptidoglycan autolysins from cellular fractions derived from sonicated cultures of Pseudomonas aeruginosa PAO1, Escherichia coli W7, Klebsiella pneumoniae CWK2, and Proteus mirabilis 19 were detected and partially characterized by zymogram analysis. Purified murein sacculi from P. aeruginosa PAO1 were incorporated into a sodium dodecyl sulfate (SDS)-polyacrylamide gel at a concentration of 0.05% (wt/vol) to serve as a substrate for the separated autolysins. At least 11 autolysin bands of various intensities with M(r)s ranging between 17,000 and 122,000 were detected in each of the homogenated cultures. Some of the autolysins of the four bacteria had similar M(r)s. The zymogram analysis was used to show that a number of the autolysins from E. coli were inhibited by the heavy metals Hg2+ and Cu2+, at 1 and 10 mM, respectively, high ionic strengths, and reagents known to affect the packing of lipopolysaccharides. The activity of an autolysin with an M(r) of 65,000 was also impaired by penicillin G, whereas it was enhanced by gentamicin. A preliminary screen to determine the relationship between penicillin-binding proteins (PBPs) and autolysins was carried out by using a dual assay in which radiolabelled penicillin V bands were visualized on an autolysin zymogram. Radiolabelled bands corresponding to PBPs 3, 4, 5, and 6 from E. coli and P. aeruginosa; PBPs 3, 4, and 6 from Proteus mirabilis; and PBP 6 from K. pneumoniae degraded the murein sacculi in the gels and were presumed to have autolytic activity, although the possibility of two distinct enzymes, each with one of the activities, comigrating in the SDS-polyacrylamide gels could not be excluded. Some radiolabelled bands possessed an Mr of <34,000 and coincided with similar low-Mr autolysin bands.
Collapse
Affiliation(s)
- G Bernadsky
- Canadian Bacterial Diseases Network, Department of Microbiology, College of Biological Science, University of Guelph, Ontario
| | | | | |
Collapse
|
131
|
Romeis T, Höltje JV. Penicillin-binding protein 7/8 of Escherichia coli is a DD-endopeptidase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 224:597-604. [PMID: 7925376 DOI: 10.1111/j.1432-1033.1994.00597.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Penicillin-binding protein 7 (PBP7) and its proteolytic degradation product PBP8 are shown to be soluble proteins, which can be set free from whole cells of Escherichia coli by an osmotic shock. The proteins are loosely associated with the membranes and are totally released into the supernatant in the presence of 1 M NaCl. Partial purification of PBP8 was accomplished by hydroxyapatite, heparin-Sepharose and MonoS chromatography. Murein meso-diaminopimelate-D-alanine DD-endopeptidase activity was demonstrated for both PBP7 and PBP8, which specifically hydrolyse the DD-diaminopimelate-alanine bonds in high-molecular-mass murein sacculi but fail to cleave these bonds in isolated dimeric muropeptides. The enzyme is inhibited by the 'penem' beta-lactam antibiotic CGP31608 at a concentration of 0.25 micrograms/ml by 50%. Thus besides PBP4 and the mepA gene product, a third endopeptidase exists in E. coli.
Collapse
Affiliation(s)
- T Romeis
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung Biochemie, Tübingen, Germany
| | | |
Collapse
|
132
|
Specific interaction of penicillin-binding proteins 3 and 7/8 with soluble lytic transglycosylase in Escherichia coli. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31847-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
133
|
Ghuysen JM, Lamotte-Brasseur J, Joris B, Shockman GD. Binding site-shaped repeated sequences of bacterial wall peptidoglycan hydrolases. FEBS Lett 1994; 342:23-8. [PMID: 7908269 DOI: 10.1016/0014-5793(94)80577-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The non-catalytic C-terminal regions of the N-acetylmuramidase (lysozyme) of Clostridium acetobutylicum and N-acetylmuramoyl(D-lactyl)-L-alanine amidases CwlA of Bacillus subtilis, ORFL3 and CwlL of Bacillus licheniformis were previously reported to have similarities with the amino acid sequence of the non-catalytic N-terminal module of the Streptomyces albus G Zn DD-peptidase. This peptidase is a bipartite protein of known three-dimensional structure. Its non-catalytic N-terminal module possesses, exposed at the surface, an elongated crevice which is defined by a loop-helix-loop-helix motif that consists of two repeats, each 16 amino acid residues long, connected by a heptapeptide and whose design is compatible with its possible functioning as a substrate recognition and binding site. Amino acid alignments suggest that cavities nearly identical in shape to that present in the non-catalytic module of the S. albus peptidase, are borne by the C-terminal regions of the CwlA amidase (in one copy), the lysozyme and the ORFL3 and CwlL amidases (in two copies). Since a common feature of the five enzymes is their substrate, the bacterial cell wall peptidoglycan, we interpret the striking similarity of their non-catalytic N- or C-terminal modules to suggest that these modules are involved in the binding of these exocellular enzymes to their insoluble wall substrate.
Collapse
Affiliation(s)
- J M Ghuysen
- Centre d'Ingénierie des Protéines, Université de Liège, Sart Tilman (Liège 1), Belgium
| | | | | | | |
Collapse
|