101
|
Pérez-Sayáns M, Supuran CT, Pastorekova S, Suárez-Peñaranda JM, Pilar GD, Barros-Angueira F, Gándara-Rey JM, García-García A. The role of carbonic anhydrase IX in hypoxia control in OSCC. J Oral Pathol Med 2012; 42:1-8. [DOI: 10.1111/j.1600-0714.2012.01144.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
102
|
Nagelkerke A, Mujcic H, Bussink J, Wouters BG, van Laarhoven HWM, Sweep FCGJ, Span PN. Hypoxic regulation and prognostic value of LAMP3 expression in breast cancer. Cancer 2011; 117:3670-81. [PMID: 21319150 DOI: 10.1002/cncr.25938] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/05/2010] [Accepted: 12/28/2010] [Indexed: 11/06/2022]
Abstract
BACKGROUND LAMP3 is a newly described hypoxia regulated gene of potential interest in hypoxia-induced therapy resistance and metastasis. The prognostic value of LAMP3 in breast cancer was investigated. METHODS Expression levels of LAMP3 in breast cancer cell lines and patient tissues were determined by real-time polymerase chain reaction and in a tissue microarray by immunohistochemistry. Immunofluorescent staining was used to evaluate the distribution of LAMP3 in tumor xenografts relative to pimonidazole. Kaplan-Meier analysis as well as multivariate Cox regression survival analyses were performed. RESULTS LAMP3 was variably expressed in breast cancer cell lines and induced in an oxygen concentration-dependent manner. LAMP3 protein expression colocalized with hypoxic areas in breast cancer xenografts. LAMP3 mRNA was higher in breast tumors from patients with node-positive (P = .019) and/or steroid hormone receptor-negative tumors (P < .001). Breast cancer patients with high LAMP3 mRNA levels had more locoregional recurrences (P = .032 log-rank). This was limited to patients treated with lumpectomy and radiotherapy as primary treatment (n = 53, P = .009). No association with metastasis-free survival was found. In multivariate Cox regression analysis, LAMP3 remained as a statistically independent prognostic factor for locoregional recurrence (hazard ratio, 2.76; 95% confidence interval, 1.01-7.5; P = .048) after correction for menopausal status, histologic grade, tumor size, nodal status, therapy, and steroid hormone receptor status. LAMP3 protein in breast cancer tissue proved also to be of prognostic relevance. CONCLUSIONS Evidence was provided for an association of LAMP3 with tumor cell hypoxia in breast cancer xenografts. In the current breast cancer cohorts, LAMP3 had independent prognostic value.
Collapse
Affiliation(s)
- Anika Nagelkerke
- Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
103
|
Yaromina A, Kroeber T, Meinzer A, Boeke S, Thames H, Baumann M, Zips D. Exploratory Study of the Prognostic Value of Microenvironmental Parameters During Fractionated Irradiation in Human Squamous Cell Carcinoma Xenografts. Int J Radiat Oncol Biol Phys 2011; 80:1205-13. [DOI: 10.1016/j.ijrobp.2011.02.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 01/28/2011] [Accepted: 02/02/2011] [Indexed: 11/29/2022]
|
104
|
Overgaard J. Advancing radiation oncology through scientific publication – 100 volumes of Radiotherapy and Oncology. Radiother Oncol 2011; 100:1-6. [DOI: 10.1016/j.radonc.2011.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
105
|
Soleimani R, Heytens E, Oktay K. Enhancement of neoangiogenesis and follicle survival by sphingosine-1-phosphate in human ovarian tissue xenotransplants. PLoS One 2011; 6:e19475. [PMID: 21559342 PMCID: PMC3084884 DOI: 10.1371/journal.pone.0019475] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 04/04/2011] [Indexed: 11/26/2022] Open
Abstract
Ovarian transplantation is one of the key approaches to restoring fertility in women who became menopausal as a result of cancer treatments. A major limitation of human ovarian transplants is massive follicular loss during revascularization. Here we investigated whether sphingosine-1-phosphate or its receptor agonists could enhance neoangiogenesis and follicle survival in ovarian transplants in a xenograft model. Human ovarian tissue xenografts in severe-combined-immunodeficient mice were treated with sphingosine-1-phosphate, its analogs, or vehicle for 1–10 days. We found that sphingosine-1-phosphate treatment increased vascular density in ovarian transplants significantly whereas FTY720 and SEW2871 had the opposite effect. In addition, sphingosine-1-phosphate accelerated the angiogenic process compared to vehicle-treated controls. Furthermore, sphingosine-1-phosphate treatment was associated with a significant proliferation of ovarian stromal cell as well as reduced necrosis and tissue hypoxia compared to the vehicle-treated controls. This resulted in a significantly lower percentage of apoptotic follicles in sphingosine-1-phosphate-treated transplants. We conclude that while sphingosine-1-phosphate promotes neoangiogenesis in ovarian transplants and reduces ischemic reperfusion injury, sphingosine-1-phosphate receptor agonists appear to functionally antagonize this process. Sphingosine-1-phosphate holds great promise to clinically enhance the survival and longevity of human autologous ovarian transplants.
Collapse
Affiliation(s)
- Reza Soleimani
- Laboratory of Molecular Reproduction, Institute for Fertility Preservation, Departments of Obstetrics and Gynecology and Cell Biology and Anatomy, New York Medical College, Valhalla, New York, United States of America
| | - Elke Heytens
- Laboratory of Molecular Reproduction, Institute for Fertility Preservation, Departments of Obstetrics and Gynecology and Cell Biology and Anatomy, New York Medical College, Valhalla, New York, United States of America
| | - Kutluk Oktay
- Laboratory of Molecular Reproduction, Institute for Fertility Preservation, Departments of Obstetrics and Gynecology and Cell Biology and Anatomy, New York Medical College, Valhalla, New York, United States of America
- * E-mail:
| |
Collapse
|
106
|
Askoxylakis V, Millonig G, Wirkner U, Schwager C, Rana S, Altmann A, Haberkorn U, Debus J, Mueller S, Huber PE. Investigation of tumor hypoxia using a two-enzyme system for in vitro generation of oxygen deficiency. Radiat Oncol 2011; 6:35. [PMID: 21477371 PMCID: PMC3080288 DOI: 10.1186/1748-717x-6-35] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 04/10/2011] [Indexed: 11/10/2022] Open
Abstract
Background Oxygen deficiency in tumor tissue is associated with a malign phenotype, characterized by high invasiveness, increased metastatic potential and poor prognosis. Hypoxia chambers are the established standard model for in vitro studies on tumor hypoxia. An enzymatic hypoxia system (GOX/CAT) based on the use of glucose oxidase (GOX) and catalase (CAT) that allows induction of stable hypoxia for in vitro approaches more rapidly and with less operating expense has been introduced recently. Aim of this work is to compare the enzymatic system with the established technique of hypoxia chamber in respect of gene expression, glucose metabolism and radioresistance, prior to its application for in vitro investigation of oxygen deficiency. Methods Human head and neck squamous cell carcinoma HNO97 cells were incubated under normoxic and hypoxic conditions using both hypoxia chamber and the enzymatic model. Gene expression was investigated using Agilent microarray chips and real time PCR analysis. 14C-fluoro-deoxy-glucose uptake experiments were performed in order to evaluate cellular metabolism. Cell proliferation after photon irradiation was investigated for evaluation of radioresistance under normoxia and hypoxia using both a hypoxia chamber and the enzymatic system. Results The microarray analysis revealed a similar trend in the expression of known HIF-1 target genes between the two hypoxia systems for HNO97 cells. Quantitative RT-PCR demonstrated different kinetic patterns in the expression of carbonic anhydrase IX and lysyl oxidase, which might be due to the faster induction of hypoxia by the enzymatic system. 14C-fluoro-deoxy-glucose uptake assays showed a higher glucose metabolism under hypoxic conditions, especially for the enzymatic system. Proliferation experiments after photon irradiation revealed increased survival rates for the enzymatic model compared to hypoxia chamber and normoxia, indicating enhanced resistance to irradiation. While the GOX/CAT system allows independent investigation of hypoxia and oxidative stress, care must be taken to prevent acidification during longer incubation. Conclusion The results of our study indicate that the enzymatic model can find application for in vitro investigation of tumor hypoxia, despite limitations that need to be considered in the experimental design.
Collapse
Affiliation(s)
- Vasileios Askoxylakis
- Department of Radiooncology and Radiation Therapy, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Metastasis in melanoma xenografts is associated with tumor microvascular density rather than extent of hypoxia. Neoplasia 2011; 12:889-98. [PMID: 21076614 DOI: 10.1593/neo.10712] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 07/01/2010] [Accepted: 07/03/2010] [Indexed: 01/16/2023]
Abstract
The development of metastases has been shown to be associated with the microvascular density of the primary tumor in some clinical studies and with the extent of hypoxia in others. The aim of this study was to investigate the validity of these apparently inconsistent observations and to reveal possible links between them. Xenografted tumors of nine melanoma cell lines established from patients with diseases differing in aggressiveness were studied. The aggressiveness of the cell lines was assessed by measuring their lung colonization potential, invasiveness, angiogenic potential, and tumorigenicity. Spontaneous metastasis was assessed in untreated mice and mice treated with neutralizing antibody against vascular endothelial growth factor A (VEGF-A) or interleukin 8 (IL-8). Microvascular density was scored in histologic preparations. Hypoxic fractions were measured by using a radiobiologic assay and a pimonidazole-based immunohistochemical assay. The aggressiveness of the melanoma lines reflected the aggressiveness of the donor patients' tumors. The metastatic propensity was associated with the microvascular density but not with the hypoxic fraction. Anti-VEGF-A and anti-IL-8 treatments resulted in decreased microvascular density and reduced incidence of metastases in all lines. Large hypoxic fractions were not a secondary effect of high cellular aggressiveness, whereas the microvascular density was associated with the cellular aggressiveness. The metastatic propensity was governed by the angiogenic potential of the tumor cells. The differences in microvascular density among the lines were most likely a consequence of differences in the constitutive angiogenic potential rather than differences in hypoxia-induced angiogenesis. VEGF-A and IL-8 may be important therapeutic targets for melanoma.
Collapse
|
108
|
Zhou N, Hu G, Mei Q, Qiu H, Long G, Chen C, Guoqing H. Inhibitory effect of endostar in combination with radiotherapy in a mouse model of human CNE2 nasopharyngeal carcinoma. ACTA ACUST UNITED AC 2011; 31:62-66. [PMID: 21336725 DOI: 10.1007/s11596-011-0151-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Indexed: 11/28/2022]
Abstract
The inhibitory effects of Endostar in combination with radiotherapy in BALB/c nude mice model of human CNE2 nasopharyngeal carcinoma and the mechanism were investigated. In nude mice model of CNE2 nasopharyngeal carcinoma, the inhibitory rate and the sensitizing enhancement ratio (E/O) were calculated according to the tumor volumes in different groups. The expression of microvascular density (MVD) in tumor tissues was examined by using immunohistochemistry staining. The transcription of VEGF gene was detected by using RT-PCR. The inhibitory rate in Endostar+ radiotherapy group was higher than in other groups. In Endostar+radiotherapy group, the tumor volume was significantly decreased and the E/O ratio was 2.335, suggesting that Endostar could be a radiosensitizer. The expression of MVD of tumor tissues in Endostar+radiotherapy group was reduced significantly. The expression of the MVD in treatment groups was significantly different from that in control group (P<0.05). Compared to other groups, VEGF mRNA expression in Endostar+radiotherapy group was decreased remarkably. Endostar in combination with radiotherapy significantly inhibited the growth of CNE2 tumor. The combination therapy decreased the expression of VEGF, and inhibited tumor angiogenesis and proliferation. When combined with radiotherapy, Endostar acted as a radiosensitizer.
Collapse
Affiliation(s)
- Ning Zhou
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guangyuan Hu
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Mei
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong Qiu
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guoxian Long
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chunli Chen
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hu Guoqing
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
109
|
Lehmann S, Garayoa EG, Blanc A, Keist R, Schibli R, Rudin M. Recording intracellular molecular events from the outside: glycosylphosphatidylinositol-anchored avidin as a reporter protein for in vivo imaging. J Nucl Med 2011; 52:445-52. [PMID: 21321260 DOI: 10.2967/jnumed.110.082412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED With the emergence of multimodal imaging strategies, genetically encoded reporters that can be flexibly combined with any imaging modality become highly attractive. Here we describe the use of glycosylphosphatidylinositol (GPI)-anchored avidin, an avidin moiety targeted to the extracellular side of cell membranes via a GPI anchor, as a reporter for in vivo imaging. Being present on the outside of cells, avidin can be visualized with any type of biotinylated imaging agent, without the requirement that the probe be membrane-permeable. We used the avidin-GPI system to monitor the activity of hypoxia-inducible factors (HIFs)-oxygen-sensing transcription factors, which play a major role in regulating cancer progression-in a mouse tumor allograft model. METHODS Mouse C51 cells were stably transfected with pH3SVG, a reporter construct driving the expression of avidin-GPI from an HIF-sensitive promoter. The transfected cells were subcutaneously implanted into BALB/c nude mice. At 10 d after tumor inoculation, mice received an intravenous injection of either alexa-594-biocytin or (67)Ga-DOTA-biotin, and tumor HIF activity was imaged using fluorescence reflectance imaging or SPECT. RESULTS In vitro cell experiments demonstrated the functionality and HIF-dependent regulation of the avidin-GPI reporter construct. In vivo, avidin-GPI was targeted specifically in allograft tumors with biotinylated imaging probes using both fluorescence imaging and SPECT. Analysis of the reporter expression pattern on ex vivo tumor tissue sections indicated a good overlap, with areas of hypoxia. CONCLUSION We have demonstrated the utility of avidin-GPI as a reporter for multimodal in vivo imaging using both a fluorescence and a SPECT approach to assess intracellular oxygen signaling in a mouse tumor model.
Collapse
|
110
|
Metabolic correlates of tumour hypoxia in malignant canine mammary carcinoma. Res Vet Sci 2011; 91:e125-8. [PMID: 21316722 DOI: 10.1016/j.rvsc.2011.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 01/10/2011] [Accepted: 01/18/2011] [Indexed: 11/20/2022]
Abstract
Given its importance in human and canine tumour biology, a profound understanding of tumour hypoxia is of paramount importance. Therefore, the aim of this work was to investigate the relationship between tumour hypoxia and the expression of a number of hypoxia-induced proteins that play a role in tumour metabolism. The hypoxia marker pimonidazole was administered to dogs affected by spontaneous mammary carcinoma and compared with immunohistochemical staining for GLUT1 and 3, HK 2 and CA IX. A statistically significant correlation was found between pimonidazole staining and GLUT1-expression (R=0.607; p=0.001). These results indicate a strong interaction between tumour hypoxia and tumour metabolism by the induction of proteins essential to maintain a stable tumour microenvironment.
Collapse
|
111
|
Busk M, Toustrup K, Sørensen BS, Alsner J, Horsman MR, Jakobsen S, Overgaard J. In vivo identification and specificity assessment of mRNA markers of hypoxia in human and mouse tumors. BMC Cancer 2011; 11:63. [PMID: 21306648 PMCID: PMC3042974 DOI: 10.1186/1471-2407-11-63] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 02/09/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tumor hypoxia is linked to poor prognosis, but identification and quantification of tissue hypoxia remains a challenge. The hypoxia-specificity of HIF-1α target genes in vivo has been questioned due to the confounding influence of other microenvironmental abnormalities known to affect gene expression (e.g., low pH). Here we describe a new technique that by exploiting intratumoral oxygenation heterogeneity allows us to identify and objectively rank the most robust mRNA hypoxia biomarkers. METHODS Mice carrying human (FaDudd) or murine (SCCVII) tumors were injected with the PET hypoxia tracer FAZA. Four hours post-injection tumors were removed, frozen, and crushed into milligram-sized fragments, which were transferred individually to pre-weighed tubes containing RNAlater and then weighed. For each fragment radioactivity per tissue mass and expression patterns of selected mRNA biomarkers were analyzed and compared. RESULTS In both tumour models, fragmentation into pieces weighing 10 to 60 mg resulted in tissue fragments with highly variable relative content of hypoxic cells as evidenced by an up to 13-fold variation in FAZA radioactivity per mass of tissue. Linear regression analysis comparing FAZA retention with patterns of gene expression in individual tissue fragments revealed that CA9, GLUT1 and LOX mRNA levels were equally and strongly correlated to hypoxic extent in FaDudd. The same link between hypoxia and gene expression profile was observed for CA9 and GLUT1, but not LOX, in SCCVII tumors. Apparent in vivo hypoxia-specificity for other putative molecular markers of tissue hypoxia was considerably weaker. CONCLUSIONS The portrayed technique allows multiple pairwise measurements of mRNA transcript levels and extent of hypoxia in individual tumors at a smallest possible volumetric scale which (by limiting averaging effects inherent to whole-tumor analysis) strengthen the conclusiveness on true hypoxia-specificity of candidate genes while limiting the required number of tumors. Among tested genes, our study identified CA9, GLUT1 and possibly LOX as highly specific biomarkers of tumor hypoxia in vivo.
Collapse
Affiliation(s)
- Morten Busk
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark.
| | | | | | | | | | | | | |
Collapse
|
112
|
Parametric mapping of immunohistochemically stained tissue sections; a method to quantify the colocalization of tumor markers. Cell Oncol (Dordr) 2011; 34:119-29. [PMID: 21302028 PMCID: PMC3063563 DOI: 10.1007/s13402-010-0008-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2010] [Indexed: 11/27/2022] Open
Abstract
Background Automated analysis of immunohistochemically stained tissue sections is of great importance in cancer research to detect tumor-specific prognostic markers and make therapy decisions. Here, an automated quantitative analysis is presented to assess the colocalization of CAIX, a membrane-bound hypoxic marker and Ki-67, a nuclear proliferation marker. Methods Tissue sections of 104 biopsies from 89 patients were stained for CAIX and Ki-67 with diaminobenzidine and haematoxylin counterstain. Image scans of whole tumor sections were recorded and image maps were created with parametric mapping to quantify the markers and assess the colocalization. Results The fraction of CAIX showed a range of 0–93%. The interobserver correlation and the correlation between manual scores and automated analysis were both very strong (rs=0.96, p <0.0001, and rs=0.97, p <0.0001). The labelling index of Ki-67 exhibited a range of 0–42% with less strong interobserver and manual to automated analysis correlations (rs=0.90, p <0.0001, and rs=0.71, p <0.0008). The relative tumor area positive for both markers varied from 0 – 76%. Conclusion Parametric mapping of immunohistochemically stained tumor sections is a reliable method to quantitatively analyze membrane-bound proteins and assess the colocalization of various tumor markers in different subcellular compartments.
Collapse
|
113
|
Kim BH, Kim IJ, Kim SS, Kim SJ, Lee CH, Kim YK. Relationship between biological marker expression and fluorine-18 fluorodeoxyglucose uptake in incidentally detected thyroid cancer. Cancer Biother Radiopharm 2011; 25:309-15. [PMID: 20578836 DOI: 10.1089/cbr.2009.0636] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to investigate the underlying mechanisms associated with fluorine-18 fluorodeoxyglucose (F-18 FDG) uptake in an incidentally detected thyroid cancer during nonthyroid cancer evaluation. Among 92 patients (10 men and 82 women; mean age, 56.2 +/- 10.9 years; age range, 26-78 years) with focal thyroid FDG uptake during nonthyroid cancer evaluation, 14 patients with cytologically confirmed papillary thyroid cancer were included. For semiquantitative analysis, the maximal standardized uptake value was calculated. Immunohistochemical studies were performed for hypoxia inducible factor 1 alpha (HIF1alpha), HIF2alpha, glucose transporter 1 (GLUT1), GLUT3, carbonic anhydrase IX (CA-IX), hexokinase type II (HK II), and vascular endothelial growth factor (VEGF). The significant findings of this study were as follows: (1) a lack of HIF1alpha and HIF2alpha expression; (2) low-degree expression of GLUT1 (1 patient), GLUT3 (5 of 14 patients), HK II (3 of 14 patients), and CA-IX (1 patient); and (3) high degree expression of VEGF (all 14 patients). The data presented in this study indicate that F-18 FDG uptake in incidentally detected thyroid cancer was not related to hypoxia-induced upregulation of GLUT1, GLUT3, CA-IX, and HK II. Ki-67 expression was not associated with F-18 FDG uptake. However, all incidentally detected thyroid cancers showed a high degree of expression of VEGF.
Collapse
Affiliation(s)
- Bo Hyun Kim
- Department of Internal Medicine, Medical Research Institute, School of Medicine, Pusan, South Korea. [corrected]
| | | | | | | | | | | |
Collapse
|
114
|
PET–CT for radiotherapy treatment planning and response monitoring in solid tumors. Nat Rev Clin Oncol 2011; 8:233-42. [DOI: 10.1038/nrclinonc.2010.218] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
115
|
Askoxylakis V, Garcia-Boy R, Rana S, Krämer S, Hebling U, Mier W, Altmann A, Markert A, Debus J, Haberkorn U. A new peptide ligand for targeting human carbonic anhydrase IX, identified through the phage display technology. PLoS One 2010; 5:e15962. [PMID: 21209841 PMCID: PMC3013143 DOI: 10.1371/journal.pone.0015962] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Accepted: 12/01/2010] [Indexed: 11/18/2022] Open
Abstract
Carbonic anhydrase IX (CAIX) is a transmembrane enzyme found to be overexpressed in various tumors and associated with tumor hypoxia. Ligands binding this target may be used to visualize hypoxia, tumor manifestation or treat tumors by endoradiotherapy.
Collapse
Affiliation(s)
- Vasileios Askoxylakis
- Department of Radiooncology and Radiation Therapy, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Takahashi E, Sato M. Imaging of oxygen gradients in monolayer cultured cells using green fluorescent protein. Am J Physiol Cell Physiol 2010; 299:C1318-23. [DOI: 10.1152/ajpcell.00254.2010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Gradients of Po2 between capillary blood and mitochondria are the driving force for diffusional O2 delivery in tissues. Hypoxic microenvironments in tissues that result from diffusional O2 gradients are especially relevant in solid tumors because they have been related to a poor prognosis. To address the impact of tissue O2 gradients, we developed a novel technique that permits imaging of intracellular O2 levels in cultured cells at a subcellular spatial resolution. This was done, with the sensitivity to O2 ≤3%, by the O2-dependent red shift of green fluorescent protein (AcGFP1) fluorescence. Measurements were carried out in a confluent monolayer of Hep3B cells expressing AcGFP1 in the cytoplasm. To establish a two-dimensional O2 diffusion model, a thin quartz glass slip was placed onto the monolayer cells to prevent O2 diffusion from the top surface of the cell layer. The magnitude of the red shift progressively increased as the distance from the gas coverslip interface increased. It reached an anoxic level in cells located at ∼220 μm and ∼690 μm from the gas coverslip boundary at 1% and 3% gas phase O2, respectively. Thus the average O2 gradient was 0.03 mmHg/μm in the present tissue model. Abolition of mitochondrial respiration significantly dampened the gradients. Furthermore, intracellular gradients of the red shift in mitochondria-targeted AcGFP1 in single Hep3B cells suggest that the origin of tissue O2 gradients is intracellular. Findings in the present two-dimensional O2 diffusion model support the crucial role of tissue O2 diffusion in defining the O2 microenvironment in individual cells.
Collapse
Affiliation(s)
- Eiji Takahashi
- Biomedical Engineering Course, Advanced Technology Fusion, Graduate School of Science and Engineering, Saga University, Saga, Japan and
| | - Michihiko Sato
- CLRE, Yamagata University School of Medicine, Yamagata, Japan
| |
Collapse
|
117
|
Pugachev A, Axente M, Humm J. On autoradiographic studies comparing the distributions of 18F- and 14C-labeled compounds in tumor tissue specimens. Radiother Oncol 2010; 97:609. [DOI: 10.1016/j.radonc.2010.10.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 10/19/2010] [Indexed: 10/18/2022]
|
118
|
Sørensen BS, Toustrup K, Horsman MR, Overgaard J, Alsner J. Identifying pH independent hypoxia induced genes in human squamous cell carcinomas in vitro. Acta Oncol 2010; 49:895-905. [PMID: 20429727 DOI: 10.3109/02841861003614343] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Genes upregulated by low oxygen have been suggested as endogenous markers for tumor hypoxia. Yet, most of the genes investigated have shown inconsistent results, which have led to concerns about their ability to be true hypoxia makers. Previous studies have demonstrated that expression of hypoxia induced genes can be affected by extracellular pH (pH(e)). METHODS Five different human cell lines (SiHa, FaDu(DD), UTSCC5, UTSCC14 and UTSCC15) were exposed to different oxygen concentrations and pH (7.5 or 6.3), and gene expression analyzed with microarray (Affymetrix - Human Genome U133 Plus 2.0 Array). RESULTS An analysis of two of the cell lines using SAM identified 461 probesets that were able to separate the four groups "Normal oxygen, normal pH", "Low oxygen, normal pH", "Normal oxygen, low pH" and "Low oxygen, low pH". From here it was possible to identify a fraction of probesets induced at low oxygen independent of pH in these two cell lines, this fraction included HIG2, NDRG1, PAI1 and RORA. Further verification by qPCR highlighted the necessity of using more cell lines to obtain a robust gene expression profiles. To specifically select pH independent hypoxia regulated genes across more cell lines, data for FaDu(DD), UTSCC5, UTSCC14 and UTSCC15 were analyzed to identify genes that were induced by hypoxia in each cell line, where the induction was not affected by low pH, and where the gene was not significantly induced by low pH alone. Each cell line had 65-122 probesets meeting these criteria. For genes to be considered as target genes (hypoxia inducible pH independent), genes had to be present in three of four cell lines. CONCLUSION The result is a robust hypoxia profile unaffected by pH across cell lines consisting of 27 genes. This study demonstrates a way to identify hypoxia markers by microarray, where other factors in the tumor microenvironment are taken into account.
Collapse
Affiliation(s)
- Brita Singers Sørensen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, DK-8000 Aarhus C, Denmark.
| | | | | | | | | |
Collapse
|
119
|
|
120
|
Sun X, Vale M, Jiang X, Gupta R, Krissansen GW. Antisense HIF-1alpha prevents acquired tumor resistance to angiostatin gene therapy. Cancer Gene Ther 2010; 17:532-540. [PMID: 20348876 DOI: 10.1038/cgt.2010.7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 08/17/2009] [Accepted: 12/13/2009] [Indexed: 11/09/2022]
Abstract
Angiostatin is a naturally occurring inhibitor of angiogenesis that is being developed as a drug to fight cancer. In this study we reveal that EL-4 tumors established in mice rapidly develop resistance to angiostatin gene therapy by upregulating hypoxia-inducible pathways. Angiostatin initially delayed tumor growth for 6 days by reducing blood vessel density. However, tumors quickly responded by upregulating the production of hypoxia-inducible factor-1alpha (HIF-1alpha) and its effector vascular endothelial growth factor (VEGF) in response to increasing tumor hypoxia, leading to restored angiogenesis and rapid tumor growth. Theoretically, blockade of HIF-1 should prevent resistance to anti-angiogenic therapy by preventing a tumor from responding to induced hypoxia. Antisense HIF-1alpha inhibited the expression of HIF-1alpha and of the HIF-1 effectors VEGF, glucose transporter-1 and lactate dehydrogenase. As a monotherapy, it was effective in eradicating small 0.1 cm diameter tumors, but only delayed the growth of large 0.4 cm diameter tumors. In contrast, timed injection of a combination of angiostatin and antisense HIF-1alpha plasmids completely eradicated large EL-4 tumors within 2 weeks, and prevented upregulation of hypoxia-inducible pathways induced by angiostatin. The data indicate that blocking hypoxia-inducible pathways by antisense HIF-1alpha can circumvent hypoxia-induced drug resistance and thereby augment the efficacy of anti-angiogenic therapies.
Collapse
Affiliation(s)
- X Sun
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | | | |
Collapse
|
121
|
Bi S, Liu JR, Li Y, Wang Q, Liu HK, Yan YG, Chen BQ, Sun WG. gamma-Tocotrienol modulates the paracrine secretion of VEGF induced by cobalt(II) chloride via ERK signaling pathway in gastric adenocarcinoma SGC-7901 cell line. Toxicology 2010; 274:27-33. [PMID: 20452389 DOI: 10.1016/j.tox.2010.05.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 05/02/2010] [Accepted: 05/04/2010] [Indexed: 11/26/2022]
Abstract
Hypoxia is a common characteristic feature of solid tumors, and carcinoma cells are known to secrete many growth factors. These growth factors, such as vascular endothelial growth factor (VEGF), play a major role in the regulation of tumor angiogenesis and metastasis. In this study, the effect of gamma-tocotrienol, a natural product commonly found in palm oil and rice bran, on the accumulation of HIF-1alpha protein and the paracrine secretion of VEGF in human gastric adenocarcinoma SGC-7901 cell line induced by cobalt(II) chloride (as a hypoxia mimic) was investigated. These results showed that cobalt(II) chloride induced the high expression of VEGF in SGC-7901 cells at dose of 150 micromol/L for 24h. Both basal level and cobalt(II) chloride-induced HIF-1alpha protein accumulation and VEGF paracrine secretion were inhibited in SGC-7901 cells treated with gamma-tocotrienol at 60 micromol/L treatment for 24 h. U0126, a MEK1/2 inhibitor, decreased the expression of HIF-1alpha protein and the paracrine secretion of VEGF under normoxic and hypoxic conditions. In this study, gamma-tocotrienol also significantly inhibited the hypoxia-stimulated expression of phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2). The mechanism seems to involve in inhibiting hypoxia-mediated activation of p-ERK1/2, it leads to a marked decrease in hypoxia-induced HIF-1alpha protein accumulation and VEGF secretion. These data suggest that HIF-1alpha/VEGF could be a promising target for gamma-tocotrienol in an effective method of chemoprevention and chemotherapy in human gastric cancer.
Collapse
Affiliation(s)
- Sheng Bi
- Central Laboratory, The First Affiliated Hospital of Harbin Medical University, 23 YouZheng Street, NanGang District, Harbin 150001, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Akurathi V, Dubois L, Lieuwes NG, Chitneni SK, Cleynhens BJ, Vullo D, Supuran CT, Verbruggen AM, Lambin P, Bormans GM. Synthesis and biological evaluation of a 99mTc-labelled sulfonamide conjugate for in vivo visualization of carbonic anhydrase IX expression in tumor hypoxia. Nucl Med Biol 2010; 37:557-64. [DOI: 10.1016/j.nucmedbio.2010.02.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 02/23/2010] [Accepted: 02/28/2010] [Indexed: 11/24/2022]
|
123
|
|
124
|
Avanzo M, Stancanello J, Franchin G, Sartor G, Jena R, Drigo A, Dassie A, Gigante M, Capra E. Correlation of a hypoxia based tumor control model with observed local control rates in nasopharyngeal carcinoma treated with chemoradiotherapy. Med Phys 2010; 37:1533-44. [DOI: 10.1118/1.3352832] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
125
|
Bussink J, van Herpen CML, Kaanders JHAM, Oyen WJG. PET-CT for response assessment and treatment adaptation in head and neck cancer. Lancet Oncol 2010; 11:661-9. [PMID: 20226735 DOI: 10.1016/s1470-2045(09)70353-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Preferred treatment strategies for advanced-stage squamous cell carcinoma of the head and neck have shifted from surgery to organ-preservation approaches such as radiotherapy, which can be combined with chemotherapy or giving of biologically modifying molecules. Preclinical and clinical researchers aim to customise these treatments on the basis of biological tumour characteristics, including tumour cell proliferation, hypoxia, and apoptosis--important resistance mechanisms for cytotoxic antitumour therapy. Monitoring of these biologically relevant variables before and early during treatment could improve patient selection for specific treatment strategies and guide adaptation of treatment at an early stage. PET provides a non-invasive molecular imaging method with the potential ability to undertake repetitive non-invasive quantification of relevant tumour characteristics. We discuss the role of PET scanning and available radiopharmaceutical tracers for treatment selection, early response monitoring, and treatment adaptation in head and neck cancer.
Collapse
Affiliation(s)
- Johan Bussink
- Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
126
|
Chautard E, Loubeau G, Tchirkov A, Chassagne J, Vermot-Desroches C, Morel L, Verrelle P. Akt signaling pathway: a target for radiosensitizing human malignant glioma. Neuro Oncol 2010; 12:434-43. [PMID: 20406894 DOI: 10.1093/neuonc/nop059] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Radiation therapy plays a central role in the treatment of glioblastoma, but it is not curative due to the high tumor radioresistance. Phosphatidyl-inositol 3-kinase/protein kinase B (Akt) and Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) pathways serve to block the apoptosis process, keeping cells alive in very toxic environments such as chemotherapy or ionizing radiation. In the present study, from a panel of 8 human malignant glioma cell lines, investigations on the relationship between intrinsic radioresistance and Akt or STAT3 basal activation were done. Secondly, the impact of down-modulation of Akt or STAT3 signaling on in vitro intrinsic radiosensitivity was evaluated. Using a clonogenic cell survival assay, our results revealed a significant correlation between the basal Akt activation and the surviving fraction at 2 Gy (SF2). In contrast, no correlation was found between STAT3 activation and SF2. According to this, down-modulation of Akt with a specific chemical inhibitor (Akt inhibitor IV) demonstrated a significant enhancement of radiation sensitivity on glioma cells in a clonogenic survival assay. On the contrary, down-modulation of STAT3 signaling with a specific chemical inhibitor (JSI-124) or a neutralizing gp130 antibody failed to radiosensitize glioma cells. These data indicate that the Akt intercept node could be a more relevant therapeutic target than STAT3 for radiosensitizing human malignant glioma.
Collapse
Affiliation(s)
- Emmanuel Chautard
- Centre Jean Perrin, Laboratoire de Radio-Oncologie Expérimentale, EA 3846 Thérapie Ciblée Combinatoire en Onco-Hématologie, Université d'Auvergne, Clermont-Ferrand, France.
| | | | | | | | | | | | | |
Collapse
|
127
|
McPhail LD, Robinson SP. Intrinsic susceptibility MR imaging of chemically induced rat mammary tumors: relationship to histologic assessment of hypoxia and fibrosis. Radiology 2010; 254:110-8. [PMID: 20032145 DOI: 10.1148/radiol.2541090395] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To investigate relationships between magnetic resonance (MR) imaging measurements of R2* and carbogen-induced DeltaR2* in vivo with subsequent histologic assessment of grade, hypoxia, fibrosis, and necrosis in a chemically induced rat mammary tumor model. MATERIALS AND METHODS All experiments were performed in accordance with the local ethics review panel, the UK Home Office Animals Scientific Procedures Act of 1986, and the UK Co-ordinating Committee on Cancer Research guidelines. Of 30 rats injected with N-methyl-N-nitrosourea, 17 developed mammary tumors. Prior to MR imaging, rats were administered pimonidazole. Tumor R2* was then quantified while the host first breathed air and then carbogen (95% O(2), 5% CO(2); n = 16). Tumor sections were subsequently stained for pimonidazole, sirius red, cytokeratin 14, and hematoxylin-eosin for quantitative assessment of hypoxia, fibrosis, malignancy, and necrosis, respectively, and graded according to the Scarff-Bloom-Richardson scale. Linear regression analysis was used to identify any correlates of the MR imaging data with histologic data. RESULTS Tumors exhibited wide heterogeneity in the magnitude of carbogen-induced reduction in R2*, an emerging imaging biomarker of fractional blood volume. Significant correlations were found between pimonidazole adduct formation and both baseline tumor R2* (r = -0.54, P = .03) and carbogen-induced DeltaR2* (r = 0.56, P = .02), demonstrating that tumors with a larger fractional blood volume were less hypoxic. There was also a significant correlation between pimonidazole and sirius red staining (r = 0.76, P < .01), indicating that more fibrotic tumors were also more hypoxic. There were no correlations of R2* with grade. CONCLUSION In this model of breast cancer, baseline tumor R2* and carbogen-induced DeltaR2* are predictive imaging biomarkers for hypoxia and primarily determined by blood volume.
Collapse
Affiliation(s)
- Lesley D McPhail
- Cancer Research UK Clinical Magnetic Resonance Research Group, The Institute of Cancer Research, Sutton, Surrey SM2 5PT, England
| | | |
Collapse
|
128
|
Troost EGC, Schinagl DAX, Bussink J, Boerman OC, van der Kogel AJ, Oyen WJG, Kaanders JHAM. Innovations in radiotherapy planning of head and neck cancers: role of PET. J Nucl Med 2009; 51:66-76. [PMID: 20009000 DOI: 10.2967/jnumed.108.061499] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Modern radiotherapy techniques heavily rely on high-quality medical imaging. PET provides biologic information about the tumor, complementary to anatomic imaging. Integrated PET/CT has found its way into the practice of radiation oncology, and (18)F-FDG PET is being introduced for radiotherapy planning. The functional information possibly augments accurate delineation and treatment of the tumor and its extensions while reducing the dose to surrounding healthy tissues. In addition to (18)F-FDG, other PET tracers are available for imaging specific biologic tumor characteristics determining radiation resistance. For head and neck cancer, the potential gains of PET are increasingly being recognized. This review describes the current role of PET and perspectives on its future use for selection and delineation of radiotherapy target volumes and for biologic characterization of this tumor entity. Furthermore, the potential role of PET for early response monitoring, treatment modification, and patient selection is addressed in this review.
Collapse
Affiliation(s)
- Esther G C Troost
- Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
129
|
Yaromina A, Quennet V, Zips D, Meyer S, Shakirin G, Walenta S, Mueller-Klieser W, Baumann M. Co-localisation of hypoxia and perfusion markers with parameters of glucose metabolism in human squamous cell carcinoma (hSCC) xenografts. Int J Radiat Biol 2009; 85:972-80. [DOI: 10.3109/09553000903232868] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
130
|
Eckert AW, Lautner MHW, Schütze A, Bolte K, Bache M, Kappler M, Schubert J, Taubert H, Bilkenroth U. Co-expression of Hif1alpha and CAIX is associated with poor prognosis in oral squamous cell carcinoma patients. J Oral Pathol Med 2009; 39:313-7. [PMID: 19780905 DOI: 10.1111/j.1600-0714.2009.00829.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND This study investigates the prognostic impact of the expression of hypoxia-inducible factor 1alpha (Hif1alpha) and carbonic anhydrase IX (CAIX) detected by immunohistochemistry in oral squamous cell carcinoma (OSCC). METHODS Statistical analysis of immunohistochemical results with clinical parameters including survival outcomes was performed for 80 OSCC patients. RESULTS Patients with a low expression of both proteins survived on average 54.8 months, whereas those with an increased expression of Hif1alpha in their tumors combined with a low expression of CAIX survived on average only 37.6 months (P = 0.026). In multivariate Cox's regression hazard analysis, again patients with a low expression of Hif1alpha/CAIX had the best prognosis, whereas patients with increased Hif1alpha and low CAIX expression carried a 4.97-fold increased risk of tumor-related death (P = 0.042). CONCLUSION A co-detection of low Hif1alpha/CAIX expression is significantly correlated with a better prognosis for OSCC patients, which may have implications for therapy options for these patients.
Collapse
Affiliation(s)
- A W Eckert
- Department of Oral and Maxillofacial Plastic Surgery, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Yaromina A, Eckardt A, Zips D, Eicheler W, Schuetze C, Thames H, Baumann M. Core needle biopsies for determination of the microenvironment in individual tumours for longitudinal radiobiological studies. Radiother Oncol 2009; 92:460-5. [DOI: 10.1016/j.radonc.2009.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 07/16/2009] [Accepted: 07/18/2009] [Indexed: 10/20/2022]
|
132
|
Lee N, Nehmeh S, Schöder H, Fury M, Chan K, Ling CC, Humm J. Prospective trial incorporating pre-/mid-treatment [18F]-misonidazole positron emission tomography for head-and-neck cancer patients undergoing concurrent chemoradiotherapy. Int J Radiat Oncol Biol Phys 2009; 75:101-8. [PMID: 19203843 PMCID: PMC2840255 DOI: 10.1016/j.ijrobp.2008.10.049] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 10/10/2008] [Accepted: 10/24/2008] [Indexed: 01/06/2023]
Abstract
PURPOSE To report the results from a prospective study of a series of locoregionally advanced head-and-neck cancer patients treated with platinum-based chemotherapy and intensity-modulated radiotherapy and to discuss the findings of their pre-/mid-treatment [(18)F]-misonidazole ((18)F-FMISO) positron emission tomography (PET) scans. METHODS AND MATERIALS A total of 28 patients agreed to participate in this study. Of these 28 patients, 20 (90% with an oropharyngeal primary cancer) were able to undergo the requirements of the protocol. Each patient underwent four PET scans: one pretreatment fluorodeoxyglucose PET/computed tomography scan, two pretreatment (18)F-FMISO PET/computed tomography scans, and a third (18)F-FMISO PET (mid-treatment) scan performed 4 weeks after the start of chemoradiotherapy. The (18)F-FMISO PET scans were acquired 2-3 h after tracer administration. Patients were treated with 2-3 cycles of platinum-based chemotherapy concurrent with definitive intensity-modulated radiotherapy. RESULTS A heterogeneous distribution of (18)F-FMISO was noted in the primary and/or nodal disease in 90% of the patients. Two patients had persistent detectable hypoxia on their third mid-treatment (18)F-FMISO PET scan. One patient experienced regional/distant failure but had no detectable residual hypoxia on the mid-treatment (18)F-FMISO PET scan. CONCLUSION Excellent locoregional control was observed in this series of head-and-neck cancer patients treated with concurrent platinum-based chemotherapy and intensity-modulated radiotherapy despite evidence of detectable hypoxia on the pretreatment (18)F-FMISO PET/computed tomography scans of 18 of 20 patients. In this prospective study, neither the presence nor the absence of hypoxia, as defined by positive (18)F-FMISO findings on the mid-treatment PET scan, correlated with patient outcome. The results of this study have confirmed similar results reported previously.
Collapse
Affiliation(s)
- Nancy Lee
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| | | | | | | | | | | | | |
Collapse
|
133
|
Recent advances in image-guided radiotherapy for head and neck carcinoma. JOURNAL OF ONCOLOGY 2009; 2009:752135. [PMID: 19644564 PMCID: PMC2717698 DOI: 10.1155/2009/752135] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 05/29/2009] [Accepted: 06/03/2009] [Indexed: 11/17/2022]
Abstract
Radiotherapy has a well-established role in the management of head and neck cancers. Over the past decade, a variety of new imaging modalities have been incorporated into the radiotherapy planning and delivery process. These technologies are collectively referred to as image-guided radiotherapy and may lead to significant gains in tumor control and radiation side effect profiles. In the following review, these techniques as they are applied to head and neck cancer patients are described, and clinical studies analyzing their use in target delineation, patient positioning, and adaptive radiotherapy are highlighted. Finally, we conclude with a brief discussion of potential areas of further radiotherapy advancement.
Collapse
|
134
|
Sørensen BS, Horsman MR, Vorum H, Honoré B, Overgaard J, Alsner J. Proteins upregulated by mild and severe hypoxia in squamous cell carcinomas in vitro identified by proteomics. Radiother Oncol 2009; 92:443-9. [PMID: 19541378 DOI: 10.1016/j.radonc.2009.05.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 05/26/2009] [Accepted: 05/26/2009] [Indexed: 12/12/2022]
Abstract
BACKGROUND Solid malignant tumours are characterised by an inadequate vascular system, which can give rise to micro-regional hypoxic areas. As the negative impact of tumour hypoxia is believed largely to depend on dynamic changes in gene expression, it is important to identify the genes regulated by hypoxia to further enlighten the biology behind the cellular response to hypoxia. Previous studies have demonstrated that hypoxia has an impact not only on the gene transcription, but also on gene-specific mRNA translation. Therefore, proteomics is a suitable approach to understand the complexity of gene regulation under hypoxia at protein level. In this in vitro study we have studied the proteome of cells under intermediate hypoxia (1% O2) and anoxia and compared these to normoxic (21% O2) cells to identify proteins upregulated by mild and severe hypoxia. MATERIALS AND METHODS A human cervix cancer cell line (SiHa) and a human head and neck cancer cell line (FaDu(DD)) were used. Total cell lysate from hypoxic and normoxic cells was separated by 2-dimensional gel electrophoresis, and images were analysed using Quantity One software. Proteins from significant spots (difference in intensity by more than a factor 2) were identified by Liquid chromatography-mass spectrometry (LC-MS/MS). In order to confirm the hypoxic regulation of the identified proteins, immunoblotting and qPCR were employed when possible. RESULTS All together 32 spots were found to be upregulated in the hypoxic gels. Of these, 11 different proteins were successfully identified and largely confirmed by Western blotting and qPCR. Amongst these proteins are protein disulfide isomerase family A, member 6 (PDIA6) and dynein light chain roadblock-type 1 (DynLRB1). Both 2D gels and Western blots revealed that PDAI6 exhibited a cell line specific pattern; in FaDu(DD) there was upregulation at 1% and further upregulated at 0% compared to atmospheric air, whereas there was no upregulation in SiHa cells. DynLRB1 was found to be upregulated in FaDu(DD) at both 1% and 0% oxygen. CONCLUSIONS The upregulated proteins observed in this study are involved in different cellular processes, as regulators of both cell metabolism and stress response, and in cell migration and cell division. All of which may contribute to cell survival and adaptation during oxygen starvation.
Collapse
|
135
|
The PI3-K/AKT-Pathway and Radiation Resistance Mechanisms in Non-small Cell Lung Cancer. J Thorac Oncol 2009; 4:761-7. [DOI: 10.1097/jto.0b013e3181a1084f] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
136
|
Moon SY, Chang HW, Roh JL, Kim GC, Choi SH, Lee SW, Cho KJ, Nam SY, Kim SY. Using YC-1 to overcome the radioresistance of hypoxic cancer cells. Oral Oncol 2009; 45:915-9. [PMID: 19457706 DOI: 10.1016/j.oraloncology.2009.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 04/14/2009] [Accepted: 04/15/2009] [Indexed: 11/18/2022]
Abstract
Targeting hypoxia-inducible factor-1 (HIF-1) active cells in tumors may be an excellent strategy to improve the outcome of radiation therapy. On the basis of the reported role of YC-1 as a HIF-1 inhibitor with anti-cancer activity, we tested the therapeutic efficacy of YC-1 against radioresistance in vitro. The AMC-HN3 cancer cell line, developed from squamous cell carcinoma of the larynx, was cultured under hypoxic conditions or in the presence of cobalt chloride. Both treatments induced nuclear accumulation of HIF-1alpha protein. Cells cultured under normoxic or hypoxic conditions with and without YC-1 treatment were irradiated and analyzed using flow cytometry and clonogenic assays. In the absence of YC-1 treatment, irradiation induced a greater cytotoxic effect in normoxic cells than in cobalt-treated cells. Treatment of cobalt-treated cells with YC-1 effectively inhibited HIF-1alpha expression, and enhanced the sensitivity of cells to radiation, decreasing the surviving fraction to that of normoxic cells. Flow cytometry confirmed these results, showing that the sub-G1 fraction was increased in YC-1-treated hypoxic cells after irradiation. Our results suggest that YC-1 treatment may be an effective therapeutic strategy for overcoming the radioresistance of HIF-1alpha-expressing, hypoxic cancer cells.
Collapse
Affiliation(s)
- So Young Moon
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, 388-1, Pungnap-dong, Songpa-gu, Seoul 138-736, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Nijkamp MW, van der Bilt JDW, de Bruijn MT, Molenaar IQ, Voest EE, van Diest PJ, Kranenburg O, Borel Rinkes IHM. Accelerated perinecrotic outgrowth of colorectal liver metastases following radiofrequency ablation is a hypoxia-driven phenomenon. Ann Surg 2009; 249:814-23. [PMID: 19387320 DOI: 10.1097/sla.0b013e3181a38ef5] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The aim of this study was to assess how thermal ablation of colorectal liver metastases affects the outgrowth of micrometastases in the transition zone (TZ) between ablated tissue and the unaffected reference zone (RZ) in 2 different murine models. BACKGROUND Thermal destruction therapies of nonresectable colorectal liver metastases, including radiofrequency ablation (RFA), can provide tumor clearance, but local recurrences are common. METHODS Three days after intrasplenic injection of C26 colon carcinoma cells, RFA was applied to the left liver lobe. Perinecrotic microcirculation, tissue hypoxia, hypoxia inducible factor (HIF)-1alpha and HIF-2alpha, and the outgrowth of micrometastases both in the TZ and in the RZ were evaluated over time. RESULTS In 2 different animal models, the outgrowth of micrometastases in the TZ following RFA was stimulated approximately 4-fold compared to tumor growth in the RZ. Accelerated tumor growth in the TZ was associated with microcirculatory disturbances, prolonged hypoxia, and stabilization of HIF-1alpha and HIF-2alpha in the tumor cells. In addition, RFA induced the formation of new hepatic vessels that sprouted from existing sinusoids and grew into the generated necrotic lesion. Surprisingly, the accelerated tumor growth was not associated with these vessels. Treatment with 17DMAG prevented HIF-1alpha and HIF-2alpha stabilization and selectively reduced tumor growth in the TZ by approximately 40% without affecting tumor growth in sham-operated mice or in the RZ of RFA-treated mice. PTK787/ZK-222584, a nonselective Vascular Endothelial Growth Factor (VEGF)-receptor inhibitor, reduced RFA-stimulated tumor growth and tumor growth in the RZ to a similar extent. CONCLUSIONS We conclude that RFA stimulates the outgrowth of tumor cells at the lesion periphery. Angiogenesis is not the driving force behind RFA-stimulated tumor growth, but other hypoxia/HIF-activated pathways are likely to be important.
Collapse
Affiliation(s)
- Maarten W Nijkamp
- Department of Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
138
|
Zhuang HQ, Yuan ZY. Process in the mechanisms of endostatin combined with radiotherapy. Cancer Lett 2009; 282:9-13. [PMID: 19136200 DOI: 10.1016/j.canlet.2008.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 12/05/2008] [Accepted: 12/08/2008] [Indexed: 10/21/2022]
Abstract
Endostatin has been demonstrated to represent a promising novel medicine to treat malignant tumors, and it may be more effective when combined with conventional treatment. Meanwhile, a promising area of research in radiation oncology is the integration of molecular targeting agents to improve the effectiveness of radiotherapy (RT) in the control of primary tumor. Antiangiogenic agents are one such class of targeted therapies and have shown promise in both laboratory and clinical experiments. Endostatin in combination with RT has feasibility; but it also has lots of problems. Further understanding of the mechanisms is needed.
Collapse
Affiliation(s)
- Hong-Qing Zhuang
- Department of Radiotherapy, Tianjin Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
| | | |
Collapse
|
139
|
Nestle U, Weber W, Hentschel M, Grosu AL. Biological imaging in radiation therapy: role of positron emission tomography. Phys Med Biol 2008; 54:R1-25. [PMID: 19060363 DOI: 10.1088/0031-9155/54/1/r01] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In radiation therapy (RT), staging, treatment planning, monitoring and evaluation of response are traditionally based on computed tomography (CT) and magnetic resonance imaging (MRI). These radiological investigations have the significant advantage to show the anatomy with a high resolution, being also called anatomical imaging. In recent years, so called biological imaging methods which visualize metabolic pathways have been developed. These methods offer complementary imaging of various aspects of tumour biology. To date, the most prominent biological imaging system in use is positron emission tomography (PET), whose diagnostic properties have clinically been evaluated for years. The aim of this review is to discuss the valences and implications of PET in RT. We will focus our evaluation on the following topics: the role of biological imaging for tumour tissue detection/delineation of the gross tumour volume (GTV) and for the visualization of heterogeneous tumour biology. We will discuss the role of fluorodeoxyglucose-PET in lung and head and neck cancer and the impact of amino acids (AA)-PET in target volume delineation of brain gliomas. Furthermore, we summarize the data of the literature about tumour hypoxia and proliferation visualized by PET. We conclude that, regarding treatment planning in radiotherapy, PET offers advantages in terms of tumour delineation and the description of biological processes. However, to define the real impact of biological imaging on clinical outcome after radiotherapy, further experimental, clinical and cost/benefit analyses are required.
Collapse
Affiliation(s)
- Ursula Nestle
- Departments of Radiation Oncology, University of Freiburg, Robert Koch Str. 3, 79106 Freiburg, Germany.
| | | | | | | |
Collapse
|
140
|
He F, Deng X, Wen B, Liu Y, Sun X, Xing L, Minami A, Huang Y, Chen Q, Zanzonico PB, Ling CC, Li GC. Noninvasive molecular imaging of hypoxia in human xenografts: comparing hypoxia-induced gene expression with endogenous and exogenous hypoxia markers. Cancer Res 2008; 68:8597-606. [PMID: 18922936 PMCID: PMC2724017 DOI: 10.1158/0008-5472.can-08-0677] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Tumor hypoxia is important in the development and treatment of human cancers. We have developed a novel xenograft model for studying and imaging of hypoxia-induced gene expression. A hypoxia-inducible dual reporter herpes simplex virus type 1 thymidine kinase and enhanced green fluorescence protein (HSV1-TKeGFP), under the control of hypoxia response element (9HRE), was stably transfected into human colorectal HT29 cancer cells. Selected clones were further enriched by repeated live cell sorting gated for hypoxia-induced eGFP expression. Fluorescent microscopy, fluorescence-activated cell sorting, and radioactive substrate trapping assays showed strong hypoxia-induced expression of eGFP and HSV1-tk enzyme in the HT29-9HRE cells in vitro. Sequential micropositron emission tomography (PET) imaging of tumor-bearing animals, using the hypoxic cell tracer (18)F-FMISO and the reporter substrate (124)I-FIAU, yielded similar tumor hypoxia images for the HT29-9HRE xenograft but not in the parental HT29 tumor. Using autoradiography and IHC, detailed spatial distributions in tumor sections were obtained and compared for the following hypoxia-associated biomarkers in the HT29-9HRE xenograft: (124)I-FIAU, (18)F-FMISO, Hoechst (perfusion), lectin-TRITC (functional blood vessels), eGFP, pimonidazole, EF5, and CA9. Intratumoral distributions of (124)I-FIAU and (18)F-FMISO were similar, and eGFP, pimonidazole, EF5, and CA9 colocalized in the same areas but not in well-perfused regions that were positive for Hoechst and lectin-TRITC. In enabling the detection of hypoxia-induced molecular events and mapping their distribution in vivo with serial noninvasive positron emission tomography imaging, and multiple variable analysis with immunohistochemistry and fluorescence microscopy, this human xenograft model provides a valuable tool for studying tumor hypoxia and in validating existing and future exogenous markers for tumor hypoxia.
Collapse
Affiliation(s)
- Fuqiu He
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Xuelong Deng
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Bixiu Wen
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Yueping Liu
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Xiaorong Sun
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Ligang Xing
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Akiko Minami
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Yunhong Huang
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Qing Chen
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Pat B. Zanzonico
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - C. Clifton Ling
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Gloria C. Li
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York
| |
Collapse
|
141
|
Liu F, Wang P, Jiang X, Tan G, Qiao H, Jiang H, Krissansen GW, Sun X. Antisense hypoxia-inducible factor 1alpha gene therapy enhances the therapeutic efficacy of doxorubicin to combat hepatocellular carcinoma. Cancer Sci 2008; 99:2055-2061. [PMID: 19016766 PMCID: PMC11159667 DOI: 10.1111/j.1349-7006.2008.00905.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 06/09/2008] [Accepted: 06/17/2008] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC), one of the most common cancers worldwide, is resistant to anticancer drugs. Hypoxia is a major cause of tumor resistance to chemotherapy, and hypoxia-inducible factor (HIF)-1 is a key transcription factor in hypoxic responses. We have previously demonstrated that gene transfer of an antisense HIF-1alpha expression vector downregulates expression of HIF-1alpha and vascular endothelial growth factor (VEGF), and synergizes with immunotherapy to eradicate lymphomas. The aim of the present study was to determine whether gene transfer of antisense HIF-1alpha could enhance the therapeutic efficacy of doxorubicin to combat HCC. Both antisense HIF-1alpha therapy and doxorubicin suppressed the growth of subcutaneous human HepG2 tumors established in BALB/c nude mice, tumor angiogenesis, and cell proliferation, and induced tumor cell apoptosis. The combination therapy with antisense HIF-1alpha and doxorubicin was more effective in suppressing tumor growth, angiogenesis, and cell proliferation, and inducing cell apoptosis than the respective monotherapies. Gene transfer of antisense HIF-1alpha downregulated the expression of both HIF-1alpha and VEGF, whereas doxorubicin only downregulated VEGF expression. Antisense HIF-1alpha and doxorubicin synergized to downregulate VEGF expression. Both antisense HIF-1alpha and doxorubicin inhibited expression of proliferating cell nuclear antigen, and combined to exert even stronger inhibition of proliferating cell nuclear antigen expression. Antisense HIF-1alpha therapy warrants investigation as a therapeutic strategy to enhance the efficacy of doxorubicin for treating HCC.
Collapse
MESH Headings
- Animals
- Antibiotics, Antineoplastic/pharmacology
- Antisense Elements (Genetics)/genetics
- Apoptosis/drug effects
- Carcinoma, Hepatocellular/blood supply
- Carcinoma, Hepatocellular/drug therapy
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Doxorubicin/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Transfer Techniques
- Genetic Therapy/methods
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/therapeutic use
- Immunohistochemistry
- Ki-67 Antigen/metabolism
- Liver Neoplasms, Experimental/blood supply
- Liver Neoplasms, Experimental/prevention & control
- Male
- Mice
- Mice, Nude
- Neovascularization, Pathologic/drug therapy
- Proliferating Cell Nuclear Antigen/metabolism
- Vascular Endothelial Growth Factor A/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Fengjun Liu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | | | | | | | | | | | | | | |
Collapse
|
142
|
Kumar S, Brown SL, Kolozsvary A, Freytag SO, Kim JH. Efficacy of suicide gene therapy in hypoxic rat 9L glioma cells. J Neurooncol 2008; 90:19-24. [PMID: 18594766 PMCID: PMC3136088 DOI: 10.1007/s11060-008-9635-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Accepted: 06/06/2008] [Indexed: 10/21/2022]
Abstract
Viral vector mediated suicide gene therapy (SGT) involving thymidine kinase (TK) or cytosine deaminase (CD) have considerable promise in the treatment of malignant brain tumors. An unresolved issue is to what extent tumor hypoxia influences the outcome of SGT since brain tumors characterized by regions of hypoxia have potentially reduced cellular metabolism and SGT's cytotoxicity is manifest through cellular metabolism. We studied in vitro and in vivo, the effect of hypoxia on the cytotoxicity of SGT in rat 9L glioma cells. Neither acute nor chronic hypoxia affected the cell killing of SGT by TK or CD. In vivo confirmation that SGT efficacy was not adversely affected by tumor hypoxia using the hypoxic cell marker pimonidazole was shown by the absence of a change in tumor hypoxia by SGT. These studies support the use of SGT utilizing either TK or CD gene strategies even when tumors are characterized by a hypoxic microenvironment.
Collapse
Affiliation(s)
- S Kumar
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI 48202, USA.
| | | | | | | | | |
Collapse
|
143
|
Ohno N, Terada N, Bai Y, Saitoh S, Nakazawa T, Nakamura N, Naito I, Fujii Y, Katoh R, Ohno S. Application of cryobiopsy to morphological and immunohistochemical analyses of xenografted human lung cancer tissues and functional blood vessels. Cancer 2008; 113:1068-79. [PMID: 18623380 DOI: 10.1002/cncr.23701] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Assessment of tissue specimens obtained with common immersion-fixation followed by dehydration (IMDH) is affected by artifacts, which hinder precise evaluation of the histology and microenvironment of tumor tissues. The technical characteristics of cryobiopsy and in vivo cryotechnique (IVCT) where target organs are directly cryofixed in vivo are still unknown in practical examinations of tumor histopathology and microenvironment. METHODS Three lines of human lung cancer cells were subcutaneously injected to the dorsal flank of nude mice, and paraffin sections and cryosections of produced tumors were prepared with cryobiopsy, IVCT, the quick-freezing of the fresh resected tumor tissues, or IMDH. Histological comparison among different methods was conducted, and immunolocalization of immunoglobulin M (IgM), intravenously injected bovine serum albumin (BSA), and vascular endothelial growth factor (VEGF) were examined. RESULTS With both the cryobiopsy and IVCT, cellular morphology and open blood vessels with flowing erythrocytes could be observed without artificial shrinkage, and the volume of blood vessels was not affected by a vascular collapse, which was observed after tissue-resection. In addition, with cryobiopsy and IVCT, IgM was well preserved in functional vessels with blood flow, which could be observed with injected BSA, and the volume of IgM-immunopositive blood vessels was significantly associated with the expression of VEGF. CONCLUSIONS Cryobiopsy could be useful for histological examination of human tumors without morphological artifacts associated with IMDH. Furthermore, it allows direct examination of functional blood vessels and related signaling molecules, thereby providing a better evaluation of the human tumor microenvironment for clinical application.
Collapse
Affiliation(s)
- Nobuhiko Ohno
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
van Bree C, Rodermond HM, ten Cate R, de Vos J, Stalpers LJA, Haveman J, Medema JP, Franken NAP. G0 cell cycle arrest alone is insufficient for enabling the repair of ionizing radiation-induced potentially lethal damage. Radiat Res 2008; 170:184-91. [PMID: 18666809 DOI: 10.1667/rr0845.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Accepted: 03/27/2008] [Indexed: 11/03/2022]
Abstract
The repair of ionizing radiation-induced potentially lethal damage (PLD) is suggested to be important for the clinical response to radiotherapy. PLD repair is usually studied in quiescent cultures prepared by growing cells to confluence with an accumulation of cells in G(0) phase of the cell cycle, but the biological pathways enabling PLD repair are still unknown. In this study, we examined whether the controlled expression of two different inducers of G(0) cell cycle arrest, the human tumor suppressor gene growth arrest specific 1 (GAS1) in murine fibroblasts and the forkhead transcription factor FOXO3a in human colon carcinoma cells, is sufficient to enable PLD repair. We found that GAS1 and FOXO3a induced a cell cycle arrest in G(0) phase with a concomitant reduction of proliferation of log-phase cells. In both cell systems, this cell cycle arrest in G(0) phase did not enable PLD repair in log-phase cells. Significant PLD repair was found in all confluent cultures that showed similar cell cycle distributions, while GAS1 and FOXO3a in confluent cells did not influence PLD repair. No differences were found in cell cycle re-entry after replating cells with different capacities for PLD repair. Our data suggest that the induction of G(0) cell cycle arrest and the reduction of proliferation are not sufficient to enable PLD repair.
Collapse
Affiliation(s)
- Chris van Bree
- Academic Medical Center, Laboratory for Experimental Oncology and Radiobiology, Department of Radiation Oncology, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
145
|
Abstract
INTRODUCTION An expanding understanding of the importance of angiogenesis in oncology and the development of numerous angiogenesis inhibitors are driving the search for biomarkers of angiogenesis. We review currently available candidate biomarkers and surrogate markers of anti-angiogenic agent effect. DISCUSSION A number of invasive, minimally invasive, and non-invasive tools are described with their potential benefits and limitations. Diverse markers can evaluate tumor tissue or biological fluids, or specialized imaging modalities. CONCLUSIONS The inclusion of these markers into clinical trials may provide insight into appropriate dosing for desired biological effects, appropriate timing of additional therapy, prediction of individual response to an agent, insight into the interaction of chemotherapy and radiation following exposure to these agents, and perhaps most importantly, a better understanding of the complex nature of angiogenesis in human tumors. While many markers have potential for clinical use, it is not yet clear which marker or combination of markers will prove most useful.
Collapse
Affiliation(s)
- Aaron P Brown
- National Institutes of Health, Building 10/3B42, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
146
|
Fleshker S, Preise D, Kalchenko V, Scherz A, Salomon Y. Prompt Assessment of WST11-VTP Outcome Using Luciferase Transfected Tumors Enables Second Treatment and Increase in Overall Therapeutic Rate. Photochem Photobiol 2008; 84:1231-7. [DOI: 10.1111/j.1751-1097.2008.00340.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
147
|
Schrijvers M, van der Laan B, de Bock G, Pattje W, Mastik M, Menkema L, Langendijk J, Kluin P, Schuuring E, van der Wal J. Overexpression of Intrinsic Hypoxia Markers HIF1α and CA-IX Predict for Local Recurrence in Stage T1-T2 Glottic Laryngeal Carcinoma Treated With Radiotherapy. Int J Radiat Oncol Biol Phys 2008; 72:161-9. [DOI: 10.1016/j.ijrobp.2008.05.025] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 04/22/2008] [Accepted: 05/08/2008] [Indexed: 10/21/2022]
|
148
|
Schnier JB, Nishi K, Harley WR, Gorin FA. An acidic environment changes cyclin D1 localization and alters colony forming ability in gliomas. J Neurooncol 2008; 89:19-26. [PMID: 18404250 PMCID: PMC2996278 DOI: 10.1007/s11060-008-9591-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 03/28/2008] [Indexed: 11/30/2022]
Abstract
The human glioma cell lines, U87 and T98G, were evaluated for their ability to survive and form colonies in an acidic environment of pH(ext) 6.0. In contrast to U87, which showed an 80-90% survival rate, only 40% of T98G cells survived 6 days at pH(ext) 6.0 and lost their colony forming ability when returned to a normocidic environment. Although both U87 and T98G cells maintain an intracellular pH (pH(i)) of 7.0 at pH(ext) 6.0 and arrest mostly in G1 phase of the cell cycle, only T98G demonstrated a major loss of cyclin D1 that was prevented by the proteasome inhibitor MG132. Colony forming ability was restored by stably transfecting T98G cells with a cyclin D1-expressing plasmid. Both U87 and T98G cells demonstrated increased cytoplasmic localization of cyclin D1 during exposure at pH(ext) 6.0. Upon prolonged (24 h) incubation at pH(ext) 6.0, nuclear cyclin D1 was nearly absent in T98G in contrast to U87 cells. Thus, an acidic environment triggers cytoplasmic localization and proteasomal degradation of cyclin D1.
Collapse
Affiliation(s)
- Joachim B Schnier
- Department of Biochemistry and Molecular Medicine, University of California-Davis, One Shields Ave, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
149
|
Egeland TAM, Gaustad JV, Benjaminsen IC, Hedalen K, Mathiesen B, Rofstad EK. Assessment of Fraction of Hypoxic Cells in Human Tumor Xenografts with Necrotic Regions by Dynamic Contrast-Enhanced MRI. Radiat Res 2008; 169:689-99. [DOI: 10.1667/rr1311.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Accepted: 02/28/2008] [Indexed: 11/03/2022]
|
150
|
Rademakers SE, Span PN, Kaanders JH, Sweep FC, van der Kogel AJ, Bussink J. Molecular aspects of tumour hypoxia. Mol Oncol 2008; 2:41-53. [PMID: 19383328 PMCID: PMC5527797 DOI: 10.1016/j.molonc.2008.03.006] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 03/14/2008] [Accepted: 03/17/2008] [Indexed: 12/25/2022] Open
Abstract
Hypoxia is an important feature of the microenvironment of a wide range of solid tumours. Its critical role in radio- and chemoresistance and its significance as an adverse prognostic factor have been well established over the last decades. On a cellular level, hypoxia evokes a complex molecular response with a central role for the HIF-1 pathway. The cellular processes under control of HIF-1 contain important prognostic information and comprise potential candidates for directing hypoxia-modifying therapies. This review will provide an overview of the current knowledge on the molecular aspects of tumour hypoxia and the link to clinical practice.
Collapse
Affiliation(s)
- Saskia E. Rademakers
- Department of Radiation Oncology, 874 Radboud University Nijmegen Medical Centre, P.O. Box 9101, Nijmegen 6500 HB, The Netherlands
| | - Paul N. Span
- Department of Chemical Endocrinology, Radboud University Nijmegen Medical Centre, P.O. Box 9101, Nijmegen 6500 HB, The Netherlands
| | - Johannes H.A.M. Kaanders
- Department of Radiation Oncology, 874 Radboud University Nijmegen Medical Centre, P.O. Box 9101, Nijmegen 6500 HB, The Netherlands
| | - Fred C.G.J. Sweep
- Department of Chemical Endocrinology, Radboud University Nijmegen Medical Centre, P.O. Box 9101, Nijmegen 6500 HB, The Netherlands
| | - Albert J. van der Kogel
- Department of Radiation Oncology, 874 Radboud University Nijmegen Medical Centre, P.O. Box 9101, Nijmegen 6500 HB, The Netherlands
| | - Johan Bussink
- Department of Radiation Oncology, 874 Radboud University Nijmegen Medical Centre, P.O. Box 9101, Nijmegen 6500 HB, The Netherlands
| |
Collapse
|