101
|
Thomsen ND, Berger JM. Structural frameworks for considering microbial protein- and nucleic acid-dependent motor ATPases. Mol Microbiol 2008; 69:1071-90. [PMID: 18647240 DOI: 10.1111/j.1365-2958.2008.06364.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many fundamental cellular processes depend on enzymes that utilize chemical energy to catalyse unfavourable reactions. Certain classes of ATPases provide a particularly vivid example of the process of energy conversion, employing cycles of nucleotide turnover to move and/or rearrange biological polymers such as proteins and nucleic acids. Four well-characterized classes of ATP-dependent protein/nucleic acid translocases and remodelling factors are found in all three domains of life (bacteria, archaea and eukarya): additional strand catalytic 'E' (ASCE) P-loop NTPases, GHL proteins, actin-fold enzymes and chaperonins. These unrelated protein superfamilies have each evolved the ability to couple ATP binding and hydrolysis to the generation of motion and force along or within their substrates. The past several years have witnessed the emergence of a wealth of structural data that help explain how such molecular engines link nucleotide turnover to conformational change. In this review, we highlight several recent advances to illustrate some of the mechanisms by which each family of ATP-dependent motors facilitates the rearrangement and movement of proteins, protein complexes and nucleic acids.
Collapse
Affiliation(s)
- Nathan D Thomsen
- Quantitative Biology Institute and Department of Molecular and Cell Biology, 374D Stanley Hall #3220, University of California at Berkeley, Berkeley, CA 94720, USA
| | | |
Collapse
|
102
|
Yakamavich JA, Baker TA, Sauer RT. Asymmetric nucleotide transactions of the HslUV protease. J Mol Biol 2008; 380:946-57. [PMID: 18582897 DOI: 10.1016/j.jmb.2008.05.070] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 05/27/2008] [Accepted: 05/29/2008] [Indexed: 10/22/2022]
Abstract
ATP binding and hydrolysis are critical for protein degradation by HslUV, a AAA(+) machine containing one or two HslU(6) ATPases and the HslV(12) peptidase. Although each HslU homohexamer has six potential ATP-binding sites, we show that only three or four ATP molecules bind at saturation and present evidence for three functional subunit classes. These results imply that only a subset of HslU and HslUV crystal structures represents functional enzyme conformations. Our results support an asymmetric mechanism of ATP binding and hydrolysis, and suggest that molecular contacts between HslU and HslV vary dynamically throughout the ATPase cycle. Nucleotide binding controls HslUV assembly and activity. Binding of a single ATP allows HslU to bind HslV, whereas additional ATPs must bind HslU to support substrate recognition and to activate ATP hydrolysis, which powers substrate unfolding and translocation. Thus, a simple thermodynamic hierarchy ensures that substrates bind to functional HslUV complexes, that ATP hydrolysis is efficiently coupled to protein degradation, and that working HslUV does not dissociate, allowing highly processive degradation.
Collapse
Affiliation(s)
- Joseph A Yakamavich
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
103
|
Abstract
SUMMARY The AAA+ superfamily is a large and functionally diverse superfamily of NTPases that are characterized by a conserved nucleotide-binding and catalytic module, the AAA+ module. Members are involved in an astonishing range of different cellular processes, attaining this functional diversity through additions of structural motifs and modifications to the core AAA+ module.
Collapse
Affiliation(s)
- Jamie Snider
- Department of Biochemistry, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
104
|
Li Z, Lindsay ME, Motyka SA, Englund PT, Wang CC. Identification of a bacterial-like HslVU protease in the mitochondria of Trypanosoma brucei and its role in mitochondrial DNA replication. PLoS Pathog 2008; 4:e1000048. [PMID: 18421378 PMCID: PMC2277460 DOI: 10.1371/journal.ppat.1000048] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 03/20/2008] [Indexed: 12/03/2022] Open
Abstract
ATP-dependent protease complexes are present in all living organisms, including the 26S proteasome in eukaryotes, Archaea, and Actinomycetales, and the HslVU protease in eubacteria. The structure of HslVU protease resembles that of the 26S proteasome, and the simultaneous presence of both proteases in one organism was deemed unlikely. However, HslVU homologs have been identified recently in some primordial eukaryotes, though their potential function remains elusive. We characterized the HslVU homolog from Trypanosoma brucei, a eukaryotic protozoan parasite and the causative agent of human sleeping sickness. TbHslVU has ATP-dependent peptidase activity and, like its bacterial counterpart, has essential lysine and N-terminal threonines in the catalytic subunit. By epitope tagging, TbHslVU localizes to mitochondria and is associated with the mitochondrial genome, kinetoplast DNA (kDNA). RNAi of TbHslVU dramatically affects the kDNA by causing over-replication of the minicircle DNA. This leads to defects in kDNA segregation and, subsequently, to continuous network growth to an enormous size. Multiple discrete foci of nicked/gapped minicircles are formed on the periphery of kDNA disc, suggesting a failure in repairing the gaps in the minicircles for kDNA segregation. TbHslVU is a eubacterial protease identified in the mitochondria of a eukaryote. It has a novel function in regulating mitochondrial DNA replication that has never been observed in other organisms. ATP-dependent protein-hydrolyzing enzyme complexes are present in all living organisms, including the 26S proteasome in eukaryotes and the HslVU complex in bacteria. A simultaneous presence of both complexes in an organism was originally deemed unlikely until some HslVU homologs were found in certain ancient eukaryotes, though their potential function in these organisms remains unclear. We characterized an HslVU complex in Trypanosoma brucei, a protozoan parasite that causes human sleeping sickness in Africa. The complex is an active enzyme localized to the mitochondria of the parasite and closely associated with the mitochondrial DNA complex, which consists of several thousand small circular DNAs and a few dozen mitochondrial genomic DNAs. Depletion of this HslVU from the parasite resulted in a continuous synthesis of the small circular DNA, which led to aberrant segregation and incessant growth of the mitochondrial DNA complex to an enormous size that eventually blocks cell division. This novel HslVU function, which has not been observed in other organisms previously, could be a potential target for anti-sleeping sickness chemotherapy.
Collapse
Affiliation(s)
- Ziyin Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America
| | - Megan E. Lindsay
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Shawn A. Motyka
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Paul T. Englund
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ching C. Wang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
105
|
Lee I, Suzuki CK. Functional mechanics of the ATP-dependent Lon protease- lessons from endogenous protein and synthetic peptide substrates. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:727-35. [PMID: 18359303 DOI: 10.1016/j.bbapap.2008.02.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Revised: 02/17/2008] [Accepted: 02/20/2008] [Indexed: 11/25/2022]
Abstract
Lon, also known as the protease La, is a homo-oligomeric ATP-dependent protease, which is highly conserved in archaea, eubacteria and eukaryotic mitochondria and peroxisomes. Since its discovery, studies have shown that Lon activity is essential for cellular homeostasis, mediating protein quality control and metabolic regulation. This article highlights the discoveries made over the past decade demonstrating that Lon selectively degrades abnormal as well as certain regulatory proteins and thus plays significant roles in maintaining bacterial and mitochondrial function and integrity. In addition, Lon is required in certain pathogenic bacteria, for rendering pathogenicity and host infectivity. Recent research endeavors have been directed toward elucidating the reaction mechanism of the Lon protease by different biochemical and structural biological techniques. In this mini-review, the authors survey the diverse biological roles of Lon, and also place special emphasis on recent findings that clarify the mechanistic aspects of the Lon reaction cycle.
Collapse
Affiliation(s)
- Irene Lee
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-7078, USA.
| | | |
Collapse
|
106
|
Licht S, Lee I. Resolving individual steps in the operation of ATP-dependent proteolytic molecular machines: from conformational changes to substrate translocation and processivity. Biochemistry 2008; 47:3595-605. [PMID: 18311925 DOI: 10.1021/bi800025g] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Clp, Lon, and FtsH proteases are proteolytic molecular machines that use the free energy of ATP hydrolysis to unfold protein substrates and processively present them to protease active sites. Here we review recent biochemical and structural studies relevant to the mechanism of ATP-dependent processive proteolysis. Despite the significant structural differences among the Clp, Lon, and FtsH proteases, these enzymes share important mechanistic features. In these systems, mechanistic studies have provided evidence for ATP binding and hydrolysis-driven conformational changes that drive translocation of substrates, which has significant implications for the processive mechanism of proteolysis. These studies indicate that the nucleotide (ATP, ADP, or nonhydrolyzable ATP analogues) occupancy of the ATPase binding sites can influence the binding mode and/or binding affinity for protein substrates. A general mechanism is proposed in which the communication between ATPase active sites and protein substrate binding regions coordinates a processive cycle of substrate binding, translocation, proteolysis, and product release.
Collapse
Affiliation(s)
- Stuart Licht
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
107
|
Common and specific mechanisms of AAA+ proteins involved in protein quality control. Biochem Soc Trans 2008; 36:120-5. [PMID: 18208398 DOI: 10.1042/bst0360120] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A protein quality control system, consisting of molecular chaperones and proteases, controls the folding status of proteins and mediates the refolding or degradation of misfolded proteins. Ring-forming AAA+ (ATPase associated with various cellular activities) proteins play crucial roles in both processes by co-operating with either peptidases or chaperone systems. Peptidase-associated AAA+ proteins bind substrates and thread them through their axial channel into the attached proteolytic chambers for degradation. In contrast, the AAA+ protein ClpB evolved independently from an interacting peptidase and co-operates with a cognate Hsp70 (heat-shock protein 70) chaperone system to solubilize and refold aggregated proteins. The activity of this bi-chaperone system is crucial for the survival of bacteria, yeast and plants during severe stress conditions. Hsp70 acts at initial stages of the disaggregation process, enabling ClpB to extract single unfolded polypeptides from the aggregate via a threading activity. Although both classes of AAA+ proteins share a common threading activity, it is apparent that their divergent evolution translates into specific mechanisms, reflecting adaptations to their respective functions. The ClpB-specific M-domain (middle domain) represents such an extra feature that verifies ClpB as the central disaggregase in vivo. M-domains act as regulatory devices to control both ClpB ATPase activity and the Hsp70-dependent binding of aggregated proteins to the ClpB pore, thereby coupling the Hsp70 chaperone activity with the ClpB threading motor to ensure efficient protein disaggregation.
Collapse
|
108
|
Krishnamoorthy N, Gajendrarao P, Eom SH, Kwon YJ, Cheong GW, Lee KW. Molecular modeling study of CodX reveals importance of N-terminal and C-terminal domain in the CodWX complex structure of Bacillus subtilis. J Mol Graph Model 2008; 27:1-12. [PMID: 18400533 DOI: 10.1016/j.jmgm.2008.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 01/17/2008] [Accepted: 01/27/2008] [Indexed: 11/27/2022]
Abstract
In Bacillus subtilis, CodW peptidase and CodX ATPase function together as a distinctive ATP-dependent protease called CodWX, which participates in protein degradation and regulates cell division. The molecular structure of CodX and the assembly structure of CodW-CodX have not yet been resolved. Here we present the first three-dimensional structure of CodX N-terminal (N) and C-terminal (C) domain including possible structure of intermediate (I) domain based on the crystal structure of homologous Escherichia coli HslU ATPase. Moreover, the biologically relevant CodWX (W(6)W(6)X(6)) octadecamer complex structure was constructed using the recently identified CodW-HslU hybrid crystal structure. Molecular dynamics (MD) simulation shows a reasonably stable structure of modeled CodWX and explicit behavior of key segments in CodX N and C domain: nucleotide binding residues, GYVG pore motif and CodW-CodX interface. Predicted structure of the possible I domain is flexible in nature with highly coiled hydrophobic region (M153-M206) that could favor substrate binding and entry. Electrostatic surface potential observation unveiled charge complementarity based CodW-CodX interaction pattern could be a possible native interaction pattern in the interface of CodWX. CodX GYVG pore motif structural features, flexible nature of glycine (G92 and G95) residues and aromatic ring conformation preserved Y93 indicated that it may follow the similar mode during the proteolysis mechanism as in the HslU closed state. This molecular modeling study uncovers the significance of CodX N and C domain in CodWX complex and provides possible explanations which would be helpful to understand the CodWX-dependent proteolysis mechanism of B. subtilis.
Collapse
Affiliation(s)
- Navaneethakrishnan Krishnamoorthy
- Department of Biochemistry, Division of Applied Life Sciences, BK21 Program, Environmental Biotechnology National Core Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | | | | | | | | | | |
Collapse
|
109
|
Inobe T, Matouschek A. Protein targeting to ATP-dependent proteases. Curr Opin Struct Biol 2008; 18:43-51. [PMID: 18276129 DOI: 10.1016/j.sbi.2007.12.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 12/21/2007] [Accepted: 12/26/2007] [Indexed: 11/27/2022]
Abstract
ATP-dependent proteases control diverse cellular processes by degrading specific regulatory proteins. Recent work has shown that protein substrates are specifically transferred to ATP-dependent proteases through different routes. These routes can function in parallel or independently. In all of these targeting mechanisms, it can be useful to separate two steps: substrate binding to the protease and initiation of degradation.
Collapse
Affiliation(s)
- Tomonao Inobe
- Department of Biochemistry, Molecular Biology and Cell Biology, 2205 Tech Drive, Hogan 2-100 Northwestern University, Evanston, IL, USA
| | | |
Collapse
|
110
|
Wendler P, Shorter J, Plisson C, Cashikar AG, Lindquist S, Saibil HR. Atypical AAA+ subunit packing creates an expanded cavity for disaggregation by the protein-remodeling factor Hsp104. Cell 2008; 131:1366-77. [PMID: 18160044 PMCID: PMC2211523 DOI: 10.1016/j.cell.2007.10.047] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 08/28/2007] [Accepted: 10/19/2007] [Indexed: 11/28/2022]
Abstract
Hsp104, a yeast protein-remodeling factor of the AAA+ (ATPases associated with various cellular activities) superfamily, and its homologs in bacteria and plants mediate cell recovery after severe stress by disaggregating denatured proteins through a poorly understood mechanism. Here, we present cryo-electron microscopy maps and domain fitting of Hsp104 hexamers, revealing an unusual arrangement of AAA+ modules with the prominent coiled-coil domain intercalated between the AAA+ domains. This packing results in a greatly expanded cavity, which is capped at either end by N- and C-terminal domains. The fitted structures as well as mutation of conserved coiled-coil arginines suggest that the coiled-coil domain plays a major role in the extraction of proteins from aggregates, providing conserved residues for key functions in ATP hydrolysis and potentially for substrate interaction. The large cavity could enable the uptake of polypeptide loops without a requirement for exposed N or C termini.
Collapse
Affiliation(s)
- Petra Wendler
- Department of Crystallography, Birkbeck College, Malet Street, London WC1E 7HX, UK
| | | | | | | | | | | |
Collapse
|
111
|
Rho SH, Park HH, Kang GB, Im YJ, Kang MS, Lim BK, Seong IS, Seol J, Chung CH, Wang J, Eom SH. Crystal structure ofBacillus subtilis CodW, a noncanonical HslV-like peptidase with an impaired catalytic apparatus. Proteins 2008; 71:1020-6. [DOI: 10.1002/prot.21758] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
112
|
Abstract
AAA+ adenosine triphosphatases (ATPases) are molecular machines that perform a wide variety of cellular functions. For instance, they can act in vesicle transport, organelle assembly, membrane dynamics and protein unfolding. In most cases, the ATPase domains of these proteins assemble into active ring-shaped hexamers. As AAA+ proteins have a common structure, a central issue is determining how they use conserved mechanistic principles to accomplish specific biological actions. Here, we review the features and motifs that partially define AAA+ domains, describe the cellular activities mediated by selected AAA+ proteins and discuss the recent work, suggesting that various AAA+ machines with very different activities employ a common core mechanism. The importance of this mechanism to human health is demonstrated by the number of genetic diseases caused by mutant AAA+ proteins.
Collapse
Affiliation(s)
- Susan Roehl White
- Department of Pathology, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Brett Lauring
- Department of Pathology, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
113
|
Koppen M, Langer T. Protein degradation within mitochondria: versatile activities of AAA proteases and other peptidases. Crit Rev Biochem Mol Biol 2007; 42:221-42. [PMID: 17562452 DOI: 10.1080/10409230701380452] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cell survival depends on essential processes in mitochondria. Various proteases within these organelles regulate mitochondrial biogenesis and ensure the complete degradation of excess or damaged proteins. Many of these proteases are highly conserved and ubiquitous in eukaryotic cells. They can be assigned to three functional classes: processing peptidases, which cleave off mitochondrial targeting sequences of nuclearly encoded proteins and process mitochondrial proteins with regulatory functions; ATP-dependent proteases, which either act as processing peptidases with regulatory functions or as quality-control enzymes degrading non-native polypeptides to peptides; and oligopeptidases, which degrade these peptides and mitochondrial targeting sequences to amino acids. Disturbances of protein degradation within mitochondria cause severe phenotypes in various organisms and can lead to the induction of apoptotic programmes and cell-specific neurodegeneration in mammals. After an overview of the proteolytic system of mitochondria, we will focus on versatile functions of ATP-dependent AAA proteases in the inner membrane. These conserved proteolytic machines conduct protein quality surveillance of mitochondrial inner membrane proteins, mediate vectorial protein dislocation from membranes, and, acting as processing enzymes, control ribosome assembly, mitochondrial protein synthesis, and mitochondrial fusion. Implications of these functions for cell-specific axonal degeneration in hereditary spastic paraplegia will be discussed.
Collapse
Affiliation(s)
- Mirko Koppen
- Institute for Genetics and Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | | |
Collapse
|
114
|
White SR, Evans KJ, Lary J, Cole JL, Lauring B. Recognition of C-terminal amino acids in tubulin by pore loops in Spastin is important for microtubule severing. ACTA ACUST UNITED AC 2007; 176:995-1005. [PMID: 17389232 PMCID: PMC2064084 DOI: 10.1083/jcb.200610072] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Spastin, an AAA ATPase mutated in the neurodegenerative disease hereditary spastic paraplegia, severs microtubules. Many other AAA proteins form ring-shaped hexamers and contain pore loops, which project into the ring's central cavity and act as ratchets that pull on target proteins, leading, in some cases, to conformational changes. We show that Spastin assembles into a hexamer and that loops within the central pore recognize C-terminal amino acids of tubulin. Key pore loop amino acids are required for severing, including one altered by a disease-associated mutation. We also show that Spastin contains a second microtubule binding domain that makes a distinct interaction with microtubules and is required for severing. Given that Spastin engages the MT in two places and that both interactions are required for severing, we propose that severing occurs by forces exerted on the C-terminal tail of tubulin, which results in a conformational change in tubulin, which releases it from the polymer.
Collapse
Affiliation(s)
- Susan Roehl White
- Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
115
|
Park EY, Lee BG, Hong SB, Kim HW, Jeon H, Song HK. Structural basis of SspB-tail recognition by the zinc binding domain of ClpX. J Mol Biol 2007; 367:514-26. [PMID: 17258768 DOI: 10.1016/j.jmb.2007.01.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 01/02/2007] [Indexed: 11/30/2022]
Abstract
The degradation of ssrA(AANDENYALAA)-tagged proteins in the bacterial cytosol is carried out by the ClpXP protease and is markedly stimulated by the SspB adaptor protein. It has previously been reported that the amino-terminal zinc-binding domain of ClpX (ZBD) is involved in complex formation with the SspB-tail (XB: ClpX-binding motif). In an effort to better understand the recognition of SspB by ClpX and the mechanism of delivery of ssrA-tagged substrates to ClpXP, we have determined the structures of ZBD alone at 1.5, 2.0, and 2.5 A resolution in each different crystal form and also in complex with XB peptide at 1.6 A resolution. The XB peptide forms an antiparallel beta-sheet with two beta-strands of ZBD, and the structure shows a 1:1 stoichiometric complex between ZBD and XB, suggesting that there are two independent SspB-tail-binding sites in ZBD. The high-resolution ZBD:XB complex structure, in combination with biochemical analyses, can account for key determinants in the recognition of the SspB-tail by ClpX and sheds light on the mechanism of delivery of target proteins to the prokaryotic degradation machine.
Collapse
Affiliation(s)
- Eun Young Park
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | | | | | | | | | | |
Collapse
|
116
|
Thoms S, Erdmann R. Peroxisomal matrix protein receptor ubiquitination and recycling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1620-8. [PMID: 17028012 DOI: 10.1016/j.bbamcr.2006.08.046] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 08/15/2006] [Accepted: 08/23/2006] [Indexed: 11/22/2022]
Abstract
The peroxisomal targeting signal type1 (PTS1) receptor Pex5 is required for the peroxisomal targeting of most matrix proteins. Pex5 recognises target proteins in the cytosol and directs them to the peroxisomal membrane where cargo is released into the matrix, and the receptor shuttles back to the cytosol. Recently, it has become evident that the membrane-bound Pex5 can be modified by mono- and polyubiquitination. This review summarises recent results on Pex5 ubiquitination and on the role of the AAA peroxins Pex1 and Pex6 as dislocases required for the release of Pex5 from the membrane to the cytosol where the receptor is either degraded by proteasomes or made available for another round of protein import into peroxisomes.
Collapse
Affiliation(s)
- Sven Thoms
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | |
Collapse
|
117
|
Pearce MJ, Arora P, Festa RA, Butler-Wu SM, Gokhale RS, Darwin KH. Identification of substrates of the Mycobacterium tuberculosis proteasome. EMBO J 2006; 25:5423-32. [PMID: 17082771 PMCID: PMC1636610 DOI: 10.1038/sj.emboj.7601405] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Accepted: 10/05/2006] [Indexed: 11/09/2022] Open
Abstract
The putative proteasome-associated proteins Mpa (Mycobaterium proteasomal ATPase) and PafA (proteasome accessory factor A) of the human pathogen Mycobacterium tuberculosis (Mtb) are essential for virulence and resistance to nitric oxide. However, a direct link between the proteasome protease and Mpa or PafA has never been demonstrated. Furthermore, protein degradation by bacterial proteasomes in vitro has not been accomplished, possibly due to the failure to find natural degradation substrates or other necessary proteasome co-factors. In this work, we identify the first bacterial proteasome substrates, malonyl Co-A acyl carrier protein transacylase and ketopantoate hydroxymethyltransferase, enzymes that are required for the biosynthesis of fatty acids and polyketides that are essential for the pathogenesis of Mtb. Maintenance of the physiological levels of these enzymes required Mpa and PafA in addition to proteasome protease activity. Mpa levels were also regulated in a proteasome-dependent manner. Finally, we found that a conserved tyrosine of Mpa was essential for function. Thus, these results suggest that Mpa, PafA, and the Mtb proteasome degrade bacterial proteins that are important for virulence in mice.
Collapse
Affiliation(s)
- Michael J Pearce
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Pooja Arora
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Richard A Festa
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Susan M Butler-Wu
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Rajesh S Gokhale
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - K Heran Darwin
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, Medical Sciences Building Room 236, New York, NY 10016, USA. Tel.: +1 212 263 2624; Fax: +1 212 263 8276; E-mail:
| |
Collapse
|
118
|
Ruiz-González MX, Marín I. Proteasome-related HslU and HslV genes typical of eubacteria are widespread in eukaryotes. J Mol Evol 2006; 63:504-12. [PMID: 17021930 DOI: 10.1007/s00239-005-0282-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 05/30/2006] [Indexed: 10/24/2022]
Abstract
Many eubacteria contain an ATP-dependent protease complex, which is built by multiple copies of the HslV and HslU proteins and is therefore called HslVU. HslU proteins are AAA + ATPases, while HslV proteins are proteases that show highly significant similarity to beta subunits of proteasomes. Therefore, the HslVU complex has been envisaged as a precursor or ancestral type of proteasome. Here we show that species of most of the main eukaryotic lineages have HslU and HslV genes very similar to those found in proteobacteria. We have detected them in amoebozoa, plantae, chromoalveolata, rhizaria, and excavata species. Phylogenetic analyses suggest that these genes have been obtained by endosymbiosis from the proteobacterial ancestor that gave rise to eukaryotic mitochondria. The products encoded by these eukaryotic genes adopt, according to modeling based on the known crystal structures of prokaryotic HslU and HslV proteins, conformations that are compatible with their being fully active, suggesting that functional HslVU complexes may be present in many eukaryotic species.
Collapse
Affiliation(s)
- Mario X Ruiz-González
- Departamento de Genética, Universidad de Valencia, Calle Doctor Moliner 50, Burjassot, 46100, Valencia, Spain
| | | |
Collapse
|
119
|
Neuwald AF. Hypothesis: bacterial clamp loader ATPase activation through DNA-dependent repositioning of the catalytic base and of a trans-acting catalytic threonine. Nucleic Acids Res 2006; 34:5280-90. [PMID: 17012286 PMCID: PMC1636414 DOI: 10.1093/nar/gkl519] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The prokaryotic DNA polymerase III clamp loader complex loads the β clamp onto DNA to link the replication complex to DNA during processive synthesis and unloads it again once synthesis is complete. This minimal complex consists of one δ, one δ′ and three γ subunits, all of which possess an AAA+ module—though only the γ subunit exhibits ATPase activity. Here clues to underlying clamp loader mechanisms are obtained through Bayesian inference of various categories of selective constraints imposed on the γ and δ′ subunits. It is proposed that a conserved histidine is ionized via electron transfer involving structurally adjacent residues within the sensor 1 region of γ's AAA+ module. The resultant positive charge on this histidine inhibits ATPase activity by drawing the negatively charged catalytic base away from the active site. It is also proposed that this arrangement is disrupted upon interaction of DNA with basic residues in γ implicated previously in DNA binding, regarding which a lysine that is near the sensor 1 region and that is highly conserved both in bacterial and in eukaryotic clamp loader ATPases appears to play a critical role. γ ATPases also appear to utilize a trans-acting threonine that is donated by helix 6 of an adjacent γ or δ′ subunit and that assists in the activation of a water molecule for nucleophilic attack on the γ phosphorous atom of ATP. As eukaryotic and archaeal clamp loaders lack most of these key residues, it appears that eubacteria utilize a fundamentally different mechanism for clamp loader activation than do these other organisms.
Collapse
Affiliation(s)
- Andrew F Neuwald
- Cold Spring Harbor Laboratory, 1 Bungtown Road PO Box 100, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
120
|
Rotanova TV, Botos I, Melnikov EE, Rasulova F, Gustchina A, Maurizi MR, Wlodawer A. Slicing a protease: structural features of the ATP-dependent Lon proteases gleaned from investigations of isolated domains. Protein Sci 2006; 15:1815-28. [PMID: 16877706 PMCID: PMC2242575 DOI: 10.1110/ps.052069306] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
ATP-dependent Lon proteases are multi-domain enzymes found in all living organisms. All Lon proteases contain an ATPase domain belonging to the AAA(+) superfamily of molecular machines and a proteolytic domain with a serine-lysine catalytic dyad. Lon proteases can be divided into two subfamilies, LonA and LonB, exemplified by the Escherichia coli and Archaeoglobus fulgidus paralogs, respectively. The LonA subfamily is defined by the presence of a large N-terminal domain, whereas the LonB subfamily has no such domain, but has a membrane-spanning domain that anchors the protein to the cytoplasmic side of the membrane. The two subfamilies also differ in their consensus sequences. Recent crystal structures for several individual domains and sub-fragments of Lon proteases have begun to illuminate similarities and differences in structure-function relationships between the two subfamilies. Differences in orientation of the active site residues in several isolated Lon protease domains point to possible roles for the AAA(+) domains and/or substrates in positioning the catalytic residues within the active site. Structures of the proteolytic domains have also indicated a possible hexameric arrangement of subunits in the native state of bacterial Lon proteases. The structure of a large segment of the N-terminal domain has revealed a folding motif present in other protein families of unknown function and should lead to new insights regarding ways in which Lon interacts with substrates or other cellular factors. These first glimpses of the structure of Lon are heralding an exciting new era of research on this ancient family of proteases.
Collapse
Affiliation(s)
- Tatyana V Rotanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow
| | | | | | | | | | | | | |
Collapse
|
121
|
Suno R, Niwa H, Tsuchiya D, Zhang X, Yoshida M, Morikawa K. Structure of the whole cytosolic region of ATP-dependent protease FtsH. Mol Cell 2006; 22:575-85. [PMID: 16762831 DOI: 10.1016/j.molcel.2006.04.020] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2006] [Revised: 02/17/2006] [Accepted: 04/18/2006] [Indexed: 11/25/2022]
Abstract
An ATP-dependent protease, FtsH, digests misassembled membrane proteins in order to maintain membrane integrity and digests short-lived soluble proteins in order to control their cellular regulation. This enzyme has an N-terminal transmembrane segment and a C-terminal cytosolic region consisting of an AAA+ ATPase domain and a protease domain. Here we present two crystal structures: the protease domain and the whole cytosolic region. The cytosolic region fully retains an ATP-dependent protease activity and adopts a three-fold-symmetric hexameric structure. The protease domains displayed a six-fold symmetry, while the AAA+ domains, each containing ADP, alternate two orientations relative to the protease domain, making "open" and "closed" interdomain contacts. Apparently, ATPase is active only in the closed form, and protease operates in the open form. The protease catalytic sites are accessible only through a tunnel following from the AAA+ domain of the adjacent subunit, raising a possibility of translocation of polypeptide substrate to the protease sites through this tunnel.
Collapse
Affiliation(s)
- Ryoji Suno
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama 226-8503, Japan
| | | | | | | | | | | |
Collapse
|
122
|
Abstract
Complex cellular events commonly depend on the activity of molecular "machines" that efficiently couple enzymatic and regulatory functions within a multiprotein assembly. An essential and expanding subset of these assemblies comprises proteins of the ATPases associated with diverse cellular activities (AAA+) family. The defining feature of AAA+ proteins is a structurally conserved ATP-binding module that oligomerizes into active arrays. ATP binding and hydrolysis events at the interface of neighboring subunits drive conformational changes within the AAA+ assembly that direct translocation or remodeling of target substrates. In this review, we describe the critical features of the AAA+ domain, summarize our current knowledge of how this versatile element is incorporated into larger assemblies, and discuss specific adaptations of the AAA+ fold that allow complex molecular manipulations to be carried out for a highly diverse set of macromolecular targets.
Collapse
Affiliation(s)
- Jan P Erzberger
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA.
| | | |
Collapse
|
123
|
Thibault G, Tsitrin Y, Davidson T, Gribun A, Houry WA. Large nucleotide-dependent movement of the N-terminal domain of the ClpX chaperone. EMBO J 2006; 25:3367-76. [PMID: 16810315 PMCID: PMC1523177 DOI: 10.1038/sj.emboj.7601223] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Accepted: 06/13/2006] [Indexed: 11/09/2022] Open
Abstract
The ClpXP ATPase-protease complex is a major component of the protein quality control machinery in the cell. A ClpX subunit consists of an N-terminal zinc binding domain (ZBD) and a C-terminal AAA+ domain. ClpX oligomerizes into a hexamer with the AAA+ domains forming the base of the hexamer and the ZBDs extending out of the base. Here, we report that ClpX switches between a capture and a feeding conformation. ZBDs in ClpX undergo large nucleotide-dependent block movement towards ClpP and into the AAA+ ring. This motion is modulated by the ClpX cofactor, SspB. Evidence for this movement was initially obtained by the surprising observation that an N-terminal extension on ClpX is clipped by bound ClpP in functional ClpXP complexes. Protease-protection, crosslinking, and light scattering experiments further support these findings.
Collapse
Affiliation(s)
- Guillaume Thibault
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Yulia Tsitrin
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Toni Davidson
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Anna Gribun
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Walid A Houry
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Medical Sciences Building, Toronto, Ontario, Canada M5S 1A8. Tel.: +1 416 946 7141; Fax: +1 416 978 8548; E-mail:
| |
Collapse
|
124
|
Diemand AV, Lupas AN. Modeling AAA+ ring complexes from monomeric structures. J Struct Biol 2006; 156:230-43. [PMID: 16765605 DOI: 10.1016/j.jsb.2006.04.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2005] [Revised: 04/13/2006] [Accepted: 04/26/2006] [Indexed: 11/28/2022]
Abstract
AAA+ proteins form large, ring-shaped complexes, which act as energy-dependent unfoldases of macromolecules. Many crystal structures of proteins in this superfamily have been determined, but mostly in monomeric or non-physiological oligomeric forms. The assembly of ring-shaped complexes from monomer coordinates is, therefore, of considerable interest. We have extracted structural features of complex formation relating to the distance of monomers from the central axis, their relative orientation and the molecular contacts at their interfaces from experimentally determined oligomers and have implemented a semi-automated modeling procedure based on RosettaDock into the iMolTalk server (http://protevo.eb.tuebingen.mpg.de/iMolTalk). As examples of this procedure, we present here models of Apaf-1, MalT and ClpB. We show that the recent EM-based model of the apoptosome is not compatible with the conserved structural features of AAA+ complexes and that the D1 and D2 rings of ClpB are most likely offset by one subunit, in agreement with the structure proposed for ClpA.
Collapse
Affiliation(s)
- Alexander V Diemand
- Department of Protein Evolution, Max-Planck-Institute for Developmental Biology, D-72076 Tübingen, Germany
| | | |
Collapse
|
125
|
Graef M, Langer T. Substrate specific consequences of central pore mutations in the i-AAA protease Yme1 on substrate engagement. J Struct Biol 2006; 156:101-8. [PMID: 16527490 DOI: 10.1016/j.jsb.2006.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 01/13/2006] [Accepted: 01/13/2006] [Indexed: 11/26/2022]
Abstract
Two membrane-bound ATP-dependent AAA proteases conduct protein quality surveillance in the inner membrane of mitochondria and control crucial steps during mitochondrial biogenesis. AAA domains of proteolytic subunits are critical for the recognition of non-native membrane proteins which are extracted from the membrane bilayer for proteolysis. Here, we have analysed the role of the conserved loop motif YVG, which has been localized to the central pore in other hexameric AAA(+) ring complexes, for the degradation of membrane proteins by the i-AAA protease Yme1. Proteolytic activity was found to depend on the presence of hydrophobic amino acid residues at position 354 within the pore loop of Yme1. Mutations affected proteolysis in a substrate-specific manner: whereas the degradation of misfolded membrane proteins was impaired at a post-binding step, folded substrate proteins did not interact with mutant Yme1. This reflects most likely deficiencies in the ATP-dependent unfolding of substrate proteins, since we observed similar effects for ATPase-deficient Yme1 mutants. Our findings therefore suggest an essential function of the central pore loop for the ATP-dependent translocation of membrane proteins into a proteolytic cavity formed by AAA proteases.
Collapse
Affiliation(s)
- Martin Graef
- Institute for Genetics and Center for Molecular Medicine, CMMC, University of Cologne, Cologne, Germany
| | | |
Collapse
|
126
|
Bieniossek C, Schalch T, Bumann M, Meister M, Meier R, Baumann U. The molecular architecture of the metalloprotease FtsH. Proc Natl Acad Sci U S A 2006; 103:3066-71. [PMID: 16484367 PMCID: PMC1413944 DOI: 10.1073/pnas.0600031103] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ATP-dependent integral membrane protease FtsH is universally conserved in bacteria. Orthologs exist in chloroplasts and mitochondria, where in humans the loss of a close FtsH-homolog causes a form of spastic paraplegia. FtsH plays a crucial role in quality control by degrading unneeded or damaged membrane proteins, but it also targets soluble signaling factors like sigma(32) and lambda-CII. We report here the crystal structure of a soluble FtsH construct that is functional in caseinolytic and ATPase assays. The molecular architecture of this hexameric molecule consists of two rings where the protease domains possess an all-helical fold and form a flat hexagon that is covered by a toroid built by the AAA domains. The active site of the protease classifies FtsH as an Asp-zincin, contrary to a previous report. The different symmetries of protease and AAA rings suggest a possible translocation mechanism of the target polypeptide chain into the interior of the molecule where the proteolytic sites are located.
Collapse
Affiliation(s)
- Christoph Bieniossek
- *Departement für Chemie und Biochemie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland; and
| | - Thomas Schalch
- Institute of Molecular Biology and Biophysics, Swiss Federal Institute of Technology, Hoenggerberg, HPK Building, CH-8093 Zurich, Switzerland
| | - Mario Bumann
- *Departement für Chemie und Biochemie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland; and
| | - Markus Meister
- *Departement für Chemie und Biochemie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland; and
| | - Reto Meier
- *Departement für Chemie und Biochemie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland; and
| | - Ulrich Baumann
- *Departement für Chemie und Biochemie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
127
|
Bewley MC, Graziano V, Griffin K, Flanagan JM. The asymmetry in the mature amino-terminus of ClpP facilitates a local symmetry match in ClpAP and ClpXP complexes. J Struct Biol 2006; 153:113-28. [PMID: 16406682 PMCID: PMC4377234 DOI: 10.1016/j.jsb.2005.09.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 09/09/2005] [Accepted: 09/13/2005] [Indexed: 01/07/2023]
Abstract
ClpP is a self-compartmentalized proteolytic assembly comprised of two, stacked, heptameric rings that, when associated with its cognate hexameric ATPase (ClpA or ClpX), form the ClpAP and ClpXP ATP-dependent protease, respectively. The symmetry mismatch is an absolute feature of this large energy-dependent protease and also of the proteasome, which shares a similar barrel-shaped architecture, but how it is accommodated within the complex has yet to be understood, despite recent structural investigations, due in part to the conformational lability of the N-termini. We present the structures of Escherichia coli ClpP to 1.9A and an inactive variant that provide some clues for how this might be achieved. In the wild type protein, the highly conserved N-terminal 20 residues can be grouped into two major structural classes. In the first, a loop formed by residues 10-15 protrudes out of the central access channel extending approximately 12-15A from the surface of the oligomer resulting in the closing of the access channel observed in one ring. Similar loops are implied to be exclusively observed in human ClpP and a variant of ClpP from Streptococcus pneumoniae. In the other ring, a second class of loop is visible in the structure of wt ClpP from E. coli that forms closer to residue 16 and faces toward the interior of the molecule creating an open conformation of the access channel. In both classes, residues 18-20 provide a conserved interaction surface. In the inactive variant, a third class of N-terminal conformation is observed, which arises from a conformational change in the position of F17. We have performed a detailed functional analysis on each of the first 20 amino acid residues of ClpP. Residues that extend beyond the plane of the molecule (10-15) have a lesser effect on ATPase interaction than those lining the pore (1-7 and 16-20). Based upon our structure-function analysis, we present a model to explain the widely disparate effects of individual residues on ClpP-ATPase complex formation and also a possible functional reason for this mismatch.
Collapse
Affiliation(s)
- Maria C. Bewley
- Department of Biochemistry and Molecular Biology, The Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, P.O. Box 850, Hershey, PA 17033, USA
| | - Vito Graziano
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Kathleen Griffin
- Department of Biochemistry and Molecular Biology, The Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, P.O. Box 850, Hershey, PA 17033, USA
| | - John M. Flanagan
- Department of Biochemistry and Molecular Biology, The Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, P.O. Box 850, Hershey, PA 17033, USA
| |
Collapse
|
128
|
Maupin-Furlow JA, Humbard MA, Kirkland PA, Li W, Reuter CJ, Wright AJ, Zhou G. Proteasomes from Structure to Function: Perspectives from Archaea. Curr Top Dev Biol 2006; 75:125-69. [PMID: 16984812 DOI: 10.1016/s0070-2153(06)75005-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Insight into the world of proteolysis has expanded considerably over the past decade. Energy-dependent proteases, such as the proteasome, are no longer viewed as nonspecific degradative enzymes associated solely with protein catabolism but are intimately involved in controlling biological processes that span life to death. The proteasome maintains this exquisite control by catalyzing the precisely timed and rapid turnover of key regulatory proteins. Proteasomes also interplay with chaperones to ensure protein quality and to readjust the composition of the proteome following stress. Archaea encode proteasomes that are highly related to those of eukaryotes in basic structure and function. Investigations of archaeal proteasomes coupled with those of eukaryotes has greatly facilitated our understanding of the molecular mechanisms that govern regulated protein degradation by this elaborate nanocompartmentalized machine.
Collapse
Affiliation(s)
- Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida Gainesville, Florida 32611, USA
| | | | | | | | | | | | | |
Collapse
|
129
|
Weibezahn J, Schlieker C, Tessarz P, Mogk A, Bukau B. Novel insights into the mechanism of chaperone-assisted protein disaggregation. Biol Chem 2005; 386:739-44. [PMID: 16201868 DOI: 10.1515/bc.2005.086] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cell survival under severe thermal stress requires the activity of a bi-chaperone system, consisting of the ring-forming AAA+ chaperone ClpB (Hsp104) and the DnaK (Hsp70) chaperone system, which acts to solubilize and reactivate aggregated proteins. Recent studies have provided novel insight into the mechanism of protein disaggregation, demonstrating that ClpB/Hsp104 extracts unfolded polypeptides from an aggregate by threading them through its central pore. This translocation activity is necessary but not sufficient for aggregate solubilization. In addition, the middle (M) domain of ClpB and the DnaK system have essential roles, possibly by providing an unfolding force, which facilitates the extraction of misfolded proteins from aggregates.
Collapse
Affiliation(s)
- Jimena Weibezahn
- Zentrum für Molekulare Biologie Heidelberg, Universität Heidelberg, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
130
|
Gerega A, Rockel B, Peters J, Tamura T, Baumeister W, Zwickl P. VAT, the thermoplasma homolog of mammalian p97/VCP, is an N domain-regulated protein unfoldase. J Biol Chem 2005; 280:42856-62. [PMID: 16236712 DOI: 10.1074/jbc.m510592200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Thermoplasma VCP-like ATPase from Thermoplasma acidophilum (VAT) ATPase is a member of the two-domain AAA ATPases and homologous to the mammalian p97/VCP and NSF proteins. We show here that the VAT ATPase complex unfolds green fluorescent protein (GFP) labeled with the ssrA-degradation tag. Increasing the Mg2+ concentration derepresses the ATPase activity and concomitantly stimulates the unfolding activity of VAT. Similarly, the VATDeltaN complex, a mutant of VAT deleted for the N domain, displays up to 24-fold enhanced ATP hydrolysis and 250-fold enhanced GFP unfolding activity when compared with wild-type VAT. To determine the individual contribution of the two AAA domains to ATP hydrolysis and GFP unfolding we performed extensive site-directed mutagenesis of the Walker A, Walker B, sensor-1, and pore residues in both AAA domains. Analysis of the VAT mutant proteins, where ATP hydrolysis was confined to a single AAA domain, revealed that the first domain (D1) is sufficient to exert GFP unfolding indistinguishable from wild-type VAT, while the second AAA domain (D2), although active, is significantly less efficient than wild-type VAT. A single conserved aromatic residue in the D1 section of the pore was found to be essential for GFP unfolding. In contrast, two neighboring residues in the D2 section of the pore had to be exchanged simultaneously, to achieve a drastic inhibition of GFP unfolding.
Collapse
Affiliation(s)
- Alexandra Gerega
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
131
|
Abstract
FtsH is a cytoplasmic membrane protein that has N-terminally located transmembrane segments and a main cytosolic region consisting of AAA-ATPase and Zn2+-metalloprotease domains. It forms a homo-hexamer, which is further complexed with an oligomer of the membrane-bound modulating factor HflKC. FtsH degrades a set of short-lived proteins, enabling cellular regulation at the level of protein stability. FtsH also degrades some misassembled membrane proteins, contributing to their quality maintenance. It is an energy-utilizing and processive endopeptidase with a special ability to dislocate membrane protein substrates out of the membrane, for which its own membrane-embedded nature is essential. We discuss structure-function relationships of this intriguing enzyme, including the way it recognizes the soluble and membrane-integrated substrates differentially, on the basis of the solved structure of the ATPase domain as well as extensive biochemical and genetic information accumulated in the past decade on this enzyme.
Collapse
Affiliation(s)
- Koreaki Ito
- Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan.
| | | |
Collapse
|
132
|
Scott A, Chung HY, Gonciarz-Swiatek M, Hill GC, Whitby FG, Gaspar J, Holton JM, Viswanathan R, Ghaffarian S, Hill CP, Sundquist WI. Structural and mechanistic studies of VPS4 proteins. EMBO J 2005; 24:3658-69. [PMID: 16193069 PMCID: PMC1276703 DOI: 10.1038/sj.emboj.7600818] [Citation(s) in RCA: 192] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Accepted: 08/15/2005] [Indexed: 11/08/2022] Open
Abstract
VPS4 ATPases function in multivesicular body formation and in HIV-1 budding. Here, we report the crystal structure of monomeric apo human VPS4B/SKD1 (hVPS4B), which is composed of five distinct elements: a poorly ordered N-terminal MIT domain that binds ESCRT-III substrates, large (mixed alpha/beta) and small (alpha) AAA ATPase domains that closely resemble analogous domains in the p97 D1 ATPase cassette, a three-stranded antiparallel beta domain inserted within the small ATPase domain, and a novel C-terminal helix. Apo hVPS4B and yeast Vps4p (yVps4p) proteins dimerized in solution, and assembled into larger complexes (10-12 subunits) upon ATP binding. Human and yeast adaptor proteins (LIP5 and yVta1p, respectively) bound the beta domains of the fully assembled hVPS4B and yVps4p proteins. We therefore propose that Vps4 proteins cycle between soluble, inactive low molecular weight complexes and active, membrane-associated double-ring structures that bind ATP and coassemble with LIP5/Vta1. Finally, HIV-1 budding was inhibited by mutations in a loop that projects into the center of the modeled hVPS4B rings, suggesting that hVPS4B may release the assembled ESCRT machinery by pulling ESCRT-III substrates up into the central pore.
Collapse
Affiliation(s)
- Anna Scott
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Hyo-Young Chung
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | | | - Gina C Hill
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Frank G Whitby
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Jason Gaspar
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - James M Holton
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Ramya Viswanathan
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Sanaz Ghaffarian
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Christopher P Hill
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84132-3201, USA. Tel.: +1 801 585 5536; Fax: +1 801 581 7959; E-mail:
| | - Wesley I Sundquist
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84132-3201, USA. Tel.: +1 801 585 5402; Fax: +1 801 581 7959; E-mail:
| |
Collapse
|
133
|
Groll M, Bochtler M, Brandstetter H, Clausen T, Huber R. Molecular machines for protein degradation. Chembiochem 2005; 6:222-56. [PMID: 15678420 DOI: 10.1002/cbic.200400313] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
One of the most precisely regulated processes in living cells is intracellular protein degradation. The main component of the degradation machinery is the 20S proteasome present in both eukaryotes and prokaryotes. In addition, there exist other proteasome-related protein-degradation machineries, like HslVU in eubacteria. Peptides generated by proteasomes and related systems can be used by the cell, for example, for antigen presentation. However, most of the peptides must be degraded to single amino acids, which are further used in cell metabolism and for the synthesis of new proteins. Tricorn protease and its interacting factors are working downstream of the proteasome and process the peptides into amino acids. Here, we summarise the current state of knowledge about protein-degradation systems, focusing in particular on the proteasome, HslVU, Tricorn protease and its interacting factors and DegP. The structural information about these protein complexes opens new possibilities for identifying, characterising and elucidating the mode of action of natural and synthetic inhibitors, which affects their function. Some of these compounds may find therapeutic applications in contemporary medicine.
Collapse
Affiliation(s)
- Michael Groll
- Adolf-Butenandt-Institut Physiological Chemistry, LMU München, Butenandtstrasse 5, Gebäude B, 81377 München, Germany.
| | | | | | | | | |
Collapse
|
134
|
Abstract
The AAA+ (ATPases associated with various cellular activities) family is a large and functionally diverse group of enzymes that are able to induce conformational changes in a wide range of substrate proteins. The family's defining feature is a structurally conserved ATPase domain that assembles into oligomeric rings and undergoes conformational changes during cycles of nucleotide binding and hydrolysis. Here, we review the structural organization of AAA+ proteins, the conformational changes they undergo, the range of different reactions they catalyse, and the diseases associated with their dysfunction.
Collapse
Affiliation(s)
- Phyllis I Hanson
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
135
|
Hersch GL, Burton RE, Bolon DN, Baker TA, Sauer RT. Asymmetric interactions of ATP with the AAA+ ClpX6 unfoldase: allosteric control of a protein machine. Cell 2005; 121:1017-27. [PMID: 15989952 DOI: 10.1016/j.cell.2005.05.024] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Revised: 05/11/2005] [Accepted: 05/18/2005] [Indexed: 10/25/2022]
Abstract
ATP hydrolysis by AAA+ ClpX hexamers powers protein unfolding and translocation during ClpXP degradation. Although ClpX is a homohexamer, positive and negative allosteric interactions partition six potential nucleotide binding sites into three classes with asymmetric properties. Some sites release ATP rapidly, others release ATP slowly, and at least two sites remain nucleotide free. Recognition of the degradation tag of protein substrates requires ATP binding to one set of sites and ATP or ADP binding to a second set of sites, suggesting a mechanism that allows repeated unfolding attempts without substrate release over multiple ATPase cycles. Our results rule out concerted hydrolysis models involving ClpX(6)*ATP(6) or ClpX(6)*ADP(6) and highlight structures of hexameric AAA+ machines with three or four nucleotides as likely functional states. These studies further emphasize commonalities between distant AAA+ family members, including protein and DNA translocases, helicases, motor proteins, clamp loaders, and other ATP-dependent enzymes.
Collapse
Affiliation(s)
- Greg L Hersch
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02319, USA
| | | | | | | | | |
Collapse
|
136
|
Förster A, Masters EI, Whitby FG, Robinson H, Hill CP. The 1.9 A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions. Mol Cell 2005; 18:589-99. [PMID: 15916965 DOI: 10.1016/j.molcel.2005.04.016] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Revised: 04/18/2005] [Accepted: 04/26/2005] [Indexed: 10/25/2022]
Abstract
Proteasomes are cylindrical structures that function in multiple cellular processes by degrading a wide variety of cytosolic and nuclear proteins. Substrate access and product release from the enclosed catalytic chamber occurs through axial pores that are opened by activator complexes. Here, we report high-resolution structures of wild-type and mutant archaeal proteasomes bound to the activator PA26. These structures support the proposal that an ordered open conformation is required for proteolysis and that its formation can be triggered by outward displacement of surrounding residues. The structures and associated biochemical assays reveal the mechanism of binding, which involves an interaction between the PA26 C terminus and a conserved lysine. Surprisingly, biochemical observations implicate an equivalent interaction for the unrelated ATP-dependent activators PAN and PA700.
Collapse
Affiliation(s)
- Andreas Förster
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84132, USA
| | | | | | | | | |
Collapse
|
137
|
Park E, Rho YM, Koh OJ, Ahn SW, Seong IS, Song JJ, Bang O, Seol JH, Wang J, Eom SH, Chung CH. Role of the GYVG pore motif of HslU ATPase in protein unfolding and translocation for degradation by HslV peptidase. J Biol Chem 2005; 280:22892-8. [PMID: 15849200 DOI: 10.1074/jbc.m500035200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HslVU is an ATP-dependent protease consisting of HslU ATPase and HslV peptidase. In an HslVU complex, the central pores of HslU hexamer and HslV dodecamer are aligned and the proteolytic active sites are sequestered in the inner chamber of HslV. Thus, the degradation of natively folded proteins requires unfolding and translocation processes for their access into the proteolytic chamber of HslV. A highly conserved GYVG(93) sequence constitutes the central pore of HslU ATPase. To determine the role of the pore motif on protein unfolding and translocation, we generated various mutations in the motif and examined their effects on the ability of HslU in supporting the proteolytic activity of HslV against three different substrates: SulA as a natively folded protein, casein as an unfolded polypeptide, and a small peptide. Flexibility provided by Gly residues and aromatic ring structures of the 91st amino acid were essential for degradation of SulA. The same structural features of the GYVG motif were highly preferred, although not essential, for degradation of casein. In contrast, none of the features were required for peptide hydrolysis. Mutations in the GYVG motif of HslU also showed marked influence on its ATPase activity, affinity to ADP, and interaction with HslV. These results suggest that the GYVG motif of HslU plays important roles in unfolding of natively folded proteins as well as in translocation of unfolded proteins for degradation by HslV. These results also implicate a role of the pore motif in ATP cleavage and in the assembly of HslVU complex.
Collapse
Affiliation(s)
- Eunyong Park
- NRL of Protein Biochemistry, School of Biological Sciences, Seoul National University, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Wang J. Nucleotide-dependent domain motions within rings of the RecA/AAA(+) superfamily. J Struct Biol 2005; 148:259-67. [PMID: 15522774 DOI: 10.1016/j.jsb.2004.07.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Revised: 07/12/2004] [Indexed: 11/22/2022]
Abstract
The oligomeric rings formed by RecA-fold proteins are mechanochemical motors that perform many important biological functions. Their RecA-fold domains convert the chemical energy of ATP into mechanical work through large nucleotide-dependent conformational changes. This review summarizes recent structural and mechanistic works on the F1-ATPase and HslU regarding to the force generation by individual RecA folds in the context of ring structures. The F1-ATPase ring for example generates the force perpendicular to the ring axis, while the HslU ring generates forces presumably parallel to it. There exists a strong correlation between the directions of forces generated and the orientation of the RecA folds, not only in these two proteins but also in T7 DNA helicase, suggesting that it should be possible to predict the direction of forces generated by other members of this family on the basis of the orientation of their RecA folds.
Collapse
Affiliation(s)
- Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520-8114, USA.
| |
Collapse
|
139
|
|
140
|
Lee U, Wie C, Escobar M, Williams B, Hong SW, Vierling E. Genetic analysis reveals domain interactions of Arabidopsis Hsp100/ClpB and cooperation with the small heat shock protein chaperone system. THE PLANT CELL 2005; 17:559-71. [PMID: 15659638 PMCID: PMC548826 DOI: 10.1105/tpc.104.027540] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Accepted: 11/11/2004] [Indexed: 05/20/2023]
Abstract
We have defined amino acids important for function of the Arabidopsis thaliana Hsp100/ClpB chaperone (AtHsp101) in acquired thermotolerance by isolating recessive, loss-of-function mutations and a novel semidominant, gain-of-function allele [hot1-4 (A499T)]. The hot1-4 allele is unusual in that it not only fails to develop thermotolerance to 45 degrees C after acclimation at 38 degrees C, but also is sensitive to 38 degrees C, which is a permissive temperature for wild-type and loss-of-function mutants. hot1-4 lies between nucleotide binding domain 1 (NBD1) and NBD2 in a coiled-coil domain that is characteristic of the Hsp100/ClpB proteins. We then isolated two classes of intragenic suppressor mutations of hot1-4: loss-of-function mutations (Class 1) that eliminated the 38 degrees C sensitivity, but did not restore thermotolerance function to hot1-4, and Class 2 suppressors that restored acquired thermotolerance function to hot1-4. Location of the hot1-4 Class 2 suppressors supports a functional link between the coiled-coil domain and both NBD1 and the axial channel of the Hsp100/ClpB hexamer. In addition, the strongest Class 2 suppressors restored solubility of aggregated small heat shock proteins (sHsps) after heat stress, revealing genetic interaction of the Hsp100/ClpB and sHsp chaperone systems. These results also demonstrate that quantitative phenotypes can be used for in vivo genetic dissection of protein mechanism in Arabidopsis.
Collapse
Affiliation(s)
- Ung Lee
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | |
Collapse
|
141
|
Botos I, Melnikov EE, Cherry S, Khalatova AG, Rasulova FS, Tropea JE, Maurizi MR, Rotanova TV, Gustchina A, Wlodawer A. Crystal structure of the AAA+ alpha domain of E. coli Lon protease at 1.9A resolution. J Struct Biol 2004; 146:113-22. [PMID: 15037242 DOI: 10.1016/j.jsb.2003.09.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2003] [Indexed: 10/27/2022]
Abstract
The crystal structure of the small, mostly helical alpha domain of the AAA+ module of the Escherichia coli ATP-dependent protease Lon has been solved by single isomorphous replacement combined with anomalous scattering and refined at 1.9A resolution to a crystallographic R factor of 17.9%. This domain, comprising residues 491-584, was obtained by chymotrypsin digestion of the recombinant full-length protease. The alpha domain of Lon contains four alpha helices and two parallel strands and resembles similar domains found in a variety of ATPases and helicases, including the oligomeric proteases HslVU and ClpAP. The highly conserved "sensor-2" Arg residue is located at the beginning of the third helix. Detailed comparison with the structures of 11 similar domains established the putative location of the nucleotide-binding site in this first fragment of Lon for which a crystal structure has become available.
Collapse
Affiliation(s)
- Istvan Botos
- Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, MCL Bldg. 536, Rm. 5, Frederick, MD 21702-1201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Ishikawa T, Maurizi MR, Steven AC. The N-terminal substrate-binding domain of ClpA unfoldase is highly mobile and extends axially from the distal surface of ClpAP protease. J Struct Biol 2004; 146:180-8. [PMID: 15037249 DOI: 10.1016/j.jsb.2003.11.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2003] [Revised: 10/20/2003] [Indexed: 11/17/2022]
Abstract
ClpAP is a barrel-like complex consisting of hexameric rings of the ClpA ATPase stacked on the double heptameric ring of ClpP peptidase. ClpA has two AAA+ domains (Dl and D2) and a 153-residue N-domain. Substrate proteins bind to the distal surface of ClpA and are unfolded and translocated axially into ClpP. To gain insight into the functional architecture of ClpA in the ATPgammaS state, we have determined its structure at 12A resolution by cryo-electron microscopy. The resulting model has two tiers, corresponding to rings of Dl and D2 domains: oddly, there is no sign of the N-domains in the density map. However, they were detected as faint diffuse density distal to the Dl tier in a difference image between wild-type ClpAP and a mutant lacking the N-domain. This region is also accentuated in a variance map of ClpAP and in a difference imaging experiment with ClpAP complexed with ClpS, a 12kDa protein that binds to the N-domain. These observations demonstrate that the N-domains are highly mobile. From molecular modeling, we identify their median position and estimate that they undergo fluctuations of at least 30A. We discuss the implications of these observations for the role of N-domains in substrate binding: either they effect an initial transient binding, relaying substrate to a second site on the Dl tier where unfolding ensues, or they may serve as an entropic brush to clear the latter site of non-specifically bound ligands or substrates bound in non-productive complexes.
Collapse
Affiliation(s)
- Takashi Ishikawa
- Laboratory of Structural Biology Research, National Institute of Arthritis, Musculoskeletal and Skin Diseases, Bethesda, MD 20892-8025, USA
| | | | | |
Collapse
|
143
|
Lee S, Sowa ME, Choi JM, Tsai FTF. The ClpB/Hsp104 molecular chaperone-a protein disaggregating machine. J Struct Biol 2004; 146:99-105. [PMID: 15037241 DOI: 10.1016/j.jsb.2003.11.016] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Revised: 11/06/2003] [Indexed: 11/16/2022]
Abstract
ClpB and Hsp104 (ClpB/Hsp104) are essential proteins of the heat-shock response and belong to the class 1 family of Clp/Hsp100 AAA+ ATPases. Members of this family form large ring structures and contain two AAA+ modules, which consist of a RecA-like nucleotide-binding domain (NBD) and an alpha-helical domain. Furthermore, ClpB/Hsp104 has a longer middle region, the ClpB/Hsp104-linker, which is essential for chaperone activity. Unlike other Clp/Hsp100 proteins, however, ClpB/Hsp104 neither associates with a cellular protease nor directs the degradation of its substrate proteins. Rather, ClpB/Hsp104 is a bona fide molecular chaperone, which has the remarkable ability to rescue proteins from an aggregated state. The full recovery of these proteins requires the assistance of the cognate DnaK/Hsp70 chaperone system. The mechanism of this "bi-chaperone" network, however, remains elusive. Here we review the current understanding of the structure-function relationship of the ClpB/Hsp104 molecular chaperone and its role in protein disaggregation.
Collapse
Affiliation(s)
- Sukyeong Lee
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston TX, 77030, USA
| | | | | | | |
Collapse
|
144
|
Sauer RT, Bolon DN, Burton BM, Burton RE, Flynn JM, Grant RA, Hersch GL, Joshi SA, Kenniston JA, Levchenko I, Neher SB, Oakes ESC, Siddiqui SM, Wah DA, Baker TA. Sculpting the proteome with AAA(+) proteases and disassembly machines. Cell 2004; 119:9-18. [PMID: 15454077 PMCID: PMC2717008 DOI: 10.1016/j.cell.2004.09.020] [Citation(s) in RCA: 348] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Machines of protein destruction-including energy-dependent proteases and disassembly chaperones of the AAA(+) ATPase family-function in all kingdoms of life to sculpt the cellular proteome, ensuring that unnecessary and dangerous proteins are eliminated and biological responses to environmental change are rapidly and properly regulated. Exciting progress has been made in understanding how AAA(+) machines recognize specific proteins as targets and then carry out ATP-dependent dismantling of the tertiary and/or quaternary structure of these molecules during the processes of protein degradation and the disassembly of macromolecular complexes.
Collapse
Affiliation(s)
- Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Wolf DH, Hilt W. The proteasome: a proteolytic nanomachine of cell regulation and waste disposal. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1695:19-31. [PMID: 15571806 DOI: 10.1016/j.bbamcr.2004.10.007] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The final destination of the majority of proteins that have to be selectively degraded in eukaryotic cells is the proteasome, a highly sophisticated nanomachine essential for life. 26S proteasomes select target proteins via their modification with polyubiquitin chains or, in rare cases, by the recognition of specific motifs. They are made up of different subcomplexes, a 20S core proteasome harboring the proteolytic active sites hidden within its barrel-like structure and two 19S caps that execute regulatory functions. Similar complexes equipped with PA28 regulators instead of 19S caps are a variation of this theme specialized for the production of antigenic peptides required in immune response. Structure analysis as well as extensive biochemical and genetic studies of the 26S proteasome and the ubiquitin system led to a basic model of substrate recognition and degradation. Recent work raised new concepts. Additional factors involved in substrate acquisition and delivery to the proteasome have been discovered. Moreover, first insights in the tasks of individual subunits or subcomplexes of the 19S caps in substrate recognition and binding as well as release and recycling of polyubiquitin tags have been obtained.
Collapse
Affiliation(s)
- Dieter H Wolf
- Institut für Biochemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany.
| | | |
Collapse
|
146
|
Weibezahn J, Tessarz P, Schlieker C, Zahn R, Maglica Z, Lee S, Zentgraf H, Weber-Ban EU, Dougan DA, Tsai FTF, Mogk A, Bukau B. Thermotolerance Requires Refolding of Aggregated Proteins by Substrate Translocation through the Central Pore of ClpB. Cell 2004; 119:653-65. [PMID: 15550247 DOI: 10.1016/j.cell.2004.11.027] [Citation(s) in RCA: 375] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2004] [Revised: 08/20/2004] [Accepted: 10/06/2004] [Indexed: 10/26/2022]
Abstract
Cell survival under severe thermal stress requires the activity of the ClpB (Hsp104) AAA+ chaperone that solubilizes and reactivates aggregated proteins in concert with the DnaK (Hsp70) chaperone system. How protein disaggregation is achieved and whether survival is solely dependent on ClpB-mediated elimination of aggregates or also on reactivation of aggregated proteins has been unclear. We engineered a ClpB variant, BAP, which associates with the ClpP peptidase and thereby is converted into a degrading disaggregase. BAP translocates substrates through its central pore directly into ClpP for degradation. ClpB-dependent translocation is demonstrated to be an integral part of the disaggregation mechanism. Protein disaggregation by the BAP/ClpP complex remains dependent on DnaK, defining a role for DnaK at early stages of the disaggregation reaction. The activity switch of BAP to a degrading disaggregase does not support thermotolerance development, demonstrating that cell survival during severe thermal stress requires reactivation of aggregated proteins.
Collapse
Affiliation(s)
- Jimena Weibezahn
- Zentrum für Molekulare Biologie der Universität Heidelberg, Universität Heidelberg, Im Neuenheimer Feld 282, Heidelberg D-69120, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Schlieker C, Weibezahn J, Patzelt H, Tessarz P, Strub C, Zeth K, Erbse A, Schneider-Mergener J, Chin JW, Schultz PG, Bukau B, Mogk A. Substrate recognition by the AAA+ chaperone ClpB. Nat Struct Mol Biol 2004; 11:607-15. [PMID: 15208691 DOI: 10.1038/nsmb787] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Accepted: 04/16/2004] [Indexed: 02/07/2023]
Abstract
The AAA+ protein ClpB cooperates with the DnaK chaperone system to solubilize and refold proteins from an aggregated state. The substrate-binding site of ClpB and the mechanism of ClpB-dependent protein disaggregation are largely unknown. Here we identified a substrate-binding site of ClpB that is located at the central pore of the first AAA domain. The conserved Tyr251 residue that lines the central pore contributes to substrate binding and its crucial role was confirmed by mutational analysis and direct crosslinking to substrates. Because the positioning of an aromatic residue at the central pore is conserved in many AAA+ proteins, a central substrate-binding site involving this residue may be a common feature of this protein family. The location of the identified binding site also suggests a possible translocation mechanism as an integral part of the ClpB-dependent disaggregation reaction.
Collapse
Affiliation(s)
- Christian Schlieker
- Zentrum für Molekulare Biologie, Universität Heidelberg, Im Neuenheimer Feld 282, Heidelberg 69120, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Tkach JM, Glover JR. Amino acid substitutions in the C-terminal AAA+ module of Hsp104 prevent substrate recognition by disrupting oligomerization and cause high temperature inactivation. J Biol Chem 2004; 279:35692-701. [PMID: 15178690 DOI: 10.1074/jbc.m400782200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hsp104 is an important determinant of thermotolerance in yeast and is an unusual molecular chaperone that specializes in the remodeling of aggregated proteins. The structural requirements for Hsp104-substrate interactions remain unclear. Upon mild heat shock Hsp104 formed cytosolic foci in live cells that indicated co-localization of the chaperone with aggregates of thermally denatured proteins. We generated random amino acid substitutions in the C-terminal 199 amino acid residues of a GFP-Hsp104 fusion protein, and we used a visual screen to identify mutants that remained diffusely distributed immediately after heat shock. Multiple amino acid substitutions were required for loss of heat-inducible redistribution, and this correlated with complete loss of nucleotide-dependent oligomerization. Based on the multiply substituted proteins, several single amino acid substitutions were generated by site-directed mutagenesis. The singly substituted proteins retained the ability to oligomerize and detect substrates. Intriguingly, some derivatives of Hsp104 functioned well in prion propagation and multiple stress tolerance but failed to protect yeast from extreme thermal stress. We demonstrate that these proteins co-aggregate in the presence of other thermolabile proteins during heat treatment both in vitro and in vivo suggesting a novel mechanism for uncoupling the function of Hsp104 in acute severe heat shock from its functions at moderate temperatures.
Collapse
Affiliation(s)
- Johnny M Tkach
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | |
Collapse
|
149
|
Lum R, Tkach JM, Vierling E, Glover JR. Evidence for an unfolding/threading mechanism for protein disaggregation by Saccharomyces cerevisiae Hsp104. J Biol Chem 2004; 279:29139-46. [PMID: 15128736 DOI: 10.1074/jbc.m403777200] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae Hsp104, a hexameric member of the Hsp100/Clp subfamily of AAA+ ATPases with two nucleotide binding domains (NBD1 and 2), refolds aggregated proteins in conjunction with Hsp70 molecular chaperones. Hsp104 may act as a "molecular crowbar" to pry aggregates apart and/or may extract proteins from aggregates by unfolding and threading them through the axial channel of the Hsp104 hexamer. Targeting Tyr-662, located in a Gly-Tyr-Val-Gly motif that forms part of the axial channel loop in NBD2, we created conservative (Phe and Trp) and non-conservative (Ala and Lys) amino acid substitutions. Each of these Hsp104 derivatives was comparable to the wild type protein in their ability to hydrolyze ATP, assemble into hexamers, and associate with heat-shock-induced aggregates in living cells. However, only those with conservative substitutions complemented the thermotolerance defect of a Deltahsp104 yeast strain and promoted refolding of aggregated protein in vitro. Monitoring fluorescence from Trp-662 showed that titration of fully assembled molecules with either ATP or ADP progressively quenches fluorescence, suggesting that nucleotide binding determines the position of the loop within the axial channel. A Glu to Lys substitution at residue 645 in the NBD2 axial channel strongly alters the nucleotide-induced change in fluorescence of Trp-662 and specifically impairs in protein refolding. These data establish that the structural integrity of the axial channel through NBD2 is required for Hsp104 function and support the proposal that Hsp104 and ClpB use analogous unfolding/threading mechanisms to promote disaggregation and refolding that other Hsp100s use to promote protein degradation.
Collapse
Affiliation(s)
- Ronnie Lum
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | |
Collapse
|
150
|
Siddiqui SM, Sauer RT, Baker TA. Role of the processing pore of the ClpX AAA+ ATPase in the recognition and engagement of specific protein substrates. Genes Dev 2004; 18:369-74. [PMID: 15004005 PMCID: PMC359390 DOI: 10.1101/gad.1170304] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
ClpX binds substrates bearing specific classes of peptide signals, denatures these proteins, and translocates them through a central pore into ClpP for degradation. ClpX with the V154F po e mutation is severely defective in binding substrates bearing C-motif 1 degradation signals and is also impaired in a subsequent step of substrate engagement. In contrast, this mutant efficiently processes substrates with other classes of recognition signals both in vitro and in vivo. These results demonstrate that the ClpX pore functions in the recognition and catalytic engagement of specific substrates, and that ClpX recognizes different substrate classes in at least two distinct fashions.
Collapse
Affiliation(s)
- Samia M Siddiqui
- Massachusetts Institute of Technology, Department of Biology, Howard Hughes Medical Institute, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|