101
|
Sokac AM, Bement WM. Regulation and expression of metazoan unconventional myosins. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 200:197-304. [PMID: 10965469 DOI: 10.1016/s0074-7696(00)00005-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Unconventional myosins are molecular motors that convert adenosine triphosphate (ATP) hydrolysis into movement along actin filaments. On the basis of primary structure analysis, these myosins are represented by at least 15 distinct classes (classes 1 and 3-16), each of which is presumed to play a specific cellular role. However, in contrast to the conventional myosins-2, which drive muscle contraction and cytokinesis and have been studied intensively for many years in both uni- and multicellular organisms, unconventional myosins have only been subject to analysis in metazoan systems for a short time. Here we critically review what is known about unconventional myosin regulation, function, and expression. Several points emerge from this analysis. First, in spite of the high relative conservation of motor domains among the myosin classes, significant differences are found in biochemical and enzymatic properties of these motor domains. Second, the idea that characteristic distributions of unconventional myosins are solely dependent on the myosin tail domain is almost certainly an oversimplification. Third, the notion that most unconventional myosins function as transport motors for membranous organelles is challenged by recent data. Finally, we present a scheme that clarifies relationships between various modes of myosin regulation.
Collapse
Affiliation(s)
- A M Sokac
- Program in Cellular and Molecular Biology, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|
102
|
Mocz G, Gibbons IR. Model for the motor component of dynein heavy chain based on homology to the AAA family of oligomeric ATPases. Structure 2001; 9:93-103. [PMID: 11250194 DOI: 10.1016/s0969-2126(00)00557-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND Recent iterative methods for sequence alignment have indicated that the 380 kDa motor unit of dynein belongs to the AAA class of chaperone-like ATPases. These alignments indicate that the core of the 380 kDa motor unit contains a concatenated chain of six AAA modules, of which four correspond to the ATP binding sites with P-loop signatures described previously, and two are modules in which the P loop has been lost in evolution. RESULTS We report predicted structures for the six AAA modules in the beta heavy chain of axonemal dynein, based upon their homology to a template of structurally conserved regions derived from three AAA proteins with experimentally determined structures (pdb:1A5T, pdb:1DOO, and pdb:1NSF). The secondary structural elements of the AAA modules in dynein correspond to regions of sequence that are relatively well conserved in different dynein isoforms. The tertiary structure of each AAA module comprises a major alpha/beta N domain from which a smaller all-alpha C domain protrudes at an angle, as part of the putative nucleotide binding cavity. The structures of the six modules are assembled into a ring, approximately 125 A in diameter, that resembles the structure of the dynein motor unit observed by electron microscopy. CONCLUSION The predicted structures are supported by procedures that assess global, regional, and local quality, with the module containing the hydrolytic ATP binding site being supported the most strongly. The structural resemblance of the dynein motor to the hexameric assembly of AAA modules in the hsp100 family of chaperones suggests that the basic mechanism underlying the ATP-dependent translocation of dynein along a microtubule may have aspects in common with the ATP-dependent translocation of polypeptides into the interior compartment of chaperones.
Collapse
Affiliation(s)
- G Mocz
- Biotechnology/Molecular Biology Instrumentation, Training Facility, Pacific Biomedical Research Center, University of Hawaii, Honolulu, 96822, Honolulu, HI, USA
| | | |
Collapse
|
103
|
Abstract
This first analysis of monocotyledon myosin genes showed that at least five genes, one of which was probably spliced to yield two isoforms, were expressed in maize (Zea mays L.). The complete coding sequence of ZMM1 was determined, as were most of the sequences of two other myosin cDNAs (ZMM2 and ZMM3). ZMM1 and ZMM2 belonged to myosin class XI while ZMM3 was in class VIII. ZMM1 was abundantly expressed in leaves, roots, coleoptiles, and stems. ZMM3 showed a similar distribution but was expressed poorly in pollen. ZMM2 was predominantly expressed in seeds and may be part of a suite of cytoskeletal proteins in reproductive tissues. Phylogenetic analysis suggested that the origin of myosin classes VIII and XI predated that of angiosperms. Immunofluorescence studies using M11L1, a myosin XI antibody specific for the exposed loop 1 head region of myosin, indicated that myosin XI occurred in the cytoplasm of all root tip cells. The highest concentration of myosin XI was in the differentiating epidermal cells. In dividing cells, myosin XI was present near the cytokinetic apparatus at approximately the same concentration seen in other portions of the cytoplasm. Western blot analysis of subcellular fractions indicated that myosin XI was concentrated in mitochondria and low-density membranes.
Collapse
Affiliation(s)
- L Liu
- Biological Laboratories, Harvard University, Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
104
|
Lionne C, Buss F, Hodge T, Ihrke G, Kendrick-Jones J. Localization of myosin Va is dependent on the cytoskeletal organization in the cell. Biochem Cell Biol 2001. [DOI: 10.1139/o00-089] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Myosin V plays an important role in membrane trafficking events. Its implication in the transport of pigment granules in melanocytes and synaptic vesicles in neurons is now well established. However, less is known about its function(s) in other cell types. Finding a common function is complicated by the diversity of myosin V expression in different tissues and organisms and by its association with different subcellular compartments. Here we show that myosin V is present in a variety of cells. Within the same cell type under different physiological conditions, we observed two main cellular locations for myosin V that were dependent on the dynamics of the plasma membrane: in cells with highly dynamic membranes, myosin V was specifically concentrated at the leading edge in membrane ruffles, whereas in cells with less dynamic membranes, myosin V was enriched around the microtubule-organizing center. The presence of myosin V in the leading ruffling edge of the cell was induced by growth factor stimulation and was dependent on the presence of a functional motor domain. Moreover, myosin V localization at the microtubule-organizing center was dependent on the integrity of the microtubules. In polarized epithelial cells (WIF-B), where the microtubule-organizing region is close to the actin-rich apical surface, one single pool of myosin V, sensitive to the integrity of both microtubules and actin filaments, was observed.Key words: cell motility, cytoskeleton dynamics, molecular motors, mouse brain unconventional myosin Va, ruffles.
Collapse
|
105
|
Martinsson T, Oldfors A, Darin N, Berg K, Tajsharghi H, Kyllerman M, Wahlstrom J. Autosomal dominant myopathy: missense mutation (Glu-706 --> Lys) in the myosin heavy chain IIa gene. Proc Natl Acad Sci U S A 2000; 97:14614-9. [PMID: 11114175 PMCID: PMC18967 DOI: 10.1073/pnas.250289597] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We here report on a human myopathy associated with a mutation in a fast myosin heavy chain (MyHC) gene, and also the genetic defect in a hereditary inclusion body myopathy. The disorder has previously been described in a family with an "autosomal dominant myopathy, with joint contractures, ophthalmoplegia, and rimmed vacuoles." Linkage analysis and radiation hybrid mapping showed that the gene locus (Human Genome Map locus name: IBM3) is situated in a 2-Mb region of chromosome 17p13, where also a cluster of MyHC genes is located. These include the genes encoding embryonic, IIa, IIx/d, IIb, perinatal, and extraocular MyHCs. Morphological analysis of muscle biopsies from patients from the family indicated to us that the type 2A fibers frequently were abnormal, whereas other fiber types appeared normal. This observation prompted us to investigate the MyHC-IIa gene, since MyHC-IIa is the major isoform in type 2A fibers. The complete genomic sequence for this gene was deduced by using an "in silico" strategy. The gene, found to consist of 38 exons, was subjected to a complete mutation scan in patients and controls. We identified a missense mutation, Glu-706 --> Lys, which is located in a highly conserved region of the motor domain, the so-called SH1 helix region. By conformational changes this region communicates activity at the nucleotide-binding site to the neck region, resulting in the lever arm swing. The mutation in this region is likely to result in a dysfunctional myosin, compatible with the disorder in the family.
Collapse
Affiliation(s)
- T Martinsson
- Departments of Clinical Genetics, Pathology, and Pediatrics, Göteborg University, Sahlgrenska University Hospital, S-41685 Göteborg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
106
|
Kamisago M, Sharma SD, DePalma SR, Solomon S, Sharma P, McDonough B, Smoot L, Mullen MP, Woolf PK, Wigle ED, Seidman JG, Seidman CE. Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy. N Engl J Med 2000; 343:1688-96. [PMID: 11106718 DOI: 10.1056/nejm200012073432304] [Citation(s) in RCA: 507] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The molecular basis of idiopathic dilated cardiomyopathy, a primary myocardial disorder that results in reduced contractile function, is largely unknown. Some cases of familial dilated cardiomyopathy are caused by mutations in cardiac cytoskeletal proteins; this finding implicates defects in contractile-force transmission as one mechanism underlying this disorder. To elucidate this important cause of heart failure, we investigated other genetic causes of dilated cardiomyopathy. METHODS Clinical evaluations were performed in 21 kindreds with familial dilated cardiomyopathy. A genome-wide linkage study prompted a search of the genes encoding beta-myosin heavy chain, troponin T, troponin I, and alpha-tropomyosin for disease-causing mutations. RESULTS A genetic locus for mutations associated with dilated cardiomyopathy was identified at chromosome 14q11.2-13 (maximal lod score, 5.11; theta=0), where the gene for cardiac beta-myosin heavy chain is encoded. Analyses of this and other genes for sarcomere proteins identified disease-causing dominant mutations in four kindreds. Cardiac beta-myosin heavy-chain missense mutations (Ser532Pro and Phe764Leu) and a deletion in cardiac troponin T (deltaLys210) caused early-onset ventricular dilatation (average age at diagnosis, 24 years) and diminished contractile function and frequently resulted in heart failure. Affected persons had neither antecedent cardiac hypertrophy (average maximal left-ventricular-wall thickness, 8.5 mm) nor histopathological findings characteristic of hypertrophy. CONCLUSION Mutations in sarcomere protein genes account for approximately 10 percent of cases of familial dilated cardiomyopathy and are particularly prevalent in families with early-onset ventricular dilatation and dysfunction. Because distinct mutations in sarcomere proteins cause either dilated or hypertrophic cardiomyopathy, the effects of mutant sarcomere proteins on muscle mechanics must trigger two different series of events that remodel the heart.
Collapse
Affiliation(s)
- M Kamisago
- Cardiovascular Division, Brigham and Women's Hospital, and Harvard Medical School and Howard Hughes Medical Institute, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Williams SA, Hosein RE, Garcés JA, Gavin RH. MYO1, a novel, unconventional myosin gene affects endocytosis and macronuclear elongation in Tetrahymena thermophila. J Eukaryot Microbiol 2000; 47:561-8. [PMID: 11128708 DOI: 10.1111/j.1550-7408.2000.tb00090.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Targeted gene disruption was used to investigate the function of MYO1, an unconventional myosin gene in Tetrahymena thermophila. Phenotypic analysis of a transformed strain that lacked a functional MYO1 gene was conducted at both 20 degrees C and 35 degrees C. At either temperature the delta MYO1 strain had a smaller cytoplasm/nucleus ratio than wild type. At 20 degrees C, delta MYO1 populations had a longer doubling time than wild type, lower saturation density, and a reduced rate of food vacuole formation. However, at 35 degrees C, these characteristics were comparable to wild type. Although micronuclear division and cytokinesis appeared normal in delta MYO1 cells, failure of the macronucleus to elongate properly resulted in unequal segregation of macronuclear DNA in cells maintained at either 20 degrees C or 35 degrees C.
Collapse
Affiliation(s)
- S A Williams
- Department of Biology, Brooklyn College of the City University of New York, New York 11210, USA
| | | | | | | |
Collapse
|
108
|
Sirotkin V, Seipel S, Krendel M, Bonder EM. Characterization of sea urchin unconventional myosins and analysis of their patterns of expression during early embryogenesis. Mol Reprod Dev 2000; 57:111-26. [PMID: 10984411 DOI: 10.1002/1098-2795(200010)57:2<111::aid-mrd2>3.0.co;2-t] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Early sea urchin development requires a dynamic reorganization of both the actin cytoskeleton and cytoskeletal interactions with cellular membranes. These events may involve the activities of multiple members of the superfamily of myosin motor proteins. Using RT-PCR with degenerate myosin primers, we identified 11 myosin mRNAs expressed in unfertilized eggs and coelomocytes of the sea urchin Strongylocentrotus purpuratus. Seven of these sea urchin myosins belonged to myosin classes Igamma, II, V, VI, VII, IX, and amoeboid-type I, and the remaining four may be from novel classes. Sea urchin myosins-V, -VI, -VII, and amoeboid-type-I were either completely or partially cloned and their molecular structures characterized. Sea urchin myosins-V, -VI, -VII, and amoeboid-type-I shared a high degree of sequence identity with their respective family members from vertebrates and they retained their class-specific structure and domain organization. Analysis of expression of myosin-V, -VI, -VII, and amoeboid-type-I mRNAs during development revealed that each myosin mRNA displayed a distinct temporal pattern of expression, suggesting that myosins might be involved in specific events of early embryogenesis. Interestingly, the onset of gastrulation appeared to be a pivotal point in modulation of myosin mRNA expression. The presence of multiple myosin mRNAs in eggs and embryos provides insight into the potential involvement of multiple specific motor proteins in the actin-dependent events of embryo development.
Collapse
Affiliation(s)
- V Sirotkin
- Program in Cellular and Molecular Biodynamics, Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102, USA
| | | | | | | |
Collapse
|
109
|
Abstract
Two class III myosins have been identified to date: NINAC from Drosophila melanogaster and MyoIII(Lim) from Limulus polyphemus. Both have N-terminal kinase domains and are expressed exclusively in photoreceptors. Mutations in NINAC have been shown to alter the photoresponse and compromise photoreceptor survival. We report the cloning and chromosomal localization of a human class III myosin, MYO3A, from retina and a retinal pigment epithelial cell line. Human MYO3A (which we will refer to simply as MYO3A) possesses an N-terminal kinase domain and three consensus calmodulin-binding (IQ) motifs, two in the neck and one in the tail domain. We detected two MYO3A splice variants differing by 52 amino acids near the kinase/myosin junction. On Northern blots, MYO3A probes detected a 6. 5-kb transcript in human and monkey retina, in a cultured human RPE cell line (RPE-19), and at much lower levels in human pancreas. A somatic hybrid panel PCR screen localized MYO3A to human chromosome 10, and a radiation hybrid screen further localized it proximal to marker D10S197, which is located at 10p11.1 on the human cytogenetic map. Since mutations in NINAC have been shown to alter the photoresponse and compromise photoreceptor survival, the human homologue MYO3A may also play a role in photoreceptor function and/or maintenance.
Collapse
Affiliation(s)
- A C Dosé
- Department of Molecular and Cell Biology, University of California at Berkeley, 94720, USA.
| | | |
Collapse
|
110
|
Abstract
X-ray crystallography shows the myosin cross-bridge to exist in two conformations, the beginning and end of the "power stroke." A long lever-arm undergoes a 60 degrees to 70 degrees rotation between the two states. This rotation is coupled with changes in the active site (OPEN to CLOSED) and phosphate release. Actin binding mediates the transition from CLOSED to OPEN. Kinetics shows that the binding of myosin to actin is a two-step process which affects ATP and ADP affinity. The structural basis of these effects is not explained by the presently known conformers of myosin. Therefore, other states of the myosin cross-bridge must exist. Moreover, cryoelectronmicroscopy has revealed other angles of the cross-bridge lever arm induced by ADP binding. These structural states are presently being characterized by site-directed mutagenesis coupled with kinetic analysis.
Collapse
Affiliation(s)
- M A Geeves
- Department of Biosciences, University of Kent, Canterbury, United Kingdom.
| | | |
Collapse
|
111
|
Janecke AR, Meins M, Sadeghi M, Grundmann K, Apfelstedt-Sylla E, Zrenner E, Rosenberg T, Gal A. Twelve novel myosin VIIA mutations in 34 patients with Usher syndrome type I: confirmation of genetic heterogeneity. Hum Mutat 2000; 13:133-40. [PMID: 10094549 DOI: 10.1002/(sici)1098-1004(1999)13:2<133::aid-humu5>3.0.co;2-u] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Usher syndrome is a heterogeneous autosomal recessive trait and the most common cause of hereditary deaf-blindness. Usher syndrome type I (USH1) is characterised by profound congenital sensorineural hearing loss, vestibular dysfunction, and prepubertal onset of retinitis pigmentosa. Of the at least six different loci for USH1, USH1B maps on chromosome 11q13, and the MYO7A gene has been shown to be defective in USH1B. MYO7A encodes myosin VIIA, an unconventional myosin, and it consists of 48 coding exons. In this study, MYO7A was analysed in 34 unrelated Usher type I patients by single-strand conformation polymorphism analysis and direct sequencing. We identified a total of 12 novel and unique mutations, all single base changes. In addition, we found a previously reported nonsense mutation (C31X) on nine alleles of a total of six patients from Denmark.
Collapse
Affiliation(s)
- A R Janecke
- Institut für Humangenetik, Universitäts-Krankenhaus Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
112
|
May KM, Win TZ, Hyams JS. Yeast myosin II: a new subclass of unconventional conventional myosins? CELL MOTILITY AND THE CYTOSKELETON 2000; 39:195-200. [PMID: 9519900 DOI: 10.1002/(sici)1097-0169(1998)39:3<195::aid-cm2>3.0.co;2-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Myosin II is the founder member of a large and structurally diverse clan of actin-based motor proteins. The native myosin II molecule is a hexamer consisting of two heavy chains, two essential light chains (ELC), and two regulatory light chains (RLC). For convenience, the myosin IIs are often subdivided into four subclasses: vertebrate skeletal and cardiac muscle myosin II form one subclass, vertebrate smooth muscle and nonmuscle myosin II a second, invertebrate muscle a third, and protozoan myosin II a fourth [Sellers and Goodson, 1995]. Different mechanisms of regulation may exist between myosins within a single subclass yet all myosin IIs share a common three-domain structure; the N-terminus of the heavy chain forms two globular heads that contain the ATP- and actin-binding sites and the alpha-helical neck region that is stabilised by the binding of the two classes of light chains, whilst the C-terminus forms an extended coiled-coil tail that can consist of anywhere between 700 and 1,200 amino acids. In nonmuscle cells, myosin II has at least two well-defined functions, cell locomotion and cytokinesis. Yeast cells do not locomote, and their mechanism of cytokinesis involves the deposition of a cross-wall or septum. However, in the fission yeast, Schizosaccharomyces pombe, deposition of the septum is anticipated by the appearance of a contractile actomyosin ring [Marks and Hyams, 1985; May et al., 1997; Kitayama et al., 1997] and actin is also present at the bud neck during cytokinesis in the budding yeast, Saccharomyces cerevisiae [Kilmartin and Adams, 1984]. Here we report a phylogenetic analysis of the N-terminal head domains of the myosin IIs from both yeasts, a structural analysis of the tail domains of these proteins and we speculate as to the nature of the light chains that regulate their function. On the basis of these findings, we propose that the yeast myosin IIs constitute a divergent fifth class of "unconventional" conventional myosins.
Collapse
Affiliation(s)
- K M May
- Department of Biology, University College, London, UK
| | | | | |
Collapse
|
113
|
May KM, Watts FZ, Jones N, Hyams JS. Type II myosin involved in cytokinesis in the fission yeast, Schizosaccharomyces pombe. CELL MOTILITY AND THE CYTOSKELETON 2000; 38:385-96. [PMID: 9415380 DOI: 10.1002/(sici)1097-0169(1997)38:4<385::aid-cm8>3.0.co;2-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have cloned an unique gene encoding the heavy chain of a type II myosin in the fission yeast, Schizosaccharomyces pombe. The myo2+ gene encodes a protein of 1526 amino acids with a predicted molecular weight of 177 kDa and containing consensus binding motifs for both essential and regulatory light chains. The S. pombe myo2+ head domain is 45% identical to myosin IIs from Saccharomyces cerevisiae and Homo sapiens and 40% identical to Drosophila melanogaster Structurally, myo2+ most closely resembles budding yeast MYO1, the tails of both myosin IIs containing a number of proline residues that are predicted to substantially disrupt the ability of these myosins to form coiled coils. The myo2+ gene is located on chromosome III, 8.3 map units from ade6+. Deletion of approximately 70% of the coding sequence of myo2+ is lethal but myo2delta spores can acquire a suppressor mutation that allows them to form viable microcolonies consisting of filaments of branched cells with aberrant septa. Overexpression of myo2+ results in the inhibition of cytokinesis; cells become elongated and multinucleate and fail to assemble a functional cytokinetic actin ring and are either aseptate or form aberrant septa. These results suggest that a contractile actin-myosin based cytokinetic mechanism appeared early in the evolution of eukaryotic cells and further emphasise the utility of fission yeast as a model organism in which to study the molecular and cellular basis of cytokinesis.
Collapse
Affiliation(s)
- K M May
- Department of Biology, University College London, United Kingdom
| | | | | | | |
Collapse
|
114
|
Skowron JF, Bement WM, Mooseker MS. Human brush border myosin-I and myosin-Ic expression in human intestine and Caco-2BBe cells. CELL MOTILITY AND THE CYTOSKELETON 2000; 41:308-24. [PMID: 9858156 DOI: 10.1002/(sici)1097-0169(1998)41:4<308::aid-cm4>3.0.co;2-j] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The human intestinal cell line, Caco-2BBe, has been established as an excellent model system for analysis of the enterocyte cytoskeleton including that of the actin rich apical brush border. To facilitate its use for functional analysis of a major component of the brush border, brush border myosin-I, human cDNAs encoding the heavy chain of this class I myosin were isolated and sequenced. The identity of this myosin as human brush border myosin-I was verified based on similarity with other vertebrate sequences, as well as its expression profile at both the RNA and protein levels. Localization of the protein in human intestine along the crypt-villus axis closely resembles that previously determined for brush border myosin-I in chicken, and is quite distinct from that of myosin-Ic, another myosin-I expressed in human intestine and Caco-2BBe cells. In immature cells of the crypt, brush border myosin-I staining is low, and there is significant cytosolic and basolateral localization, while villus cells stain much more intensely, and the protein is primarily localized to the brush border. Localization of myosin-Ic is essentially the inverse of brush border myosin-I in that crypt cells exhibit higher levels of staining, while villus cells have very low levels of myosin-Ic. The expression of both myosins-I was also examined during cell-contact induced differentiation of Caco-2BBe cells where expression and changes in localization closely resemble those that accompany differentiation of enterocyte in vivo.
Collapse
Affiliation(s)
- J F Skowron
- Department of Cell Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | | | | |
Collapse
|
115
|
Irving M, Piazzesi G, Lucii L, Sun YB, Harford JJ, Dobbie IM, Ferenczi MA, Reconditi M, Lombardi V. Conformation of the myosin motor during force generation in skeletal muscle. NATURE STRUCTURAL BIOLOGY 2000; 7:482-5. [PMID: 10881196 PMCID: PMC8397617 DOI: 10.1038/75890] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2000] [Accepted: 04/10/2000] [Indexed: 11/09/2022]
Abstract
Myosin motors drive muscle contraction, cytokinesis and cell locomotion, and members of the myosin superfamily have been implicated in an increasingly diverse range of cell functions. Myosin can displace a bound actin filament several nanometers in a single interaction. Crystallographic studies suggest that this 'working stroke' involves bending of the myosin head between its light chain and catalytic domains. Here we used X-ray fiber diffraction to test the crystallographic model and measure the interdomain bending during force generation in an intact single muscle fiber. The observed bending has two components: an elastic distortion and an active rotation that generates force. The average bend of the force-generating myosin heads in a muscle fiber is intermediate between those in crystal structures with different bound nucleotides, and the C-terminus of the head is displaced by 7 nm along the actin filament axis compared with the in vitro conformation seen in the absence of nucleotide.
Collapse
Affiliation(s)
- M Irving
- School of Biomedical Sciences, King's College London, London, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Lutz GJ, Razzaghi S, Lieber RL. Cloning and characterization of the S1 domain of four myosin isoforms from functionally divergent fiber types in adult Rana pipiens skeletal muscle. Gene 2000; 250:97-107. [PMID: 10854783 DOI: 10.1016/s0378-1119(00)00170-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The motor properties of myosin reside in the globular S1 region of the myosin heavy chain (MHC) subunit. All vertebrates express a family of MHC isoforms in skeletal muscle that have a major influence on the mechanical properties of the various fiber types. Differences in molecular composition of S1 among MHC isoforms within a species have not been studied to any great detail. Presently, we have isolated, cloned and sequenced the S1 subunit of four MHC isoforms from skeletal muscle in Rana pipiens that are specifically expressed in four mechanically divergent fiber types. Paired analysis showed that the overall amino acid identity was higher between the three S1 isoforms expressed in twitch fibers than between the twitch and tonic isoforms. Relatedness in amino acid composition was evaluated in regions reported to govern cross-bridge kinetics. Surface loops 1 and 2, thought to influence motor velocity and ATPase, respectively, were both highly divergent between isoforms. However, the divergence in the loops was roughly equal to that of the amino-terminal region, a domain considered less important for motor function. We tested the hypothesis that the loops are more conserved in pairs of isoforms with more similar kinetics. Comparisons including other vertebrate species showed no tendency for loops from pairs with similar kinetics to be more conserved. These data suggest that the overall structure of loops 1 and 2 is not critical in regulating the kinetic properties of R. pipiens S1 isoforms. Cloning of this family of frog S1 isoforms will facilitate future structure/function studies of the molecular basis of variability in myosin cross-bridge kinetics.
Collapse
Affiliation(s)
- G J Lutz
- Department of Orthopedics and Bioengineering, University of California, Veterans Affairs Medical Center, San Diego 92161, USA
| | | | | |
Collapse
|
117
|
Geissler H, Ullmann R, Soldati T. The tail domain of myosin M catalyses nucleotide exchange on Rac1 GTPases and can induce actin-driven surface protrusions. Traffic 2000; 1:399-410. [PMID: 11208126 DOI: 10.1034/j.1600-0854.2000.010505.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Members of the myosin superfamily play crucial roles in cellular processes including management of the cortical cytoskeleton, organelle transport and signal transduction. GTPases of the Rho family act as key control elements in the reorganization of the actin cytoskeleton in response to growth factors, and other functions such as membrane trafficking, transcriptional regulation, growth control and development. Here, we describe a novel unconventional myosin from Dictyostelium discoideum, MyoM. Primary sequence analysis revealed that it has the appearance of a natural chimera between a myosin motor domain and a guanine nucleotide exchange factor (GEF) domain for Rho GTPases. The functionality of both domains was established. Binding of the motor domain to F-actin was ATP-dependent and potentially regulated by phosphorylation. The GEF domain displayed selective activity on Rac1-related GTPases. Overexpression, rather than absence of MyoM, affected the cell morphology and viability. Particularly in response to hypo-osmotic stress, cells overexpressing the MyoM tail domain extended massive actin-driven protrusions. The GEF was enriched at the tip of growing protuberances, probably through its pleckstrin homology domain. MyoM is the first unconventional myosin containing an active Rac-GEF domain, suggesting a role at the interface of Rac-mediated signal transduction and remodeling of the actin cytoskeleton.
Collapse
Affiliation(s)
- H Geissler
- Department of Molecular Cell Research, Max-Planck-Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
118
|
Shrager JB, Desjardins PR, Burkman JM, Konig SK, Stewart SK, Su L, Shah MC, Bricklin E, Tewari M, Hoffman R, Rickels MR, Jullian EH, Rubinstein NA, Stedman HH. Human skeletal myosin heavy chain genes are tightly linked in the order embryonic-IIa-IId/x-ILb-perinatal-extraocular. J Muscle Res Cell Motil 2000; 21:345-55. [PMID: 11032345 DOI: 10.1023/a:1005635030494] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Myosin heavy chain (MyHC) is the major contractile protein of muscle. We report the first complete cosmid cloning and definitive physical map of the tandemly linked human skeletal MyHC genes at 17p13.1. The map provides new information on the order, size, and relative spacing of the genes. and it resolves uncertainties about the two fastest twitch isoforms. The physical order of the genes is demonstrated to contrast with the temporal order of their developmental expression. Furthermore, nucleotide sequence comparisons allow an approximation of the relative timing of five ancestral duplications that created distinct genes for the six isoforms. A firm foundation is provided for molecular analysis in patients with suspected primary skeletal myosinopathies and for detailed modelling of the hypervariable surface loops which dictate myosin's kinetic properties.
Collapse
Affiliation(s)
- J B Shrager
- Department of Surgery, School of Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Abstract
The myosin cross-bridge exists in two conformations, which differ in the orientation of a long lever arm. Since the lever arm undergoes a 60 degree rotation between the two conformations, which would lead to a displacement of the myosin filament of about 11 nm, the transition between these two states has been associated with the elementary 'power stroke' of muscle. Moreover, this rotation is coupled with changes in the active site (CLOSED to OPEN), which probably enable phosphate release. The transition CLOSED to OPEN appears to be brought about by actin binding. However, kinetics shows that the binding of myosin to actin is a two-step process which affects both ATP and ADP affinity and vice versa. The structural basis of these effects is only partially explained by the presently known conformers of myosin. Therefore, additional states of the myosin cross-bridge should exist. Indeed, cryoelectron microscopy has revealed other angles of the lever arm induced by ADP binding to a smooth muscle actin-myosin complex.
Collapse
Affiliation(s)
- K C Holmes
- Max-Planck-Institut für medizinische Forschung, Heidelberg, Germany.
| | | |
Collapse
|
120
|
Reck-Peterson SL, Provance DW, Mooseker MS, Mercer JA. Class V myosins. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1496:36-51. [PMID: 10722875 DOI: 10.1016/s0167-4889(00)00007-0] [Citation(s) in RCA: 222] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- S L Reck-Peterson
- Cell Biology Department, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
121
|
Barylko B, Binns DD, Albanesi JP. Regulation of the enzymatic and motor activities of myosin I. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1496:23-35. [PMID: 10722874 DOI: 10.1016/s0167-4889(00)00006-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Myosins I were the first unconventional myosins to be purified and they remain the best characterized. They have been implicated in various motile processes, including organelle translocation, ion channel gating and cytoskeletal reorganization but their exact cellular functions are still unclear. All members of the myosin I family, from yeast to man, have three structural domains: a catalytic head domain that binds ATP and actin; a tail domain believed to be involved in targeting the myosins to specific subcellular locations and a junction or neck domain that connects them and interacts with light chains. In this review we discuss how each of these three domains contributes to the regulation of myosin I enzymatic activity, motor activity and subcellular localization.
Collapse
Affiliation(s)
- B Barylko
- Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75235-9041, USA.
| | | | | |
Collapse
|
122
|
Murphy CT, Spudich JA. Variable surface loops and myosin activity: accessories to a motor. J Muscle Res Cell Motil 2000; 21:139-51. [PMID: 10961838 DOI: 10.1023/a:1005610007209] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The catalytic head of myosin is a globular structure that has historically been divided into three segments of 25, 50, and 20 kDa. The solvent-exposed, proteolytically-sensitive surface loops of myosin that join these three segments are highly variable in their sequences. While surface loops have not traditionally been thought to affect enzymatic activities, these loops lie near the ATP and actin-binding sites and have been implicated in the modulation of myosin's kinetic activities. In this work we review the wealth of data regarding the loops that has accumulated over the years and discuss the roles of the loops in contributing to the different activities displayed by different myosin isoforms.
Collapse
Affiliation(s)
- C T Murphy
- Department of Biochemistry, Stanford University School of Medicine, CA 94305, USA
| | | |
Collapse
|
123
|
Abstract
The crystal structures of smooth muscle and scallop striated muscle myosin have both been completed in the past 18 months. Structural studies of unconventional myosins, in particular the stunning discovery that myosin VI moves backwards on actin, are starting to have deep impact on the field and have induced new ways of thinking about actin-based motility. Sophisticated genetic, biochemical and biophysical studies were used to test and refine hypotheses of the molecular mechanism of motility that were developed in the past. Although all these studies confirmed some aspects of these hypotheses, they also raised many new unresolved questions. Much of the evidence points to the importance of the actin-myosin binding process and an associated disorder-to-order transition.
Collapse
Affiliation(s)
- N Volkmann
- The Burnham Institute, La Jolla, 92037, USA.
| | | |
Collapse
|
124
|
Gulick AM, Bauer CB, Thoden JB, Pate E, Yount RG, Rayment I. X-ray structures of the Dictyostelium discoideum myosin motor domain with six non-nucleotide analogs. J Biol Chem 2000; 275:398-408. [PMID: 10617631 DOI: 10.1074/jbc.275.1.398] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The three-dimensional structures of the truncated myosin head from Dictyostelium discoideum myosin II complexed with dinitrophenylaminoethyl-, dinitrophenylaminopropyl-, o-nitrophenylaminoethyl-, m-nitrophenylaminoethyl-, p-nitrophenylaminoethyl-, and o-nitrophenyl-N-methyl-aminoethyl-diphosphate.beryllium fluoride have been determined to better than 2.3-A resolution. The structure of the protein and nucleotide binding pocket in these complexes is very similar to that of S1dC.ADP.BeF(x) (Fisher, A. J., Smith, C. A., Thoden, J., Smith, R., Sutoh, K., Holden, H. M., and Rayment, I. (1995) Biochemistry 34, 8960-8972). The position of the triphosphate-like moiety is essentially identical in all complexes. Furthermore, the alkyl-amino group plays the same role as the ribose by linking the triphosphate to the adenine binding pocket; however, none of the phenyl groups lie in the same position as adenine in S1dC.MgADP.BeF(x), even though several of these nucleotide analogs are functionally equivalent to ATP. Rather the former location of adenine is occupied by water in the nanolog complexes, and the phenyl groups are organized in a manner that attempts to optimize their hydrogen bonding interactions with this constellation of solvent molecules. A comparison of the kinetic and structural properties of the nanologs relative to ATP suggests that the ability of a substrate to sustain tension and to generate movement correlates with a well defined interaction with the active site water structure observed in S1dC.MgADP.BeF(x).
Collapse
Affiliation(s)
- A M Gulick
- Institute for Enzyme Research, Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53705, USA
| | | | | | | | | | | |
Collapse
|
125
|
Hicks JL, Deng WM, Rogat AD, Miller KG, Bownes M. Class VI unconventional myosin is required for spermatogenesis in Drosophila. Mol Biol Cell 1999; 10:4341-53. [PMID: 10588662 PMCID: PMC25762 DOI: 10.1091/mbc.10.12.4341] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have identified partial loss of function mutations in class VI unconventional myosin, 95F myosin, which results in male sterility. During spermatogenesis the germ line precursor cells undergo mitosis and meiosis to form a bundle of 64 spermatids. The spermatids remain interconnected by cytoplasmic bridges until individualization. The process of individualization involves the formation of a complex of cytoskeletal proteins and membrane, the individualization complex (IC), around the spermatid nuclei. This complex traverses the length of each spermatid resolving the shared membrane into a single membrane enclosing each spermatid. We have determined that 95F myosin is a component of the IC whose function is essential for individualization. In wild-type testes, 95F myosin localizes to the leading edge of the IC. Two independent mutations in 95F myosin reduce the amount of 95F myosin in only a subset of tissues, including the testes. This reduction of 95F myosin causes male sterility as a result of defects in spermatid individualization. Germ line transformation with the 95F myosin heavy chain cDNA rescues the male sterility phenotype. IC movement is aberrant in these 95F myosin mutants, indicating a critical role for 95F myosin in IC movement. This report is the first identification of a component of the IC other than actin. We propose that 95F myosin is a motor that participates in membrane reorganization during individualization.
Collapse
Affiliation(s)
- J L Hicks
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA
| | | | | | | | | |
Collapse
|
126
|
Liang Y, Wang A, Belyantseva IA, Anderson DW, Probst FJ, Barber TD, Miller W, Touchman JW, Jin L, Sullivan SL, Sellers JR, Camper SA, Lloyd RV, Kachar B, Friedman TB, Fridell RA. Characterization of the human and mouse unconventional myosin XV genes responsible for hereditary deafness DFNB3 and shaker 2. Genomics 1999; 61:243-58. [PMID: 10552926 DOI: 10.1006/geno.1999.5976] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutations in myosin XV are responsible for congenital profound deafness DFNB3 in humans and deafness and vestibular defects in shaker 2 mice. By combining direct cDNA analyses with a comparison of 95.2 kb of genomic DNA sequence from human chromosome 17p11.2 and 88.4 kb from the homologous region on mouse chromosome 11, we have determined the genomic and mRNA structures of the human (MYO15) and mouse (Myo15) myosin XV genes. Our results indicate that full-length myosin XV transcripts contain 66 exons, are >12 kb in length, and encode 365-kDa proteins that are unique among myosins in possessing very long approximately 1200-aa N-terminal extensions preceding their conserved motor domains. The tail regions of the myosin XV proteins contain two MyTH4 domains, two regions with similarity to the membrane attachment FERM domain, and a putative SH3 domain. Northern and dot blot analyses revealed that myosin XV is expressed in the pituitary gland in both humans and mice. Myosin XV transcripts were also observed by in situ hybridization within areas corresponding to the sensory epithelia of the cochlea and vestibular systems in the developing mouse inner ear. Immunostaining of adult mouse organ of Corti revealed that myosin XV protein is concentrated within the cuticular plate and stereocilia of cochlear sensory hair cells. These results indicate a likely role for myosin XV in the formation or maintenance of the unique actin-rich structures of inner ear sensory hair cells.
Collapse
Affiliation(s)
- Y Liang
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health (NIH), 5 Research Court, Rockville, Maryland, 20850, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Deng W, Leaper K, Bownes M. A targeted gene silencing technique shows that Drosophila myosin VI is required for egg chamber and imaginal disc morphogenesis. J Cell Sci 1999; 112 ( Pt 21):3677-90. [PMID: 10523504 DOI: 10.1242/jcs.112.21.3677] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report that Drosophila unconventional myosin VI, encoded by Myosin heavy chain at 95F (Mhc95F), is required for both imaginal disc and egg chamber morphogenesis. During oogenesis, Mhc95F is expressed in migrating follicle cells, including the border cells, which migrate between the nurse cells to lie at the anterior of the oocyte; the columnar cells that migrate over the oocyte; the centripetal cells that migrate between the oocyte and nurse cells; and the dorsal-anterior follicle cells, which migrate to secrete the chorionic appendages. Its function during development has been studied using a targeted gene silencing technique, combining the Gal4-UAS targeted expression system and the antisense RNA technique. Antibody staining shows that the expression of myosin 95F is greatly decreased in follicle cells when antisense Mhc95F RNA is expressed. Interfering with expression of Drosophila myosin VI at various developmental stages frequently results in lethality. During metamorphosis it results in adult flies with malformed legs and wings, indicating that myosin VI is essential for imaginal disc morphogenesis. During oogenesis, abnormal follicle cell shapes and aberrant follicle cell migrations are observed when antisense Mhc95F is expressed in follicle cells during stages 9 to 10, suggesting that the Drosophila myosin VI is required for follicle cell epithelial morphogenesis.
Collapse
Affiliation(s)
- W Deng
- Institute of Cell and Molecular Biology, University of Edinburgh, Darwin Building, King's Buildings, Edinburgh EH9 3JR, UK.
| | | | | |
Collapse
|
128
|
Gillespie PG, Gillespie SK, Mercer JA, Shah K, Shokat KM. Engineering of the myosin-ibeta nucleotide-binding pocket to create selective sensitivity to N(6)-modified ADP analogs. J Biol Chem 1999; 274:31373-81. [PMID: 10531338 DOI: 10.1074/jbc.274.44.31373] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Distinguishing the cellular functions carried out by enzymes of highly similar structure would be simplified by the availability of isozyme-selective inhibitors. To determine roles played by individual members of the large myosin superfamily, we designed a mutation in myosin's nucleotide-binding pocket that permits binding of adenine nucleotides modified with bulky N(6) substituents. Introduction of this mutation, Y61G in rat myosin-Ibeta, did not alter the enzyme's affinity for ATP or actin and actually increased its ATPase activity and actin-translocation rate. We also synthesized several N(6)-modified ADP analogs that should bind to and inhibit mutant, but not wild-type, myosin molecules. Several of these N(6)-modified ADP analogs were more than 40-fold more potent at inhibiting ATP hydrolysis by Y61G than wild-type myosin-Ibeta; in doing so, these analogs locked Y61G myosin-Ibeta tightly to actin. N(6)-(2-methylbutyl) ADP abolished actin filament motility mediated by Y61G, but not wild-type, myosin-Ibeta. Furthermore, a small fraction of inhibited Y61G molecules was sufficient to block filament motility mediated by mixtures of wild-type and Y61G myosin-Ibeta. Introduction of Y61G myosin-Ibeta molecules into a cell should permit selective inhibition by N(6)-modified ADP analogs of cellular processes dependent on myosin-Ibeta.
Collapse
Affiliation(s)
- P G Gillespie
- Department of Physiology, The Johns Hopkins University, Baltimore, Maryland 21205, USA.
| | | | | | | | | |
Collapse
|
129
|
Abstract
The plant actin cytoskeleton is characterized by a high diversity in regard to gene families, isoforms, and degree of polymerization. In addition to the most abundant F-actin assemblies like filaments and their bundles, G-actin obviously assembles in the form of actin oligomers composed of a few actin molecules which can be extensively cross-linked into complex dynamic meshworks. The role of the actomyosin complex as a force generating system - based on principles operating as in muscle cells - is clearly established for long-range mass transport in large algal cells and specialized cell types of higher plants. Extended F-actin networks, mainly composed of F-actin bundles, are the structural basis for this cytoplasmic streaming of high velocities On the other hand, evidence is accumulating that delicate meshworks built of short F-actin oligomers are critical for events occurring at the plasma membrane, e.g., actin interventions into activities of ion channels and hormone carriers, signaling pathways based on phospholipids, and exo- and endocytotic processes. These unique F-actin arrays, constructed by polymerization-depolymerization processes propelled via synergistic actions of actin-binding proteins such as profilin and actin depolymerizing factor (ADF)/cofilin are supposed to be engaged in diverse aspects of plant morphogenesis. Finally, rapid rearrangements of F-actin meshworks interconnecting endocellular membranes turn out to be especially important for perception-signaling purposes of plant cells, e.g., in association with guard cell movements, mechano- and gravity-sensing, plant host-pathogen interactions, and wound-healing.
Collapse
Affiliation(s)
- D Volkmann
- Botany Institute, University of Bonn, Germany.
| | | |
Collapse
|
130
|
Yokota, Yukawa, Muto, Sonobe, Shimmen. Biochemical and immunocytochemical characterization of two types of myosins in cultured tobacco bright yellow-2 cells. PLANT PHYSIOLOGY 1999; 121:525-34. [PMID: 10517844 PMCID: PMC59415 DOI: 10.1104/pp.121.2.525] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/1999] [Accepted: 06/14/1999] [Indexed: 05/21/2023]
Abstract
We have isolated a myosin (referred to as 170-kD myosin) from lily pollen tubes, which consists of 170-kD heavy chain and calmodulin (CaM) light chain and is responsible for cytoplasmic streaming. A 170-kD polypeptide that has similar antigenicity to the 170-kD myosin heavy chain of lily pollen tubes was also present in cultured tobacco (Nicotiana tabacum) Bright Yellow-2 (BY-2) cells, and possessed the ability to interact with F-actin in an ATP-dependent manner. In addition to this myosin, we identified biochemically another kind of myosin in BY-2 cells. This myosin consisted of a CaM light chain and a 175-kD heavy chain with antigenicity different from the 170-kD myosin heavy chain. In the present study, we referred to this myosin as 175-kD myosin. This myosin was able to translocate rhodamine-phalloidin (RP)-labeled F-actin at an average velocity of about 9 &mgr;m/s in the motility assay in vitro. In contrast, the sliding velocity of RP-labeled F-actin translocated by fractions containing the 170-kD myosin was 3 to 4 &mgr;m/s. The velocity of cytoplasmic streaming in living BY-2 cells ranged from 2 to 9 &mgr;m/s. The motile activity of 175-kD myosin in vitro was inhibited by Ca(2+) at concentrations higher than 10(-6) M. Immunoblot analyses using an antiserum against the heavy chain of 170- or 175-kD myosin revealed that in tobacco plants, the 175-kD myosin was expressed in leaf, stem, and root, but not in germinating pollen, while 170-kD myosin was present in all of these plant parts and in germinating pollen. These results suggest that the two types of myosins, 170 and 175 kD, presumably participate in cytoplasmic streaming in BY-2 cells and other somatic cells of tobacco plants.
Collapse
Affiliation(s)
- Yokota
- Department of Life Science, Faculty of Science, Himeji Institute of Technology, Harima Science Park City, Hyogo 678-12, Japan
| | | | | | | | | |
Collapse
|
131
|
Abstract
Mutations of the unconventional myosins genes encoding myosin VI, myosin VIIA and myosin XV cause hearing loss and thus these motor proteins perform fundamental functions in the auditory system. A null mutation in myosin VI in the congenitally deaf Snell's waltzer mice (Myo6(sv)) results in fusion of stereocilia and subsequent progressive loss of hair cells, beginning soon after birth, thus reinforcing the vital role of cytoskeletal proteins in inner ear hair cells. To date, there are no human families segregating hereditary hearing loss that show linkage to MYO6 on chromosome 6q13. The discovery that the mouse shaker1 (Myo7(ash1)) locus encodes myosin VIIA led immediately to the identification of mutations in this gene in Usher syndrome type 1B; subsequently, mutations in this gene were also found associated with recessive and dominant nonsyndromic hearing loss (DFNB2 and DFNA11). Stereocilla of sh1 mice are severely disorganized, and eventually degenerate as well. Myosin VIIA has been implicated in membrane trafficking and/or endocytosis in the inner ear. Mutant alleles of a third unconventional myosin, myosin XV, are associated with nonsyndromic, recessive, congenital deafness DFNB3 on human chromosome 17p11.2 and deafness in shaker2 (Myo15(sh2)) mice. In outer and inner hair cells, myosin XV protein is detectable in the cell body and stereocilia. Hair cells are present in homozygous sh2 mutant mice, but the stereocilia are approximately 1/10 of the normal length. This review focuses on what we know about the molecular genetics and biochemistry of myosins VI, VIIA and XV as relates to hereditary hearing loss. Am. J. Med. Genet. (Semin. Med. Genet.) 89:147-157, 1999. Published 2000 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- T B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, Rockville, MD 20854, USA.
| | | | | |
Collapse
|
132
|
Reichelt S, Knight AE, Hodge TP, Baluska F, Samaj J, Volkmann D, Kendrick-Jones J. Characterization of the unconventional myosin VIII in plant cells and its localization at the post-cytokinetic cell wall. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 19:555-67. [PMID: 10504577 DOI: 10.1046/j.1365-313x.1999.00553.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Myosins are a large superfamily of motor proteins which, in association with actin, are involved in intra- cellular motile processes. In addition to the conventional myosins involved in muscle contractility, there is, in animal cells, a wide range of unconventional myosins implicated in membrane-associated processes, such as vesicle transport and membrane dynamics. In plant cells, however, very little is known about myosins. We have raised an antibody to the recombinant tail region of Arabidopsis thaliana myosin 1 (a class VIII myosin) and used it in immunofluorescence and EM studies on root cells from cress and maize. The plant myosin VIII is found to be concentrated at newly formed cross walls at the stage in which the phragmoplast cytoskeleton has depolymerized and the new cell plate is beginning to mature. These walls are rich in plasmodesmata and we show that they are the regions where the longitudinal actin cables appear to attach. Myosin VIII appears to be localized in these plasmodesmata and we suggest that this protein is involved in maturation of the cell plate and the re-establishment of cytoplasmic actin cables at sites of intercellular communication.
Collapse
Affiliation(s)
- S Reichelt
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | | | | | | | |
Collapse
|
133
|
Andersen PS, Havndrup O, Bundgaard H, Larsen LA, Vuust J, Kjeldsen K, Christiansen M. Adult-onset familial hypertrophic cardiomyopathy caused by a novel mutation, R694C, in the MYH7 gene. Clin Genet 1999; 56:244-6. [PMID: 10563488 DOI: 10.1034/j.1399-0004.1999.560313.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
134
|
Ausseil J, Soyer-Gobillard MO, Géraud ML, Bhaud Y, Baines I, Preston T, Moreau H. Characterization of p80, a novel nuclear and cytoplasmic protein in dinoflagellates. Protist 1999; 150:197-211. [PMID: 10505419 DOI: 10.1016/s1434-4610(99)70022-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The presence of myosin in dinoflagellates was tested using an anti-Acanthamoeba castellanii myosin II polyclonal antibody on the heterotrophic dinoflagellate Crypthecodinium cohnii Seligo. Western blots revealed the presence of a unique band of 80 kDa in total protein extracts and after immunoprecipitation. Expression of this 80 kDa protein appeared constant during the different phases of the cell cycle. In protein extracts from various other dinoflagellates, this 80 kDa protein was detected only in the autotrophic species Prorocentrum micans Ehr. Screening of a C. cohnii cDNA expression library with this antibody revealed a cDNA coding for an amino acid sequence without homology in the databases. However, particular regions were detected: - a polyglutamine repeat domain in the N-terminal part of the protein, - four peptide sequences associated with GTP-binding sites, - a sequence with slight homology to the rod tail of Caenorhabditis elegans myosin II, -a sequence with homology to a human kinesin motor domain. Immunocytolocalization performed on C. cohnii thin sections with a polyclonal antibody raised against the recombinant protein showed p80 to be present both within the nucleus and in the cytoplasm. Labelling was widespread in the nucleoplasm and more concentrated at the periphery of the permanently condensed chromosomes. In the cytoplasm, labelling appeared in a punctate region close to the nucleus and in the flagellum. Potential functions of this novel protein are discussed.
Collapse
Affiliation(s)
- J Ausseil
- Observatoire Océanologique de Banyulus sur mer, Université Paris 6, Laboratoire Arago, UMR-CNRS 7628, Banyuls sur mer, France.
| | | | | | | | | | | | | |
Collapse
|
135
|
|
136
|
Coluccio LM, Geeves MA. Transient kinetic analysis of the 130-kDa myosin I (MYR-1 gene product) from rat liver. A myosin I designed for maintenance of tension? J Biol Chem 1999; 274:21575-80. [PMID: 10419463 DOI: 10.1074/jbc.274.31.21575] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 130-kDa myosin I (MI(130)), product of the myr-1 gene, is one member of the mammalian class I myosins, a group of small, calmodulin-binding mechanochemical molecules of the myosin superfamily that translocate actin filaments. Roles for MI(130) are unknown. Our hypothesis is that, as with all myosins, MI(130) is designed for a particular function and hence possesses specific biochemical attributes. To test this hypothesis we have characterized the enzymatic properties of MI(130) using steady-state and stopped-flow kinetic analyses. Our results indicate that: (i) the Mg(2+)-ATPase activity is activated in proportion to actin concentration in the absence of Ca(2+); (ii) the ATP-induced dissociation of actin-MI(130) is much slower for MI(130) than has been observed for other myosins (-Ca(2+), second order rate constant of ATP binding, 1.7 x 10(4) M(-1) s(-1); maximal rate constant, 32 s(-1)); (iii) ADP binds to actin-MI(130) with an affinity of approximately 10 microM and competes with ATP-induced dissociation of actin-MI(130); the rate constant of ADP release from actin-MI(130) is 2 s(-1); (iv) the rates of the ATP-induced dissociation of actin-MI and ADP release are 2-3 times greater in the presence of CaCl(2), indicating a sensitivity of motor activity to Ca(2+); and (v) the affinity of MI(130) for actin (15 nM) is typical of that observed for other myosins. Together, these results indicate that although MI(130) shares some characteristics with other myosins, it is well adapted for maintenance of cortical tension.
Collapse
Affiliation(s)
- L M Coluccio
- Boston Biomedical Research Institute, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
137
|
Soldati T, Geissler H, Schwarz EC. How many is enough? Exploring the myosin repertoire in the model eukaryote Dictyostelium discoideum. Cell Biochem Biophys 1999; 30:389-411. [PMID: 10403058 DOI: 10.1007/bf02738121] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The cytoplasm of eukaryotic cells is a very complex milieu and unraveling how its unique cytoarchitecture is achieved and maintained is a central theme in modern cell biology. It is crucial to understand how organelles and macro-complexes of RNA and/or proteins are transported to and/or maintained at their specific cellular locations. The importance of filamentous-actin-directed myosin-powered cargo transport was only recently realized, and after an initial explosion in the identification of new molecules, the field is now concentrating on their functional dissection. Direct connections of myosins to a variety of cellular tasks are now slowly emerging, such as in cytokinesis, phagocytosis, endocytosis, polarized secretion and exocytosis, axonal transport, etc. Unconventional myosins have been identified in a wide variety of organisms, making the presence of actin and myosins a hallmark of eukaryotism. The genome of S. cerevisiae encodes only five myosins, whereas a mammalian cell has the capacity to express between two and three dozen myosins. Why is it so crucial to arrive at this final census? The main questions that we would like to discuss are the following. How many distinct myosin-powered functions are carried out in a typical higher eukaryote? Or, in other words, what is the minimal set of myosins essential to accomplish the multitude of tasks related to motility and intracellular dynamics in a multicellular organism? And also, as a corollary, what is the degree of functional redundancy inside a given myosin class? In that respect, the choice of a model organism suitable for such an investigation is more crucial than ever. Here we argue that Dictyostelium discoideum is affirming its position as an ideal system of intermediate complexity to study myosin-powered trafficking and is or will soon become the second eukaryote for which complete knowledge of the whole repertoire of myosins is available.
Collapse
Affiliation(s)
- T Soldati
- Department of Molecular Cell Research, Max-Planck-Institute for Medical Research, Heidelberg, Germany
| | | | | |
Collapse
|
138
|
Erent M, Pagakis S, Browne JP, Bayley P. Association of calmodulin with cytoskeletal structures at different stages of HeLa cell division, visualized by a calmodulin-EGFP fusion protein. MOLECULAR CELL BIOLOGY RESEARCH COMMUNICATIONS : MCBRC 1999; 1:209-15. [PMID: 10425228 DOI: 10.1006/mcbr.1999.0137] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The fusion protein of calmodulin (CaM) with the enhanced green fluorescent protein EGFP has been expressed in a stably transfected HeLa cell line in order to visualise the localisation of calmodulin during the cell cycle on a continuous basis in live cells, and for immunofluorescence colocalisation with cytoskeletal structures. High-resolution images of CaM-EGFP in the mitotic apparatus show the characteristic strongly convoluted structure of the centrosome. CaM-EGFP also apparently associates with both polar and mitotic microtubules, and with a specific intracentrosomal structure. During cytokinesis, CaM-EGFP is also found decorating selected oriented filaments in close proximity to microtubules in the midbody region. In interphase cells, it is seen with filamentous and punctuate localisation at the nuclear envelope. The intensity and continuity of the CaM-EGFP images suggest that a significant fraction of the cellular calmodulin remains attached to cytoplasmic structures during the cell cycle.
Collapse
Affiliation(s)
- M Erent
- Division of Physical Biochemistry, National Institute for Medical Research, London, United Kingdom
| | | | | | | |
Collapse
|
139
|
Houdusse A, Kalabokis VN, Himmel D, Szent-Györgyi AG, Cohen C. Atomic structure of scallop myosin subfragment S1 complexed with MgADP: a novel conformation of the myosin head. Cell 1999; 97:459-70. [PMID: 10338210 DOI: 10.1016/s0092-8674(00)80756-4] [Citation(s) in RCA: 259] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The crystal structure of a proteolytic subfragment from scallop striated muscle myosin, complexed with MgADP, has been solved at 2.5 A resolution and reveals an unusual conformation of the myosin head. The converter and the lever arm are in very different positions from those in either the pre-power stroke or near-rigor state structures; moreover, in contrast to these structures, the SH1 helix is seen to be unwound. Here we compare the overall organization of the myosin head in these three states and show how the conformation of three flexible "joints" produces rearrangements of the four major subdomains in the myosin head with different bound nucleotides. We believe that this novel structure represents one of the prehydrolysis ("ATP") states of the contractile cycle in which the myosin heads stay detached from actin.
Collapse
Affiliation(s)
- A Houdusse
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02254-9110, USA
| | | | | | | | | |
Collapse
|
140
|
Sack S, Kull FJ, Mandelkow E. Motor proteins of the kinesin family. Structures, variations, and nucleotide binding sites. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 262:1-11. [PMID: 10231357 DOI: 10.1046/j.1432-1327.1999.00341.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Microtubule-dependent motors of the kinesin family convert the energy from ATP hydrolysis into mechanical work in order to transport vesicles and organelles along microtubules. The motor domains of several kinesins have been solved by X-ray diffraction, but the conformational changes associated with force development remain unknown. Here we describe conformational properties of kinesin that might be related to the mechanism of action. First, we have evaluated the conformational variability among all known kinesin structures and find they are concentrated in six areas, most of which are functionally important either in microtubule binding or in linking the core motor to the stalk. Secondly, we show that there is an important difference between kinesins when compared with myosins or GTPases (with which kinesin motor domains bear structural and catalytic similarities); in the diphosphate-state (with bound ADP), all kinesins show a 'tight' nucleotide-binding pocket, comparable with myosin or GTPases in the triphosphate state, whose nucleotide-binding pockets become open, or 'loose', following nucleotide hydrolysis. Thus, kinesin-ADP appears to be in a tense state, resembling that observed in myosin-ATP or p21ras-GTP.
Collapse
Affiliation(s)
- S Sack
- Max-Planck-Unit for Structural Molecular Biology, Hamburg, Germany
| | | | | |
Collapse
|
141
|
Raposo G, Cordonnier MN, Tenza D, Menichi B, Dürrbach A, Louvard D, Coudrier E. Association of myosin I alpha with endosomes and lysosomes in mammalian cells. Mol Biol Cell 1999; 10:1477-94. [PMID: 10233157 PMCID: PMC25307 DOI: 10.1091/mbc.10.5.1477] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Myosin Is, which constitute a ubiquitous monomeric subclass of myosins with actin-based motor properties, are associated with plasma membrane and intracellular vesicles. Myosin Is have been proposed as key players for membrane trafficking in endocytosis or exocytosis. In the present paper we provide biochemical and immunoelectron microscopic evidence indicating that a pool of myosin I alpha (MMIalpha) is associated with endosomes and lysosomes. We show that the overproduction of MMIalpha or the production of nonfunctional truncated MMIalpha affects the distribution of the endocytic compartments. We also show that truncated brush border myosin I proteins, myosin Is that share 78% homology with MMIalpha, promote the dissociation of MMIalpha from vesicular membranes derived from endocytic compartments. The analysis at the ultrastructural level of cells producing these brush border myosin I truncated proteins shows that the delivery of the fluid phase markers from endosomes to lysosomes is impaired. MMIalpha might therefore be involved in membrane trafficking occurring between endosomes and lysosomes.
Collapse
Affiliation(s)
- G Raposo
- Morphogenèse et Signalisation Cellulaires, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 144, Institut Curie, 75248 Paris Cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
142
|
Tyska MJ, Dupuis DE, Guilford WH, Patlak JB, Waller GS, Trybus KM, Warshaw DM, Lowey S. Two heads of myosin are better than one for generating force and motion. Proc Natl Acad Sci U S A 1999; 96:4402-7. [PMID: 10200274 PMCID: PMC16344 DOI: 10.1073/pnas.96.8.4402] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several classes of the myosin superfamily are distinguished by their "double-headed" structure, where each head is a molecular motor capable of hydrolyzing ATP and interacting with actin to generate force and motion. The functional significance of this dimeric structure, however, has eluded investigators since its discovery in the late 1960s. Using an optical-trap transducer, we have measured the unitary displacement and force produced by double-headed and single-headed smooth- and skeletal-muscle myosins. Single-headed myosin produces approximately half the displacement and force (approximately 6 nm; 0.7 pN) of double-headed myosin (approximately 10 nm; 1.4 pN) during a unitary interaction with actin. These data suggest that muscle myosins require both heads to generate maximal force and motion.
Collapse
Affiliation(s)
- M J Tyska
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | | | | | | | |
Collapse
|
143
|
Gruen M, Gautel M. Mutations in beta-myosin S2 that cause familial hypertrophic cardiomyopathy (FHC) abolish the interaction with the regulatory domain of myosin-binding protein-C. J Mol Biol 1999; 286:933-49. [PMID: 10024460 DOI: 10.1006/jmbi.1998.2522] [Citation(s) in RCA: 194] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The myosin filaments of striated muscle contain a family of enigmatic myosin-binding proteins (MyBP), MyBP-C and MyBP-H. These modular proteins of the intracellular immunoglobulin superfamily contain unique domains near their N termini. The N-terminal domain of cardiac MyBP-C, the MyBP-C motif, contains additional phosphorylation sites and may regulate contraction in a phosphorylation dependent way. In contrast to the C terminus, which binds to the light meromyosin portion of the myosin rod, the interactions of this domain are unknown. We demonstrate that fragments of MyBP-C containing the MyBP-C motif localise to the sarcomeric A-band in cardiomyocytes and isolated myofibrils, without affecting sarcomere structure. The binding site for the MyBP-C motif resides in the N-terminal 126 residues of the S2 segment of the myosin rod. In this region, several mutations in beta-myosin are associated with FHC; however, their molecular implications remained unclear. We show that two representative FHC mutations in beta-myosin S2, R870H and E924K, drastically reduce MyBP-C binding (Kd approximately 60 microM for R870H compared with a Kd of approximately 5 microM for the wild-type) down to undetectable levels (E924K). These mutations do not affect the coiled-coil structure of myosin. We suggest that the regulatory function of MyBP-C is mediated by the interaction with S2, and that mutations in beta-myosin S2 may act by altering the interactions with MyBP-C.
Collapse
Affiliation(s)
- M Gruen
- Max-Planck-Institut für Molekulare Physiologie, Rheinlanddamm 201, Dortmund, 44139, Germany
| | | |
Collapse
|
144
|
Gunning P, Weinberger R, Jeffrey P, Hardeman E. Isoform sorting and the creation of intracellular compartments. Annu Rev Cell Dev Biol 1999; 14:339-72. [PMID: 9891787 DOI: 10.1146/annurev.cellbio.14.1.339] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The generation of isoforms via gene duplication and alternative splicing has been a valuable evolutionary tool for the creation of biological diversity. In addition to the formation of molecules with related but different functional characteristics, it is now apparent that isoforms can be segregated into different intracellular sites within the same cell. Sorting has been observed in a wide range of genes, including those encoding structural molecules, receptors, channels, enzymes, and signaling molecules. This results in the creation of intracellular compartments that (a) can be independently controlled and (b) have different functional properties. The sorting mechanisms are likely to operate at the level of both proteins and mRNAs. Isoform sorting may be an important consequence of the evolution of isoforms and is likely to have contributed to the diversity of functional properties within groups of isoforms.
Collapse
Affiliation(s)
- P Gunning
- Oncology Research Unit, New Children's Hospital, Parramatta, NSW, Australia.
| | | | | | | |
Collapse
|
145
|
Soldati T, Schwarz EC, Geissler H. Unconventional myosins at the crossroad of signal transduction and cytoskeleton remodeling. PROTOPLASMA 1999; 209:28-37. [PMID: 18987792 DOI: 10.1007/bf01415698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/1998] [Accepted: 12/09/1998] [Indexed: 05/27/2023]
Abstract
The cytoplasm of eukaryotic cells is a complex milieu and unraveling how its unique cytoarchitecture is achieved and maintained is a central theme in modern cell biology. The actin cytoskeleton is essential for the maintenance of cell shape and locomotion, and also provides tracks for active intracellular transport. Myosins, the actin-dependent motor proteins form a superfamily of at least 15 structural classes and have been identified in a wide variety of organisms, making the presence of actin and myosins a hallmark feature of eukaryotes. Direct connections of myosins to a variety of cellular tasks are now emerging, such as in cytokinesis, phagocytosis, endocytosis, polarized secretion and exocytosis, axonal transport. Recent studies reveal that myosins also play an essential role in many aspects of signal transduction and neurosensation.
Collapse
Affiliation(s)
- T Soldati
- Department of Molecular Cell Research, Max-Planck-Institute for Medical Research, Heidelberg, Federal Republic of Germany
| | | | | |
Collapse
|
146
|
Xiao M, Li H, Snyder GE, Cooke R, Yount RG, Selvin PR. Conformational changes between the active-site and regulatory light chain of myosin as determined by luminescence resonance energy transfer: the effect of nucleotides and actin. Proc Natl Acad Sci U S A 1998; 95:15309-14. [PMID: 9860965 PMCID: PMC28039 DOI: 10.1073/pnas.95.26.15309] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myosin is thought to generate movement of actin filaments via a conformational change between its light-chain domain and its catalytic domain that is driven by the binding of nucleotides and actin. To monitor this change, we have measured distances between a gizzard regulatory light chain (Cys 108) and the active site (near or at Trp 130) of skeletal myosin subfragment 1 (S1) by using luminescence resonance energy transfer and a photoaffinity ATP-lanthanide analog. The technique allows relatively long distances to be measured, and the label enables site-specific attachment at the active-site with only modest affect on myosin's enzymology. The distance between these sites is 66.8 +/- 2.3 A when the nucleotide is ADP and is unchanged on binding to actin. The distance decreases slightly with ADP-BeF3, (-1.6 +/- 0.3 A) and more significantly with ADP-AlF4 (-4.6 +/- 0.2 A). During steady-state hydrolysis of ATP, the distance is temperature-dependent, becoming shorter as temperature increases and the complex with ADP.Pi is favored over that with ATP. We conclude that the distance between the active site and the light chain varies as Acto-S1-ADP approximately S1-ADP > S1-ADP-BeF3 > S1-ADP-AlF4 approximately S1-ADP-Pi and that S1-ATP > S1-ADP-Pi. The changes in distance are consistent with a substantial rotation of the light-chain binding domain of skeletal S1 between the prepowerstroke state, simulated by S1-ADP-AlF4, and the post-powerstroke state, simulated by acto-S1-ADP.
Collapse
Affiliation(s)
- M Xiao
- Physics Department and Biophysics Center, University of Illinois, Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
147
|
Buss F, Kendrick-Jones J, Lionne C, Knight AE, Côté GP, Paul Luzio J. The localization of myosin VI at the golgi complex and leading edge of fibroblasts and its phosphorylation and recruitment into membrane ruffles of A431 cells after growth factor stimulation. J Biophys Biochem Cytol 1998; 143:1535-45. [PMID: 9852149 PMCID: PMC2132970 DOI: 10.1083/jcb.143.6.1535] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Myosin VI is an unconventional myosin that may play a role in vesicular membrane traffic through actin rich regions of the cytoplasm in eukaryotic cells. In this study we have cloned and sequenced a cDNA encoding a chicken intestinal brush border myosin VI. Polyclonal antisera were raised to bacterially expressed fragments of this myosin VI. The affinity purified antibodies were highly specific for myosin VI by immunoblotting and immunoprecipitation and were used to study the localization of the protein by immunofluorescence and immunoelectron microscopy. It was found that in NRK and A431 cells, myosin VI was associated with both the Golgi complex and the leading, ruffling edge of the cell as well as being present in a cytosolic pool. In A431 cells in which cell surface ruffling was stimulated by EGF, myosin VI was phosphorylated and recruited into the newly formed ruffles along with ezrin and myosin V. In vitro experiments suggested that a p21-activated kinase (PAK) might be the kinase responsible for phosphorylation in the motor domain. These results strongly support a role for myosin VI in membrane traffic on secretory and endocytic pathways.
Collapse
Affiliation(s)
- F Buss
- Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 2QR, United Kingdom.
| | | | | | | | | | | |
Collapse
|
148
|
Langford GM, Molyneaux BJ. Myosin V in the brain: mutations lead to neurological defects. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1998; 28:1-8. [PMID: 9795099 DOI: 10.1016/s0165-0173(98)00020-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- G M Langford
- Department of Biological Sciences, Dartmouth College, 6044 Gilman Laboratory, Hanover, NH 03755-3576, USA.
| | | |
Collapse
|
149
|
Dominguez R, Freyzon Y, Trybus KM, Cohen C. Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell 1998; 94:559-71. [PMID: 9741621 DOI: 10.1016/s0092-8674(00)81598-6] [Citation(s) in RCA: 511] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The crystal structures of an expressed vertebrate smooth muscle myosin motor domain (MD) and a motor domain-essential light chain (ELC) complex (MDE), both with a transition state analog (MgADP x AIF4-) in the active site, have been determined to 2.9 A and 3.5 A resolution, respectively. The MDE structure with an ATP analog (MgADP x BeFx) was also determined to 3.6 A resolution. In all three structures, a domain of the C-terminal region, the "converter," is rotated approximately 70 degrees from that in nucleotide-free skeletal subfragment 1 (S1). We have found that the MDE-BeFx and MDE-AIF4- structures are almost identical, consistent with the fact that they both bind weakly to actin. A comparison of the lever arm positions in MDE-AIF4- and in nucleotide-free skeletal S1 shows that a potential displacement of approximately 10 nm can be achieved during the power stroke.
Collapse
Affiliation(s)
- R Dominguez
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| | | | | | | |
Collapse
|
150
|
Abstract
The assembly of myosin and paramyosin into filaments in muscle has been shown to depend in part on the interactions of regular periodic patches of charge on the surface of the rod regions of these alpha-helical coiled-coil proteins. It has also been known for some time that a relatively small region near the C-terminus of both molecules is critical for both solubility and assembly. This domain appears to function as a modulator of assembly in both proteins. Recently, a specific 29-residue region in the C-terminus of human fast muscle myosin rod has been shown to be essential for filament formation, and this sequence has been shown to be present in other vertebrate and invertebrate myosins. We show here that paramyosin also displays this specific conserved domain. Moreover, we have found that this domain is part of a longer distinctive region in both paramyosin and myosin: this region lacks the periodic variation in charge found in the rest of both coiled coils, has a unique charge profile, a relatively neutral total charge, and a high proportion of large apolar residues in surface positions. These results may be useful in designing site-directed mutagenesis studies to identify the target regions on neighboring molecules which interact with this C-terminal domain and so establish the mechanism of its function.
Collapse
Affiliation(s)
- C Cohen
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South Street (MS-029), Waltham, Massachusetts, 02254-9110, USA.
| | | |
Collapse
|