101
|
Stack D, Neville C, Doyle S. Nonribosomal peptide synthesis in Aspergillus fumigatus and other fungi. MICROBIOLOGY-SGM 2007; 153:1297-1306. [PMID: 17464044 DOI: 10.1099/mic.0.2006/006908-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In fungi, nonribosomal peptide synthetases (NRP synthetases) are large multi-functional enzymes containing adenylation, thiolation (or peptidyl carrier protein, PCP) and condensation domains. These enzymes are often encoded within gene clusters. Multiple NRP synthetase ORFs have also been identified in fungi (14 in Aspergillus fumigatus). LeaA, a methyltransferase, is involved in secondary metabolite gene cluster regulation in Aspergillus spp. The NRP synthetases GliP and FtmA respectively direct the biosynthesis of the toxic metabolites gliotoxin and brevianamide F, a precursor of bioactive prenylated alkaloids. The NRP synthetase Pes1 has been shown to mediate resistance to oxidative stress, and in plant-pathogenic ascomycetes (e.g. Cochliobolus heterostrophus) an NRP synthetase, encoded by the NPS6 gene, significantly contributes to virulence and resistance to oxidative stress. Adenylation (A) domains within NRP synthetases govern the specificity of amino acid incorporation into nonribosomally synthesized peptides. To date there have only been limited demonstrations of A domain specificity (e.g. A. fumigatus GliP and in Beauveria bassiana) in fungi. Indeed, only in silico prediction data are available on A domain specificity of NRP synthetases from most fungi. NRP synthetases are activated by 4'-phosphopantetheinylation of serine residues within PCP domains by 4'-phosphopantetheinyl transferases (4'-PPTases). Coenzyme A acts as the 4'-phosphopantetheine donor, and labelled coenzyme A can be used to affinity-label apo-NRP synthetases. Emerging fungal gene disruption and gene cluster expression strategies, allied to proteomic strategies, are poised to facilitate a greater understanding of the coding potential of NRP synthetases in fungi.
Collapse
Affiliation(s)
- Deirdre Stack
- Department of Biology and National Institute for Cellular Biotechnology, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Claire Neville
- Department of Biology and National Institute for Cellular Biotechnology, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Sean Doyle
- Department of Biology and National Institute for Cellular Biotechnology, National University of Ireland, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
102
|
Naka H, López CS, Crosa JH. Reactivation of the vanchrobactin siderophore system of Vibrio anguillarum by removal of a chromosomal insertion sequence originated in plasmid pJM1 encoding the anguibactin siderophore system. Environ Microbiol 2007; 10:265-77. [PMID: 18005167 DOI: 10.1111/j.1462-2920.2007.01450.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A chromosomal gene cluster encoding vanchrobactin biosynthesis and transport genes was identified in the Vibrio anguillarum serotype O1 strain, 775(pJM1), harbouring the anguibactin biosynthetic genes in the pJM1 plasmid. In this strain only anguibactin is produced as the vanchrobactin chromosome cluster has a RS1 transposition insertion into vabF, one of the vanchrobactin biosynthesis genes. Removal of this RS1 generating 775(pJM1)Delta tnp, still resulted in the detection of only anguibactin in specific bioassays. Surprisingly, when the pJM1 plasmid was not present as in the plasmidless strain H775-3, removal of the RS1 resulted in the detection of only vanchrobactin. These results thus can be interpreted as if presence of the pJM1 plasmid or of anguibactin itself is associated with the lack of detection of the vanchrobactin siderophore in bioassays. As high-performance liquid chromatography (HPLC) and mass spectrometry analysis demonstrated that both vanchrobactin and anguibactin were indeed produced in 775(pJM1)Delta tnp, it is clear that the pJM1-encoded anguibactin siderophore has higher affinity for iron than the vanchrobactin system in strains in which both systems are expressed at the same time. Our results underscore the importance of the anguibactin system in the survival of V. anguillarum 775 under conditions of iron limitation.
Collapse
Affiliation(s)
- Hiroaki Naka
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | |
Collapse
|
103
|
Castonguay R, He W, Chen AY, Khosla C, Cane DE. Stereospecificity of ketoreductase domains of the 6-deoxyerythronolide B synthase. J Am Chem Soc 2007; 129:13758-69. [PMID: 17918944 PMCID: PMC2547127 DOI: 10.1021/ja0753290] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
6-Deoxyerythronolide B synthase (DEBS) is a modular polyketide synthase (PKS) responsible for the biosynthesis of 6-dEB (1), the parent aglycone of the broad spectrum macrolide antibiotic erythromycin. Individual DEBS modules, which contain the catalytic domains necessary for each step of polyketide chain elongation and chemical modification, can be deconstructed into constituent domains. To better understand the intrinsic stereospecificity of the ketoreductase (KR) domains, an in vitro reconstituted system has been developed involving combinations of ketosynthase (KS)-acyl transferase (AT) didomains with acyl-carrier protein (ACP) and KR domains from different DEBS modules. Incubations with (2S,3R)-2-methyl-3-hydroxypentanoic acid N-acetylcysteamine thioester (2) and methylmalonyl-CoA plus NADPH result in formation of a reduced, ACP-bound triketide that is converted to the corresponding triketide lactone 4 by either base- or enzyme-catalyzed hydrolysis/cyclization. A sensitive and robust GC-MS technique has been developed to assign the stereochemistry of the resulting triketide lactones, on the basis of direct comparison with synthetic standards of each of the four possible diasteromers 4a-4d. Using the [KS][AT] didomains from either DEBS module 3 or module 6 in combination with KR domains from modules 2 or 6 gave in all cases exclusively (2R,3S,4R,5R)-3,5-dihydroxy-2,4-dimethyl-n-heptanoic acid-delta-lactone (4a). The same product was also generated by a chimeric module in which [KS3][AT3] was fused to [KR5][ACP5] and the DEBS thioesterase [TE] domain. Reductive quenching of the ACP-bound 2-methyl-3-ketoacyl triketide intermediate with sodium borohydride confirmed that in each case the triketide intermediate carried only an unepimerized d-2-methyl group. The results confirm the predicted stereospecificity of the individual KR domains, while revealing an unexpected configurational stability of the ACP-bound 2-methyl-3-ketoacyl thioester intermediate. The methodology should be applicable to the study of any combination of heterologous [KS][AT] and [KR] domains.
Collapse
Affiliation(s)
- Roselyne Castonguay
- Contribution from the Department of Chemistry, Box H, Brown University, Providence, Rhode Island 02912-9108
| | - Weiguo He
- Contribution from the Department of Chemistry, Box H, Brown University, Providence, Rhode Island 02912-9108
| | - Alice Y. Chen
- Department of Chemical Engineering, Stanford University, Stanford, California 94305
| | - Chaitan Khosla
- Department of Chemical Engineering, Stanford University, Stanford, California 94305
- Department of Chemistry, Stanford University, Stanford, California 94305
- Department of Biochemistry, Stanford University, Stanford, California 94305
| | - David E. Cane
- Contribution from the Department of Chemistry, Box H, Brown University, Providence, Rhode Island 02912-9108
| |
Collapse
|
104
|
Jia L, Tian Y, Tan H. SanT, a bidomain protein, is essential for nikkomycin biosynthesis of Streptomyces ansochromogenes. Biochem Biophys Res Commun 2007; 362:1031-6. [PMID: 17825260 DOI: 10.1016/j.bbrc.2007.08.114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Accepted: 08/17/2007] [Indexed: 10/22/2022]
Abstract
Nikkomycins act as a competitive inhibitor of chitin synthetase and display potent activities against phytopathogenic and human pathogenic fungi. sanT is located in the gene cluster of nikkomycin biosynthesis in Streptomyces ansochromogenes. Sequence analysis revealed that the deduced product of sanT has an unusual domain structure, which consists of an N-terminal acyl carrier protein (ACP) domain and a C-terminal aminotransferase (AMT) domain. Gene disruption and complementation indicated that sanT is essential for nikkomycin biosynthesis. Each domain of SanT was overexpressed in Escherichia coli and then purified. ACP domain is posttranslationally modified with phosphopantetheine (Ppant) prosthetic group at Ser-33. AMT domain catalyzes the transamination of 4-pyridyl-2-oxo-4-hydroxyisovalerate (POHIV), a precursor of peptidyl moiety of nikkomycins, to pyridylhomothreonine (PHT) in vitro. The two domains function independently but both are essential for nikkomycin biosynthesis. The biochemical and genetic evidences suggested that SanT is possibly a bifunctional protein, participating in the biosynthesis of peptidyl moiety and the assembly of nikkomycins.
Collapse
Affiliation(s)
- Lianghui Jia
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Graduate School of Chinese Academy of Sciences, Beijing 100039, China
| | | | | |
Collapse
|
105
|
Homburg S, Oswald E, Hacker J, Dobrindt U. Expression analysis of the colibactin gene cluster coding for a novel polyketide in Escherichia coli. FEMS Microbiol Lett 2007; 275:255-62. [PMID: 17714479 DOI: 10.1111/j.1574-6968.2007.00889.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The recently described hybrid nonribosomal peptide-polyketide colibactin, found in various Escherichia coli strains, invokes a cytopathic effect in HeLa cells upon cocultivation with these bacteria. However, not much is known so far about the transcriptional organization of the colibactin genes (clb) or the regulation of their transcription. Here, the operon structure of the colibactin gene cluster of E. coli strain Nissle 1917 was investigated by means of reverse transcriptase (RT)-PCR and seven transcripts were found of which four are transcribed polycistronically. The polycistrons comprise the genes clbC to clbG, clbI to clbN, clbO to clbP, and clbR to clbA and span 6.3, 23.3, 3.9, and 0.9 kb, respectively. Furthermore, transcript levels for different cultivation conditions were determined by RT-PCR of the whole cluster as well as by luciferase reporter gene assays of the genes clbA, clbB, clbQ, and clbR. RT-PCR revealed an overall increased transcription in shaking cultures as well as of the genes clbA to clbH in general. Luciferase reporter gene fusions indicated an influence of the carbon source on clb gene expression.
Collapse
Affiliation(s)
- Stefan Homburg
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Würzburg, Germany
| | | | | | | |
Collapse
|
106
|
Zhou Z, Lai JR, Walsh CT. Directed evolution of aryl carrier proteins in the enterobactin synthetase. Proc Natl Acad Sci U S A 2007; 104:11621-6. [PMID: 17606920 PMCID: PMC1913867 DOI: 10.1073/pnas.0705122104] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The recognition of carrier proteins by multiple catalytic partners occurs in every cycle of chain elongation in the biosynthesis of fatty acids and of the pharmacologically important polyketide and nonribosomal peptide natural products. To dissect the features of carrier proteins that determine specific recognition at distinct points in assembly lines, we have used the two-module Escherichia coli enterobactin synthetase as a model system. Using an entB knockout strain, we developed a selection for growth on iron-limiting medium to evolve aryl carrier protein domains. The aryl carrier proteins from VibB of Vibrio cholerae vibriobactin and HMWP2 of Yersinia pestis yersiniabactin assembly lines were evolved by random mutagenesis to support growth under selection conditions, yielding a convergent set of mutations. Subsequent in vitro biochemical characterizations with partner enzymes EntE, EntF, and Sfp on the evolved VibB aryl carrier protein revealed a approximately 500-fold improvement in reconstituted enterobactin production activity. Mechanistic characterization identified three distinct specific recognition surfaces of VibBArCP for three catalytic partners in enterobactin biosynthesis. Our results suggest that heterologous carrier protein interactions can be engineered with a small number of mutations given a suitable selection scheme and provide insights for reprogramming nonribosomal peptide biosynthesis.
Collapse
Affiliation(s)
- Zhe Zhou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115
| | - Jonathan R. Lai
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115
| | - Christopher T. Walsh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
107
|
Zhou Z, Cironi P, Lin AJ, Xu Y, Hrvatin S, Golan DE, Silver PA, Walsh CT, Yin J. Genetically encoded short peptide tags for orthogonal protein labeling by Sfp and AcpS phosphopantetheinyl transferases. ACS Chem Biol 2007; 2:337-46. [PMID: 17465518 DOI: 10.1021/cb700054k] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Short peptide tags S6 and A1, each 12 residues in length, were identified from a phage-displayed peptide library as efficient substrates for site-specific protein labeling catalyzed by Sfp and AcpS phosphopantetheinyl transferases (PPTases), respectively. S6 and A1 tags were selected for useful levels of orthogonality in reactivities with the PPTases: the catalytic efficiency, kcat/Km of Sfp-catalyzed S6 serine phosphopantetheinylation was 442-fold greater than that for AcpS. Conversely, the kcat/Km of AcpS-catalyzed A1 labeling was 30-fold higher than that for Sfp-catalyzed A1 labeling. S6 and A1 peptide tags can be fused to N- or C-termini of proteins for orthogonal labeling of target proteins in cell lysates or on live cell surfaces. The development of the orthogonal S6 and A1 tags represents a significant enhancement of PPTase-catalyzed protein labeling, allowing tandem or iterative covalent attachment of small molecules of diverse structures to the target proteins with high efficiency and specificity.
Collapse
Affiliation(s)
- Zhe Zhou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Wenzel SC, Meiser P, Binz TM, Mahmud T, Müller R. Nonribosomal peptide biosynthesis: point mutations and module skipping lead to chemical diversity. Angew Chem Int Ed Engl 2007; 45:2296-301. [PMID: 16506259 DOI: 10.1002/anie.200503737] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Silke C Wenzel
- Pharmaceutical Biotechnology, Saarland University, P.O. Box 151150, 66041 Saarbrücken, Germany
| | | | | | | | | |
Collapse
|
109
|
Donadio S, Monciardini P, Sosio M. Polyketide synthases and nonribosomal peptide synthetases: the emerging view from bacterial genomics. Nat Prod Rep 2007; 24:1073-109. [PMID: 17898898 DOI: 10.1039/b514050c] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A total of 223 complete bacterial genomes are analyzed, with 281 citations, for the presence of genes encoding modular polyketide synthases (PKS) and nonribosomal peptide synthetases (NRPS). We report on the distribution of these systems in different bacterial taxa and, whenever known, the metabolites they synthesize. We also highlight, in the different bacterial lineages, the PKS and NRPS genes and, whenever known, the corresponding products.
Collapse
|
110
|
Mercer AC, Burkart MD. The ubiquitous carrier protein--a window to metabolite biosynthesis. Nat Prod Rep 2007; 24:750-73. [PMID: 17653358 DOI: 10.1039/b603921a] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nature has developed a remarkable strategy to isolate metabolites from the milieu of the cell for chemical modification through the use of carrier proteins. Common to both primary and secondary metabolic pathways, acyl-carrier proteins constitute a conserved protein architecture which mediate the biosynthesis of a variety of metabolic products. Analogies have been made between the carrier protein and solid phase resin for chemical synthesis, as both entities provide a mechanism to separate compounds of interest from complex mixtures for selective chemical modification. However, there is significantly more to the carrier protein than an attachment point. In this review, we aim to systematically characterize the role of carrier proteins in various metabolic pathways and outline their utility in biosynthesis and biotechnology; 185 references are cited.
Collapse
Affiliation(s)
- Andrew C Mercer
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, USA
| | | |
Collapse
|
111
|
Márquez-Fernández O, Trigos A, Ramos-Balderas JL, Viniegra-González G, Deising HB, Aguirre J. Phosphopantetheinyl transferase CfwA/NpgA is required for Aspergillus nidulans secondary metabolism and asexual development. EUKARYOTIC CELL 2007; 6:710-20. [PMID: 17277172 PMCID: PMC1865657 DOI: 10.1128/ec.00362-06] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 01/25/2007] [Indexed: 11/20/2022]
Abstract
Polyketide synthases (PKSs) and/or nonribosomal peptide synthetases (NRPSs) are central components of secondary metabolism in bacteria, plants, and fungi. In filamentous fungi, diverse PKSs and NRPSs participate in the biosynthesis of secondary metabolites such as pigments, antibiotics, siderophores, and mycotoxins. However, many secondary metabolites as well as the enzymes involved in their production are yet to be discovered. Both PKSs and NRPSs require activation by enzyme members of the 4'-phosphopantetheinyl transferase (PPTase) family. Here, we report the isolation and characterization of Aspergillus nidulans strains carrying conditional (cfwA2) and null (DeltacfwA) mutant alleles of the cfwA gene, encoding an essential PPTase. We identify the polyketides shamixanthone, emericellin, and dehydroaustinol as well as the sterols ergosterol, peroxiergosterol, and cerevisterol in extracts from A. nidulans large-scale cultures. The PPTase CfwA/NpgA was required for the production of these polyketide compounds but dispensable for ergosterol and cerevisterol and for fatty acid biosynthesis. The asexual sporulation defects of cfwA, DeltafluG, and DeltatmpA mutants were not rescued by the cfwA-dependent compounds identified here. However, a cfwA2 mutation enhanced the sporulation defects of both DeltatmpA and DeltafluG single mutants, suggesting that unidentified CfwA-dependent PKSs and/or NRPSs are involved in the production of hitherto-unknown compounds required for sporulation. Our results expand the number of known and predicted secondary metabolites requiring CfwA/NpgA for their biosynthesis and, together with the phylogenetic analysis of fungal PPTases, suggest that a single PPTase is responsible for the activation of all PKSs and NRPSs in A. nidulans.
Collapse
Affiliation(s)
- Olivia Márquez-Fernández
- Instituto de Ciencias Básicas, Universidad Veracruzana, Av. Dos Vistas s/n, Carretera Xalapa-Las Trancas, 91000 Veracruz, Xalapa, México
| | | | | | | | | | | |
Collapse
|
112
|
Takahashi H, Kumagai T, Kitani K, Mori M, Matoba Y, Sugiyama M. Cloning and Characterization of a Streptomyces Single Module Type Non-ribosomal Peptide Synthetase Catalyzing a Blue Pigment Synthesis. J Biol Chem 2007; 282:9073-81. [PMID: 17237222 DOI: 10.1074/jbc.m611319200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the present study, we cloned a gene, designated bpsA, which encodes a single module type non-ribosomal peptide synthetase (NRPS) from a D-cycloserine (DCS)-producing Streptomyces lavendulae ATCC11924. A putative oxidation domain is significantly integrated into the adenylation domain of the NRPS, and the condensation domain is absent from the module. When S. lividans was transformed with a plasmid carrying bpsA, the transformed cells produced a blue pigment, suggesting that bpsA is responsible for the blue pigment synthesis. However, to produce the blue pigment in Escherichia coli, the existence of the 4'-phosphopantetheinyl transferase (PPTase) gene from Streptomyces was necessary, in addition to bpsA. The chemical structure of the pigment was determined as 5,5'-diamino-4,4'-dihydroxy-3,3'-diazadiphenoquinone-(2,2'), called indigoidine. The bpsA gene product, designated BPSA, was overproduced in an E. coli host-vector system and purified to homogeneity, demonstrating that the recombinant enzyme prefers L-Gln as a substrate. The in vitro experiment using L-Gln also showed that the blue pigment was formed by the purified BPSA only when the enzyme was phosphopantetheinylated by adding a Streptomyces PPTase purified from E. coli cells. Each site-directed mutagenesis experiment of Lys(598), Tyr(601), Ser(603), and Tyr(608), which are seen in the oxidation domain of BPSA, suggests that these residues are essential for the binding of FMN to the protein and the synthesis of the blue pigment.
Collapse
Affiliation(s)
- Hitoshi Takahashi
- Department of Molecular Microbiology and Biotechnology, Graduate School of Biomedical Sciences, Hiroshima University, Japan
| | | | | | | | | | | |
Collapse
|
113
|
Wenzel SC, Müller R. Myxobacterial natural product assembly lines: fascinating examples of curious biochemistry. Nat Prod Rep 2007; 24:1211-24. [DOI: 10.1039/b706416k] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
114
|
Zhou Z, Lai JR, Walsh CT. Interdomain communication between the thiolation and thioesterase domains of EntF explored by combinatorial mutagenesis and selection. ACTA ACUST UNITED AC 2006; 13:869-79. [PMID: 16931336 DOI: 10.1016/j.chembiol.2006.06.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 06/08/2006] [Accepted: 06/15/2006] [Indexed: 11/16/2022]
Abstract
Thiolation (T) domains are protein way stations in natural product assembly lines. In the enterobactin synthetase, the T domain on EntF is recognized in cis by its catalytic partners: the EntF condensation (C), adenylation (A), and thioesterase (TE) domains. To assess surface features of the EntF T domain recognized by C, A, and TE, regions of the EntF T domain were submitted to shotgun alanine scanning and Ent production selection, which revealed residues that could not be substituted by Ala. EntF mutants bearing Ala in such positions were assayed in vitro for Ent production with EntEB, and for A-T, C-T, and T-TE communications. We concluded that G1027A and M1030A are specifically defective in acyl transfer from T to TE. These residues define an interaction surface between these two in cis domains in an NRPS module.
Collapse
Affiliation(s)
- Zhe Zhou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
115
|
Huang Y, Wendt-Pienkowski E, Shen B. A Dedicated Phosphopantetheinyl Transferase for the Fredericamycin Polyketide Synthase from Streptomyces griseus. J Biol Chem 2006; 281:29660-8. [PMID: 16895912 DOI: 10.1074/jbc.m604895200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polyketide synthases cannot be functional unless their apo-acyl carrier proteins (apo-ACPs) are post-translationally modified by covalent attachment of the 4'-phosphopantetheine group to the highly conserved serine residue, and this reaction is catalyzed by phosphopantetheinyl transferases (PPTases). Cloning and sequence analysis of the 33-kb fredericamycin (FDM) biosynthetic gene cluster from Streptomyces griseus revealed fdmW, whose deduced gene product showed significant sequence homology to known PPTases. Biochemical characterization of FdmW in vitro confirmed that it is a PPTase. Inactivation of fdmW resulted in approximately 93% reduction of FDM production, and complementation of the fdmW::aac (3)IV mutant by expressing fdmW in trans restored FDM production to a level comparable with that of the wild-type strain. Although FdmW can phosphopantetheinylate various ACPs, it prefers its cognate substrate, the FdmH ACP, with a K(m) of 5.8 microM and a k(cat)/K(m) of 8.1 microM(-1) x min(-1), to heterologous ACPs, such as the TcmM ACP with a K(m) of 1.0 x 10(2) microM and a k(cat) /K(m) of 0.6 microM(-1) x min(-1). These findings suggest that FdmW is specific for FDM biosynthesis. FdmW therefore represents the first holo-ACP synthase-type PPTase identified from an aromatic polyketide biosynthetic gene cluster.
Collapse
Affiliation(s)
- Yong Huang
- Division of Pharmaceutical Sciences, University of Wisconsin, Madison, Wisconsin 53705, USA
| | | | | |
Collapse
|
116
|
Bihlmaier C, Welle E, Hofmann C, Welzel K, Vente A, Breitling E, Müller M, Glaser S, Bechthold A. Biosynthetic gene cluster for the polyenoyltetramic acid alpha-lipomycin. Antimicrob Agents Chemother 2006; 50:2113-21. [PMID: 16723573 PMCID: PMC1479109 DOI: 10.1128/aac.00007-06] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gram-positive bacterium Streptomyces aureofaciens Tü117 produces the acyclic polyene antibiotic alpha-lipomycin. The entire biosynthetic gene cluster (lip gene cluster) was cloned and characterized. DNA sequence analysis of a 74-kb region revealed the presence of 28 complete open reading frames (ORFs), 22 of them belonging to the biosynthetic gene cluster. Central to the cluster is a polyketide synthase locus that encodes an eight-module system comprised of four multifunctional proteins. In addition, one ORF shows homology to those for nonribosomal peptide synthetases, indicating that alpha-lipomycin belongs to the classification of hybrid peptide-polyketide natural products. Furthermore, the lip cluster includes genes responsible for the formation and attachment of d-digitoxose as well as ORFs that resemble those for putative regulatory and export functions. We generated biosynthetic mutants by insertional gene inactivation. By analysis of culture extracts of these mutants, we could prove that, indeed, the genes involved in the biosynthesis of lipomycin had been cloned, and additionally we gained insight into an unusual biosynthesis pathway.
Collapse
Affiliation(s)
- C Bihlmaier
- Albert-Ludwigs-Universität Freiburg, Institut für Pharmazeutische Wissenschaften, Pharmazeutische Biologie und Biotechnologie, Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Abstract
Cyanobacterial secondary metabolites have attracted increasing scientific interest due to bioactivity of many compounds in various test systems. Among the known structures, oligopeptides are often found with many congeners sharing conserved substructures, while being highly variable in others. A major part of known oligopeptides are of non-ribosomal origin and can be grouped into classes with conserved structural properties. Thus, the overall structural diversity of cyanobacterial oligopeptides only seemingly suggests an equally high diversity of biosynthetic pathways and respective genes. For each class of peptides, some of which have been found in all major branches of the cyanobacterial evolutionary tree, homologous synthetases and genes can be inferred. This implies that non-ribosomal peptide synthetase genes are a very ancient part of the cyanobacterial genome and presumably have evolved by recombination and duplication events to reach the present structural diversity of cyanobacterial oligopeptides. In addition, peptide synthetases would appear to be an essential part of the cyanobacterial evolution and physiology. The present review presents an overview of the biosynthesis of cyanobacterial peptides and corresponding gene clusters, the structural diversity of structural types and structural variations within peptide classes, and implications for the evolution and plasticity of biosynthetic genes and the potential function of cyanobacterial peptides.
Collapse
Affiliation(s)
- Martin Welker
- Technische Universität Berlin, Institut für Chemie, AG Biochemie, Berlin, Germany.
| | | |
Collapse
|
118
|
Yin J, Lin AJ, Golan DE, Walsh CT. Site-specific protein labeling by Sfp phosphopantetheinyl transferase. Nat Protoc 2006; 1:280-5. [PMID: 17406245 DOI: 10.1038/nprot.2006.43] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sfp phosphopantetheinyl transferase covalently attaches small-molecule probes including biotin and various organic fluorophores to a specific serine residue in the peptidyl carrier protein (PCP) or a short 11-residue peptide tag ybbR through a phosphopantetheinyl linker. We describe here a protocol for site-specific protein labeling by Sfp-catalyzed protein post-translational modification that includes (i) expression and purification of Sfp, (ii) synthesis of small-molecule probe-CoA conjugates, (iii) construction of target protein fusions with PCP or the ybbR tag, (iv) labeling PCP- or ybbR-tagged target protein fusions in cell lysates and on live cell surfaces and (v) imaging fluorophore-labeled cell surface receptors by fluorescence microscopy. To follow this protocol, we advise that you allow 3 d for the expression and purification of Sfp phosphopantetheinyl transferase, 1 d for the synthesis and purification of the small-molecule probe-CoA conjugates as the substrates of Sfp, 3 d for the cloning of target protein genes as fusions to the PCP or the ybbR tag in the appropriate plasmids and another 3 d for transfecting cell lines with the plasmids and the expression of PCP- or ybbR-tagged proteins. Labeling of the PCP- or the ybbR-tagged proteins in cell lysates or on cell surfaces should require only 15-30 min.
Collapse
Affiliation(s)
- Jun Yin
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
119
|
Watkins HA, Baker EN. Structural and functional analysis of Rv3214 from Mycobacterium tuberculosis, a protein with conflicting functional annotations, leads to its characterization as a phosphatase. J Bacteriol 2006; 188:3589-99. [PMID: 16672613 PMCID: PMC1482868 DOI: 10.1128/jb.188.10.3589-3599.2006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The availability of complete genome sequences has highlighted the problems of functional annotation of the many gene products that have only limited sequence similarity with proteins of known function. The predicted protein encoded by open reading frame Rv3214 from the Mycobacterium tuberculosis H37Rv genome was originally annotated as EntD through sequence similarity with the Escherichia coli EntD, a 4'-phosphopantetheinyl transferase implicated in siderophore biosynthesis. An alternative annotation, based on slightly higher sequence identity, grouped Rv3214 with proteins of the cofactor-dependent phosphoglycerate mutase (dPGM) family. The crystal structure of this protein has been solved by single-wavelength anomalous dispersion methods and refined at 2.07-Angstroms resolution (R = 0.229; R(free) = 0.245). The protein is dimeric, with a monomer fold corresponding to the classical dPGM alpha/beta structure, albeit with some variations. Closer comparisons of structure and sequence indicate that it most closely corresponds with a broad-spectrum phosphatase subfamily within the dPGM superfamily. This functional annotation has been confirmed by biochemical assays which show negligible mutase activity but acid phosphatase activity with a pH optimum of 5.4 and suggests that Rv3214 may be important for mycobacterial phosphate metabolism in vivo. Despite its weak sequence similarity with the 4'-phosphopantetheinyl transferases (EntD homologues), there is little evidence to support this function.
Collapse
Affiliation(s)
- Harriet A Watkins
- Centre for Molecular Biodiscovery and School of Biological Sciences, University of Auckland, New Zealand
| | | |
Collapse
|
120
|
Chalut C, Botella L, de Sousa-D'Auria C, Houssin C, Guilhot C. The nonredundant roles of two 4'-phosphopantetheinyl transferases in vital processes of Mycobacteria. Proc Natl Acad Sci U S A 2006; 103:8511-6. [PMID: 16709676 PMCID: PMC1570105 DOI: 10.1073/pnas.0511129103] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mycobacterium tuberculosis contains >20 enzymes that require activation by transfer of the 4'-phosphopantetheine moiety of CoA onto a conserved serine residue, a posttranslational modification catalyzed by 4'-phosphopantetheinyl transferases (PPTases). The modified proteins are involved in key metabolic processes such as cell envelope biogenesis and the production of virulence factors. We show that two PPTases conserved in all Mycobacterium spp. and in related genera activate two different subsets of proteins and are not functionally redundant. One enzyme, AcpS, activates the two fatty acid synthase systems of mycobacteria, whereas the other PPTase, PptT, acts on type-I polyketide synthases and nonribosomal peptide synthases, both of which are involved in the biosynthesis of virulence factors. We demonstrate that both PPTases are essential for Mycobacterium smegmatis viability and that PptT is required for the survival of Mycobacterium bovis bacillus Calmette-Guérin. These enzymes are thus central to the biology of mycobacteria and for mycobacterial pathogenesis and represent promising targets for new antituberculosis drugs.
Collapse
Affiliation(s)
- Christian Chalut
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique and Université P. Sabatier (Unité Mixte de Recherche 5089), 205 Route de Narbonne, 31077 Toulouse Cedex, France.
| | | | | | | | | |
Collapse
|
121
|
Lai JR, Fischbach MA, Liu DR, Walsh CT. A protein interaction surface in nonribosomal peptide synthesis mapped by combinatorial mutagenesis and selection. Proc Natl Acad Sci U S A 2006; 103:5314-9. [PMID: 16567620 PMCID: PMC1459352 DOI: 10.1073/pnas.0601038103] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nonribosomal peptide synthetases (NRPSs) and polyketide synthases are large, multidomain enzymes that biosynthesize a number of pharmaceutically important natural products. The recognition of biosynthetic intermediates, displayed via covalent attachment to carrier proteins, by catalytic domains is critical for NRPS and polyketide synthase function. We report the use of combinatorial mutagenesis coupled with in vivo selection for the production of the Escherichia coli NRPS product enterobactin to map the surface of the aryl carrier protein (ArCP) domain of EntB that interacts with the downstream elongation module EntF. Two libraries spanning the predicted helix 2 and loop 2/helix 3 of EntB-ArCP were generated by shotgun alanine scanning and selected for their ability to support enterobactin production. From the surviving pools, we identified several hydrophobic residues (M249, F264, and A268) that were highly conserved. These residues cluster near the phosphopantetheinylated serine in a structural model, and two of these positions are in the predicted helix 3 region. Subsequent in vitro studies are consistent with the hypothesis that these residues form a surface on EntB required for interaction with EntF. These results suggest that helix 3 is a major recognition element in EntB-ArCP and demonstrate the utility of selection-based approaches for studying NRPS biosynthesis.
Collapse
Affiliation(s)
- Jonathan R. Lai
- *Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115; and
| | - Michael A. Fischbach
- *Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115; and
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138
| | - David R. Liu
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138
| | - Christopher T. Walsh
- *Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
122
|
Wenzel SC, Meiser P, Binz TM, Mahmud T, Müller R. Nichtribosomale Peptidbiosynthese: Punktmutationen und Überspringen eines Moduls führen zu chemischer Diversität. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200503737] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
123
|
Chen AY, Schnarr NA, Kim CY, Cane DE, Khosla C. Extender unit and acyl carrier protein specificity of ketosynthase domains of the 6-deoxyerythronolide B synthase. J Am Chem Soc 2006; 128:3067-74. [PMID: 16506788 PMCID: PMC2532788 DOI: 10.1021/ja058093d] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polyketide synthases (PKSs) catalyze the production of numerous biologically important natural products via repeated decarboxylative condensation reactions. Modular PKSs, such as the 6-deoxyerythronolide B synthase (DEBS), consist of multiple catalytic modules, each containing a unique set of covalently linked catalytic domains. To better understand the engineering opportunities of these assembly lines, the extender unit and acyl carrier protein (ACP) specificity of keto synthase (KS) domains from modules 3 and 6 of DEBS were analyzed. These studies were undertaken with a newly developed didomain [KS][AT] construct, which lacks its own ACP domain and can therefore be interrogated with homologous or heterologous ACP or acyl-ACP substrates. By substituting the natural methylmalonyl extender unit with a malonyl group, a modest role was demonstrated for the KS in recognition of the nucleophilic substrate. The KS domain from module 3 of DEBS was found to exhibit a distinct ACP-recognition profile from the KS domain of module 6. On the basis of the above kinetic insights, a hybrid module was constructed ([KS3][AT3][KR5][ACP5][TE]) which displayed substrate recognition and elongation capabilities consistent with the natural module 3 protein. Unlike module 3, however, which lacks a ketoreductase (KR) domain, the hybrid module was able to catalyze reduction of the beta-ketothioester product of chain elongation. The high expression level and functionality of this hybrid protein demonstrates the usefulness of kinetic analysis for hybrid module design.
Collapse
Affiliation(s)
- Alice Y Chen
- Departments of Chemical Engineering, Chemistry, and Biochemistry, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
124
|
Perlova O, Gerth K, Kaiser O, Hans A, Müller R. Identification and analysis of the chivosazol biosynthetic gene cluster from the myxobacterial model strain Sorangium cellulosum So ce56. J Biotechnol 2006; 121:174-91. [PMID: 16313990 DOI: 10.1016/j.jbiotec.2005.10.011] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 09/22/2005] [Accepted: 10/10/2005] [Indexed: 11/17/2022]
Abstract
Myxobacteria belonging to the genus Sorangium are known to produce a variety of biologically active secondary metabolites. Chivosazol is a macrocyclic antibiotic active against yeast, filamentous fungi and especially against mammalian cells. The compound specifically destroys the actin skeleton of eucaryotic cells and does not show activity against bacteria. Chivosazol contains an oxazole ring and a glycosidically bound 6-deoxyglucose (except for chivosazol F). In this paper we describe the biosynthetic gene cluster that directs chivosazol biosynthesis in the model strain Sorangium cellulosum So ce56. This biosynthetic gene cluster spans 92 kbp on the chromosome and contains four polyketide synthase genes and one hybrid polyketide synthase/nonribosomal peptide synthetase gene. An additional gene encoding a protein with similarity to different methyltransferases and presumably involved in post-polyketide modification was identified downstream of the core biosynthetic gene cluster. The chivosazol biosynthetic gene locus belongs to the recently identified and rapidly growing class of trans-acyltransferase polyketide synthases, which do not contain acyltransferase domains integrated into the multimodular megasynthetases.
Collapse
Affiliation(s)
- Olena Perlova
- Pharmaceutical Biotechnology, Saarland University, P.O. Box 151150, D-66041 Saarbrücken, Germany
| | | | | | | | | |
Collapse
|
125
|
Walsh CT, Garneau-Tsodikova S, Howard-Jones AR. Biological formation of pyrroles: Nature's logic and enzymatic machinery. Nat Prod Rep 2006; 23:517-31. [PMID: 16874387 DOI: 10.1039/b605245m] [Citation(s) in RCA: 360] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Christopher T Walsh
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
126
|
Seidle HF, Couch RD, Parry RJ. Characterization of a nonspecific phosphopantetheinyl transferase from Pseudomonas syringae pv. syringae FF5. Arch Biochem Biophys 2005; 446:167-74. [PMID: 16423321 DOI: 10.1016/j.abb.2005.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 12/09/2005] [Accepted: 12/13/2005] [Indexed: 11/28/2022]
Abstract
The 4'-phosphopantetheinyl transferases (PPTases) catalyze the transfer of a 4'-phosphopantetheine moiety from coenzyme A to phosphopantetheine-dependent carrier proteins. The carrier proteins (CPs) are required for the biosynthesis of peptides synthesized by nonribosomal peptide synthases and the biosynthesis of fatty acids and polyketides. A single PPTase (PcpS) is present in the pathogenic bacterium Pseudomonas aeruginosa. Several pathovars of Pseudomonas syringae produce the chlorosis-inducing phytotoxin coronatine. Structural genes for coronatine biosynthesis include two ACPs, two ACP domains, and one peptidyl carrier protein (PCP) domain. To gain insight into factors affecting coronatine biosynthesis, the PPTase of P. syringae pv. syringae FF5 has been investigated. A single PPTase gene (pspT) was amplified from this organism by PCR. The translation product PspT exhibited 62% identity to PcpS as well as higher levels of identity to other, uncharacterized Pseudomonad PPTases. PspT was overproduced in soluble form in Escherichia coli and its enzymatic properties were compared with those of PcpS. PspT exhibited broad substrate specificity, and it displayed the highest activity with a PCP domain. In contrast, the most efficient substrates for PcpS are CPs from primary metabolism. These results indicate phosphopantetheinyl transferases from different Pseudomonas sp. may vary significantly in their enzymatic properties.
Collapse
Affiliation(s)
- Heather F Seidle
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | | | | |
Collapse
|
127
|
Wu J, Zaleski TJ, Valenzano C, Khosla C, Cane DE. Polyketide Double Bond Biosynthesis. Mechanistic Analysis of the Dehydratase-Containing Module 2 of the Picromycin/Methymycin Polyketide Synthase. J Am Chem Soc 2005; 127:17393-404. [PMID: 16332089 PMCID: PMC2533740 DOI: 10.1021/ja055672+] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Picromycin/methymycin synthase (PICS) is a modular polyketide synthase (PKS) that is responsible for the biosynthesis of both 10-deoxymethynolide (1) and narbonolide (2), the parent 12- and 14-membered aglycone precursors of the macrolide antibiotics methymycin and picromycin, respectively. PICS module 2 is a dehydratase (DH)-containing module that catalyzes the formation of the unsaturated triketide intermediate using malonyl-CoA as the chain extension substrate. Recombinant PICS module 2+TE, with the PICS thioesterase domain appended to the C-terminus to allow release of polyketide products, was expressed in Escherichia coli. Purified PICS module 2+TE converted malonyl-CoA and 4, the N-acetylcysteamine thioester of (2S,3R)-2-methyl-3-hydroxypentanoic acid, to a 1:2 mixture of the triketide acid (4S,5R)-4-methyl-5-hydroxy-2-heptenoic acid (5) and (3S,4S,5R)-3,5-dihydroxy-4-methyl-n-heptanoic acid-delta-lactone (10) with a combined kcat of 0.6 min(-1). The triketide lactone 10 is formed by thioesterase-catalyzed cyclization of the corresponding d-3-hydroxyacyl-SACP intermediate, a reaction which competes with dehydration catalyzed by the dehydratase domain. PICS module 2+TE showed a strong preference for the syn-diketide-SNAC 4, with a 20-fold greater kcat/K(m) than the anti-(2S,3S)-diketide-SNAC 14, and a 40-fold advantage over the syn-(2R,3S)-diketide-SNAC 13. PICS module 2(DH(0))+TE, with an inactivated DH domain, produced exclusively 10, while three PICS module 2(KR(0))+TE mutants, with inactivated KR domains, produced exclusively or predominantly the unreduced triketide ketolactone, (4S,5R)-3-oxo-4-methyl-5-hydroxy-n-heptanoic acid-delta-lactone (7). These studies establish for the first time the structure and stereochemistry of the intermediates of a polyketide chain elongation cycle catalyzed by a DH-containing module, while confirming the importance of key active site residues in both KR and DH domains.
Collapse
Affiliation(s)
- Jiaquan Wu
- Department of Chemistry, Box H, Brown University, Providence, Rhode Island 02912-9108
| | - Toby J. Zaleski
- Department of Chemistry, Box H, Brown University, Providence, Rhode Island 02912-9108
| | - Chiara Valenzano
- Department of Chemistry, Box H, Brown University, Providence, Rhode Island 02912-9108
| | - Chaitan Khosla
- Departments of Chemical Engineering, Chemistry and Biochemistry, Stanford University, Stanford, CA 94305
| | - David E. Cane
- Department of Chemistry, Box H, Brown University, Providence, Rhode Island 02912-9108
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
128
|
Bode HB, Müller R. Der Einfluss bakterieller Genomik auf die Naturstoff-Forschung. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200501080] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
129
|
Abstract
"There's life in the old dog yet!" This adage also holds true for natural product research. After the era of natural products was declared to be over, because of the introduction of combinatorial synthesis techniques, natural product research has taken a surprising turn back towards a major field of pharmaceutical research. Current challenges, such as emerging multidrug-resistant bacteria, might be overcome by developments which combine genomic knowledge with applied biology and chemistry to identify, produce, and alter the structure of new lead compounds. Significant biological activity is reported much less frequently for synthetic compounds, a fact reflected in the large proportion of natural products and their derivatives in clinical use. This Review describes the impact of microbial genomics on natural products research, in particularly the search for new lead structures and their optimization. The limitations of this research are also discussed, thus allowing a look into future developments.
Collapse
Affiliation(s)
- Helge B Bode
- Institut für Pharmazeutische Biotechnologie, Universität des Saarlandes, Postfach 151150, 66041 Saarbrücken, Germany
| | | |
Collapse
|
130
|
Volokhan O, Sletta H, Sekurova ON, Ellingsen TE, Zotchev SB. An unexpected role for the putative 4'-phosphopantetheinyl transferase-encoding gene nysF in the regulation of nystatin biosynthesis in Streptomyces noursei ATCC 11455. FEMS Microbiol Lett 2005; 249:57-64. [PMID: 15990252 DOI: 10.1016/j.femsle.2005.05.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 05/31/2005] [Accepted: 05/31/2005] [Indexed: 11/19/2022] Open
Abstract
The nysF gene encoding a putative 4'-phosphopantetheinyl transferase (PPTase) is located at the 5' border of the nystatin biosynthesis gene cluster in Streptomyces noursei. PPTases carry out post-translational modification of the acyl carrier protein domains on the polyketide synthases (PKS) required for their full functionality, and hence NysF was assumed to be involved in similar modification of the nystatin PKS. At the same time, DNA sequence analysis of the genomic region adjacent to the nysF gene revealed a gene cluster for a putative lantibiotic biosynthesis. This finding created some uncertainty regarding which gene cluster nysF functionally belongs to. To resolve this ambiguity, nysF was inactivated by both insertion of a kanamycin (Km) resistance marker into its coding region, and by in-frame deletion. Surprisingly, the nystatin production in both the nysF::Km(R) and DeltanysF mutants increased by ca. 60% compared to the wild-type, suggesting a negative role of nysF in the nystatin biosynthesis. The expression of xylE reporter gene under control of different promoters from the nystatin gene cluster in the DeltanysF mutant was studied. The data obtained clearly show enhanced expression of xylE from the promoters of several structural and regulatory genes in the DeltanysF mutant, implying that NysF negatively regulates the nystatin biosynthesis.
Collapse
Affiliation(s)
- Olga Volokhan
- Department of Biotechnology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | | | | | | | | |
Collapse
|
131
|
Thomas J, Cronan JE. The enigmatic acyl carrier protein phosphodiesterase of Escherichia coli: genetic and enzymological characterization. J Biol Chem 2005; 280:34675-83. [PMID: 16107329 DOI: 10.1074/jbc.m505736200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The acyl carrier proteins (ACPs) of fatty acid synthesis are functional only when modified by attachment of the prosthetic group, 4'-phosphopantetheine (4'-PP), which is transferred from CoA to the hydroxyl group of a specific serine residue. Almost 40 years ago Vagelos and Larrabee reported an enzyme from Escherichia coli that removed the prosthetic group. We report that this enzyme, called ACP hydrolyase or ACP phosphodiesterase, is encoded by a gene (yajB) of previously unknown function that we have renamed acpH. A mutant E. coli strain having a total deletion of the acpH gene has been constructed that grows normally, showing that phosphodiesterase activity is not essential for growth, although it is required for turnover of the ACP prosthetic group in vivo. ACP phosphodiesterase (AcpH) has been purified to homogeneity for the first time and is a soluble protein that very readily aggregates upon overexpression in vivo or concentration in vitro. The purified enzyme has been shown to cleave acyl-ACP species with acyl chains of 6-16 carbon atoms and is active on some, but not all, non-native ACP species tested. Possible physiological roles for AcpH are discussed.
Collapse
Affiliation(s)
- Jacob Thomas
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
132
|
Long PF, Dunlap WC, Battershill CN, Jaspars M. Shotgun Cloning and Heterologous Expression of the Patellamide Gene Cluster as a Strategy to Achieving Sustained Metabolite Production. Chembiochem 2005; 6:1760-5. [PMID: 15988766 DOI: 10.1002/cbic.200500210] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Paul F Long
- School of Pharmacy, University of London, 29/39 Brunswick Square, London WC1N 1AX, UK
| | | | | | | |
Collapse
|
133
|
Sieber SA, Marahiel MA. Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. Chem Rev 2005; 105:715-38. [PMID: 15700962 DOI: 10.1021/cr0301191] [Citation(s) in RCA: 446] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stephan A Sieber
- Philipps-Universität Marburg, Fachbereich Chemie/Biochemie, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | | |
Collapse
|
134
|
Shen B, Chen M, Cheng Y, Du L, Edwards DJ, George NP, Huang Y, Oh T, Sanchez C, Tang G, Wendt-Pienkowski E, Yi F. Prerequisites for combinatorial biosynthesis: evolution of hybrid NRPS/PKS gene clusters. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2005:107-26. [PMID: 15645718 DOI: 10.1007/3-540-27055-8_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- B Shen
- Division of Pharmaceutical Sciences and Department of Chemistry, University of Wisconsin-Madison, WI 53705, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Abstract
Bacteria and fungi use large multifunctional enzymes, the so-called nonribosomal peptide synthetases (NRPSs), to produce peptides of broad structural and biological activity. Biochemical studies have contributed substantially to the understanding of the key principles of these modular enzymes that can draw on a much larger number of catalytic tools for the incorporation of unusual features compared with the ribosomal system. Several crystal structures of NRPS-domains have yielded deep insight into the catalytic mechanisms involved and have led to a better prediction of the products assembled and to the construction of hybrid enzymes. In addition to the structure-function relationship of the core- and tailoring-domains of NRPSs, which is the main focus of this review, different biosynthetic strategies and essential enzymes for posttranslational modification and editing are discussed.
Collapse
Affiliation(s)
- Robert Finking
- Philipps-Universität Marburg, Fachbereich Chemie/Biochemie, Hans-Meerwein-Strasse, 35043 Marburg, Germany.
| | | |
Collapse
|
136
|
Yin J, Liu F, Schinke M, Daly C, Walsh CT. Phagemid encoded small molecules for high throughput screening of chemical libraries. J Am Chem Soc 2004; 126:13570-1. [PMID: 15493886 DOI: 10.1021/ja045127t] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new strategy for monovalently displaying small molecules on phage surfaces was developed and applied to high throughput screening for molecules with high binding affinity to the target protein. Peptidyl carrier protein (PCP) excised from nonribosomal peptide synthetase was monovalently displayed on the surface of M13 phage as pIII fusion proteins. Small molecules of diverse structures were conjugated to coenzyme A (CoA) and then covalently attached to the phage displayed PCP by Sfp phosphopantetheinyl transferase. Because Sfp is broadly promiscuous for the transfer of small molecule linked phosphopantetheinyl moieties to apo PCP domains, this approach will enable displaying libraries of small molecules on phage surfaces. Unique 20-base-pair (bp) DNA sequences were also incorporated into the phagemid DNA so that each compound displayed on the phage surface was encoded by a DNA bar code encapsulated inside the phage coat protein. Single round selection of phage displayed small molecules achieved more than 2000-fold enrichment of small molecules with nM binding affinity to the target protein. The selection process is further accelerated by the use of DNA decoding arrays for identifying the selected small molecules.
Collapse
Affiliation(s)
- Jun Yin
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
137
|
Liu Q, Ma Y, Zhou L, Zhang Y. Gene cloning, expression and functional characterization of a phosphopantetheinyl transferase from Vibrio anguillarum serotype O1. Arch Microbiol 2004; 183:37-44. [PMID: 15551118 DOI: 10.1007/s00203-004-0745-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Revised: 10/15/2004] [Accepted: 10/15/2004] [Indexed: 11/26/2022]
Abstract
Phosphopantetheinyl transferases (PPTases) catalyze the essential post-translational activation of carrier proteins from fatty acid synthetases (FASs) in primary metabolism and polyketide synthetases (PKSs) and non-ribosomal polypeptide synthetases (NRPSs) in secondary metabolism. Bacteria typically harbor one PPTase specific for carrier proteins of primary metabolism (ACPS-type PPTases) and at least one capable of modifying carrier proteins involved in secondary metabolism (Sfp-type PPTases). Anguibactin, an important virulent factor in Vibrio anguillarum serotype O1, has been reported to be synthesized by a nonribosomal peptide synthetases (NRPS) system encoded on a 65-kb virulent plasmid pJM1 from strain 775 of V. anguillarum serotype O1, and the PPTase, necessary for the activation of the anguibactin-NRPS, is therefore expected to lie on the pJM1 plasmid. In this work, a putative PPTase gene, angD, was first identified on pEIB1 plasmid (a pJM1-like plasmid) from a virulent strain MVM425 of V. anguillarum serotype O1. A recombinant clone carrying complete angD was able to complement an Escherichia coli entD mutant deficient in Sfp-type PPTase. angD was overexpressed in E. coli and the resultant protein, AngD, was purified. Simultaneously, two carrier proteins involved in anguibactin-NRPS, ArCP and PCP, were overproduced in E. coli and purified. The purified AngD, PCP and ArCP were used to establish an in vitro enzyme reaction, and the PPTase activity of AngD was proved through HPLC analysis to detect the conversion of inactive carrier proteins to active carrier proteins in the reaction mixture. Co-expression of AngD with PCP or ArCP showed that AngD functioned well as a PPTase in vivo in E. coli, modifying PCP and ArCP completely.
Collapse
Affiliation(s)
- Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | | | | | | |
Collapse
|
138
|
Abstract
A rapid and stoichiometric method for the synthesis of analogues of coenzyme A is described. The method links the enzymes pantothenate kinase, phosphopantotheine adenylyltransferase, and dephosphocoenzyme A kinase in vitro to generate a variety of CoA analogues from chemically synthesized pantothenic acid derivatives. The Escherichia coli CoA biosynthetic enzymes were overexpressed as hexa-histidine-tagged proteins, providing an abundant source of pure active catalysts for the reaction. The synthesis of five novel CoA derivatives is reported and the method is shown to be robust and tolerant of a number of different pantothenic acid structures, which indicates that the procedure should be widely applicable.
Collapse
Affiliation(s)
- Ishac Nazi
- Antimicrobial Research Centre, Department of Biochemistry, McMaster University, Ontario, Canada L8N 3Z5
| | | | | |
Collapse
|
139
|
Yin J, Liu F, Li X, Walsh CT. Labeling proteins with small molecules by site-specific posttranslational modification. J Am Chem Soc 2004; 126:7754-5. [PMID: 15212504 DOI: 10.1021/ja047749k] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report here the development of a general strategy for site-specific labeling of proteins with small molecules by posttranslational modification enzyme, phosphopantetheinyl transferase Sfp. The target proteins are expressed as fusions to the peptide carrier protein (PCP) excised from nonribosomal peptide synthetase, and Sfp catalyzes the covalent modification of a specific serine residue on PCP by the small molecule-phosphopantetheinyl conjugate. The labeling reaction proceeds with high specificity and efficiency, targeting PCP fusion proteins in the cell lysate. The PCP tag has been shown to be compatible with various proteins, and Sfp-catalyzed PCP modification, compatible with various small-molecule probes conjugated to coenzyme A, highlighting the potential of the PCP tag for site-specific protein labeling with small molecules.
Collapse
Affiliation(s)
- Jun Yin
- Department of Biological Chemistry and Molecular Pharmacology and Institute of Chemistry and Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
140
|
Du L, Cheng YQ, Ingenhorst G, Tang GL, Huang Y, Shen B. Hybrid peptide-polyketide natural products: biosynthesis and prospects towards engineering novel molecules. GENETIC ENGINEERING 2004; 25:227-67. [PMID: 15260241 DOI: 10.1007/978-1-4615-0073-5_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
- Liangcheng Du
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | | | | | | | | | | |
Collapse
|
141
|
Barekzi N, Joshi S, Irwin S, Ontl T, Schweizer HP. Genetic characterization of pcpS, encoding the multifunctional phosphopantetheinyl transferase of Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2004; 150:795-803. [PMID: 15073290 DOI: 10.1099/mic.0.26823-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Fatty acid synthases (primary metabolism), non-ribosomal peptide synthases and polyketide synthases (secondary metabolism) contain phosphopantetheinyl (Ppant)-dependent carrier proteins that must be made functionally active by transfer of the 4'-Ppant moiety from coenzyme A. These reactions are usually catalysed by dedicated Ppant transferases. Although rich in Ppant-dependent carrier proteins, it was previously shown that Pseudomonas aeruginosa possesses only one Ppant transferase, encoded by pcpS, which functions in both primary and secondary metabolism. Consistent with this notion are our findings that pcpS can genetically complement mutations in the Escherichia coli acpS and entD genes, encoding the apo-acyl carrier protein (ACP) synthase of fatty acid synthesis and a Ppant transferase of enterobactin synthesis, respectively. It also complements a Bacillus subtilis sfp mutation affecting a gene encoding a Ppant transferase essential for surfactin synthesis. A pcpS insertion mutant could only be constructed in a strain carrying the E. coli acpS gene on a chromosomally integrated element in trans, implying that the in vitro essentiality of pcpS is due to its requirement for activation of apo-ACP of fatty acid synthesis. The conditional pcpS mutant is non-fluorescent, does not produce pyoverdine and pyochelin, and does not grow in the presence of iron chelators. The data presented here for the first time confirm that PcpS plays an essential role in both fatty acid and siderophore metabolism.
Collapse
Affiliation(s)
- Nazir Barekzi
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1658, USA
| | - Swati Joshi
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1658, USA
| | - Scott Irwin
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1658, USA
| | - Todd Ontl
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1658, USA
| | - Herbert P Schweizer
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1658, USA
| |
Collapse
|
142
|
Burall LS, Harro JM, Li X, Lockatell CV, Himpsl SD, Hebel JR, Johnson DE, Mobley HLT. Proteus mirabilis genes that contribute to pathogenesis of urinary tract infection: identification of 25 signature-tagged mutants attenuated at least 100-fold. Infect Immun 2004; 72:2922-38. [PMID: 15102805 PMCID: PMC387873 DOI: 10.1128/iai.72.5.2922-2938.2004] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteus mirabilis, a common cause of urinary tract infections (UTI) in individuals with functional or structural abnormalities or with long-term catheterization, forms bladder and kidney stones as a consequence of urease-mediated urea hydrolysis. Known virulence factors, besides urease, are hemolysin, fimbriae, metalloproteases, and flagella. In this study we utilized the CBA mouse model of ascending UTI to evaluate the colonization of mutants of P. mirabilis HI4320 that were generated by signature-tagged mutagenesis. By performing primary screening of 2088 P. mirabilis transposon mutants, we identified 502 mutants that ranged from slightly attenuated to unrecoverable. Secondary screening of these mutants revealed that 114 transposon mutants were reproducibly attenuated. Cochallenge of 84 of these single mutants with the parent strain in the mouse model resulted in identification of 37 consistently out-competed P. mirabilis transposon mutants, 25 of which were out-competed >100-fold for colonization of the bladder and/or kidneys by the parent strain. We determined the sequence flanking the site of transposon insertion in 29 attenuated mutants and identified genes affecting motility, iron acquisition, transcriptional regulation, phosphate transport, urease activity, cell surface structure, and key metabolic pathways as requirements for P. mirabilis infection of the urinary tract. Two mutations localized to a approximately 42-kb plasmid present in the parent strain, suggesting that the plasmid is important for colonization. Isolation of disrupted genes encoding proteins with homologies to known bacterial virulence factors, especially the urease accessory protein UreF and the disulfide formation protein DsbA, showed that the CBA mouse model and mutant pools are a reliable source of attenuated mutants with mutations in virulence genes.
Collapse
Affiliation(s)
- Laurel S Burall
- Department of Microbiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
143
|
Seidle H, Rangaswamy V, Couch R, Bender CL, Parry RJ. Characterization of Cfa1, a monofunctional acyl carrier protein involved in the biosynthesis of the phytotoxin coronatine. J Bacteriol 2004; 186:2499-503. [PMID: 15060056 PMCID: PMC412169 DOI: 10.1128/jb.186.8.2499-2503.2004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cfa1 was overproduced in Escherichia coli and Pseudomonas syringae, and the degree of 4'-phosphopantetheinylation was determined. The malonyl-coenzyme A:acyl carrier protein transacylase (FabD) of P. syringae was overproduced and shown to catalyze malonylation of Cfa1, suggesting that FabD plays a role in coronatine biosynthesis. Highly purified Cfa1 did not exhibit self-malonylation activity.
Collapse
Affiliation(s)
- Heather Seidle
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
| | | | | | | | | |
Collapse
|
144
|
Tang GL, Cheng YQ, Shen B. Leinamycin Biosynthesis Revealing Unprecedented Architectural Complexity for a Hybrid Polyketide Synthase and Nonribosomal Peptide Synthetase. ACTA ACUST UNITED AC 2004; 11:33-45. [PMID: 15112993 DOI: 10.1016/j.chembiol.2003.12.014] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2003] [Revised: 10/14/2003] [Accepted: 10/16/2003] [Indexed: 11/16/2022]
Abstract
A 135,638 bp DNA region that encompasses the leinamycin (LNM) biosynthetic gene cluster was sequenced from Streptomyces atroolivaceus S-140. The boundaries of the lnm cluster were defined by systematic inactivation of open reading frames within the sequenced region. The lnm cluster spans 61.3 kb of DNA and consists of 27 genes encoding nonribosomal peptide synthetase (NRPS), polyketide synthase (PKS), hybrid NRPS-PKS, resistance, regulatory, and tailoring enzymes, as well as proteins of unknown function. A model for LNM biosynthesis is proposed, central to which is the LNM hybrid NRPS-PKS megasynthetase consisting of discrete (LnmQ and LnmP) and modular (LnmI) NRPS, acyltransferase-less PKS (LnmG, LnmI, and LnmJ), and PKS modules with unusual domain organization. These studies unveil an unprecedented architectural complexity for the LNM hybrid NRPS-PKS megasynthetase and set the stage to investigate the molecular basis for LNM biosynthesis.
Collapse
Affiliation(s)
- Gong-Li Tang
- Division of Pharmaceutical Sciences, University of Wisconsin, Madison, Wisconsin 53705, USA
| | | | | |
Collapse
|
145
|
Weissman KJ, Hong H, Oliynyk M, Siskos AP, Leadlay PF. Identification of a Phosphopantetheinyl Transferase for Erythromycin Biosynthesis in Saccharopolyspora erythraea. Chembiochem 2003; 5:116-25. [PMID: 14695521 DOI: 10.1002/cbic.200300775] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Phosphopantetheinyl transferases (PPTases) catalyze the essential post-translational activation of carrier proteins (CPs) from fatty acid synthases (FASs) (primary metabolism), polyketide synthases (PKSs), and non-ribosomal polypeptide synthetases (NRPSs) (secondary metabolism). Bacteria typically harbor one PPTase specific for CPs of primary metabolism ("ACPS-type" PPTases) and at least one capable of modifying carrier proteins involved in secondary metabolism ("Sfp-type" PPTases). In order to identify the PPTase(s) associated with erythromycin biosynthesis in Saccharopolyspora erythraea, we have used the genome sequence of this organism to identify, clone, and express (in Escherichia coli) three candidate PPTases: an ACPS-type PPTase (S. erythraea ACPS) and two Sfp-type PPTases (a discrete enzyme (SePptII) and another that is integrated into a modular PKS subunit (SePptI)). In vitro analysis of these recombinant PPTases, with an acyl carrier protein-thioesterase (ACP-TE) didomain from the erythromycin PKS as substrate, revealed that only SePptII is active in phosphopantetheinyl transfer with this substrate. SePptII was also shown to provide complete modification of ACP-TE and of an entire multienzyme subunit from the erythromycin PKS in E. coli. The efficiency of the SePptII in phosphopantetheinyl transfer in E. coli makes it an attractive alternative to other Sfp-type PPTases for co-expression experiments with PKS proteins.
Collapse
Affiliation(s)
- Kira J Weissman
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK.
| | | | | | | | | |
Collapse
|
146
|
Oberegger H, Eisendle M, Schrettl M, Graessle S, Haas H. 4'-phosphopantetheinyl transferase-encoding npgA is essential for siderophore biosynthesis in Aspergillus nidulans. Curr Genet 2003; 44:211-5. [PMID: 14508603 DOI: 10.1007/s00294-003-0434-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2003] [Revised: 06/27/2003] [Accepted: 07/15/2003] [Indexed: 11/25/2022]
Abstract
Aspergillus nidulans produces two major siderophores: it excretes triacetylfusarinine C to capture iron and contains ferricrocin as an intracellular iron-storage compound. Siderophore biosynthesis involves the enzymatic activity of nonribosomal peptide synthetases (NRPS). NRPS contain 4'-phosphopantetheine as an essential prosthetic group, which is attached by 4'-phosphopantetheinyl transferases. A. nidulans appears to possess at least one gene, npgA, encoding such an enzyme. Using a strain carrying a temperature-sensitive allele, cfwA2, we showed that NpgA is essential for biosynthesis of both the peptide bond-containing ferricrocin and the ester bond-containing triacetylfusarinene C. The cfwA2 strain was found to be iron-starved at the restrictive temperature during iron-replete conditions, consistent with the siderophore system being the major iron-uptake system-as we recently demonstrated. Northern analysis indicated that, in contrast to other genes which are involved in siderophore biosynthesis and uptake, expression of npgA is not controlled by the GATA-transcription factor SreA. It was shown previously that NpgA is required for biosynthesis of penicillin, pigment, and potentially lysine via the alpha-aminoadipate pathway. Supplementation with lysine plus triacetylfusarinine C restored normal growth of the cfwA2 strain at the restrictive temperature, suggesting that the growth defect of the mutant is mainly due to impaired biosynthesis of siderophores and lysine.
Collapse
Affiliation(s)
- Harald Oberegger
- Department of Molecular Biology, University of Innsbruck, Peter-Mayr-Strasse 4b, 6020 Innsbruck, Austria
| | | | | | | | | |
Collapse
|
147
|
Ciche TA, Blackburn M, Carney JR, Ensign JC. Photobactin: a catechol siderophore produced by Photorhabdus luminescens, an entomopathogen mutually associated with Heterorhabditis bacteriophora NC1 nematodes. Appl Environ Microbiol 2003; 69:4706-13. [PMID: 12902261 PMCID: PMC169088 DOI: 10.1128/aem.69.8.4706-4713.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nematode Heterorhabditis bacteriophora transmits a monoculture of Photorhabdus luminescens bacteria to insect hosts, where it requires the bacteria for efficient insect pathogenicity and as a substrate for growth and reproduction. Siderophore production was implicated as being involved in the symbiosis because an ngrA mutant inadequate for supporting nematode growth and reproduction was also deficient in producing siderophore activity and ngrA is homologous to a siderophore biosynthetic gene, entD. The role of the siderophore in the symbiosis with the nematode was determined by isolating and characterizing a mini-Tn5-induced mutant, NS414, producing no detectable siderophore activity. This mutant, being defective for growth in iron-depleted medium, was normal in supporting nematode growth and reproduction, in transmission by the dauer juvenile nematode, and in insect pathogenicity. The mini-Tn5 transposon was inserted into phbH; whose protein product is a putative peptidyl carrier protein homologous to the nonribosomal peptide synthetase VibF of Vibrio cholerae. Other putative siderophore biosynthetic and transport genes flanking phbH were characterized. The catecholate siderophore was purified, its structure was determined to be 2-(2,3-dihydroxyphenyl)-5-methyl-4,5-dihydro-oxazole-4-carboxylic acid [4-(2,3-dihydroxybenzoylamino)-butyl]-amide, and it was given the generic name photobactin. Antibiotic activity was detected with purified photobactin, indicating that the siderophore may contribute to antibiosis of the insect cadaver. These results eliminate the lack of siderophore activity as the cause for the inadequacy of the ngrA mutant in supporting nematode growth and reproduction.
Collapse
Affiliation(s)
- Todd A Ciche
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | | | | | |
Collapse
|
148
|
Cheng YQ, Tang GL, Shen B. Type I polyketide synthase requiring a discrete acyltransferase for polyketide biosynthesis. Proc Natl Acad Sci U S A 2003; 100:3149-54. [PMID: 12598647 PMCID: PMC152261 DOI: 10.1073/pnas.0537286100] [Citation(s) in RCA: 202] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2002] [Indexed: 11/18/2022] Open
Abstract
Type I polyketide synthases (PKSs) are multifunctional enzymes that are organized into modules, each of which minimally contains a beta-ketoacyl synthase, an acyltransferase (AT), and an acyl carrier protein. Here we report that the leinamycin (LNM) biosynthetic gene cluster from Streptomyces atroolivaceus S-140 consists of two PKS genes, lnmI and lnmJ, that encode six PKS modules, none of which contain the cognate AT domain. The only AT activity identified within the lnm gene cluster is a discrete AT protein encoded by lnmG. Inactivation of lnmG, lnmI, or lnmJ in vivo abolished LNM biosynthesis. Biochemical characterization of LnmG in vitro showed that it efficiently and specifically loaded malonyl CoA to all six PKS modules. These findings unveiled a previously unknown PKS architecture that is characterized by a discrete, iteratively acting AT protein that loads the extender units in trans to "AT-less" multifunctional type I PKS proteins for polyketide biosynthesis. This PKS structure provides opportunities for PKS engineering as exemplified by overexpressing lnmG to improve LNM production.
Collapse
Affiliation(s)
- Yi-Qiang Cheng
- Division of Pharmaceutical Sciences, Department of Chemistry, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705, USA
| | | | | |
Collapse
|
149
|
Zazopoulos E, Huang K, Staffa A, Liu W, Bachmann BO, Nonaka K, Ahlert J, Thorson JS, Shen B, Farnet CM. A genomics-guided approach for discovering and expressing cryptic metabolic pathways. Nat Biotechnol 2003; 21:187-90. [PMID: 12536216 DOI: 10.1038/nbt784] [Citation(s) in RCA: 227] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2002] [Accepted: 12/04/2002] [Indexed: 11/09/2022]
Abstract
Genome analysis of actinomycetes has revealed the presence of numerous cryptic gene clusters encoding putative natural products. These loci remain dormant until appropriate chemical or physical signals induce their expression. Here we demonstrate the use of a high-throughput genome scanning method to detect and analyze gene clusters involved in natural-product biosynthesis. This method was applied to uncover biosynthetic pathways encoding enediyne antitumor antibiotics in a variety of actinomycetes. Comparative analysis of five biosynthetic loci representative of the major structural classes of enediynes reveals the presence of a conserved cassette of five genes that includes a novel family of polyketide synthase (PKS). The enediyne PKS (PKSE) is proposed to be involved in the formation of the highly reactive chromophore ring structure (or "warhead") found in all enediynes. Genome scanning analysis indicates that the enediyne warhead cassette is widely dispersed among actinomycetes. We show that selective growth conditions can induce the expression of these loci, suggesting that the range of enediyne natural products may be much greater than previously thought. This technology can be used to increase the scope and diversity of natural-product discovery.
Collapse
Affiliation(s)
- Emmanuel Zazopoulos
- Ecopia BioSciences, Inc., 7290 Frederick Banting, Montreal, Quebec H4S 2A1, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Velkov T, Lawen A. Non-ribosomal peptide synthetases as technological platforms for the synthesis of highly modified peptide bioeffectors – Cyclosporin synthetase as a complex example. BIOTECHNOLOGY ANNUAL REVIEW 2003; 9:151-97. [PMID: 14650927 DOI: 10.1016/s1387-2656(03)09002-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Many microbial peptide secondary metabolites possess important medicinal properties, of which the immunosuppressant cyclosporin A is an example. The enormous structural and functional diversity of these low-molecular weight peptides is attributable to their mode of biosynthesis. Peptide secondary metabolites are assembled non-ribosomally by multi-functional enzymes, termed non-ribosomal peptide synthetases. These systems consist of a multi-modular arrangement of the functional domains responsible for the catalysis of the partial reactions of peptide assembly. The extensive homology shared among NRPS systems allows for the generalisation of the knowledge garnered from studies of systems of diverse origins. In this review we shall focus the contemporary knowledge of non-ribosomal peptide biosynthesis on the structure and function of the cyclosporin biosynthetic system, with some emphasis on the re-direction of the biosynthetic potential of this system by combinatorial approaches.
Collapse
Affiliation(s)
- Tony Velkov
- Monash University, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, P.O. Box 13D, Melbourne, Victoria 3800, Australia
| | | |
Collapse
|