101
|
de Swart RL, de Vries RD, Rennick LJ, van Amerongen G, McQuaid S, Verburgh RJ, Yüksel S, de Jong A, Lemon K, Nguyen DT, Ludlow M, Osterhaus ADME, Duprex WP. Needle-free delivery of measles virus vaccine to the lower respiratory tract of non-human primates elicits optimal immunity and protection. NPJ Vaccines 2017; 2:22. [PMID: 29263877 PMCID: PMC5627256 DOI: 10.1038/s41541-017-0022-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/26/2017] [Accepted: 06/08/2017] [Indexed: 11/09/2022] Open
Abstract
Needle-free measles virus vaccination by aerosol inhalation has many potential benefits. The current standard route of vaccination is subcutaneous injection, whereas measles virus is an airborne pathogen. However, the target cells that support replication of live-attenuated measles virus vaccines in the respiratory tract are largely unknown. The aims of this study were to assess the in vivo tropism of live-attenuated measles virus and determine whether respiratory measles virus vaccination should target the upper or lower respiratory tract. Four groups of twelve cynomolgus macaques were immunized with 104 TCID50 of recombinant measles virus vaccine strain Edmonston-Zagreb expressing enhanced green fluorescent protein. The vaccine virus was grown in MRC-5 cells and formulated with identical stabilizers and excipients as used in the commercial MVEZ vaccine produced by the Serum Institute of India. Animals were immunized by hypodermic injection, intra-tracheal inoculation, intra-nasal instillation, or aerosol inhalation. In each group six animals were euthanized at early time points post-vaccination, whereas the other six were followed for 14 months to assess immunogenicity and protection from challenge infection with wild-type measles virus. At early time-points, enhanced green fluorescent protein-positive measles virus-infected cells were detected locally in the muscle, nasal tissues, lungs, and draining lymph nodes. Systemic vaccine virus replication and viremia were virtually absent. Infected macrophages, dendritic cells and tissue-resident lymphocytes predominated. Exclusive delivery of vaccine virus to the lower respiratory tract resulted in highest immunogenicity and protection. This study sheds light on the tropism of a live-attenuated measles virus vaccine and identifies the alveolar spaces as the optimal site for respiratory delivery of measles virus vaccine.
Collapse
Affiliation(s)
- Rik L de Swart
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Rory D de Vries
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Linda J Rennick
- Department of Microbiology, Boston University School of Medicine, Boston, MA USA
| | - Geert van Amerongen
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands.,Viroclinics Biosciences, Rotterdam, Netherlands
| | | | - R Joyce Verburgh
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands.,Present Address: ProQR Therapeutics, Leiden, Netherlands
| | - Selma Yüksel
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Alwin de Jong
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Ken Lemon
- Queen's University of Belfast, Belfast, Northern Ireland UK.,Present Address: Agri-Food and Biosciences Institute, Belfast, UK
| | - D Tien Nguyen
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Martin Ludlow
- Department of Microbiology, Boston University School of Medicine, Boston, MA USA.,Present Address: University of Veterinary Medicine Hannover, Hannover, Germany
| | - Albert D M E Osterhaus
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands.,Present Address: University of Veterinary Medicine Hannover, Hannover, Germany
| | - W Paul Duprex
- Department of Microbiology, Boston University School of Medicine, Boston, MA USA
| |
Collapse
|
102
|
Patil HP, Herrera Rodriguez J, de Vries-Idema J, Meijerhof T, Frijlink HW, Hinrichs WLJ, Huckriede A. Adjuvantation of Pulmonary-Administered Influenza Vaccine with GPI-0100 Primarily Stimulates Antibody Production and Memory B Cell Proliferation. Vaccines (Basel) 2017; 5:vaccines5030019. [PMID: 28749414 PMCID: PMC5620550 DOI: 10.3390/vaccines5030019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/19/2017] [Accepted: 07/21/2017] [Indexed: 11/24/2022] Open
Abstract
Adjuvants are key components in vaccines, they help in reducing the required antigen dose but also modulate the phenotype of the induced immune response. We previously showed that GPI-0100, a saponin-derived adjuvant, enhances antigen-specific mucosal and systemic antibody responses to influenza subunit and whole inactivated influenza virus (WIV) vaccine administered via the pulmonary route. However, the impact of the GPI-0100 dose on immune stimulation and the immune mechanisms stimulated by GPI-0100 along with antigen are poorly understood. Therefore, in this study we immunized C57BL/6 mice via the pulmonary route with vaccine consisting of WIV combined with increasing amounts of GPI-0100, formulated as a dry powder. Adjuvantation of WIV enhanced influenza-specific mucosal and systemic immune responses, with intermediate doses of 5 and 7.5 μg GPI-0100 being most effective. The predominant antibody subtype induced by GPI-0100-adjuvanted vaccine was IgG1. Compared to non-adjuvanted vaccine, GPI-0100-adjuvanted WIV vaccine gave rise to higher numbers of antigen-specific IgA- but not IgG-producing B cells in the lungs along with better mucosal and systemic memory B cell responses. The GPI-0100 dose was negatively correlated with the number of influenza-specific IFNγ- and IL17-producing T cells and positively correlated with the number of IL4-producing T cells observed after immunization and challenge. Overall, our results show that adjuvantation of pulmonary-delivered WIV with GPI-0100 mostly affects B cell responses and effectively induces B cell memory.
Collapse
Affiliation(s)
- Harshad P Patil
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune-Satara Road, Katraj-Dhankawadi, Pune 411043, Maharashtra, India.
| | - José Herrera Rodriguez
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Jacqueline de Vries-Idema
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Tjarko Meijerhof
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Henderik W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Wouter L J Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Anke Huckriede
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
103
|
Abstract
In this article we present experimental Mycobacterium bovis infection models in domestic livestock species and how these models were applied to vaccine development, biomarker discovery, and the definition of specific antigens for the differential diagnosis of infected and vaccinated animals. In particular, we highlight synergies between human and bovine tuberculosis (TB) research approaches and data and propose that the application of bovine TB models could make a valuable contribution to human TB vaccine research and that close alignment of both research programs in a one health philosophy will lead to mutual and substantial benefits.
Collapse
|
104
|
Wajja A, Kizito D, Nassanga B, Nalwoga A, Kabagenyi J, Kimuda S, Galiwango R, Mutonyi G, Vermaak S, Satti I, Verweij J, Tukahebwa E, Cose S, Levin J, Kaleebu P, Elliott AM, McShane H. The effect of current Schistosoma mansoni infection on the immunogenicity of a candidate TB vaccine, MVA85A, in BCG-vaccinated adolescents: An open-label trial. PLoS Negl Trop Dis 2017; 11:e0005440. [PMID: 28472067 PMCID: PMC5417418 DOI: 10.1371/journal.pntd.0005440] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/27/2017] [Indexed: 02/03/2023] Open
Abstract
INTRODUCTION Helminth infection may affect vaccine immunogenicity and efficacy. Adolescents, a target population for tuberculosis booster vaccines, often have a high helminth burden. We investigated effects of Schistosoma mansoni (Sm) on the immunogenicity and safety of MVA85A, a model candidate tuberculosis vaccine, in BCG-vaccinated Ugandan adolescents. METHODS In this phase II open label trial we enrolled 36 healthy, previously BCG-vaccinated adolescents, 18 with no helminth infection detected, 18 with Sm only. The primary outcome was immunogenicity measured by Ag85A-specific interferon gamma ELISpot assay. Tuberculosis and schistosome-specific responses were also assessed by whole-blood stimulation and multiplex cytokine assay, and by antibody ELISAs. RESULTS Ag85A-specific cellular responses increased significantly following immunisation but with no differences between the two groups. Sm infection was associated with higher pre-immunisation Ag85A-specific IgG4 but with no change in antibody levels following immunisation. There were no serious adverse events. Most reactogenicity events were of mild or moderate severity and resolved quickly. CONCLUSIONS The significant Ag85A-specific T cell responses and lack of difference between Sm-infected and uninfected participants is encouraging for tuberculosis vaccine development. The implications of pre-existing Ag85A-specific IgG4 antibodies for protective immunity against tuberculosis among those infected with Sm are not known. MVA85A was safe in this population. TRIAL REGISTRATION ClinicalTrials.gov NCT02178748.
Collapse
Affiliation(s)
- Anne Wajja
- Co-infection Studies Program, MRC/UVRI Uganda Research Unit, Entebbe, Uganda
| | - Dennison Kizito
- Co-infection Studies Program, MRC/UVRI Uganda Research Unit, Entebbe, Uganda
| | - Beatrice Nassanga
- Co-infection Studies Program, MRC/UVRI Uganda Research Unit, Entebbe, Uganda
| | - Angela Nalwoga
- Co-infection Studies Program, MRC/UVRI Uganda Research Unit, Entebbe, Uganda
| | - Joyce Kabagenyi
- Co-infection Studies Program, MRC/UVRI Uganda Research Unit, Entebbe, Uganda
| | - Simon Kimuda
- Co-infection Studies Program, MRC/UVRI Uganda Research Unit, Entebbe, Uganda
| | - Ronald Galiwango
- Co-infection Studies Program, MRC/UVRI Uganda Research Unit, Entebbe, Uganda
| | - Gertrude Mutonyi
- Co-infection Studies Program, MRC/UVRI Uganda Research Unit, Entebbe, Uganda
| | - Samantha Vermaak
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Iman Satti
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Jaco Verweij
- Laboratory for Medical Microbiology and Immunology & Laboratory for Clinical Pathology, St. Elisabeth Hospital, Tilburg, The Netherlands
| | | | - Stephen Cose
- Co-infection Studies Program, MRC/UVRI Uganda Research Unit, Entebbe, Uganda
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Jonathan Levin
- Co-infection Studies Program, MRC/UVRI Uganda Research Unit, Entebbe, Uganda
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Pontiano Kaleebu
- Co-infection Studies Program, MRC/UVRI Uganda Research Unit, Entebbe, Uganda
| | - Alison M. Elliott
- Co-infection Studies Program, MRC/UVRI Uganda Research Unit, Entebbe, Uganda
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Helen McShane
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
105
|
Reasons for optimism in the search for new vaccines for tuberculosis. Epidemiol Infect 2017; 145:1750-1756. [PMID: 28414012 DOI: 10.1017/s095026881700067x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the development of vaccines for tuberculosis (TB), the combination of the will, funding, scientific rigor, new tools, refined animal models and improved clinical trial designs are all converging at an opportune moment. The lack of optimism that has surrounded the likelihood for finding novel TB vaccines has resulted from a lack of correlates of vaccine-induced protection, a lack of tool candidate vaccines to probe the immunologic space, which may be needed, and the negative result of one recent trial. A vaccine for TB that can be delivered at a reasonable cost to the marketplace will have greater impact on the incidence of new cases of TB than any intervention in world history. Now is the time to increase resources, both financial and human intellectual capacity, for a global tuberculosis vaccine effort.
Collapse
|
106
|
Verreck FAW, Tchilian EZ, Vervenne RAW, Sombroek CC, Kondova I, Eissen OA, Sommandas V, van der Werff NM, Verschoor E, Braskamp G, Bakker J, Langermans JAM, Heidt PJ, Ottenhoff THM, van Kralingen KW, Thomas AW, Beverley PCL, Kocken CHM. Variable BCG efficacy in rhesus populations: Pulmonary BCG provides protection where standard intra-dermal vaccination fails. Tuberculosis (Edinb) 2017; 104:46-57. [PMID: 28454649 DOI: 10.1016/j.tube.2017.02.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 01/22/2023]
Abstract
M.bovis BCG vaccination against tuberculosis (TB) notoriously displays variable protective efficacy in different human populations. In non-human primate studies using rhesus macaques, despite efforts to standardise the model, we have also observed variable efficacy of BCG upon subsequent experimental M. tuberculosis challenge. In the present head-to-head study, we establish that the protective efficacy of standard parenteral BCG immunisation varies among different rhesus cohorts. This provides different dynamic ranges for evaluation of investigational vaccines, opportunities for identifying possible correlates of protective immunity and for determining why parenteral BCG immunisation sometimes fails. We also show that pulmonary mucosal BCG vaccination confers reduced local pathology and improves haematological and immunological parameters post-infection in animals that are not responsive to induction of protection by standard intra-dermal BCG. These results have important implications for pulmonary TB vaccination strategies in the future.
Collapse
Affiliation(s)
- Frank A W Verreck
- Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288-GJ, Rijswijk, The Netherlands.
| | - Elma Z Tchilian
- The Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford, UK.
| | - Richard A W Vervenne
- Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288-GJ, Rijswijk, The Netherlands
| | - Claudia C Sombroek
- Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288-GJ, Rijswijk, The Netherlands
| | - Ivanela Kondova
- Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288-GJ, Rijswijk, The Netherlands
| | - Okke A Eissen
- Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288-GJ, Rijswijk, The Netherlands
| | - Vinod Sommandas
- Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288-GJ, Rijswijk, The Netherlands
| | - Nicole M van der Werff
- Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288-GJ, Rijswijk, The Netherlands
| | - Ernst Verschoor
- Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288-GJ, Rijswijk, The Netherlands
| | - Gerco Braskamp
- Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288-GJ, Rijswijk, The Netherlands
| | - Jaco Bakker
- Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288-GJ, Rijswijk, The Netherlands
| | - Jan A M Langermans
- Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288-GJ, Rijswijk, The Netherlands
| | - Peter J Heidt
- Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288-GJ, Rijswijk, The Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Centre (LUMC), Albinusdreef 2, 2333-ZA, Leiden, The Netherlands
| | - Klaas W van Kralingen
- Department of Pulmonology, Leiden University Medical Centre (LUMC), Albinusdreef 2, 2333-ZA, Leiden, The Netherlands
| | - Alan W Thomas
- Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288-GJ, Rijswijk, The Netherlands
| | - Peter C L Beverley
- The Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford, UK.
| | - Clemens H M Kocken
- Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288-GJ, Rijswijk, The Netherlands
| |
Collapse
|
107
|
Rao M, Cadieux N, Fitzpatrick M, Reed S, Arsenian S, Valentini D, Parida S, Dodoo E, Zumla A, Maeurer M. Mycobacterium tuberculosis proteins involved in cell wall lipid biosynthesis improve BCG vaccine efficacy in a murine TB model. Int J Infect Dis 2017; 56:274-282. [PMID: 28161464 DOI: 10.1016/j.ijid.2017.01.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/19/2017] [Accepted: 01/22/2017] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVES Advances in tuberculosis (TB) vaccine development are urgently required to enhance global disease management. We evaluated the potential of Mycobacterium tuberculosis (M. tb)-derived protein antigens Rv0447c, Rv2957 and Rv2958c to boost BCG vaccine efficacy in the presence or absence of glucopyranosyl lipid adjuvant formulated in a stable emulsion (GLA-SE) adjuvant. METHODS Mice received the BCG vaccine, followed by Rv0447c, Rv2957 and Rv2958c protein boosting with or without GLA-SE adjuvant 3 and 6 weeks later. Immune responses were examined at given time points. 9 weeks post vaccination, mice were aerosol-challenged with M. tb, and sacrificed at 6 and 12 weeks to assess bacterial burden. RESULTS Vaccination of mice with BCG and M. tb proteins in the presence of GLA-SE adjuvant triggered strong IFN-γ and IL-2 production by splenocytes; more TNF-α was produced without GLA-SE addition. Antibody responses to all three antigens did not differ, with or without GLA-SE adjuvant. Protein boosting without GLA-SE adjuvant resulted in vaccinated animals having better control of pulmonary M. tb load at 6 and 12 weeks post aerosol infection, while animals receiving the protein boost with GLA-SE adjuvant exhibited more bacteria in the lungs. CONCLUSIONS Our data provides evidence for developing Rv2958c, Rv2957 and Rv0447c in a heterologous prime-boost vaccination strategy with BCG.
Collapse
Affiliation(s)
- Martin Rao
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden
| | | | | | - Steven Reed
- Infectious Disease Research Institute (IDRI), Seattle, USA
| | - Sergei Arsenian
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden
| | - Davide Valentini
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden; Centre for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Shreemanta Parida
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden
| | - Ernest Dodoo
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden
| | - Alimuddin Zumla
- Division of Infection and Immunity, University College London and the NIHR Biomedical Research centre at UCL Hospitals NHS Foundation Trust London, UK
| | - Markus Maeurer
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden; Centre for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
108
|
Méndez-Samperio P. Global Efforts in the Development of Vaccines for Tuberculosis: Requirements for Improved Vaccines Against Mycobacterium tuberculosis. Scand J Immunol 2017; 84:204-10. [PMID: 27454335 DOI: 10.1111/sji.12465] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 07/13/2016] [Indexed: 11/28/2022]
Abstract
Currently, more than 9.0 million people develop acute pulmonary tuberculosis (TB) each year and about 1.5 million people worldwide die from this infection. Thus, developing vaccines to prevent active TB disease remains a priority. This article discusses recent progress in the development of new vaccines against TB and focusses on the main requirements for development of improved vaccines against Mycobacterium tuberculosis (M. tb). Over the last two decades, significant progress has been made in TB vaccine development, and some TB vaccine candidates have currently completed a phase III clinical trial. The potential public health benefits of these vaccines are possible, but it will need much more effort, including new global governance investment on this research. This investment would certainly be less than the annual global financial toll of TB treatment.
Collapse
Affiliation(s)
- P Méndez-Samperio
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, IPN, CD México, México.
| |
Collapse
|
109
|
Giovagnoli S, Schoubben A, Ricci M. The long and winding road to inhaled TB therapy: not only the bug’s fault. Drug Dev Ind Pharm 2017; 43:347-363. [DOI: 10.1080/03639045.2016.1272119] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Aurelie Schoubben
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Maurizio Ricci
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
110
|
Lauer KB, Borrow R, Blanchard TJ. Multivalent and Multipathogen Viral Vector Vaccines. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:e00298-16. [PMID: 27535837 PMCID: PMC5216423 DOI: 10.1128/cvi.00298-16] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The presentation and delivery of antigens are crucial for inducing immunity and, desirably, lifelong protection. Recombinant viral vectors-proven safe and successful in veterinary vaccine applications-are ideal shuttles to deliver foreign proteins to induce an immune response with protective antibody levels by mimicking natural infection. Some examples of viral vectors are adenoviruses, measles virus, or poxviruses. The required attributes to qualify as a vaccine vector are as follows: stable insertion of coding sequences into the genome, induction of a protective immune response, a proven safety record, and the potential for large-scale production. The need to develop new vaccines for infectious diseases, increase vaccine accessibility, reduce health costs, and simplify overloaded immunization schedules has driven the idea to combine antigens from the same or various pathogens. To protect effectively, some vaccines require multiple antigens of one pathogen or different pathogen serotypes/serogroups in combination (multivalent or polyvalent vaccines). Future multivalent vaccine candidates are likely to be required for complex diseases like malaria and HIV. Other novel strategies propose an antigen combination of different pathogens to protect against several diseases at once (multidisease or multipathogen vaccines).
Collapse
Affiliation(s)
- Katharina B Lauer
- University of Manchester, Institute of Inflammation and Repair, Manchester, United Kingdom
- University of Cambridge, Department of Pathology, Cambridge, United Kingdom
| | - Ray Borrow
- University of Manchester, Institute of Inflammation and Repair, Manchester, United Kingdom
- Vaccine Evaluation Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Thomas J Blanchard
- University of Manchester, Institute of Inflammation and Repair, Manchester, United Kingdom
- Consultant in Infectious Diseases and Tropical Medicine, Royal Liverpool Hospital, Liverpool, United Kingdom
| |
Collapse
|
111
|
McShane H. From AIDS to TB vaccines--A career in infectious diseases and translational vaccinology. Hum Vaccin Immunother 2016; 12:5-7. [PMID: 26558654 DOI: 10.1080/21645515.2015.1100912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Helen McShane
- a The Jenner Institute; Nuffield Department of Clinical Medicine; University of Oxford ; Oxford , UK
| |
Collapse
|
112
|
Kaufmann SHE, Weiner J, von Reyn CF. Novel approaches to tuberculosis vaccine development. Int J Infect Dis 2016; 56:263-267. [PMID: 27816661 DOI: 10.1016/j.ijid.2016.10.018] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 12/15/2022] Open
Abstract
Tuberculosis (TB) remains the deadliest infectious disease. The widely used bacille Calmette-Guérin (BCG) vaccine offers only limited protection against TB. New vaccine candidates for TB include subunit vaccines and inactivated whole-cell vaccines, as well as live mycobacterial vaccines. Current developments in TB vaccines are summarized in this review.
Collapse
Affiliation(s)
- Stefan H E Kaufmann
- Max Planck Institute for Infection Biology, Department of Immunology, Charitéplatz 1, 10117 Berlin, Germany.
| | - January Weiner
- Max Planck Institute for Infection Biology, Department of Immunology, Charitéplatz 1, 10117 Berlin, Germany
| | - C Fordham von Reyn
- Infectious Disease and International Health, Geisel School of Medicine, Hanover, New Hampshire, USA
| |
Collapse
|
113
|
Sharpe S, White A, Sarfas C, Sibley L, Gleeson F, McIntyre A, Basaraba R, Clark S, Hall G, Rayner E, Williams A, Marsh PD, Dennis M. Alternative BCG delivery strategies improve protection against Mycobacterium tuberculosis in non-human primates: Protection associated with mycobacterial antigen-specific CD4 effector memory T-cell populations. Tuberculosis (Edinb) 2016; 101:174-190. [PMID: 27865390 PMCID: PMC5120991 DOI: 10.1016/j.tube.2016.09.004] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/11/2016] [Indexed: 12/01/2022]
Abstract
Intradermal (ID) BCG injection provides incomplete protection against TB in humans and experimental models. Alternative BCG vaccination strategies may improve protection in model species, including rhesus macaques. This study compares the immunogenicity and efficacy of BCG administered by ID and intravenous (IV) injection, or as an intratracheal mucosal boost (ID + IT), against aerosol challenge with Mycobacterium tuberculosis Erdman strain. Disease pathology was significantly reduced, and survival improved, by each BCG vaccination strategy, relative to unvaccinated animals. However, IV induced protection surpassed that achieved by all other routes, providing an opportunity to explore protective immunological mechanisms using antigen-specific IFN-γ ELISpot and polychromatic flow cytometry assays. IFN-γ spot forming units and multifunctional CD4 T-cell frequencies increased significantly following each vaccination regimen and were greatest following IV immunisation. Vaccine-induced multifunctional CD4 T-cells producing IFN-γ and TNF-α were associated with reduced disease pathology following subsequent M.tb challenge; however, high frequencies of this population following M.tb infection correlated with increased pathology. Cytokine producing T-cells primarily occupied the CD4 transitional effector memory phenotype, implicating this population as central to the mycobacterial response, potentially contributing to the stringent control observed in IV vaccinated animals. This study demonstrates the protective efficacy of IV BCG vaccination in rhesus macaques, offering a valuable tool for the interrogation of immunological mechanisms and potential correlates of protection.
Collapse
Affiliation(s)
- S Sharpe
- Public Health England, Porton Down, Wiltshire, SP4 0JG, UK.
| | - A White
- Public Health England, Porton Down, Wiltshire, SP4 0JG, UK
| | - C Sarfas
- Public Health England, Porton Down, Wiltshire, SP4 0JG, UK
| | - L Sibley
- Public Health England, Porton Down, Wiltshire, SP4 0JG, UK
| | - F Gleeson
- Churchill Hospital, Headington, Oxford, UK
| | - A McIntyre
- Churchill Hospital, Headington, Oxford, UK
| | - R Basaraba
- Colorado State University, Fort Collins, CO, USA
| | - S Clark
- Public Health England, Porton Down, Wiltshire, SP4 0JG, UK
| | - G Hall
- Public Health England, Porton Down, Wiltshire, SP4 0JG, UK
| | - E Rayner
- Public Health England, Porton Down, Wiltshire, SP4 0JG, UK
| | - A Williams
- Public Health England, Porton Down, Wiltshire, SP4 0JG, UK
| | - P D Marsh
- Public Health England, Porton Down, Wiltshire, SP4 0JG, UK
| | - M Dennis
- Public Health England, Porton Down, Wiltshire, SP4 0JG, UK
| |
Collapse
|
114
|
Safety and immunogenicity of the M72/AS01 E candidate tuberculosis vaccine in adults with tuberculosis: A phase II randomised study. Tuberculosis (Edinb) 2016; 100:118-127. [DOI: 10.1016/j.tube.2016.07.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/05/2016] [Accepted: 07/10/2016] [Indexed: 11/22/2022]
|
115
|
Jurcic Smith KL, Lee S. Inhibition of apoptosis by Rv2456c through Nuclear factor-κB extends the survival of Mycobacterium tuberculosis. Int J Mycobacteriol 2016; 5:426-436. [PMID: 27931684 PMCID: PMC5975360 DOI: 10.1016/j.ijmyco.2016.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 02/03/2023] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, is an intracellular pathogen with several survival mechanisms aimed at subverting the host immune system. Apoptosis has been shown to be mycobactericidal, to activate CD8+ T cells, and to be modulated by mycobacterial proteins. Since few mycobacterial proteins have so far been directly implicated in the interactions between M. tuberculosis and host cell apoptosis, we screened M. tuberculosis H37Rv transposon mutants to identify mutants that fail to inhibit cell death (FID). One of these FID mutants, FID19, had a transposon insertion in Rv2456c and is important for survival in host cells. The lack of the protein resulted in enhanced caspase-3 mediated apoptosis, which is probably due to an inability to activate nuclear factor-κB. Additionally, FID19 infection enhanced polyfunctional CD8+ T cells and induced a higher frequency of interferon-γ secreting immune cells in a murine model. Taken together, our data suggest that Rv2456c is important for the survival of H37Rv by subduing the innate and ultimately adaptive immune responses of its host by preventing apoptosis of the infected cell. Better understanding of the host-mycobacterial interactions may be beneficial to develop novel drug targets and engineer more efficacious vaccine strains against tuberculosis.
Collapse
Affiliation(s)
- Kristen L Jurcic Smith
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Sunhee Lee
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
116
|
Schito M, Migliori GB, Fletcher HA, McNerney R, Centis R, D'Ambrosio L, Bates M, Kibiki G, Kapata N, Corrah T, Bomanji J, Vilaplana C, Johnson D, Mwaba P, Maeurer M, Zumla A. Perspectives on Advances in Tuberculosis Diagnostics, Drugs, and Vaccines. Clin Infect Dis 2016; 61Suppl 3:S102-18. [PMID: 26409271 DOI: 10.1093/cid/civ609] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Despite concerted efforts over the past 2 decades at developing new diagnostics, drugs, and vaccines with expanding pipelines, tuberculosis remains a global emergency. Several novel diagnostic technologies show promise of better point-of-care rapid tests for tuberculosis including nucleic acid-based amplification tests, imaging, and breath analysis of volatile organic compounds. Advances in new and repurposed drugs for use in multidrug-resistant (MDR) or extensively drug-resistant (XDR) tuberculosis have focused on development of several new drug regimens and their evaluation in clinical trials and now influence World Health Organization guidelines. Since the failure of the MVA85A vaccine 2 years ago, there have been no new tuberculosis vaccine candidates entering clinical testing. The current status quo of the lengthy treatment duration and poor treatment outcomes associated with MDR/XDR tuberculosis and with comorbidity of tuberculosis with human immunodeficiency virus and noncommunicable diseases is unacceptable. New innovations and political and funder commitment for early rapid diagnosis, shortening duration of therapy, improving treatment outcomes, and prevention are urgently required.
Collapse
Affiliation(s)
- Marco Schito
- Critical Path to TB Drug Regimens, Critical Path Institute, Tucson, Arizona
| | - Giovanni Battista Migliori
- World Health Organization Collaborating Centre for Tuberculosis and Lung Diseases, Fondazione S. Maugeri, Care and Research Institute, Tradate, Italy
| | - Helen A Fletcher
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine
| | | | - Rosella Centis
- World Health Organization Collaborating Centre for Tuberculosis and Lung Diseases, Fondazione S. Maugeri, Care and Research Institute, Tradate, Italy
| | - Lia D'Ambrosio
- World Health Organization Collaborating Centre for Tuberculosis and Lung Diseases, Fondazione S. Maugeri, Care and Research Institute, Tradate, Italy
| | - Matthew Bates
- University of Zambia-University College London Medical School Research and Training Project, University Teaching Hospital, Lusaka, Zambia
| | - Gibson Kibiki
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
| | - Nathan Kapata
- University of Zambia-University College London Medical School Research and Training Project, University Teaching Hospital, Lusaka, Zambia
| | - Tumena Corrah
- Department of Infectious Diseases and Tropical Medicine, Northwick Park Hospital
| | - Jamshed Bomanji
- Department of Nuclear Imaging, University College London Hospitals NHS Foundation Trust, United Kingdom
| | - Cris Vilaplana
- Unitat de Tuberculosi Experimental, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Ctra. de Can Ruti, Camí de les Escoles, Barcelona, Spain
| | - Daniel Johnson
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Peter Mwaba
- University of Zambia-University College London Medical School Research and Training Project, University Teaching Hospital, Lusaka, Zambia
| | - Markus Maeurer
- Therapeutic Immunology, Departments of Laboratory Medicine and Microbiology, Tumour and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Alimuddin Zumla
- Division of Infection and Immunity, University College London and National Institute for Health Research Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, United Kingdom
| |
Collapse
|
117
|
Ginsberg AM, Ruhwald M, Mearns H, McShane H. TB vaccines in clinical development. Tuberculosis (Edinb) 2016; 99 Suppl 1:S16-20. [PMID: 27470538 DOI: 10.1016/j.tube.2016.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The 4th Global Forum on TB Vaccines, convened in Shanghai, China, from 21 - 24 April 2015, brought together a wide and diverse community involved in tuberculosis vaccine research and development to discuss the current status of, and future directions for this critical effort. This paper summarizes the sessions on TB Vaccines in Clinical Development, and Clinical Research: Data and Findings. Summaries of all sessions from the 4th Global Forum are compiled in a special supplement of Tuberculosis. [August 2016, Vol 99, Supp S1, S1-S30].
Collapse
Affiliation(s)
| | | | - Helen Mearns
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | | |
Collapse
|
118
|
Sridhar S. Heterosubtypic T-Cell Immunity to Influenza in Humans: Challenges for Universal T-Cell Influenza Vaccines. Front Immunol 2016; 7:195. [PMID: 27242800 PMCID: PMC4871858 DOI: 10.3389/fimmu.2016.00195] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/03/2016] [Indexed: 11/25/2022] Open
Abstract
Influenza A virus (IAV) remains a significant global health issue causing annual epidemics, pandemics, and sporadic human infections with highly pathogenic avian or swine influenza viruses. Current inactivated and live vaccines are the mainstay of the public health response to influenza, although vaccine efficacy is lower against antigenically distinct viral strains. The first pandemic of the twenty-first century underlined the urgent need to develop new vaccines capable of protecting against a broad range of influenza strains. Such “universal” influenza vaccines are based on the idea of heterosubtypic immunity, wherein immune responses to epitopes conserved across IAV strains can confer protection against subsequent infection and disease. T-cells recognizing conserved antigens are a key contributor in reducing viral load and limiting disease severity during heterosubtypic infection in animal models. Recent studies undertaken during the 2009 H1N1 pandemic provided key insights into the role of cross-reactive T-cells in mediating heterosubtypic protection in humans. This review focuses on human influenza to discuss the epidemiological observations that underpin cross-protective immunity, the role of T-cells as key players in mediating heterosubtypic immunity including recent data from natural history cohort studies and the ongoing clinical development of T-cell-inducing universal influenza vaccines. The challenges and knowledge gaps for developing vaccines to generate long-lived protective T-cell responses is discussed.
Collapse
|
119
|
Graves AJ, Hokey DA. Tuberculosis vaccine development: Shifting focus amid increasing development challenges. Hum Vaccin Immunother 2016; 11:1910-6. [PMID: 26125249 PMCID: PMC4635864 DOI: 10.1080/21645515.2015.1040955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A new tuberculosis vaccine is needed to replace or enhance BCG, which induces variable protection against Mycobacterium tuberculosis pulmonary infections in adults. Development of new TB vaccine candidates is severely hampered by the lack of a correlate of immunity, unproven animal models, and limited funding opportunities. One candidate, MVA85A, recently failed to meet its efficacy endpoint goals despite promising early-phase trial data. As a result, some in the field believe we should now shift our focus away from product development and toward a research-oriented approach. Here, we outline our suggestions for this research-oriented strategy including diversification of the candidate pipeline, expanding measurements of immunity, improving pre-clinical animal models, and investing in combination pre-clinical/experimental medicine studies. As with any evolution, this change in strategy comes at a cost but may also represent an opportunity for advancing the field.
Collapse
|
120
|
Pang Y, Zhao A, Cohen C, Kang W, Lu J, Wang G, Zhao Y, Zheng S. Current status of new tuberculosis vaccine in children. Hum Vaccin Immunother 2016; 12:960-70. [PMID: 27002369 DOI: 10.1080/21645515.2015.1120393] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Pediatric tuberculosis contributes significantly to the burden of TB disease worldwide. In order to achieve the goal of eliminating TB by 2050, an effective TB vaccine is urgently needed to prevent TB transmission in children. BCG vaccination can protect children from the severe types of TB such as TB meningitis and miliary TB, while its efficacy against pediatric pulmonary TB ranged from no protection to very high protection. In recent decades, multiple new vaccine candidates have been developed, and shown encouraging safety and immunogenicity in the preclinical experiments. However, the limited data on protective efficacy in infants evaluated by clinical trials has been disappointing, an example being MVA85A. To date, no vaccine has been shown to be clinically safer and more effective than the presently licensed BCG vaccine. Hence, before a new vaccine is developed with more promising efficacy, we must reconsider how to better use the current BCG vaccine to maximize its effectiveness in children.
Collapse
Affiliation(s)
- Yu Pang
- a Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University , Beijing , China.,b National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention , Beijing , China
| | - Aihua Zhao
- c National Institute for Food and Drug Control , Beijing , China
| | - Chad Cohen
- d McGill International TB Centre, Montreal , Quebec , Canada
| | - Wanli Kang
- a Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University , Beijing , China
| | - Jie Lu
- e Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University , Beijing , China
| | - Guozhi Wang
- c National Institute for Food and Drug Control , Beijing , China
| | - Yanlin Zhao
- b National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention , Beijing , China
| | - Suhua Zheng
- a Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University , Beijing , China
| |
Collapse
|
121
|
Lai R, Afkhami S, Haddadi S, Jeyanathan M, Xing Z. Mucosal immunity and novel tuberculosis vaccine strategies: route of immunisation-determined T-cell homing to restricted lung mucosal compartments. Eur Respir Rev 2016; 24:356-60. [PMID: 26028646 DOI: 10.1183/16000617.00002515] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Despite the use of bacille Calmette-Guérin (BCG) for almost a century, pulmonary tuberculosis (TB) continues to be a serious global health concern. Therefore, there has been a pressing need for the development of new booster vaccines to enhance existing BCG-induced immunity. Protection following mucosal intranasal immunisation with AdHu5Ag85A is associated with the localisation of antigen-specific T-cells to the lung airway. However, parenteral intramuscular immunisation is unable to provide protection despite the apparent presence of antigen-specific T-cells in the lung interstitium. Recent advances in intravascular staining have allowed us to reassess the previously established T-cell distribution profile and its relationship with the observed differential protection. Respiratory mucosal immunisation empowers T-cells to home to both the lung interstitium and the airway lumen, whereas intramuscular immunisation-activated T-cells are largely trapped within the pulmonary vasculature, unable to populate the lung interstitium and airway. Given the mounting evidence supporting the safety and enhanced efficacy of respiratory mucosal immunisation over the traditional parenteral immunisation route, a greater effort should be made to clinically develop respiratory mucosal-deliverable TB vaccines.
Collapse
Affiliation(s)
- Rocky Lai
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, and Dept of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Sam Afkhami
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, and Dept of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Siamak Haddadi
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, and Dept of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Mangalakumari Jeyanathan
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, and Dept of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Zhou Xing
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, and Dept of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
122
|
Meseda CA, Atukorale V, Kuhn J, Schmeisser F, Weir JP. Percutaneous Vaccination as an Effective Method of Delivery of MVA and MVA-Vectored Vaccines. PLoS One 2016; 11:e0149364. [PMID: 26895072 PMCID: PMC4760941 DOI: 10.1371/journal.pone.0149364] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/29/2016] [Indexed: 12/22/2022] Open
Abstract
The robustness of immune responses to an antigen could be dictated by the route of vaccine inoculation. Traditional smallpox vaccines, essentially vaccinia virus strains, that were used in the eradication of smallpox were administered by percutaneous inoculation (skin scarification). The modified vaccinia virus Ankara is licensed as a smallpox vaccine in Europe and Canada and currently undergoing clinical development in the United States. MVA is also being investigated as a vector for the delivery of heterologous genes for prophylactic or therapeutic immunization. Since MVA is replication-deficient, MVA and MVA-vectored vaccines are often inoculated through the intramuscular, intradermal or subcutaneous routes. Vaccine inoculation via the intramuscular, intradermal or subcutaneous routes requires the use of injection needles, and an estimated 10 to 20% of the population of the United States has needle phobia. Following an observation in our laboratory that a replication-deficient recombinant vaccinia virus derived from the New York City Board of Health strain elicited protective immune responses in a mouse model upon inoculation by tail scarification, we investigated whether MVA and MVA recombinants can elicit protective responses following percutaneous administration in mouse models. Our data suggest that MVA administered by percutaneous inoculation, elicited vaccinia-specific antibody responses, and protected mice from lethal vaccinia virus challenge, at levels comparable to or better than subcutaneous or intramuscular inoculation. High titers of specific neutralizing antibodies were elicited in mice inoculated with a recombinant MVA expressing the herpes simplex type 2 glycoprotein D after scarification. Similarly, a recombinant MVA expressing the hemagglutinin of attenuated influenza virus rgA/Viet Nam/1203/2004 (H5N1) elicited protective immune responses when administered at low doses by scarification. Taken together, our data suggest that MVA and MVA-vectored vaccines inoculated by scarification can elicit protective immune responses that are comparable to subcutaneous vaccination, and may allow for antigen sparing when vaccine supply is limited.
Collapse
Affiliation(s)
- Clement A. Meseda
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food & Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland, 20993, United States of America
| | - Vajini Atukorale
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food & Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland, 20993, United States of America
| | - Jordan Kuhn
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food & Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland, 20993, United States of America
| | - Falko Schmeisser
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food & Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland, 20993, United States of America
| | - Jerry P. Weir
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food & Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland, 20993, United States of America
| |
Collapse
|
123
|
Abstract
While much progress has been made in the fight against the scourge of tuberculosis (TB), we are still some way from reaching the ambitious targets of eliminating it as a global public health problem by the mid twenty-first century. A new and effective vaccine that protects against pulmonary TB disease will be an essential element of any control strategy. Over a dozen vaccines are currently in development, but recent efficacy trial data from one of the most advanced candidates have been disappointing. Limitations of current preclinical animal models exist, together with a lack of a complete understanding of host immunity to TB or robust correlates of disease risk and protection. Therefore, in the context of such obstacles, we discuss the lessons identified from recent efficacy trials, current concepts of biomarkers and correlates of protection, the potential of innovative clinical models such as human challenge and conducting trials in high-incidence settings to evaluate TB vaccines in humans, and the use of systems vaccinology and novel technologies including transcriptomics and metabolomics, that may facilitate their utility.
Collapse
Affiliation(s)
| | - Helen McShane
- a The Jenner Institute, University of Oxford , Oxford , UK
| |
Collapse
|
124
|
A Novel MVA-Based Multiphasic Vaccine for Prevention or Treatment of Tuberculosis Induces Broad and Multifunctional Cell-Mediated Immunity in Mice and Primates. PLoS One 2015; 10:e0143552. [PMID: 26599077 PMCID: PMC4658014 DOI: 10.1371/journal.pone.0143552] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/05/2015] [Indexed: 02/06/2023] Open
Abstract
Bacille Calmette-Guérin (BCG) vaccination of new born babies can protect children against tuberculosis (TB), but fails to protect adults consistently against pulmonary TB underlying the urgent need to develop novel TB vaccines. Majority of first generation TB vaccine candidates have relied on a very limited number of antigens typically belonging to the active phase of infection. We have designed a multi-antigenic and multiphasic vaccine, based on the Modified Vaccinia Ankara virus (MVA). Up to fourteen antigens representative of the three phases of TB infection (active, latent and resuscitation) were inserted into MVA. Using three different strains of mouse (BALB/c, C57BL/6 and C3H/HeN), we show that a single vaccination results in induction of both CD4 and CD8 T cells, displaying capacity to produce multiple cytokines together with cytolytic activity targeting a large array of epitopes. As expected, dominance of responses was linked to the mouse haplotype although for a given haplotype, responses specific of at least one antigen per phase could always be detected. Vaccination of non-human primates with the 14 antigens MVA-TB candidate resulted in broad and potent cellular-based immunogenicity. The remarkable plasticity of MVA opens the road to development of a novel class of highly complex recombinant TB vaccines to be evaluated in both prophylactic and therapeutic settings.
Collapse
|
125
|
A Phase I, Open-Label Trial, Evaluating the Safety and Immunogenicity of Candidate Tuberculosis Vaccines AERAS-402 and MVA85A, Administered by Prime-Boost Regime in BCG-Vaccinated Healthy Adults. PLoS One 2015; 10:e0141687. [PMID: 26529238 PMCID: PMC4631471 DOI: 10.1371/journal.pone.0141687] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 10/07/2015] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND MVA85A and AERAS-402 are two clinically advanced viral vectored TB vaccine candidates expressing Mycobacterium tuberculosis antigens designed to boost BCG-induced immunity. Clinical trials with candidate malaria vaccines have demonstrated that adenoviral vector based priming immunisation, followed by MVA vector boost, induced high levels of immunity. We present the safety and immunogenicity results of the first clinical trial to evaluate this immunisation strategy in TB. METHODS In this phase 1, open-label trial, 40 healthy previously BCG-vaccinated participants were enrolled into three treatment groups and vaccinated with 1 or 2 doses of AERAS-402 followed by MVA85A; or 3 doses of AERAS-402. RESULTS Most related adverse events (AEs) were mild and there were no vaccine related serious AEs. Boosting AERAS-402 with MVA85A significantly increased Ag85A-specific T-cell responses from day of vaccination. Two priming doses of AERAS-402 followed by MVA85A boost, resulted in a significantly higher AUC post-peak Ag85A response compared to three doses of AERAS-402 and historical data with MVA85A vaccination alone. The frequency of CD8+ T-cells producing IFN-γ, TNF-α and IL-2 was highest in the group receiving two priming doses of AERAS-402 followed by MVA85A. CONCLUSIONS Vaccination with AERAS-402 followed by MVA85A was safe and increased the durability of antigen specific T-cell responses and the frequency and polyfunctionality of CD8+ T-cells, which may be important in protection against TB. Further clinical trials with adenoviral prime-MVA85A boost regimens are merited to optimise vaccination intervals, dose and route of immunisation and to evaluate this strategy in the target population in TB high burden countries. TRIAL REGISTRATION ClinicalTrials.gov NCT01683773.
Collapse
|
126
|
Stylianou E, Griffiths KL, Poyntz HC, Harrington-Kandt R, Dicks MD, Stockdale L, Betts G, McShane H. Improvement of BCG protective efficacy with a novel chimpanzee adenovirus and a modified vaccinia Ankara virus both expressing Ag85A. Vaccine 2015; 33:6800-8. [PMID: 26478198 PMCID: PMC4678294 DOI: 10.1016/j.vaccine.2015.10.017] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/28/2015] [Accepted: 10/04/2015] [Indexed: 02/01/2023]
Abstract
A replication-deficient chimpanzee adenovirus expressing Ag85A (ChAdOx1.85A) was assessed, both alone and in combination with modified vaccinia Ankara also expressing Ag85A (MVA85A), for its immunogenicity and protective efficacy against a Mycobacterium tuberculosis (M.tb) challenge in mice. Naïve and BCG-primed mice were vaccinated or boosted with ChAdOx1.85A and MVA85A in different combinations. Although intranasally administered ChAdOx1.85A induced strong immune responses in the lungs, it failed to consistently protect against aerosol M.tb challenge. In contrast, ChAdOx1.85A followed by MVA85A administered either mucosally or systemically, induced strong immune responses and was able to improve the protective efficacy of BCG. This vaccination regime has consistently shown superior protection over BCG alone and should be evaluated further.
Collapse
Affiliation(s)
- E Stylianou
- The Jenner Institute, University of Oxford, United Kingdom
| | - K L Griffiths
- The Jenner Institute, University of Oxford, United Kingdom
| | - H C Poyntz
- The Jenner Institute, University of Oxford, United Kingdom
| | | | - M D Dicks
- The Jenner Institute, University of Oxford, United Kingdom
| | - L Stockdale
- The Jenner Institute, University of Oxford, United Kingdom
| | - G Betts
- The Jenner Institute, University of Oxford, United Kingdom
| | - H McShane
- The Jenner Institute, University of Oxford, United Kingdom.
| |
Collapse
|
127
|
Aguilo N, Alvarez-Arguedas S, Uranga S, Marinova D, Monzón M, Badiola J, Martin C. Pulmonary but Not Subcutaneous Delivery of BCG Vaccine Confers Protection to Tuberculosis-Susceptible Mice by an Interleukin 17-Dependent Mechanism. J Infect Dis 2015; 213:831-9. [PMID: 26494773 DOI: 10.1093/infdis/jiv503] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/14/2015] [Indexed: 01/20/2023] Open
Abstract
Some of the most promising novel tuberculosis vaccine strategies currently under development are based on respiratory vaccination, mimicking the natural route of infection. In this work, we have compared pulmonary and subcutaneous delivery of BCG vaccine in the tuberculosis-susceptible DBA/2 mouse strain, a model in which parenterally administered BCG vaccine does not protect against tuberculosis. Our data show that intranasally but not subcutaneously administered BCG confers robust protection against pulmonary tuberculosis challenge. In addition, our results indicate that pulmonary vaccination triggers a Mycobacterium tuberculosis-specific mucosal immune response orchestrated by interleukin 17A (IL-17A). Thus, IL-17A neutralization in vivo reduces protection and abrogates M. tuberculosis-specific immunoglobulin A (IgA) secretion to respiratory airways and lung expression of polymeric immunoglobulin receptor induced following intranasal vaccination. Together, our results demonstrate that pulmonary delivery of BCG can overcome the lack of protection observed when BCG is given parenterally, suggesting that respiratory tuberculosis vaccines could have an advantage in tuberculosis-endemic countries, where intradermally administered BCG has inefficient effectiveness against pulmonary tuberculosis.
Collapse
Affiliation(s)
- Nacho Aguilo
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Medicina Preventiva, y Salud Pública CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Samuel Alvarez-Arguedas
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Medicina Preventiva, y Salud Pública CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Santiago Uranga
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Medicina Preventiva, y Salud Pública CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Dessislava Marinova
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Medicina Preventiva, y Salud Pública CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Monzón
- Research Centre for Encephalopathies and Transmissible Emerging Diseases, Universidad de Zaragoza
| | - Juan Badiola
- Research Centre for Encephalopathies and Transmissible Emerging Diseases, Universidad de Zaragoza
| | - Carlos Martin
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Medicina Preventiva, y Salud Pública Servicio de Microbiología, Hospital Universitario Miguel Servet, ISS Aragón, Zaragoza CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
128
|
Recombinant BCG Expressing Mycobacterium ulcerans Ag85A Imparts Enhanced Protection against Experimental Buruli ulcer. PLoS Negl Trop Dis 2015; 9:e0004046. [PMID: 26393347 PMCID: PMC4579011 DOI: 10.1371/journal.pntd.0004046] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/11/2015] [Indexed: 11/19/2022] Open
Abstract
Buruli ulcer, an emerging tropical disease caused by Mycobacterium ulcerans (MU), is characterized by disfiguring skin necrosis and high morbidity. Relatively little is understood about the mode of transmission, pathogenesis, or host immune responses to MU infection. Due to significant reduction in quality of life for patients with extensive tissue scarring, and that a disproportionately high percentage of those affected are disadvantaged children, a Buruli ulcer vaccine would be greatly beneficial to the worldwide community. Previous studies have shown that mice inoculated with either M. bovis bacille Calmette–Guérin (BCG) or a DNA vaccine encoding the M. ulcerans mycolyl transferase, Ag85A (MU-Ag85A), are transiently protected against pathology caused by intradermal challenge with MU. Building upon this principle, we have generated quality-controlled, live-recombinant strains of BCG and M. smegmatis which express the immunodominant MU Ag85A. Priming with rBCG MU-Ag85A followed by an M. smegmatis MU-Ag85A boost strongly induced murine antigen-specific CD4+ T cells and elicited functional IFNγ-producing splenocytes which recognized MU-Ag85A peptide and whole M. ulcerans better than a BCG prime-boost vaccination. Strikingly, mice vaccinated with a single subcutaneous dose of BCG MU-Ag85A or prime-boost displayed significantly enhanced survival, reduced tissue pathology, and lower bacterial load compared to mice vaccinated with BCG. Importantly, this level of superior protection against experimental Buruli ulcer compared to BCG has not previously been achieved. These results suggest that use of BCG as a recombinant vehicle expressing MU antigens represents an effective Buruli ulcer vaccine strategy and warrants further antigen discovery to improve vaccine efficacy. Buruli ulcer, caused by subcutaneous infection with Mycobacterium ulcerans, is a highly disfiguring flesh-eating skin disease with significant morbidity. Besides surgical intervention, 8-week combination antibiotics is the standard of care. However, problems with resistance and toxicity warrant their replacement with efficacious vaccines. Several attempts to generate a vaccine have met with limited success and, to date, BCG remains the only vaccine capable of conferring transient protection. Here we demonstrate that a recombinant BCG-based vaccine expressing the immunodominant M. ulcerans Ag85A is capable of significantly enhancing protection in experimental Buruli ulcer compared to standard BCG, with a decrease in bacterial burden, pathology, and increase in survival. These results support further Buruli ulcer vaccine development using the highly safe and well-established BCG vehicle.
Collapse
|
129
|
Smith SG, Smits K, Joosten SA, van Meijgaarden KE, Satti I, Fletcher HA, Caccamo N, Dieli F, Mascart F, McShane H, Dockrell HM, Ottenhoff THM, TBVI TB Biomarker Working Group. Intracellular Cytokine Staining and Flow Cytometry: Considerations for Application in Clinical Trials of Novel Tuberculosis Vaccines. PLoS One 2015; 10:e0138042. [PMID: 26367374 PMCID: PMC4569436 DOI: 10.1371/journal.pone.0138042] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 08/24/2015] [Indexed: 01/24/2023] Open
Abstract
Intracellular cytokine staining combined with flow cytometry is one of a number of assays designed to assess T-cell immune responses. It has the specific advantage of enabling the simultaneous assessment of multiple phenotypic, differentiation and functional parameters pertaining to responding T-cells, most notably, the expression of multiple effector cytokines. These attributes make the technique particularly suitable for the assessment of T-cell immune responses induced by novel tuberculosis vaccines in clinical trials. However, depending upon the particular nature of a given vaccine and trial setting, there are approaches that may be taken at different stages of the assay that are more suitable than other alternatives. In this paper, the Tuberculosis Vaccine Initiative (TBVI) TB Biomarker Working group reports on efforts to assess the conditions that will determine when particular assay approaches should be employed. We have found that choices relating to the use of fresh whole blood or peripheral blood mononuclear cells (PBMC) and frozen PBMC; use of serum-containing or serum-free medium; length of stimulation period and use of co-stimulatory antibodies can all affect the sensitivity of intracellular cytokine assays. In the case of sample material, frozen PBMC, despite some loss of sensitivity, may be more advantageous for batch analysis. We also recommend that for multi-site studies, common antibody panels, gating strategies and analysis approaches should be employed for better comparability.
Collapse
Affiliation(s)
- Steven G. Smith
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
- * E-mail:
| | - Kaatje Smits
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles, Brussels, Belgium
| | - Simone A. Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Iman Satti
- The Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford, United Kingdom
| | - Helen A. Fletcher
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
- The Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford, United Kingdom
| | - Nadia Caccamo
- Biomedical Research Centre, Università di Palermo, Palermo, Italy, Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università di Palermo, Palermo, Italy
| | - Francesco Dieli
- Biomedical Research Centre, Università di Palermo, Palermo, Italy, Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università di Palermo, Palermo, Italy
| | - Francoise Mascart
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles, Brussels, Belgium
- Immunobiology Clinic, Hôpital Erasme, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Helen McShane
- The Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford, United Kingdom
| | - Hazel M. Dockrell
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
130
|
Ahsan MJ. Recent advances in the development of vaccines for tuberculosis. THERAPEUTIC ADVANCES IN VACCINES 2015; 3:66-75. [PMID: 26288734 DOI: 10.1177/2051013615593891] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tuberculosis (Tb) continues to be a dreadful infection worldwide with nearly 1.5 million deaths in 2013. Furthermore multi/extensively drug-resistant Tb (MDR/XDR-Tb) worsens the condition. Recently approved anti-Tb drugs (bedaquiline and delamanid) have the potential to induce arrhythmia and are recommended in patients with MDR-Tb when other alternatives fail. The goal of elimination of Tb by 2050 will not be achieved without an effective new vaccine. The recent advancement in the development of Tb vaccines is the keen focus of this review. To date, Bacille Calmette Guerin (BCG) is the only licensed Tb vaccine in use, however its efficacy in pulmonary Tb is variable in adolescents and adults. There are nearly 15 vaccine candidates in various phases of clinical trials, includes five protein or adjuvant vaccines, four viral-vectored vaccines, three mycobacterial whole cell or extract vaccines, and one each of the recombinant live and the attenuated Mycobacterium tuberculosis (Mtb) vaccine.
Collapse
Affiliation(s)
- Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, Maharishi Arvind College of Pharmacy, Jaipur, Rajasthan 303 039, India
| |
Collapse
|
131
|
Jeyanathan M, Shao Z, Yu X, Harkness R, Jiang R, Li J, Xing Z, Zhu T. AdHu5Ag85A Respiratory Mucosal Boost Immunization Enhances Protection against Pulmonary Tuberculosis in BCG-Primed Non-Human Primates. PLoS One 2015; 10:e0135009. [PMID: 26252520 PMCID: PMC4529167 DOI: 10.1371/journal.pone.0135009] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/10/2015] [Indexed: 12/21/2022] Open
Abstract
Persisting high global tuberculosis (TB) morbidity and mortality and poor efficacy of BCG vaccine emphasizes an urgent need for developing effective novel boost vaccination strategies following parenteral BCG priming in humans. Most of the current lead TB vaccine candidates in the global pipeline were developed for parenteral route of immunization. Compelling evidence indicates respiratory mucosal delivery of vaccine to be the most effective way to induce robust local mucosal protective immunity against pulmonary TB. However, despite ample supporting evidence from various animal models, there has been a lack of evidence supporting the safety and protective efficacy of respiratory mucosal TB vaccination in non-human primates (NHP) and humans. By using a rhesus macaque TB model we have evaluated the safety and protective efficacy of a recombinant human serotype 5 adenovirus-based TB vaccine (AdHu5Ag85A) delivered via the respiratory mucosal route. We show that mucosal AdHu5Ag85A boost immunization was safe and well tolerated in parenteral BCG-primed rhesus macaques. A single AdHu5Ag85A mucosal boost immunization in BCG-primed rhesus macaques enhanced the antigen–specific T cell responses. Boost immunization significantly improved the survival and bacterial control following M.tb challenge. Furthermore, TB-related lung pathology and clinical outcomes were lessened in BCG-primed, mucosally boosted animals compared to control animals. Thus, for the first time we show that a single respiratory mucosal boost immunization with a novel TB vaccine enhances protection against pulmonary TB in parenteral BCG-primed NHP. Our study provides the evidence for the protective potential of AdHu5Ag85A as a respiratory mucosal boost TB vaccine for human application.
Collapse
Affiliation(s)
- Mangalakumari Jeyanathan
- McMaster Immunology Research Centre and Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Zhongqi Shao
- Tianjin CanSino Biotechnology, Inc., Tianjin, China
| | - Xuefeng Yu
- Tianjin CanSino Biotechnology, Inc., Tianjin, China
| | | | - Rong Jiang
- Tianjin CanSino Biotechnology, Inc., Tianjin, China
| | - Junqiang Li
- Tianjin CanSino Biotechnology, Inc., Tianjin, China
| | - Zhou Xing
- McMaster Immunology Research Centre and Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- * E-mail: (ZX); (TZ)
| | - Tao Zhu
- Tianjin CanSino Biotechnology, Inc., Tianjin, China
- * E-mail: (ZX); (TZ)
| |
Collapse
|
132
|
Evaluation of the Immunogenicity of Mycobacterium bovis BCG Delivered by Aerosol to the Lungs of Macaques. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:992-1003. [PMID: 26108288 PMCID: PMC4550663 DOI: 10.1128/cvi.00289-15] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/23/2015] [Indexed: 11/20/2022]
Abstract
Nine million cases of tuberculosis (TB) were reported in 2013, with a further 1.5 million deaths attributed to the disease. When delivered as an intradermal (i.d.) injection, the Mycobacterium bovis BCG vaccine provides limited protection, whereas aerosol delivery has been shown to enhance efficacy in experimental models. In this study, we used the rhesus macaque model to characterize the mucosal and systemic immune response induced by aerosol-delivered BCG vaccine. Aerosol delivery of BCG induced both Th1 and Th17 cytokine responses. Polyfunctional CD4 T cells were detected in bronchoalveolar lavage (BAL) fluid and peripheral blood mononuclear cells (PBMCs) 8 weeks following vaccination in a dose-dependent manner. A similar trend was seen in peripheral gamma interferon (IFN-γ) spot-forming units measured by enzyme-linked immunosorbent spot (ELISpot) assay and serum anti-purified protein derivative (PPD) IgG levels. CD8 T cells predominantly expressed cytokines individually, with pronounced tumor necrosis factor alpha (TNF-α) production by BAL fluid cells. T-cell memory phenotype analysis revealed that CD4 and CD8 populations isolated from BAL fluid samples were polarized toward an effector memory phenotype, whereas the frequencies of peripheral central memory T cells increased significantly and remained elevated following aerosol vaccination. Expression patterns of the α4β1 integrin lung homing markers remained consistently high on CD4 and CD8 T cells isolated from BAL fluid and varied on peripheral T cells. This characterization of aerosol BCG vaccination highlights features of the resulting mycobacterium-specific immune response that may contribute to the enhanced protection previously reported in aerosol BCG vaccination studies and will inform future studies involving vaccines delivered to the mucosal surfaces of the lung.
Collapse
|
133
|
Damjanovic D, Khera A, Afkhami S, Lai R, Zganiacz A, Jeyanathan M, Xing Z. Age at Mycobacterium bovis BCG Priming Has Limited Impact on Anti-Tuberculosis Immunity Boosted by Respiratory Mucosal AdHu5Ag85A Immunization in a Murine Model. PLoS One 2015; 10:e0131175. [PMID: 26098423 PMCID: PMC4476612 DOI: 10.1371/journal.pone.0131175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/31/2015] [Indexed: 11/18/2022] Open
Abstract
Tuberculosis (TB) remains a global pandemic despite the use of Bacillus Calmette-Guérin (BCG) vaccine, partly because BCG fails to effectively control adult pulmonary TB. The introduction of novel boost vaccines such as the human Adenovirus 5-vectored AdHu5Ag85A could improve and prolong the protective immunity of BCG immunization. Age at which BCG immunization is implemented varies greatly worldwide, and research is ongoing to discover the optimal stage during childhood to administer the vaccine, as well as when to boost the immune response with potential novel vaccines. Using a murine model of subcutaneous BCG immunization followed by intranasal AdHu5Ag85A boosting, we investigated the impact of age at BCG immunization on protective efficacy of BCG prime and AdHu5Ag85A boost immunization-mediated protection. Our results showed that age at parenteral BCG priming has limited impact on the efficacy of BCG prime-AdHu5Ag85A respiratory mucosal boost immunization-enhanced protection. However, when BCG immunization was delayed until the maturity of the immune system, longer sustained memory T cells were generated and resulted in enhanced boosting effect on T cells of AdHu5Ag85A respiratory mucosal immunization. Our findings hold implications for the design of new TB immunization protocols for humans.
Collapse
Affiliation(s)
- Daniela Damjanovic
- McMaster Immunology Research Centre and Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Amandeep Khera
- McMaster Immunology Research Centre and Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Sam Afkhami
- McMaster Immunology Research Centre and Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Rocky Lai
- McMaster Immunology Research Centre and Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Anna Zganiacz
- McMaster Immunology Research Centre and Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Mangalakumari Jeyanathan
- McMaster Immunology Research Centre and Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Zhou Xing
- McMaster Immunology Research Centre and Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
134
|
Measuring Cellular Immunity to Influenza: Methods of Detection, Applications and Challenges. Vaccines (Basel) 2015; 3:293-319. [PMID: 26343189 PMCID: PMC4494351 DOI: 10.3390/vaccines3020293] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 12/11/2022] Open
Abstract
Influenza A virus is a respiratory pathogen which causes both seasonal epidemics and occasional pandemics; infection continues to be a significant cause of mortality worldwide. Current influenza vaccines principally stimulate humoral immune responses that are largely directed towards the variant surface antigens of influenza. Vaccination can result in an effective, albeit strain-specific antibody response and there is a need for vaccines that can provide superior, long-lasting immunity to influenza. Vaccination approaches targeting conserved viral antigens have the potential to provide broadly cross-reactive, heterosubtypic immunity to diverse influenza viruses. However, the field lacks consensus on the correlates of protection for cellular immunity in reducing severe influenza infection, transmission or disease outcome. Furthermore, unlike serological methods such as the standardized haemagglutination inhibition assay, there remains a large degree of variation in both the types of assays and method of reporting cellular outputs. T-cell directed immunity has long been known to play a role in ameliorating the severity and/or duration of influenza infection, but the precise phenotype, magnitude and longevity of the requisite protective response is unclear. In order to progress the development of universal influenza vaccines, it is critical to standardize assays across sites to facilitate direct comparisons between clinical trials.
Collapse
|
135
|
Developing aerosol vaccines for Mycobacterium tuberculosis: Workshop proceedings: National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA, April 9, 2014. Vaccine 2015; 33:3038-46. [PMID: 25869894 DOI: 10.1016/j.vaccine.2015.03.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/12/2015] [Accepted: 03/18/2015] [Indexed: 12/12/2022]
Abstract
On April 9, 2014, Aeras and the National Institute of Allergy and Infectious Diseases convened a workshop entitled "Developing Aerosol Vaccines for Mycobacterium tuberculosis" in Bethesda, MD. The purpose of the meeting was to explore the potential for developing aerosol vaccines capable of preventing infection with M. tuberculosis (Mtb), preventing the development of active tuberculosis (TB) among those latently infected with Mtb, or as immunotherapy for persons with active TB. The workshop was organized around four key questions relevant to developing and assessing aerosol TB vaccines: (1) What is the current knowledge about lung immune responses and early pathogenesis resulting after Mtb infection and what are the implications for aerosol TB vaccine strategies? (2) What are the technical issues surrounding aerosol vaccine delivery? (3) What is the current experience in aerosol TB vaccine development? and (4) What are the regulatory implications of developing aerosol vaccines, including those for TB? Lessons learned from the WHO effort to develop an aerosol measles vaccine served as a case example for overall discussions at the meeting. Workshop participants agreed that aerosol delivery represents a potentially important strategy in advancing TB vaccine development efforts. As no major regulatory, manufacturing or clinical impediments were identified, members of the workshop emphasized the need for greater support to further explore the potential for this delivery methodology, either alone or as an adjunct to traditional parenteral methods of vaccine administration.
Collapse
|
136
|
Protection against Mycobacterium tuberculosis infection offered by a new multistage subunit vaccine correlates with increased number of IFN-γ+ IL-2+ CD4+ and IFN-γ+ CD8+ T cells. PLoS One 2015; 10:e0122560. [PMID: 25822536 PMCID: PMC4378938 DOI: 10.1371/journal.pone.0122560] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/22/2015] [Indexed: 01/13/2023] Open
Abstract
Protein subunit vaccines present a compelling new area of research for control of tuberculosis (TB). Based on the interaction between Mycobacterium tuberculosis and its host, five stage-specific antigens of M. tuberculosis that participate in TB pathogenesis—Rv1813, Rv2660c, Ag85B, Rv2623, and HspX—were selected. These antigens were verified to be recognized by T cells from a total of 42 whole blood samples obtained from active TB patients, patients with latent TB infections (LTBIs), and healthy control donors. The multistage polyprotein A1D4 was developed using the selected five antigens as a potentially more effective novel subunit vaccine. The immunogenicity and protective efficacy of A1D4 emulsified in the adjuvant MTO [monophosphoryl lipid A (MPL), trehalose-6,6′-dibehenate (TDB), components of MF59] was compared with Bacillus Calmette-Guerin (BCG) in C57BL/6 mice. Our results demonstrated that A1D4/MTO could provide more significant protection against M. tuberculosis infection than the PBS control or MTO adjuvant alone judging from the A1D4-specific Th1-type immune response; however, its efficacy was inferior to BCG as demonstrated by the bacterial load in the lung and spleen, and by the pathological changes in the lung. Antigen-specific single IL-2-secreting cells and different combinations with IL-2-secreting CD4+ T cells were beneficial and correlated with BCG vaccine-induced protection against TB. Antigen-specific IFN-γ+IL-2+ CD4+ T cells were the only effective biomarker significantly induced by A1D4/MTO. Among all groups, A1D4/MTO immunization also conferred the highest number of antigen-specific single IFN-γ+ and IFN-γ+TNF-α+ CD4+ T cells, which might be related to the antigen load in vivo, and single IFN-γ+ CD8+ T cells by mimicking the immune patterns of LTBIs or curable TB patients. Our strategy seems promising for the development of a TB vaccine based on multistage antigens, and subunit antigen A1D4 suspended in MTO adjuvant warrants preclinical evaluation in animal models of latent infection and may boost BCG vaccination.
Collapse
|
137
|
Ndiaye BP, Thienemann F, Ota M, Landry BS, Camara M, Dièye S, Dieye TN, Esmail H, Goliath R, Huygen K, January V, Ndiaye I, Oni T, Raine M, Romano M, Satti I, Sutton S, Thiam A, Wilkinson KA, Mboup S, Wilkinson RJ, McShane H. Safety, immunogenicity, and efficacy of the candidate tuberculosis vaccine MVA85A in healthy adults infected with HIV-1: a randomised, placebo-controlled, phase 2 trial. THE LANCET. RESPIRATORY MEDICINE 2015; 3:190-200. [PMID: 25726088 PMCID: PMC4648060 DOI: 10.1016/s2213-2600(15)00037-5] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 01/26/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND HIV-1 infection is associated with increased risk of tuberculosis and a safe and effective vaccine would assist control measures. We assessed the safety, immunogenicity, and efficacy of a candidate tuberculosis vaccine, modified vaccinia virus Ankara expressing antigen 85A (MVA85A), in adults infected with HIV-1. METHODS We did a randomised, double-blind, placebo-controlled, phase 2 trial of MVA85A in adults infected with HIV-1, at two clinical sites, in Cape Town, South Africa and Dakar, Senegal. Eligible participants were aged 18-50 years, had no evidence of active tuberculosis, and had baseline CD4 counts greater than 350 cells per μL if they had never received antiretroviral therapy or greater than 300 cells per μL (and with undetectable viral load before randomisation) if they were receiving antiretroviral therapy; participants with latent tuberculosis infection were eligible if they had completed at least 5 months of isoniazid preventive therapy, unless they had completed treatment for tuberculosis disease within 3 years before randomisation. Participants were randomly assigned (1:1) in blocks of four by randomly generated sequence to receive two intradermal injections of either MVA85A or placebo. Randomisation was stratified by antiretroviral therapy status and study site. Participants, nurses, investigators, and laboratory staff were masked to group allocation. The second (booster) injection of MVA85A or placebo was given 6-12 months after the first vaccination. The primary study outcome was safety in all vaccinated participants (the safety analysis population). Safety was assessed throughout the trial as defined in the protocol. Secondary outcomes were immunogenicity and vaccine efficacy against Mycobacterium tuberculosis infection and disease, assessed in the per-protocol population. Immunogenicity was assessed in a subset of participants at day 7 and day 28 after the first and second vaccination, and M tuberculosis infection and disease were assessed at the end of the study. The trial is registered with ClinicalTrials.gov, number NCT01151189. FINDINGS Between Aug 4, 2011, and April 24, 2013, 650 participants were enrolled and randomly assigned; 649 were included in the safety analysis (324 in the MVA85A group and 325 in the placebo group) and 645 in the per-protocol analysis (320 and 325). 513 (71%) participants had CD4 counts greater than 300 cells per μL and were receiving antiretroviral therapy; 136 (21%) had CD4 counts above 350 cells per μL and had never received antiretroviral therapy. 277 (43%) had received isoniazid prophylaxis before enrolment. Solicited adverse events were more frequent in participants who received MVA85A (288 [89%]) than in those given placebo (235 [72%]). 34 serious adverse events were reported, 17 (5%) in each group. MVA85A induced a significant increase in antigen 85A-specific T-cell response, which peaked 7 days after both vaccinations and was primarily monofunctional. The number of participants with negative QuantiFERON-TB Gold In-Tube findings at baseline who converted to positive by the end of the study was 38 (20%) of 186 in the MVA85A group and 40 (23%) of 173 in the placebo group, for a vaccine efficacy of 11·7% (95% CI -41·3 to 44·9). In the per-protocol population, six (2%) cases of tuberculosis disease occurred in the MVA85A group and nine (3%) occurred in the placebo group, for a vaccine efficacy of 32·8% (95% CI -111·5 to 80·3). INTERPRETATION MVA85A was well tolerated and immunogenic in adults infected with HIV-1. However, we detected no efficacy against M tuberculosis infection or disease, although the study was underpowered to detect an effect against disease. Potential reasons for the absence of detectable efficacy in this trial include insufficient induction of a vaccine-induced immune response or the wrong type of vaccine-induced immune response, or both. FUNDING European & Developing Countries Clinical Trials Partnership (IP.2007.32080.002), Aeras, Bill & Melinda Gates Foundation, Wellcome Trust, and Oxford-Emergent Tuberculosis Consortium.
Collapse
Affiliation(s)
- Birahim Pierre Ndiaye
- Laboratoire de Bactériologie-Virologie, Centre Hospitalier Universitaire Le Dantec, Dakar, Senegal
| | - Friedrich Thienemann
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Martin Ota
- Medical Research Council Unit, Fajara, The Gambia
| | | | - Makhtar Camara
- Laboratoire de Bactériologie-Virologie, Centre Hospitalier Universitaire Le Dantec, Dakar, Senegal
| | - Siry Dièye
- Laboratoire de Bactériologie-Virologie, Centre Hospitalier Universitaire Le Dantec, Dakar, Senegal
| | - Tandakha Ndiaye Dieye
- Laboratoire de Bactériologie-Virologie, Centre Hospitalier Universitaire Le Dantec, Dakar, Senegal
| | - Hanif Esmail
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Department of Medicine, Imperial College London, London, UK
| | - Rene Goliath
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Kris Huygen
- Immunology Service, Scientific Institute of Public Health (WIV-ISP), Brussels, Belgium
| | - Vanessa January
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Ibrahima Ndiaye
- Laboratoire de Bactériologie-Virologie, Centre Hospitalier Universitaire Le Dantec, Dakar, Senegal
| | - Tolu Oni
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Public Health Medicine, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | | | - Marta Romano
- Immunology Service, Scientific Institute of Public Health (WIV-ISP), Brussels, Belgium
| | - Iman Satti
- Jenner Institute, University of Oxford, Oxford, UK
| | | | - Aminata Thiam
- Centre de Traitement Ambulatoire, Centre Hospitalier Universitaire de Fann, Dakar, Senegal
| | - Katalin A Wilkinson
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Department of Medicine, University of Cape Town, Cape Town, South Africa; MRC National Institute for Medical Research, London, UK
| | - Souleymane Mboup
- Laboratoire de Bactériologie-Virologie, Centre Hospitalier Universitaire Le Dantec, Dakar, Senegal
| | - Robert J Wilkinson
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Department of Medicine, University of Cape Town, Cape Town, South Africa; Department of Medicine, Imperial College London, London, UK; MRC National Institute for Medical Research, London, UK
| | | |
Collapse
|
138
|
Manjaly Thomas ZR, McShane H. Aerosol immunisation for TB: matching route of vaccination to route of infection. Trans R Soc Trop Med Hyg 2015; 109:175-81. [PMID: 25636950 PMCID: PMC4321022 DOI: 10.1093/trstmh/tru206] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/05/2014] [Accepted: 12/09/2014] [Indexed: 12/20/2022] Open
Abstract
TB remains a very significant global health burden. There is an urgent need for better tools for TB control, which include an effective vaccine. Bacillus Calmette-Guérin (BCG), the currently licensed vaccine, confers highly variable protection against pulmonary TB, the main source of TB transmission. Replacing BCG completely or boosting BCG with another vaccine are the two current strategies for TB vaccine development. Delivering a vaccine by aerosol represents a way to match the route of vaccination to the route of infection. This route of immunisation offers not only the scientific advantage of delivering the vaccine directly to the respiratory mucosa, but also practical and logistical advantages. This review summarises the state of current TB vaccine candidates in the pipeline, reviews current progress in aerosol administration of vaccines in general and evaluates the potential for TB vaccine candidates to be administered by the aerosol route.
Collapse
Affiliation(s)
| | - Helen McShane
- The Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| |
Collapse
|
139
|
Modified Vaccinia virus Ankara but not vaccinia virus induces chemokine expression in cells of the monocyte/macrophage lineage. Virol J 2015; 12:21. [PMID: 25889495 PMCID: PMC4349667 DOI: 10.1186/s12985-015-0252-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/29/2015] [Indexed: 12/27/2022] Open
Abstract
Background The orthopoxvirus strain Modified Vaccinia virus Ankara (MVA) rapidly induces innate immune responses. Previously, we demonstrated that CCL2 and CCR1 are important players in MVA induced recruitment of leukocytes to the lung. Alveolar macrophages are sentinel cells in the lung, which are likely amongst the first cells of the immune system to encounter and respond to virus during respiratory infection. Therefore we examined the potential of the murine alveolar macrophage MH-S cell line as a model to study chemokine expression during infection with MVA and vaccinia virus (VACV) strain Western Reserve (WR). Findings MVA but not VACV infected MH-S cells increased the expression of the CXCR2 acting chemokine CXCL2. MH-S cells constitutively produced CCL2 and CCR1 acting chemokines CCL3, CCL5 and CCL9. Consequently, supernatants of mock treated and virus infected MH-S cells induced chemotaxis of murine promyelocyte MPRO cells and human monocytic THP-1 cells at the same level. However, supernatants of MVA infected MH-S cells significantly increased chemotaxis of the CCR2 deficient human monocytic cell line U-937. Chemotaxis of all three cell types was inhibited by J 113863, a CCR1 antagonist. Additionally, we show that MVA but not VACV WR infection of THP-1 cells induces expression of C-C motif and C-X-C motif chemokines and generates a chemotactic activity for monocytes, which was J 113863 sensitive. Conclusions These results extend our previous findings, demonstrating that MVA but not VACV WR induces chemokine production in alveolar macrophages and monocytes, which can induce recruitment of monocytes in a CCR1 dependent manner. Electronic supplementary material The online version of this article (doi:10.1186/s12985-015-0252-1) contains supplementary material, which is available to authorized users.
Collapse
|
140
|
Rappuoli R. Changing route: aerosol vaccine against tuberculosis. THE LANCET. INFECTIOUS DISEASES 2014; 14:901-2. [PMID: 25151224 DOI: 10.1016/s1473-3099(14)70886-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Rino Rappuoli
- Novartis Vaccines, Via Fiorentina 1, 53100 Siena, Italy.
| |
Collapse
|