101
|
Esfandiary A, Finkelstein DI, Voelcker NH, Rudd D. Clinical Sphingolipids Pathway in Parkinson’s Disease: From GCase to Integrated-Biomarker Discovery. Cells 2022; 11:cells11081353. [PMID: 35456032 PMCID: PMC9028315 DOI: 10.3390/cells11081353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 02/01/2023] Open
Abstract
Alterations in the sphingolipid metabolism of Parkinson’s Disease (PD) could be a potential diagnostic feature. Only around 10–15% of PD cases can be diagnosed through genetic alterations, while the remaining population, idiopathic PD (iPD), manifest without validated and specific biomarkers either before or after motor symptoms appear. Therefore, clinical diagnosis is reliant on the skills of the clinician, which can lead to misdiagnosis. IPD cases present with a spectrum of non-specific symptoms (e.g., constipation and loss of the sense of smell) that can occur up to 20 years before motor function loss (prodromal stage) and formal clinical diagnosis. Prodromal alterations in metabolites and proteins from the pathways underlying these symptoms could act as biomarkers if they could be differentiated from the broad values seen in a healthy age-matched control population. Additionally, these shifts in metabolites could be integrated with other emerging biomarkers/diagnostic tests to give a PD-specific signature. Here we provide an up-to-date review of the diagnostic value of the alterations in sphingolipids pathway in PD by focusing on the changes in definitive PD (postmortem confirmed brain data) and their representation in “probable PD” cerebrospinal fluid (CSF) and blood. We conclude that the trend of holistic changes in the sphingolipid pathway in the PD brain seems partly consistent in CSF and blood, and could be one of the most promising pathways in differentiating PD cases from healthy controls, with the potential to improve early-stage iPD diagnosis and distinguish iPD from other Parkinsonism when combined with other pathological markers.
Collapse
Affiliation(s)
- Ali Esfandiary
- Drug Delivery, Disposition and Dynamics, Monash University, Parkville, VIC 3052, Australia; (A.E.); (N.H.V.)
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC 3168, Australia
| | | | - Nicolas Hans Voelcker
- Drug Delivery, Disposition and Dynamics, Monash University, Parkville, VIC 3052, Australia; (A.E.); (N.H.V.)
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC 3168, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, VIC 3168, Australia
- Materials Science and Engineering, Monash University, Clayton, VIC 3168, Australia
| | - David Rudd
- Drug Delivery, Disposition and Dynamics, Monash University, Parkville, VIC 3052, Australia; (A.E.); (N.H.V.)
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC 3168, Australia
- Correspondence: ; Tel.: +61-3-9903-9581
| |
Collapse
|
102
|
Höllerhage M, Stepath M, Kohl M, Pfeiffer K, Chua OWH, Duan L, Hopfner F, Eisenacher M, Marcus K, Höglinger GU. Transcriptome and Proteome Analysis in LUHMES Cells Overexpressing Alpha-Synuclein. Front Neurol 2022; 13:787059. [PMID: 35481270 PMCID: PMC9037753 DOI: 10.3389/fneur.2022.787059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/21/2022] [Indexed: 01/03/2023] Open
Abstract
LUHMES cells share many characteristics with human dopaminergic neurons in the substantia nigra, the cells, the demise of which is responsible for the motor symptoms in Parkinson's disease (PD). LUHMES cells can, therefore, be used bona fide as a model to study pathophysiological processes involved in PD. Previously, we showed that LUHMES cells degenerate after 6 days upon overexpression of wild-type alpha-synuclein. In the present study, we performed a transcriptome and proteome expression analysis in alpha-synuclein-overexpressing cells and GFP-expressing control cells in order to identify genes and proteins that are differentially regulated upon overexpression of alpha-synuclein. The analysis was performed 4 days after the initiation of alpha-synuclein or GFP overexpression, before the cells died, in order to identify processes that preceded cell death. After adjustments for multiple testing, we found 765 genes being differentially regulated (439 upregulated, 326 downregulated) and 122 proteins being differentially expressed (75 upregulated, 47 downregulated). In total, 21 genes and corresponding proteins were significantly differentially regulated in the same direction in both datasets, of these 13 were upregulated and 8 were downregulated. In total, 13 genes and 9 proteins were differentially regulated in our cell model, which had been previously associated with PD in recent genome-wide association studies (GWAS). In the gene ontology (GO) analysis of all upregulated genes, the top terms were “regulation of cell death,” “positive regulation of programmed cell death,” and “regulation of apoptotic signaling pathway,” showing a regulation of cell death-associated genes and proteins already 2 days before the cells started to die. In the GO analysis of the regulated proteins, among the strongest enriched GO terms were “vesicle,” “synapse,” and “lysosome.” In total, 33 differentially regulated proteins were associated with synapses, and 12 differentially regulated proteins were associated with the “lysosome”, suggesting that these intracellular mechanisms, which had been previously associated with PD, also play an important role in our cell model.
Collapse
Affiliation(s)
| | - Markus Stepath
- Medical Faculty, Medizinisches Proteom-Center, Ruhr University Bochum, Bochum, Germany
- Medical Proteome Analysis, Center for Proteindiagnostics (PRODI), Ruhr University Bochum, Bochum, Germany
| | - Michael Kohl
- Medical Faculty, Medizinisches Proteom-Center, Ruhr University Bochum, Bochum, Germany
| | - Kathy Pfeiffer
- Medical Faculty, Medizinisches Proteom-Center, Ruhr University Bochum, Bochum, Germany
- Medical Proteome Analysis, Center for Proteindiagnostics (PRODI), Ruhr University Bochum, Bochum, Germany
| | | | - Linghan Duan
- Department of Neurology, Hannover Medical School, Hanover, Germany
| | | | - Martin Eisenacher
- Medical Faculty, Medizinisches Proteom-Center, Ruhr University Bochum, Bochum, Germany
- Medical Proteome Analysis, Center for Proteindiagnostics (PRODI), Ruhr University Bochum, Bochum, Germany
| | - Katrin Marcus
- Medical Faculty, Medizinisches Proteom-Center, Ruhr University Bochum, Bochum, Germany
- Medical Proteome Analysis, Center for Proteindiagnostics (PRODI), Ruhr University Bochum, Bochum, Germany
| | - Günter U. Höglinger
- Department of Neurology, Hannover Medical School, Hanover, Germany
- *Correspondence: Günter U. Höglinger
| |
Collapse
|
103
|
Huang J, Cheng Y, Li C, Shang H. Genetic heterogeneity on sleep disorders in Parkinson's disease: a systematic review and meta-analysis. Transl Neurodegener 2022; 11:21. [PMID: 35395825 PMCID: PMC8991652 DOI: 10.1186/s40035-022-00294-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/09/2022] [Indexed: 02/08/2023] Open
Abstract
A growing amount of evidence has indicated contributions of variants in causative genes of Parkinson’s disease (PD) to the development of sleep disturbance in PD and prodromal PD stages. In this article, we aimed to investigate the role of genetics in sleep disorders in PD patients and asymptomatic carriers at prodromal stage of PD. A systematic review and meta-analysis of observational studies was conducted based on the MEDLINE, EMBASE and PsychINFO databases. A pooled effect size was calculated by odds ratio (OR) and standard mean difference (SMD). Forty studies were selected for quantitative analysis, including 17 studies on glucocerebrosidase (GBA), 25 studies on Leucine-rich repeat kinase 2 (LRRK2) and 7 on parkin (PRKN) genes, and 3 studies on alpha-synuclein gene (SNCA) were used for qualitative analysis. Patients with PD carrying GBA variants had a significantly higher risk for rapid-eye-movement behavior disorders (RBD) (OR, 1.82) and higher RBD Screening Questionnaire scores (SMD, 0.33). Asymptomatic carriers of GBA variants had higher severity of RBD during follow-up. Patients with PD carrying the LRRK2 G2019S variant had lower risk and severity of RBD compared with those without LRRK2 G2019S. Variants of GBA, LRRK2 and PRKN did not increase or decrease the risk and severity of excessive daytime sleepiness and restless legs syndrome in PD. Our findings suggest that the genetic heterogeneity plays a role in the development of sleep disorders, mainly RBD, in PD and the prodromal stage of PD.
Collapse
Affiliation(s)
- Jingxuan Huang
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yangfan Cheng
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chunyu Li
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Huifang Shang
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
104
|
GBA Variants and Parkinson Disease: Mechanisms and Treatments. Cells 2022; 11:cells11081261. [PMID: 35455941 PMCID: PMC9029385 DOI: 10.3390/cells11081261] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 01/01/2023] Open
Abstract
The GBA gene encodes for the lysosomal enzyme glucocerebrosidase (GCase), which maintains glycosphingolipid homeostasis. Approximately 5–15% of PD patients have mutations in the GBA gene, making it numerically the most important genetic risk factor for Parkinson disease (PD). Clinically, GBA-associated PD is identical to sporadic PD, aside from the earlier age at onset (AAO), more frequent cognitive impairment and more rapid progression. Mutations in GBA can be associated with loss- and gain-of-function mechanisms. A key hallmark of PD is the presence of intraneuronal proteinaceous inclusions named Lewy bodies, which are made up primarily of alpha-synuclein. Mutations in the GBA gene may lead to loss of GCase activity and lysosomal dysfunction, which may impair alpha-synuclein metabolism. Models of GCase deficiency demonstrate dysfunction of the autophagic-lysosomal pathway and subsequent accumulation of alpha-synuclein. This dysfunction can also lead to aberrant lipid metabolism, including the accumulation of glycosphingolipids, glucosylceramide and glucosylsphingosine. Certain mutations cause GCase to be misfolded and retained in the endoplasmic reticulum (ER), activating stress responses including the unfolded protein response (UPR), which may contribute to neurodegeneration. In addition to these mechanisms, a GCase deficiency has also been associated with mitochondrial dysfunction and neuroinflammation, which have been implicated in the pathogenesis of PD. This review discusses the pathways associated with GBA-PD and highlights potential treatments which may act to target GCase and prevent neurodegeneration.
Collapse
|
105
|
Integrating deep learning and unbiased automated high-content screening to identify complex disease signatures in human fibroblasts. Nat Commun 2022; 13:1590. [PMID: 35338121 PMCID: PMC8956598 DOI: 10.1038/s41467-022-28423-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 01/17/2022] [Indexed: 01/27/2023] Open
Abstract
Drug discovery for diseases such as Parkinson's disease are impeded by the lack of screenable cellular phenotypes. We present an unbiased phenotypic profiling platform that combines automated cell culture, high-content imaging, Cell Painting, and deep learning. We applied this platform to primary fibroblasts from 91 Parkinson's disease patients and matched healthy controls, creating the largest publicly available Cell Painting image dataset to date at 48 terabytes. We use fixed weights from a convolutional deep neural network trained on ImageNet to generate deep embeddings from each image and train machine learning models to detect morphological disease phenotypes. Our platform's robustness and sensitivity allow the detection of individual-specific variation with high fidelity across batches and plate layouts. Lastly, our models confidently separate LRRK2 and sporadic Parkinson's disease lines from healthy controls (receiver operating characteristic area under curve 0.79 (0.08 standard deviation)), supporting the capacity of this platform for complex disease modeling and drug screening applications.
Collapse
|
106
|
Zheng W, Fan D. Glucocerebrosidase Mutations Cause Mitochondrial and Lysosomal Dysfunction in Parkinson’s Disease: Pathogenesis and Therapeutic Implications. Front Aging Neurosci 2022; 14:851135. [PMID: 35401150 PMCID: PMC8984109 DOI: 10.3389/fnagi.2022.851135] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/14/2022] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease and is characterized by multiple motor and non-motor symptoms. Mutations in the glucocerebrosidase (GBA) gene, which encodes the lysosomal enzyme glucocerebrosidase (GCase), which hydrolyzes glucosylceramide (GlcCer) to glucose and ceramide, are the most important and common genetic PD risk factors discovered to date. Homozygous GBA mutations result in the most common lysosomal storage disorder, Gaucher’s disease (GD), which is classified according to the presence (neuronopathic types, type 2 and 3 GD) or absence (non-neuronopathic type, type 1 GD) of neurological symptoms. The clinical manifestations of PD in patients with GBA mutations are indistinguishable from those of sporadic PD at the individual level. However, accumulating data have indicated that GBA-associated PD patients exhibit a younger age of onset and a greater risk for cognitive impairment and psychiatric symptoms. The mechanisms underlying the increased risk of developing PD in GBA mutant carriers are currently unclear. Contributors to GBA-PD pathogenesis may include mitochondrial dysfunction, autophagy-lysosomal dysfunction, altered lipid homeostasis and enhanced α-synuclein aggregation. Therapeutic strategies for PD and GD targeting mutant GCase mainly include enzyme replacement, substrate reduction, gene and pharmacological small-molecule chaperones. Emerging clinical, genetic and pathogenic studies on GBA mutations and PD are making significant contributions to our understanding of PD-associated pathogenetic pathways, and further elucidating the interactions between GCase activity and neurodegeneration may improve therapeutic approaches for slowing PD progression.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
- *Correspondence: Dongsheng Fan,
| |
Collapse
|
107
|
Predictive Modeling of Alzheimer's and Parkinson's Disease Using Metabolomic and Lipidomic Profiles from Cerebrospinal Fluid. Metabolites 2022; 12:metabo12040277. [PMID: 35448464 PMCID: PMC9029812 DOI: 10.3390/metabo12040277] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/08/2022] [Accepted: 03/17/2022] [Indexed: 02/04/2023] Open
Abstract
In recent years, metabolomics has been used as a powerful tool to better understand the physiology of neurodegenerative diseases and identify potential biomarkers for progression. We used targeted and untargeted aqueous, and lipidomic profiles of the metabolome from human cerebrospinal fluid to build multivariate predictive models distinguishing patients with Alzheimer's disease (AD), Parkinson's disease (PD), and healthy age-matched controls. We emphasize several statistical challenges associated with metabolomic studies where the number of measured metabolites far exceeds sample size. We found strong separation in the metabolome between PD and controls, as well as between PD and AD, with weaker separation between AD and controls. Consistent with existing literature, we found alanine, kynurenine, tryptophan, and serine to be associated with PD classification against controls, while alanine, creatine, and long chain ceramides were associated with AD classification against controls. We conducted a univariate pathway analysis of untargeted and targeted metabolite profiles and find that vitamin E and urea cycle metabolism pathways are associated with PD, while the aspartate/asparagine and c21-steroid hormone biosynthesis pathways are associated with AD. We also found that the amount of metabolite missingness varied by phenotype, highlighting the importance of examining missing data in future metabolomic studies.
Collapse
|
108
|
Eisenberg DP, Lopez G, Gregory MD, Berman KF, Sidransky E. Comparison of Transcranial Sonography and [ 18 F]-Fluorodopa PET Imaging in GBA1 Mutation Carriers. Mov Disord 2022; 37:629-634. [PMID: 34762337 PMCID: PMC8940604 DOI: 10.1002/mds.28852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/25/2021] [Accepted: 09/16/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Mutations in GBA1 are a common genetic risk factor for parkinsonism; however, penetrance is incomplete, and biomarkers of future progression to parkinsonism are needed. Both nigral sonography and striatal [18 F]-FDOPA PET assay dopamine system health, but their utility and coherence in this context are unclear. OBJECTIVE The aim of this study is to evaluate the utility and coherence of these modalities in GBA1-associated parkinsonism. METHODS A total of 34 patients with GBA1 mutations (7 with parkinsonism) underwent both transcranial studies for substantia nigra echogenicity and [18 F]-FDOPA PET to determine striatal tracer-specific uptake (Ki ). RESULTS Larger nigral echogenic areas and reduced striatal Ki were exclusively observed in parkinsonian patients. Sonographic and PET measurements showed strong inverse correlations but only in individuals with clinical parkinsonism. CONCLUSIONS Close correspondence between nigral echogenicity and striatal presynaptic dopamine synthesis capacity observed only in GBA1 carriers with parkinsonism provides validation that these two modalities may conjointly capture aspects of the biology underlying clinical parkinsonism but raises questions about their utility as predictive tools in at-risk subjects. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Daniel P. Eisenberg
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - Grisel Lopez
- Medical Genetics Branch, National Institutes of Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Michael D. Gregory
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - Karen F. Berman
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - Ellen Sidransky
- Medical Genetics Branch, National Institutes of Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD,Corresponding author: Ellen Sidransky, MD, Chief, Medical Genetics Branch, NIH, Bld 35A, Room 1E623, 35 Convent Drive, MSC3708, Bethesda, MD, 20892-3708, Phone: 301-451-0901,
| |
Collapse
|
109
|
Impact of endolysosomal dysfunction upon exosomes in neurodegenerative diseases. Neurobiol Dis 2022; 166:105651. [DOI: 10.1016/j.nbd.2022.105651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/11/2022] [Accepted: 01/25/2022] [Indexed: 11/22/2022] Open
|
110
|
Pang SYY, Lo RCN, Ho PWL, Liu HF, Chang EES, Leung CT, Malki Y, Choi ZYK, Wong WY, Kung MHW, Ramsden DB, Ho SL. LRRK2, GBA and their interaction in the regulation of autophagy: implications on therapeutics in Parkinson's disease. Transl Neurodegener 2022; 11:5. [PMID: 35101134 PMCID: PMC8805403 DOI: 10.1186/s40035-022-00281-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/12/2022] [Indexed: 02/06/2023] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) and glucocerebrosidase (GBA) represent two most common genetic causes of Parkinson’s disease (PD). Both genes are important in the autophagic-lysosomal pathway (ALP), defects of which are associated with α-synuclein (α-syn) accumulation. LRRK2 regulates macroautophagy via activation of the mitogen activated protein kinase/extracellular signal regulated protein kinase (MAPK/ERK) kinase (MEK) and the calcium-dependent adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathways. Phosphorylation of Rab GTPases by LRRK2 regulates lysosomal homeostasis and endosomal trafficking. Mutant LRRK2 impairs chaperone-mediated autophagy, resulting in α-syn binding and oligomerization on lysosomal membranes. Mutations in GBA reduce glucocerebrosidase (GCase) activity, leading to glucosylceramide accumulation, α-syn aggregation and broad autophagic abnormalities. LRRK2 and GBA influence each other: GCase activity is reduced in LRRK2 mutant cells, and LRRK2 kinase inhibition can alter GCase activity in GBA mutant cells. Clinically, LRRK2 G2019S mutation seems to modify the effects of GBA mutation, resulting in milder symptoms than those resulting from GBA mutation alone. However, dual mutation carriers have an increased risk of PD and earlier age of onset compared with single mutation carriers, suggesting an additive deleterious effect on the initiation of PD pathogenic processes. Crosstalk between LRRK2 and GBA in PD exists, but its exact mechanism is unclear. Drugs that inhibit LRRK2 kinase or activate GCase are showing efficacy in pre-clinical models. Since LRRK2 kinase and GCase activities are also altered in idiopathic PD (iPD), it remains to be seen if these drugs will be useful in disease modification of iPD.
Collapse
|
111
|
Lackova A, Beetz C, Oppermann S, Bauer P, Pavelekova P, Lorincova T, Ostrozovicova M, Kulcsarova K, Cobejova J, Cobej M, Levicka P, Liesenerova S, Sendekova D, Sukovska V, Gdovinova Z, Han V, Rizig M, Houlden H, Skorvanek M. Prevalence of Fabry Disease among Patients with Parkinson's Disease. PARKINSON'S DISEASE 2022; 2022:1014950. [PMID: 35111290 PMCID: PMC8803460 DOI: 10.1155/2022/1014950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND An increased prevalence of Parkinson's disease (PD) disease has been previously reported in subjects with Fabry disease (FD) carrying alpha-galactosidase (GLA) mutations and their first-line relatives. Moreover, decreased alpha-galactosidase A (AGLA) enzymatic activity has been reported among cases with PD compared to controls. OBJECTIVE The aim of our study was to determine the prevalence of FD among patients with PD. METHODS We recruited 236 consecutive patients with PD from February 2018 to December 2020. Clinical and sociodemographic data, including the MDS-UPDRS-III scores and HY stage (the Hoehn and Yahr scale), were collected, and in-depth phenotyping was performed in subjects with identified GLA variants. A multistep approach, including standard determination of AGLA activity and LysoGb3 in males, and next-generation based GLA sequencing in all females and males with abnormal AGLA levels was performed in a routine diagnostic setting. RESULTS The mean age of our patients was 68.9 ± 8.9 years, 130 were men (55.1%), and the mean disease duration was 7.77 ± 5.35 years. Among 130 men, AGLA levels were low in 20 patients (15%), and subsequent Lyso-Gb3 testing showed values within the reference range for all tested subjects. In 126 subsequently genetically tested patients, four heterozygous p.(Asp313Tyr) GLA variants (3.2%, MAF 0.016) were identified; all were females. None of the 4 GLA variant carriers identified had any clinical manifestation suggestive of FD. CONCLUSIONS The results of this study suggest a possible relationship between FD and PD in a small proportion of cases. Nevertheless, the GLA variant found in our cohort is classified as a variant of unknown significance. Therefore, its pathogenic causative role in the context of PD needs further elucidation, and these findings should be interpreted with caution.
Collapse
Affiliation(s)
- Alexandra Lackova
- Department of Neurology, University of Pavol Jozef Šafárik, Košice, Slovakia
- Department of Neurology, University Hospital of L. Pasteur, Košice, Slovakia
| | | | | | | | - Petra Pavelekova
- Department of Neurology, University of Pavol Jozef Šafárik, Košice, Slovakia
- Department of Neurology, University Hospital of L. Pasteur, Košice, Slovakia
| | - Tatiana Lorincova
- Department of Neurology, University of Pavol Jozef Šafárik, Košice, Slovakia
| | - Miriam Ostrozovicova
- Department of Neurology, University of Pavol Jozef Šafárik, Košice, Slovakia
- Department of Neurology, University Hospital of L. Pasteur, Košice, Slovakia
| | - Kristina Kulcsarova
- Department of Neurology, University of Pavol Jozef Šafárik, Košice, Slovakia
- Department of Neurology, University Hospital of L. Pasteur, Košice, Slovakia
| | - Jana Cobejova
- Department of Neurology, University of Pavol Jozef Šafárik, Košice, Slovakia
| | - Martin Cobej
- Department of Neurology, University of Pavol Jozef Šafárik, Košice, Slovakia
| | - Petra Levicka
- Department of Neurology, University of Pavol Jozef Šafárik, Košice, Slovakia
| | - Simona Liesenerova
- Department of Neurology, University of Pavol Jozef Šafárik, Košice, Slovakia
| | - Daniela Sendekova
- Department of Neurology, University of Pavol Jozef Šafárik, Košice, Slovakia
| | - Viktoria Sukovska
- Department of Neurology, University of Pavol Jozef Šafárik, Košice, Slovakia
| | - Zuzana Gdovinova
- Department of Neurology, University of Pavol Jozef Šafárik, Košice, Slovakia
- Department of Neurology, University Hospital of L. Pasteur, Košice, Slovakia
| | - Vladimir Han
- Department of Neurology, University of Pavol Jozef Šafárik, Košice, Slovakia
- Department of Neurology, University Hospital of L. Pasteur, Košice, Slovakia
| | - Mie Rizig
- University College London, Institute of Neurology, Department of Neuromuscular Disorders, Queen Square, WC1N 3BG London, UK
| | - Henry Houlden
- University College London, Institute of Neurology, Department of Neuromuscular Disorders, Queen Square, WC1N 3BG London, UK
| | - Matej Skorvanek
- Department of Neurology, University of Pavol Jozef Šafárik, Košice, Slovakia
- Department of Neurology, University Hospital of L. Pasteur, Košice, Slovakia
| |
Collapse
|
112
|
Hatton SL, Pandey MK. Fat and Protein Combat Triggers Immunological Weapons of Innate and Adaptive Immune Systems to Launch Neuroinflammation in Parkinson's Disease. Int J Mol Sci 2022; 23:1089. [PMID: 35163013 PMCID: PMC8835271 DOI: 10.3390/ijms23031089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 01/27/2023] Open
Abstract
Parkinson's disease (PD) is the second-most common neurodegenerative disease in the world, affecting up to 10 million people. This disease mainly happens due to the loss of dopaminergic neurons accountable for memory and motor function. Partial glucocerebrosidase enzyme deficiency and the resultant excess accumulation of glycosphingolipids and alpha-synuclein (α-syn) aggregation have been linked to predominant risk factors that lead to neurodegeneration and memory and motor defects in PD, with known and unknown causes. An increasing body of evidence uncovers the role of several other lipids and their association with α-syn aggregation, which activates the innate and adaptive immune system and sparks brain inflammation in PD. Here, we review the emerging role of a number of lipids, i.e., triglyceride (TG), diglycerides (DG), glycerophosphoethanolamines (GPE), polyunsaturated fatty acids (PUFA), sphingolipids, gangliosides, glycerophospholipids (GPL), and cholesterols, and their connection with α-syn aggregation as well as the induction of innate and adaptive immune reactions that trigger neuroinflammation in PD.
Collapse
Affiliation(s)
- Shelby Loraine Hatton
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Cincinnati, OH 45229, USA;
| | - Manoj Kumar Pandey
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Cincinnati, OH 45229, USA;
- Department of Pediatrics, Division of Human Genetics, College of Medicine, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| |
Collapse
|
113
|
Bo RX, Li YY, Zhou TT, Chen NH, Yuan YH. The neuroinflammatory role of glucocerebrosidase in Parkinson's disease. Neuropharmacology 2022; 207:108964. [PMID: 35065083 DOI: 10.1016/j.neuropharm.2022.108964] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 10/19/2022]
Abstract
The lysosomal enzyme glucocerebrosidase (GCase), encoded by the GBA1 gene, is a membrane-associated protein catalyzing the cleavage of glucosylceramide (GlcCer) and glucosylsphingosine (GlcSph). Homologous GBA1 mutations cause Gaucher disease (GD) and heterologous mutations cause Parkinson's disease (PD). Importantly, heterologous GBA1 mutations are recognized as the second risk factor of PD. The pathological features of PD are Lewy neurites (LNs) and Lewy bodies (LBs) composed of pathological α-synuclein. Oxidative stress, inflammatory response, autophagic impairment, and α-synuclein accumulation play critical roles in PD pathogenic cascades, but the pathogenesis of PD has not yet been fully elucidated. What's more, PD treatment drugs can only relieve symptoms to a certain extent, but cannot alleviate neurodegenerative progression. Therefore, it's urgent to explore new targets that can alleviate the neurodegenerative process. Deficient GCase can cause lysosomal dysfunction, obstructing the metabolism of α-synuclein. Meanwhile, GCase dysfunction causes accumulation of its substrates, leading to lipid metabolism disorders. Subsequently, astrocytes and microglia are activated, releasing amounts of pro-inflammatory mediators and causing extensive neuroinflammation. All these cascades can induce neuron damage and death, eventually promoting PD pathology. This review aims to summarize these points and the potential of GCase as an original target to provide some ideas for elucidating the pathogenesis of PD.
Collapse
Affiliation(s)
- Ru-Xue Bo
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yan-Yan Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Tian-Tian Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
114
|
Abeliovich A, Hefti F, Sevigny J. Gene Therapy for Parkinson's Disease Associated with GBA1 Mutations. JOURNAL OF PARKINSON'S DISEASE 2022; 11:S183-S188. [PMID: 34151863 PMCID: PMC8543272 DOI: 10.3233/jpd-212739] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/19/2021] [Indexed: 11/24/2022]
Abstract
Human genetic studies as well as studies in animal models indicate that lysosomal dysfunction plays a key role in the pathogenesis of Parkinson's disease. Among the lysosomal genes involved, GBA1 has the largest impact on Parkinson's disease risk. Deficiency in the GBA1 encoded enzyme glucocerebrosidase (GCase) leads to the accumulation of the GCase glycolipid substrates glucosylceramide and glucosylsphingosine and ultimately results in toxicity and inflammation and negatively affect many clinical aspects of Parkinson's disease, including disease risk, the severity of presentation, age of onset, and likelihood of progression to dementia. These findings support the view that re-establishing normal levels of GCase enzyme activity may reduce the progression of Parkinson's disease in patients carrying GBA1 mutations. Studies in mouse models indicate that PR001, a AAV9 vector-based gene therapy designed to deliver a functional GBA1 gene to the brain, suggest that this therapeutic approach may slow or stop disease progression. PR001 is currently being evaluated in clinical trials with Parkinson's disease patients carrying GBA1 mutations.
Collapse
Affiliation(s)
- Asa Abeliovich
- Prevail Therapeutics, A Wholly-Owned Subsidiary of Eli Lilly and Company, New York, NY, USA
| | - Franz Hefti
- Prevail Therapeutics, A Wholly-Owned Subsidiary of Eli Lilly and Company, New York, NY, USA
| | - Jeffrey Sevigny
- Prevail Therapeutics, A Wholly-Owned Subsidiary of Eli Lilly and Company, New York, NY, USA
| |
Collapse
|
115
|
Cognitive Impairment in Genetic Parkinson's Disease. PARKINSON'S DISEASE 2022; 2021:8610285. [PMID: 35003622 PMCID: PMC8739522 DOI: 10.1155/2021/8610285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 12/08/2021] [Indexed: 11/24/2022]
Abstract
Cognitive impairment is common in idiopathic Parkinson's disease (PD). Knowledge of the contribution of genetics to cognition in PD is increasing in the last decades. Monogenic forms of genetic PD show distinct cognitive profiles and rate of cognitive decline progression. Cognitive impairment is higher in GBA- and SNCA-associated PD, lower in Parkin- and PINK1-PD, and possibly milder in LRRK2-PD. In this review, we summarize data regarding cognitive function on clinical studies, neuroimaging, and biological markers of cognitive decline in autosomal dominant PD linked to mutations in LRRK2 and SNCA, autosomal recessive PD linked to Parkin and PINK1, and also PD linked to GBA mutations.
Collapse
|
116
|
A double-hit in vivo model of GBA viral microRNA-mediated downregulation and human alpha-synuclein overexpression demonstrates nigrostriatal degeneration. Neurobiol Dis 2022; 163:105612. [PMID: 34995756 DOI: 10.1016/j.nbd.2022.105612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/19/2021] [Accepted: 01/03/2022] [Indexed: 01/30/2023] Open
Abstract
Preclinical and clinical studies support a strong association between mutations in the GBA1 gene that encodes beta-glucocerebrosidase (GCase) (EC 3.2.1.45; glucosylceramidase beta) and Parkinson's disease (PD). Alpha-synuclein (AS), a key player in PD pathogenesis, and GBA1 mutations may independently and synergistically cause lysosomal dysfunction and thus, embody clinically well-validated targets of the neurodegenerative disease process in PD. However, in vivo models, recapitulating pathological features of PD that can be used to dissect the nature of the complex relationship between GCase and AS on the nigrostriatal axis, the region particularly vulnerable in PD, are direly needed. To address this, we implemented a bidirectional approach in mice to examine the effects of: 1) GCase overexpression (wild-type and mutant N370S GBA) on endogenous AS levels and 2) downregulation of endogenous GCase (Gba) combined with AS overexpression. Striatal delivery of viral-mediated GCase overexpression revealed minimal effects on cortical and nigrostriatal AS tissue levels and no significant effect on dopaminergic system integrity. On the other hand, microRNA (miR)-mediated Gba1 downregulation (miR Gba), combined with virus-mediated human AS overexpression (+AS), yields decreased GCase activity in the cortex, mimicking levels seen in GBA1 heterozygous carriers (30-40%), increased astrogliosis and microgliosis, decreased striatal dopamine levels (50% compared to controls) and loss of nigral dopaminergic neurons (~33%)- effects that were all reversible with miR rescue. Most importantly, the synergistic neurodegeneration of miR Gba + AS correlated with augmented AS accumulation and extracellular release in the striatum. Collectively, our results suggest that GCase downregulation alone is not sufficient to recapitulate key pathological features of PD in vivo, but its synergistic interplay with AS, via increased AS levels and extracellular release, drives nigrostriatal neurodegeneration. Furthermore, we report a novel double-hit GBA-AS model that can be used to identify putative mechanisms driving PD pathophysiology and can be subsequently used to test novel therapeutic approaches.
Collapse
|
117
|
Wen YF, Xiao XW, Zhou L, Jiang YL, Zhu Y, Guo LN, Wang X, Liu H, Zhou YF, Wang JL, Liao XX, Shen L, Jiao B. Mutations in GBA, SNCA, and VPS35 are not associated with Alzheimer's disease in a Chinese population: a case-control study. Neural Regen Res 2022; 17:682-689. [PMID: 34380910 PMCID: PMC8504399 DOI: 10.4103/1673-5374.321000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
SNCA, GBA, and VPS35 are three common genes associated with Parkinson’s disease. Previous studies have shown that these three genes may be associated with Alzheimer’s disease (AD). However, it is unclear whether these genes increase the risk of AD in Chinese populations. In this study, we used a targeted gene sequencing panel to screen all the exon regions and the nearby sequences of GBA, SNCA, and VPS35 in a cohort including 721 AD patients and 365 healthy controls from China. The results revealed that neither common variants nor rare variants of these three genes were associated with AD in a Chinese population. These findings suggest that the mutations in GBA, SNCA, and VPS35 are not likely to play an important role in the genetic susceptibility to AD in Chinese populations. The study was approved by the Ethics Committee of Xiangya Hospital, Central South University, China on March 9, 2016 (approval No. 201603198).
Collapse
Affiliation(s)
- Ya-Fei Wen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xue-Wen Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Lu Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Ya-Ling Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yuan Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Li-Na Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xin Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Hui Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Ya-Fang Zhou
- Department of Geriatrics Neurology, Xiangya Hospital; National Clinical Research Center for Geriatric Disorders; Engineering Research Center of Hunan Province in Cognitive Impairment Disorders; Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan Province, China
| | - Jun-Ling Wang
- Department of Neurology, Xiangya Hospital; National Clinical Research Center for Geriatric Disorders; Engineering Research Center of Hunan Province in Cognitive Impairment Disorders; Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan Province, China
| | - Xin-Xin Liao
- Department of Geriatrics Neurology, Xiangya Hospital; National Clinical Research Center for Geriatric Disorders; Engineering Research Center of Hunan Province in Cognitive Impairment Disorders; Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan Province, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital; National Clinical Research Center for Geriatric Disorders; Engineering Research Center of Hunan Province in Cognitive Impairment Disorders; Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan Province, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital; National Clinical Research Center for Geriatric Disorders; Engineering Research Center of Hunan Province in Cognitive Impairment Disorders; Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
118
|
Glucocerebrosidase dysfunction in neurodegenerative disease. Essays Biochem 2021; 65:873-883. [PMID: 34528667 DOI: 10.1042/ebc20210018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) and related neurodegenerative disorders, termed the synucleinopathies, are characterized pathologically by the accumulation of protein aggregates containing α-synuclein (aSyn), resulting in progressive neuronal loss. There is considerable need for the development of neuroprotective strategies to halt or slow disease progression in these disorders. To this end, evaluation of genetic mutations associated with the synucleinopathies has helped to elucidate crucial mechanisms of disease pathogenesis, revealing key roles for lysosomal and mitochondrial dysfunction. The GBA1 gene, which encodes the lysosomal hydrolase β-glucocerebrosidase (GCase) is the most common genetic risk factor for PD and is also linked to other neurodegenerative disorders including dementia with Lewy bodies (DLB). Additionally, homozygous mutations in GBA1 are associated with the rare lysosomal storage disorder, Gaucher's disease (GD). In this review, we discuss the current knowledge in the field regarding the diverse roles of GCase in neurons and the multifactorial effects of loss of GCase enzymatic activity. Importantly, GCase has been shown to have a bidirectional relationship with aSyn, resulting in a pathogenic feedback loop that can lead to progressive aSyn accumulation. Alterations in GCase activity have furthermore been linked to multiple distinct pathways involved in neurodegeneration, and therefore GCase has emerged as a promising target for therapeutic drug development for PD and related neurodegenerative disorders, particularly DLB.
Collapse
|
119
|
Lama J, Buhidma Y, Fletcher E, Duty S. Animal models of Parkinson's disease: a guide to selecting the optimal model for your research. Neuronal Signal 2021; 5:NS20210026. [PMID: 34956652 PMCID: PMC8661507 DOI: 10.1042/ns20210026] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 12/18/2022] Open
Abstract
Parkinson's disease (PD) is a complex, multisystem disorder characterised by α-synuclein (SNCA) pathology, degeneration of nigrostriatal dopaminergic neurons, multifactorial pathogenetic mechanisms and expression of a plethora of motor and non-motor symptoms. Animal models of PD have already been instructive in helping us unravel some of these aspects. However, much remains to be discovered, requiring continued interrogation by the research community. In contrast with the situation for many neurological disorders, PD benefits from of a wide range of available animal models (pharmacological, toxin, genetic and α-synuclein) but this makes selection of the optimal one for a given study difficult. This is especially so when a study demands a model that displays a specific combination of features. While many excellent reviews of animal models already exist, this review takes a different approach with the intention of more readily informing this decision-making process. We have considered each feature of PD in turn - aetiology, pathology, pathogenesis, motor dysfunctions and non-motor symptoms (NMS) - highlighting those animal models that replicate each. By compiling easily accessible tables and a summary figure, we aim to provide the reader with a simple, go-to resource for selecting the optimal animal model of PD to suit their research needs.
Collapse
Affiliation(s)
- Joana Lama
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Wolfson Centre for Age Related Diseases, Wolfson Wing, Hodgkin Building, Guy’s Campus, London SE1 1UL, U.K
| | - Yazead Buhidma
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Wolfson Centre for Age Related Diseases, Wolfson Wing, Hodgkin Building, Guy’s Campus, London SE1 1UL, U.K
| | - Edward J.R. Fletcher
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Wolfson Centre for Age Related Diseases, Wolfson Wing, Hodgkin Building, Guy’s Campus, London SE1 1UL, U.K
| | - Susan Duty
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Wolfson Centre for Age Related Diseases, Wolfson Wing, Hodgkin Building, Guy’s Campus, London SE1 1UL, U.K
| |
Collapse
|
120
|
Ezer S, Daana M, Park JH, Yanovsky-Dagan S, Nordström U, Basal A, Edvardson S, Saada A, Otto M, Meiner V, Marklund SL, Andersen PM, Harel T. Infantile SOD1 deficiency syndrome caused by a homozygous SOD1 variant with absence of enzyme activity. Brain 2021; 145:872-878. [PMID: 34788402 DOI: 10.1093/brain/awab416] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/16/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
Pathogenic variants in SOD1, encoding superoxide dismutase 1, are responsible for about 20% of all familial amyotrophic lateral sclerosis cases, through a gain-of-function mechanism. Recently, two reports showed that a specific homozygous SOD1 loss-of-function variant is associated with an infantile progressive motor-neurological syndrome. Exome sequencing followed by molecular studies, including cDNA analysis, SOD1 protein levels and enzymatic activity, and plasma neurofilament light chain levels, were undertaken in an infant with severe global developmental delay, axial hypotonia and limb spasticity. We identified a homozygous 3-bp in-frame deletion in SOD1. cDNA analysis predicted the loss of a single valine residue from a tandem pair (p.Val119/Val120) in the wild-type protein, yet expression levels and splicing were preserved. Analysis of SOD1 activity and protein levels in erythrocyte lysates showed essentially no enzymatic activity and undetectable SOD1 protein in the child, whereas the parents had ∼50% protein expression and activity relative to controls. Neurofilament light chain levels in plasma were elevated, implying ongoing axonal injury and neurodegeneration. Thus, we provide confirmatory evidence of a second biallelic variant in an infant with a severe neurological syndrome and suggest that the in-frame deletion causes instability and subsequent degeneration of SOD1. We highlight the importance of the valine residues at positions V119-120, and suggest possible implications for future therapeutics research.
Collapse
Affiliation(s)
- Shlomit Ezer
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel 9112001.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel 9112001
| | - Muhannad Daana
- Child Development Centers, Clalit Health Care Services, Jerusalem District, Israel
| | - Julien H Park
- Department of Clinical Science, Neurosciences, Umeå University, 901 87 Umeå, Sweden.,Department of General Pediatrics, University of Münster, 48149 Münster, Germany
| | - Shira Yanovsky-Dagan
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel 9112001
| | - Ulrika Nordström
- Department of Clinical Science, Neurosciences, Umeå University, 901 87 Umeå, Sweden
| | - Adily Basal
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel 9112001
| | - Simon Edvardson
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel 9112001.,Pediatric Neurology Unit, Hadassah Medical Organization, Jerusalem, Israel 9112001
| | - Ann Saada
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel 9112001.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel 9112001
| | - Markus Otto
- Department of Neurology, University Clinic, 89081 Ulm, Germany.,Department of Neurology, University Clinic, 06120 Halle (Saale), Germany
| | - Vardiella Meiner
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel 9112001.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel 9112001
| | - Stefan L Marklund
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, 907 36 Umeå, Sweden
| | - Peter Munch Andersen
- Department of Clinical Science, Neurosciences, Umeå University, 901 87 Umeå, Sweden
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel 9112001.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel 9112001
| |
Collapse
|
121
|
Alquezar C, Schoch KM, Geier EG, Ramos EM, Scrivo A, Li KH, Argouarch AR, Mlynarski EE, Dombroski B, DeTure M, Dickson DW, Yokoyama JS, Cuervo AM, Burlingame AL, Schellenberg GD, Miller TM, Miller BL, Kao AW. TSC1 loss increases risk for tauopathy by inducing tau acetylation and preventing tau clearance via chaperone-mediated autophagy. SCIENCE ADVANCES 2021; 7:eabg3897. [PMID: 34739309 PMCID: PMC8570595 DOI: 10.1126/sciadv.abg3897] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 09/17/2021] [Indexed: 05/20/2023]
Abstract
Age-associated neurodegenerative disorders demonstrating tau-laden intracellular inclusions are known as tauopathies. We previously linked a loss-of-function mutation in the TSC1 gene to tau accumulation and frontotemporal lobar degeneration. Now, we have identified genetic variants in TSC1 that decrease TSC1/hamartin levels and predispose to tauopathies such as Alzheimer’s disease and progressive supranuclear palsy. Cellular and murine models of TSC1 haploinsufficiency, as well as human brains carrying a TSC1 risk variant, accumulated tau protein that exhibited aberrant acetylation. This acetylation hindered tau degradation via chaperone-mediated autophagy, thereby leading to its accumulation. Aberrant tau acetylation in TSC1 haploinsufficiency resulted from the dysregulation of both p300 acetyltransferase and SIRT1 deacetylase. Pharmacological modulation of either enzyme restored tau levels. This study substantiates TSC1 as a novel tauopathy risk gene and includes TSC1 haploinsufficiency as a genetic model for tauopathies. In addition, these findings promote tau acetylation as a rational target for tauopathy therapeutics and diagnostic.
Collapse
Affiliation(s)
- Carolina Alquezar
- UCSF Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Kathleen M. Schoch
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ethan G. Geier
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA
| | - Eliana Marisa Ramos
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Aurora Scrivo
- Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Kathy H. Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Andrea R. Argouarch
- UCSF Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Elisabeth E. Mlynarski
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-4238, USA
| | - Beth Dombroski
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-4238, USA
| | - Michael DeTure
- Department of Neuroscience, The Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Dennis W. Dickson
- Department of Neuroscience, The Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Jennifer S. Yokoyama
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA
| | - Ana M. Cuervo
- Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Alma L. Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Gerard D. Schellenberg
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-4238, USA
| | - Timothy M. Miller
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bruce L. Miller
- UCSF Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Aimee W. Kao
- UCSF Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
- Corresponding author.
| |
Collapse
|
122
|
Macroautophagy and Mitophagy in Neurodegenerative Disorders: Focus on Therapeutic Interventions. Biomedicines 2021; 9:biomedicines9111625. [PMID: 34829854 PMCID: PMC8615936 DOI: 10.3390/biomedicines9111625] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023] Open
Abstract
Macroautophagy, a quality control mechanism, is an evolutionarily conserved pathway of lysosomal degradation of protein aggregates, pathogens, and damaged organelles. As part of its vital homeostatic role, macroautophagy deregulation is associated with various human disorders, including neurodegenerative diseases. There are several lines of evidence that associate protein misfolding and mitochondrial dysfunction in the etiology of Alzheimer’s, Parkinson’s, and Huntington’s diseases. Macroautophagy has been implicated in the degradation of different protein aggregates such as Aβ, tau, alpha-synuclein (α-syn), and mutant huntingtin (mHtt) and in the clearance of dysfunctional mitochondria. Taking these into consideration, targeting autophagy might represent an effective therapeutic strategy to eliminate protein aggregates and to improve mitochondrial function in these disorders. The present review describes our current understanding on the role of macroautophagy in neurodegenerative disorders and focuses on possible strategies for its therapeutic modulation.
Collapse
|
123
|
Zhao J, Lu W, Ren Y, Fu Y, Martens YA, Shue F, Davis MD, Wang X, Chen K, Li F, Liu CC, Graff-Radford NR, Wszolek ZK, Younkin SG, Brafman DA, Ertekin-Taner N, Asmann YW, Dickson DW, Xu Z, Pan M, Han X, Kanekiyo T, Bu G. Apolipoprotein E regulates lipid metabolism and α-synuclein pathology in human iPSC-derived cerebral organoids. Acta Neuropathol 2021; 142:807-825. [PMID: 34453582 PMCID: PMC8500881 DOI: 10.1007/s00401-021-02361-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/31/2021] [Accepted: 08/17/2021] [Indexed: 12/25/2022]
Abstract
APOE4 is a strong genetic risk factor for Alzheimer's disease and Dementia with Lewy bodies; however, how its expression impacts pathogenic pathways in a human-relevant system is not clear. Here using human iPSC-derived cerebral organoid models, we find that APOE deletion increases α-synuclein (αSyn) accumulation accompanied with synaptic loss, reduction of GBA levels, lipid droplet accumulation and dysregulation of intracellular organelles. These phenotypes are partially rescued by exogenous apoE2 and apoE3, but not apoE4. Lipidomics analysis detects the increased fatty acid utilization and cholesterol ester accumulation in apoE-deficient cerebral organoids. Furthermore, APOE4 cerebral organoids have increased αSyn accumulation compared to those with APOE3. Carrying APOE4 also increases apoE association with Lewy bodies in postmortem brains from patients with Lewy body disease. Our findings reveal the predominant role of apoE in lipid metabolism and αSyn pathology in iPSC-derived cerebral organoids, providing mechanistic insights into how APOE4 drives the risk for synucleinopathies.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Center for Regenerative Medicine, Neuroregeneration Laboratory, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Wenyan Lu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Center for Regenerative Medicine, Neuroregeneration Laboratory, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Yingxue Ren
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Yuan Fu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Yuka A Martens
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Center for Regenerative Medicine, Neuroregeneration Laboratory, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Francis Shue
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Mary D Davis
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Center for Regenerative Medicine, Neuroregeneration Laboratory, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Xue Wang
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Kai Chen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Fuyao Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | | | - Steven G Younkin
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - David A Brafman
- School of Biological & Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Department of Neurology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Yan W Asmann
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Ziying Xu
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center At San Antonio, San Antonio, TX, 78229, USA
| | - Meixia Pan
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center At San Antonio, San Antonio, TX, 78229, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center At San Antonio, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center At San Antonio, San Antonio, TX, 78229, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Center for Regenerative Medicine, Neuroregeneration Laboratory, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
- Center for Regenerative Medicine, Neuroregeneration Laboratory, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
124
|
Vieira SRL, Schapira AHV. Glucocerebrosidase mutations: A paradigm for neurodegeneration pathways. Free Radic Biol Med 2021; 175:42-55. [PMID: 34450264 DOI: 10.1016/j.freeradbiomed.2021.08.230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023]
Abstract
Biallelic (homozygous or compound heterozygous) glucocerebrosidase gene (GBA) mutations cause Gaucher disease, whereas heterozygous mutations are numerically the most important genetic risk factor for Parkinson disease (PD) and are associated with the development of other synucleinopathies, notably Dementia with Lewy Bodies. This phenomenon is not limited to GBA, with converging evidence highlighting further examples of autosomal recessive disease genes increasing neurodegeneration risk in heterozygous mutation carriers. Nevertheless, despite extensive research, the cellular mechanisms by which mutations in GBA, encoding lysosomal enzyme β-glucocerebrosidase (GCase), predispose to neurodegeneration remain incompletely understood. Alpha-synuclein (A-SYN) accumulation, autophagic lysosomal dysfunction, mitochondrial abnormalities, ER stress and neuroinflammation have been proposed as candidate pathogenic pathways in GBA-linked PD. The observation of GCase and A-SYN interactions in PD initiated the development and evaluation of GCase-targeted therapeutics in PD clinical trials.
Collapse
Affiliation(s)
- Sophia R L Vieira
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom.
| |
Collapse
|
125
|
Hommen F, Bilican S, Vilchez D. Protein clearance strategies for disease intervention. J Neural Transm (Vienna) 2021; 129:141-172. [PMID: 34689261 PMCID: PMC8541819 DOI: 10.1007/s00702-021-02431-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/10/2021] [Indexed: 02/06/2023]
Abstract
Protein homeostasis, or proteostasis, is essential for cell function and viability. Unwanted, damaged, misfolded and aggregated proteins are degraded by the ubiquitin–proteasome system (UPS) and the autophagy-lysosome pathway. Growing evidence indicates that alterations in these major proteolytic mechanisms lead to a demise in proteostasis, contributing to the onset and development of distinct diseases. Indeed, dysregulation of the UPS or autophagy is linked to several neurodegenerative, infectious and inflammatory disorders as well as cancer. Thus, modulation of protein clearance pathways is a promising approach for therapeutics. In this review, we discuss recent findings and open questions on how targeting proteolytic mechanisms could be applied for disease intervention.
Collapse
Affiliation(s)
- Franziska Hommen
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Strasse 26, 50931, Cologne, Germany
| | - Saygın Bilican
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Strasse 26, 50931, Cologne, Germany
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Strasse 26, 50931, Cologne, Germany. .,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany. .,Faculty of Medicine, University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
126
|
Pirooznia SK, Rosenthal LS, Dawson VL, Dawson TM. Parkinson Disease: Translating Insights from Molecular Mechanisms to Neuroprotection. Pharmacol Rev 2021; 73:33-97. [PMID: 34663684 DOI: 10.1124/pharmrev.120.000189] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Parkinson disease (PD) used to be considered a nongenetic condition. However, the identification of several autosomal dominant and recessive mutations linked to monogenic PD has changed this view. Clinically manifest PD is then thought to occur through a complex interplay between genetic mutations, many of which have incomplete penetrance, and environmental factors, both neuroprotective and increasing susceptibility, which variably interact to reach a threshold over which PD becomes clinically manifested. Functional studies of PD gene products have identified many cellular and molecular pathways, providing crucial insights into the nature and causes of PD. PD originates from multiple causes and a range of pathogenic processes at play, ultimately culminating in nigral dopaminergic loss and motor dysfunction. An in-depth understanding of these complex and possibly convergent pathways will pave the way for therapeutic approaches to alleviate the disease symptoms and neuroprotective strategies to prevent disease manifestations. This review is aimed at providing a comprehensive understanding of advances made in PD research based on leveraging genetic insights into the pathogenesis of PD. It further discusses novel perspectives to facilitate identification of critical molecular pathways that are central to neurodegeneration that hold the potential to develop neuroprotective and/or neurorestorative therapeutic strategies for PD. SIGNIFICANCE STATEMENT: A comprehensive review of PD pathophysiology is provided on the complex interplay of genetic and environmental factors and biologic processes that contribute to PD pathogenesis. This knowledge identifies new targets that could be leveraged into disease-modifying therapies to prevent or slow neurodegeneration in PD.
Collapse
Affiliation(s)
- Sheila K Pirooznia
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering (S.K.P., V.L.D., T.M.D.), Departments of Neurology (S.K.P., L.S.R., V.L.D., T.M.D.), Departments of Physiology (V.L.D.), Solomon H. Snyder Department of Neuroscience (V.L.D., T.M.D.), Department of Pharmacology and Molecular Sciences (T.M.D.), Johns Hopkins University School of Medicine, Baltimore, Maryland; Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana (S.K.P., V.L.D., T.M.D.); and Diana Helis Henry Medical Research Foundation, New Orleans, Louisiana (S.K.P., V.L.D., T.M.D.)
| | - Liana S Rosenthal
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering (S.K.P., V.L.D., T.M.D.), Departments of Neurology (S.K.P., L.S.R., V.L.D., T.M.D.), Departments of Physiology (V.L.D.), Solomon H. Snyder Department of Neuroscience (V.L.D., T.M.D.), Department of Pharmacology and Molecular Sciences (T.M.D.), Johns Hopkins University School of Medicine, Baltimore, Maryland; Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana (S.K.P., V.L.D., T.M.D.); and Diana Helis Henry Medical Research Foundation, New Orleans, Louisiana (S.K.P., V.L.D., T.M.D.)
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering (S.K.P., V.L.D., T.M.D.), Departments of Neurology (S.K.P., L.S.R., V.L.D., T.M.D.), Departments of Physiology (V.L.D.), Solomon H. Snyder Department of Neuroscience (V.L.D., T.M.D.), Department of Pharmacology and Molecular Sciences (T.M.D.), Johns Hopkins University School of Medicine, Baltimore, Maryland; Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana (S.K.P., V.L.D., T.M.D.); and Diana Helis Henry Medical Research Foundation, New Orleans, Louisiana (S.K.P., V.L.D., T.M.D.)
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering (S.K.P., V.L.D., T.M.D.), Departments of Neurology (S.K.P., L.S.R., V.L.D., T.M.D.), Departments of Physiology (V.L.D.), Solomon H. Snyder Department of Neuroscience (V.L.D., T.M.D.), Department of Pharmacology and Molecular Sciences (T.M.D.), Johns Hopkins University School of Medicine, Baltimore, Maryland; Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana (S.K.P., V.L.D., T.M.D.); and Diana Helis Henry Medical Research Foundation, New Orleans, Louisiana (S.K.P., V.L.D., T.M.D.)
| |
Collapse
|
127
|
Genetically Targeted Clinical Trials in Parkinson's Disease: Learning from the Successes Made in Oncology. Genes (Basel) 2021; 12:genes12101529. [PMID: 34680924 PMCID: PMC8535305 DOI: 10.3390/genes12101529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 12/25/2022] Open
Abstract
Clinical trials in neurodegenerative disorders have been associated with high rate of failures, while in oncology, the implementation of precision medicine and focus on genetically defined subtypes of disease and targets for drug development have seen an unprecedented success. With more than 20 genes associated with Parkinson’s disease (PD), most of which are highly penetrant and often cause early onset or atypical signs and symptoms, and an increasing understanding of the associated pathophysiology culminating in dopaminergic neurodegeneration, applying the technologies and designs into the field of neurodegeneration seems a logical step. This review describes some of the methods used in oncology clinical trials and some attempts in Parkinson’s disease and the potential of further implementing genetics, biomarkers and smart clinical trial designs in this disease area.
Collapse
|
128
|
Walkley SU. Rethinking lysosomes and lysosomal disease. Neurosci Lett 2021; 762:136155. [PMID: 34358625 DOI: 10.1016/j.neulet.2021.136155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/14/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022]
Abstract
Lysosomal storage diseases were recognized and defined over a century ago as a class of disorders affecting mostly children and causing systemic disease often accompanied by major neurological consequences. Since their discovery, research focused on understanding their causes has been an important driver of our ever-expanding knowledge of cell biology and the central role that lysosomes play in cell function. Today we recognize over 50 so-called storage diseases, with most understood at the level of gene, protein and pathway involvement, but few fully clarified in terms of how the defective lysosomal function causes brain disease; even fewer have therapies that can effectively rescue brain function. Importantly, we also recognize that storage diseases are not simply a class of lysosomal disorders all by themselves, as increasingly a critical role for the greater lysosomal system with its endosomal, autophagosomal and salvage streams has also emerged in a host of neurodevelopmental and neurodegenerative diseases. Despite persistent challenges across all aspects of these complex disorders, and as reflected in this and other articles focused on lysosomal storage diseases in this special issue of Neuroscience Letters, the progress and promise to both understand and effectively treat these conditions has never been greater.
Collapse
Affiliation(s)
- Steven U Walkley
- Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
129
|
Sarchione A, Marchand A, Taymans JM, Chartier-Harlin MC. Alpha-Synuclein and Lipids: The Elephant in the Room? Cells 2021; 10:2452. [PMID: 34572099 PMCID: PMC8467310 DOI: 10.3390/cells10092452] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/17/2022] Open
Abstract
Since the initial identification of alpha-synuclein (α-syn) at the synapse, numerous studies demonstrated that α-syn is a key player in the etiology of Parkinson's disease (PD) and other synucleinopathies. Recent advances underline interactions between α-syn and lipids that also participate in α-syn misfolding and aggregation. In addition, increasing evidence demonstrates that α-syn plays a major role in different steps of synaptic exocytosis. Thus, we reviewed literature showing (1) the interplay among α-syn, lipids, and lipid membranes; (2) advances of α-syn synaptic functions in exocytosis. These data underscore a fundamental role of α-syn/lipid interplay that also contributes to synaptic defects in PD. The importance of lipids in PD is further highlighted by data showing the impact of α-syn on lipid metabolism, modulation of α-syn levels by lipids, as well as the identification of genetic determinants involved in lipid homeostasis associated with α-syn pathologies. While questions still remain, these recent developments open the way to new therapeutic strategies for PD and related disorders including some based on modulating synaptic functions.
Collapse
Affiliation(s)
| | | | | | - Marie-Christine Chartier-Harlin
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172—LilNCog—Lille Neuroscience and Cognition, F-59000 Lille, France; (A.S.); (A.M.); (J.-M.T.)
| |
Collapse
|
130
|
All Roads Lead to Rome: Different Molecular Players Converge to Common Toxic Pathways in Neurodegeneration. Cells 2021; 10:cells10092438. [PMID: 34572087 PMCID: PMC8468417 DOI: 10.3390/cells10092438] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022] Open
Abstract
Multiple neurodegenerative diseases (NDDs) such as Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS) and Huntington’s disease (HD) are being suggested to have common cellular and molecular pathological mechanisms, characterized mainly by protein misfolding and aggregation. These large inclusions, most likely, represent an end stage of a molecular cascade; however, the soluble misfolded proteins, which take part in earlier steps of this cascade, are the more toxic players. These pathological proteins, which characterize each specific disease, lead to the selective vulnerability of different neurons, likely resulting from a combination of different intracellular mechanisms, including mitochondrial dysfunction, ER stress, proteasome inhibition, excitotoxicity, oxidative damage, defects in nucleocytoplasmic transport, defective axonal transport and neuroinflammation. Damage within these neurons is enhanced by damage from the nonneuronal cells, via inflammatory processes that accelerate the progression of these diseases. In this review, while acknowledging the hallmark proteins which characterize the most common NDDs; we place specific focus on the common overlapping mechanisms leading to disease pathology despite these different molecular players and discuss how this convergence may occur, with the ultimate hope that therapies effective in one disease may successfully translate to another.
Collapse
|
131
|
Mahmoud M, Doddapaneni H, Timp W, Sedlazeck FJ. PRINCESS: comprehensive detection of haplotype resolved SNVs, SVs, and methylation. Genome Biol 2021; 22:268. [PMID: 34521442 PMCID: PMC8442460 DOI: 10.1186/s13059-021-02486-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022] Open
Abstract
Long-read sequencing has been shown to have advantages in structural variation (SV) detection and methylation calling. Many studies focus either on SV, methylation, or phasing of SNV; however, only the combination of variants provides a comprehensive insight into the sample and thus enables novel findings in biology or medicine. PRINCESS is a structured workflow that takes raw sequence reads and generates a fully phased SNV, SV, and methylation call set within a few hours. PRINCESS achieves high accuracy and long phasing even on low coverage datasets and can resolve repetitive, complex medical relevant genes that often escape detection. PRINCESS is publicly available at https://github.com/MeHelmy/princess under the MIT license.
Collapse
Affiliation(s)
- Medhat Mahmoud
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| | | | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
132
|
Fonseca Cabral G, Schaan AP, Cavalcante GC, Sena-dos-Santos C, de Souza TP, Souza Port’s NM, dos Santos Pinheiro JA, Ribeiro-dos-Santos Â, Vidal AF. Nuclear and Mitochondrial Genome, Epigenome and Gut Microbiome: Emerging Molecular Biomarkers for Parkinson's Disease. Int J Mol Sci 2021; 22:9839. [PMID: 34576000 PMCID: PMC8471599 DOI: 10.3390/ijms22189839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is currently the second most common neurodegenerative disorder, burdening about 10 million elderly individuals worldwide. The multifactorial nature of PD poses a difficult obstacle for understanding the mechanisms involved in its onset and progression. Currently, diagnosis depends on the appearance of clinical signs, some of which are shared among various neurologic disorders, hindering early diagnosis. There are no effective tools to prevent PD onset, detect the disease in early stages or accurately report the risk of disease progression. Hence, there is an increasing demand for biomarkers that may identify disease onset and progression, as treatment-based medicine may not be the best approach for PD. Over the last few decades, the search for molecular markers to predict susceptibility, aid in accurate diagnosis and evaluate the progress of PD have intensified, but strategies aimed to improve individualized patient care have not yet been established. CONCLUSIONS Genomic variation, regulation by epigenomic mechanisms, as well as the influence of the host gut microbiome seem to have a crucial role in the onset and progress of PD, thus are considered potential biomarkers. As such, the human nuclear and mitochondrial genome, epigenome, and the host gut microbiome might be the key elements to the rise of personalized medicine for PD patients.
Collapse
Affiliation(s)
- Gleyce Fonseca Cabral
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Ana Paula Schaan
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Giovanna C. Cavalcante
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Camille Sena-dos-Santos
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Tatiane Piedade de Souza
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Natacha M. Souza Port’s
- Laboratório de Neurofarmacologia Molecular, Universidade de São Paulo, São Paulo 05508-000, Brazil;
| | - Jhully Azevedo dos Santos Pinheiro
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Ândrea Ribeiro-dos-Santos
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará–R. dos Mundurucus, Belém 66073-000, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil
| | - Amanda F. Vidal
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil
- ITVDS—Instituto Tecnológico Vale Desenvolvimento Sustentável–R. Boaventura da Silva, Belém 66055-090, Brazil
| |
Collapse
|
133
|
Pan HX, Wang YG, Zhao YW, Zeng Q, Wang Z, Fang ZH, Zhang Y, Zhou X, He RC, Xu Q, Sun QY, Tan JQ, Yan XX, Li JC, Tang BS, Guo JF. Evaluating the role of ARSA in Chinese patients with Parkinson's disease. Neurobiol Aging 2021; 109:269-272. [PMID: 34531044 DOI: 10.1016/j.neurobiolaging.2021.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/01/2021] [Accepted: 08/14/2021] [Indexed: 10/20/2022]
Abstract
Recent studies have suggested ARSA, a gene responsible for metachromatic leukodystrophy, could be a genetic modifier of Parkinson's disease (PD) pathogenesis, acting as a molecular chaperone for α-synuclein. To elucidate the role of ARSA variants in PD, we did a comprehensive analysis of ARSA variants by performing next-generation sequencing on 477 PD families, 1440 sporadic early-onset PD patients and 1962 sporadic late-onset PD patients and 2636 controls from Chinese mainland, as well as the association between ARSA variants and cognitive function of PD patients. We identified 2 familial PD following autosomal dominant inherence carrying rare variants of ARSA, but they had limited clinical significance. We detected a total of 81 coding variants of ARSA in our subjects but none of the identified variants were associated with either susceptibility or cognitive performance of PD, while loss-of-function variants showed slightly increased burden in late-onset PD (0.25% vs. 0%, p = 0.08). Our results suggested ARSA may not play important roles in PD of Chinese population.
Collapse
Affiliation(s)
- Hong-Xu Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi-Ge Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu-Wen Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Zeng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheng Wang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheng-Huan Fang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yi Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xun Zhou
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Run-Cheng He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qi-Ying Sun
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie-Qiong Tan
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xin-Xiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jin-Chen Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China; Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bei-Sha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China; Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ji-Feng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| |
Collapse
|
134
|
Jan A, Gonçalves NP, Vaegter CB, Jensen PH, Ferreira N. The Prion-Like Spreading of Alpha-Synuclein in Parkinson's Disease: Update on Models and Hypotheses. Int J Mol Sci 2021; 22:8338. [PMID: 34361100 PMCID: PMC8347623 DOI: 10.3390/ijms22158338] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022] Open
Abstract
The pathological aggregation of the presynaptic protein α-synuclein (α-syn) and propagation through synaptically coupled neuroanatomical tracts is increasingly thought to underlie the pathophysiological progression of Parkinson's disease (PD) and related synucleinopathies. Although the precise molecular mechanisms responsible for the spreading of pathological α-syn accumulation in the CNS are not fully understood, growing evidence suggests that de novo α-syn misfolding and/or neuronal internalization of aggregated α-syn facilitates conformational templating of endogenous α-syn monomers in a mechanism reminiscent of prions. A refined understanding of the biochemical and cellular factors mediating the pathological neuron-to-neuron propagation of misfolded α-syn will potentially elucidate the etiology of PD and unravel novel targets for therapeutic intervention. Here, we discuss recent developments on the hypothesis regarding trans-synaptic propagation of α-syn pathology in the context of neuronal vulnerability and highlight the potential utility of novel experimental models of synucleinopathies.
Collapse
Affiliation(s)
- Asad Jan
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (N.P.G.); (C.B.V.); (P.H.J.)
| | - Nádia Pereira Gonçalves
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (N.P.G.); (C.B.V.); (P.H.J.)
- International Diabetic Neuropathy Consortium (IDNC), Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Christian Bjerggaard Vaegter
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (N.P.G.); (C.B.V.); (P.H.J.)
- International Diabetic Neuropathy Consortium (IDNC), Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Poul Henning Jensen
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (N.P.G.); (C.B.V.); (P.H.J.)
| | - Nelson Ferreira
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (N.P.G.); (C.B.V.); (P.H.J.)
| |
Collapse
|
135
|
Oliveira LM, Rastin T, Nimmo GA, Ross JP, Dion PA, Zhang M, Nevay DL, Arkadir D, Gotkine M, Barnett C, Shoesmith CL, Zimran A, Rogaeva EA, Zinman L, Rouleau GA, Gan-Or Z, Amato D, Kalia LV. Occurrence of Amyotrophic Lateral Sclerosis in Type 1 Gaucher Disease. Neurol Genet 2021; 7:e600. [PMID: 34017912 PMCID: PMC8130998 DOI: 10.1212/nxg.0000000000000600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/23/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To report the association between type 1 Gaucher disease (GD1) and amyotrophic lateral sclerosis (ALS) in 3 unrelated families and to explore whether GBA variants influence the risk of ALS. METHODS We conducted retrospective chart reviews of patients with GD1 or their family members diagnosed with ALS. To further investigate whether there is an association between ALS and GD, we performed exploratory analyses for the presence of GBA variants in 3 ALS cohorts from Toronto (Canada), Montreal (Canada), and Project MinE (international), totaling 4,653 patients with ALS and 1,832 controls. RESULTS We describe 2 patients with GD1 and 1 obligate GBA mutation carrier (mother of GD1 patient) with ALS. We identified 0 and 8 GBA carriers in the Toronto and Montreal cohorts, respectively. The frequencies of GBA variants in patients with ALS in the Montreal and Project MinE cohorts were similar to those of Project MinE controls or Genome Aggregation Database population controls. CONCLUSIONS The occurrence of ALS in biallelic or monoallelic GBA mutation carriers described here, in addition to common pathogenic pathways shared by GD1 and ALS, suggests that GBA variants could influence ALS risk. However, analyses of GBA variants in ALS cohorts did not reveal a meaningful association. Examination of larger cohorts and neuropathologic studies will be required to elucidate whether patients with GD1 are indeed at increased risk for ALS.
Collapse
Affiliation(s)
| | | | - Graeme A.M. Nimmo
- From the Krembil Research Institute (L.M.O., L.V.K.), Toronto Western Hospital, University Health Network, Ontario; Djavad Mowafaghian Centre for Brain Health (T.R.), Division of Neurology, Department of Medicine, University of British Columbia, Vancouver; Mark Feedman and Judy Jacobs Program for Gaucher Disease (G.A.M.N., D. Amato, L.V.K.), Mount Sinai Hospital; Fred A. Litwin Family Centre for Genetic Medicine (G.A.M.N., D.-L.N.), Department of Medicine, Mount Sinai Hospital and Toronto General Hospital, University Health Network, University of Toronto, Ontario; Department of Human Genetics (J.P.R., P.A.D., G.A.R., Z.G.-O.), Montreal Neurological Institute and Hospital (J.P.R., P.A.D., G.A.R., Z.G.-O.), and Department of Neurology and Neurosurgery (P.A.D., G.A.R., Z.G.-O.), McGill University, Quebec; Tanz Centre for Research in Neurodegenerative Diseases (M.Z., E.A.R., L.V.K.), University of Toronto, Ontario, Canada; Shanghai First Rehabilitation Hospital (M.Z.), School of Medicine, Clinical Center for Brain and Spinal Cord Research (M.Z.), and Institute for Advanced Study (M.Z.), Tongji University, Shanghai, China; Department of Neurology (D. Arkadir, M.G.), Hadassah Medical Center, Hebrew University, Jerusalem, Israel; Ellen and Martin Prosserman Centre for Neuromuscular Diseases (C.B.), Division of Neurology, Department of Medicine, Toronto General Hospital, University Health Network, University of Toronto; London Health Sciences Centre (C.L.S.), London, Ontario, Canada; Gaucher Unit (A.Z.), Shaare Zedek Medical Center, Hadassah Medical School, Hebrew University, Jerusalem, Israel; Division of Neurology (L.Z.), Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto; and Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (L.V.K.), Division of Neurology, Department of Medicine, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada
| | - Jay P. Ross
- From the Krembil Research Institute (L.M.O., L.V.K.), Toronto Western Hospital, University Health Network, Ontario; Djavad Mowafaghian Centre for Brain Health (T.R.), Division of Neurology, Department of Medicine, University of British Columbia, Vancouver; Mark Feedman and Judy Jacobs Program for Gaucher Disease (G.A.M.N., D. Amato, L.V.K.), Mount Sinai Hospital; Fred A. Litwin Family Centre for Genetic Medicine (G.A.M.N., D.-L.N.), Department of Medicine, Mount Sinai Hospital and Toronto General Hospital, University Health Network, University of Toronto, Ontario; Department of Human Genetics (J.P.R., P.A.D., G.A.R., Z.G.-O.), Montreal Neurological Institute and Hospital (J.P.R., P.A.D., G.A.R., Z.G.-O.), and Department of Neurology and Neurosurgery (P.A.D., G.A.R., Z.G.-O.), McGill University, Quebec; Tanz Centre for Research in Neurodegenerative Diseases (M.Z., E.A.R., L.V.K.), University of Toronto, Ontario, Canada; Shanghai First Rehabilitation Hospital (M.Z.), School of Medicine, Clinical Center for Brain and Spinal Cord Research (M.Z.), and Institute for Advanced Study (M.Z.), Tongji University, Shanghai, China; Department of Neurology (D. Arkadir, M.G.), Hadassah Medical Center, Hebrew University, Jerusalem, Israel; Ellen and Martin Prosserman Centre for Neuromuscular Diseases (C.B.), Division of Neurology, Department of Medicine, Toronto General Hospital, University Health Network, University of Toronto; London Health Sciences Centre (C.L.S.), London, Ontario, Canada; Gaucher Unit (A.Z.), Shaare Zedek Medical Center, Hadassah Medical School, Hebrew University, Jerusalem, Israel; Division of Neurology (L.Z.), Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto; and Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (L.V.K.), Division of Neurology, Department of Medicine, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada
| | - Patrick A. Dion
- From the Krembil Research Institute (L.M.O., L.V.K.), Toronto Western Hospital, University Health Network, Ontario; Djavad Mowafaghian Centre for Brain Health (T.R.), Division of Neurology, Department of Medicine, University of British Columbia, Vancouver; Mark Feedman and Judy Jacobs Program for Gaucher Disease (G.A.M.N., D. Amato, L.V.K.), Mount Sinai Hospital; Fred A. Litwin Family Centre for Genetic Medicine (G.A.M.N., D.-L.N.), Department of Medicine, Mount Sinai Hospital and Toronto General Hospital, University Health Network, University of Toronto, Ontario; Department of Human Genetics (J.P.R., P.A.D., G.A.R., Z.G.-O.), Montreal Neurological Institute and Hospital (J.P.R., P.A.D., G.A.R., Z.G.-O.), and Department of Neurology and Neurosurgery (P.A.D., G.A.R., Z.G.-O.), McGill University, Quebec; Tanz Centre for Research in Neurodegenerative Diseases (M.Z., E.A.R., L.V.K.), University of Toronto, Ontario, Canada; Shanghai First Rehabilitation Hospital (M.Z.), School of Medicine, Clinical Center for Brain and Spinal Cord Research (M.Z.), and Institute for Advanced Study (M.Z.), Tongji University, Shanghai, China; Department of Neurology (D. Arkadir, M.G.), Hadassah Medical Center, Hebrew University, Jerusalem, Israel; Ellen and Martin Prosserman Centre for Neuromuscular Diseases (C.B.), Division of Neurology, Department of Medicine, Toronto General Hospital, University Health Network, University of Toronto; London Health Sciences Centre (C.L.S.), London, Ontario, Canada; Gaucher Unit (A.Z.), Shaare Zedek Medical Center, Hadassah Medical School, Hebrew University, Jerusalem, Israel; Division of Neurology (L.Z.), Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto; and Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (L.V.K.), Division of Neurology, Department of Medicine, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada
| | - Ming Zhang
- From the Krembil Research Institute (L.M.O., L.V.K.), Toronto Western Hospital, University Health Network, Ontario; Djavad Mowafaghian Centre for Brain Health (T.R.), Division of Neurology, Department of Medicine, University of British Columbia, Vancouver; Mark Feedman and Judy Jacobs Program for Gaucher Disease (G.A.M.N., D. Amato, L.V.K.), Mount Sinai Hospital; Fred A. Litwin Family Centre for Genetic Medicine (G.A.M.N., D.-L.N.), Department of Medicine, Mount Sinai Hospital and Toronto General Hospital, University Health Network, University of Toronto, Ontario; Department of Human Genetics (J.P.R., P.A.D., G.A.R., Z.G.-O.), Montreal Neurological Institute and Hospital (J.P.R., P.A.D., G.A.R., Z.G.-O.), and Department of Neurology and Neurosurgery (P.A.D., G.A.R., Z.G.-O.), McGill University, Quebec; Tanz Centre for Research in Neurodegenerative Diseases (M.Z., E.A.R., L.V.K.), University of Toronto, Ontario, Canada; Shanghai First Rehabilitation Hospital (M.Z.), School of Medicine, Clinical Center for Brain and Spinal Cord Research (M.Z.), and Institute for Advanced Study (M.Z.), Tongji University, Shanghai, China; Department of Neurology (D. Arkadir, M.G.), Hadassah Medical Center, Hebrew University, Jerusalem, Israel; Ellen and Martin Prosserman Centre for Neuromuscular Diseases (C.B.), Division of Neurology, Department of Medicine, Toronto General Hospital, University Health Network, University of Toronto; London Health Sciences Centre (C.L.S.), London, Ontario, Canada; Gaucher Unit (A.Z.), Shaare Zedek Medical Center, Hadassah Medical School, Hebrew University, Jerusalem, Israel; Division of Neurology (L.Z.), Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto; and Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (L.V.K.), Division of Neurology, Department of Medicine, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada
| | - Dayna-Lynn Nevay
- From the Krembil Research Institute (L.M.O., L.V.K.), Toronto Western Hospital, University Health Network, Ontario; Djavad Mowafaghian Centre for Brain Health (T.R.), Division of Neurology, Department of Medicine, University of British Columbia, Vancouver; Mark Feedman and Judy Jacobs Program for Gaucher Disease (G.A.M.N., D. Amato, L.V.K.), Mount Sinai Hospital; Fred A. Litwin Family Centre for Genetic Medicine (G.A.M.N., D.-L.N.), Department of Medicine, Mount Sinai Hospital and Toronto General Hospital, University Health Network, University of Toronto, Ontario; Department of Human Genetics (J.P.R., P.A.D., G.A.R., Z.G.-O.), Montreal Neurological Institute and Hospital (J.P.R., P.A.D., G.A.R., Z.G.-O.), and Department of Neurology and Neurosurgery (P.A.D., G.A.R., Z.G.-O.), McGill University, Quebec; Tanz Centre for Research in Neurodegenerative Diseases (M.Z., E.A.R., L.V.K.), University of Toronto, Ontario, Canada; Shanghai First Rehabilitation Hospital (M.Z.), School of Medicine, Clinical Center for Brain and Spinal Cord Research (M.Z.), and Institute for Advanced Study (M.Z.), Tongji University, Shanghai, China; Department of Neurology (D. Arkadir, M.G.), Hadassah Medical Center, Hebrew University, Jerusalem, Israel; Ellen and Martin Prosserman Centre for Neuromuscular Diseases (C.B.), Division of Neurology, Department of Medicine, Toronto General Hospital, University Health Network, University of Toronto; London Health Sciences Centre (C.L.S.), London, Ontario, Canada; Gaucher Unit (A.Z.), Shaare Zedek Medical Center, Hadassah Medical School, Hebrew University, Jerusalem, Israel; Division of Neurology (L.Z.), Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto; and Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (L.V.K.), Division of Neurology, Department of Medicine, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada
| | - David Arkadir
- From the Krembil Research Institute (L.M.O., L.V.K.), Toronto Western Hospital, University Health Network, Ontario; Djavad Mowafaghian Centre for Brain Health (T.R.), Division of Neurology, Department of Medicine, University of British Columbia, Vancouver; Mark Feedman and Judy Jacobs Program for Gaucher Disease (G.A.M.N., D. Amato, L.V.K.), Mount Sinai Hospital; Fred A. Litwin Family Centre for Genetic Medicine (G.A.M.N., D.-L.N.), Department of Medicine, Mount Sinai Hospital and Toronto General Hospital, University Health Network, University of Toronto, Ontario; Department of Human Genetics (J.P.R., P.A.D., G.A.R., Z.G.-O.), Montreal Neurological Institute and Hospital (J.P.R., P.A.D., G.A.R., Z.G.-O.), and Department of Neurology and Neurosurgery (P.A.D., G.A.R., Z.G.-O.), McGill University, Quebec; Tanz Centre for Research in Neurodegenerative Diseases (M.Z., E.A.R., L.V.K.), University of Toronto, Ontario, Canada; Shanghai First Rehabilitation Hospital (M.Z.), School of Medicine, Clinical Center for Brain and Spinal Cord Research (M.Z.), and Institute for Advanced Study (M.Z.), Tongji University, Shanghai, China; Department of Neurology (D. Arkadir, M.G.), Hadassah Medical Center, Hebrew University, Jerusalem, Israel; Ellen and Martin Prosserman Centre for Neuromuscular Diseases (C.B.), Division of Neurology, Department of Medicine, Toronto General Hospital, University Health Network, University of Toronto; London Health Sciences Centre (C.L.S.), London, Ontario, Canada; Gaucher Unit (A.Z.), Shaare Zedek Medical Center, Hadassah Medical School, Hebrew University, Jerusalem, Israel; Division of Neurology (L.Z.), Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto; and Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (L.V.K.), Division of Neurology, Department of Medicine, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada
| | - Marc Gotkine
- From the Krembil Research Institute (L.M.O., L.V.K.), Toronto Western Hospital, University Health Network, Ontario; Djavad Mowafaghian Centre for Brain Health (T.R.), Division of Neurology, Department of Medicine, University of British Columbia, Vancouver; Mark Feedman and Judy Jacobs Program for Gaucher Disease (G.A.M.N., D. Amato, L.V.K.), Mount Sinai Hospital; Fred A. Litwin Family Centre for Genetic Medicine (G.A.M.N., D.-L.N.), Department of Medicine, Mount Sinai Hospital and Toronto General Hospital, University Health Network, University of Toronto, Ontario; Department of Human Genetics (J.P.R., P.A.D., G.A.R., Z.G.-O.), Montreal Neurological Institute and Hospital (J.P.R., P.A.D., G.A.R., Z.G.-O.), and Department of Neurology and Neurosurgery (P.A.D., G.A.R., Z.G.-O.), McGill University, Quebec; Tanz Centre for Research in Neurodegenerative Diseases (M.Z., E.A.R., L.V.K.), University of Toronto, Ontario, Canada; Shanghai First Rehabilitation Hospital (M.Z.), School of Medicine, Clinical Center for Brain and Spinal Cord Research (M.Z.), and Institute for Advanced Study (M.Z.), Tongji University, Shanghai, China; Department of Neurology (D. Arkadir, M.G.), Hadassah Medical Center, Hebrew University, Jerusalem, Israel; Ellen and Martin Prosserman Centre for Neuromuscular Diseases (C.B.), Division of Neurology, Department of Medicine, Toronto General Hospital, University Health Network, University of Toronto; London Health Sciences Centre (C.L.S.), London, Ontario, Canada; Gaucher Unit (A.Z.), Shaare Zedek Medical Center, Hadassah Medical School, Hebrew University, Jerusalem, Israel; Division of Neurology (L.Z.), Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto; and Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (L.V.K.), Division of Neurology, Department of Medicine, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada
| | - Carolina Barnett
- From the Krembil Research Institute (L.M.O., L.V.K.), Toronto Western Hospital, University Health Network, Ontario; Djavad Mowafaghian Centre for Brain Health (T.R.), Division of Neurology, Department of Medicine, University of British Columbia, Vancouver; Mark Feedman and Judy Jacobs Program for Gaucher Disease (G.A.M.N., D. Amato, L.V.K.), Mount Sinai Hospital; Fred A. Litwin Family Centre for Genetic Medicine (G.A.M.N., D.-L.N.), Department of Medicine, Mount Sinai Hospital and Toronto General Hospital, University Health Network, University of Toronto, Ontario; Department of Human Genetics (J.P.R., P.A.D., G.A.R., Z.G.-O.), Montreal Neurological Institute and Hospital (J.P.R., P.A.D., G.A.R., Z.G.-O.), and Department of Neurology and Neurosurgery (P.A.D., G.A.R., Z.G.-O.), McGill University, Quebec; Tanz Centre for Research in Neurodegenerative Diseases (M.Z., E.A.R., L.V.K.), University of Toronto, Ontario, Canada; Shanghai First Rehabilitation Hospital (M.Z.), School of Medicine, Clinical Center for Brain and Spinal Cord Research (M.Z.), and Institute for Advanced Study (M.Z.), Tongji University, Shanghai, China; Department of Neurology (D. Arkadir, M.G.), Hadassah Medical Center, Hebrew University, Jerusalem, Israel; Ellen and Martin Prosserman Centre for Neuromuscular Diseases (C.B.), Division of Neurology, Department of Medicine, Toronto General Hospital, University Health Network, University of Toronto; London Health Sciences Centre (C.L.S.), London, Ontario, Canada; Gaucher Unit (A.Z.), Shaare Zedek Medical Center, Hadassah Medical School, Hebrew University, Jerusalem, Israel; Division of Neurology (L.Z.), Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto; and Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (L.V.K.), Division of Neurology, Department of Medicine, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada
| | - Christen L. Shoesmith
- From the Krembil Research Institute (L.M.O., L.V.K.), Toronto Western Hospital, University Health Network, Ontario; Djavad Mowafaghian Centre for Brain Health (T.R.), Division of Neurology, Department of Medicine, University of British Columbia, Vancouver; Mark Feedman and Judy Jacobs Program for Gaucher Disease (G.A.M.N., D. Amato, L.V.K.), Mount Sinai Hospital; Fred A. Litwin Family Centre for Genetic Medicine (G.A.M.N., D.-L.N.), Department of Medicine, Mount Sinai Hospital and Toronto General Hospital, University Health Network, University of Toronto, Ontario; Department of Human Genetics (J.P.R., P.A.D., G.A.R., Z.G.-O.), Montreal Neurological Institute and Hospital (J.P.R., P.A.D., G.A.R., Z.G.-O.), and Department of Neurology and Neurosurgery (P.A.D., G.A.R., Z.G.-O.), McGill University, Quebec; Tanz Centre for Research in Neurodegenerative Diseases (M.Z., E.A.R., L.V.K.), University of Toronto, Ontario, Canada; Shanghai First Rehabilitation Hospital (M.Z.), School of Medicine, Clinical Center for Brain and Spinal Cord Research (M.Z.), and Institute for Advanced Study (M.Z.), Tongji University, Shanghai, China; Department of Neurology (D. Arkadir, M.G.), Hadassah Medical Center, Hebrew University, Jerusalem, Israel; Ellen and Martin Prosserman Centre for Neuromuscular Diseases (C.B.), Division of Neurology, Department of Medicine, Toronto General Hospital, University Health Network, University of Toronto; London Health Sciences Centre (C.L.S.), London, Ontario, Canada; Gaucher Unit (A.Z.), Shaare Zedek Medical Center, Hadassah Medical School, Hebrew University, Jerusalem, Israel; Division of Neurology (L.Z.), Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto; and Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (L.V.K.), Division of Neurology, Department of Medicine, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada
| | - Ari Zimran
- From the Krembil Research Institute (L.M.O., L.V.K.), Toronto Western Hospital, University Health Network, Ontario; Djavad Mowafaghian Centre for Brain Health (T.R.), Division of Neurology, Department of Medicine, University of British Columbia, Vancouver; Mark Feedman and Judy Jacobs Program for Gaucher Disease (G.A.M.N., D. Amato, L.V.K.), Mount Sinai Hospital; Fred A. Litwin Family Centre for Genetic Medicine (G.A.M.N., D.-L.N.), Department of Medicine, Mount Sinai Hospital and Toronto General Hospital, University Health Network, University of Toronto, Ontario; Department of Human Genetics (J.P.R., P.A.D., G.A.R., Z.G.-O.), Montreal Neurological Institute and Hospital (J.P.R., P.A.D., G.A.R., Z.G.-O.), and Department of Neurology and Neurosurgery (P.A.D., G.A.R., Z.G.-O.), McGill University, Quebec; Tanz Centre for Research in Neurodegenerative Diseases (M.Z., E.A.R., L.V.K.), University of Toronto, Ontario, Canada; Shanghai First Rehabilitation Hospital (M.Z.), School of Medicine, Clinical Center for Brain and Spinal Cord Research (M.Z.), and Institute for Advanced Study (M.Z.), Tongji University, Shanghai, China; Department of Neurology (D. Arkadir, M.G.), Hadassah Medical Center, Hebrew University, Jerusalem, Israel; Ellen and Martin Prosserman Centre for Neuromuscular Diseases (C.B.), Division of Neurology, Department of Medicine, Toronto General Hospital, University Health Network, University of Toronto; London Health Sciences Centre (C.L.S.), London, Ontario, Canada; Gaucher Unit (A.Z.), Shaare Zedek Medical Center, Hadassah Medical School, Hebrew University, Jerusalem, Israel; Division of Neurology (L.Z.), Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto; and Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (L.V.K.), Division of Neurology, Department of Medicine, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada
| | - Ekaterina A. Rogaeva
- From the Krembil Research Institute (L.M.O., L.V.K.), Toronto Western Hospital, University Health Network, Ontario; Djavad Mowafaghian Centre for Brain Health (T.R.), Division of Neurology, Department of Medicine, University of British Columbia, Vancouver; Mark Feedman and Judy Jacobs Program for Gaucher Disease (G.A.M.N., D. Amato, L.V.K.), Mount Sinai Hospital; Fred A. Litwin Family Centre for Genetic Medicine (G.A.M.N., D.-L.N.), Department of Medicine, Mount Sinai Hospital and Toronto General Hospital, University Health Network, University of Toronto, Ontario; Department of Human Genetics (J.P.R., P.A.D., G.A.R., Z.G.-O.), Montreal Neurological Institute and Hospital (J.P.R., P.A.D., G.A.R., Z.G.-O.), and Department of Neurology and Neurosurgery (P.A.D., G.A.R., Z.G.-O.), McGill University, Quebec; Tanz Centre for Research in Neurodegenerative Diseases (M.Z., E.A.R., L.V.K.), University of Toronto, Ontario, Canada; Shanghai First Rehabilitation Hospital (M.Z.), School of Medicine, Clinical Center for Brain and Spinal Cord Research (M.Z.), and Institute for Advanced Study (M.Z.), Tongji University, Shanghai, China; Department of Neurology (D. Arkadir, M.G.), Hadassah Medical Center, Hebrew University, Jerusalem, Israel; Ellen and Martin Prosserman Centre for Neuromuscular Diseases (C.B.), Division of Neurology, Department of Medicine, Toronto General Hospital, University Health Network, University of Toronto; London Health Sciences Centre (C.L.S.), London, Ontario, Canada; Gaucher Unit (A.Z.), Shaare Zedek Medical Center, Hadassah Medical School, Hebrew University, Jerusalem, Israel; Division of Neurology (L.Z.), Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto; and Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (L.V.K.), Division of Neurology, Department of Medicine, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada
| | - Lorne Zinman
- From the Krembil Research Institute (L.M.O., L.V.K.), Toronto Western Hospital, University Health Network, Ontario; Djavad Mowafaghian Centre for Brain Health (T.R.), Division of Neurology, Department of Medicine, University of British Columbia, Vancouver; Mark Feedman and Judy Jacobs Program for Gaucher Disease (G.A.M.N., D. Amato, L.V.K.), Mount Sinai Hospital; Fred A. Litwin Family Centre for Genetic Medicine (G.A.M.N., D.-L.N.), Department of Medicine, Mount Sinai Hospital and Toronto General Hospital, University Health Network, University of Toronto, Ontario; Department of Human Genetics (J.P.R., P.A.D., G.A.R., Z.G.-O.), Montreal Neurological Institute and Hospital (J.P.R., P.A.D., G.A.R., Z.G.-O.), and Department of Neurology and Neurosurgery (P.A.D., G.A.R., Z.G.-O.), McGill University, Quebec; Tanz Centre for Research in Neurodegenerative Diseases (M.Z., E.A.R., L.V.K.), University of Toronto, Ontario, Canada; Shanghai First Rehabilitation Hospital (M.Z.), School of Medicine, Clinical Center for Brain and Spinal Cord Research (M.Z.), and Institute for Advanced Study (M.Z.), Tongji University, Shanghai, China; Department of Neurology (D. Arkadir, M.G.), Hadassah Medical Center, Hebrew University, Jerusalem, Israel; Ellen and Martin Prosserman Centre for Neuromuscular Diseases (C.B.), Division of Neurology, Department of Medicine, Toronto General Hospital, University Health Network, University of Toronto; London Health Sciences Centre (C.L.S.), London, Ontario, Canada; Gaucher Unit (A.Z.), Shaare Zedek Medical Center, Hadassah Medical School, Hebrew University, Jerusalem, Israel; Division of Neurology (L.Z.), Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto; and Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (L.V.K.), Division of Neurology, Department of Medicine, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada
| | - Guy A. Rouleau
- From the Krembil Research Institute (L.M.O., L.V.K.), Toronto Western Hospital, University Health Network, Ontario; Djavad Mowafaghian Centre for Brain Health (T.R.), Division of Neurology, Department of Medicine, University of British Columbia, Vancouver; Mark Feedman and Judy Jacobs Program for Gaucher Disease (G.A.M.N., D. Amato, L.V.K.), Mount Sinai Hospital; Fred A. Litwin Family Centre for Genetic Medicine (G.A.M.N., D.-L.N.), Department of Medicine, Mount Sinai Hospital and Toronto General Hospital, University Health Network, University of Toronto, Ontario; Department of Human Genetics (J.P.R., P.A.D., G.A.R., Z.G.-O.), Montreal Neurological Institute and Hospital (J.P.R., P.A.D., G.A.R., Z.G.-O.), and Department of Neurology and Neurosurgery (P.A.D., G.A.R., Z.G.-O.), McGill University, Quebec; Tanz Centre for Research in Neurodegenerative Diseases (M.Z., E.A.R., L.V.K.), University of Toronto, Ontario, Canada; Shanghai First Rehabilitation Hospital (M.Z.), School of Medicine, Clinical Center for Brain and Spinal Cord Research (M.Z.), and Institute for Advanced Study (M.Z.), Tongji University, Shanghai, China; Department of Neurology (D. Arkadir, M.G.), Hadassah Medical Center, Hebrew University, Jerusalem, Israel; Ellen and Martin Prosserman Centre for Neuromuscular Diseases (C.B.), Division of Neurology, Department of Medicine, Toronto General Hospital, University Health Network, University of Toronto; London Health Sciences Centre (C.L.S.), London, Ontario, Canada; Gaucher Unit (A.Z.), Shaare Zedek Medical Center, Hadassah Medical School, Hebrew University, Jerusalem, Israel; Division of Neurology (L.Z.), Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto; and Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (L.V.K.), Division of Neurology, Department of Medicine, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada
| | - Ziv Gan-Or
- From the Krembil Research Institute (L.M.O., L.V.K.), Toronto Western Hospital, University Health Network, Ontario; Djavad Mowafaghian Centre for Brain Health (T.R.), Division of Neurology, Department of Medicine, University of British Columbia, Vancouver; Mark Feedman and Judy Jacobs Program for Gaucher Disease (G.A.M.N., D. Amato, L.V.K.), Mount Sinai Hospital; Fred A. Litwin Family Centre for Genetic Medicine (G.A.M.N., D.-L.N.), Department of Medicine, Mount Sinai Hospital and Toronto General Hospital, University Health Network, University of Toronto, Ontario; Department of Human Genetics (J.P.R., P.A.D., G.A.R., Z.G.-O.), Montreal Neurological Institute and Hospital (J.P.R., P.A.D., G.A.R., Z.G.-O.), and Department of Neurology and Neurosurgery (P.A.D., G.A.R., Z.G.-O.), McGill University, Quebec; Tanz Centre for Research in Neurodegenerative Diseases (M.Z., E.A.R., L.V.K.), University of Toronto, Ontario, Canada; Shanghai First Rehabilitation Hospital (M.Z.), School of Medicine, Clinical Center for Brain and Spinal Cord Research (M.Z.), and Institute for Advanced Study (M.Z.), Tongji University, Shanghai, China; Department of Neurology (D. Arkadir, M.G.), Hadassah Medical Center, Hebrew University, Jerusalem, Israel; Ellen and Martin Prosserman Centre for Neuromuscular Diseases (C.B.), Division of Neurology, Department of Medicine, Toronto General Hospital, University Health Network, University of Toronto; London Health Sciences Centre (C.L.S.), London, Ontario, Canada; Gaucher Unit (A.Z.), Shaare Zedek Medical Center, Hadassah Medical School, Hebrew University, Jerusalem, Israel; Division of Neurology (L.Z.), Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto; and Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (L.V.K.), Division of Neurology, Department of Medicine, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada
| | - Dominick Amato
- From the Krembil Research Institute (L.M.O., L.V.K.), Toronto Western Hospital, University Health Network, Ontario; Djavad Mowafaghian Centre for Brain Health (T.R.), Division of Neurology, Department of Medicine, University of British Columbia, Vancouver; Mark Feedman and Judy Jacobs Program for Gaucher Disease (G.A.M.N., D. Amato, L.V.K.), Mount Sinai Hospital; Fred A. Litwin Family Centre for Genetic Medicine (G.A.M.N., D.-L.N.), Department of Medicine, Mount Sinai Hospital and Toronto General Hospital, University Health Network, University of Toronto, Ontario; Department of Human Genetics (J.P.R., P.A.D., G.A.R., Z.G.-O.), Montreal Neurological Institute and Hospital (J.P.R., P.A.D., G.A.R., Z.G.-O.), and Department of Neurology and Neurosurgery (P.A.D., G.A.R., Z.G.-O.), McGill University, Quebec; Tanz Centre for Research in Neurodegenerative Diseases (M.Z., E.A.R., L.V.K.), University of Toronto, Ontario, Canada; Shanghai First Rehabilitation Hospital (M.Z.), School of Medicine, Clinical Center for Brain and Spinal Cord Research (M.Z.), and Institute for Advanced Study (M.Z.), Tongji University, Shanghai, China; Department of Neurology (D. Arkadir, M.G.), Hadassah Medical Center, Hebrew University, Jerusalem, Israel; Ellen and Martin Prosserman Centre for Neuromuscular Diseases (C.B.), Division of Neurology, Department of Medicine, Toronto General Hospital, University Health Network, University of Toronto; London Health Sciences Centre (C.L.S.), London, Ontario, Canada; Gaucher Unit (A.Z.), Shaare Zedek Medical Center, Hadassah Medical School, Hebrew University, Jerusalem, Israel; Division of Neurology (L.Z.), Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto; and Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (L.V.K.), Division of Neurology, Department of Medicine, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada
| | - Lorraine V. Kalia
- From the Krembil Research Institute (L.M.O., L.V.K.), Toronto Western Hospital, University Health Network, Ontario; Djavad Mowafaghian Centre for Brain Health (T.R.), Division of Neurology, Department of Medicine, University of British Columbia, Vancouver; Mark Feedman and Judy Jacobs Program for Gaucher Disease (G.A.M.N., D. Amato, L.V.K.), Mount Sinai Hospital; Fred A. Litwin Family Centre for Genetic Medicine (G.A.M.N., D.-L.N.), Department of Medicine, Mount Sinai Hospital and Toronto General Hospital, University Health Network, University of Toronto, Ontario; Department of Human Genetics (J.P.R., P.A.D., G.A.R., Z.G.-O.), Montreal Neurological Institute and Hospital (J.P.R., P.A.D., G.A.R., Z.G.-O.), and Department of Neurology and Neurosurgery (P.A.D., G.A.R., Z.G.-O.), McGill University, Quebec; Tanz Centre for Research in Neurodegenerative Diseases (M.Z., E.A.R., L.V.K.), University of Toronto, Ontario, Canada; Shanghai First Rehabilitation Hospital (M.Z.), School of Medicine, Clinical Center for Brain and Spinal Cord Research (M.Z.), and Institute for Advanced Study (M.Z.), Tongji University, Shanghai, China; Department of Neurology (D. Arkadir, M.G.), Hadassah Medical Center, Hebrew University, Jerusalem, Israel; Ellen and Martin Prosserman Centre for Neuromuscular Diseases (C.B.), Division of Neurology, Department of Medicine, Toronto General Hospital, University Health Network, University of Toronto; London Health Sciences Centre (C.L.S.), London, Ontario, Canada; Gaucher Unit (A.Z.), Shaare Zedek Medical Center, Hadassah Medical School, Hebrew University, Jerusalem, Israel; Division of Neurology (L.Z.), Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto; and Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic (L.V.K.), Division of Neurology, Department of Medicine, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada
| |
Collapse
|
136
|
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by degeneration of the substantia nigra pars compacta and by accumulation of α-synuclein in Lewy bodies. PD is caused by a combination of environmental factors and genetic variants. These variants range from highly penetrant Mendelian alleles to alleles that only modestly increase disease risk. Here, we review what is known about the genetics of PD. We also describe how PD genetics have solidified the role of endosomal, lysosomal, and mitochondrial dysfunction in PD pathophysiology. Finally, we highlight how all three pathways are affected by α-synuclein and how this knowledge may be harnessed for the development of disease-modifying therapeutics.
Collapse
Affiliation(s)
- Gabriel E Vázquez-Vélez
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA.,Program in Developmental Biology and Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Huda Y Zoghbi
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA.,Program in Developmental Biology and Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA.,Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA; .,Howard Hughes Medical Institute, Houston, Texas 77030, USA
| |
Collapse
|
137
|
Vuletić V, Rački V, Papić E, Peterlin B. A Systematic Review of Parkinson's Disease Pharmacogenomics: Is There Time for Translation into the Clinics? Int J Mol Sci 2021; 22:ijms22137213. [PMID: 34281267 PMCID: PMC8268929 DOI: 10.3390/ijms22137213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most frequent neurodegenerative disease, which creates a significant public health burden. There is a challenge for the optimization of therapies since patients not only respond differently to current treatment options but also develop different side effects to the treatment. Genetic variability in the human genome can serve as a biomarker for the metabolism, availability of drugs and stratification of patients for suitable therapies. The goal of this systematic review is to assess the current evidence for the clinical translation of pharmacogenomics in the personalization of treatment for Parkinson's disease. METHODS We performed a systematic search of Medline database for publications covering the topic of pharmacogenomics and genotype specific mutations in Parkinson's disease treatment, along with a manual search, and finally included a total of 116 publications in the review. RESULTS We analyzed 75 studies and 41 reviews published up to December of 2020. Most research is focused on levodopa pharmacogenomic properties and catechol-O-methyltransferase (COMT) enzymatic pathway polymorphisms, which have potential for clinical implementation due to changes in treatment response and side-effects. Likewise, there is some consistent evidence in the heritability of impulse control disorder via Opioid Receptor Kappa 1 (OPRK1), 5-Hydroxytryptamine Receptor 2A (HTR2a) and Dopa decarboxylase (DDC) genotypes, and hyperhomocysteinemia via the Methylenetetrahydrofolate reductase (MTHFR) gene. On the other hand, many available studies vary in design and methodology and lack in sample size, leading to inconsistent findings. CONCLUSIONS This systematic review demonstrated that the evidence for implementation of pharmacogenomics in clinical practice is still lacking and that further research needs to be done to enable a more personalized approach to therapy for each patient.
Collapse
Affiliation(s)
- Vladimira Vuletić
- Clinic of Neurology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia; (V.R.); (E.P.)
- Department of Neurology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
- Correspondence:
| | - Valentino Rački
- Clinic of Neurology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia; (V.R.); (E.P.)
- Department of Neurology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Eliša Papić
- Clinic of Neurology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia; (V.R.); (E.P.)
| | - Borut Peterlin
- Clinical Institute of Medical Genetics, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia;
| |
Collapse
|
138
|
Abe T, Kuwahara T. Targeting of Lysosomal Pathway Genes for Parkinson's Disease Modification: Insights From Cellular and Animal Models. Front Neurol 2021; 12:681369. [PMID: 34194386 PMCID: PMC8236816 DOI: 10.3389/fneur.2021.681369] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/20/2021] [Indexed: 01/01/2023] Open
Abstract
Previous genetic studies on hereditary Parkinson's disease (PD) have identified a set of pathogenic gene mutations that have strong impacts on the pathogenicity of PD. In addition, genome-wide association studies (GWAS) targeted to sporadic PD have nominated an increasing number of genetic variants that influence PD susceptibility. Although the clinical and pathological characteristics in hereditary PD are not identical to those in sporadic PD, α-synuclein, and LRRK2 are definitely associated with both types of PD, with LRRK2 mutations being the most frequent cause of autosomal-dominant PD. On the other hand, a significant portion of risk genes identified from GWAS have been associated with lysosomal functions, pointing to a critical role of lysosomes in PD pathogenesis. Experimental studies have suggested that the maintenance or upregulation of lysosomal activity may protect against neuronal dysfunction or degeneration. Here we focus on the roles of representative PD gene products that are implicated in lysosomal pathway, namely LRRK2, VPS35, ATP13A2, and glucocerebrosidase, and provide an overview of their disease-associated functions as well as their cooperative actions in the pathogenesis of PD, based on the evidence from cellular and animal models. We also discuss future perspectives of targeting lysosomal activation as a possible strategy to treat neurodegeneration.
Collapse
Affiliation(s)
- Tetsuro Abe
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoki Kuwahara
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
139
|
Decreased glucocerebrosidase activity and substrate accumulation of glycosphingolipids in a novel GBA1 D409V knock-in mouse model. PLoS One 2021; 16:e0252325. [PMID: 34106956 PMCID: PMC8189458 DOI: 10.1371/journal.pone.0252325] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/13/2021] [Indexed: 11/30/2022] Open
Abstract
Multiple mutations have been described in the human GBA1 gene, which encodes the lysosomal enzyme beta-glucocerebrosidase (GCase) that degrades glucosylceramide and is pivotal in glycosphingolipid substrate metabolism. Depletion of GCase, typically by homozygous mutations in GBA1, is linked to the lysosomal storage disorder Gaucher’s disease (GD) and distinct or heterozygous mutations in GBA1 are associated with increased Parkinson’s disease (PD) risk. While numerous genes have been linked to heritable PD, GBA1 mutations in aggregate are the single greatest risk factor for development of idiopathic PD. The importance of GCase in PD necessitates preclinical models in which to study GCase-related mechanisms and novel therapeutic approaches, as well as to elucidate the molecular mechanisms leading to enhanced PD risk in GBA1 mutation carriers. The aim of this study was to develop and characterize a novel GBA1 mouse model and to facilitate wide accessibility of the model with phenotypic data. Herein we describe the results of molecular, biochemical, histological, and behavioral phenotyping analyses in a GBA1 D409V knock-in (KI) mouse. This mouse model exhibited significantly decreased GCase activity in liver and brain, with substantial increases in glycosphingolipid substrates in the liver. While no changes in the number of dopamine neurons in the substantia nigra were noted, subtle changes in striatal neurotransmitters were observed in GBA1 D409V KI mice. Alpha-synuclein pathology and inflammation were not observed in the nigrostriatal system of this model. In summary, the GBA1 D409V KI mouse model provides an ideal model for studies aimed at pharmacodynamic assessments of potential therapies aiming to restore GCase.
Collapse
|
140
|
Vieira SRL, Morris HR. Neurodegenerative Disease Risk in Carriers of Autosomal Recessive Disease. Front Neurol 2021; 12:679927. [PMID: 34149605 PMCID: PMC8211888 DOI: 10.3389/fneur.2021.679927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/14/2021] [Indexed: 01/19/2023] Open
Abstract
Genetics has driven significant discoveries in the field of neurodegenerative diseases (NDDs). An emerging theme in neurodegeneration warrants an urgent and comprehensive update: that carrier status of early-onset autosomal recessive (AR) disease, typically considered benign, is associated with an increased risk of a spectrum of late-onset NDDs. Glucosylceramidase beta (GBA1) gene mutations, responsible for the AR lysosomal storage disorder Gaucher disease, are a prominent example of this principle, having been identified as an important genetic risk factor for Parkinson disease. Genetic analyses have revealed further examples, notably GRN, TREM2, EIF2AK3, and several other LSD and mitochondria function genes. In this Review, we discuss the evidence supporting the strikingly distinct allele-dependent clinical phenotypes observed in carriers of such gene mutations and its impact on the wider field of neurodegeneration.
Collapse
Affiliation(s)
| | - Huw R. Morris
- Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
141
|
García‐Sanz P, M.F.G. Aerts J, Moratalla R. The Role of Cholesterol in α-Synuclein and Lewy Body Pathology in GBA1 Parkinson's Disease. Mov Disord 2021; 36:1070-1085. [PMID: 33219714 PMCID: PMC8247417 DOI: 10.1002/mds.28396] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease where dopaminergic neurons in the substantia nigra are lost, resulting in a decrease in striatal dopamine and, consequently, motor control. Dopaminergic degeneration is associated with the appearance of Lewy bodies, which contain membrane structures and proteins, including α-synuclein (α-Syn), in surviving neurons. PD displays a multifactorial pathology and develops from interactions between multiple elements, such as age, environmental conditions, and genetics. Mutations in the GBA1 gene represent one of the major genetic risk factors for PD. This gene encodes an essential lysosomal enzyme called β-glucocerebrosidase (GCase), which is responsible for degrading the glycolipid glucocerebroside into glucose and ceramide. GCase can generate glucosylated cholesterol via transglucosylation and can also degrade the sterol glucoside. Although the molecular mechanisms that predispose an individual to neurodegeneration remain unknown, the role of cholesterol in PD pathology deserves consideration. Disturbed cellular cholesterol metabolism, as reflected by accumulation of lysosomal cholesterol in GBA1-associated PD cellular models, could contribute to changes in lipid rafts, which are necessary for synaptic localization and vesicle cycling and modulation of synaptic integrity. α-Syn has been implicated in the regulation of neuronal cholesterol, and cholesterol facilitates interactions between α-Syn oligomers. In this review, we integrate the results of previous studies and describe the cholesterol landscape in cellular homeostasis and neuronal function. We discuss its implication in α-Syn and Lewy body pathophysiological mechanisms underlying PD, focusing on the role of GCase and cholesterol. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Patricia García‐Sanz
- Instituto Cajal, CSICMadridSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades NeurodegenerativasInstituto de Salud Carlos IIIMadridSpain
| | - Johannes M.F.G. Aerts
- Medical Biochemistry, Leiden Institute of Chemistry, Leiden UniversityFaculty of ScienceLeidenthe Netherlands
| | - Rosario Moratalla
- Instituto Cajal, CSICMadridSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades NeurodegenerativasInstituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
142
|
Fernández-Irigoyen J, Cartas-Cejudo P, Iruarrizaga-Lejarreta M, Santamaría E. Alteration in the Cerebrospinal Fluid Lipidome in Parkinson's Disease: A Post-Mortem Pilot Study. Biomedicines 2021; 9:491. [PMID: 33946950 PMCID: PMC8146703 DOI: 10.3390/biomedicines9050491] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
Lipid metabolism is clearly associated to Parkinson's disease (PD). Although lipid homeostasis has been widely studied in multiple animal and cellular models, as well as in blood derived from PD individuals, the cerebrospinal fluid (CSF) lipidomic profile in PD remains largely unexplored. In this study, we characterized the post-mortem CSF lipidomic imbalance between neurologically intact controls (n = 10) and PD subjects (n = 20). The combination of dual extraction with ultra-performance liquid chromatography-electrospray ionization quadrupole-time-of-flight mass spectrometry (UPLC-ESI-qToF-MS/MS) allowed for the monitoring of 257 lipid species across all samples. Complementary multivariate and univariate data analysis identified that glycerolipids (mono-, di-, and triacylglycerides), saturated and mono/polyunsaturated fatty acids, primary fatty amides, glycerophospholipids (phosphatidylcholines, phosphatidylethanolamines), sphingolipids (ceramides, sphingomyelins), N-acylethanolamines and sterol lipids (cholesteryl esters, steroids) were significantly increased in the CSF of PD compared to the control group. Interestingly, CSF lipid dyshomeostasis differed depending on neuropathological staging and disease duration. These results, despite the limitation of being obtained in a small population, suggest extensive CSF lipid remodeling in PD, shedding new light on the deployment of CSF lipidomics as a promising tool to identify potential lipid markers as well as discriminatory lipid species between PD and other atypical parkinsonisms.
Collapse
Affiliation(s)
- Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain; (J.F.-I.); (P.C.-C.)
| | - Paz Cartas-Cejudo
- Clinical Neuroproteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain; (J.F.-I.); (P.C.-C.)
| | | | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain; (J.F.-I.); (P.C.-C.)
| |
Collapse
|
143
|
Braconi D, Bernardini G, Spiga O, Santucci A. Leveraging proteomics in orphan disease research: pitfalls and potential. Expert Rev Proteomics 2021; 18:315-327. [PMID: 33861161 DOI: 10.1080/14789450.2021.1918549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: The term 'orphan diseases' includes conditions meeting prevalence-based or commercial viability criteria: they affect a small number of individuals and are considered an unviable market for drug development. Proteomics is an important technology to study them, providing information on mechanisms and evolution, biomarkers, and effects of therapeutic interventions.Areas covered: Herein, we review how proteomics and bioinformatic tools could be applied to the study of rare diseases and discuss pitfalls and potential.Expert opinion: Research in the field of rare diseases has to face many challenges, and implementation plans should foresee highly specialized collaborative consortia to create multidisciplinary frameworks for data sharing, advancing research, supporting clinical studies, and accelerating drug development. The integration of different technologies will allow better knowledge of disease pathophysiology, and the inclusion of proteomics and other omics technologies in this context will be pivotal to this aim.Several aspects of rare diseases, often perceived as limiting factors, might actually be advantages for a precision medicine approach: the limited number of patients, the collaboration with patient societies, and the availability of curated clinical registries could allow the development of homogeneous clinical databases and ultimately a better control over the data to be analyzed.
Collapse
Affiliation(s)
- Daniela Braconi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Giulia Bernardini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Ottavia Spiga
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| |
Collapse
|
144
|
Gago MF, Azevedo O, Guimarães A, Teresa Vide A, Lamas NJ, Oliveira TG, Gaspar P, Bicho E, Miltenberger-Miltenyi G, Ferreira J, Sousa N. Parkinson's Disease and Fabry Disease: Clinical, Biochemical and Neuroimaging Analysis of Three Pedigrees. JOURNAL OF PARKINSONS DISEASE 2021; 10:141-152. [PMID: 31594250 PMCID: PMC7029331 DOI: 10.3233/jpd-191704] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background: Sporadic Parkinson’s disease (PD) patients have lower α-galactosidase A (α-GAL A) enzymatic activity and Fabry disease (FD) patients potentially carry an increased risk of PD. Objective: Determination of PD prevalence in FD and clinical, biochemical and vascular neuroimaging description of FD pedigrees with concomitant PD. Methods: Clinical screening for PD in 229 FD patients belonging to 31 families, harbouring GLA gene mutation p.F113L, and subsequent pedigree analysis. Gender-stratified comparison of FD+/PD+ patients with their family members with FD but without PD (FD+/PD–) regarding Mainz scores, plasma & leukocytes α-GAL A enzymatic activity, urinary Gb3 and plasma Lyso-Gb3, vascular brain neuroimaging. Results: Prevalence of PD in FD was 1.3% (3/229) (3% in patients aged ≥50 years). Three FD patients, one female (73 years old) (P1) and two males (60 and 65 years old) (P2 and P3), three different pedigrees, presented akinetic-rigid PD, with weak response to levodopa (16% – 36%), and dopaminergic deficiency on 18F-DOPA PET. No pathogenic mutations were found in a PD gene panel. FD+/PD+ patients had worse clinical severity of FD (above upper 75% IQR in Mainz scores), and cortico-subcortical white matter/small vessel lesions. P3 patient was under enzyme therapy, started 1 year before PD diagnosis. P2-P3 patients had higher leucocyte α-GAL A activity (2,2-3 vs.1,0 (median)(nmol/h/mg)). Conclusion: We have shown a high prevalence of PD in a late-onset phenotype of FD, presenting high cerebrovascular burden and weak response to levodopa. Further studies will untangle how much of this PD phenotype is due to Gb3 deposition versus cerebrovascular lesions in the nigro-striatal network.
Collapse
Affiliation(s)
- Miguel Fernandes Gago
- Neurology Department, Reference Center on Lysosomal Storage Disorders, Hospital da Senhora da Oliveira, EPE, Guimarães, Portugal.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3Bs PT Government Associate Laboratory, Braga/Guimarães, Portugal.,European Reference Network for Hereditary Metabolic Disorders (MetabERN)
| | - Olga Azevedo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3Bs PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Cardiology Department, Reference Center on Lysosomal Storage Disorders, Hospital da Senhora da Oliveira, EPE, Guimarães, Portugal.,European Reference Network for Hereditary Metabolic Disorders (MetabERN)
| | - Andreia Guimarães
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3Bs PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Teresa Vide
- Neuroradiology Department, Reference Center on Lysosomal Storage Disorders, Hospital da Senhora da Oliveira, EPE, Guimarães, Portugal.,European Reference Network for Hereditary Metabolic Disorders (MetabERN)
| | - Nuno J Lamas
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3Bs PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Anatomic Pathology Service, Pathology Department, Hospital and University Center of Porto, Porto, Portugal
| | - Tiago Gil Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3Bs PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Paulo Gaspar
- Newborn Screening, Metabolism and Genetic Unit, Genetics Department, National Institute for Health Doutor Ricardo Jorge (INSA)
| | - Estela Bicho
- Centro Algoritmi, Campus Azurem, University of Minho, Guimarães, Braga, Portugal
| | - Gabriel Miltenberger-Miltenyi
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3Bs PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Genetics Department, Reference Center on Lysosomal Storage Disorders, Hospital Senhora da Oliveira, Guimarães, Portugal.,European Reference Network for Hereditary Metabolic Disorders (MetabERN)
| | - Joaquim Ferreira
- Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; Instituto de Medicina Molecular, Lisbon, Portugal; CNS - Campus Neurológico Sénior, Torres Vedras, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3Bs PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
145
|
Markopoulou K, Chase BA, Premkumar AP, Schoneburg B, Kartha N, Wei J, Yu H, Epshteyn A, Garduno L, Pham A, Vazquez R, Frigerio R, Maraganore D. Variable Effects of PD-Risk Associated SNPs and Variants in Parkinsonism-Associated Genes on Disease Phenotype in a Community-Based Cohort. Front Neurol 2021; 12:662278. [PMID: 33935957 PMCID: PMC8079937 DOI: 10.3389/fneur.2021.662278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
Genetic risk factors for Parkinson's disease (PD) risk and progression have been identified from genome-wide association studies (GWAS), as well as studies of familial forms of PD, implicating common variants at more than 90 loci and pathogenic or likely pathogenic variants at 16 loci. With the goal of understanding whether genetic variants at these PD-risk loci/genes differentially contribute to individual clinical phenotypic characteristics of PD, we used structured clinical documentation tools within the electronic medical record in an effort to provide a standardized and detailed clinical phenotypic characterization at the point of care in a cohort of 856 PD patients. We analyzed common SNPs identified in previous GWAS studies, as well as low-frequency and rare variants at parkinsonism-associated genes in the MDSgene database for their association with individual clinical characteristics and test scores at baseline assessment in our community-based PD patient cohort: age at onset, disease duration, Unified Parkinson's Disease Rating Scale I-VI, cognitive status, initial and baseline motor and non-motor symptoms, complications of levodopa therapy, comorbidities and family history of neurological disease with one or more than one affected family members. We find that in most cases an individual common PD-risk SNP identified in GWAS is associated with only a single clinical feature or test score, while gene-level tests assessing low-frequency and rare variants reveal genes associated in either a unique or partially overlapping manner with the different clinical features and test scores. Protein-protein interaction network analysis of the identified genes reveals that while some of these genes are members of already identified protein networks others are not. These findings indicate that genetic risk factors for PD differentially affect the phenotypic presentation and that genes associated with PD risk are also differentially associated with individual disease phenotypic characteristics at baseline. These findings raise the intriguing possibility that different SNPs/gene effects impact discrete phenotypic characteristics. Furthermore, they support the hypothesis that different gene and protein-protein interaction networks that underlie PD risk, the PD phenotype, and the neurodegenerative process leading to the disease phenotype, and point to the significance of the genetic background on disease phenotype.
Collapse
Affiliation(s)
- Katerina Markopoulou
- Department of Neurology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Bruce A. Chase
- Health Information Technology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Ashvini P. Premkumar
- Department of Neurology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Bernadette Schoneburg
- Department of Neurology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Ninith Kartha
- Department of Neurology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Jun Wei
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, IL, United States
| | - Hongjie Yu
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, IL, United States
| | - Alexander Epshteyn
- Health Information Technology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Lisette Garduno
- Department of Neurology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Anna Pham
- Department of Neurology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Rosa Vazquez
- Department of Neurology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Roberta Frigerio
- Department of Neurology, NorthShore University HealthSystem, Evanston, IL, United States
| | | |
Collapse
|
146
|
Combi R, Salsone M, Villa C, Ferini-Strambi L. Genetic Architecture and Molecular, Imaging and Prodromic Markers in Dementia with Lewy Bodies: State of the Art, Opportunities and Challenges. Int J Mol Sci 2021; 22:3960. [PMID: 33921279 PMCID: PMC8069386 DOI: 10.3390/ijms22083960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/03/2021] [Accepted: 04/09/2021] [Indexed: 11/16/2022] Open
Abstract
Dementia with Lewy bodies (DLB) is one of the most common causes of dementia and belongs to the group of α-synucleinopathies. Due to its clinical overlap with other neurodegenerative disorders and its high clinical heterogeneity, the clinical differential diagnosis of DLB from other similar disorders is often difficult and it is frequently underdiagnosed. Moreover, its genetic etiology has been studied only recently due to the unavailability of large cohorts with a certain diagnosis and shows genetic heterogeneity with a rare contribution of pathogenic mutations and relatively common risk factors. The rapid increase in the reported cases of DLB highlights the need for an easy, efficient and accurate diagnosis of the disease in its initial stages in order to halt or delay the progression. The currently used diagnostic methods proposed by the International DLB consortium rely on a list of criteria that comprises both clinical observations and the use of biomarkers. Herein, we summarize the up-to-now reported knowledge on the genetic architecture of DLB and discuss the use of prodromal biomarkers as well as recent promising candidates from alternative body fluids and new imaging techniques.
Collapse
Affiliation(s)
- Romina Combi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Maria Salsone
- Institute of Molecular Bioimaging and Physiology, National Research Council, 20054 Segrate (MI), Italy;
- Department of Clinical Neurosciences, Neurology-Sleep Disorder Center, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Luigi Ferini-Strambi
- Department of Clinical Neurosciences, Neurology-Sleep Disorder Center, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy
- Department of Clinical Neurosciences, “Vita-Salute” San Raffaele University, 20127 Milan, Italy
| |
Collapse
|
147
|
Harms AS, Ferreira SA, Romero-Ramos M. Periphery and brain, innate and adaptive immunity in Parkinson's disease. Acta Neuropathol 2021; 141:527-545. [PMID: 33555429 PMCID: PMC7952334 DOI: 10.1007/s00401-021-02268-5] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 12/29/2020] [Accepted: 01/18/2021] [Indexed: 12/21/2022]
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder where alpha-synuclein plays a central role in the death and dysfunction of neurons, both, in central, as well as in the peripheral nervous system. Besides the neuronal events observed in patients, PD also includes a significant immune component. It is suggested that the PD-associated immune response will have consequences on neuronal health, thus opening immunomodulation as a potential therapeutic strategy in PD. The immune changes during the disease occur in the brain, involving microglia, but also in the periphery with changes in cells of the innate immune system, particularly monocytes, as well as those of adaptive immunity, such as T-cells. This realization arises from multiple patient studies, but also from data in animal models of the disease, providing strong evidence for innate and adaptive immune system crosstalk in the central nervous system and periphery in PD. Here we review the data showing that alpha-synuclein plays a crucial role in the activation of the innate and adaptive immune system. We will also describe the studies suggesting that inflammation in PD includes early changes in innate and adaptive immune cells that develop dynamically through time during disease, contributing to neuronal degeneration and symptomatology in patients. This novel finding has contributed to the definition of PD as a multisystem disease that should be approached in a more integratory manner rather than a brain-focused classical approach.
Collapse
Affiliation(s)
- Ashley S Harms
- Department of Neurology and Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sara A Ferreira
- Department of Biomedicine and CNS Disease Modelling Group, Aarhus University, Høegh-Guldbergsgade 10, 8000C, Aarhus, Denmark
| | - Marina Romero-Ramos
- Department of Biomedicine and CNS Disease Modelling Group, Aarhus University, Høegh-Guldbergsgade 10, 8000C, Aarhus, Denmark.
| |
Collapse
|
148
|
Du T, Wang L, Liu W, Zhu G, Chen Y, Zhang J. Biomarkers and the Role of α-Synuclein in Parkinson's Disease. Front Aging Neurosci 2021; 13:645996. [PMID: 33833675 PMCID: PMC8021696 DOI: 10.3389/fnagi.2021.645996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the presence of α-synuclein (α-Syn)-rich Lewy bodies (LBs) and the preferential loss of dopaminergic (DA) neurons in the substantia nigra (SN) pars compacta (SNpc). However, the widespread involvement of other central nervous systems (CNS) structures and peripheral tissues is now widely documented. The onset of the molecular and cellular neuropathology of PD likely occurs decades before the onset of the motor symptoms characteristic of PD, so early diagnosis of PD and adequate tracking of disease progression could significantly improve outcomes for patients. Because the clinical diagnosis of PD is challenging, misdiagnosis is common, which highlights the need for disease-specific and early-stage biomarkers. This review article aims to summarize useful biomarkers for the diagnosis of PD, as well as the biomarkers used to monitor disease progression. This review article describes the role of α-Syn in PD and how it could potentially be used as a biomarker for PD. Also, preclinical and clinical investigations encompassing genetics, immunology, fluid and tissue, imaging, as well as neurophysiology biomarkers are discussed. Knowledge of the novel biomarkers for preclinical detection and clinical evaluation will contribute to a deeper understanding of the disease mechanism, which should more effectively guide clinical applications.
Collapse
Affiliation(s)
- Tingting Du
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Le Wang
- Molecular Biology Laboratory for Neuropsychiatric Diseases, Department of Neurobiology, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Weijin Liu
- Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Key Laboratory of Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson’s Disease, Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yingchuan Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianguo Zhang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing Municipal Science and Technology Commission, Beijing, China
| |
Collapse
|
149
|
Kim S, Wong YC, Gao F, Krainc D. Dysregulation of mitochondria-lysosome contacts by GBA1 dysfunction in dopaminergic neuronal models of Parkinson's disease. Nat Commun 2021; 12:1807. [PMID: 33753743 PMCID: PMC7985376 DOI: 10.1038/s41467-021-22113-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 02/16/2021] [Indexed: 12/20/2022] Open
Abstract
Mitochondria-lysosome contacts are recently identified sites for mediating crosstalk between both organelles, but their role in normal and diseased human neurons remains unknown. In this study, we demonstrate that mitochondria-lysosome contacts can dynamically form in the soma, axons, and dendrites of human neurons, allowing for their bidirectional crosstalk. Parkinson's disease patient derived neurons harboring mutant GBA1 exhibited prolonged mitochondria-lysosome contacts due to defective modulation of the untethering protein TBC1D15, which mediates Rab7 GTP hydrolysis for contact untethering. This dysregulation was due to decreased GBA1 (β-glucocerebrosidase (GCase)) lysosomal enzyme activity in patient derived neurons, and could be rescued by increasing enzyme activity with a GCase modulator. These defects resulted in disrupted mitochondrial distribution and function, and could be further rescued by TBC1D15 in Parkinson's patient derived GBA1-linked neurons. Together, our work demonstrates a potential role of mitochondria-lysosome contacts as an upstream regulator of mitochondrial function and dynamics in midbrain dopaminergic neurons in GBA1-linked Parkinson's disease.
Collapse
Affiliation(s)
- Soojin Kim
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yvette C Wong
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Fanding Gao
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
150
|
Ocular phenotypes in a mouse model of impaired glucocerebrosidase activity. Sci Rep 2021; 11:6079. [PMID: 33727605 PMCID: PMC7971029 DOI: 10.1038/s41598-021-85528-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/02/2021] [Indexed: 01/08/2023] Open
Abstract
Mutations in the GBA1 gene encoding glucocerebrosidase (GCase) are linked to Gaucher (GD) and Parkinson's Disease (PD). Since some GD and PD patients develop ocular phenotypes, we determined whether ocular phenotypes might result from impaired GCase activity and the corresponding accumulation of glucosylceramide (GluCer) and glucosylsphingosine (GluSph) in the Gba1D409V/D409V knock-in (Gba KI/KI; "KI") mouse. Gba KI mice developed age-dependent pupil dilation deficits to an anti-muscarinic agent; histologically, the iris covered the anterior part of the lens with adhesions between the iris and the anterior surface of the lens (posterior synechia). This may prevent pupil dilation in general, beyond an un-responsiveness of the iris to anti-muscarinics. Gba KI mice displayed atrophy and pigment dispersion of the iris, and occlusion of the iridocorneal angle by pigment-laden cells, reminiscent of secondary open angle glaucoma. Gba KI mice showed progressive thinning of the retina consistent with retinal degeneration. GluSph levels were increased in the anterior and posterior segments of the eye, suggesting that accumulation of lipids in the eye may contribute to degeneration in this compartment. We conclude that the Gba KI model provides robust and reproducible eye phenotypes which may be used to test for efficacy and establish biomarkers for GBA1-related therapies.
Collapse
|