101
|
Sridhar J, Parit R, Boopalakrishnan G, Rexliene MJ, Praveen R, Viswananathan B. Importance of wastewater-based epidemiology for detecting and monitoring SARS-CoV-2. CASE STUDIES IN CHEMICAL AND ENVIRONMENTAL ENGINEERING 2022; 6:100241. [PMID: 37520919 PMCID: PMC9341170 DOI: 10.1016/j.cscee.2022.100241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 08/01/2023]
Abstract
Coronavirus disease caused by the SARS-CoV-2 virus has emerged as a global challenge in terms of health and disease monitoring. COVID-19 infection is mainly spread through the SARS-CoV-2 infection leading to the development of mild to severe clinical manifestations. The virus binds to its cognate receptor ACE2 which is widely expressed among different tissues in the body. Notably, SARS-CoV-2 shedding in the fecal samples has been reported through the screening of sewage water across various countries. Wastewater screening for the presence of SARS-CoV-2 provides an alternative method to monitor infection threat, variant identification, and clinical evaluation to restrict the virus progression. Multiple cohort studies have reported the application of wastewater treatment approaches and epidemiological significance in terms of virus monitoring. Thus, the manuscript outlines consolidated and systematic information regarding the application of wastewater-based epidemiology in terms of monitoring and managing a viral disease outbreak like COVID-19.
Collapse
Affiliation(s)
- Jayavel Sridhar
- Department of Biotechnology (DDE), Madurai Kamaraj University, Madurai, 625021, Tamilnadu, India
| | - Rahul Parit
- Department of Biotechnology (DDE), Madurai Kamaraj University, Madurai, 625021, Tamilnadu, India
| | | | - M Johni Rexliene
- Department of Biotechnology (DDE), Madurai Kamaraj University, Madurai, 625021, Tamilnadu, India
| | - Rajkumar Praveen
- Department of Biotechnology (DDE), Madurai Kamaraj University, Madurai, 625021, Tamilnadu, India
| | - Balaji Viswananathan
- Department of Biotechnology (DDE), Madurai Kamaraj University, Madurai, 625021, Tamilnadu, India
| |
Collapse
|
102
|
Tiwari A, Phan N, Tandukar S, Ashoori R, Thakali O, Mousazadesh M, Dehghani MH, Sherchan SP. Persistence and occurrence of SARS-CoV-2 in water and wastewater environments: a review of the current literature. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:85658-85668. [PMID: 34652622 PMCID: PMC8518268 DOI: 10.1007/s11356-021-16919-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/01/2021] [Indexed: 04/15/2023]
Abstract
As the world continues to cope with the COVID-19 pandemic, emerging evidence indicates that respiratory transmission may not the only pathway in which the virus can be spread. This review paper aims to summarize current knowledge surrounding possible fecal-oral transmission of SARS-CoV-2. It covers recent evidence of proliferation of SARS-CoV-2 in the gastrointestinal tract, as well as presence and persistence of SARS-CoV-2 in water, and suggested future directions. Research indicates that SARS-CoV-2 can actively replicate in the human gastrointestinal system and can subsequently be shed via feces. Several countries have reported SARS-CoV-2 RNA fractions in wastewater systems, and various factors such as temperature and presence of solids have been shown to affect the survival of the virus in water. The detection of RNA does not guarantee infectivity, as current methods such as RT-qPCR are not yet able to distinguish between infectious and non-infectious particles. More research is needed to determine survival time and potential infectivity, as well as to develop more accurate methods for detection and surveillance.
Collapse
Affiliation(s)
- Ananda Tiwari
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, P.O. Box 95, 70701, Kuopio, Finland
| | - Nati Phan
- Department of Environmental Health Sciences, Tulane University, 1440 Canal Street, New Orleans, LA, 70112, USA
| | | | - Razieh Ashoori
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ocean Thakali
- University of Yamanashi, Takeda, Kofu, Yamanashi, 4-3-11 400-8511, Japan
| | - Milad Mousazadesh
- Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Environmental Health Engineering, School of Health, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Samendra P Sherchan
- Department of Environmental Health Sciences, Tulane University, 1440 Canal Street, New Orleans, LA, 70112, USA.
| |
Collapse
|
103
|
Iwamoto R, Yamaguchi K, Arakawa C, Ando H, Haramoto E, Setsukinai KI, Katayama K, Yamagishi T, Sorano S, Murakami M, Kyuwa S, Kobayashi H, Okabe S, Imoto S, Kitajima M. The detectability and removal efficiency of SARS-CoV-2 in a large-scale septic tank of a COVID-19 quarantine facility in Japan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157869. [PMID: 35944642 PMCID: PMC9356757 DOI: 10.1016/j.scitotenv.2022.157869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 05/09/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is known to be present in sewage, and wastewater-based epidemiology has attracted much attention. However, the physical partitioning of SARS-CoV-2 in wastewater and the removal efficiency of treatment systems require further investigation. This study aimed to investigate the detectability and physical partitioning of SARS-CoV-2 in wastewater and assess its removal in a large-scale septic tank employing anaerobic, anoxic, and oxic processes in a sequential batch reactor, which was installed in a coronavirus disease 2019 (COVID-19) quarantine facility. The amount of SARS-CoV-2 RNA in wastewater was determined with polyethylene glycol (PEG) precipitation followed by quantitative polymerase chain reaction (qPCR), and the association of SARS-CoV-2 with wastewater solids was evaluated by the effect of filtration prior to PEG precipitation (pre-filtration). The amount of SARS-CoV-2 RNA detected from pre-filtered samples was substantially lower than that of samples without pre-filtration. These results suggest that most SARS-CoV-2 particles in wastewater are associated with the suspended solids excluded by pre-filtration. The removal efficiency of SARS-CoV-2 in the septic tank was evaluated based on the SARS-CoV-2 RNA concentrations in untreated and treated wastewater, which was determined by the detection method optimized in this study. Escherichia coli and pepper mild mottle virus (PMMoV) were also quantified to validate the wastewater treatment system's performance. The mean log10 reduction values of SARS-CoV-2, E. coli, and PMMoV were 2.47 (range, 2.25-2.68), 2.81 (range, 2.45-3.18), and 0.66 (range, 0.61-0.70), respectively, demonstrating that SARS-CoV-2 removal by the wastewater treatment system was comparable to or better than the removal of fecal indicators. These results suggest that SARS-CoV-2 can be readily removed by the septic tank. This is the first study to determine the removal efficiency of SARS-CoV-2 in a facility-level sequencing batch activated sludge system.
Collapse
Affiliation(s)
- Ryo Iwamoto
- Shionogi & Co., Ltd., 1-8 Doshomachi 3-Chome, Chuo-ku, Osaka, Osaka 541-0045, Japan; AdvanSentinel Inc., 1-8 Doshomachi 3-Chome, Chuo-ku, Osaka, Osaka 541-0045, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Chisato Arakawa
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Hiroki Ando
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Ken-Ichi Setsukinai
- Shionogi & Co., Ltd., 1-8 Doshomachi 3-Chome, Chuo-ku, Osaka, Osaka 541-0045, Japan
| | - Kotoe Katayama
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Takuya Yamagishi
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Sumire Sorano
- Department of Disease Control, Faculty of Infectious and Tropical Disease, The London School of Hygiene & Tropical Medicine, Keppel St., London WC1E 7HT, UK; School of Tropical Medicine and Global Health, Nagasaki University, 1-14 Bunkyomachi, Nagasaki, Nagasaki 852-8521, Japan
| | - Michio Murakami
- Center for Infectious Disease Education and Research, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shigeru Kyuwa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroyuki Kobayashi
- Shionogi & Co., Ltd., 1-8 Doshomachi 3-Chome, Chuo-ku, Osaka, Osaka 541-0045, Japan
| | - Satoshi Okabe
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Seiya Imoto
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.
| |
Collapse
|
104
|
Maidana-Kulesza MN, Poma HR, Sanguino-Jorquera DG, Reyes SI, Del Milagro Said-Adamo M, Mainardi-Remis JM, Gutiérrez-Cacciabue D, Cristóbal HA, Cruz MC, Aparicio González M, Rajal VB. Tracking SARS-CoV-2 in rivers as a tool for epidemiological surveillance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157707. [PMID: 35908692 PMCID: PMC9334864 DOI: 10.1016/j.scitotenv.2022.157707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 07/04/2022] [Accepted: 07/26/2022] [Indexed: 05/22/2023]
Abstract
The aim of this work was to evaluate if rivers could be used for SARS-CoV-2 surveillance. Five sampling points from three rivers (AR-1 and AR-2 in Arenales River, MR-1 and MR-2 in Mojotoro River, and CR in La Caldera River) from Salta (Argentina), two of them receiving discharges from wastewater plants (WWTP), were monitored from July to December 2020. Fifteen water samples from each point (75 in total) were collected and characterized physico-chemically and microbiologically and SARS-CoV-2 was quantified by RT-qPCR. Also, two targets linked to human contributions, human polyomavirus (HPyV) and RNase P, were quantified and used to normalize SARS-CoV-2 concentration, which was compared to reported COVID-19 cases. Statistical analyses allowed us to verify the correlation between SARS-CoV-2 and the concentration of fecal indicator bacteria (FIB), as well as to find similarities and differences between sampling points. La Caldera River showed the best water quality; FIBs were within acceptable limits for recreational activities. Mojotoro River's water quality was not affected by the northern WWTP of the city. Instead, Arenales River presented the poorest water quality; at AR-2 was negatively affected by the discharges of the southern WWTP, which contributed to significant increase of fecal contamination. SARS-CoV-2 was found in about half of samples in low concentrations in La Caldera and Mojotoro Rivers, while it was high and persistent in Arenales River. No human tracers were detected in CR, only HPyV was found in MR-1, MR-2 and AR-1, and both were quantified in AR-2. The experimental and normalized viral concentrations strongly correlated with reported COVID-19 cases; thus, Arenales River at AR-2 reflected the epidemiological situation of the city. This is the first study showing the dynamic of SARS-CoV-2 concentration in an urban river highly impacted by wastewater and proved that can be used for SARS-CoV-2 surveillance to support health authorities.
Collapse
Affiliation(s)
- María Noel Maidana-Kulesza
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Hugo Ramiro Poma
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Diego Gastón Sanguino-Jorquera
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Sarita Isabel Reyes
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - María Del Milagro Said-Adamo
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ciencias Naturales, UNSa, Av. Bolivia 5150, Salta 4400, Argentina
| | - Juan Martín Mainardi-Remis
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ingeniería, UNSa, Av. Bolivia 5150, Salta 4400, Argentina
| | - Dolores Gutiérrez-Cacciabue
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ingeniería, UNSa, Av. Bolivia 5150, Salta 4400, Argentina
| | - Héctor Antonio Cristóbal
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ciencias Naturales, UNSa, Av. Bolivia 5150, Salta 4400, Argentina
| | - Mercedes Cecilia Cruz
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Mónica Aparicio González
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Verónica Beatriz Rajal
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ingeniería, UNSa, Av. Bolivia 5150, Salta 4400, Argentina; Singapore Centre for Environmental Life Science Engineering (SCELSE), Nanyang Technological University, Singapore.
| |
Collapse
|
105
|
Gerrity D, Papp K, Pecson BM. Pathogen Peak "Averaging" in Potable Reuse Systems: Lessons Learned from Wastewater Surveillance of SARS-CoV-2. ACS ES&T WATER 2022; 2:1863-1870. [PMID: 37566355 PMCID: PMC8791031 DOI: 10.1021/acsestwater.1c00378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/19/2021] [Accepted: 11/29/2021] [Indexed: 05/10/2023]
Abstract
This study describes wastewater concentrations of SARS-CoV-2 at seven different sampling locations in Southern Nevada (ranging from 4.2 to 8.7 log10 gc/L) and highlights several key variables affecting those concentrations, including COVID-19 incidence, sample type, and service area population. This information is important for implementing wastewater-based epidemiology, but it also provides insight relevant to the design and regulation of potable reuse systems. Specifically, smaller systems may be more prone to influent concentration spikes that can drive enteric pathogen risk during disease outbreaks. It may be possible to leverage reactor hydraulics to achieve peak "averaging" in these scenarios, although it then becomes important to consider how elevated risks at the lower percentiles potentially offset benefits at the upper percentiles. Informed by SARS-CoV-2 concentration dynamics, the current study simulated relative risk for a hypothetical enteric pathogen. Simulated reactor hydraulics (i.e., dispersion) increased pathogen concentrations by up to 2.6 logs at lower percentiles but also decreased concentrations by up to 1.1 logs at the upper percentiles that sometimes drive public health risk. Collectively, these data highlight the importance of considering outbreak conditions, pathogen spikes, and peak "averaging" in the design and operation of treatment systems and in the development of regulatory frameworks.
Collapse
Affiliation(s)
- Daniel Gerrity
- Applied Research and Development Center,
Southern Nevada Water Authority, Las Vegas, Nevada 89193,
United States
| | - Katerina Papp
- Applied Research and Development Center,
Southern Nevada Water Authority, Las Vegas, Nevada 89193,
United States
| | - Brian M. Pecson
- Trussell Technologies,
Inc., Oakland, California 94612, United States
| |
Collapse
|
106
|
Ma D, Straathof J, Liu Y, Hull NM. Monitoring SARS-CoV-2 RNA in Wastewater with RT-qPCR and Chip-Based RT-dPCR: Sewershed-Level Trends and Relationships to COVID-19. ACS ES&T WATER 2022; 2:2084-2093. [PMID: 37552751 PMCID: PMC9173673 DOI: 10.1021/acsestwater.2c00055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 08/10/2023]
Abstract
We evaluated the performance of reverse transcription quantitative PCR (uniplex and duplex RT-qPCR) and chip-based digital PCR (duplex RT-dPCR) using CDC N1 and CDC N2 assays for longitudinal monitoring of SARS-CoV-2 RNA in influent wastewater samples (n = 281) from three wastewater plants in Ohio from January 2021 to January 2022. Human fecal virus (PMMoV) and wastewater flow rate were used to normalize SARS-CoV-2 concentrations. SARS-CoV-2 measurements and COVID-19 cases were strongly correlated, but normalization effects on correlations varied between sewersheds. SARS-CoV-2 measurements by RT-qPCR were strongly correlated with 7-day moving average COVID-19 cases (average Spearman's ρ = 0.58, p < 0.05). SARS-CoV-2 was detected more frequently in samples with duplex RT-dPCR than with duplex RT-qPCR during periods of low COVID-19 cases. Duplex and uniplex RT-qPCR N1 concentrations were more strongly correlated with cases (ρ = 0.62) than N2 (ρ = 0.52). RT-dPCR correlations (average ρ = 0.21) were weaker than those of RT-qPCR (average ρ = 0.58). We also share practical experience from establishing wastewater surveillance. Per sample, RT-qPCR had a lower cost ($6 vs $18) and sample turnaround time (3-4 h vs 7-9 h) than RT-dPCR. These findings reinforce selection and use of PCR-based wastewater surveillance tools.
Collapse
Affiliation(s)
- Daniel Ma
- Department of Civil, Environmental and Geodetic
Engineering, The Ohio State University, Columbus, Ohio 43210,
United States
| | - Judith Straathof
- Department of Civil, Environmental and Geodetic
Engineering, The Ohio State University, Columbus, Ohio 43210,
United States
| | - Yijing Liu
- Department of Civil, Environmental and Geodetic
Engineering, The Ohio State University, Columbus, Ohio 43210,
United States
| | - Natalie Marie Hull
- Department of Civil, Environmental and Geodetic
Engineering, The Ohio State University, Columbus, Ohio 43210,
United States
- The Sustainability Institute, The Ohio
State University, Columbus, Ohio 43210, United
States
| |
Collapse
|
107
|
Strike W, Amirsoleimani A, Olaleye A, Noble A, Lewis K, Faulkner L, Backus S, Lindeman S, Eterovich K, Fraley M, Banadaki MD, Torabi S, Rockward A, Zeitlow E, Liversedge M, Keck J, Berry S. Development and Validation of a Simplified Method for Analysis of SARS-CoV-2 RNA in University Dormitories. ACS ES&T WATER 2022; 2:1984-1991. [PMID: 37552725 PMCID: PMC9115885 DOI: 10.1021/acsestwater.2c00044] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 05/26/2023]
Abstract
Over the course of the COVID-19 pandemic, wastewater surveillance has become a useful tool for describing SARS-CoV-2 prevalence in populations of varying size, from individual facilities (e.g., university residence halls, nursing homes, prisons) to entire municipalities. Wastewater analysis for SARS-CoV-2 RNA requires specialized equipment, expensive consumables, and expert staff, limiting its feasibility and scalability. Further, the extremely labile nature of viral RNA complicates sample transportation, especially in regions with limited access to reliable cold chains. Here, we present a new method for wastewater analysis, termed exclusion-based sample preparation (ESP), that substantially simplifies workflow (at least 70% decrease in time; 40% decrease in consumable usage compared with traditional techniques) by targeting the labor-intensive processing steps of RNA purification and concentration. To optimize and validate this method, we analyzed wastewater samples from residence halls at the University of Kentucky, of which 34% (44/129) contained detectible SARS-CoV-2 RNA. Although concurrent clinical testing was not comprehensive, student infections were identified in the 7 days following a positive wastewater detection in 68% of samples. This pilot study among university residence halls validated the performance and utility of the ESP method, laying the foundation for future studies in regions of the world where wastewater testing is not currently feasible.
Collapse
Affiliation(s)
- William Strike
- Departments of Biomedical Engineering, University of Kentucky, 151 Ralph G. Anderson Building Lexington, KY 40506-0503
| | - Atena Amirsoleimani
- Mechanical Engineering, University of Kentucky, 151 Ralph G. Anderson Building Lexington, KY 40506-0503
| | - Abisola Olaleye
- Mechanical Engineering, University of Kentucky, 151 Ralph G. Anderson Building Lexington, KY 40506-0503
| | - Ann Noble
- Mechanical Engineering, University of Kentucky, 151 Ralph G. Anderson Building Lexington, KY 40506-0503
| | - Kevin Lewis
- Environmental Quality Management, University of Kentucky, 355 Cooper Drive, Lexington, KY 40508
| | - Lee Faulkner
- Environmental Quality Management, University of Kentucky, 355 Cooper Drive, Lexington, KY 40508
| | - Spencer Backus
- Mechanical Engineering, University of Kentucky, 151 Ralph G. Anderson Building Lexington, KY 40506-0503
| | - Sierra Lindeman
- Mechanical Engineering, University of Kentucky, 151 Ralph G. Anderson Building Lexington, KY 40506-0503
| | - Katrina Eterovich
- Mechanical Engineering, University of Kentucky, 151 Ralph G. Anderson Building Lexington, KY 40506-0503
| | - Melicity Fraley
- Mechanical Engineering, University of Kentucky, 151 Ralph G. Anderson Building Lexington, KY 40506-0503
| | - Mohammad Dehghan Banadaki
- Mechanical Engineering, University of Kentucky, 151 Ralph G. Anderson Building Lexington, KY 40506-0503
| | - Soroosh Torabi
- Mechanical Engineering, University of Kentucky, 151 Ralph G. Anderson Building Lexington, KY 40506-0503
| | - Alexus Rockward
- Departments of Biomedical Engineering, University of Kentucky, 151 Ralph G. Anderson Building Lexington, KY 40506-0503
| | - Eli Zeitlow
- Department of Mechanical Engineering, University of Wisconsin-Platteville, 1 University Plaza, Platteville, WI 53818
| | - Matthew Liversedge
- Family and Community Medicine, University of Kentucky 2195 Harrodsburg Rd, Ste 125, Lexington, KY 40504
| | - James Keck
- Family and Community Medicine, University of Kentucky 2195 Harrodsburg Rd, Ste 125, Lexington, KY 40504
| | - Scott Berry
- Departments of Biomedical Engineering, University of Kentucky, 151 Ralph G. Anderson Building Lexington, KY 40506-0503
- Mechanical Engineering, University of Kentucky, 151 Ralph G. Anderson Building Lexington, KY 40506-0503
| |
Collapse
|
108
|
Nguyen Quoc B, Saingam P, RedCorn R, Carter JA, Jain T, Candry P, Gattuso M, Huang MLW, Greninger AL, Meschke JS, Bryan A, Winkler MKH. Case Study: Impact of Diurnal Variations and Stormwater Dilution on SARS-CoV-2 RNA Signal Intensity at Neighborhood Scale Wastewater Pumping Stations. ACS ES&T WATER 2022; 2:1964-1975. [PMID: 37552740 PMCID: PMC9261832 DOI: 10.1021/acsestwater.2c00016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 05/14/2023]
Abstract
Wastewater based epidemiology (WBE) has emerged as a tool to track the spread of SARS-CoV-2. However, sampling at wastewater treatment plants (WWTPs) cannot identify transmission hotspots within a city. Here, we sought to understand the diurnal variations (24 h) in SARS-CoV-2 RNA titers at the neighborhood level, using pump stations that serve vulnerable communities (e.g., essential workers, more diverse communities). Hourly composite samples were collected from wastewater pump stations located in (i) a residential area and (ii) a shopping district. In the residential area, SARS-CoV-2 RNA concentration (N1, N2, and E assays) varied by up to 42-fold within a 24 h period. The highest viral load was observed between 5 and 7 am, when viral RNA was not diluted by stormwater. Normalizing peak concentrations during this time window with nutrient concentrations (N and P) enabled correcting for rainfall to connect sewage to clinical cases reported in the sewershed. Data from the shopping district pump station were inconsistent, probably due to the fluctuation of customers shopping at the mall. This work indicates pump stations serving the residential area offer a narrow time period of high signal intensity that could improve the sensitivity of WBE, and tracer compounds (N, P concentration) can be used to normalize SARS-CoV-2 signals during rainfall.
Collapse
Affiliation(s)
- Bao Nguyen Quoc
- Department of Civil and Environmental Engineering,
University of Washington, Seattle, Washington 98105,
United States
| | - Prakit Saingam
- Department of Civil and Environmental Engineering,
University of Washington, Seattle, Washington 98105,
United States
| | - Raymond RedCorn
- Department of Civil and Environmental Engineering,
University of Washington, Seattle, Washington 98105,
United States
| | - John A. Carter
- Department of Civil and Environmental Engineering,
University of Washington, Seattle, Washington 98105,
United States
| | - Tanisha Jain
- Department of Civil and Environmental Engineering,
University of Washington, Seattle, Washington 98105,
United States
| | - Pieter Candry
- Department of Civil and Environmental Engineering,
University of Washington, Seattle, Washington 98105,
United States
| | - Meghan Gattuso
- Seattle Public Utilities,
Seattle, Washington 98124, United States
| | - Meei-Li W. Huang
- Dept of Laboratory Medicine and Pathology,
University of Washington, Seattle, Washington 98105,
United States
| | - Alexander L. Greninger
- Dept of Laboratory Medicine and Pathology,
University of Washington, Seattle, Washington 98105,
United States
| | - John Scott Meschke
- Department of Environmental & Occupational Health
Sciences, University of Washington, Seattle, Washington 98105,
United States
| | - Andrew Bryan
- Dept of Laboratory Medicine and Pathology,
University of Washington, Seattle, Washington 98105,
United States
| | - Mari K. H. Winkler
- Department of Civil and Environmental Engineering,
University of Washington, Seattle, Washington 98105,
United States
| |
Collapse
|
109
|
Safford H, Zuniga-Montanez RE, Kim M, Wu X, Wei L, Sharpnack J, Shapiro K, Bischel HN. Wastewater-Based Epidemiology for COVID-19: Handling qPCR Nondetects and Comparing Spatially Granular Wastewater and Clinical Data Trends. ACS ES&T WATER 2022; 2:2114-2124. [PMID: 37552742 PMCID: PMC9397567 DOI: 10.1021/acsestwater.2c00053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 05/28/2023]
Abstract
Wastewater-based epidemiology (WBE) is a useful complement to clinical testing for managing COVID-19. While community-scale wastewater and clinical data frequently correlate, less is known about subcommunity relationships between the two data types. Moreover, nondetects in qPCR wastewater data are typically handled through methods known to bias results, overlooking perhaps better alternatives. We address these knowledge gaps using data collected from September 2020-June 2021 in Davis, California (USA). We hypothesize that coupling the expectation maximization (EM) algorithm with the Markov Chain Monte Carlo (MCMC) method could improve estimation of "missing" values in wastewater qPCR data. We test this hypothesis by applying EM-MCMC to city wastewater treatment plant data and comparing output to more conventional nondetect handling methods. Dissimilarities in results (i) underscore the importance of specifying nondetect handling method in reporting and (ii) suggest that using EM-MCMC may yield better agreement between community-scale clinical and wastewater data. We also present a novel framework for spatially aligning clinical data with wastewater data collected upstream of a treatment plant (i.e., distributed across a sewershed). Applying the framework to data from Davis reveals reasonable agreement between wastewater and clinical data at highly granular spatial scales-further underscoring the public-health value of WBE.
Collapse
Affiliation(s)
- Hannah Safford
- Department of Civil and Environmental Engineering,
University of California Davis, 3109 Ghausi Hall, 480 Bainer
Hall Drive, Davis, California 95616, United States
| | - Rogelio E. Zuniga-Montanez
- Department of Civil and Environmental Engineering,
University of California Davis, 3109 Ghausi Hall, 480 Bainer
Hall Drive, Davis, California 95616, United States
| | - Minji Kim
- School of Veterinary Medicine, University
of California Davis, Davis, California 95616, United
States
| | - Xiaoliu Wu
- Department of Statistics, University of
California Davis, Davis, California 95616, United
States
| | - Lifeng Wei
- Department of Statistics, University of
California Davis, Davis, California 95616, United
States
| | - James Sharpnack
- Department of Statistics, University of
California Davis, Davis, California 95616, United
States
| | - Karen Shapiro
- School of Veterinary Medicine, University
of California Davis, Davis, California 95616, United
States
| | - Heather N. Bischel
- Department of Civil and Environmental Engineering,
University of California Davis, 3109 Ghausi Hall, 480 Bainer
Hall Drive, Davis, California 95616, United States
| |
Collapse
|
110
|
Pang X, Gao T, Ellehoj E, Li Q, Qiu Y, Maal-Bared R, Sikora C, Tipples G, Diggle M, Hinshaw D, Ashbolt NJ, Talbot J, Hrudey SE, Lee BE. Wastewater-Based Surveillance Is an Effective Tool for Trending COVID-19 Prevalence in Communities: A Study of 10 Major Communities for 17 Months in Alberta. ACS ES&T WATER 2022; 2:2243-2254. [PMID: 36380772 PMCID: PMC9514327 DOI: 10.1021/acsestwater.2c00143] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The correlations between SARS-CoV-2 RNA levels in wastewater from 12 wastewater treatment plants and new COVID-19 cases in the corresponding sewersheds of 10 communities were studied over 17 months. The analysis from the longest continuous surveillance reported to date revealed that SARS-CoV-2 RNA levels correlated well with temporal changes of COVID-19 cases in each community. The strongest correlation was found during the third wave (r = 0.97) based on the population-weighted SARS-CoV-2 RNA levels in wastewater. Different correlations were observed (r from 0.51 to 0.86) in various sizes of communities. The population in the sewershed had no observed effects on the strength of the correlation. Fluctuation of SARS-CoV-2 RNA levels in wastewater mirrored increases and decreases of COVID-19 cases in the corresponding community. Since the viral shedding to sewers from all infected individuals is included, wastewater-based surveillance provides an unbiased and no-discriminate estimation of the prevalence of COVID-19 compared with clinical testing that was subject to testing-seeking behaviors and policy changes. Wastewater-based surveillance on SARS-CoV-2 represents a temporal trend of COVID-19 disease burden and is an effective and supplementary monitoring when the number of COVID-19 cases reaches detectable thresholds of SARS-CoV-2 RNA in wastewater of treatment facilities serving various sizes of populations.
Collapse
Affiliation(s)
- Xiaoli Pang
- Department
of Laboratory Medicine and Pathology, School of Public Health, Department of Medicine, and Department of
Pediatrics, University of Alberta, Edmonton, Alberta T6G 2E2, Canada
- Alberta
Precision Laboratories, Edmonton, Alberta T6G 2J2, Canada
| | - Tiejun Gao
- Department
of Laboratory Medicine and Pathology, School of Public Health, Department of Medicine, and Department of
Pediatrics, University of Alberta, Edmonton, Alberta T6G 2E2, Canada
| | - Erik Ellehoj
- Ellehoj
Redmond Consulting, Edmonton, Alberta T6G 0Y4, Canada
| | - Qiaozhi Li
- Department
of Laboratory Medicine and Pathology, School of Public Health, Department of Medicine, and Department of
Pediatrics, University of Alberta, Edmonton, Alberta T6G 2E2, Canada
| | - Yuanyuan Qiu
- Department
of Laboratory Medicine and Pathology, School of Public Health, Department of Medicine, and Department of
Pediatrics, University of Alberta, Edmonton, Alberta T6G 2E2, Canada
| | | | - Christopher Sikora
- Department
of Laboratory Medicine and Pathology, School of Public Health, Department of Medicine, and Department of
Pediatrics, University of Alberta, Edmonton, Alberta T6G 2E2, Canada
| | - Graham Tipples
- Department
of Laboratory Medicine and Pathology, School of Public Health, Department of Medicine, and Department of
Pediatrics, University of Alberta, Edmonton, Alberta T6G 2E2, Canada
- Alberta
Precision Laboratories, Edmonton, Alberta T6G 2J2, Canada
| | - Mathew Diggle
- Alberta
Precision Laboratories, Edmonton, Alberta T6G 2J2, Canada
| | - Deena Hinshaw
- Department
of Laboratory Medicine and Pathology, School of Public Health, Department of Medicine, and Department of
Pediatrics, University of Alberta, Edmonton, Alberta T6G 2E2, Canada
| | | | - James Talbot
- Department
of Laboratory Medicine and Pathology, School of Public Health, Department of Medicine, and Department of
Pediatrics, University of Alberta, Edmonton, Alberta T6G 2E2, Canada
| | - Steve E. Hrudey
- Department
of Laboratory Medicine and Pathology, School of Public Health, Department of Medicine, and Department of
Pediatrics, University of Alberta, Edmonton, Alberta T6G 2E2, Canada
| | - Bonita E. Lee
- Department
of Laboratory Medicine and Pathology, School of Public Health, Department of Medicine, and Department of
Pediatrics, University of Alberta, Edmonton, Alberta T6G 2E2, Canada
| |
Collapse
|
111
|
Roldan-Hernandez L, Graham KE, Duong D, Boehm AB. Persistence of Endogenous SARS-CoV-2 and Pepper Mild Mottle Virus RNA in Wastewater-Settled Solids. ACS ES&T WATER 2022; 2:1944-1952. [PMID: 36380769 PMCID: PMC8938836 DOI: 10.1021/acsestwater.2c00003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Limited information is available on the decay rate of endogenous SARS-CoV-2 and pepper mild mottle virus (PMMoV) RNA in wastewater and primary settled solids, potentially limiting an understanding of how transit or holding times within wastewater infrastructure might impact RNA measurements and their relationship to community COVID-19 infections. In this study, primary settled solids samples were collected from two wastewater treatment plants in the San Francisco Bay Area. Samples were thoroughly mixed, aliquoted into subsamples, and stored at 4, 22, and 37 °C for 10 days. The concentrations of SARS-CoV-2 (N1 and N2 targets) and PMMoV RNA were measured using an RT-ddPCR. Limited decay (<1 log10 reduction) was observed in the detection of viral RNA targets at all temperature conditions, suggesting that SARS-CoV-2 and PMMoV RNA can be highly persistent in solids. First-order decay rate constants ranged from 0.011 to 0.098 day-1 for SARS-CoV-2 RNA and from 0.010 to 0.091 day-1 for PMMoV RNA depending on the temperature conditions. A slower decay was observed for SARS-CoV-2 RNA in primary settled solids compared to previously reported decay in wastewater influent. Further research is needed to understand if solid content and wastewater characteristics might influence the persistence of viral RNA targets.
Collapse
Affiliation(s)
- Laura Roldan-Hernandez
- Department
of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford 94305, California, United States
| | - Katherine E. Graham
- Department
of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford 94305, California, United States
| | - Dorothea Duong
- Verily
Life Sciences, San Francisco, California 94080, United States
| | - Alexandria B. Boehm
- Department
of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford 94305, California, United States
| |
Collapse
|
112
|
Birnbaum DP, Vilardi KJ, Anderson CL, Pinto AJ, Joshi NS. Simple Affinity-Based Method for Concentrating Viruses from Wastewater Using Engineered Curli Fibers. ACS ES&T WATER 2022; 2:1836-1843. [PMID: 36778666 PMCID: PMC9916486 DOI: 10.1021/acsestwater.1c00208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Wastewater surveillance is a proven method for tracking community spread and prevalence of some infectious viral diseases. A primary concentration step is often used to enrich viral particles from wastewater prior to subsequent viral quantification and/or sequencing. Here, we present a simple procedure for concentrating viruses from wastewater using bacterial biofilm protein nanofibers known as curli fibers. Through simple genetic engineering, we produced curli fibers functionalized with single-domain antibodies (also known as nanobodies) specific for the coat protein of the model virus bacteriophage MS2. Using these modified fibers in a simple spin-down protocol, we demonstrated efficient concentration of MS2 in both phosphate-buffered saline (PBS) and in the wastewater matrix. Additionally, we produced nanobody-functionalized curli fibers capable of binding the spike protein of SARS-CoV-2, showing the versatility of the system. Our concentration protocol is simple to implement, can be performed quickly under ambient conditions, and requires only components produced through bacterial culture. We believe this technology represents an attractive alternative to existing concentration methods and warrants further research and optimization for field-relevant applications.
Collapse
Affiliation(s)
- Daniel P Birnbaum
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States; Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Katherine J Vilardi
- Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Christopher L Anderson
- Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ameet J Pinto
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Neel S Joshi
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
113
|
Adelodun B, Kumar P, Odey G, Ajibade FO, Ibrahim RG, Alamri SAM, Alrumman SA, Eid EM, Kumar V, Adeyemi KA, Arya AK, Bachheti A, Oliveira MLS, Choi KS. A safe haven of SARS-CoV-2 in the environment: Prevalence and potential transmission risks in the effluent, sludge, and biosolids. GEOSCIENCE FRONTIERS 2022; 13:101373. [PMID: 37521134 PMCID: PMC8861126 DOI: 10.1016/j.gsf.2022.101373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/04/2022] [Accepted: 02/17/2022] [Indexed: 05/11/2023]
Abstract
The novel coronavirus, SARS-CoV-2, which has caused millions of death globally is recognized to be unstable and recalcitrant in the environment, especially in the way it has been evolving to form new and highly transmissible variants. Of particular concerns are human-environment interactions and the handling and reusing the environmental materials, such as effluents, sludge, or biosolids laden with the SARS-CoV-2 without adequate treatments, thereby suggesting potential transmission and health risks. This study assesses the prevalence of SARS-CoV-2 RNA in effluents, sludge, and biosolids. Further, we evaluate the environmental, ecological, and health risks of reusing these environmental materials by wastewater/sludge workers and farmers. A systematic review of literature from the Scopus database resulted in a total of 21 articles (11 for effluents, 8 for sludge, and 2 for biosolids) that met the criteria for meta-analysis, which are then subdivided into 30 meta-analyzed studies. The prevalence of SAR-CoV-2 RNA in effluent and sludge based on random-effect models are 27.51 and 1012.25, respectively, with a 95% CI between 6.14 and 48.89 for the effluent, and 104.78 and 1019.71 for the sludge. However, the prevalence of SARS-CoV-2 RNA in the biosolids based on the fixed-effect model is 30.59, with a 95% CI between 10.10 and 51.08. The prevalence of SARS-CoV-2 RNA in environmental materials indicates the inefficiency in some of the treatment systems currently deployed to inactivate and remove the novel virus, which could be a potential health risk concern to vulnerable wastewater workers in particular, and the environmental and ecological issues for the population at large. This timely review portends the associated risks in handling and reusing environmental materials without proper and adequate treatments.
Collapse
Affiliation(s)
- Bashir Adelodun
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu 41566, South Korea
- Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin 240003, Nigeria
| | - Pankaj Kumar
- Agro-ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to be University), Haridwar 249404, Uttarakhand, India
| | - Golden Odey
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu 41566, South Korea
| | - Fidelis Odedishemi Ajibade
- Department of Civil and Environmental Engineering, Federal University of Technology, PMB 704, Akure, Nigeria
- Key Laboratory of Environmental Biotechnology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | | | - Saad A M Alamri
- Biology Department, College of Science, King Khalid University, Abha 61321, Saudi Arabia
| | - Sulaiman A Alrumman
- Biology Department, College of Science, King Khalid University, Abha 61321, Saudi Arabia
| | - Ebrahem M Eid
- Biology Department, College of Science, King Khalid University, Abha 61321, Saudi Arabia
- Botany Department, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Vinod Kumar
- Agro-ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to be University), Haridwar 249404, Uttarakhand, India
| | - Khalid Adeola Adeyemi
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu 41566, South Korea
| | - Ashish Kumar Arya
- Department of Environmental Science, Graphic Era (Deemed to be University) Deharadun, 248002 Uttarakhand, India
| | - Archana Bachheti
- Department of Environmental Science, Graphic Era (Deemed to be University) Deharadun, 248002 Uttarakhand, India
| | - Marcos L S Oliveira
- Department of Civil and Environmental, Universidad De La Costa, Calle 58 #55-66, 080002 Barranquilla, Atlántico, Colombia
| | - Kyung Sook Choi
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu 41566, South Korea
- Institute of Agricultural Science & Technology, Kyungpook, National University, Daegu 41566, South Korea
| |
Collapse
|
114
|
Guérin-Rechdaoui S, Bize A, Levesque-Ninio C, Janvier A, Lacroix C, Le Brizoual F, Barbier J, Amsaleg CR, Azimi S, Rocher V. Fate of SARS-CoV-2 coronavirus in wastewater treatment sludge during storage and thermophilic anaerobic digestion. ENVIRONMENTAL RESEARCH 2022; 214:114057. [PMID: 35995225 PMCID: PMC9391084 DOI: 10.1016/j.envres.2022.114057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Since the COVID-19 outbreak has started in late 2019, SARS-CoV-2 has been widely detected in human stools and in urban wastewater. No infectious SARS-CoV-2 particles have been detected in raw wastewater until now, but it has been reported occasionally in human stools. This has raised questions on the fate of SARS-CoV-2 during wastewater treatment and notably in its end-product, wastewater treatment sludge, which is classically valorized by land spreading for agricultural amendment. In the present work, we focused on SARS-CoV-2 stability in wastewater treatment sludge, either during storage (4 °C, room temperature) or thermophilic anaerobic digestion (50 °C). Anaerobic digestion is one of the possible processes for sludge valorization. Experiments were conducted in laboratory pilots; SARS-CoV-2 detection was based on RT-quantitative PCR or RT-digital droplet PCR. In addition to SARS-CoV-2, Bovine Coronavirus (BCoV) particles were used as surrogate virus. The RNA from SARS-CoV-2 particles, inactivated or not, was close to the detection limit but stable in wastewater treatment sludge, over the whole duration of the assays at 4 °C (55 days) and at ambient temperature (∼20 °C, 25 days). By contrast, the RNA levels of BCoV and inactivated SARS-CoV-2 particles decreased rapidly during the thermophilic anaerobic digestion of wastewater treatment sludge lasting for 5 days, with final levels that were close to the detection limit. Although the particles' infectivity was not assessed, these results suggest that thermophilic anaerobic digestion is a suitable process for sludge sanitation, consistent with previous knowledge on other coronaviruses.
Collapse
Affiliation(s)
| | - Ariane Bize
- Université Paris-Saclay, INRAE, PROSE, Antony, 92160, France
| | - Camille Levesque-Ninio
- LABOCEA, Fougères. BioAgroPolis, 10 Rue Claude Bourgelat CS 30616 - Javené, Fougères Cedex, 35306, France
| | - Alice Janvier
- LABOCEA, Fougères. BioAgroPolis, 10 Rue Claude Bourgelat CS 30616 - Javené, Fougères Cedex, 35306, France
| | - Carlyne Lacroix
- SIAAP, Innovation Department, 82 Avenue Kléber, Colombes, 92700, France
| | - Florence Le Brizoual
- LABOCEA, Fougères. BioAgroPolis, 10 Rue Claude Bourgelat CS 30616 - Javené, Fougères Cedex, 35306, France
| | - Jérôme Barbier
- ID Solutions, Development Department, Grabels, 34790, France
| | | | - Sam Azimi
- SIAAP, Innovation Department, 82 Avenue Kléber, Colombes, 92700, France
| | - Vincent Rocher
- SIAAP, Innovation Department, 82 Avenue Kléber, Colombes, 92700, France
| |
Collapse
|
115
|
Luong NDM, Guillier L, Martin-Latil S, Batejat C, Leclercq I, Druesne C, Sanaa M, Chaix E. Database of SARS-CoV-2 and coronaviruses kinetics relevant for assessing persistence in food processing plants. Sci Data 2022; 9:654. [PMID: 36289246 PMCID: PMC9606249 DOI: 10.1038/s41597-022-01763-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/10/2022] [Indexed: 12/12/2022] Open
Abstract
SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2), a virus causing severe acute respiratory disease in humans, emerged in late 2019. This respiratory virus can spread via aerosols, fomites, contaminated hands or surfaces as for other coronaviruses. Studying their persistence under different environmental conditions represents a key step for better understanding the virus transmission. This work aimed to present a reproducible procedure for collecting data of stability and inactivation kinetics from the scientific literature. The aim was to identify data useful for characterizing the persistence of viruses in the food production plants. As a result, a large dataset related to persistence on matrices or in liquid media under different environmental conditions is presented. This procedure, combining bibliographic survey, data digitalization techniques and predictive microbiological modelling, identified 65 research articles providing 455 coronaviruses kinetics. A ranking step as well as a technical validation with a Gage Repeatability & Reproducibility process were performed to check the quality of the kinetics. All data were deposited in public repositories for future uses by other researchers.
Collapse
Affiliation(s)
| | | | - Sandra Martin-Latil
- Laboratory for Food Safety, ANSES, University of Paris-EST, Maisons-Alfort, France
| | - Christophe Batejat
- Institut Pasteur, Université Paris Cité, Environment and Infectious Risks Unit, Laboratory for Urgent Response to Biological Threats (CIBU), Paris, France
| | - India Leclercq
- Institut Pasteur, Université Paris Cité, Environment and Infectious Risks Unit, Laboratory for Urgent Response to Biological Threats (CIBU), Paris, France
| | - Christine Druesne
- Research fundings & scientific watch department, ANSES, Maisons-Alfort, France
| | - Moez Sanaa
- Risk Assessment Department, ANSES, Maisons-Alfort, France
| | - Estelle Chaix
- Risk Assessment Department, ANSES, Maisons-Alfort, France
| |
Collapse
|
116
|
Arriaga-Lorenzo P, de Jesús Maldonado-Simán E, Ramírez-Valverde R, Martínez-Hernández PA, Tirado-González DN, Saavedra-Jiménez LA. Cold chain relevance in the food safety of perishable products. FOODS AND RAW MATERIALS 2022. [DOI: 10.21603/2308-4057-2023-1-559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The food cold chain is an effective tool that allows food markets to maintain food quality and reduce losses. Poor logistics may result in foodborne disease outbreaks and greenhouse gas emissions caused by organic matter decay. The ongoing pandemic of COVID-19 makes it necessary to study the chances of SARS-CoV-2 transmissions in food products.
This study reviews cold chain logistics as a handy tool for avoiding food safety risks, including COVID-19.
The cold chain of perishables and its proper management make it possible to maintain quality and safety at any stage of the food supply chain. The technology covers each link of the food chain to prevent microbial spoilage caused by temperature fluctuations and the contamination with SARS-CoV-2 associated with perishable foods. Given the lack of knowledge in this field in Latin America, the region needs new research to determine the impact of the cold chain on perishable foodstuffs.
The perishable cold chain is only as strong as its weakest link, and the national and international markets require new traceability protocols to minimize the effect of COVID-19.
Collapse
|
117
|
Mahlknecht J. Presence and persistence of SARS-CoV-2 in aquatic environments: A mini-review. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2022; 29:100385. [PMID: 35992049 PMCID: PMC9382236 DOI: 10.1016/j.coesh.2022.100385] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The introduction of SARS-CoV-2 into water bodies via sewage raises public health concerns. For the assessment of public health risks, it is necessary to know the presence and persistence of infectious SARS-CoV-2 in water and wastewater. The present mini-review documents the occurrence and decay rates of viable infectious SARS-CoV-2 and SARS-CoV-2 RNA in different water matrices including wastewater, river water, groundwater, tap water, and seawater. Persistence of viable SARS-CoV-2 is mainly temperature dependent. A rapid inactivation of infectious SARS-CoV-2 is found in river water, sea water, and wastewater compared to tap water. SARS-CoV-2 RNA was found to be considerably more stable than infectious SARS-CoV-2, indicating that the environmental detection of RNA alone does not prove risk of infection. Persistence assays need to consider physicochemical and biological water composition as well as the effect of detergents, enzymes, and filtering particulate matter.
Collapse
Affiliation(s)
- Jürgen Mahlknecht
- Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501, Monterrey, 64849, Nuevo Leon, Mexico
| |
Collapse
|
118
|
de Freitas Bueno R, Claro ICM, Augusto MR, Duran AFA, Camillo LDMB, Cabral AD, Sodré FF, Brandão CCS, Vizzotto CS, Silveira R, de Melo Mendes G, Arruda AF, de Brito NN, Machado BAS, Duarte GRM, de Lourdes Aguiar-Oliveira M. Wastewater-based epidemiology: A Brazilian SARS-COV-2 surveillance experience. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2022; 10:108298. [PMID: 35873721 PMCID: PMC9295330 DOI: 10.1016/j.jece.2022.108298] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/05/2022] [Accepted: 07/17/2022] [Indexed: 05/11/2023]
Abstract
Since 2020, developed countries have rapidly shared both publicly and academically relevant wastewater surveillance information. Data on SARS-CoV-2 circulation is pivotal for guiding public health policies and improving the COVID-19 pandemic response. Conversely, low- and middle-income countries, such as Latin America and the Caribbean, showed timid activities in the Wastewater-Based Epidemiology (WBE) context. In these countries, isolated groups perform viral wastewater monitoring, and the data are unevenly shared or accessible to health agencies and the scientific community. This manuscript aims to highlight the relevance of a multiparty effort involving research, public health, and governmental agencies to support usage of WBE methodology to its full potential during the COVID-19 pandemic as part of a joint One Health surveillance approach. Thus, in this study, we explored the results obtained from wastewater surveillance in different regions of Brazil as a part of the COVID-19 Wastewater Monitoring Network ANA (National Water Agency), MCTI (Ministry of Science, Technology, and Innovations) and MS (Ministry of Health). Over the epidemiological weeks of 2021 and early 2022, viral RNA concentrations in wastewater followed epidemiological trends and variations. The highest viral loads in wastewater samples were detected during the second Brazilian wave of COVID-19. Corroborating international reports, our experience demonstrated usefulness of the WBE approach in viral surveillance. Wastewater surveillance allows hotspot identification, and therefore, early public health interventions. In addition, this methodology allows tracking of asymptomatic and oligosymptomatic individuals, who are generally underreported, especially in emerging countries with limited clinical testing capacity. Therefore, WBE undoubtedly contributes to improving public health responses in the context of this pandemic, as well as other sanitary emergencies.
Collapse
Affiliation(s)
- Rodrigo de Freitas Bueno
- Federal University of ABC. Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo, Brazil
| | - Ieda Carolina Mantovani Claro
- Federal University of ABC. Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo, Brazil
| | - Matheus Ribeiro Augusto
- Federal University of ABC. Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo, Brazil
| | - Adriana Feliciano Alves Duran
- Federal University of ABC. Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo, Brazil
| | | | - Aline Diniz Cabral
- Federal University of ABC. Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo, Brazil
| | | | | | - Carla Simone Vizzotto
- University of Brasilia, Department of Civil and Environmental Engineering, Brasília, Federal District, Brazil
| | - Rafaella Silveira
- University of Brasilia. Institute of Chemistry, Brasília, Federal District, Brazil
- University of Brasilia, Department of Civil and Environmental Engineering, Brasília, Federal District, Brazil
| | | | | | | | - Bruna Aparecida Souza Machado
- University Center SENAI/CIMATEC. SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), Salvador, Bahia, Brazil
| | | | - Maria de Lourdes Aguiar-Oliveira
- Laboratory of Respiratory Viruses and Measles, National/MoH and International/WHO Reference Laboratory in COVID-19, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
119
|
Castro GB, Bernegossi AC, Sousa BJDO, De Lima E Silva MR, Silva FRD, Freitas BLS, Ogura AP, Corbi JJ. Global occurrence of SARS-CoV-2 in environmental aquatic matrices and its implications for sanitation and vulnerabilities in Brazil and developing countries. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:2160-2199. [PMID: 34310248 DOI: 10.1080/09603123.2021.1949437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
This paper includes a systematic review of the SARS-CoV-2 occurrence in environmental aquatic matrices and a critical sanitation analysis. We discussed the interconnection of sanitation services (wastewater, water supply, solid waste, and stormwater drainage) functioning as an important network for controlling the spread of SARS-CoV-2 in waters. We collected 98 studies containing data of the SARS-CoV-2 occurrence in aquatic matrices around the world, of which 40% were from developing countries. Alongside a significant number of people infected by the virus, developing countries face socioeconomic deficiencies and insufficient public investment in infrastructure. Therefore, our study focused on highlighting solutions to provide sanitation in developing countries, considering the virus control in waters by disinfection techniques and sanitary measures, including alternatives for the vulnerable communities. The need for multilateral efforts to improve the universal coverage of sanitation services demands urgent attention in a pandemic scenario.
Collapse
Affiliation(s)
- Gleyson B Castro
- Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Aline C Bernegossi
- Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Bruno José de O Sousa
- Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | | | - Fernando R Da Silva
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bárbara Luíza S Freitas
- Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Allan P Ogura
- Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
- PPG-SEA and CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Juliano J Corbi
- Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| |
Collapse
|
120
|
Tiwari A, Ahmed W, Oikarinen S, Sherchan SP, Heikinheimo A, Jiang G, Simpson SL, Greaves J, Bivins A. Application of digital PCR for public health-related water quality monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155663. [PMID: 35523326 DOI: 10.1016/j.scitotenv.2022.155663] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 05/25/2023]
Abstract
Digital polymerase chain reaction (dPCR) is emerging as a reliable platform for quantifying microorganisms in the field of water microbiology. This paper reviews the fundamental principles of dPCR and its application for health-related water microbiology. The relevant literature indicates increasing adoption of dPCR for measuring fecal indicator bacteria, microbial source tracking marker genes, and pathogens in various aquatic environments. The adoption of dPCR has accelerated recently due to increasing use for wastewater surveillance of Severe Acute Respiratory Coronavirus 2 (SARS-CoV-2) - the virus that causes Coronavirus Disease 2019 (COVID-19). The collective experience in the scientific literature indicates that well-optimized dPCR assays can quantify genetic material from microorganisms without the need for a calibration curve and often with superior analytical performance (i.e., greater sensitivity, precision, and reproducibility) than quantitative polymerase chain reaction (qPCR). Nonetheless, dPCR should not be viewed as a panacea for the fundamental uncertainties and limitations associated with measuring microorganisms in water microbiology. With dPCR platforms, the sample analysis cost and processing time are typically greater than qPCR. However, if improved analytical performance (i.e., sensitivity and accuracy) is critical, dPCR can be an alternative option for quantifying microorganisms, including pathogens, in aquatic environments.
Collapse
Affiliation(s)
- Ananda Tiwari
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland
| | - Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, Queensland, Australia
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Samendra P Sherchan
- Department of Environmental Health Sciences, Tulane University, New Orleans, LA, USA; Department of Biology, Morgan State University, Baltimore, MD 21251, USA; BioEnvironmental Science Program, Department of Biology, Morgan State University, Baltimore, MD 21251, USA
| | - Annamari Heikinheimo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland; Finnish Food Authority, Seinäjoki, Finland
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia
| | | | - Justin Greaves
- School of Environmental Sustainability, Loyola University Chicago, 6364 N. Sheridan Rd, Chicago, IL 60660, USA
| | - Aaron Bivins
- Department of Civil & Environmental Engineering, Louisiana State University, LA, USA.
| |
Collapse
|
121
|
Al Huraimel K, Alhosani M, Gopalani H, Kunhabdulla S, Stietiya MH. Elucidating the role of environmental management of forests, air quality, solid waste and wastewater on the dissemination of SARS-CoV-2. HYGIENE AND ENVIRONMENTAL HEALTH ADVANCES 2022; 3:100006. [PMID: 37519421 PMCID: PMC9095661 DOI: 10.1016/j.heha.2022.100006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/13/2022] [Accepted: 04/30/2022] [Indexed: 11/29/2022]
Abstract
The increasing frequency of zoonotic diseases is amongst several catastrophic repercussions of inadequate environmental management. Emergence, prevalence, and lethality of zoonotic diseases is intrinsically linked to environmental management which are currently at a destructive level globally. The effects of these links are complicated and interdependent, creating an urgent need of elucidating the role of environmental mismanagement to improve our resilience to future pandemics. This review focused on the pertinent role of forests, outdoor air, indoor air, solid waste and wastewater management in COVID-19 dissemination to analyze the opportunities prevailing to control infectious diseases considering relevant data from previous disease outbreaks. Global forest management is currently detrimental and hotspots of forest fragmentation have demonstrated to result in zoonotic disease emergences. Deforestation is reported to increase susceptibility to COVID-19 due to wildfire induced pollution and loss of forest ecosystem services. Detection of SARS-CoV-2 like viruses in multiple animal species also point to the impacts of biodiversity loss and forest fragmentation in relation to COVID-19. Available literature on air quality and COVID-19 have provided insights into the potential of air pollutants acting as plausible virus carrier and aggravating immune responses and expression of ACE2 receptors. SARS-CoV-2 is detected in outdoor air, indoor air, solid waste, wastewater and shown to prevail on solid surfaces and aerosols for prolonged hours. Furthermore, lack of protection measures and safe disposal options in waste management are evoking concerns especially in underdeveloped countries due to high infectivity of SARS-CoV-2. Inadequate legal framework and non-adherence to environmental regulations were observed to aggravate the postulated risks and vulnerability to future waves of pandemics. Our understanding underlines the urgent need to reinforce the fragile status of global environmental management systems through the development of strict legislative frameworks and enforcement by providing institutional, financial and technical supports.
Collapse
Affiliation(s)
- Khaled Al Huraimel
- Division of Consultancy, Research & Innovation (CRI), Sharjah Environment Company - Bee'ah, Sharjah, United Arab Emirates
| | - Mohamed Alhosani
- Division of Consultancy, Research & Innovation (CRI), Sharjah Environment Company - Bee'ah, Sharjah, United Arab Emirates
| | - Hetasha Gopalani
- Division of Consultancy, Research & Innovation (CRI), Sharjah Environment Company - Bee'ah, Sharjah, United Arab Emirates
| | - Shabana Kunhabdulla
- Division of Consultancy, Research & Innovation (CRI), Sharjah Environment Company - Bee'ah, Sharjah, United Arab Emirates
| | - Mohammed Hashem Stietiya
- Division of Consultancy, Research & Innovation (CRI), Sharjah Environment Company - Bee'ah, Sharjah, United Arab Emirates
| |
Collapse
|
122
|
Robins PE, Dickson N, Kevill JL, Malham SK, Singer AC, Quilliam RS, Jones DL. Predicting the dispersal of SARS-CoV-2 RNA from the wastewater treatment plant to the coast. Heliyon 2022; 8:e10547. [PMID: 36091966 PMCID: PMC9448708 DOI: 10.1016/j.heliyon.2022.e10547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/22/2022] [Accepted: 09/01/2022] [Indexed: 11/28/2022] Open
Abstract
Viral pathogens including SARS-CoV-2 RNA have been detected in wastewater treatment effluent, and untreated sewage overflows, that pose an exposure hazard to humans. We assessed whether SARS-CoV-2 RNA was likely to have been present in detectable quantities in UK rivers and estuaries during the first wave of the Covid-19 pandemic. We simulated realistic viral concentrations parameterised on the Camel and Conwy catchments (UK) and their populations, showing detectable SARS-CoV-2 RNA concentrations for untreated but not for treated loading, but also being contingent on viral decay, hydrology, catchment type/shape, and location. Under mean or low river flow conditions, viral RNA concentrated within the estuaries allowing for viral build-up and caused a lag by up to several weeks between the peak in community infections and the viral peak in the environment. There was an increased hazard posed by SARS-CoV-2 RNA with a T 90 decay rate >24 h, as the estuarine build-up effect increased. High discharge events transported the viral RNA downstream and offshore, increasing the exposure risk to coastal bathing waters and shellfisheries - although dilution in this case reduced viral concentrations well below detectable levels. Our results highlight the sensitivity of exposure to viral pathogens downstream of wastewater treatment, across a range of viral loadings and catchment characteristics - with implications to environmental surveillance.
Collapse
Affiliation(s)
- Peter E. Robins
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Neil Dickson
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Jessica L. Kevill
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Shelagh K. Malham
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | | | - Richard S. Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Davey L. Jones
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
- Food Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6105, Australia
| |
Collapse
|
123
|
Brumfield KD, Leddy M, Usmani M, Cotruvo JA, Tien CT, Dorsey S, Graubics K, Fanelli B, Zhou I, Registe N, Dadlani M, Wimalarante M, Jinasena D, Abayagunawardena R, Withanachchi C, Huq A, Jutla A, Colwell RR. Microbiome Analysis for Wastewater Surveillance during COVID-19. mBio 2022; 13:e0059122. [PMID: 35726918 PMCID: PMC9426581 DOI: 10.1128/mbio.00591-22] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/16/2022] [Indexed: 12/18/2022] Open
Abstract
Wastewater surveillance (WS), when coupled with advanced molecular techniques, offers near real-time monitoring of community-wide transmission of SARS-CoV-2 and allows assessing and mitigating COVID-19 outbreaks, by evaluating the total microbial assemblage in a community. Composite wastewater samples (24 h) were collected weekly from a manhole between December 2020 and November 2021 in Maryland, USA. RT-qPCR results showed concentrations of SARS-CoV-2 RNA recovered from wastewater samples reflected incidence of COVID-19 cases. When a drastic increase in COVID-19 was detected in February 2021, samples were selected for microbiome analysis (DNA metagenomics, RNA metatranscriptomics, and targeted SARS-CoV-2 sequencing). Targeted SARS-CoV-2 sequencing allowed for detection of important genetic mutations, such as spike: K417N, D614G, P681H, T716I, S982A, and D1118H, commonly associated with increased cell entry and reinfection. Microbiome analysis (DNA and RNA) provided important insight with respect to human health-related factors, including detection of pathogens and their virulence/antibiotic resistance genes. Specific microbial species comprising the wastewater microbiome correlated with incidence of SARS-CoV-2 RNA, suggesting potential association with SARS-CoV-2 infection. Climatic conditions, namely, temperature, were related to incidence of COVID-19 and detection of SARS-CoV-2 in wastewater, having been monitored as part of an environmental risk score assessment carried out in this study. In summary, the wastewater microbiome provides useful public health information, and hence, a valuable tool to proactively detect and characterize pathogenic agents circulating in a community. In effect, metagenomics of wastewater can serve as an early warning system for communicable diseases, by providing a larger source of information for health departments and public officials. IMPORTANCE Traditionally, testing for COVID-19 is done by detecting SARS-CoV-2 in samples collected from nasal swabs and/or saliva. However, SARS-CoV-2 can also be detected in feces of infected individuals. Therefore, wastewater samples can be used to test all individuals of a community contributing to the sewage collection system, i.e., the infrastructure, such as gravity pipes, manholes, tanks, lift stations, control structures, and force mains, that collects used water from residential and commercial sources and conveys the flow to a wastewater treatment plant. Here, we profile community wastewater collected from a manhole, detect presence of SARS-CoV-2, identify genetic mutations of SARS-CoV-2, and perform COVID-19 risk score assessment of the study area. Using metagenomics analysis, we also detect other microorganisms (bacteria, fungi, protists, and viruses) present in the samples. Results show that by analyzing all microorganisms present in wastewater, pathogens circulating in a community can provide an early warning for contagious diseases.
Collapse
Affiliation(s)
- Kyle D. Brumfield
- Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, Maryland, USA
| | - Menu Leddy
- Essential Environmental and Engineering Systems, Huntington Beach, California, USA
| | - Moiz Usmani
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
| | | | | | - Suzanne Dorsey
- Maryland Department of Environment, Baltimore, Maryland, USA
| | | | | | - Isaac Zhou
- CosmosID Inc., Germantown, Maryland, USA
| | | | | | | | | | | | | | - Anwar Huq
- Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Antarpreet Jutla
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
| | - Rita R. Colwell
- Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, Maryland, USA
- CosmosID Inc., Germantown, Maryland, USA
| |
Collapse
|
124
|
Robinson RT, Mahfooz N, Rosas-Mejia O, Liu Y, Hull NM. UV 222 disinfection of SARS-CoV-2 in solution. Sci Rep 2022; 12:14545. [PMID: 36008435 PMCID: PMC9406255 DOI: 10.1038/s41598-022-18385-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
There is an urgent need for evidence-based engineering controls to reduce transmission of SARS-CoV-2, which causes COVID-19. Although ultraviolet (UV) light is known to inactivate coronaviruses, conventional UV lamps contain toxic mercury and emit wavelengths (254 nm) that are more hazardous to humans than krypton chlorine excimer lamps emitting 222 nm (UV222). Here we used culture and molecular assays to provide the first dose response for SARS-CoV-2 solution exposed to UV222. Culture assays (plaque infectivity to Vero host) demonstrated more than 99.99% disinfection of SARS-CoV-2 after a UV222 dose of 8 mJ/cm2 (pseudo-first order rate constant = 0.64 cm2/mJ). Immediately after UV222 treatment, RT-qPCR assays targeting the nucleocapsid (N) gene demonstrated ~ 10% contribution of N gene damage to disinfection kinetics, and an ELISA assay targeting the N protein demonstrated no contribution of N protein damage to disinfection kinetics. Molecular results suggest other gene and protein damage contributed more to disinfection. After 3 days incubation with host cells, RT-qPCR and ELISA kinetics of UV222 treated SARS-CoV-2 were similar to culture kinetics, suggesting validity of using molecular assays to measure UV disinfection without culture. These data provide quantitative disinfection kinetics which can inform implementation of UV222 for preventing transmission of COVID-19.
Collapse
Affiliation(s)
- Richard T Robinson
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Najmus Mahfooz
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| | - Oscar Rosas-Mejia
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| | - Yijing Liu
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, 2070 Neil Ave, Hitchcock 417C, Columbus, OH, 43210, USA
| | - Natalie M Hull
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, 2070 Neil Ave, Hitchcock 417C, Columbus, OH, 43210, USA.
- Sustainability Institute, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
125
|
Welling CM, Singleton DR, Haase SB, Browning CH, Stoner BR, Gunsch CK, Grego S. Predictive values of time-dense SARS-CoV-2 wastewater analysis in university campus buildings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155401. [PMID: 35469858 PMCID: PMC9026951 DOI: 10.1016/j.scitotenv.2022.155401] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 05/14/2023]
Abstract
Wastewater-based SARS-CoV-2 surveillance on college campuses has the ability to detect individual clinical COVID-19 cases at the building-level. High concordance of wastewater results and clinical cases has been observed when calculated over a time window of four days or longer and in settings with high incidence of infection. At Duke University, twice a week clinical surveillance of all resident undergraduates was carried out in the spring 2021 semester. We conducted simultaneous wastewater surveillance with daily frequency on selected residence halls to assess wastewater as an early warning tool during times of low transmission with the hope of scaling down clinical test frequency. We evaluated the temporal relationship of the two time-dense data sets, wastewater and clinical, and sought a strategy to achieve the highest wastewater predictive values using the shortest time window to enable timely intervention. There were 11 days with clinical cases in the residence halls (80-120 occupants) under wastewater surveillance with 5 instances of a single clinical case and 3 instances of two clinical cases which also corresponded to a positive wastewater SARS-CoV-2 signal. While the majority (71%) of our wastewater samples were negative for SARS-CoV-2, 29% resulted in at least one positive PCR signal, some of which did not correlate with an identified clinical case. Using a criteria of two consecutive days of positive wastewater signals, we obtained a positive predictive value (PPV) of 75% and a negative predictive value of 87% using a short 2 day time window for agreement. A conventional concordance over a much longer 4 day time window resulted in PPV of only 60%. Our data indicated that daily wastewater collection and using a criteria of two consecutive days of positive wastewater signals was the most predictive approach to timely early warning of COVID-19 cases at the building level.
Collapse
Affiliation(s)
- Claire M Welling
- Center for Water, Sanitation, Hygiene and Infectious Disease (WASH-AID), Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States of America
| | - David R Singleton
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, United States of America
| | - Steven B Haase
- Departments of Biology and Medicine, Duke University, Durham, NC, United States of America
| | - Christian H Browning
- Office of Information Technology, Duke University, Durham, NC, United States of America
| | - Brian R Stoner
- Center for Water, Sanitation, Hygiene and Infectious Disease (WASH-AID), Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States of America
| | - Claudia K Gunsch
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, United States of America
| | - Sonia Grego
- Center for Water, Sanitation, Hygiene and Infectious Disease (WASH-AID), Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States of America.
| |
Collapse
|
126
|
Vincent-Hubert F, Wacrenier C, Desdouits M, Jousse S, Schaeffer J, Le Mehaute P, Nakache-Danglot F, Le Guyader FS. Development of passive samplers for the detection of SARS-CoV-2 in sewage and seawater: Application for the monitoring of sewage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155139. [PMID: 35405243 PMCID: PMC8993413 DOI: 10.1016/j.scitotenv.2022.155139] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 05/16/2023]
Abstract
Recent studies have shown that passive sampling is a promising tool for SARS-CoV-2 detection for wastewater-based epidemiology (WBE) application. We have previously developed passive sampling of viruses using polymer membranes in seawater. Even though SARS-CoV-2 was not detected yet in seawater, passive sampling could be optimized for future application in coastal areas close to wastewater treatment plant (WWTP). The aim of this study was to optimize passive sampling of SARS-CoV-2 in sewage and seawater by selecting a suitable membrane, to determine whether the quantities of virus increase over time, and then to determine if passive sampling and traditional sampling are correlated when conducted in a wastewater treatment plant. Nylon and Zetapor allowed the detection of heat inactivated SARS-CoV-2 and of the Porcine Epidemic Diarrhea Virus (PEDV), a coronavirus surrogate, in wastewater and seawater spiked with these 2 viruses, showing an increase in detection between 4 h and 24 h of immersion and significantly higher recoveries of both viruses with nylon in seawater (15%) compared to wastewater (4%). On wastewater samples, both membranes detected the virus, the recovery rate was of about 3% for freshly collected samples, and no significant difference was found between SARS-CoV-2 genome concentration on Zetapor and that in water. In sewage spiked seawater, similar concentrations of genome were found on both membranes, with a mean recovery rate of 16% and 11% respectively for nylon and Zetapor. A 3-weeks monitoring with passive sampler allowed the detection of viruses in the influent of a WWTP with a frequency of 100% and 76% for SARS-CoV-2 and norovirus GII respectively. Passive and traditional sampling gave the same evolution of the SARS-CoV-2 concentration over time. All these results confirmed the interest of passive sampling for virus detection and its potential application for monitoring in the wastewater system for targeted public health actions.
Collapse
Affiliation(s)
- Françoise Vincent-Hubert
- Ifremer, Laboratoire de Microbiologie, LSEM/SG2M, rue de l'île d'Yeu, BP 21105, 44311 NANTES cedex 03, France.
| | - Candice Wacrenier
- Ifremer, Laboratoire de Microbiologie, LSEM/SG2M, rue de l'île d'Yeu, BP 21105, 44311 NANTES cedex 03, France
| | - Marion Desdouits
- Ifremer, Laboratoire de Microbiologie, LSEM/SG2M, rue de l'île d'Yeu, BP 21105, 44311 NANTES cedex 03, France
| | - Sarah Jousse
- Ifremer, Laboratoire de Microbiologie, LSEM/SG2M, rue de l'île d'Yeu, BP 21105, 44311 NANTES cedex 03, France
| | - Julien Schaeffer
- Ifremer, Laboratoire de Microbiologie, LSEM/SG2M, rue de l'île d'Yeu, BP 21105, 44311 NANTES cedex 03, France
| | | | | | - Françoise S Le Guyader
- Ifremer, Laboratoire de Microbiologie, LSEM/SG2M, rue de l'île d'Yeu, BP 21105, 44311 NANTES cedex 03, France
| |
Collapse
|
127
|
Shelemba AA, Kazachkova EA, Kononova YV, Kazachinskaya EI, Rukavishnikov MY, Kuvshinova IN, Voevoda MI, Shestopalov AM, Chepurnov AA. Cell and Organism Technologies for Assessment of the SARS-CoV-2 Infectivity in Fluid Environment. Bull Exp Biol Med 2022; 173:519-522. [PMID: 36058968 PMCID: PMC9441323 DOI: 10.1007/s10517-022-05574-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 11/30/2022]
Abstract
Under conditions of COVID-19 pandemic, considerable amounts of SARS-CoV-2 contained in household, municipal, and medical wastewaters inevitably reach natural water bodies. Possible preservation of virus infectivity in liquid environment is of a paramount epidemiological importance. Experiments demonstrated that SARS-CoV-2 is resistant to multiple freezing/thawing cycles and retains its infectivity in tap and river water for up to 2 days at 20°C and 7 days at 4°C. In natural milk, its viability is preserved in a refrigerator for 6 days. The exposure of aquarium fish to the virus-containing water fails to cause any infection.
Collapse
Affiliation(s)
- A A Shelemba
- Federal Research Center of Fundamental and Translational Medicine, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E A Kazachkova
- Federal Research Center of Fundamental and Translational Medicine, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Yu V Kononova
- Federal Research Center of Fundamental and Translational Medicine, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E I Kazachinskaya
- Federal Research Center of Fundamental and Translational Medicine, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | | | | | - M I Voevoda
- Federal Research Center of Fundamental and Translational Medicine, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A M Shestopalov
- Federal Research Center of Fundamental and Translational Medicine, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A A Chepurnov
- Federal Research Center of Fundamental and Translational Medicine, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia.
| |
Collapse
|
128
|
Bayati M, Hsieh HY, Hsu SY, Li C, Rogers E, Belenchia A, Zemmer SA, Blanc T, LePage C, Klutts J, Reynolds M, Semkiw E, Johnson HY, Foley T, Wieberg CG, Wenzel J, Lyddon T, LePique M, Rushford C, Salcedo B, Young K, Graham M, Suarez R, Ford A, Lei Z, Sumner L, Mooney BP, Wei X, Greenlief CM, Johnson MC, Lin CH. Identification and quantification of bioactive compounds suppressing SARS-CoV-2 signals in wastewater-based epidemiology surveillance. WATER RESEARCH 2022; 221:118824. [PMID: 35830746 PMCID: PMC9253601 DOI: 10.1016/j.watres.2022.118824] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 05/21/2023]
Abstract
Recent SARS-CoV-2 wastewater-based epidemiology (WBE) surveillance have documented a positive correlation between the number of COVID-19 patients in a sewershed and the level of viral genetic material in the wastewater. Efforts have been made to use the wastewater SARS-CoV-2 viral load to predict the infected population within each sewershed using a multivariable regression approach. However, reported clear and sustained variability in SARS-CoV-2 viral load among treatment facilities receiving industrial wastewater have made clinical prediction challenging. Several classes of molecules released by regional industries and manufacturing facilities, particularly the food processing industry, can significantly suppress the SARS-CoV-2 signals in wastewater by breaking down the lipid-bilayer of the membranes. Therefore, a systematic ranking process in conjugation with metabolomic analysis was developed to identify the wastewater treatment facilities exhibiting SARS-CoV-2 suppression and identify and quantify the chemicals suppressing the SARS-COV-2 signals. By ranking the viral load per diagnosed case among the sewersheds, we successfully identified the wastewater treatment facilities in Missouri, USA that exhibit SARS-CoV-2 suppression (significantly lower than 5 × 1011 gene copies/reported case) and determined their suppression rates. Through both untargeted global chemical profiling and targeted analysis of wastewater samples, 40 compounds were identified as candidates of SARS-CoV-2 signal suppressors. Among these compounds, 14 had higher concentrations in wastewater treatment facilities that exhibited SARS-CoV-2 signal suppression compared to the unsuppressed control facilities. Stepwise regression analyses indicated that 4-nonylphenol, palmitelaidic acid, sodium oleate, and polyethylene glycol dioleate are positively correlated with SARS-CoV-2 signal suppression rates. Suppression activities were further confirmed by incubation studies, and the suppression kinetics for each bioactive compound were determined. According to the results of these experiments, bioactive molecules in wastewater can significantly reduce the stability of SARS-CoV-2 genetic marker signals. Based on the concentrations of these chemical suppressors, a correction factor could be developed to achieve more reliable and unbiased surveillance results for wastewater treatment facilities that receive wastewater from similar industries.
Collapse
Affiliation(s)
- Mohamed Bayati
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Hsin-Yeh Hsieh
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Shu-Yu Hsu
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA; Center for Agroforestry, University of Missouri, Columbia, MO 65211, USA
| | - Chenhui Li
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Elizabeth Rogers
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA; Center for Agroforestry, University of Missouri, Columbia, MO 65211, USA
| | - Anthony Belenchia
- Bureau of Environmental Epidemiology, Division of Community and Public Health, Missouri Department of Health and Senior Services, Jefferson City, MO 65109, USA
| | - Sally A Zemmer
- Water Protection Program, Missouri Department of Natural Resources, Jefferson City, MO 65101, USA
| | - Todd Blanc
- Water Protection Program, Missouri Department of Natural Resources, Jefferson City, MO 65101, USA
| | - Cindy LePage
- Water Protection Program, Missouri Department of Natural Resources, Jefferson City, MO 65101, USA
| | - Jessica Klutts
- Water Protection Program, Missouri Department of Natural Resources, Jefferson City, MO 65101, USA
| | - Melissa Reynolds
- Bureau of Environmental Epidemiology, Division of Community and Public Health, Missouri Department of Health and Senior Services, Jefferson City, MO 65109, USA
| | - Elizabeth Semkiw
- Bureau of Environmental Epidemiology, Division of Community and Public Health, Missouri Department of Health and Senior Services, Jefferson City, MO 65109, USA
| | - Hwei-Yiing Johnson
- Bureau of Environmental Epidemiology, Division of Community and Public Health, Missouri Department of Health and Senior Services, Jefferson City, MO 65109, USA
| | - Trevor Foley
- Missouri Department of Corrections, Jefferson City, MO 65109, USA
| | - Chris G Wieberg
- Water Protection Program, Missouri Department of Natural Resources, Jefferson City, MO 65101, USA
| | - Jeff Wenzel
- Bureau of Environmental Epidemiology, Division of Community and Public Health, Missouri Department of Health and Senior Services, Jefferson City, MO 65109, USA
| | - Terri Lyddon
- Department of Molecular Microbiology and Immunology, University of Missouri, School of Medicine and the Christopher S. Bond Life Sciences Center, Columbia, MO 65211, USA
| | - Mary LePique
- Department of Molecular Microbiology and Immunology, University of Missouri, School of Medicine and the Christopher S. Bond Life Sciences Center, Columbia, MO 65211, USA
| | - Clayton Rushford
- Department of Molecular Microbiology and Immunology, University of Missouri, School of Medicine and the Christopher S. Bond Life Sciences Center, Columbia, MO 65211, USA
| | - Braxton Salcedo
- Department of Molecular Microbiology and Immunology, University of Missouri, School of Medicine and the Christopher S. Bond Life Sciences Center, Columbia, MO 65211, USA
| | - Kara Young
- Department of Molecular Microbiology and Immunology, University of Missouri, School of Medicine and the Christopher S. Bond Life Sciences Center, Columbia, MO 65211, USA
| | - Madalyn Graham
- Department of Molecular Microbiology and Immunology, University of Missouri, School of Medicine and the Christopher S. Bond Life Sciences Center, Columbia, MO 65211, USA
| | - Reinier Suarez
- Department of Molecular Microbiology and Immunology, University of Missouri, School of Medicine and the Christopher S. Bond Life Sciences Center, Columbia, MO 65211, USA
| | - Anarose Ford
- Department of Molecular Microbiology and Immunology, University of Missouri, School of Medicine and the Christopher S. Bond Life Sciences Center, Columbia, MO 65211, USA
| | - Zhentian Lei
- Metabolomics Center, Department of Biochemistry, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Lloyd Sumner
- Metabolomics Center, Department of Biochemistry, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Brian P Mooney
- Charles W. Gehrke Proteomics Center, Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Xing Wei
- Charles W. Gehrke Proteomics Center, Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - C Michael Greenlief
- Charles W. Gehrke Proteomics Center, Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Marc C Johnson
- Department of Molecular Microbiology and Immunology, University of Missouri, School of Medicine and the Christopher S. Bond Life Sciences Center, Columbia, MO 65211, USA
| | - Chung-Ho Lin
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA; Center for Agroforestry, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
129
|
Silva PG, Branco PTBS, Soares RRG, Mesquita JR, Sousa SIV. SARS-CoV-2 air sampling: A systematic review on the methodologies for detection and infectivity. INDOOR AIR 2022; 32:e13083. [PMID: 36040285 PMCID: PMC9538005 DOI: 10.1111/ina.13083] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
This systematic review aims to present an overview of the current aerosol sampling methods (and equipment) being used to investigate the presence of SARS-CoV-2 in the air, along with the main parameters reported in the studies that are essential to analyze the advantages and disadvantages of each method and perspectives for future research regarding this mode of transmission. A systematic literature review was performed on PubMed/MEDLINE, Web of Science, and Scopus to assess the current air sampling methodologies being applied to SARS-CoV-2. Most of the studies took place in indoor environments and healthcare settings and included air and environmental sampling. The collection mechanisms used were impinger, cyclone, impactor, filters, water-based condensation, and passive sampling. Most of the reviewed studies used RT-PCR to test the presence of SARS-CoV-2 RNA in the collected samples. SARS-CoV-2 RNA was detected with all collection mechanisms. From the studies detecting the presence of SARS-CoV-2 RNA, fourteen assessed infectivity. Five studies detected viable viruses using impactor, water-based condensation, and cyclone collection mechanisms. There is a need for a standardized protocol for sampling SARS-CoV-2 in air, which should also account for other influencing parameters, including air exchange ratio in the room sampled, relative humidity, temperature, and lighting conditions.
Collapse
Affiliation(s)
- Priscilla G. Silva
- Laboratory for Integrative and Translational Research in Population Health (ITR)PortoPortugal
- School of Medicine and Biomedical Sciences (ICBAS)University of PortoPortoPortugal
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of EngineeringUniversity of PortoPortoPortugal
- ALiCE – Associate Laboratory in Chemical Engineering, Faculty of EngineeringUniversity of PortoPortoPortugal
- Epidemiology Research Unit (EPI Unit), Institute of Public HealthUniversity of PortoPortoPortugal
| | - Pedro T. B. S. Branco
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of EngineeringUniversity of PortoPortoPortugal
- ALiCE – Associate Laboratory in Chemical Engineering, Faculty of EngineeringUniversity of PortoPortoPortugal
| | - Ruben R. G. Soares
- Department of Biochemistry and Biophysics, Science for Life LaboratoryStockholm UniversitySolnaSweden
- Division of Nanobiotechnology, Department of Protein Science, Science for Life LaboratoryKTH Royal Institute of TechnologySolnaSweden
| | - João R. Mesquita
- Laboratory for Integrative and Translational Research in Population Health (ITR)PortoPortugal
- Epidemiology Research Unit (EPI Unit), Institute of Public HealthUniversity of PortoPortoPortugal
| | - Sofia I. V. Sousa
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of EngineeringUniversity of PortoPortoPortugal
- ALiCE – Associate Laboratory in Chemical Engineering, Faculty of EngineeringUniversity of PortoPortoPortugal
| |
Collapse
|
130
|
Amahmid O, El Guamri Y, Rakibi Y, Ouizat S, Yazidi M, Razoki B, Kaid Rassou K, Asmama S, Bouhoum K, Belghyti D. Occurrence of SARS-CoV-2 in excreta, sewage, and environment: epidemiological significance and potential risks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:1686-1706. [PMID: 33752527 DOI: 10.1080/09603123.2021.1901865] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/08/2021] [Indexed: 05/23/2023]
Abstract
The detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in patients' excreta raises the issue of its occurrence and fate in sewage. This review has focused on the presence of the SARS-CoV-2 in human excreta, wastewater, sewage sludge, and river waters. It explored the potential use of the wastewater-based epidemiology approach to report on the situation of current and eventual future SARS-CoV-2 outbreaks. The main concern of the occurrence of SARS-CoV-2 in the environment is the public health risks at sites of sewage products disposal and reuse, especially in low-income countries with inadequate sanitation, where direct discharge and reuse of raw sewage are common practices. The review also addressed the role sewage-irrigated agriculture can have in SARS-CoV-2 spread in the environmental compartments reached through sewage products application. An overview was made on the interest of sewage management, water safety, and hygienic practices for controlling the environmental dissemination of SARS-CoV-2.
Collapse
Affiliation(s)
- Omar Amahmid
- Department of Life and Earth Sciences, (Biology/geology Research Units), Regional Centre for Careers of Education and Training CRMEF Marrakech-Safi, Marrakesh, Morocco
- Department of Biology, Laboratory of Water, Biodiversity and Climatic Change, Faculty of Sciences Semlalia, Cadi Ayyad Univesity, Marrakesh, Morocco
- Department of Biology, Laboratory of Natural Resources and Sustainable Development, University Ibn Tofail, Kenitra, Morocco
| | - Youssef El Guamri
- Department of Life and Earth Sciences, (Biology/geology Research Units), Regional Centre for Careers of Education and Training CRMEF Marrakech-Safi, Marrakesh, Morocco
- Department of Biology, Laboratory of Natural Resources and Sustainable Development, University Ibn Tofail, Kenitra, Morocco
| | - Youness Rakibi
- Department of Life and Earth Sciences, (Biology/geology Research Units), Regional Centre for Careers of Education and Training CRMEF Marrakech-Safi, Marrakesh, Morocco
- Engineering Laboratory of Organometallic, Molecular Materials and Environment (LIMOME), Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Saadia Ouizat
- Chemistry and Didactics Unit, Regional Centre for Careers of Education and Training CRMEF Marrakech-Safi, Marrakesh, Morocco
| | - Mohamed Yazidi
- Department of Life and Earth Sciences, (Biology/geology Research Units), Regional Centre for Careers of Education and Training CRMEF Marrakech-Safi, Marrakesh, Morocco
| | - Bouchra Razoki
- Department of Life and Earth Sciences, (Biology/geology Research Units), Regional Centre for Careers of Education and Training CRMEF Marrakech-Safi, Marrakesh, Morocco
| | - Khadija Kaid Rassou
- Department of Life and Earth Sciences, (Biology/geology Research Units), Regional Centre for Careers of Education and Training CRMEF Marrakech-Safi, Marrakesh, Morocco
| | - Souad Asmama
- Laboratory of Biomedical Analysis, University Hospital Centre Mohammad VI, Marrakech, Morocco
| | - Khadija Bouhoum
- Department of Biology, Laboratory of Water, Biodiversity and Climatic Change, Faculty of Sciences Semlalia, Cadi Ayyad Univesity, Marrakesh, Morocco
| | - Driss Belghyti
- Department of Biology, Laboratory of Natural Resources and Sustainable Development, University Ibn Tofail, Kenitra, Morocco
| |
Collapse
|
131
|
Phan T, Brozak S, Pell B, Gitter A, Mena KD, Kuang Y, Wu F. A simple SEIR-V model to estimate COVID-19 prevalence and predict SARS-CoV-2 transmission using wastewater-based surveillance data. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.07.17.22277721. [PMID: 35898336 PMCID: PMC9327624 DOI: 10.1101/2022.07.17.22277721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Wastewater-based surveillance (WBS) has been widely used as a public health tool to monitor SARS-CoV-2 transmission. However, epidemiological inference from WBS data remains understudied and limits its application. In this study, we have established a quantitative framework to estimate COVID-19 prevalence and predict SARS-CoV-2 transmission through integrating WBS data into an SEIR-V model. We conceptually divide the individual-level viral shedding course into exposed, infectious, and recovery phases as an analogy to the compartments in population-level SEIR model. We demonstrated that the temperature effect on viral losses in the sewer can be straightforwardly incorporated in our framework. Using WBS data from the second wave of the pandemic (Oct 02, 2020 â€" Jan 25, 2021) in the Great Boston area, we showed that the SEIR-V model successfully recapitulates the temporal dynamics of viral load in wastewater and predicts the true number of cases peaked earlier and higher than the number of reported cases by 16 days and 8.6 folds ( R = 0.93), respectively. This work showcases a simple, yet effective method to bridge WBS and quantitative epidemiological modeling to estimate the prevalence and transmission of SARS-CoV-2 in the sewershed, which could facilitate the application of wastewater surveillance of infectious diseases for epidemiological inference and inform public health actions.
Collapse
Affiliation(s)
- Tin Phan
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, New Mexico, USA
| | - Samantha Brozak
- School of Mathematical and Statistical Sciences, Arizona State University, Arizona, USA
| | - Bruce Pell
- Department of Mathematics and Computer Science, Lawrence Technological University, MI, USA
| | - Anna Gitter
- The University of Texas Health Science Center at Houston, School of Public Health, Houston, Texas, USA 77030
| | - Kristina D. Mena
- The University of Texas Health Science Center at Houston, School of Public Health, Houston, Texas, USA 77030
| | - Yang Kuang
- School of Mathematical and Statistical Sciences, Arizona State University, Arizona, USA
| | - Fuqing Wu
- The University of Texas Health Science Center at Houston, School of Public Health, Houston, Texas, USA 77030
| |
Collapse
|
132
|
Guo Y, Li J, O'Brien J, Sivakumar M, Jiang G. Back-estimation of norovirus infections through wastewater-based epidemiology: A systematic review and parameter sensitivity. WATER RESEARCH 2022; 219:118610. [PMID: 35598472 DOI: 10.1016/j.watres.2022.118610] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/20/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The amount of norovirus RNA (Ribonucleic Acid) in raw wastewater, collected from a wastewater treatment plant (WWTP), can provide an indication of disease prevalence within the sampled catchment. However, an accurate back-estimation might be impeded by the uncertainties from in-sewer/in-sample degradation of viral RNA, variable shedding magnitude, and difficulties in measurement within raw wastewater. The current study reviewed the published literature regarding the factors of norovirus shedding, viral RNA decay in wastewater, and the occurrence of norovirus RNA in raw wastewater based on molecular detection. Sensitivity analysis for WBE back-estimation was conducted using the reported data of the factors mentioned above considering different viral loads in wastewater samples. It was found that the back-estimation is more sensitive to analytical detection uncertainty than shedding variability for norovirus. Although seasonal temperature change can lead to variation of decay rates and may influence the sensitivity of this pathogen-specific parameter, decay rates of norovirus RNA contribute negligibly to the variance in estimating disease prevalence, based on the available data from decay experiments in bulk wastewater under different temperatures. However, the effects of in-sewer transportation on viral RNA decay and retardation by sewer biofilms on pipe surfaces are largely unknown. Given the highest uncertainty from analytical measurement by molecular methods and complexity of in-sewer processes that norovirus experienced during the transportation to WWTP, future investigations are encouraged to improve the accuracy of viral RNA detection in wastewater and delineate viral retardation/interactions with wastewater biofilms in real sewers.
Collapse
Affiliation(s)
- Ying Guo
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia
| | - Jiaying Li
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia; Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Jake O'Brien
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Muttucumaru Sivakumar
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia.
| |
Collapse
|
133
|
Padilla-Reyes DA, Álvarez MM, Mora A, Cervantes-Avilés PA, Kumar M, Loge FJ, Mahlknecht J. Acquired insights from the long-term surveillance of SARS-CoV-2 RNA for COVID-19 monitoring: The case of Monterrey Metropolitan Area (Mexico). ENVIRONMENTAL RESEARCH 2022; 210:112967. [PMID: 35189100 PMCID: PMC8853965 DOI: 10.1016/j.envres.2022.112967] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 05/08/2023]
Abstract
Wastewater-based epidemiology offers a time- and cost-effective way to monitor SARS-CoV-2 spread in communities and therefore represents a complement to clinical testing. WBE applicability has been demonstrated in a number of cases over short-term periods as a method for tracking the prevalence of SARS-CoV-2 and an early-warning tool for predicting outbreaks in the population. This study reports SARS-CoV-2 viral loads from wastewater treatment plants (WWTPs) and hospitals over a 6-month period (June to December 2020). Results show that the overall range of viral load in positive tested samples was between 1.2 × 103 and 3.5 × 106 gene copies/l, unveiling that secondary-treated wastewaters mirrored the viral load of influents. The interpretation suggests that the viral titers found in three out of four WWTPs were associated to clinical COVID-19 surveillance indicators preceding 2-7 days the rise of reported clinical cases. The median wastewater detection rate of SARS-CoV-2 was one out of 14,300 reported new cases. Preliminary model estimates of prevalence ranged from 0.02 to 4.6% for the studied period. This comprehensive statistical and epidemiological analysis demonstrates that the applied wastewater-based approach to COVID-19 surveillance is in general consistent and feasible, although there is room for improvements.
Collapse
Affiliation(s)
- Diego A Padilla-Reyes
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501 Sur, Monterrey, 64849, Mexico
| | - Mario Moises Álvarez
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501 Sur, Monterrey, 64849, Mexico
| | - Abrahan Mora
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla, 72453, Mexico
| | - Pabel A Cervantes-Avilés
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla, 72453, Mexico
| | - Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, 248007, India
| | - Frank J Loge
- Department of Civil and Environmental Engineering, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501 Sur, Monterrey, 64849, Mexico.
| |
Collapse
|
134
|
Li J, Ahmed W, Metcalfe S, Smith WJM, Tscharke B, Lynch P, Sherman P, Vo PHN, Kaserzon SL, Simpson SL, McCarthy DT, Thomas KV, Mueller JF, Thai P. Monitoring of SARS-CoV-2 in sewersheds with low COVID-19 cases using a passive sampling technique. WATER RESEARCH 2022; 218:118481. [PMID: 35477063 PMCID: PMC9020515 DOI: 10.1016/j.watres.2022.118481] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 05/24/2023]
Abstract
Monitoring SARS-CoV-2 RNA in sewer systems, upstream of a wastewater treatment plant, is an effective approach for understanding potential COVID-19 transmission in communities with higher spatial resolutions. Passive sampling devices provide a practical solution for frequent sampling within sewer networks where the use of autosamplers is not feasible. Currently, the design of upstream sampling is impeded by limited understanding of the fate of SARS-CoV-2 RNA in sewers and the sensitivity of passive samplers for the number of infected individuals in a catchment. In this study, passive samplers containing electronegative membranes were applied for at least 24-h continuous sampling in sewer systems. When monitoring SARS-CoV-2 along a trunk sewer pipe, we found RNA signals decreased proportionally to increasing dilutions, with non-detects occurring at the end of pipe. The passive sampling membranes were able to detect SARS-CoV-2 shed by >2 COVID-19 infection cases in 10,000 people. Moreover, upstream monitoring in multiple sewersheds using passive samplers identified the emergence of SARS-CoV-2 in wastewater one week ahead of clinical reporting and reflected the spatiotemporal spread of a COVID-19 cluster within a city. This study provides important information to guide the development of wastewater surveillance strategies at catchment and subcatchment levels using different sampling techniques.
Collapse
Affiliation(s)
- Jiaying Li
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4103, Australia.
| | - Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, QLD 4102, Australia
| | - Suzanne Metcalfe
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, QLD 4102, Australia
| | - Wendy J M Smith
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, QLD 4102, Australia
| | - Ben Tscharke
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4103, Australia
| | - Peter Lynch
- Urban Utilities, 15 Green Square Close, Fortitude Valley, QLD 4006, Australia
| | - Paul Sherman
- Urban Utilities, 15 Green Square Close, Fortitude Valley, QLD 4006, Australia
| | - Phong H N Vo
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4103, Australia
| | - Sarit L Kaserzon
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4103, Australia
| | | | - David T McCarthy
- Department of Civil Engineering, Environmental and Public Health Microbiology Lab (EPHM Lab), Monash University, Victoria, Clayton 3800, Australia
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4103, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4103, Australia
| | - Phong Thai
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4103, Australia
| |
Collapse
|
135
|
Jiang G, Wu J, Weidhaas J, Li X, Chen Y, Mueller J, Li J, Kumar M, Zhou X, Arora S, Haramoto E, Sherchan S, Orive G, Lertxundi U, Honda R, Kitajima M, Jackson G. Artificial neural network-based estimation of COVID-19 case numbers and effective reproduction rate using wastewater-based epidemiology. WATER RESEARCH 2022; 218:118451. [PMID: 35447417 PMCID: PMC9006161 DOI: 10.1016/j.watres.2022.118451] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/02/2022] [Accepted: 04/10/2022] [Indexed: 05/06/2023]
Abstract
As a cost-effective and objective population-wide surveillance tool, wastewater-based epidemiology (WBE) has been widely implemented worldwide to monitor the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA concentration in wastewater. However, viral concentrations or loads in wastewater often correlate poorly with clinical case numbers. To date, there is no reliable method to back-estimate the coronavirus disease 2019 (COVID-19) case numbers from SARS-CoV-2 concentrations in wastewater. This greatly limits WBE in achieving its full potential in monitoring the unfolding pandemic. The exponentially growing SARS-CoV-2 WBE dataset, on the other hand, offers an opportunity to develop data-driven models for the estimation of COVID-19 case numbers (both incidence and prevalence) and transmission dynamics (effective reproduction rate). This study developed artificial neural network (ANN) models by innovatively expanding a conventional WBE dataset to include catchment, weather, clinical testing coverage and vaccination rate. The ANN models were trained and evaluated with a comprehensive state-wide wastewater monitoring dataset from Utah, USA during May 2020 to December 2021. In diverse sewer catchments, ANN models were found to accurately estimate the COVID-19 prevalence and incidence rates, with excellent precision for prevalence rates. Also, an ANN model was developed to estimate the effective reproduction number from both wastewater data and other pertinent factors affecting viral transmission and pandemic dynamics. The established ANN model was successfully validated for its transferability to other states or countries using the WBE dataset from Wisconsin, USA.
Collapse
Affiliation(s)
- Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia.
| | - Jiangping Wu
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Jennifer Weidhaas
- University of Utah, Civil and Environmental Engineering, 110 Central Campus Drive, Suite 2000, Salt Lake City, UT, USA
| | - Xuan Li
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Yan Chen
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Jochen Mueller
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Australia
| | - Jiaying Li
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Australia
| | - Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Xu Zhou
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Sudipti Arora
- Dr. B. Lal Institute of Biotechnology, Jaipur, India
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, Kofu, Japan
| | - Samendra Sherchan
- Department of Environmental Health Sciences, Tulane University, New Orleans, LA, USA
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Unax Lertxundi
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| | - Masaaki Kitajima
- Division of Environmental Engineering, Hokkaido University, Hokkaido 060-8628, Japan
| | - Greg Jackson
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 4102, Brisbane, Australia
| |
Collapse
|
136
|
Bukha KK, Sharif EA, Eldaghayes IM. The One Health concept for the threat of severe acute respiratory syndrome coronavirus-2 to marine ecosystems. INTERNATIONAL JOURNAL OF ONE HEALTH 2022. [DOI: 10.14202/ijoh.2022.48-57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global health threat. This virus is the causative agent for coronavirus disease 2019 (COVID-19). Pandemic prevention is best addressed through an integrated One Health (OH) approach. Understanding zoonotic pathogen fatality and spillover from wildlife to humans are effective for controlling and preventing zoonotic outbreaks. The OH concept depends on the interface of humans, animals, and their environment. Collaboration among veterinary medicine, public health workers and clinicians, and veterinary public health is necessary for rapid response to emerging zoonotic pathogens. SARS-CoV-2 affects aquatic environments, primarily through untreated sewage. Patients with COVID-19 discharge the virus in urine and feces into residential wastewater. Thus, marine organisms may be infected with SARS-CoV-2 by the subsequent discharge of partially treated or untreated wastewater to marine waters. Viral loads can be monitored in sewage and surface waters. Furthermore, shellfish are vulnerable to SARS-CoV-2 infection. Filter-feeding organisms might be monitored to protect consumers. Finally, the stability of SARS-CoV-2 to various environmental factors aids in viral studies. This article highlights the presence and survival of SARS-CoV-2 in the marine environment and its potential to enter marine ecosystems through wastewater. Furthermore, the OH approach is discussed for improving readiness for successive outbreaks. This review analyzes information from public health and epidemiological monitoring tools to control COVID-19 transmission.
Collapse
Affiliation(s)
- Khawla K. Bukha
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Ehab A. Sharif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Ibrahim M. Eldaghayes
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| |
Collapse
|
137
|
Mostafa-Hedeab G, Allayeh AK, Elhady HA, Eledrdery AY, Mraheil MA, Mostafa A. Viral Eco-Genomic Tools: Development and Implementation for Aquatic Biomonitoring. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7707. [PMID: 35805367 PMCID: PMC9265447 DOI: 10.3390/ijerph19137707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 12/17/2022]
Abstract
Enteric viruses (EVs) occurrence within aquatic environments varies and leads to significant risk on public health of humans, animals, and diversity of aquatic taxa. Early and efficacious recognition of cultivable and fastidious EVs in aquatic systems are important to ensure the sanitary level of aquatic water and implement required treatment strategies. Herein, we provided a comprehensive overview of the conventional and up-to-date eco-genomic tools for aquatic biomonitoring of EVs, aiming to develop better water pollution monitoring tools. In combination with bioinformatics techniques, genetic tools including cloning sequencing analysis, DNA microarray, next-generation sequencing (NGS), and metagenomic sequencing technologies are implemented to make informed decisions about the global burden of waterborne EVs-associated diseases. The data presented in this review are helpful to recommend that: (1) Each viral pollution detection method has its own merits and demerits; therefore, it would be advantageous for viral pollution evaluation to be integrated as a complementary platform. (2) The total viral genome pool extracted from aquatic environmental samples is a real reflection of pollution status of the aquatic eco-systems; therefore, it is recommended to conduct regular sampling through the year to establish an updated monitoring system for EVs, and quantify viral peak concentrations, viral typing, and genotyping. (3) Despite that conventional detection methods are cheaper, it is highly recommended to implement molecular-based technologies to complement aquatic ecosystems biomonitoring due to numerous advantages including high-throughput capability. (4) Continuous implementation of the eco-genetic detection tools for monitoring the EVs in aquatic ecosystems is recommended.
Collapse
Affiliation(s)
- Gomaa Mostafa-Hedeab
- Pharmacology Department and Health Research Unit, Medical College, Jouf University, Skaka 11564, Saudi Arabia
| | - Abdou Kamal Allayeh
- Water Pollution Department, Virology Laboratory, National Research Centre, Dokki, Giza 12622, Egypt;
| | | | - Abozer Y. Eledrdery
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 11564, Saudi Arabia;
| | - Mobarak Abu Mraheil
- German Center for Infection Research (DZIF), Institute of Medical Microbiology, Justus-Liebig University, 35392 Giessen, Germany
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| |
Collapse
|
138
|
Yanaç K, Adegoke A, Wang L, Uyaguari M, Yuan Q. Detection of SARS-CoV-2 RNA throughout wastewater treatment plants and a modeling approach to understand COVID-19 infection dynamics in Winnipeg, Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153906. [PMID: 35218826 PMCID: PMC8864809 DOI: 10.1016/j.scitotenv.2022.153906] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 05/07/2023]
Abstract
Although numerous studies have detected SARS-CoV-2 RNA in wastewater and attempted to find correlations between the concentration of SARS-CoV-2 RNA and the number of cases, no consensus has been reached on sample collection and processing, and data analysis. Moreover, the fate of SARS-CoV-2 in wastewater treatment plants is another issue, specifically regarding the discharge of the virus into environmental settings and the water cycle. The current study monitored SARS-CoV-2 RNA in influent and effluent wastewater samples with three different concentration methods and sludge samples over six months (July to December 2020) to compare different virus concentration methods, assess the fate of SARS-CoV-2 RNA in wastewater treatment plants, and describe the potential relationship between SARS-CoV-2 RNA concentrations in influent and infection dynamics. Skimmed milk flocculation (SMF) resulted in 15.27 ± 3.32% recovery of an internal positive control, Armored RNA, and a high positivity rate of SARS-CoV-2 RNA in stored wastewater samples compared to ultrafiltration methods employing a prefiltration step to eliminate solids in fresh wastewater samples. Our results suggested that SARS-CoV-2 RNA may predominate in solids, and therefore, concentration methods focusing on both supernatant and solid fractions may result in better recovery. SARS-CoV-2 RNA was detected in influent and primary sludge samples but not in secondary and final effluent samples, indicating a significant reduction during primary and secondary treatments. SARS-CoV-2 RNA was first detected in influent on September 30th, 2020. A decay-rate formula was applied to estimate initial concentrations of late-processed samples with SMF. A model based on shedding rate and new cases was applied to estimate SARS-CoV-2 RNA concentrations and the number of active shedders. Inferred sensitivity of observed and modeled concentrations to the fluctuations in new cases and test-positivity rates indicated a potential contribution of newly infected individuals to SARS-CoV-2 RNA loads in wastewater.
Collapse
Affiliation(s)
- Kadir Yanaç
- Department of Civil Engineering, University of Manitoba, Winnipeg, Canada
| | - Adeola Adegoke
- Department of Statistics, University of Manitoba, Winnipeg, Canada
| | - Liqun Wang
- Department of Statistics, University of Manitoba, Winnipeg, Canada
| | - Miguel Uyaguari
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Qiuyan Yuan
- Department of Civil Engineering, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
139
|
Li X, Kulandaivelu J, Guo Y, Zhang S, Shi J, O'Brien J, Arora S, Kumar M, Sherchan SP, Honda R, Jackson G, Luby SP, Jiang G. SARS-CoV-2 shedding sources in wastewater and implications for wastewater-based epidemiology. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128667. [PMID: 35339834 PMCID: PMC8908579 DOI: 10.1016/j.jhazmat.2022.128667] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 05/21/2023]
Abstract
Wastewater-based epidemiology (WBE) approach for COVID-19 surveillance is largely based on the assumption of SARS-CoV-2 RNA shedding into sewers by infected individuals. Recent studies found that SARS-CoV-2 RNA concentration in wastewater (CRNA) could not be accounted by the fecal shedding alone. This study aimed to determine potential major shedding sources based on literature data of CRNA, along with the COVID-19 prevalence in the catchment area through a systematic literature review. Theoretical CRNA under a certain prevalence was estimated using Monte Carlo simulations, with eight scenarios accommodating feces alone, and both feces and sputum as shedding sources. With feces alone, none of the WBE data was in the confidence interval of theoretical CRNA estimated with the mean feces shedding magnitude and probability, and 63% of CRNA in WBE reports were higher than the maximum theoretical concentration. With both sputum and feces, 91% of the WBE data were below the simulated maximum CRNA in wastewater. The inclusion of sputum as a major shedding source led to more comparable theoretical CRNA to the literature WBE data. Sputum discharging behavior of patients also resulted in great fluctuations of CRNA under a certain prevalence. Thus, sputum is a potential critical shedding source for COVID-19 WBE surveillance.
Collapse
Affiliation(s)
- Xuan Li
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | | | - Ying Guo
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Shuxin Zhang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Jiahua Shi
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia
| | - Jake O'Brien
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woollongabba, Queensland 4072, Australia
| | - Sudipti Arora
- Dr. B. Lal Institute of Biotechnology, 6E, Malviya Industrial Area, Malviya Nagar, Jaipur 302017, India
| | - Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Samendra P Sherchan
- Department of Environmental health sciences, Tulane University, New Orleans, LA 70112, USA; Bioenvironmental Science Program, Morgan Staate University, Baltimore, MD 21251, USA
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| | - Greg Jackson
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woollongabba, Queensland 4072, Australia
| | - Stephen P Luby
- Stanford Center for Innovation in Global Health, and Stanford Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia.
| |
Collapse
|
140
|
Layton BA, Kaya D, Kelly C, Williamson KJ, Alegre D, Bachhuber SM, Banwarth PG, Bethel JW, Carter K, Dalziel BD, Dasenko M, Geniza M, George A, Girard AM, Haggerty R, Higley KA, Hynes DM, Lubchenco J, McLaughlin KR, Nieto FJ, Noakes A, Peterson M, Piemonti AD, Sanders JL, Tyler BM, Radniecki TS. Evaluation of a Wastewater-Based Epidemiological Approach to Estimate the Prevalence of SARS-CoV-2 Infections and the Detection of Viral Variants in Disparate Oregon Communities at City and Neighborhood Scales. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:67010. [PMID: 35767012 PMCID: PMC9241984 DOI: 10.1289/ehp10289] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 05/09/2023]
Abstract
BACKGROUND Positive correlations have been reported between wastewater SARS-CoV-2 concentrations and a community's burden of infection, disease or both. However, previous studies mostly compared wastewater to clinical case counts or nonrepresentative convenience samples, limiting their quantitative potential. OBJECTIVES This study examined whether wastewater SARS-CoV-2 concentrations could provide better estimations for SARS-CoV-2 community prevalence than reported cases of COVID-19. In addition, this study tested whether wastewater-based epidemiology methods could identify neighborhood-level COVID-19 hotspots and SARS-CoV-2 variants. METHODS Community SARS-CoV-2 prevalence was estimated from eight randomized door-to-door nasal swab sampling events in six Oregon communities of disparate size, location, and demography over a 10-month period. Simultaneously, wastewater SARS-CoV-2 concentrations were quantified at each community's wastewater treatment plant and from 22 Newport, Oregon, neighborhoods. SARS-CoV-2 RNA was sequenced from all positive wastewater and nasal swab samples. Clinically reported case counts were obtained from the Oregon Health Authority. RESULTS Estimated community SARS-CoV-2 prevalence ranged from 8 to 1,687/10,000 persons. Community wastewater SARS-CoV-2 concentrations ranged from 2.9 to 5.1 log 10 gene copies per liter. Wastewater SARS-CoV-2 concentrations were more highly correlated (Pearson's r = 0.96 ; R 2 = 0.91 ) with community prevalence than were clinically reported cases of COVID-19 (Pearson's r = 0.85 ; R 2 = 0.73 ). Monte Carlo simulations indicated that wastewater SARS-CoV-2 concentrations were significantly better than clinically reported cases at estimating prevalence (p < 0.05 ). In addition, wastewater analyses determined neighborhood-level COVID-19 hot spots and identified SARS-CoV-2 variants (B.1 and B.1.399) at the neighborhood and city scales. DISCUSSION The greater reliability of wastewater SARS-CoV-2 concentrations over clinically reported case counts was likely due to systematic biases that affect reported case counts, including variations in access to testing and underreporting of asymptomatic cases. With these advantages, combined with scalability and low costs, wastewater-based epidemiology can be a key component in public health surveillance of COVID-19 and other communicable infections. https://doi.org/10.1289/EHP10289.
Collapse
Affiliation(s)
- Blythe A. Layton
- School of Chemical, Biological, and Environmental Engineering, Oregon State University (OSU), Corvallis, Oregon, USA
- Department of Research and Innovation, Clean Water Services, Hillsboro, Oregon, USA
| | - Devrim Kaya
- School of Chemical, Biological, and Environmental Engineering, Oregon State University (OSU), Corvallis, Oregon, USA
| | - Christine Kelly
- School of Chemical, Biological, and Environmental Engineering, Oregon State University (OSU), Corvallis, Oregon, USA
| | | | - Dana Alegre
- Center for Quantitative Life Sciences, OSU, Corvallis, Oregon, USA
| | | | | | - Jeffrey W. Bethel
- School of Biological and Population Health Sciences, OSU, Corvallis, Oregon, USA
| | - Katherine Carter
- Center for Quantitative Life Sciences, OSU, Corvallis, Oregon, USA
| | - Benjamin D. Dalziel
- Department of Integrative Biology, OSU, Corvallis, Oregon, USA
- Department of Mathematics, OSU, Corvallis, Oregon, USA
| | - Mark Dasenko
- Center for Quantitative Life Sciences, OSU, Corvallis, Oregon, USA
| | - Matthew Geniza
- Center for Quantitative Life Sciences, OSU, Corvallis, Oregon, USA
| | - Andrea George
- School of Chemical, Biological, and Environmental Engineering, Oregon State University (OSU), Corvallis, Oregon, USA
- Department of Research and Innovation, Clean Water Services, Hillsboro, Oregon, USA
| | | | | | - Kathryn A. Higley
- School of Nuclear Science and Engineering, OSU, Corvallis, Oregon, USA
| | - Denise M. Hynes
- Center for Quantitative Life Sciences, OSU, Corvallis, Oregon, USA
- U.S. Department of Veterans Affairs, Portland, Oregon, USA
- College of Public Health and Human Sciences, OSU, Corvallis, Oregon, USA
| | - Jane Lubchenco
- Department of Integrative Biology, OSU, Corvallis, Oregon, USA
| | | | - F. Javier Nieto
- College of Public Health and Human Sciences, OSU, Corvallis, Oregon, USA
| | | | - Matthew Peterson
- Center for Quantitative Life Sciences, OSU, Corvallis, Oregon, USA
| | - Adriana D. Piemonti
- Department of Research and Innovation, Clean Water Services, Hillsboro, Oregon, USA
| | | | - Brett M. Tyler
- Center for Quantitative Life Sciences, OSU, Corvallis, Oregon, USA
- Departmehnt of Botany and Plant Pathology, OSU, Corvallis, Oregon, USA
| | - Tyler S. Radniecki
- School of Chemical, Biological, and Environmental Engineering, Oregon State University (OSU), Corvallis, Oregon, USA
| |
Collapse
|
141
|
Augusto MR, Claro ICM, Siqueira AK, Sousa GS, Caldereiro CR, Duran AFA, de Miranda TB, Bomediano Camillo LDM, Cabral AD, de Freitas Bueno R. Sampling strategies for wastewater surveillance: Evaluating the variability of SARS-COV-2 RNA concentration in composite and grab samples. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2022; 10:107478. [PMID: 35251931 PMCID: PMC8882035 DOI: 10.1016/j.jece.2022.107478] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/28/2022] [Accepted: 02/25/2022] [Indexed: 05/06/2023]
Abstract
The shedding of SARS-CoV-2 RNA titers by infected individuals, even asymptomatic and oligosymptomatic ones, allows the use of wastewater monitoring to track the COVID-19 spread in a community. This approach is interesting especially for emerging countries with limited clinical testing capabilities. However, there are still important methodological aspects that need validation so that wastewater monitoring data become more representative and useful for public health. This study evaluated the between-day and within-day variability of SARS-CoV-2 RNA concentrations in 24-hour composite and grab samples from three different sampling points, including two wastewater treatment plants (WTTP) and a sewer manhole. In the between-day evaluation (17 weeks of monitoring), a good agreement between the SARS-CoV-2 RNA concentration of each sampling method was observed. There were no significant differences between the mean concentrations of the grab and composite samples (p-value > 0.05), considering N1 and N2 gene assays. The strong relationship between composite and grab samples was proven by correlation coefficients: Pearson's r of 0.83 and Spearman's rho of 0.78 (p-value < 0.05). In within-day evaluation, 24-hour cycles were analyzed and low variability in hourly viral concentrations was observed for three sampling points. The coefficient of variation (CV) values ranged from 3.0% to 11.5%. Overall, 24-hour profiles showed that viral RNA concentrations had less variability and greater agreement with the mean values between 8 a.m. and 10 a.m, the recommended time for grab sampling. Therefore, this study provides important information on wastewater sampling techniques for COVID-19 surveillance. Wastewater monitoring information will only be useful to public health and decision-makers if we ensure data quality through best practices.
Collapse
Affiliation(s)
- Matheus Ribeiro Augusto
- Federal University of ABC (UFABC), Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo 09210-580, Brazil
| | - Ieda Carolina Mantovani Claro
- Federal University of ABC (UFABC), Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo 09210-580, Brazil
| | - Aline Kaori Siqueira
- Federal University of ABC (UFABC), Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo 09210-580, Brazil
| | - Guilherme Santos Sousa
- Federal University of ABC (UFABC), Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo 09210-580, Brazil
| | - Cláudio Roberto Caldereiro
- Federal University of ABC (UFABC), Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo 09210-580, Brazil
| | - Adriana Feliciano Alves Duran
- Federal University of ABC (UFABC), Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo 09210-580, Brazil
| | - Taís Browne de Miranda
- Federal University of ABC (UFABC), Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo 09210-580, Brazil
| | - Lívia de Moraes Bomediano Camillo
- Federal University of ABC (UFABC), Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo 09210-580, Brazil
| | - Aline Diniz Cabral
- Federal University of ABC (UFABC), Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo 09210-580, Brazil
- Federal University of Uberlândia (UFU), Faculty of Veterinary Medicine, Uberlândia, Minas Gerais 38402-018, Brazil
| | - Rodrigo de Freitas Bueno
- Federal University of ABC (UFABC), Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo 09210-580, Brazil
| |
Collapse
|
142
|
Alamin M, Tsuji S, Hata A, Hara-Yamamura H, Honda R. Selection of surrogate viruses for process control in detection of SARS-CoV-2 in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153737. [PMID: 35149069 PMCID: PMC8824713 DOI: 10.1016/j.scitotenv.2022.153737] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 05/24/2023]
Abstract
Since SARS-CoV-2 RNA in wastewater is often present at low concentration or under detection limit, ensuring the reliability of detection processes using appropriate process controls is essential. The objective of this study was to evaluate applicability and limitations of candidate surrogate viruses as process controls under combinations of different virus concentration and RNA extraction methods. Detection efficiency of SARS-CoV-2 spiked in wastewater was compared with those of candidate surrogate viruses of bacteriophage ϕ6, pepper mild mottle virus (PMMoV), F-specific coliphage (F-phage), and murine norovirus (MNV). After inactivated SARS-CoV-2 and ϕ6 were spiked in two different wastewaters, the viruses in solid and liquid fractions of wastewater were concentrated by centrifuge and polyethylene glycol (PEG) precipitation, respectively. Viral RNA was extracted by using QIAamp Viral RNA Mini Kit and 3 other commercially available extraction kits, then quantified by reverse transcription-quantitative PCR using CDCN1 assay. Regardless of extraction kits, SARS-CoV-2 was consistently detected with good efficiency from both liquid (11-200%) and solid fractions (7.1-93%). Among the candidate process controls, PMMoV was widely detected at good efficiencies from both liquid and solid fractions regardless of selection of RNA extraction kits. F-phage and MNV also showed good detection efficiencies in most combinations of wastewater fractions and RNA extraction kits. An enveloped virus ɸ6 was found often undetected or to have very low detection efficiency (0.1-4.2%) even when SARS-CoV-2 spiked in wastewater was detected with good efficiency. Consequently, PMMoV is widely applicable as process control for detection of SARS-CoV-2 either in liquid fractions concentrated by PEG precipitation, or in solid fractions concentrated by centrifuge.
Collapse
Affiliation(s)
- Md Alamin
- Graduate School of Natural Science and Technology, Kanazawa University, Japan
| | - Shohei Tsuji
- School of Environmental Design, Kanazawa University, Japan
| | - Akihiko Hata
- Faculty of Engineering, Toyama Prefectural University, Japan
| | | | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Japan.
| |
Collapse
|
143
|
Nourbakhsh S, Fazil A, Li M, Mangat CS, Peterson SW, Daigle J, Langner S, Shurgold J, D'Aoust P, Delatolla R, Mercier E, Pang X, Lee BE, Stuart R, Wijayasri S, Champredon D. A wastewater-based epidemic model for SARS-CoV-2 with application to three Canadian cities. Epidemics 2022; 39:100560. [PMID: 35462206 PMCID: PMC8993419 DOI: 10.1016/j.epidem.2022.100560] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 03/07/2022] [Accepted: 04/03/2022] [Indexed: 02/03/2023] Open
Abstract
The COVID-19 pandemic has stimulated wastewater-based surveillance, allowing public health to track the epidemic by monitoring the concentration of the genetic fingerprints of SARS-CoV-2 shed in wastewater by infected individuals. Wastewater-based surveillance for COVID-19 is still in its infancy. In particular, the quantitative link between clinical cases observed through traditional surveillance and the signals from viral concentrations in wastewater is still developing and hampers interpretation of the data and actionable public-health decisions. We present a modelling framework that includes both SARS-CoV-2 transmission at the population level and the fate of SARS-CoV-2 RNA particles in the sewage system after faecal shedding by infected persons in the population. Using our mechanistic representation of the combined clinical/wastewater system, we perform exploratory simulations to quantify the effect of surveillance effectiveness, public-health interventions and vaccination on the discordance between clinical and wastewater signals. We also apply our model to surveillance data from three Canadian cities to provide wastewater-informed estimates for the actual prevalence, the effective reproduction number and incidence forecasts. We find that wastewater-based surveillance, paired with this model, can complement clinical surveillance by supporting the estimation of key epidemiological metrics and hence better triangulate the state of an epidemic using this alternative data source.
Collapse
Affiliation(s)
- Shokoofeh Nourbakhsh
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - Aamir Fazil
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - Michael Li
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - Chand S Mangat
- One Health Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Shelley W Peterson
- One Health Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Jade Daigle
- One Health Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Stacie Langner
- One Health Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Jayson Shurgold
- Antimicrobial Resistance Division, Infectious Diseases Prevention and Control Branch, Public Health Agency of Canada, Ottawa, ON, Canada
| | - Patrick D'Aoust
- University of Ottawa, Department of Civil Engineering, Ottawa, ON, Canada
| | - Robert Delatolla
- University of Ottawa, Department of Civil Engineering, Ottawa, ON, Canada
| | - Elizabeth Mercier
- University of Ottawa, Department of Civil Engineering, Ottawa, ON, Canada
| | - Xiaoli Pang
- Public Health Laboratory, Alberta Precision Laboratory, Edmonton, AB, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Bonita E Lee
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | | | - Shinthuja Wijayasri
- Toronto Public Health, Toronto, ON, Canada; Canadian Field Epidemiology Program, Emergency Management, Public Health Agency of Canada, Canada
| | - David Champredon
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada.
| |
Collapse
|
144
|
Zarza E, Diego-García E, García LV, Castro R, Mejía G, Herrera D, Cuevas R, Palomeque Á, Iša P, Guillén K. Monitoring SARS-CoV-2 in the Wastewater and Rivers of Tapachula, a Migratory Hub in Southern Mexico. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:199-211. [PMID: 35508751 PMCID: PMC9067545 DOI: 10.1007/s12560-022-09523-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/20/2022] [Indexed: 05/11/2023]
Abstract
The COVID-19 pandemic has been monitored by applying different strategies, including SARS-CoV-2 detection with clinical testing or through wastewater-based epidemiology (WBE). We used the latter approach to follow SARS-CoV-2 dispersion in Tapachula city, located in Mexico's tropical southern border region. Tapachula is a dynamic entry point for people seeking asylum in Mexico or traveling to the USA. Clinical testing facilities for SARS-CoV-2 monitoring are limited in the city. A total of eighty water samples were collected from urban and suburban rivers and sewage and a wastewater treatment plant over 4 months in Tapachula. We concentrated viral particles with a PEG-8000-based method, performed RNA extraction, and detected SARS-CoV-2 particles through RT-PCR. We considered the pepper mild mottle virus as a fecal water pollution biomarker and analytical control. SARS-CoV-2 viral loads (N1 and N2 markers) were quantified and correlated with official regional statistics of COVID-19 bed occupancy and confirmed cases (r > 91%). Our results concluded that WBE proved a valuable tool for tracing and tracking the COVID-19 pandemic in tropical countries with similar water temperatures (21-29 °C). Monitoring SARS-CoV-2 through urban and suburban river water sampling would be helpful in places lacking a wastewater treatment plant or water bodies with sewage discharges.
Collapse
Affiliation(s)
- Eugenia Zarza
- El Colegio de la Frontera Sur (ECOSUR), Grupo Académico de Biotecnología Ambiental, Carretera Antiguo Aeropuerto Km 2.5, 30700, Tapachula, Chiapas, Mexico
- Investigadoras CONACyT- El Colegio de la Frontera Sur, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Benito Juárez, 03940, Mexico City, Mexico
| | - Elia Diego-García
- El Colegio de la Frontera Sur (ECOSUR), Grupo Académico de Biotecnología Ambiental, Carretera Antiguo Aeropuerto Km 2.5, 30700, Tapachula, Chiapas, Mexico
- Investigadoras CONACyT- El Colegio de la Frontera Sur, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Benito Juárez, 03940, Mexico City, Mexico
| | - Luz Verónica García
- El Colegio de la Frontera Sur (ECOSUR), Grupo Académico de Biotecnología Ambiental, Carretera Antiguo Aeropuerto Km 2.5, 30700, Tapachula, Chiapas, Mexico
| | - Ricardo Castro
- El Colegio de la Frontera Sur (ECOSUR), Grupo Académico de Biotecnología Ambiental, Carretera Antiguo Aeropuerto Km 2.5, 30700, Tapachula, Chiapas, Mexico
| | - Gamaliel Mejía
- El Colegio de la Frontera Sur (ECOSUR), Grupo Académico de Biotecnología Ambiental, Carretera Antiguo Aeropuerto Km 2.5, 30700, Tapachula, Chiapas, Mexico
| | - David Herrera
- El Colegio de la Frontera Sur (ECOSUR), Grupo Académico de Biotecnología Ambiental, Carretera Antiguo Aeropuerto Km 2.5, 30700, Tapachula, Chiapas, Mexico
| | - Raúl Cuevas
- El Colegio de la Frontera Sur (ECOSUR), Grupo Académico de Biotecnología Ambiental, Carretera Antiguo Aeropuerto Km 2.5, 30700, Tapachula, Chiapas, Mexico
| | - Ángeles Palomeque
- El Colegio de la Frontera Sur (ECOSUR), Grupo Académico de Biotecnología Ambiental, Carretera Antiguo Aeropuerto Km 2.5, 30700, Tapachula, Chiapas, Mexico
| | - Pavel Iša
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, 62210, Cuernavaca, Morelos, Mexico
| | - Karina Guillén
- El Colegio de la Frontera Sur (ECOSUR), Grupo Académico de Biotecnología Ambiental, Carretera Antiguo Aeropuerto Km 2.5, 30700, Tapachula, Chiapas, Mexico.
| |
Collapse
|
145
|
Zamhuri SA, Soon CF, Nordin AN, Ab Rahim R, Sultana N, Khan MA, Lim GP, Tee KS. A review on the contamination of SARS-CoV-2 in water bodies: Transmission route, virus recovery and recent biosensor detection techniques. SENSING AND BIO-SENSING RESEARCH 2022; 36:100482. [PMID: 35251937 PMCID: PMC8889793 DOI: 10.1016/j.sbsr.2022.100482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
The discovery of SARS-CoV-2 virus in the water bodies has been reported, and the risk of virus transmission to human via the water route due to poor wastewater management cannot be disregarded. The main source of the virus in water bodies is the sewage network systems which connects to the surface water. Wastewater-based epidemiology has been applied as an early surveillance tool to sense SARS-CoV-2 virus in the sewage network. This review discussed possible transmission routes of the SARS-CoV-2 virus and the challenges of the existing method in detecting the virus in wastewater. One significant challenge for the detection of the virus is that the high virus loading is diluted by the sheer volume of the wastewater. Hence, virus preconcentration from water samples prior to the application of virus assay is essential to accurately detect traceable virus loading. The preparation time, materials and conditions, virus type, recovery percentage, and various virus recovery techniques are comprehensively discussed in this review. The practicability of molecular methods such as Polymer-Chain-Reaction (PCR) for the detection of SARS-CoV-2 in wastewater will be revealed. The conventional virus detection techniques have several shortcomings and the potential of biosensors as an alternative is also considered. Biosensing techniques have also been proposed as an alternative to PCR and have reported detection limits of 10 pg/μl. This review serves to guide the reader on the future designs and development of highly sensitive, robust and, cost effective SARS-CoV-2 lab-on-a-chip biosensors for use in complex wastewater.
Collapse
Affiliation(s)
- Siti Adibah Zamhuri
- Microelectronics and Nanotechnology-Shamsuddin Research Centre, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Chin Fhong Soon
- Microelectronics and Nanotechnology-Shamsuddin Research Centre, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
- Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Anis Nurashikin Nordin
- Department of Electrical and Computer Engineering, Kulliyah of Engineering, International University of Islam Malaysia, 53100, Jalan Gombak, Kuala Lumpur, Malaysia
| | - Rosminazuin Ab Rahim
- Department of Electrical and Computer Engineering, Kulliyah of Engineering, International University of Islam Malaysia, 53100, Jalan Gombak, Kuala Lumpur, Malaysia
| | | | - Muhammad Arif Khan
- Microelectronics and Nanotechnology-Shamsuddin Research Centre, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Gim Pao Lim
- Microelectronics and Nanotechnology-Shamsuddin Research Centre, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Kian Sek Tee
- Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| |
Collapse
|
146
|
Alhama J, Maestre JP, Martín MÁ, Michán C. Monitoring COVID-19 through SARS-CoV-2 quantification in wastewater: progress, challenges and prospects. Microb Biotechnol 2022; 15:1719-1728. [PMID: 34905659 PMCID: PMC9151337 DOI: 10.1111/1751-7915.13989] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/13/2022] Open
Abstract
Wastewater-Based Epidemiology (WBE) is widely used to monitor the progression of the current SARS-CoV-2 pandemic at local levels. In this review, we address the different approaches to the steps needed for this surveillance: sampling wastewaters (WWs), concentrating the virus from the samples and quantifying them by qPCR, focusing on the main limitations of the methodologies used. Factors that can influence SARS-CoV-2 monitoring in WWs include: (i) physical parameters as temperature that can hamper the detection in warm seasons and tropical regions, (ii) sampling methodologies and timetables, being composite samples and Moore swabs the less variable and more sensitive approaches, (iii) virus concentration methodologies that need to be feasible and practicable in simpler laboratories and (iv) detection methodologies that should tend to use faster and cost-effective procedures. The efficiency of WW treatments and the use of WWs for SARS-CoV-2 variants detection are also addressed. Furthermore, we discuss the need for the development of common standardized protocols, although these must be versatile enough to comprise variations among target communities. WBE screening of risk populations will allow for the prediction of future outbreaks, thus alerting authorities to implement early action measurements.
Collapse
Affiliation(s)
- José Alhama
- Department of Biochemistry and Molecular BiologyUniversidad de CórdobaCampus de Excelencia Internacional Agroalimentario CeiA3, Edificio Severo OchoaCórdoba14071Spain
| | - Juan P. Maestre
- Department of Civil, Architectural, and Environmental EngineeringThe University of Texas at Austin301 E. Dean Keeton St., Stop C1786AustinTX78712USA
| | - M. Ángeles Martín
- Department of Inorganic Chemistry and Chemical EngineeringArea of Chemical EngineeringUniversidad de CórdobaInstitute of Fine Chemistry and Nanochemistry (IUNAN)Campus de Excelencia Internacional Agroalimentario CeiA3, Edificio Marie CurieCórdoba14071Spain
| | - Carmen Michán
- Department of Biochemistry and Molecular BiologyUniversidad de CórdobaCampus de Excelencia Internacional Agroalimentario CeiA3, Edificio Severo OchoaCórdoba14071Spain
| |
Collapse
|
147
|
Huang J, Lian X, Zhao Y, Wang D, Chen S, Zhang L, Liu X, Gao J, Liu C. Water Transmission Increases the Intensity of COVID-19 Outbreaks. Front Public Health 2022; 10:808523. [PMID: 35692324 PMCID: PMC9174688 DOI: 10.3389/fpubh.2022.808523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/28/2022] [Indexed: 11/28/2022] Open
Abstract
India suffered from a devastating 2021 spring outbreak of coronavirus disease 2019 (COVID-19), surpassing any other outbreaks before. However, the reason for the acceleration of the outbreak in India is still unknown. We describe the statistical characteristics of infected patients from the first case in India to June 2021, and trace the causes of the two outbreaks in a complete way, combined with data on natural disasters, environmental pollution and population movements etc. We found that water-to-human transmission accelerates COVID-19 spreading. The transmission rate is 382% higher than the human-to-human transmission rate during the 2020 summer outbreak in India. When syndrome coronavirus 2 (SARS-CoV-2) enters the human body directly through the water-oral transmission pathway, virus particles and nitrogen salt in the water accelerate viral infection and mutation rates in the gastrointestinal tract. Based on the results of the attribution analysis, without the current effective interventions, India could have experienced a third outbreak during the monsoon season this year, which would have increased the severity of the disaster and led to a South Asian economic crisis.
Collapse
|
148
|
Chen Z, Zhang W, Yang H, Min K, Jiang J, Lu D, Huang X, Qu G, Liu Q, Jiang G. A pandemic-induced environmental dilemma of disposable masks: solutions from the perspective of the life cycle. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:649-674. [PMID: 35388819 DOI: 10.1039/d1em00509j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The coronavirus disease 2019 (COVID-19) has swept the world and still afflicts humans. As an effective means of protection, wearing masks has been widely adopted by the general public. The massive use of disposable masks has raised some emerging environmental and bio-safety concerns: improper handling of used masks may transfer the attached pathogens to environmental media; disposable masks mainly consist of polypropylene (PP) fibers which may aggravate the global plastic pollution; and the risks of long-term wearing of masks are elusive. To maximize the utilization and minimize the risks, efforts have been made to improve the performance of masks (e.g., antivirus properties and filtration efficiency), extend their functions (e.g., respiration monitoring and acting as a sampling device), develop new disinfection methods, and recycle masks. Despite that, from the perspective of the life cycle (from production, usage, and discard to disposal), comprehensive solutions are urgently needed to solve the environmental dilemma of disposable masks in both technologies (e.g., efficient use of raw materials, prolonging the service life, and enabling biodegradation) and policies (e.g., stricter industry criteria and garbage sorting).
Collapse
Affiliation(s)
- Zigu Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Weican Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Hang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Ke Min
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- Key Laboratory of Phytochemical R&D of Hunan Province, Ministry of Education Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Hunan Normal University, Changsha 410081, China
| | - Jie Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Dawei Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Xiu Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
149
|
Chan AY, Kim H, Bell ML. Higher incidence of novel coronavirus (COVID-19) cases in areas with combined sewer systems, heavy precipitation, and high percentages of impervious surfaces. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153227. [PMID: 35051454 PMCID: PMC8763406 DOI: 10.1016/j.scitotenv.2022.153227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/23/2021] [Accepted: 01/13/2022] [Indexed: 05/09/2023]
Abstract
Combined sewer systems (CSS) are water management systems that collect and transport stormwater and sewer water in the same pipes. During large storm events, stormwater runoff may exceed the capacity of the system and lead to combined sewer overflows (CSOs), where untreated sewer and stormwater are released into the environment. Though current literature reveals inconclusive evidence regarding the infectivity of SARS-CoV-2 in wastewater, detection of infectious SARS-CoV-2 in urine and feces of COVID-19 patients led to concerns that areas contaminated by CSOs may be a reservoir of SARS-CoV-2 and may result in illness after the ingestion and/or inhalation of contaminated splashes, droplets, or aerosols. We investigated the association between COVID-19 incidence and CSSs and whether this association differed by precipitation and percent impervious surfaces as a proxy for possible CSOs. We fitted a quasi-Poisson regression model to estimate the change in percentage of incidence rate of COVID-19 cases in counties with a CSS compared to those without, adjusting for potential confounders (i.e., state, population density, date of first documented COVID-19 case, social vulnerability, and percent vaccinated) and including interaction variables between CSS, precipitation, and impervious surfaces. Our findings suggest that heavy precipitation in combination with high percentages of imperviousness is associated with higher incidences of COVID-19 cases in counties with a CSS compared to in counties without (p-value = 2.5e-9). For example, CSS-counties with precipitation of 10 in/month may observe a higher incidence in COVID-19 cases compared to non-CSS counties if their impervious surfaces exceed 33.5% [95%CI: 23.0%, 60.0%]. We theorize that more COVID-19 cases may be seen in counties with a CSS, heavy precipitation, and high percentages of impervious surfaces because of the possible increase in frequency and severity of CSOs. The results suggest links between climate change, urbanization, and COVID-19.
Collapse
Affiliation(s)
- Alisha Yee Chan
- Yale University, School of Engineering and Applied Science, Department of Chemical and Environmental Engineering, New Haven, CT, USA.
| | - Honghyok Kim
- Yale University, School of the Environment, New Haven, CT, USA
| | - Michelle L Bell
- Yale University, School of the Environment, New Haven, CT, USA
| |
Collapse
|
150
|
Yang S, Dong Q, Li S, Cheng Z, Kang X, Ren D, Xu C, Zhou X, Liang P, Sun L, Zhao J, Jiao Y, Han T, Liu Y, Qian Y, Liu Y, Huang X, Qu J. Persistence of SARS-CoV-2 RNA in wastewater after the end of the COVID-19 epidemics. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128358. [PMID: 35123131 PMCID: PMC8800135 DOI: 10.1016/j.jhazmat.2022.128358] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/20/2022] [Accepted: 01/23/2022] [Indexed: 05/19/2023]
Abstract
Although the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been widely detected in wastewater in many countries to track the COVID-19 pandemic development, it is still a lack of clear understanding of the persistence of SARS-CoV-2 in raw sewage, especially after the end of the COVID-19 pandemic event. To fill this knowledge gap, this study conducted a field trial on the SARS-CoV-2 presence in various wastewater facilities after the end of the COVID-19 epidemics in Beijing. The result showed that the wastewater treatment facility is a large SARS-CoV-2 repository. The viral RNA was still present in hospital sewage for 15 days and was continually detected in municipal WWTPs for more than 19 days after the end of the local COVID-19 epidemics. The T90 values of the SARS-CoV-2 RNA in raw wastewater were 17.17-8.42 days in the wastewater at 4 ℃ and 26 ℃, respectively, meaning that the decay rates of low titer viruses in raw sewage were much faster. The results confirmed that the SARS-CoV-2 RNA could persist in wastewater for more than two weeks, especially at lower temperatures. The sewage systems would be a virus repository and prolong the presence of the residual SARS-CoV-2 RNA. The study could enhance further understanding of the presence of SARS-CoV-2 RNA in raw wastewater.
Collapse
Affiliation(s)
- Shaolin Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, PR China
| | - Qian Dong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, PR China
| | - Siqi Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, PR China
| | - Zhao Cheng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, PR China
| | - Xiaofeng Kang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, PR China
| | - Daheng Ren
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, PR China
| | - Chenyang Xu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, PR China
| | - Xiaohong Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, PR China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, PR China
| | - Lingli Sun
- Beijing Chaoyang Center for Disease Control and Prevention, Beijing 100021, PR China
| | - Jianhong Zhao
- Beijing Chaoyang Center for Disease Control and Prevention, Beijing 100021, PR China
| | - Yang Jiao
- Beijing Chaoyang Center for Disease Control and Prevention, Beijing 100021, PR China
| | - Taoli Han
- Beijing Chaoyang Center for Disease Control and Prevention, Beijing 100021, PR China
| | - Yanchen Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, PR China.
| | - Yi Qian
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, PR China
| | - Yi Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, PR China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, PR China.
| | - Jiuhui Qu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, PR China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| |
Collapse
|