101
|
Dong Z, Fei J, Wang T, Xu X, Dong W, Li J. Black Phosphorus Nanosheets Enhance Photophosphorylation by Positive Feedback. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Zhenzhen Dong
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Tonghui Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xia Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Weiguang Dong
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
102
|
Korupalli C, You KL, Getachew G, Rasal AS, Dirersa WB, Zakki Fahmi M, Chang JY. Engineering the Surface of Ti3C2 MXene Nanosheets for High Stability and Multimodal Anticancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14020304. [PMID: 35214033 PMCID: PMC8879045 DOI: 10.3390/pharmaceutics14020304] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022] Open
Abstract
The surface of Ti3C2 MXene nanosheets (TC NSs) was first modified with the antioxidants sodium ascorbate (SA) and dopamine (DA) (DSTC NS) to improve their stability in oxidative and hydration environments and thereby improve their bioapplications. This novel approach not only improved MXene stability by arresting oxidation but also increased the available functional groups for further functionalization with various biomolecules. The DSTC NSs were then sequentially conjugated with enzyme glucose oxidase (GOx) and photosensitizer Ce6 to render the obtained CGDSTC NSs with glucose starvation and photodynamic therapeutic properties and thus attain high efficiency in killing cancer cells through the cooperative effect. The as-synthesized CGDSTC NSs demonstrated tremendous photothermal effect with conversion efficiency of 45.1% and photodynamic (ROS generation) properties upon irradiation with 808 and 671 nm lasers. Furthermore, it was observed that the enzymatic activity of CGDSTC NSs increased upon laser irradiation due to enhanced solution temperature. During in vitro studies, the CGDSTC NSs exhibited cytocompatability to HePG2 and HeLa cells under nonstimulus conditions. However, they elicited more than 90% cell-killing efficiency in the presence of glucose and laser irradiation via the cooperative effect between starvation therapy and phototherapy. These results indicate that CGDSTC NSs could be used as potential therapeutic agents to eradicate cancers with no or few adverse effects. This surface modification approach is also simple and facile to adopt in MXene-based research.
Collapse
Affiliation(s)
- Chiranjeevi Korupalli
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (C.K.); (K.-L.Y.); (G.G.); (A.S.R.); (W.B.D.)
| | - Kai-Long You
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (C.K.); (K.-L.Y.); (G.G.); (A.S.R.); (W.B.D.)
| | - Girum Getachew
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (C.K.); (K.-L.Y.); (G.G.); (A.S.R.); (W.B.D.)
| | - Akash S. Rasal
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (C.K.); (K.-L.Y.); (G.G.); (A.S.R.); (W.B.D.)
| | - Worku Batu Dirersa
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (C.K.); (K.-L.Y.); (G.G.); (A.S.R.); (W.B.D.)
| | | | - Jia-Yaw Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (C.K.); (K.-L.Y.); (G.G.); (A.S.R.); (W.B.D.)
- Correspondence: ; Tel.: +886-2-27303636
| |
Collapse
|
103
|
Fadahunsi AA, Li C, Khan MI, Ding W. MXenes: state-of-the-art synthesis, composites and bioapplications. J Mater Chem B 2022; 10:4331-4345. [PMID: 35640492 DOI: 10.1039/d2tb00289b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
MXenes have proven significant potential in a multitude of scientific domains as they provide substantial benefits over carbon graphene, such as ease of production and functionalization, large surface area, adjustable...
Collapse
Affiliation(s)
- Adeola A Fadahunsi
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China.
- Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| | - Chengpan Li
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Muhammad Imran Khan
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Weiping Ding
- Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| |
Collapse
|
104
|
Zhou S, Li R, Li Y, Wang Y, Feng L. A tailored and red-emissive type I photosensitizer to potentiate photodynamic immunotherapy. J Mater Chem B 2022; 10:8003-8012. [DOI: 10.1039/d2tb01578a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photodynamic immunotherapy (PDIT) emerges and shows great potentials in eradicating malignant tumors for the advantages on simultaneously damaging primary tumors, inhibiting tumors metastasis and recurrence. However, hypoxic microenvironment of tumor...
Collapse
|
105
|
Abstract
MXenes and their related nanocomposites with superior physicochemical properties such as high surface area, ease of synthesis and functionalization, high drug loading capacity, collective therapy potentials, pH-triggered drug release behavior,...
Collapse
|
106
|
Wu X, Gauntlett O, Zhang T, Suvarnapathaki S, McCarthy C, Wu B, Camci-Unal G. Eggshell Microparticle Reinforced Scaffolds for Regeneration of Critical Sized Cranial Defects. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60921-60932. [PMID: 34905346 DOI: 10.1021/acsami.1c19884] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Scaffold-based approaches for bone regeneration have been studied using a wide range of biomaterials as reinforcing agents to improve the mechanical strength and bioactivity of the 3D constructs. Eggshells are sustainable and inexpensive materials with unique biological and chemical properties to support bone differentiation. The incorporation of eggshell particles within hydrogels yields highly osteoinductive and osteoconductive scaffolds. This study reveals the effects of microparticles of whole eggshells, eggshells without a membrane, and a pristine eggshell membrane on osteogenic differentiation in protein-derived hydrogels. The in vitro studies showed that gels reinforced with eggshells with and without a membrane demonstrated comparable cellular proliferation, osteogenic gene expression, and osteogenic differentiation. Subsequently, in vivo studies were performed to implant eggshell microparticle-reinforced composite hydrogel scaffolds into critical-sized cranial defects in Sprague Dawley (SD) rats for up to 12 weeks to study bone regeneration. The in vivo results showed that the eggshell microparticle-based scaffolds supported an average bone volume of 60 mm3 and a bone density of 2000 HU 12 weeks post implantation. Furthermore, histological analyses of the explanted scaffolds showed that the eggshell microparticle-reinforced scaffolds permitted tissue infiltration and induced bone tissue formation over 12 weeks. The histology staining also indicated that these scaffolds induced significantly higher bone regeneration at 6 and 12 weeks as compared to the blank (no scaffold) and pristine gel scaffolds. The eggshell microparticle-reinforced scaffolds also supported significantly higher bone formation, remodeling, and vascularization over 6 and 12 weeks as confirmed by immunohistochemistry analysis. Collectively, our results indicated that eggshell microparticle-reinforced scaffolds facilitated significant bone regeneration in critical-sized cranial defects.
Collapse
Affiliation(s)
- Xinchen Wu
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Olivia Gauntlett
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Tengfei Zhang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medicine University, Beijing 100069, China
| | - Sanika Suvarnapathaki
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Colleen McCarthy
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Bin Wu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medicine University, Beijing 100069, China
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, United States
- Department of Surgery, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| |
Collapse
|
107
|
Yu H, Wan Y, Zhang G, Huang X, Lin L, Zhou C, Jiao Y, Li H. Blood compatibility evaluations of two-dimensional Ti 3C 2T xnanosheets. Biomed Mater 2021; 17. [PMID: 34937009 DOI: 10.1088/1748-605x/ac45ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/22/2021] [Indexed: 11/11/2022]
Abstract
Two-dimensional (2D) nanomaterial Ti3C2Tx is a novel biomaterial used for medical apparatus. For its application, biosafety serves as a prerequisite for their use in vivo. So far, no research has systematically reported how Ti3C2Tx interacts with various components in the blood. In this work, we evaluated the hemocompatibility of Ti3C2Tx nanosheets which we prepared by HF etching. Effects of the concentration and size of Ti3C2Tx on the morphology and hemolysis rate of human red blood cells (RBCs), the structure and conformation of plasma proteins, the complement activation, as well as in vitro blood coagulation were studied. In general, Ti3C2Tx takes on good blood compatibility, but in the case of high concentration (>30 μg/mL) and "Small size" (about 100 nm), it led to the rupture of RBCs membrane and a higher rate of hemolysis. Meanwhile, platelets and complement were inclined to be activated with the increased concentration, accompanying the changed configuration of plasma proteins dependent on concentration. Surprisingly, the presence of Ti3C2Tx did not significantly disrupt the coagulation. In vitro cell culture, the results prove that when the Ti3C2Tx concentration is as high as 60μg/mL and still has good biological safety. By establishing a fuzzy mathematical model, it was proved that the hemocompatibility of Ti3C2Tx is more concentration-dependent than size-dependent, and the hemolysis rate is the most sensitive to the size and concentration of the Ti3C2Tx. These findings provide insight into the potential use of Ti3C2Tx as biofriendly nanocontainers for biomaterials in vivo.
Collapse
Affiliation(s)
- Hongbo Yu
- Jinan University, Jinan University, Guangzhou, 510632, CHINA
| | - Yi Wan
- Department of Materials Science and Engineering, Jinan University, Jinan University, Guangzhou, 510632, CHINA
| | - Guiyin Zhang
- Department of Materials Science and Engineering, Jinan University, Jinan University, Guangzhou, 510632, CHINA
| | - Xiuhong Huang
- Department of Materials Science and Engineering, Jinan University, Jinan University, Guangzhou, 510632, CHINA
| | - Lichen Lin
- Department of Materials Science and Engineering, Jinan University, Jinan University, Guangzhou, 510632, CHINA
| | - Changren Zhou
- Jinan University, Guangzhou 510632, PR China, Guangzhou, Guangdong, 510632, CHINA
| | - Yanpeng Jiao
- Department of Materials Science and Engineering, Jinan University, Guangzhou, Guangzhou, Guangdong, 510632, CHINA
| | - Hong Li
- Department of Materials Science and Engineering, Jinan University, Jinan University, Guangzhou, 510632, CHINA
| |
Collapse
|
108
|
Pogorielov M, Smyrnova K, Kyrylenko S, Gogotsi O, Zahorodna V, Pogrebnjak A. MXenes-A New Class of Two-Dimensional Materials: Structure, Properties and Potential Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3412. [PMID: 34947759 PMCID: PMC8706983 DOI: 10.3390/nano11123412] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 12/22/2022]
Abstract
A new class of two-dimensional nanomaterials, MXenes, which are carbides/nitrides/carbonitrides of transition and refractory metals, has been critically analyzed. Since the synthesis of the first family member in 2011 by Yury Gogotsi and colleagues, MXenes have quickly become attractive for a variety of research fields due to their exceptional properties. Despite the fact that this new family of 2D materials was discovered only about ten years ago, the number of scientific publications related to MXene almost doubles every year. Thus, in 2021 alone, more than 2000 papers are expected to be published, which indicates the relevance and prospects of MXenes. The current paper critically analyzes the structural features, properties, and methods of synthesis of MXenes based on recent available research data. We demonstrate the recent trends of MXene applications in various fields, such as environmental pollution removal and water desalination, energy storage and harvesting, quantum dots, sensors, electrodes, and optical devices. We focus on the most important medical applications: photo-thermal cancer therapy, diagnostics, and antibacterial treatment. The first results on obtaining and studying the structure of high-entropy MXenes are also presented.
Collapse
Affiliation(s)
- Maksym Pogorielov
- Department of Nanoelectronics and Surface Modification, Faculty of Electronics and Information Technology, Sumy State University, 40007 Sumy, Ukraine; (K.S.); (S.K.); (A.P.)
- Institute of Atomic Physics and Spectroscopy, University of Latvia, LV 1586 Riga, Latvia
| | - Kateryna Smyrnova
- Department of Nanoelectronics and Surface Modification, Faculty of Electronics and Information Technology, Sumy State University, 40007 Sumy, Ukraine; (K.S.); (S.K.); (A.P.)
| | - Sergiy Kyrylenko
- Department of Nanoelectronics and Surface Modification, Faculty of Electronics and Information Technology, Sumy State University, 40007 Sumy, Ukraine; (K.S.); (S.K.); (A.P.)
| | - Oleksiy Gogotsi
- Materials Research Centre, 03142 Kyiv, Ukraine; (O.G.); (V.Z.)
- CARBON-UKRAINE Ltd., 03680 Kyiv, Ukraine
| | - Veronika Zahorodna
- Materials Research Centre, 03142 Kyiv, Ukraine; (O.G.); (V.Z.)
- CARBON-UKRAINE Ltd., 03680 Kyiv, Ukraine
| | - Alexander Pogrebnjak
- Department of Nanoelectronics and Surface Modification, Faculty of Electronics and Information Technology, Sumy State University, 40007 Sumy, Ukraine; (K.S.); (S.K.); (A.P.)
- Department of Biotechnology, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| |
Collapse
|
109
|
Li T, Gao L, Zhang B, Nie G, Xie Z, Zhang H, Ågren H. Material-based engineering of bacteria for cancer diagnosis and therapy. APPLIED MATERIALS TODAY 2021; 25:101212. [DOI: 10.1016/j.apmt.2021.101212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
110
|
Davis R, Urbanowski RA, Gaharwar AK. 2D layered nanomaterials for therapeutics delivery. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 20. [DOI: 10.1016/j.cobme.2021.100319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
111
|
Zhang Z, Jiang W, Xie X, Liang H, Chen H, Chen K, Zhang Y, Xu W, Chen M. Recent Developments of Nanomaterials in Hydrogels: Characteristics, Influences, and Applications. ChemistrySelect 2021. [DOI: 10.1002/slct.202103528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Zongzheng Zhang
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Wenqing Jiang
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Xinmin Xie
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Haiqing Liang
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Hao Chen
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Kun Chen
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Ying Zhang
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Wenlong Xu
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Mengjun Chen
- School of Qilu Transportation Shandong University Jinan 250002 China
| |
Collapse
|
112
|
Holocellulose nanofibrils assisted exfoliation to prepare MXene-based composite film with excellent electromagnetic interference shielding performance. Carbohydr Polym 2021; 274:118652. [PMID: 34702471 DOI: 10.1016/j.carbpol.2021.118652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 11/21/2022]
Abstract
A high-yield and straightforward method is proposed to obtain an electromagnetic interference (EMI) shielding film based on multilayered Ti3C2Tx (m-Ti3C2Tx). Holocellulose nanofibrils modified by sulfamic acid (SHCNF) with unique "core-shell" structure can act as a dispersant and a binder to assist in exfoliating m-Ti3C2Tx into delaminated-Ti3C2Tx (d-Ti3C2Tx) and fabricate flexible Ti3C2Tx/SHCNF composite films with a high-yield value. The "brick-and-mortar" composite films exhibit a superior electromagnetic interference (EMI) shielding effectiveness (SE) of 45.02 dB with an ultrathin thickness of 40 μm at the 12.4 GHz. Moreover, these flexible and strong integrated Ti3C2Tx/SHCNF composite films also display excellent specific EMI SE of SSE/t (4437 dB cm2 g-1) and high EMI shielding efficiency (99.996%). Therefore, the SHCNF-assisted method provides a cost-effective approach to fabricate a strong and flexible MXene-based nanocomposite films toward EMI shielding application.
Collapse
|
113
|
Applications of two-dimensional layered nanomaterials in photoelectrochemical sensors: A comprehensive review. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214156] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
114
|
Wang J, Sui L, Huang J, Miao L, Nie Y, Wang K, Yang Z, Huang Q, Gong X, Nan Y, Ai K. MoS 2-based nanocomposites for cancer diagnosis and therapy. Bioact Mater 2021; 6:4209-4242. [PMID: 33997503 PMCID: PMC8102209 DOI: 10.1016/j.bioactmat.2021.04.021] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 12/24/2022] Open
Abstract
Molybdenum is a trace dietary element necessary for the survival of humans. Some molybdenum-bearing enzymes are involved in key metabolic activities in the human body (such as xanthine oxidase, aldehyde oxidase and sulfite oxidase). Many molybdenum-based compounds have been widely used in biomedical research. Especially, MoS2-nanomaterials have attracted more attention in cancer diagnosis and treatment recently because of their unique physical and chemical properties. MoS2 can adsorb various biomolecules and drug molecules via covalent or non-covalent interactions because it is easy to modify and possess a high specific surface area, improving its tumor targeting and colloidal stability, as well as accuracy and sensitivity for detecting specific biomarkers. At the same time, in the near-infrared (NIR) window, MoS2 has excellent optical absorption and prominent photothermal conversion efficiency, which can achieve NIR-based phototherapy and NIR-responsive controlled drug-release. Significantly, the modified MoS2-nanocomposite can specifically respond to the tumor microenvironment, leading to drug accumulation in the tumor site increased, reducing its side effects on non-cancerous tissues, and improved therapeutic effect. In this review, we introduced the latest developments of MoS2-nanocomposites in cancer diagnosis and therapy, mainly focusing on biosensors, bioimaging, chemotherapy, phototherapy, microwave hyperthermia, and combination therapy. Furthermore, we also discuss the current challenges and prospects of MoS2-nanocomposites in cancer treatment.
Collapse
Affiliation(s)
- Jianling Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Lihua Sui
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Jia Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Lu Miao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Yubing Nie
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Kuansong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Zhichun Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Qiong Huang
- Department of Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xue Gong
- Department of Radiology, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Yayun Nan
- Geriatric Medical Center, Ningxia People's Hospital, Yinchuan, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| |
Collapse
|
115
|
Lu B, Zhu Z, Ma B, Wang W, Zhu R, Zhang J. 2D MXene Nanomaterials for Versatile Biomedical Applications: Current Trends and Future Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100946. [PMID: 34323354 DOI: 10.1002/smll.202100946] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/22/2021] [Indexed: 05/27/2023]
Abstract
Research on 2D nanomaterials is still in its early stages. Most studies have focused on elucidating the unique properties of the materials, whereas only few reports have described the biomedical applications of 2D nanomaterials. Recently, important questions about the interaction of 2D MXene nanomaterials with biological components have been raised. 2D MXenes are monolayer atomic nanosheets derived from MAX phase ceramics. As a new type of inorganic nanosystems, they are being widely used in biology and biomedicine. This review introduces the latest developments in 2D MXenes for the most advanced biomedical applications, including preparation and surface modification strategies, treatment modes, drug delivery, antibacterial activity, bioimaging, sensing, and biocompatibility. Besides, this review also discusses the current development trends and prospects of 2D inorganic nanosheets for further clinical applications. These emerging 2D inorganic MXenes will play an important role in next-generation cancer treatments.
Collapse
Affiliation(s)
- Beibei Lu
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Zhenye Zhu
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Biyuan Ma
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Wei Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Rongshu Zhu
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Environmental Science and Engineering Research Center, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- International Joint Research Center for Persistent Toxic Substances, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Jiaheng Zhang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| |
Collapse
|
116
|
Cui D, Kong N, Ding L, Guo Y, Yang W, Yan F. Ultrathin 2D Titanium Carbide MXene (Ti 3 C 2 T x ) Nanoflakes Activate WNT/HIF-1α-Mediated Metabolism Reprogramming for Periodontal Regeneration. Adv Healthc Mater 2021; 10:e2101215. [PMID: 34586717 PMCID: PMC11468541 DOI: 10.1002/adhm.202101215] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/08/2021] [Indexed: 12/17/2022]
Abstract
Periodontal defect regeneration in severe periodontitis relies on the differentiation and proliferation of periodontal ligament cells (PDLCs). Recently, an emerging 2D nanomaterial, MXene (Ti3 C2 Tx ), has gained more and more attention due to the extensive antibacterial and anticancer activity, while its potential biomedical application on tissue regeneration remains unclear. Through a combination of experimental and multiscale simulation schemes, Ti3 C2 Tx has exhibited satisfactory biocompatibility and induced distinguish osteogenic differentiation of human PDLCs (hPDLCs), with upregulated osteogenesis-related genes. Ti3 C2 Tx manages to activate the Wnt/β-catenin signaling pathway by enhancing the Wnt-Frizzled complex binding, thus stabilizing HIF-1α and altering metabolic reprogramming into glycolysis. In vivo, hPDLCs pretreated by Ti3 C2 Tx display excellent performance in new bone formation and osteoclast inhibition with enhanced RUNX2, HIF-1α, and β-catenin in an experimental rat model of periodontal fenestration defects, indicating that this material has high efficiency of periodontal regeneration promotion. It is demonstrated in this work that Ti3 C2 Tx has highly efficient therapeutic effects in osteogenic differentiation and periodontal defect repairment.
Collapse
Affiliation(s)
- Di Cui
- Nanjing Stomatological HospitalMedical School of Nanjing UniversityNanjingJiangsu210008China
| | - Na Kong
- School of Life and Environmental ScienceDeakin UniversityWaurn PondsVictoria3216Australia
| | - Liang Ding
- Nanjing Stomatological HospitalMedical School of Nanjing UniversityNanjingJiangsu210008China
| | - Yachong Guo
- Kuang Yaming Honors SchoolNanjing UniversityNanjing210023China
- Institute Theory of PolymersLeibniz‐Institut für Polymerforschung DresdenDresden01069Germany
| | - Wenrong Yang
- School of Life and Environmental ScienceDeakin UniversityWaurn PondsVictoria3216Australia
| | - Fuhua Yan
- Nanjing Stomatological HospitalMedical School of Nanjing UniversityNanjingJiangsu210008China
| |
Collapse
|
117
|
Manisekaran R, García-Contreras R, Rasu Chettiar AD, Serrano-Díaz P, Lopez-Ayuso CA, Arenas-Arrocena MC, Hernández-Padrón G, López-Marín LM, Acosta-Torres LS. 2D Nanosheets-A New Class of Therapeutic Formulations against Cancer. Pharmaceutics 2021; 13:1803. [PMID: 34834218 PMCID: PMC8620729 DOI: 10.3390/pharmaceutics13111803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/14/2021] [Accepted: 10/20/2021] [Indexed: 12/19/2022] Open
Abstract
Researchers in cancer nanomedicine are exploring a revolutionary multifaceted carrier for treatment and diagnosis, resulting in the proposal of various drug cargos or "magic bullets" in this past decade. Even though different nano-based complexes are registered for clinical trials, very few products enter the final stages each year because of various issues. This prevents the formulations from entering the market and being accessible to patients. In the search for novel materials, the exploitation of 2D nanosheets, including but not limited to the highly acclaimed graphene, has created extensive interest for biomedical applications. A unique set of properties often characterize 2D materials, including semiconductivity, high surface area, and their chemical nature, which allow simple decoration and functionalization procedures, structures with high stability and targeting properties, vectors for controlled and sustained release of drugs, and materials for thermal-based therapies. This review discusses the challenges and opportunities of recently discovered 2D nanosheets for cancer therapeutics, with special attention paid to the most promising design technologies and their potential for clinical translation in the future.
Collapse
Affiliation(s)
- Ravichandran Manisekaran
- Laboratorio de Investigación Interdisciplinaria, Área de Nanoestructuras y Biomateriales, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Boulevard UNAM No. 2011, Predio El Saucillo y El Potrero, Guanajuato 37689, Mexico; (R.G.-C.); (P.S.-D.); (C.A.L.-A.); (M.C.A.-A.)
| | - René García-Contreras
- Laboratorio de Investigación Interdisciplinaria, Área de Nanoestructuras y Biomateriales, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Boulevard UNAM No. 2011, Predio El Saucillo y El Potrero, Guanajuato 37689, Mexico; (R.G.-C.); (P.S.-D.); (C.A.L.-A.); (M.C.A.-A.)
| | - Aruna-Devi Rasu Chettiar
- Facultad de Química, Materiales-Energía, Universidad Autónoma de Querétaro, Santiago de Querétaro 76010, Mexico;
| | - Paloma Serrano-Díaz
- Laboratorio de Investigación Interdisciplinaria, Área de Nanoestructuras y Biomateriales, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Boulevard UNAM No. 2011, Predio El Saucillo y El Potrero, Guanajuato 37689, Mexico; (R.G.-C.); (P.S.-D.); (C.A.L.-A.); (M.C.A.-A.)
| | - Christian Andrea Lopez-Ayuso
- Laboratorio de Investigación Interdisciplinaria, Área de Nanoestructuras y Biomateriales, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Boulevard UNAM No. 2011, Predio El Saucillo y El Potrero, Guanajuato 37689, Mexico; (R.G.-C.); (P.S.-D.); (C.A.L.-A.); (M.C.A.-A.)
| | - Ma Concepción Arenas-Arrocena
- Laboratorio de Investigación Interdisciplinaria, Área de Nanoestructuras y Biomateriales, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Boulevard UNAM No. 2011, Predio El Saucillo y El Potrero, Guanajuato 37689, Mexico; (R.G.-C.); (P.S.-D.); (C.A.L.-A.); (M.C.A.-A.)
| | - Genoveva Hernández-Padrón
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, Juriquilla 76230, Mexico; (G.H.-P.); (L.M.L.-M.)
| | - Luz M. López-Marín
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, Juriquilla 76230, Mexico; (G.H.-P.); (L.M.L.-M.)
| | - Laura Susana Acosta-Torres
- Laboratorio de Investigación Interdisciplinaria, Área de Nanoestructuras y Biomateriales, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Boulevard UNAM No. 2011, Predio El Saucillo y El Potrero, Guanajuato 37689, Mexico; (R.G.-C.); (P.S.-D.); (C.A.L.-A.); (M.C.A.-A.)
| |
Collapse
|
118
|
Sun Y, Wang S, Du X, Du Z, Wang H, Cheng X. Skin-conformal MXene-doped wearable sensors with self-adhesive, dual-mode sensing, and high sensitivity for human motions and wireless monitoring. J Mater Chem B 2021; 9:8667-8675. [PMID: 34610630 DOI: 10.1039/d1tb01769a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Flexible sensors have attracted extensive attention due to their excellent flexibility, biocompatibility, and information acquisition accuracy. Therefore, it is desired to fabricate a flexible sensor with high toughness and sensitivity based on conductive hydrogels to monitor human movement. In this work, MXene-(Ti3C2Tx-)WPU/PAM dual-network hydrogels (PPM hydrogels) were successfully prepared. As the first network, waterborne polyurethane (WPU) plays the role of energy dissipation and enhancement. Polyacrylamide (PAM) and WPU polymer chains form interpenetrating networks (IPNs). MXene acts as a conductive material to enhance the conductivity and for nano enhancement. The PPM hydrogels exhibited excellent mechanical characteristics (tensile ratio >600%, tensile strength 639 kPa, 1000 stretching cycles, and self-recovery rate 93.7%). Moreover, based on these hydrogels, we fabricated flexible sensors. These sensors had high sensitivity and sensing durability, and could be assembled into a human body wireless monitoring device, which possesses great potential in facial micro-expression monitoring, all-around human motion detection, and wearable electronic products. In addition, these resulting hydrogels possessed outstanding reversible adhesion to various materials (human skin, wood, PDMS, etc.) and the maximum adhesion strength can reach 305.1 N m-1 when exposed to a PDMS substrate. Therefore, PPM hydrogels could provide new inspiration for the development of wearable flexible sensors in the domain of human movements and personalized physiological health monitoring.
Collapse
Affiliation(s)
- Yuegang Sun
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China. .,The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, P. R. China
| | - Shuang Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China. .,The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, P. R. China
| | - Xiaosheng Du
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China. .,The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, P. R. China
| | - Zongliang Du
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China. .,The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, P. R. China
| | - Haibo Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China. .,The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, P. R. China
| | - Xu Cheng
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China. .,The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
119
|
Jamalipour Soufi G, Iravani P, Hekmatnia A, Mostafavi E, Khatami M, Iravani S. MXenes and MXene-based Materials with Cancer Diagnostic Applications: Challenges and Opportunities. COMMENT INORG CHEM 2021. [DOI: 10.1080/02603594.2021.1990890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Parisa Iravani
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Hekmatnia
- Radiology Department, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Mehrdad Khatami
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
120
|
Huang H, Feng W, Chen Y. Two-dimensional biomaterials: material science, biological effect and biomedical engineering applications. Chem Soc Rev 2021; 50:11381-11485. [PMID: 34661206 DOI: 10.1039/d0cs01138j] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To date, nanotechnology has increasingly been identified as a promising and efficient means to address a number of challenges associated with public health. In the past decade, two-dimensional (2D) biomaterials, as a unique nanoplatform with planar topology, have attracted explosive interest in various fields such as biomedicine due to their unique morphology, physicochemical properties and biological effect. Motivated by the progress of graphene in biomedicine, dozens of types of ultrathin 2D biomaterials have found versatile bio-applications, including biosensing, biomedical imaging, delivery of therapeutic agents, cancer theranostics, tissue engineering, as well as others. The effective utilization of 2D biomaterials stems from the in-depth knowledge of structure-property-bioactivity-biosafety-application-performance relationships. A comprehensive summary of 2D biomaterials for biomedicine is still lacking. In this comprehensive review, we aim to concentrate on the state-of-the-art 2D biomaterials with a particular focus on their versatile biomedical applications. In particular, we discuss the design, fabrication and functionalization of 2D biomaterials used for diverse biomedical applications based on the up-to-date progress. Furthermore, the interactions between 2D biomaterials and biological systems on the spatial-temporal scale are highlighted, which will deepen the understanding of the underlying action mechanism of 2D biomaterials aiding their design with improved functionalities. Finally, taking the bench-to-bedside as a focus, we conclude this review by proposing the current crucial issues/challenges and presenting the future development directions to advance the clinical translation of these emerging 2D biomaterials.
Collapse
Affiliation(s)
- Hui Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China. .,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China. .,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China.,Wenzhou Institute of Shanghai University, Wenzhou, 325000, P. R. China.,School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
121
|
Hao F, Wang L, Chen B, Qiu L, Nie J, Ma G. Bifunctional Smart Hydrogel Dressing with Strain Sensitivity and NIR-Responsive Performance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46938-46950. [PMID: 34559507 DOI: 10.1021/acsami.1c15312] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Smart response hydrogel has a broad application prospect in human health real-time monitoring due to its responses to a variety of stimuli. In this study, we developed a novel smart hydrogel dressing based on conductive MXene nanosheets and a temperature-sensitive PNIPAm polymer. γ-Methacryloxypropyltrimethoxysilane (KH570) was selected to functionalize the surface of MXene further to improve the interface compatibility between MXene and PNIPAm. Our prepared K-M/PNIPAm hydrogel was found to have a strain-sensitive property, as well as a respond to NIR phase change and volume change. When applied as a strain flexible sensor, this K-M/PNIPAm hydrogel exhibited a high strain sensitivity with a gauge factor (GF) of 4.491, a broad working strain range of ≈250%, a fast response of ∼160 ms, and good cycle stability (i.e., 3000 s at 20% strain). Besides, this K-M/PNIPAm hydrogel can be used as an efficient NIR light-controlled drug release carrier to achieve on-demand drug release. This work paved the way for the application of smart response hydrogel in human health real-time monitoring and NIR-controlled drug release functions.
Collapse
Affiliation(s)
- Fan Hao
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liangyu Wang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Binling Chen
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Jun Nie
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guiping Ma
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
122
|
Lim GP, Soon CF, Ma NL, Morsin M, Nayan N, Ahmad MK, Tee KS. Cytotoxicity of MXene-based nanomaterials for biomedical applications: A mini review. ENVIRONMENTAL RESEARCH 2021; 201:111592. [PMID: 34175291 DOI: 10.1016/j.envres.2021.111592] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/15/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
MXene based nanomaterial is an uprising two-dimensional material gaining tremendous scientific attentions due to its versatile properties for the applications in electronic devices, power generation, sensors, drug delivery, and biomedicine. However, the cytotoxic effects of MXene still remained a huge concern. Therefore, stringent analysis of biocompatibility of MXene is an essential requirement before introduction to human physiological system. Several in vitro and in vivo toxicological studies have been reported to investigate the interactions between MXenes with living organisms such as microbes, mammalian cells and animal models. The biological response and cytotoxicity reported were dependent on the physicochemical properties of MXene. The biocompatibility and cytotoxicity of MXene were dependent on size, dose, and surface coating. This review demystifies the in vitro and in vivo biocompatibility studies associated with MXene. Various methods proposed to mitigate the cytotoxicity of MXene for in vivo applications were revealed. The machine learning methods were developed to predict the cytotoxicity of experimentally synthesized MXene compounds. Finally, we also discussed the current research gaps of applying MXenes in biomedical interventions.
Collapse
Affiliation(s)
- Gim Pao Lim
- Biosensor and Bioengineering Lab, Microelectronics and Nanotechnology-Shamsuddin Research Center, Institute for Integrated Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Chin Fhong Soon
- Biosensor and Bioengineering Lab, Microelectronics and Nanotechnology-Shamsuddin Research Center, Institute for Integrated Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia.
| | - Nyuk Ling Ma
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Marlia Morsin
- Biosensor and Bioengineering Lab, Microelectronics and Nanotechnology-Shamsuddin Research Center, Institute for Integrated Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Nafarizal Nayan
- Biosensor and Bioengineering Lab, Microelectronics and Nanotechnology-Shamsuddin Research Center, Institute for Integrated Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Mohd Khairul Ahmad
- Biosensor and Bioengineering Lab, Microelectronics and Nanotechnology-Shamsuddin Research Center, Institute for Integrated Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Kian Sek Tee
- Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| |
Collapse
|
123
|
Song T, Wang H, Liu Y, Cai R, Yang D, Xiong Y. TPGS-Modified Long-Circulating Liposomes Loading Ziyuglycoside I for Enhanced Therapy of Myelosuppression. Int J Nanomedicine 2021; 16:6281-6295. [PMID: 34548791 PMCID: PMC8449650 DOI: 10.2147/ijn.s326629] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/07/2021] [Indexed: 01/02/2023] Open
Abstract
Background Ziyuglycoside I (ZgI), an active ingredient isolated from traditional Chinese medicine Sanguisorba officinalis L, has been demonstrated to increase the leucocytes and protect hematopoietic stem cells. However, the poor solubility and a short half-life of ZgI limit its bioavailability and efficacy. The D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) has been widely used to increase the solubility, improve the encapsulation rate, and extend the half-life of drugs. Methods Here, we formulated the TPGS-modified long-circulating liposomes loading ZgI with a sustained drug release and enhanced therapy for myelosuppression. ZgI-TPGS-liposomes were manufactured using a thin-film hydration technique, followed by characterizations of physicochemical properties, including the particle size, zeta potential, TEM, SEM, FTIR, XRD, stability, drug loading (DL), encapsulation efficiency (EE). The in vitro and in vivo delivery efficiency were further evaluated by cellular uptake, in vitro drug release and in vivo pharmacokinetics. Finally, therapeutic effect on myelosuppression was investigated. Results The ZgI-TPGS-liposomes had an particle size of 97.89 ± 1.42 nm and ZP of −28.65 ± 0.16 mV. It exhibited DL of 9.06 ± 0.76% and EE of 92.34 ± 3.83%, along with excellent storage stability, cellular uptake and sustained drug release to free ZgI and liposomes without TPGS. Additionally, the TPGS modified liposomes significantly enhanced the therapeutic effect of ZgI on CTX induced myelosuppression, which can be confirmed in the apoptosis inhibition and cell viability promotion of CTX injured HSPC-1 cells. Also, the mice in vivo pharmacodynamics demonstrated that TPGS liposomes promoted ZgI increasing the numbers of leucocytes and neutrophils in myelosuppression mice induced by CTX. Conclusion Our research suggest that TPGS-modified long-circulating liposomes loading ziyuglycoside I has potential application in myelosuppression therapy.
Collapse
Affiliation(s)
- Tingting Song
- Department of Pharmacy, Zunyi Medical University, Zunyi City, People's Republic of China
| | - Hong Wang
- Department of Pharmacy, Zunyi Medical University, Zunyi City, People's Republic of China
| | - Yue Liu
- Department of Pharmacy, Zunyi Medical University, Zunyi City, People's Republic of China
| | - Rongshan Cai
- Department of Pharmacy, Zunyi Medical University, Zunyi City, People's Republic of China
| | - Dezhi Yang
- Department of Pharmacy, Zunyi Medical University, Zunyi City, People's Republic of China
| | - Yongai Xiong
- Department of Pharmacy, Zunyi Medical University, Zunyi City, People's Republic of China
| |
Collapse
|
124
|
Song S, Jiang X, Shen H, Wu W, Shi Q, Wan M, Zhang J, Mo H, Shen J. MXene (Ti 3C 2) Based Pesticide Delivery System for Sustained Release and Enhanced Pest Control. ACS APPLIED BIO MATERIALS 2021; 4:6912-6923. [PMID: 35006991 DOI: 10.1021/acsabm.1c00607] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A multifunctional nanomaterials based pesticide delivery system provides a powerful strategy for the efficient utilization of pesticides. We present here the application of a 2D MXene (Ti3C2) nanomaterial for pesticide delivery and plant protection. Avermectin (AV), a hydrophobic and unstable insecticide, was chosen as the model pesticide. In our study, AV@Ti3C2 was formed by fast adsorption of AV on Ti3C2, with a maximum loading capacity of 81.44%. Compared with hydrophobic AV, AV@Ti3C2 exhibited significantly improved water solubility, which is beneficial for ensuring the bioactivity of pesticide. The AV@Ti3C2 nanoformulation showed pH responsive slow-release behavior, overcoming the burst-release of conventional AV formulations. Besides, AV@Ti3C2 possessed excellent photostability under UV irradiation, which prolonged the persistent period of AV. Therefore, AV@Ti3C2 performed sustaining and enhanced antipest activity, according to the bioactivity assay. Furthermore, AV@Ti3C2 showed satisfactory biosafety, with no negative effect to the germination and growth of maize. Our current research provides a potential candidate, AV@Ti3C2, for pest control, and also broadens the application of 2D MXene materials in plant protection and sustainable agriculture.
Collapse
Affiliation(s)
- Saijie Song
- National & Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Xuefeng Jiang
- National & Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - He Shen
- CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Wenneng Wu
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang 550005, P. R. China
| | - Qiaoqiao Shi
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, P. R. China
| | - Minghui Wan
- National & Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jun Zhang
- National & Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Hong Mo
- National & Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jian Shen
- National & Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| |
Collapse
|
125
|
Qu D, Jian Y, Guo L, Su C, Tang N, Zhang X, Hu W, Wang Z, Zhao Z, Zhong P, Li P, Du T, Haick H, Wu W. An Organic Solvent-Assisted Intercalation and Collection (OAIC) for Ti 3C 2T x MXene with Controllable Sizes and Improved Yield. NANO-MICRO LETTERS 2021; 13:188. [PMID: 34482476 PMCID: PMC8418585 DOI: 10.1007/s40820-021-00705-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/19/2021] [Indexed: 05/10/2023]
Abstract
A good method of synthesizing Ti3C2Tx (MXene) is critical for ensuring its success in practical applications, e.g., electromagnetic interference shielding, electrochemical energy storage, catalysis, sensors, and biomedicine. The main concerns focus on the moderation of the approach, yield, and product quality. Herein, a modified approach, organic solvent-assisted intercalation and collection, was developed to prepare Ti3C2Tx flakes. The new approach simultaneously solves all the concerns, featuring a low requirement for facility (centrifugation speed < 4000 rpm in whole process), gram-level preparation with remarkable yield (46.3%), a good electrical conductivity (8672 S cm-1), an outstanding capacitive performance (352 F g-1), and easy control over the dimension of Ti3C2Tx flakes (0.47-4.60 μm2). This approach not only gives a superb example for the synthesis of other MXene materials in laboratory, but sheds new light for the future mass production of Ti3C2Tx MXene.
Collapse
Affiliation(s)
- Danyao Qu
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, Shaanxi, 710126, People's Republic of China
| | - Yingying Jian
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, Shaanxi, 710126, People's Republic of China
| | - Lihao Guo
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, Shaanxi, 710126, People's Republic of China
| | - Chen Su
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, Shaanxi, 710126, People's Republic of China
| | - Ning Tang
- School of Aerospace Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, People's Republic of China
| | - Xingmao Zhang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, Shaanxi, 710126, People's Republic of China
| | - Wenwen Hu
- School of Aerospace Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, People's Republic of China
| | - Zheng Wang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, Shaanxi, 710126, People's Republic of China
| | - Zhenhuan Zhao
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, Shaanxi, 710126, People's Republic of China
| | - Peng Zhong
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, Shaanxi, 710126, People's Republic of China
| | - Peipei Li
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, Shaanxi, 710126, People's Republic of China
| | - Tao Du
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, Shaanxi, 710126, People's Republic of China.
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, 3200003, Haifa, Israel.
| | - Weiwei Wu
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, Shaanxi, 710126, People's Republic of China.
| |
Collapse
|
126
|
Wang S, Zhang Z, Wei S, He F, Li Z, Wang HH, Huang Y, Nie Z. Near-infrared light-controllable MXene hydrogel for tunable on-demand release of therapeutic proteins. Acta Biomater 2021; 130:138-148. [PMID: 34082094 DOI: 10.1016/j.actbio.2021.05.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/10/2021] [Accepted: 05/26/2021] [Indexed: 12/22/2022]
Abstract
Precise delivery of therapeutic protein drugs that specifically modulate desired cellular responses is critical in clinical practice. However, the spatiotemporal regulation of protein drugs release to manipulate the target cell population in vivo remains a huge challenge. Herein, we have rationally developed an injectable and Near-infrared (NIR) light-responsive MXene-hydrogel composed of Ti3C2, agarose, and protein that enables flexibly and precisely control the release profile of protein drugs to modulate cellular behaviors with high spatiotemporal precision remotely. As a proof-of-concept study, we preloaded hepatic growth factor (HGF) into the MXene@hydrogel (MXene@agarose/HGF) to activate the c-Met-mediated signaling by NIR light. We demonstrated NIR light-instructed cell diffusion, migration, and proliferation at the user-defined localization, further promoting angiogenesis and wound healing in vivo. Our approach's versatility was validated by preloading tumor necrotic factor-α (TNF-α) into the composite hydrogel (MXene@agarose/TNF-α) to promote the pro-apoptotic signaling pathway, achieving the NIR light-induced programmed cell deaths (PCD) of tumor spheroids. Taking advantage of the deep-tissue penetrative NIR light, we could eradicate the deep-seated tumors in a xenograft model exogenously. Therefore, the proposed MXene-hydrogel provides the impetus for developing therapeutic synthetic materials for light-controlled drug release under thick tissue, which will find promising applications in regenerative medicine and tumor therapy. STATEMENT OF SIGNIFICANCE: Current stimuli-responsive hydrogels for therapeutic proteins delivery mainly depend on self-degradation, passive diffusion, or the responsiveness to cues relevant to diseases. However, it remains challenging to spatiotemporally deliver protein-based drugs to manipulate the target cell population in vivo in an "on-demand" manner. Therefore, we have rationally constructed an injectable and Near-infrared (NIR) light-responsive composite hydrogel by embedding Ti3C2 MXene and protein drugs within an agarose hydrogel to enable the remote control of protein drugs delivery with high spatiotemporal precision. The NIR light-controlled release of the growth factor or cytokine has been carried out to regulate receptor-mediated cellular behaviors under deep tissue for skin wound healing or cancer therapy. This system will provide the potential for precision medicine through the development of intelligent drug delivery systems.
Collapse
Affiliation(s)
- Song Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082 P.R. China
| | - Zhenhua Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082 P.R. China
| | - Shaohua Wei
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082 P.R. China
| | - Fang He
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082 P.R. China
| | - Zhu Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082 P.R. China
| | - Hong-Hui Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082 P.R. China.
| | - Yan Huang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082 P.R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082 P.R. China.
| |
Collapse
|
127
|
Wu Y, Song X, Xu W, Sun KY, Wang Z, Lv Z, Wang Y, Wang Y, Zhong W, Wei J, Cai HL, Wu X. NIR-Activated Multimodal Photothermal/Chemodynamic/Magnetic Resonance Imaging Nanoplatform for Anticancer Therapy by Fe(II) Ions Doped MXenes (Fe-Ti 3 C 2 ). SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101705. [PMID: 34227235 DOI: 10.1002/smll.202101705] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/04/2021] [Indexed: 06/13/2023]
Abstract
2D MXene, Ti3 C2 (TC), has displayed enormous potential in applications in photothermal therapy (PTT), attributing to its biocompatibility and outstanding photothermal conversion capability. However, some tumor ablations are difficult to be realized completely by monotherapy due to the essential defects of monotherapy and intricate tumor microenvironment (TME). In this work, the appropriate doped Fe2+ ions are anchored into the layers of 2D ultrathin TC nanosheets (TC NSs) to synthesize a novel multifunctional nanoshell of Fe(II)-Ti3 C2 (FTC) through interlayer electrostatic adsorption. FTC possesses superior photothermal conversion efficiency (PTCE) than TC NSs, attributing to the enhanced conductivity promoted by interlaminar ferrous ion-channels. Moreover, Fenton reaction based on ferrous ions endows FTC the abilities of reactive oxide species (ROS) releasing and glutathione (GSH) suppression triggered by near-infrared (NIR) laser, featuring splendid biocompatibility and curative effect in hypoxic TME. Meanwhile, magnetic resonance imaging (MRI) responding in FTC reveals the potential as an integrated diagnosis and treatment nanoplatform. FTC could provide new insights into the development of multimoded synergistic nanoplatform for biological applications, especially breaking the shackles of MXenes merely used as a photo-thermal agent (PTA), adopting it to bioimaging sensor and drug loading.
Collapse
Affiliation(s)
- Yizhang Wu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing, 210093, China
| | - Xueru Song
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China
| | - Wei Xu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing, 210093, China
| | - Kuo-Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Zhaokun Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing, 210093, China
| | - Zhongyang Lv
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yue Wang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China
| | - Yong Wang
- Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an, 710126, China
| | - Wei Zhong
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing, 210093, China
| | - Jia Wei
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China
| | - Hong-Ling Cai
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing, 210093, China
| | - Xiaoshan Wu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
128
|
Jin L, Wang Y, Ouyang H, Liu Y, Zhu Z, Wang S, Xin H, Wang X. A versatile and low-toxicity material for photothermal therapy in deeper tissues. J Mater Chem B 2021; 9:6155-6162. [PMID: 34318782 DOI: 10.1039/d0tb03000g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The limited depth of the near infrared (NIR) response is one of the major flaws of the present photothermal therapy (PTT). In this article, thermosensitive polyurethane urea (TPUU) was synthesized by polymerization. Subsequent experiments showed that, compared with classical photosensitizers, TPUU has higher photothermal effects and lower cytotoxicity. These valuable properties could make the present PTT research provide more therapeutic options among different tissues and organs. As a practical example, TPUU was applied to regulate the intestinal flora through external NIR irradiation, which implied its promising expanded applications in deeper tissues.
Collapse
Affiliation(s)
- Liguo Jin
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330088, China.
| | | | | | | | | | | | | | | |
Collapse
|
129
|
Lin X, Li Z, Qiu J, Wang Q, Wang J, Zhang H, Chen T. Fascinating MXene nanomaterials: emerging opportunities in the biomedical field. Biomater Sci 2021; 9:5437-5471. [PMID: 34296233 DOI: 10.1039/d1bm00526j] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In recent years, there has been rapid progress in MXene research due to its distinctive two-dimensional structure and outstanding properties. Especially in biomedical applications, MXenes have attracted widespread favor with numerous studies on biosafety, bioimaging, therapy, and biosensing, although their development is still in the experimental stage. A comprehensive understanding of the current status of MXenes in biomedicine will promote their use in clinical applications. Here, we review advances in MXene research. First, we introduce the methods of synthesis, surface modification and functionalization of MXenes. Then, we summarize the biosafety and biocompatibility, paving the way for specific biomedical applications. On this basis, MXene nanostructures are described with respect to their use in antibacterial, bioimaging, cancer therapy, tissue regeneration and biosensor applications. Finally, we discuss MXene as a promising candidate material for further applications in biomedicine.
Collapse
Affiliation(s)
- Xiangping Lin
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Zhongjun Li
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Jinmei Qiu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Jianxin Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China. and Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Han Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| |
Collapse
|
130
|
He S, Sun X, Zhang H, Yuan C, Wei Y, Li J. Preparation Strategies and Applications of MXene-Polymer Composites: A Review. Macromol Rapid Commun 2021; 42:e2100324. [PMID: 34254708 DOI: 10.1002/marc.202100324] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/28/2021] [Indexed: 01/07/2023]
Abstract
As a new member of the 2D material family, MXene integrates high metallic conductivity and hydrophilic property simultaneously. It shows tremendous potential in fields of energy storage, sensing, electromagnetic shielding, and so forth. Due to the abundant surface functional groups, the physical and chemical properties of MXene can be tuned by the formation of MXene-polymer composites. The introduction of polymers can expand the interlayer spacing, reduce the distance of ion/electron transport, improve the surface hydrophilicity, and thus guide the assembly of MXene-polymer structures. Herein, the preparation strategies of MXene-polymer composites including physical mixing, surface modification, such as anchoring through TiN and Ti-O-C bonds, bonding through esterification, grafting functional groups through TiOSi/TiOP bonds, photograft reaction, as well as in situ polymerization are highlighted. In addition, the possible mechanisms for each strategy are explained. Furthermore, the applications of MXene-polymer composites obtained by different preparation strategies are summarized. Finally, perspectives and challenges are presented for the designs of MXene-polymer composites.
Collapse
Affiliation(s)
- Shaoshuai He
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Xia Sun
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Hong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.,Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Caideng Yuan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Yuping Wei
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300350, China.,Department of Chemistry, School of Science, Tianjin University, Tianjin, 300354, China
| | - Junjie Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.,Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300350, China
| |
Collapse
|
131
|
Tu H, Zhu M, Duan B, Zhang L. Recent Progress in High-Strength and Robust Regenerated Cellulose Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000682. [PMID: 32686231 DOI: 10.1002/adma.202000682] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/16/2020] [Indexed: 05/22/2023]
Abstract
High-strength petroleum-based materials like plastics have been widely used in various fields, but their nonbiodegradability has caused serious pollution problems. Cellulose, as the most abundant sustainable polymer, has a great chance to act as the ideal substitute for plastics due to its low cost, wide availability, biodegradability, etc. Herein, the recent achievements for developing cellulose "green" solvents and regenerated cellulose materials with high strength via the "bottom-up" route are presented. Cellulose can be regenerated to produce films/membranes, hydrogels/aerogels, filaments/fibers, microspheres/beads, bioplastics, etc., which show potential applications in textiles, biomedicine, energy storage, packaging, etc. Importantly, these cellulose-based materials can be biodegraded in soil and oceans, reducing environmental pollution. The cellulose solvents, dissolving mechanism, and strategies for constructing the regenerated cellulose functional materials with high strength and performances, together with the current achievements and urgent challenges are summarized, and some perspectives are also proposed. The near future will be an exciting era for high-strength biodegradable and renewable materials. The hope is that many environmentally friendly materials with good properties and low cost will be produced for commercial use, which will be beneficial for sustainable development in the world.
Collapse
Affiliation(s)
- Hu Tu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Mengxiang Zhu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Bo Duan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Lina Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
132
|
Rabiee N, Bagherzadeh M, Jouyandeh M, Zarrintaj P, Saeb MR, Mozafari M, Shokouhimehr M, Varma RS. Natural Polymers Decorated MOF-MXene Nanocarriers for Co-delivery of Doxorubicin/pCRISPR. ACS APPLIED BIO MATERIALS 2021; 4:5106-5121. [PMID: 35007059 DOI: 10.1021/acsabm.1c00332] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A one-pot and facile method with assistance of high gravity was applied for the synthesis of inorganic two-dimensional MOF-5 embedded MXene nanostructures. The innovative inorganic MXene/MOF-5 nanostructure was applied in co-delivery of drug and gene, and to increase its bioavailability and interaction with the pCRISPR, the nanomaterial was coated with alginate and chitosan. The polymer-coated nanosystems were fully characterized, and the sustained DOX delivery and comprehensive cytotoxicity studies were conducted on the HEK-293, PC12, HepG2, and HeLa cell lines, demonstrating acceptable and excellent cell viability at both very low (0.1 μg.mL-1) and high (10 μg·mL-1) concentrations. The chitosan-coated nanocarriers showed superior relative cell viability compared to others, more than 60% on average of relative cell viability in all of the cell lines. Then, alginate-coated nanocarriers ranked at second place on the higher relative cell viability, more than 50% on average for all of the cell lines. Also, MTT results showed a complete dose-dependence, and by increasing the time of treatment from 24 to 72 h, the relative cell viability decreased by a meaningful slope; however, this decrease was optimized by coating the nanocarrier with chitosan and alginate. The nanosystems were also tagged with pCRISPR to analyze the potential application in the co-delivery of drug/gene. CLSM images of the HEK-293 and HeLa cell lines unveiled successful delivery of pCRISPR into the cells, and the enhanced green fluorescent protein (EGFP) reached up to ca. 26% for the HeLa cell line. Also, a considerable drug payload of 35.7% was achieved, which would be because of the interactions between the nanocarrier and the doxorubicin. In this unprecedented report pertaining to the synthesis of MXene assisted by a MOF and high-gravity technique, the methodology and the optimized ensuing MXene/MOF-5 nanosystems can be further developed for the co-delivery of drug/gene in animal models.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran 11155-3516, Iran
| | - Mojtaba Bagherzadeh
- Department of Chemistry, Sharif University of Technology, Tehran 11155-3516, Iran
| | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran142411, Iran
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, Oklahoma 74078, United States
| | - Mohammad Reza Saeb
- Laboratoire Matériaux Optiques, Photonique & Systèms (LMOPS), Université de Lorraine, CentraleSupélec, F-57000 Metz, France
| | - Masoud Mozafari
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto M5S 1A1, Canada
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Rajender S Varma
- Regional Center of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
133
|
Iravani S, Varma RS. MXenes for Cancer Therapy and Diagnosis: Recent Advances and Current Challenges. ACS Biomater Sci Eng 2021; 7:1900-1913. [PMID: 33851823 DOI: 10.1021/acsbiomaterials.0c01763] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MXenes endowed with several attractive physicochemical attributes, namely, specific large surface area, significant electrical conductivity, magnetism, low toxicity, luminescence, and high biocompatibility, have been considered as promising candidates for cancer therapy and theranostics. These two-dimensional (2D) nanostructures endowed with photothermal, chemotherapeutic synergistic, and photodynamic effects have shown promising potential for decidedly effectual and noninvasive anticancer treatments. They have been explored for photothermal/chemo-photothermal therapy (PTT) and for targeted anticancer drug delivery. Remarkably, MXenes with their unique optical properties have been employed for bioimaging and biosensing, and their excellent light-to-heat transition competence renders them an ideal biocompatible and decidedly proficient nanoscaled agent for PTT appliances. However, several important challenging issues still linger regarding their stability in physiological environments, sustained/controlled release of drugs, and biodegradability that need to be addressed. This Perspective emphasizes the latest advancements of MXenes and MXene-based materials in the domain of targeted cancer therapy/diagnosis, with a focus on the current trends, important challenges, and future perspectives.
Collapse
Affiliation(s)
- Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
134
|
Lugoloobi I, Maniriho H, Jia L, Namulinda T, Shi X, Zhao Y. Cellulose nanocrystals in cancer diagnostics and treatment. J Control Release 2021; 336:207-232. [PMID: 34102221 DOI: 10.1016/j.jconrel.2021.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022]
Abstract
Cancer is currently a major threat to public health, being among the principal causes of death to the global population. With carcinogenesis mechanisms, cancer invasion, and metastasis remaining blurred, cancer diagnosis and novel drug delivery approaches should be developed urgently to enable management and treatment. A dream break-through would be a non-invasive instantaneous monitoring of cancer initiation and progression to fast-track diagnosis for timely specialist treatment decisions. These innovations would enhance the established treatment protocols, unlimited by evasive biological complexities during tumorigenesis. It is therefore contingent that emerging and future scientific technologies be equally biased towards such innovations by exploiting the apparent properties of new developments and materials especially nanomaterials. CNCs as nanomaterials have undisputable physical and excellent biological properties that enhanced their interest as biomedical materials. This article therefore highlights CNCs utility in cancer diagnosis and therapy. Their extraction, properties, modification, in-vivo/in-vitro medical applications, biocompatibility, challenges and future perspectives are precisely discussed.
Collapse
Affiliation(s)
- Ishaq Lugoloobi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, People's Republic of China; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China.
| | - Hillary Maniriho
- Department of Biochemistry and Human Molecular Genetics, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Liang Jia
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Tabbisa Namulinda
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, People's Republic of China; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Yili Zhao
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| |
Collapse
|
135
|
Liu H, Talebian S, Vine KL, Li Z, Foroughi J. Implantable coaxial nanocomposite biofibers for local chemo‐photothermal combinational cancer therapy. NANO SELECT 2021. [DOI: 10.1002/nano.202100124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Hanghang Liu
- Center for Molecular Imaging and Nuclear Medicine State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD‐X) Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou P. R. China
| | - Sepehr Talebian
- Intelligent Polymer Research Institute University of Wollongong NSW Australia
- Illawarra Health and Medical Research Institute University of Wollongong Wollongong NSW Australia
| | - Kara L. Vine
- Illawarra Health and Medical Research Institute University of Wollongong Wollongong NSW Australia
- School of Chemistry and Molecular Bioscience Faculty of Science Medicine and Health University of Wollongong Wollongong NSW Australia
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD‐X) Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou P. R. China
| | - Javad Foroughi
- Illawarra Health and Medical Research Institute University of Wollongong Wollongong NSW Australia
- School of Electrical, Computer and Telecommunications Engineering Faculty of Engineering and Information Sciences University of Wollongong NSW Australia
- University of Essen and the Westgerman Heart and Vascular Center in Germany, University of Duisburg‐Essen Essen Germany
| |
Collapse
|
136
|
Tan D, Jiang C, Cao X, Sun N, Li Q, Bi S, Song J. Recent advances in MXene-based force sensors: a mini-review. RSC Adv 2021; 11:19169-19184. [PMID: 35478618 PMCID: PMC9033571 DOI: 10.1039/d1ra02857j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/18/2021] [Indexed: 01/01/2023] Open
Abstract
As an emerging two-dimensional (2D) material, MXene has excellent conductivity and abundant surface functional groups. Its unique layered structure, large surface area, and prominent hydrophilicity show remarkable performances, which allow abundant possibilities to work as the sensing element alone or combined with other auxiliary materials. As a senior member of MXenes, Ti3C2Tx has shown great potential in the development of force sensors. The research development of force sensors based on Ti3C2Tx MXene is reviewed in this paper, presenting the advanced development of force sensors in various forms and summaring their current preparation strategies and characteristics. In addition, the corresponding challenges and prospects of the MXene-based sensors are also discussed for future research. As an emerging two-dimensional (2D) material, MXene has excellent conductivity and abundant surface functional groups.![]()
Collapse
Affiliation(s)
- Dongchen Tan
- Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education, Dalian University of Technology Dalian 116024 China
| | - Chengming Jiang
- Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education, Dalian University of Technology Dalian 116024 China
| | - Xuguang Cao
- Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education, Dalian University of Technology Dalian 116024 China
| | - Nan Sun
- Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education, Dalian University of Technology Dalian 116024 China
| | - Qikun Li
- Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education, Dalian University of Technology Dalian 116024 China
| | - Sheng Bi
- Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education, Dalian University of Technology Dalian 116024 China
| | - Jinhui Song
- Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education, Dalian University of Technology Dalian 116024 China
| |
Collapse
|
137
|
Wang Z, Liu Y, Wang Z, Huang X, Huang W. Hydrogel‐based composites: Unlimited platforms for biosensors and diagnostics. VIEW 2021. [DOI: 10.1002/viw.20200165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Zeyi Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing China
| | - Yanlei Liu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing China
| | - Zhiwei Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University Xi'an China
| | - Xiao Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University Xi'an China
| |
Collapse
|
138
|
Wu Z, Shi J, Song P, Li J, Cao S. Chitosan/hyaluronic acid based hollow microcapsules equipped with MXene/gold nanorods for synergistically enhanced near infrared responsive drug delivery. Int J Biol Macromol 2021; 183:870-879. [PMID: 33940062 DOI: 10.1016/j.ijbiomac.2021.04.164] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 12/27/2022]
Abstract
Ti3C2 MXenes, a novel two-dimensional material, have attracted lots of attention in biomedical filed for its large surface area and excellent near-infrared (NIR) responsiveness. In this paper, a pH/near-infrared (NIR) multi-responsive drug delivery platform consisted of hollow hydroxyapatite (HAP), chitosan (CS)/hyaluronic acid (HA) multilayers, gold nanorods (AuNRs) and MXene had been fabricated via a layer-by-layer (LbL) approach. Chitosan/hyaluronic acid multilayers were deposited on the surface of hollow HAP to retard the burst release of DOX in the initial delivery stage. MXenes and AuNRs equipped on the surface of hybrid matrix greatly enhanced the photothermal conversion efficiency of the microcapsules. Due to the collapse of electrostatic force among chitosan/hyaluronic acid multilayers and the dissolution of HAP under acidic condition, as well as the synergistically enhanced photothermal effect between MXene and AuNRs, HAP/CS/HA/MXene/AuNRs microcapsules exhibited outstanding pH-/NIR-responsive drug delivery properties. The present paper provides an attractive method to prepare chitosan/hyaluronic acid based pH/NIR multi-responsive hybrid microcapsules with excellent photothermal conversion efficiency and biocompatibility, which has great potential in the field of remotely controlled drug delivery.
Collapse
Affiliation(s)
- Zheng Wu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Jun Shi
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China.
| | - Pingan Song
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Jingguo Li
- People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450003, China
| | - Shaokui Cao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
139
|
Pandey A, Nikam AN, Padya BS, Kulkarni S, Fernandes G, Shreya AB, García MC, Caro C, Páez-Muñoz JM, Dhas N, García-Martín ML, Mehta T, Mutalik S. Surface architectured black phosphorous nanoconstructs based smart and versatile platform for cancer theranostics. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
140
|
Injectable Hydrogel for Cu 2+ Controlled Release and Potent Tumor Therapy. Life (Basel) 2021; 11:life11050391. [PMID: 33925834 PMCID: PMC8147102 DOI: 10.3390/life11050391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Disulfiram (DSF) is an important drug for the treatment and management of alcohol dependency. This drug has been approved by US-FDA, and its activity against the tumor is dependent on copper ion (Cu2+). However, the copper toxicity (caused via external copper) and its intrinsic anfractuous distribution in the human body have adversely suppressed the mechanism of DSF in in vivo. In this study, we aimed to design an injectable hydrogel, as CRC (Cu2+ release controller) for the effective treatment of tumors. The hydrogels of agarose have been used for wrapping of CuCl2, and hierarchical microparticles (HMP) for the generation of CRC system. When the laser irradiations (808 nm) have been provided to the system, light energy is transferred into heat energy, which results in the hydrogel hydrolysis (reversible) due to the overheating effect. This is followed by a reaction with DSF (pre-injected) to suppress tumor progression. Hence, the CRC system brings innovative ideas for designing of a Cu2+ delivery system.
Collapse
|
141
|
Wu J, Williams GR, Zhu Y, Hu T, Wang H, Zhao W, Liang R, Weng X, Wei M. Ultrathin chalcogenide nanosheets for photoacoustic imaging-guided synergistic photothermal/gas therapy. Biomaterials 2021; 273:120807. [PMID: 33848730 DOI: 10.1016/j.biomaterials.2021.120807] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/24/2021] [Accepted: 04/01/2021] [Indexed: 01/15/2023]
Abstract
Previous preclinical and clinical studies have shown that using only a single therapy makes it difficult to completely eradicate tumors and restrain cancer metastasis. To overcome this challenge, multi-modal synergistic treatments have attracted considerable attention. Herein, an ultrathin Cu-loaded CoCuFe-selenide (CCFS) was prepared by a facile topotactic transformation from CoCuFe layered double hydroxide (LDH) nanosheets (NSs), followed by surface modification with polyvinyl pyrrolidone (PVP) and l-arginine (L-Arg). The resultant CCFS-PVP-L-Arg (CPA) system shows excellent synergetic photothermal and gas therapy (PTT/GT). The CCFS NSs have strong LSPR absorbance characteristic, with enhanced light absorption in the near-infrared (NIR) region. This endows the CPA nanocomposite with an outstanding photothermal conversion efficiency of 72.0% (pH 7.4) and 81.0% (pH 5.4), among the highest reported for 2D chalcogenide nanomaterials. In addition, NO release from CPA is triggered by decomposition of L-Arg in the H2O2-rich and acidic tumor microenvironment, permitting localized NO gas therapy in the tumor site. In vitro experiments revealed 91.8% apoptosis of HepG2 cells, and in vivo studies showed complete tumor elimination upon treatment with the CPA nanocomposite under NIR irradiation. To the best of our knowledge, this is the first report of combined defect-induced high-efficiency PTT with H2O2 and pH targeted GT.
Collapse
Affiliation(s)
- Jingjing Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Yu Zhu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Tingting Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Hui Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Wei Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| | - Xisheng Weng
- Department of Orthopaedics, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Min Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| |
Collapse
|
142
|
Chai LX, Fan XX, Zuo YH, Zhang B, Nie GH, Xie N, Xie ZJ, Zhang H. Low-dimensional nanomaterials enabled autoimmune disease treatments: Recent advances, strategies, and future challenges. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
143
|
Zamhuri A, Lim GP, Ma NL, Tee KS, Soon CF. MXene in the lens of biomedical engineering: synthesis, applications and future outlook. Biomed Eng Online 2021; 20:33. [PMID: 33794899 PMCID: PMC8017618 DOI: 10.1186/s12938-021-00873-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/22/2021] [Indexed: 02/12/2023] Open
Abstract
MXene is a recently emerged multifaceted two-dimensional (2D) material that is made up of surface-modified carbide, providing its flexibility and variable composition. They consist of layers of early transition metals (M), interleaved with n layers of carbon or nitrogen (denoted as X) and terminated with surface functional groups (denoted as Tx/Tz) with a general formula of Mn+1XnTx, where n = 1-3. In general, MXenes possess an exclusive combination of properties, which include, high electrical conductivity, good mechanical stability, and excellent optical properties. MXenes also exhibit good biological properties, with high surface area for drug loading/delivery, good hydrophilicity for biocompatibility, and other electronic-related properties for computed tomography (CT) scans and magnetic resonance imaging (MRI). Due to the attractive physicochemical and biocompatibility properties, the novel 2D materials have enticed an uprising research interest for application in biomedicine and biotechnology. Although some potential applications of MXenes in biomedicine have been explored recently, the types of MXene applied in the perspective of biomedical engineering and biomedicine are limited to a few, titanium carbide and tantalum carbide families of MXenes. This review paper aims to provide an overview of the structural organization of MXenes, different top-down and bottom-up approaches for synthesis of MXenes, whether they are fluorine-based or fluorine-free etching methods to produce biocompatible MXenes. MXenes can be further modified to enhance the biodegradability and reduce the cytotoxicity of the material for biosensing, cancer theranostics, drug delivery and bio-imaging applications. The antimicrobial activity of MXene and the mechanism of MXenes in damaging the cell membrane were also discussed. Some challenges for in vivo applications, pitfalls, and future outlooks for the deployment of MXene in biomedical devices were demystified. Overall, this review puts into perspective the current advancements and prospects of MXenes in realizing this 2D nanomaterial as a versatile biological tool.
Collapse
Affiliation(s)
- Adibah Zamhuri
- Biosensor and Bioengineering Lab, Microelectronics and Nanotechnology-Shamsuddin Research Centre, Institute for Integrated Engineering, Universiti Tun Hussein Onn Malaysia, Parit Raja, 86400, Batu Pahat, Johor, Malaysia
| | - Gim Pao Lim
- Biosensor and Bioengineering Lab, Microelectronics and Nanotechnology-Shamsuddin Research Centre, Institute for Integrated Engineering, Universiti Tun Hussein Onn Malaysia, Parit Raja, 86400, Batu Pahat, Johor, Malaysia
| | - Nyuk Ling Ma
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Kian Sek Tee
- Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, Parit Raja, 86400, Batu Pahat, Johor, Malaysia
| | - Chin Fhong Soon
- Biosensor and Bioengineering Lab, Microelectronics and Nanotechnology-Shamsuddin Research Centre, Institute for Integrated Engineering, Universiti Tun Hussein Onn Malaysia, Parit Raja, 86400, Batu Pahat, Johor, Malaysia.
- Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, Parit Raja, 86400, Batu Pahat, Johor, Malaysia.
| |
Collapse
|
144
|
Chen S, Dong Y, Ma S, Ren J, Yang X, Wang Y, Lü S. Superstretching MXene Composite Hydrogel as a Bidirectional Stress Response Thixotropic Sensor. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13629-13636. [PMID: 33689278 DOI: 10.1021/acsami.0c21598] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The arrival of the era of artificial intelligence is constantly advancing the development of flexible electronic materials. However, low mechanical properties, nonflexible signal transmission, and insensitive signal output have restricted their development as sensors. In this study, a superstretching MXene composite conductive hydrogel was developed with a tensile strain of more than 1800%. The hydrogel was used as a flexible wearable sensor to detect human motion signals in real time. High sensitivity was achieved using the sensor to discern multidirectional human motions, such as bending of human joints, throat vocalization, swallowing, and pulse beat. In addition, rapid resilience was observed for the MXene composite hydrogel after unloading reverse compressive stress, which can quickly cause a specific current response in the micropressure area without leaving any traces. This thixotropic sensor achieves a rapid response to bidirectional stress and has huge application prospects in the field of human body motion detection and national defense information encryption.
Collapse
Affiliation(s)
- Siqi Chen
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yongjie Dong
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Song Ma
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jiayuan Ren
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xipeng Yang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yingjie Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Shaoyu Lü
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
145
|
Hu R, Liao G, Huang Z, Qiao H, Liu H, Shu Y, Wang B, Qi X. Recent advances of monoelemental 2D materials for photocatalytic applications. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124179. [PMID: 33261976 DOI: 10.1016/j.jhazmat.2020.124179] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 06/12/2023]
Abstract
As a sustainable environmental governance strategy and energy conversion method, photocatalysis has considered to have great potential in this field due to its excellent optical properties and has become one of the most attractive technologies today. Among 2D materials, the emerging two-dimensional (2D) monoelemental materials mainly distributed in the -IIIA, -IVA, -VA and -VIA groups and show excellent performance in solar energy conversion due to their graphene-like 2D atomic structure and unique properties, thereby drawing increasing attention. This review briefly summarizes the preparation processes and fundamental properties of 2D single-element nanomaterials, as well as various modification strategies and adjustment mechanisms to enhance their photocatalytic properties. In particular, this article comprehensively discusses the related practical applications of 2D single-element materials in the field of photocatalysis, including photocatalytic degradation for contaminants removal, photocatalytic pathogen inactivation, photocatalytic fouling control and photocatalytic energy conversion. This review will provide some new opportunities for the rational design of other excellent photocatalysts based on 2D monoelemental materials, as well as present tremendous novel ideas for 2D monoelemental materials in other environmental conservation and energy-related applications, such as supercapacitors, electrocatalysis, solar cells, and so on.
Collapse
Affiliation(s)
- Rong Hu
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronic, Xiangtan University, Hunan 411105, PR China
| | - GengCheng Liao
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronic, Xiangtan University, Hunan 411105, PR China
| | - Zongyu Huang
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronic, Xiangtan University, Hunan 411105, PR China.
| | - Hui Qiao
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronic, Xiangtan University, Hunan 411105, PR China
| | - Huating Liu
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronic, Xiangtan University, Hunan 411105, PR China
| | - Yiqing Shu
- College of Physics and Optoelectronic Engineerin, Shenzhen University, Shenzhen 518060, PR China; Faculty of Information Technology Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, PR China
| | - Bing Wang
- College of Physics and Optoelectronic Engineerin, Shenzhen University, Shenzhen 518060, PR China.
| | - Xiang Qi
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronic, Xiangtan University, Hunan 411105, PR China.
| |
Collapse
|
146
|
Gao L, Bao W, Kuklin AV, Mei S, Zhang H, Ågren H. Hetero-MXenes: Theory, Synthesis, and Emerging Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004129. [PMID: 33458878 DOI: 10.1002/adma.202004129] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/26/2020] [Indexed: 05/27/2023]
Abstract
Since their discovery in 2011, MXenes (abbreviation for transition metal carbides, nitrides, and carbonitrides) have emerged as a rising star in the family of 2D materials owing to their unique properties. Although the primary research interest is still focused on pristine MXenes and their composites, much attention has in recent years been paid also to MXenes with diverse compositions. To this end, this work offers a comprehensive overview of the progress on compositional engineering of MXenes in terms of doping and substituting from theoretical predictions to experimental investigations. Synthesis and properties are briefly introduced for pristine MXenes and then reviewed for hetero-MXenes. Theoretical calculations regarding the doping/substituting at M, X, and T sites in MXenes and the role of vacancies are summarized. After discussing the synthesis of hetero-MXenes with metal/nonmetal (N, S, P) elements by in situ and ex situ strategies, the focus turns to their emerging applications in various fields such as energy storage, electrocatalysts, and sensors. Finally, challenges and prospects of hetero-MXenes are addressed. It is anticipated that this review will be beneficial to bridge the gap between predictions and experiments as well as to guide the future design of hetero-MXenes with high performance.
Collapse
Affiliation(s)
- Lingfeng Gao
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, P. R. China
| | - Wenli Bao
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, P. R. China
| | - Artem V Kuklin
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, SE-751 20, Sweden
| | - Shan Mei
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Han Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, SE-751 20, Sweden
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan, 475004, China
| |
Collapse
|
147
|
Li Z, Liu Y, Fang X, Shu Z. Nanomaterials Enhance the Immunomodulatory Effect of Molecular Targeted Therapy. Int J Nanomedicine 2021; 16:1631-1661. [PMID: 33688183 PMCID: PMC7935456 DOI: 10.2147/ijn.s290346] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/23/2021] [Indexed: 01/22/2023] Open
Abstract
Molecular targeted therapy, a tumor therapy strategy that inhibits specific oncogenic targets, has been shown to modulate the immune response. In addition to directly inhibiting the proliferation and metastasis of tumor cells, molecular targeted drugs can activate the immune system through a variety of mechanisms, including by promoting tumor antigen processing and presentation, increasing intratumoral T cell infiltration, enhancing T cell activation and function, and attenuating the immunosuppressive effect of the tumor microenvironment. However, poor water solubility, insufficient accumulation at the tumor site, and nonspecific targeting of immune cells limit their application. To this end, a variety of nanomaterials have been developed to overcome these obstacles and amplify the immunomodulatory effects of molecular targeted drugs. In this review, we summarize the impact of molecular targeted drugs on the antitumor immune response according to their mechanisms, highlight the advantages of nanomaterials in enhancing the immunomodulatory effect of molecular targeted therapy, and discuss the current challenges and future prospects.
Collapse
Affiliation(s)
- Zhongmin Li
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| | - Yilun Liu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| | - Xuedong Fang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| | - Zhenbo Shu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| |
Collapse
|
148
|
Liu W, Dong A, Wang B, Zhang H. Current Advances in Black Phosphorus-Based Drug Delivery Systems for Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003033. [PMID: 33717847 PMCID: PMC7927632 DOI: 10.1002/advs.202003033] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/22/2020] [Indexed: 05/12/2023]
Abstract
Cancer has been one of the major threats to the lives of human beings for centuries. Traditional therapy is more or less faced with certain defects, such as poor targeting, easy degradation, high side effects, etc. Therefore, in order to improve the treatment efficiency of drugs, an intelligent drug delivery system (DDS) is considered as a promising solution strategy. Due to their special structure and large specific surface area, 2D materials are considered to be a good platform for drug delivery. Black phosphorus (BP), as a new star of the 2D family, is recommended to have the potential to construct DDS by virtue of its outstanding photothermal therapy (PTT), photodynamic therapy (PDT), and biodegradable properties. This tutorial review is intended to provide an introduction of the current advances in BP-based DDSs for cancer therapy, which covers topics from its construction, classified by the types of platforms, to the stimuli-responsive controlled drug release. Moreover, their cancer therapy applications including mono-, bi-, and multi-modal synergistic cancer therapy as well as the research of biocompatibility are also discussed. Finally, the current status and future prospects of BP-based DDSs for cancer therapy are summarized.
Collapse
Affiliation(s)
- Wenxin Liu
- College of Chemistry and Chemical EngineeringInner Mongolia UniversityHohhot010021P. R. China
- Engineering Research Center of Dairy Quality and Safety Control TechnologyMinistry of EducationInner Mongolia UniversityHohhot010021P. R. China
| | - Alideertu Dong
- College of Chemistry and Chemical EngineeringInner Mongolia UniversityHohhot010021P. R. China
- Engineering Research Center of Dairy Quality and Safety Control TechnologyMinistry of EducationInner Mongolia UniversityHohhot010021P. R. China
| | - Bing Wang
- Shenzhen Engineering Laboratory of Phosphorene and OptoelectronicsKey Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and OptoelectronicsKey Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
| |
Collapse
|
149
|
Ge G, Zhang YZ, Zhang W, Yuan W, El-Demellawi JK, Zhang P, Di Fabrizio E, Dong X, Alshareef HN. Ti 3C 2T x MXene-Activated Fast Gelation of Stretchable and Self-Healing Hydrogels: A Molecular Approach. ACS NANO 2021; 15:2698-2706. [PMID: 33470788 DOI: 10.1021/acsnano.0c07998] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
MXene-based hydrogels, a flourishing family of soft materials, have recently emerged as promising candidates for stretchable electronics. Despite recent progress, most works use MXenes as conductive nanofillers. Herein, by tuning the molecular interactions between MXene nanosheets and other constituents within the hydrogels, we demonstrate Ti3C3Tx MXene can act as a versatile cross-linker to activate the fast gelation of a wide range of hydrogels, starting from various monomer- and polymer-based precursors. The gelation behavior varies significantly across hydrogels. In general, the fast gelation mechanism is attributed to the easier generation of free radicals with the help of Ti3C2Tx MXene and the presence of multiscale molecular interactions between MXene and polymers. The use of MXene as a dynamic cross-linker leads to superior mechanical properties, adhesion, and self-healing ability. Owing to the inherent photothermal behavior of Ti3C3Tx and the heterogeneous phase-transforming features of polymers, a polymer-MXene hydrogel is demonstrated to exhibit distinctive thermosensation-based actuation upon near-infrared illumination, accompanied by rapid shape transformation.
Collapse
Affiliation(s)
- Gang Ge
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
- Physical Science and Engineering Division, Materials Science & Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yi-Zhou Zhang
- Physical Science and Engineering Division, Materials Science & Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Wenli Zhang
- Physical Science and Engineering Division, Materials Science & Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Wei Yuan
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Jehad K El-Demellawi
- Physical Science and Engineering Division, Materials Science & Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Peng Zhang
- Physical Science and Engineering Division, Materials Science & Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Enzo Di Fabrizio
- Physical Science and Engineering Division, Materials Science & Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Husam N Alshareef
- Physical Science and Engineering Division, Materials Science & Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
150
|
Hassanzadeh P. The capabilities of nanoelectronic 2-D materials for bio-inspired computing and drug delivery indicate their significance in modern drug design. Life Sci 2021; 279:119272. [PMID: 33631171 DOI: 10.1016/j.lfs.2021.119272] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
Remarkable advancements in the computational techniques and nanoelectronics have attracted considerable interests for development of highly-sophisticated materials (Ms) including the theranostics with optimal characteristics and innovative delivery systems. Analyzing the huge amounts of multivariate data and solving the newly-emerged complicated problems including the healthcare-related ones have created increasing demands for improving the computational speed and minimizing the consumption of energy. Shifting towards the non-von Neumann approaches enables performing specific computational tasks and optimizing the processing of signals. Besides usefulness for neuromorphic computing and increasing the efficiency of computation energy, 2-D electronic Ms are capable of optical sensing with ultra-fast and ultra-sensitive responses, mimicking the neurons, detection of pathogens or biomolecules, and prediction of the progression of diseases, assessment of the pharmacokinetics/pharmacodynamics of therapeutic candidates, mimicking the dynamics of the release of neurotransmitters or fluxes of ions that might provide a deeper knowledge about the computations and information flow in the brain, and development of more effective treatment protocols with improved outcomes. 2-D Ms appear as the major components of the next-generation electronically-enabled devices for highly-advanced computations, bio-imaging, diagnostics, tissue engineering, and designing smart systems for site-specific delivery of therapeutics that might result in the reduced adverse effects of drugs and improved patient compliance. This manuscript highlights the significance of 2-D Ms in the neuromorphic computing, optimizing the energy efficiency of the multi-step computations, providing novel architectures or multi-functional systems, improved performance of a variety of devices and bio-inspired functionalities, and delivery of theranostics.
Collapse
Affiliation(s)
- Parichehr Hassanzadeh
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran.
| |
Collapse
|