101
|
Nauman S, Lubineau G, Alharbi HF. Post Processing Strategies for the Enhancement of Mechanical Properties of ENMs (Electrospun Nanofibrous Membranes): A Review. MEMBRANES 2021; 11:membranes11010039. [PMID: 33466446 PMCID: PMC7824849 DOI: 10.3390/membranes11010039] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022]
Abstract
Electrospinning is a versatile technique which results in the formation of a fine web of fibers. The mechanical properties of electrospun fibers depend on the choice of solution constituents, processing parameters, environmental conditions, and collector design. Once electrospun, the fibrous web has little mechanical integrity and needs post fabrication treatments for enhancing its mechanical properties. The treatment strategies include both the chemical and physical techniques. The effect of these post fabrication treatments on the properties of electrospun membranes can be assessed through either conducting tests on extracted single fiber specimens or macro scale testing on membrane specimens. The latter scenario is more common in the literature due to its simplicity and low cost. In this review, a detailed literature survey of post fabrication strength enhancement strategies adopted for electrospun membranes has been presented. For optimum effect, enhancement strategies have to be implemented without significant loss to fiber morphology even though fiber diameters, porosity, and pore tortuosity are usually affected. A discussion of these treatments on fiber crystallinity, diameters, and mechanical properties has also been produced. The choice of a particular post fabrication strength enhancement strategy is dictated by the application area intended for the membrane system and permissible changes to the initial fibrous morphology.
Collapse
Affiliation(s)
- Saad Nauman
- COHMAS Laboratory, Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- MS&E Department, Institute of Space Technology, Islamabad 44000, Pakistan
- Correspondence: (S.N.); (G.L.); Tel.: +92-343-5855387 or +92-051-9075567 (S.N.); +966-(12)-808-2983 (G.L.); Fax: +92-51-9273310 (S.N.)
| | - Gilles Lubineau
- COHMAS Laboratory, Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Correspondence: (S.N.); (G.L.); Tel.: +92-343-5855387 or +92-051-9075567 (S.N.); +966-(12)-808-2983 (G.L.); Fax: +92-51-9273310 (S.N.)
| | - Hamad F. Alharbi
- Mechanical Engineering Department, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia;
| |
Collapse
|
102
|
Karawek A, Mayurachayakul P, Santiwat T, Sukwattanasinitt M, Niamnont N. Electrospun nanofibrous sheet doped with a novel triphenylamine based salicylaldehyde fluorophore for hydrazine vapor detection. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.112879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
103
|
Multifunctional PDMS polyHIPE filters for oil-water separation and antibacterial activity. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117748] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
104
|
Hassan SI, Haque A, Jeilani YA, Ilmi R, Faizi MSH, Khan I, Mushtaque M. Thioxanthone-based organic probe with aggregation enhanced emission and exceptional mineral acids sensing abilities. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
105
|
Structure and Properties of Biodegradable PLLA/ZnO Composite Membrane Produced via Electrospinning. MATERIALS 2020; 14:ma14010002. [PMID: 33374987 PMCID: PMC7792573 DOI: 10.3390/ma14010002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/25/2022]
Abstract
These days, composite materials based on polymers and inorganic nanoparticles (NPs) are widely used in optoelectronics and biomedicine. In this work, composite membranes of polylactic acid and ZnO NPs containing 5–40 wt.% of the latter NPs were produced by means of electrospinning. For the first time, polymer material loaded with up to 40 wt.% of ZnO NPs (produced via laser ablation in air and having non-modified surface) was used to prepare fiber-based composite membranes. The morphology, phase composition, mechanical, spectral and antibacterial properties of the membranes were tested by a set of analytical techniques including SEM, XRD, FTIR, UV-vis, and photoluminescence spectroscopy. Antibacterial activity of the materials was evaluated following standard procedures (ISO 20743:2013) and using S. aureus and E. coli bacteria. It is shown that incorporation of 5–10 wt.% of NPs led to improved mechanical properties of the composite membranes, while further increase of ZnO content up to 20 wt.% and above resulted in their noticeable deterioration. At the same time, the antibacterial properties of ZnO-rich membranes were more pronounced, which is explained by a larger number of surface-exposed ZnO NPs, in addition to those embedded into the bulk of fiber material.
Collapse
|
106
|
Yan D, Xue Z, Li S, Zhong C. Comparison of cytotoxicity of Ag/ZnO and Ag@ZnO nanocomplexes to human umbilical vein endothelial cells in vitro. J Appl Toxicol 2020; 41:811-819. [PMID: 33314238 DOI: 10.1002/jat.4125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 02/01/2023]
Abstract
Novel metal and metal oxide-based nanocomplexes are being developed due to their superior properties compared with nanoparticles (NPs) based on single composition. In this study, we synthesized Ag-coated ZnO (Ag/ZnO) and Ag-doped ZnO (Ag@ZnO) NPs. The cytotoxicity and mechanisms associated with the synthesized NPs were investigated to understand the influence of Ag positions on biocompatibility of the NPs. After exposure to human umbilical vein endothelial cells (HUVECs), Ag/ZnO, Ag@ZnO, and ZnO NPs all significantly induced cytotoxicity, but the cytotoxic effects of Ag/ZnO and Ag@ZnO NPs were more modest in comparison with ZnO NPs. At cytotoxic concentrations, all NPs significantly induced intracellular Zn ions, which suggested a role of excessive Zn ions on cytotoxicity of NPs. All types of NPs significantly induced the expression of endoplasmic reticulum (ER) stress genes including DNA damage-inducible transcript 3 (DDIT3), X-box binding protein 1 (XBP-1), and ER to nucleus signaling 1 (ERN1), but Ag/ZnO and Ag@ZnO NPs were less effective to induce DDIT3 and XBP-1 expression compared with ZnO NPs. Not surprisingly, only ZnO NPs significantly induced the expression of caspase 3. Combined, the results from this study showed that Ag/ZnO and Ag@ZnO NPs were less cytotoxic and less potent to induce ER stress gene expression compared with ZnO NPs, but there were no significant differences between Ag/ZnO and Ag@ZnO NPs. Our results may provide novel understanding about the biocompatibility of Ag-ZnO nanocomplexes.
Collapse
Affiliation(s)
- Dejian Yan
- Institute of Advanced Materials, North China Electric Power University, Beijing, China
| | - Zhiyong Xue
- Institute of Advanced Materials, North China Electric Power University, Beijing, China
| | - Shuang Li
- School of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Cheng Zhong
- School of Chemical Engineering, Xiangtan University, Xiangtan, China
| |
Collapse
|
107
|
Huang YY, Wang FX, Mu SY, Sun X, Li QZ, Xie CZ, Liu HB. Highly selective and sensitive chemosensor for Al(III) based on isoquinoline Schiff base. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 243:118754. [PMID: 32814255 DOI: 10.1016/j.saa.2020.118754] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
As a colorimetric and fluorescent turn-on sensor to Al3+, N'-(2-hydroxybenzylidene)isoquinoline-3-carbohydrazide (HL) has been easily synthesized. The fluorescence intensity increases by 273 times in the presence of Al3+ at 458 nm. Meanwhile, the experiment data indicate that the limit of detection for Al3+ is 1.11 × 10-9 M. Remarkably, the blue fluorescence signal of HL-Al3+ could be specially observed by the naked eye under UV light and is significantly different from those of other metal ions. Fluorescence switch based on the control of Al3+ and EDTA proved HL could act as a reversible chemosensor. According to ESI-MS result and the Job's plots, the 2:1 coordination complex formed by HL and Al3+ could be produced. Density functional theory calculations were performed to illustrate the structures of HL and complex. The cell imaging experiment indicates that HL can be applied for monitoring intracellular Al3+ levels in cells.
Collapse
Affiliation(s)
- Yu-Ying Huang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, PR China; School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China
| | - Feng-Xue Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, PR China
| | - Si-Yu Mu
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China
| | - Xian Sun
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China
| | - Qing-Zhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Cheng-Zhi Xie
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China
| | - Hai-Bo Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, PR China.
| |
Collapse
|
108
|
Leonés A, Peponi L, Lieblich M, Benavente R, Fiori S. In Vitro Degradation of Plasticized PLA Electrospun Fiber Mats: Morphological, Thermal and Crystalline Evolution. Polymers (Basel) 2020; 12:polym12122975. [PMID: 33322121 PMCID: PMC7763670 DOI: 10.3390/polym12122975] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
In the present work, fiber mats of poly(lactic acid), PLA, plasticized by different amounts of oligomer lactic acid, OLA, were obtained by electrospinning in order to investigate their long term hydrolytic degradation. This was performed in a simulated body fluid for up to 352 days, until the complete degradation of the samples is reached. The evolution of the plasticized electrospun mats was followed in terms of morphological, thermal, chemical and crystalline changes. Mass variation and water uptake of PLA-based electrospun mats, together with pH stability of the immersion media, were also studied during the in vitro test. The results showed that the addition of OLA increases the hydrolytic degradation rate of PLA electrospun fiber mats. Moreover, by adding different amounts of OLA, the time of degradation of the electrospun fiber mats can be modulated over the course of a year. Effectively, by increasing the amount of OLA, the diameter of the electrospun fibers decreases more rapidly during degradation. On the other hand, the degree of crystallinity and the dimension of the α crystals of the electrospun fiber mats are highly affected not only by the presence but also by the amount of OLA during the whole process.
Collapse
Affiliation(s)
- Adrián Leonés
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (R.B.)
- Interdisciplinary Platform for “Sustainable Plastics towards a Circular Economy” (SUSPLAST-CSIC), 28006 Madrid, Spain
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (R.B.)
- Interdisciplinary Platform for “Sustainable Plastics towards a Circular Economy” (SUSPLAST-CSIC), 28006 Madrid, Spain
- Correspondence:
| | - Marcela Lieblich
- Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), 28040 Madrid, Spain;
| | - Rosario Benavente
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (R.B.)
| | - Stefano Fiori
- Condensia Química SA, R&D Department, C/La Cierva 8, 08184 Barcelona, Spain;
| |
Collapse
|
109
|
One-dimensional zinc-manganate oxide hollow nanostructures with enhanced supercapacitor performance. J Colloid Interface Sci 2020; 585:138-147. [PMID: 33279696 DOI: 10.1016/j.jcis.2020.11.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 11/20/2022]
Abstract
Hollow electrode materials with structural advantages of large contact interface and sufficient cavity structures are significant for electrochemical energy storage. Herein, ultra-long one-dimensional zinc-manganese oxide (ZnMn2O4) hollow nanofibers were successfully prepared by electrospinning at an appropriate temperature (500 °C). The optimal electrode of ZnMn2O4 exhibited a larger specific capacitance (1026 F g-1) as compared to ZnMn2O4 powder (125 F g-1) at a current density of 2 A g-1 in three-electrode configuration. Moreover, the optimal electrode of the ZnMn2O4 hollow nanofibers also possessed long-term cycling stability with a slight upward capacitance (100.8%) after 5000 cycles. Their higher specific capacitance and the outstanding cycle stability may be attributed to the unique 1D hollow nanostructure, which enhanced the charge transfer and improved the diffusion of the electrolyte ions at the surface. Thus, this work designed a high-performance electrode with unique hollow nanostructure that can be applied to the field of energy storage.
Collapse
|
110
|
Bahalkeh F, Habibi juybari M, Zafar Mehrabian R, Ebadi M. Removal of Brilliant Red dye (Brilliant Red E-4BA) from wastewater using novel Chitosan/SBA-15 nanofiber. Int J Biol Macromol 2020; 164:818-825. [DOI: 10.1016/j.ijbiomac.2020.07.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/01/2020] [Accepted: 07/04/2020] [Indexed: 01/18/2023]
|
111
|
Efficient dye removal from wastewater by functionalized macromolecule chitosan-SBA-15 nanofibers for biological approaches. Int J Biol Macromol 2020; 165:118-130. [DOI: 10.1016/j.ijbiomac.2020.09.158] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 11/18/2022]
|
112
|
Nano spinel CoFe2O4 deposited diatomite catalytic separation membrane for efficiently cleaning wastewater. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
113
|
Mapukata S, Britton J, Osifeko OL, Nyokong T. The improved antibacterial efficiency of a zinc phthalocyanine when embedded on silver nanoparticle modified silica nanofibers. Photodiagnosis Photodyn Ther 2020; 33:102100. [PMID: 33212269 DOI: 10.1016/j.pdpdt.2020.102100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/03/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022]
Abstract
This work reports on the fabrication and modification of electrospun polymer free silica nanofibers (SiO2 NFs) with the aim of creating heterogeneous antibacterial catalysts. The optical and photophysical properties of the obtained NFs i.e. bare SiO2, Ag-SiO2, Pc-SiO2 and Pc@Ag-SiO2 NFs (Pc = phthalocyanine) were compared and reported. The singlet oxygen quantum yields of the Pc-SiO2 and Pc@Ag-SiO2 NFs were also quantified and found to be 0.08 and 0.12, respectively, in water. All the modified SiO2 NFs were found to possess photoactivity against S. aureus with the most effective being the Pc@Ag-SiO2 NFs due to the synergy between the Pc and Ag nanoparticles. The bare SiO2 NFs do not exhibit any antibacterial activity while the Ag-SiO2 and Pc@Ag-SiO2 NFs were found to also exhibit dark toxicity. The generated photocatalysts are attractive because they are active against bacteria and they are easily retrievable post-application. The nanocatalysts reported herein are therefore feasible candidates for real-life antibacterial applications.
Collapse
Affiliation(s)
- Sivuyisiwe Mapukata
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, 6140, South Africa
| | - Jonathan Britton
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, 6140, South Africa
| | - Olawale L Osifeko
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, 6140, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, 6140, South Africa.
| |
Collapse
|
114
|
Wei S, Li T, Zhang X, Zhang H, Jiang C, Sun G. An "on-off-on" selective fluorescent probe based on nitrogen and sulfur co-doped carbon dots for detecting Cu 2+ and GSH in living cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5110-5119. [PMID: 33057477 DOI: 10.1039/d0ay01662d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The abnormal level of Cu2+ or GSH can cause variety of neurodegenerative diseases in humans. Thus, the selective and sensitive detection of Cu2+ and GSH has inspired intensive research efforts in biological sample analysis fields. Herein, an "on-off-on" fluorescent probe based on nitrogen and sulfur co-doped carbon dots (N,S-CDs) has been successfully prepared for the detection of Cu2+ and GSH. The "turn-off" process of fluorescence in the presence of Cu2+ ions was induced by forming a non-luminescent ground state complex due to the interaction between surface groups of the probe and Cu2+ ions. Moreover, the strong coordination between GSH and Cu2+ could destroy the structure of the complex and restore the fluorescence to "turn-on". This fluorescent probe had excellent selectivity and high sensitivity toward Cu2+ and GSH with the limits of detection (LODs) of 38 nM and 41 nM. More importantly, the as-prepared N,S-CDs served as an efficient fluorescent probe for not only detecting Cu2+ ions in lake water and tap water, and GSH in BSA solution, but also sensing Cu2+ and GSH in living cells. Therefore, these N,S-CDs could be considered as a promising fluorescence probe candidate for environmental monitoring and biological imaging.
Collapse
Affiliation(s)
- Shanshan Wei
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China.
| | | | | | | | | | | |
Collapse
|
115
|
Youssef AM, Hasanin MS, El-Aziz MEA, Turky GM. Conducting chitosan/hydroxylethyl cellulose/polyaniline bionanocomposites hydrogel based on graphene oxide doped with Ag-NPs. Int J Biol Macromol 2020; 167:1435-1444. [PMID: 33202266 DOI: 10.1016/j.ijbiomac.2020.11.097] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/03/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022]
Abstract
The current work focuses on a cheap and simple preparation of highly conducting chitosan/hydroxyl ethylcellulose/polyaniline loaded with graphene oxide doped by silver nanoparticles (CS/HEC/PAni/GO@Ag) bionanocomposite as a biodegradable and biocompatible hydrogel for energy storage technology. Scanning electron microscopy (SEM) displays the compatibility of chitosan, hydroxyl ethyl cellulose, and polyaniline and a good distribution of GO@Ag-NPs in bionanocomposite hydrogels. X-ray diffraction (XRD) displayed the structure and existence of GO@Ag-NPs in the matrix. The swelling percentage and the antibacterial activities slightly increased with raising the content of GO@Ag-NPs. Also, the presence of both chitosan and cellulose improves the biodegradation of the fabricated bionanocomposites, which is increased by adding GO. Moreover, the incorporation of 5% GO@Ag-NPs in hydrogels enhances dc-conductivity by about 25 times from 3.37 × 10-3 to 8.53 × 10-2 S/cm. The fabricated hydrogels are inexpensive, eco-friendly, and have high capacitance and permittivity, and so they can store electrical energy.
Collapse
Affiliation(s)
- A M Youssef
- Packaging Materials Department, National Research Centre, 33 El Bohouth St. Dokki, Giza, P.O. 12622, Egypt.
| | - M S Hasanin
- Cellulose and Paper Department, National Research Centre, 33 El Bohouth St. Dokki, Giza, P.O. 12622, Egypt
| | - M E Abd El-Aziz
- Polymers and Pigments Department, National Research Centre, 33 El Bohouth St. Dokki, Giza, P.O. 12622, Egypt
| | - G M Turky
- Department of Microwave Physics & Dielectrics, National Research Centre, 33 El Bohouthst, Dokki, Giza, P.O.12622, Egypt
| |
Collapse
|
116
|
de Oliveira Santos RP, Ramos LA, Frollini E. Bio-based electrospun mats composed of aligned and nonaligned fibers from cellulose nanocrystals, castor oil, and recycled PET. Int J Biol Macromol 2020; 163:878-887. [DOI: 10.1016/j.ijbiomac.2020.07.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/21/2020] [Accepted: 07/07/2020] [Indexed: 11/30/2022]
|
117
|
Castillo-Rodríguez J, Tzompantzi-Flores C, Piña-Pérez Y, Tzompantzi F, Salinas-Hernández P, Morales-Anzures F, Santolalla-Vargas C, Gómez R. High photoactivity of Bi2O2(CO3)/Zn5(CO3)2(OH)6 prepared by a facile one-pot synthesis for the efficient degradation of phenol under UV light. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
118
|
Cui J, Li F, Wang Y, Zhang Q, Ma W, Huang C. Electrospun nanofiber membranes for wastewater treatment applications. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117116] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
119
|
Cai H, Li N, Li Y, An DM. New three-dimensional Zn(II)/Cd(II)-based coordination polymers as luminescent sensor for Cu2+. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
120
|
Wibisono Y, Fadila CR, Saiful S, Bilad MR. Facile Approaches of Polymeric Face Masks Reuse and Reinforcements for Micro-Aerosol Droplets and Viruses Filtration: A Review. Polymers (Basel) 2020; 12:E2516. [PMID: 33126730 PMCID: PMC7692770 DOI: 10.3390/polym12112516] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/23/2022] Open
Abstract
Since the widespread of severe acute respiratory syndrome of coronavirus 2 (SARS-CoV-2) disease, the utilization of face masks has become omnipresent all over the world. Face masks are believed to contribute to an adequate protection against respiratory infections spread through micro-droplets among the infected person to non-infected others. However, due to the very high demands of face masks, especially the N95-type mask typically worn by medical workers, the public faces a shortage of face masks. Many papers have been published recently that focus on developing new and facile techniques to reuse and reinforce commercially available face masks. For instance, the N95 mask uses a polymer-based (membrane) filter inside, and the filter membrane can be replaced if needed. Another polymer sputtering technique by using a simple cotton candy machine could provide a cheap and robust solution for face mask fabrication. This review discuss the novel approaches of face mask reuse and reinforcement specifically by using membrane-based technology. Tuning the polymeric properties of face masks to enhance filterability and virus inactivity is crucial for future investigation.
Collapse
Affiliation(s)
- Yusuf Wibisono
- Department of Bioprocess Engineering, Faculty of Agricultural Technology, Brawijaya University, Malang 65141, Indonesia;
| | - Cut Rifda Fadila
- Department of Bioprocess Engineering, Faculty of Agricultural Technology, Brawijaya University, Malang 65141, Indonesia;
| | - Saiful Saiful
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Banda Aceh 23111, Indonesia;
| | - Muhammad Roil Bilad
- Department of Chemical Engineering, Faculty of Engineering, Universiti Teknologi Petronas, Bandar Seri Iskandar 32610, Malaysia;
| |
Collapse
|
121
|
Improved filter media with PVA/citric acid/Triton X-100 nanofibers for filtration of nanoparticles from air. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03431-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
122
|
Samanta P, Srivastava R, Nandan B. Fabrication and crystallization behavior of hollow poly(
l
‐lactic acid) nanofibers. POLYMER CRYSTALLIZATION 2020. [DOI: 10.1002/pcr2.10147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pratick Samanta
- Department of Textile Technology Indian Institute of Technology Delhi New Delhi India
- Department of Fiber and Polymer Technology KTH Royal Institute of Technology Stockholm Sweden
| | - Rajiv Srivastava
- Department of Textile Technology Indian Institute of Technology Delhi New Delhi India
| | - Bhanu Nandan
- Department of Textile Technology Indian Institute of Technology Delhi New Delhi India
| |
Collapse
|
123
|
|
124
|
Copper//terbium dual metal organic frameworks incorporated side-by-side electrospun nanofibrous membrane: A novel tactics for an efficient adsorption of particulate matter and luminescence property. J Colloid Interface Sci 2020; 578:155-163. [DOI: 10.1016/j.jcis.2020.05.113] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 11/23/2022]
|
125
|
Du Z, Chen Y, Jensen M, Wang N, Li X, Zhang X. Preparation of
3D
crimped
ZnO
/
PAN
hybrid nanofiber mats with photocatalytic activity and antibacterial properties by blow‐spinning. J Appl Polym Sci 2020. [DOI: 10.1002/app.49908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zhiqiang Du
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Municipal Key Lab of Advanced Energy Storage Material and Devices School of Material Science and Engineering, Tiangong University Tianjin China
| | - Yang Chen
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Municipal Key Lab of Advanced Energy Storage Material and Devices School of Material Science and Engineering, Tiangong University Tianjin China
| | - Martin Jensen
- Department of Chemistry and Bioscience Aalborg University Aalborg Denmark
| | - Ning Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Municipal Key Lab of Advanced Energy Storage Material and Devices School of Material Science and Engineering, Tiangong University Tianjin China
| | - Xianfeng Li
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Municipal Key Lab of Advanced Energy Storage Material and Devices School of Material Science and Engineering, Tiangong University Tianjin China
| | - Xingxiang Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Municipal Key Lab of Advanced Energy Storage Material and Devices School of Material Science and Engineering, Tiangong University Tianjin China
| |
Collapse
|
126
|
Abstract
Electrospinning is a modern and versatile method of producing nanofibers from polymer solutions or melts by the action of strong electric fields. The complex, multiscale nature of the process hinders its theoretical understanding, especially at the molecular level. The present article aims to contribute to the fundamental picture of the process by the molecular modeling of its nanoscale analogue and complements the picture by laboratory experiments at macroscale. Special attention is given to how the process is influenced by ions. Molecular dynamics (MD) is employed to model the time evolution of a nanodroplet of aqueous poly(ethylene glycol) (PEG) solution on a solid surface in a strong electric field. Two molecular weights of PEG are used, each in 12 aqueous solutions differing by the weight fraction of the polymer and the concentration of added NaCl. Various structural and dynamic quantities are monitored in production trajectories to characterize important features of the process and the effect of ions on it. Complementary experiments are carried out with macroscopic droplets of compositions similar to those used in MD. The behavior of droplets in a strong electric field is monitored using an oscilloscopic method and high-speed camera recording. Oscilloscopic records of voltage and current are used to determine the characteristic onset times of the instability of the meniscus as the times of the first discharge. The results of simulations indicate that, at the molecular level, the process is primarily driven by polarization forces and the role of ionic charge is only minor. Ions enhance the evaporation of solvent and the transport of polymer into the jet. Experimentally measured instability onset times weakly decrease with increasing ionic concentration in solutions with low polymer content. High-speed photography coupled with oscilloscopic measurement shows that the measured instability onset corresponds to the formation of a sharp tip of the Taylor cone. Molecular-scale and macroscopic views of the process are confronted, and challenges for their reconciliation are presented as a route to a true understanding of electrospinning.
Collapse
|
127
|
Rivero PJ, Rosagaray I, Fuertes JP, Palacio JF, Rodríguez RJ. Designing Multifunctional Protective PVC Electrospun Fibers with Tunable Properties. Polymers (Basel) 2020; 12:E2086. [PMID: 32937791 PMCID: PMC7570080 DOI: 10.3390/polym12092086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/02/2022] Open
Abstract
In this work, the electrospinning technique is used for the fabrication of electrospun functional fibers with desired properties in order to show a superhydrophobic behavior. With the aim to obtain a coating with the best properties, a design of experiments (DoE) has been performed by controlling several inputs operating parameters, such as applied voltage, flow rate, and precursor polymeric concentration. In this work, the reference substrate to be coated is the aluminum alloy (60661T6), whereas the polymeric precursor is the polyvinyl chloride (PVC) which presents an intrinsic hydrophobic nature. Finally, in order to evaluate the coating morphology for the better performance, the following parameters-such as fiber diameter, surface roughness (Ra, Rq), optical properties, corrosion behavior, and wettability-have been deeply analyzed. To sum up, this is the first time that DoE has been used for the optimization of superhydrophobic or anticorrosive surfaces by using PVC precursor for the prediction of an adequate surface morphology as a function of the input operational parameters derived from electrospinning process with the aim to validate better performance.
Collapse
Affiliation(s)
- Pedro J. Rivero
- Engineering Department, Public University of Navarre, Campus Arrosadía S/N, 31006 Pamplona, Spain; (I.R.); (J.P.F.); (R.J.R.)
- Institute for Advanced Materials and Mathematics (INAMAT), Public University of Navarre, Campus Arrosadía S/N, 31006 Pamplona, Spain
| | - Iker Rosagaray
- Engineering Department, Public University of Navarre, Campus Arrosadía S/N, 31006 Pamplona, Spain; (I.R.); (J.P.F.); (R.J.R.)
| | - Juan P. Fuertes
- Engineering Department, Public University of Navarre, Campus Arrosadía S/N, 31006 Pamplona, Spain; (I.R.); (J.P.F.); (R.J.R.)
| | - José F. Palacio
- Centre of Advanced Surface Engineering, AIN, 31191 Cordovilla, Spain;
| | - Rafael J. Rodríguez
- Engineering Department, Public University of Navarre, Campus Arrosadía S/N, 31006 Pamplona, Spain; (I.R.); (J.P.F.); (R.J.R.)
- Institute for Advanced Materials and Mathematics (INAMAT), Public University of Navarre, Campus Arrosadía S/N, 31006 Pamplona, Spain
| |
Collapse
|
128
|
An JD, Wang TT, Shi YF, Wu XX, Liu YY, Huo JZ, Ding B. A multi-responsive regenerable water-stable two-dimensional cadmium (II) fluorescent probe for highly selective, sensitive and real-time sensing of nitrofurazone and cupric ion. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
129
|
Jun L, Chen Q, Fu W, Yang Y, Zhu W, Zhang J. Electrospun Yb-Doped In 2O 3 Nanofiber Field-Effect Transistors for Highly Sensitive Ethanol Sensors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38425-38434. [PMID: 32786210 DOI: 10.1021/acsami.0c12259] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Enhancing the reliability and sensitivity of gas sensors based on FETs has been of extensive concern for their practical application. However, few reports are available on nanofiber FET gas sensors fabricated by the electrospinning process. In this work, ethanol gas sensors based on Yb-doped In2O3 (InYbO) nanofiber FETs are fabricated by a simple and fast electrospinning method. The optimized In2O3 nanofiber FETs with a doping concentration of 4 mol % show a better electrical performance, including a high mobility of 6.67 cm2/Vs, an acceptable threshold voltage of 3.27 V, and a suitable on/off current ratio of 107, especially the enhanced bias-stress stability. When employed in ethanol gas sensors, the gas sensors exhibit enhanced stability and improved sensitivity with a high response of 40-10 ppm, which is remarkably higher than that of previously reported ethanol gas sensors. Moreover, the InYbO nanofiber FET sensors also demonstrate a low limit of detection of 1 ppm and improved sensing performance ranging from sensitivity to the ability of selectivity. This work opens up a new prospect to achieve highly sensitive, selective, and reliable ethanol gas sensors using electrospun Yb-In2O3 nanofiber FETs with improved stability.
Collapse
Affiliation(s)
- Li Jun
- School of Material Science and Engineering, Shanghai University, Jiading, Shanghai 201800, People's Republic of China
- Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University, Shanghai 200072, People's Republic of China
| | - Qi Chen
- School of Material Science and Engineering, Shanghai University, Jiading, Shanghai 201800, People's Republic of China
| | - Wenhui Fu
- School of Material Science and Engineering, Shanghai University, Jiading, Shanghai 201800, People's Republic of China
| | - Yaohua Yang
- School of Material Science and Engineering, Shanghai University, Jiading, Shanghai 201800, People's Republic of China
| | - Wenqing Zhu
- School of Material Science and Engineering, Shanghai University, Jiading, Shanghai 201800, People's Republic of China
| | - Jianhua Zhang
- Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University, Shanghai 200072, People's Republic of China
| |
Collapse
|
130
|
Cui J, Lu T, Li F, Wang Y, Lei J, Ma W, Zou Y, Huang C. Flexible and transparent composite nanofibre membrane that was fabricated via a "green" electrospinning method for efficient particulate matter 2.5 capture. J Colloid Interface Sci 2020; 582:506-514. [PMID: 32911399 DOI: 10.1016/j.jcis.2020.08.075] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 11/27/2022]
Abstract
Air particulate pollution from ever-increasing industrialization poses an enormous threat to public health. Thus, the development of a green air filter with high efficiency and performance is of urgent necessity. In this study, we introduce a new effective air filtration membrane that can be used for outdoor protection. The air filter's composite nanofibre materials were prepared from polyvinyl alcohol (PVA)-sodium lignosulfonate (LS) via a "green" electrospinning method and thermal crosslinking. The addition of LS helped increase the PM2.5 removal efficiency compared to that of a pure PVA nanofibre membrane. The pressure drops of the electrospun PVA-LS membranes exceeded those of the pristine PVA air filter. The remarkable air filtration performance was maintained even after 10 cycles of circulation filtration. In addition, the PVA-LS composite nanofibre membrane exhibited excellent mechanical properties and transparency due to the introduction of LS. This study provides new insight into the design and development of high-performance and high-visibility green filter media, which include personal protection and building screens.
Collapse
Affiliation(s)
- Jiaxin Cui
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, PR China
| | - Tao Lu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, PR China
| | - Fanghua Li
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, PR China
| | - Yulin Wang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, PR China
| | - Jiandu Lei
- Beijing Key Laboratory of Lignocellulosic Chemistry, and MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Wenjing Ma
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, PR China.
| | - Yan Zou
- Department of Mechanics, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, PR China.
| |
Collapse
|
131
|
Ruhela A, Kasinathan GN, Rath SN, Sasikala M, Sharma CS. Electrospun freestanding hydrophobic fabric as a potential polymer semi-permeable membrane for islet encapsulation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111409. [PMID: 33255012 DOI: 10.1016/j.msec.2020.111409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/04/2020] [Accepted: 08/11/2020] [Indexed: 01/13/2023]
Abstract
One of the significant problems associated with islet encapsulation for type 1 diabetes treatment is the loss of islet functionality or cell death after transplantation because of the unfavorable environment for the cells. In this work, we propose a simple strategy to fabricate electrospun membranes that will provide a favorable environment for proper islet function and also a desirable pore size to cease cellular infiltration, protecting the encapsulated islet from immune cells. By electrospinning the wettability of three different biocompatible polymers: cellulose acetate (CA), polyethersulfone (PES), and polytetrafluoroethylene (PTFE) was greatly modified. The contact angle of electrospun CA, PES, and PTFE increased to 136°, 126°, and 155° as compared to 55°, 71°, and 128° respectively as a thin film, making the electrospun membranes hydrophobic. Commercial porous membranes of PES and PTFE show a contact angle of 30° and 118°, respectively, confirming the hydrophobicity of electrospun membranes is due to the surface morphology induced by electrospinning. In- vivo results confirm that the induced hydrophobicity and surface morphology of electrospun membranes impede cell attachment, which would help in maintaining the 3D circular morphology of islet cell. More importantly, the pore size of 0.3-0.6 μm obtained due to the densely packed structure of nanofibers, will be able to restrict immune cells but would allow free movement of molecules like insulin and glucose. Therefore, electrospun polymer fibrous membranes as fabricated in this work, with hydrophobic and porous properties, make a strong case for successful islet encapsulation.
Collapse
Affiliation(s)
- Aakanksha Ruhela
- Creative & Advanced Research Based On Nanomaterials (CARBON) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Gokula Nathan Kasinathan
- Regenerative Medicine and Stem Cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Subha N Rath
- Regenerative Medicine and Stem Cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - M Sasikala
- Asian Healthcare Foundation, Gachibowli, Hyderabad 500032, Telangana, India
| | - Chandra S Sharma
- Creative & Advanced Research Based On Nanomaterials (CARBON) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India.
| |
Collapse
|
132
|
Takamiya AS, Monteiro DR, Gorup LF, Silva EA, de Camargo ER, Gomes-Filho JE, de Oliveira SHP, Barbosa DB. Biocompatible silver nanoparticles incorporated in acrylic resin for dental application inhibit Candida albicans biofilm. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111341. [PMID: 33254968 DOI: 10.1016/j.msec.2020.111341] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/15/2020] [Accepted: 08/04/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Although silver nanoparticles (SNP) have proven antimicrobial activity against different types of microorganisms, the effect of SNP incorporation into acrylic resin to control Candida albicans biofilm formation aiming at the prevention of Candida-associated denture stomatitis has not yet been fully elucidated. OBJECTIVES This study aimed to evaluate the antimicrobial effect of an acrylic resin containing SNP on C. albicans biofilm growth, the flexural strength of this material and tissue reaction in the subcutaneous connective tissue of rats to SNP. METHOD SNP were synthesized through silver nitrate reduction by sodium citrate. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were used to verify the size and colloidal stability. SNP were added to acrylic resin monomer (Lucitone 550) at 0.05, 0.5 and 5 vol%. The antimicrobial effect against C. albicans (ATCC 10231) was investigated by the enumeration of colony-forming units (CFUs) and SEM. The three-point bending test was performed to analyze the flexural strength. Tissue reaction was evaluated after 7 and 60 days of implantation in the connective tissue of Wistar rats. RESULTS Spherical particles of 5 and 10 nm were obtained. SNP at 0.05 and 0.5% incorporated into acrylic resin was effective in reducing C. albicans biofilm growth (p < .001). SEM revealed that the material was able to disrupt C. albicans biofilm formation and did not reduce the flexural strength compared to control (p > .05). The inflammatory response observed 60 days after implantation SNP in the subcutaneous tissue was similar to control. CONCLUSION It was concluded that SNP addition at 0.05 and 0.5% into acrylic resin exhibited antimicrobial effects against C. albicans biofilm, did not interfere in the flexural strength and may be considered biocompatible.
Collapse
Affiliation(s)
- Aline Satie Takamiya
- Department of Diagnosis and Surgery, Araçatuba Dental School, Univ Estadual Paulista - UNESP, Araçatuba, São Paulo, Brazil.
| | - Douglas Roberto Monteiro
- Department of Pediatric Dentistry and Public Health Dental, Araçatuba Dental School, Univ Estadual Paulista - UNESP, Araçatuba, São Paulo, Brazil
| | - Luiz Fernando Gorup
- LIEC-Department of Chemistry, Federal University of São Carlos - UFSCar, São Carlos, São Paulo, Brazil
| | - Ebele Adaobi Silva
- Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, São Paulo State University, Ribeirão Preto, São Paulo, Brazil
| | | | - João Eduardo Gomes-Filho
- Department of Endodontics, Araçatuba Dental School, Univ Estadual Paulista - UNESP, Araçatuba, São Paulo, Brazil.
| | | | - Debora Barros Barbosa
- Department of Dental Materials and Prosthodontics, Araçatuba Dental School, Univ Estadual Paulista - UNESP, Araçatuba, São Paulo, Brazil
| |
Collapse
|
133
|
Jung S, Kim J. Advanced Design of Fiber-Based Particulate Filters: Materials, Morphology, and Construction of Fibrous Assembly. Polymers (Basel) 2020; 12:E1714. [PMID: 32751674 PMCID: PMC7464808 DOI: 10.3390/polym12081714] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 11/24/2022] Open
Abstract
With increasing air pollution and sporadic outbreaks of epidemics, there is ramping attention on the filtration devices. The main constituents of airborne pollutants are particulate matters of solid particles, liquid aerosol, bioaerosol/bio-droplets, and gas/vapor. With the growing demand for high-performance filters, novel materials and functionalities are being developed applying advanced technologies. In this paper, recent developments of fiber-based particulate filters are reviewed, with a focus on the important performance parameters and material properties. Trends in technology and research activities are briefly reviewed, and the evaluative measures of filtration performance are reported. Recent studies on the advanced filter materials are reviewed in the aspect of polymers and the fabrication process of fibrous assembly. The characterization method including 3D modeling and simulation is also briefly introduced. Multifunctional filters such as antimicrobial filter and gas and particulate filters are briefly introduced, and efforts for developing environmentally sustainable filters are noted.
Collapse
Affiliation(s)
- Seojin Jung
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea;
| | - Jooyoun Kim
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea;
- Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
134
|
Garg P, Kaur G, Sharma B, Chaudhary GR. Fluorescein-Metal Hybrid Surfactant Conjugates as a Smart Material for Antimicrobial Photodynamic Therapy against Staphylococcus aureus. ACS APPLIED BIO MATERIALS 2020; 3:4674-4683. [PMID: 35025466 DOI: 10.1021/acsabm.0c00586] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Photodynamic therapy (PDT) has been extensively used as an effective alternative for the treatment of bacterial infection using photosensitizers (PSs) in the presence of appropriate light. However, the limitation in the effectiveness of PDT is because of the low yield of singlet oxygen from existing PSs because of their low solubility. Thus, we have developed a platform to enhance the solubility and the photodynamic activity of PSs against bacterial cells using metallosurfactants. Herein, we have used manganese metal-containing single- (MnC I) and double-chain metallosurfactants (MnC II) which show an interplay of electrostatic/hydrophobic interactions with fluorescein (FL) dye (as a PS) and when used in the presence of light enhances the PDT. These interactions play a significant role in enhancing the singlet oxygen generation efficiency of FL. MnC I and MnC II have shown good antimicrobial activity against Gram-positive Staphylococcus aureus (S. aureus) bacteria. More interestingly, these metallosurfactants when combined with FL significantly enhanced the affectivity against S. aureus, wherein 100% killing was achieved. As compared to experiments performed in the dark, the metallosurfactant, by enhancing the solubility of FL, increases the formation of singlet oxygen upon light irradiation and thus increases cell death. Therefore, the synergistic effect of FL (light toxicity) and metallosurfactants (dark toxicity) defined excellent reduction in the colony formation of bacteria. These results were corroborated through field-emission scanning electron microscopy and optical microscopy, where the rupturing of the cell wall of bacterial cells was observed during this therapy. Moreover, the binding of metallosurfactants to the genomic DNA of S. aureus was also evaluated by gel retardation analysis and UV-visible spectroscopy. The outcomes from this study will deliver formulations for PDT which can be used in clinical medical applications and cancer therapy in the future.
Collapse
Affiliation(s)
- Preeti Garg
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Gurpreet Kaur
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Bunty Sharma
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Ganga Ram Chaudhary
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| |
Collapse
|
135
|
Investigation of the Mechanical and Dynamic-Mechanical Properties of Electrospun Polyvinylpyrrolidone Membranes: A Design of Experiment Approach. Polymers (Basel) 2020; 12:polym12071524. [PMID: 32660029 PMCID: PMC7407202 DOI: 10.3390/polym12071524] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/22/2022] Open
Abstract
Polyvinylpyrrolidone electrospun membranes characterized by randomly, partially, or almost completely oriented nanofibers are prepared using a drum collector in static (i.e., 0 rpm) or rotating (i.e., 250 rpm or 500 rpm) configuration. Besides a progressive alignment alongside the tangential speed direction, the nanofibers show a dimension increasing with the collector rotating speed in the range 410–570 nm. A novel design of experiment approach based on a face-centred central composite design is employed to describe membrane mechanical properties using the computation of mathematical models and their visualization via response surface methodology. The results demonstrate the anisotropic nature of the fibre-oriented membranes with Young’s modulus values of 165 MPa and 71 MPa parallelly and perpendicularly to the alignment direction, respectively. Above all, the proposed approach is proved to be a promising tool from an industrial point of view to prepare electrospun membranes with a tailored mechanical response by simply controlling the collector speed.
Collapse
|
136
|
Wang XZ, Du J, Xiao NN, Zhang Y, Fei L, LaCoste JD, Huang Z, Wang Q, Wang XR, Ding B. Driving force to detect Alzheimer's disease biomarkers: application of a thioflavine T@Er-MOF ratiometric fluorescent sensor for smart detection of presenilin 1, amyloid β-protein and acetylcholine. Analyst 2020; 145:4646-4663. [PMID: 32458857 DOI: 10.1039/d0an00440e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Currently, the highly sensitive detection of Alzheimer's Disease (AD) biomarkers, namely presenilin 1, amyloid β-protein (Aβ), and acetylcholine (ACh), is vital to helping us prevent and diagnose AD. In this work, a novel metal-organic framework [Er(L)(DMF)1.27]n (Er-MOF) (H3L = terphenyl-3,4'',5-tricarboxylic acid) has been synthesized by solvothermal and ultrasonic methods. Further, through the post-synthesis assembly strategy, the fluorescent dye thioflavine T (ThT) has been introduced into Er-MOF to construct a dual-emission ThT@Er-MOF ratiometric fluorescent sensor. This is the first time that ThT@Er-MOF has been successfully applied in the highly sensitive detection of three main Alzheimer's disease biomarkers in the cerebrospinal fluid through three different low cost and facile detection strategies. Firstly, with the spilted DNA strategy, this is the first time that ThT@Er-MOF can be applied in the label-free detection of SSODN (part of the presenilin 1 gene). Secondly, for the detection of Aβ, because ThT can be specifically combined with Aβ and has an excellent characteristic fluorescence band, the dual-emission ThT@Er-MOF sensor can be selectively applied to detect Aβ over the analog protein, which shows far more sensitivity than other Aβ sensors. Thirdly, through the acetylcholine esterase (AchE) enzymatic cleavage and release strategy, ThT@Er-MOF enhances the detection of acetylcholine (ACh) with a low limit of detection (LOD) value (0.03226 nM). It should be noticed that the three different detection methods are low cost and facile. This study also provides the first example of utilizing laser scanning confocal microscopy (LSCM) to investigate the fluorescence resonance energy transfer (FRET) detection mechanism by ThT@Er-MOF in more detail. The location of FRET occurrence and FRET efficiency can also be investigated by LSCM, which can be helpful to understand the FRET detection process by these unique MOF-based hybrid materials.
Collapse
Affiliation(s)
- Xing Ze Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Skin-inspired cellulose conductive hydrogels with integrated self-healing, strain, and thermal sensitive performance. Carbohydr Polym 2020; 240:116360. [DOI: 10.1016/j.carbpol.2020.116360] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/10/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022]
|
138
|
Abstract
Electrospun fibers with different concentrations of polyacrylonitrile (PAN) were synthesized and the results are reported in this study. The aim was to obtain carbon nanofibers for manufacturing gas diffusion layers for proton exchange membrane (PEM) fuel cells. The electrospun fibers obtained were carbonized at 1200 °C, 1300 °C, and 1400 °C, in order to have nanofibers with more than 96% of carbon atoms. The scanning electron microscopy (SEM) results revealed an increase in the diameter from 400–700 nm at 1200 °C to 1000–1400 nm at 1300 °C and 1400 °C. The Raman measurements disclose a higher degree of crystallinity for the sample carbonized at elevated temperatures. The surface area was estimated from the Brunauer–Emmett–Teller (BET) method and the results revealed an increase from 40.69 m2g−1 to 66.89 m2g−1 and 89.92 m2g−1 as the carbonization temperature increased. Simultaneously, the pore volume increased with increasing carbonization temperature. The Fourier-transform infrared spectroscopy (FTIR) spectra reveal that during carbonization treatment, C≡N triple bonds are destroyed with the appearance of C=N double bonds. Decreasing the ID/IG intensities’ ratio from ~1.07 to ~1.00 denotes the defects reduction in carbonaceous materials due to the graphitization process. Therefore, the carbon fibers developed in optimum conditions are appropriate to be further used to produce gas diffusion layers for Proton-exchange membrane fuel cells (PEMFC).
Collapse
|
139
|
Multilayer-structured fibrous membrane with directional moisture transportability and thermal radiation for high-performance air filtration. E-POLYMERS 2020. [DOI: 10.1515/epoly-2020-0034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractThe demand of high-performance filter media for the face masks is urgent nowadays due to the severe air pollution. Herein, a highly breathable and thermal comfort membrane that combines the asymmetrically superwettable skin layer with the nanofibrous membrane has been fabricated via successive electrospinning and electrospraying technologies. Thanks to high porosity, interconnected pore structure, and across-thickness wettability gradient, the composite membrane with a low basis weight of 3.0 g m−2 exhibits a good air permeability of 278 mm s−1, a comparable water vapor permeability difference of 3.61 kg m−2 d−1, a high filtration efficiency of 99.3%, a low pressure drop of 64 Pa, and a favorable quality factor of 0.1089 Pa−1, which are better than those of the commercial polypropylene. Moreover, the multilayer-structured membrane displays a modest infrared transmittance of 92.1% that can keep the human face cool and comfort. This composite fibrous medium is expected to protect humans from PM2.5 and keep them comfortable even in a hygrothermal environment.
Collapse
|
140
|
Li Y, Cao L, Yin X, Si Y, Yu J, Ding B. Ultrafine, self-crimp, and electret nano-wool for low-resistance and high-efficiency protective filter media against PM 0.3. J Colloid Interface Sci 2020; 578:565-573. [PMID: 32544628 PMCID: PMC7834036 DOI: 10.1016/j.jcis.2020.05.123] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/21/2020] [Accepted: 05/31/2020] [Indexed: 01/07/2023]
Abstract
Frequent outbreaks of emerging infectious diseases (EIDs) make personal protective filter media in high demand. Electrospun nanofibrous materials are proved to be very effective in resisting virus-containing fine particles owing to their small fiber diameters; however, hindered by the intrinsic close-packing character of fine fibers, electrospun filters suffer from a relatively high air resistance, thereby poor breathing comfort. Here, we report a biomimetic and one-step strategy to create ultrafine and curly wool-like nanofibers, named nano-wool, which exhibit fluffy assembly architecture and powerful electret effect. By achieving the online self-crimp and in-situ charging of nanofibers, the curly electret nano-wool shows a small diameter of ~0.6 μm (two orders of magnitude lower than natural wool: ~20 μm) and an ultrahigh porosity of 98.7% simultaneously, together with an ultrahigh surface potential of 13260 V (one order of magnitude higher than previous filters). The structural advantages and powerful electret effect enable nano-wool to show excellent filtration efficacy (>99.995% for PM0.3) and low air resistance (55 Pa). Additionally, nano-wool can be easily scaled up, not only holding great industrial prospect in personal protective respirators, but also paving the way for developing next-generation wool in a cost-efficient and multifunctional form.
Collapse
Affiliation(s)
- Yuyao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Leitao Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xia Yin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China; Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China; Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China.
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China.
| |
Collapse
|
141
|
Zhou M, Hu M, Quan Z, Zhang H, Qin X, Wang R, Yu J. Polyacrylonitrile/polyimide composite sub-micro fibrous membranes for precise filtration of PM 0.26 pollutants. J Colloid Interface Sci 2020; 578:195-206. [PMID: 32526523 DOI: 10.1016/j.jcis.2020.05.081] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 10/24/2022]
Abstract
Particulate matter (PM) pollution has enormously threatened ecosystem and public health. Among various air filtration medium, fibrous ones are very attracting and promising, with an array of advantages such as high specific surface area, and good internal connectivity. Even so, the large-scale fabrication of fibrous filtration materials still remains challenging. Here, three-dimensional polyacrylonitrile/polyimide (PAN/PI) composite sub-micro fibrous membranes were fabricated facilely via free surface electrospinning for precise filtration of PM0.26 pollutants, where the waste PI short fibers were utilized as raw material. The resultant composite fibrous membranes, featuring thin fiber diameter (~150 nm), low areal density (<0.8 g m-2), large porosity, and highly tortuous airflow channels with uniform poresize distribution, possessed excellent mechanical property with tensile strength of 4.95 MPa (twice that of pristine PAN), high thermal durability as well as remarkable filtration performance for ultrafine NaCl aerosol particles (≤0.26 µm) even after multiple filtration tests at high airflow velocity of 14.1 cm s-1. The deepened aperture channels inside three-dimensional sub-micro fibrous membranes are tortuous enough for capturing ultrafine PMs from the airstream mainly via diffusion, interception, and impaction mechanisms, and the reported large-scale fabrication of cost-effective homogeneous PAN/PI fibrous filter media is promising for industrial production and commercial applications.
Collapse
Affiliation(s)
- Mengjuan Zhou
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Min Hu
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Zhenzhen Quan
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Hongnan Zhang
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xiaohong Qin
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| | - Rongwu Wang
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| |
Collapse
|
142
|
Songkiatisak P, Ding F, Cherukuri PK, Xu XHN. Size-Dependent Inhibitory Effects of Antibiotic Nanocarriers on Filamentation of E. coli. NANOSCALE ADVANCES 2020; 2:2135-2145. [PMID: 33791510 PMCID: PMC8009294 DOI: 10.1039/c9na00697d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/30/2020] [Indexed: 06/12/2023]
Abstract
Multidrug membrane transporters exist in both prokaryotic and eukaryotic cells, which causes multidrug resistance (MDR) and urgent need of new and more effective therapeutic agencies. In this study, we used three different sized antibiotic nanocarriers to study their mode of actions and their size-dependent inhibitory effects against Escherichia coli (E. coli). The antibiotic nanocarriers (AgMUNH-Oflx NPs) with 8.6×102, 9.4×103 and 6.5×105 Oflx molecules per nanoparticle (NP) were prepared by functionalizing the Ag NPs (2.4 ± 0.7, 13.0 ± 3.1 and 92.6 ± 4.4 nm) with a monolayer of 11-amino-1-undecanethiol (MUNH2) and covalently linking ofloxacin (Oflx) with the amine group of AgMUNH2 NPs, respectively. We designed a modified cell culture medium for nanocarriers to be stable (non-aggregated) over 18 h of cell culture, which enables us to quantitatively study their size and dose dependent inhibitory effects against E. coli. We found that inhibitory effects of Oflx against E. coli highly depend upon dose of Oflx and size of nanocarriers, showing that the equal amount of Oflx delivered by the largest nanocarriers (92.6 ± 4.4 nm) were the most potent with the lowest minimum inhibitory concentration (MIC50) and created the longest and highest percentage of filamentous cells, while the smallest nanocarriers (2.4 ± 0.7) were the least potent with the highest MIC50 and produced the shortest and lowest percentage of filamentous cells. Interestingly, the same amount of Oflx on 2.4 ± 0.7 nm nanocarriers showed the 2x higher MIC and created the 2x shorter filamentous cells than free Oflx, while the Oflx on 13.0 ± 3.1 and 92.6 ± 4.4 nm nanocarriers exhibited 2x and 6x lower MICs, and produced 2x and 3x longer filamentous cell than free Oflx, respectively. Notably, three sized AgMUNH2 NPs (absence of Oflx) showed negligible inhibitory effects and did not create filamentous cells. The results show that the filamentation of E. coli highly depends upon the sizes of nanocarriers, which leads to the size-dependent inhibitory effects of nanocarriers against E. coli.
Collapse
Affiliation(s)
- Preeyaporn Songkiatisak
- Department of Chemistry and Biochemistry, Old Dominion UniversityNorfolkVirginia 23529USAhttp://www.odu.edu/∼xhxu+1 (757) 683 5698+1 (757) 683 5698
| | - Feng Ding
- Department of Chemistry and Biochemistry, Old Dominion UniversityNorfolkVirginia 23529USAhttp://www.odu.edu/∼xhxu+1 (757) 683 5698+1 (757) 683 5698
| | - Pavan Kumar Cherukuri
- Department of Chemistry and Biochemistry, Old Dominion UniversityNorfolkVirginia 23529USAhttp://www.odu.edu/∼xhxu+1 (757) 683 5698+1 (757) 683 5698
| | - Xiao-Hong Nancy Xu
- Department of Chemistry and Biochemistry, Old Dominion UniversityNorfolkVirginia 23529USAhttp://www.odu.edu/∼xhxu+1 (757) 683 5698+1 (757) 683 5698
| |
Collapse
|
143
|
Liu YY, An JD, Wang TT, Li Y, Ding B. Solvo-thermal Preparation and Characterization of Two Cd II
Coordination Polymers Constructed From 2,6-(1,2,4-Triazole-4-yl)pyridine and 5-R-Isophthalic Acid (R = Nitro, Sulfo). Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.202000119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuan-Yuan Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; MOE Key Laboratory of InorganicOrganic Hybrid Functional Material Chemistry; Tianjin Normal University; 300387 Tianjin P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; 300071 Tianjin P. R. China
| | - Jun-Dan An
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; MOE Key Laboratory of InorganicOrganic Hybrid Functional Material Chemistry; Tianjin Normal University; 300387 Tianjin P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; 300071 Tianjin P. R. China
| | - Tian-Tian Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; MOE Key Laboratory of InorganicOrganic Hybrid Functional Material Chemistry; Tianjin Normal University; 300387 Tianjin P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; 300071 Tianjin P. R. China
| | - Yong Li
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin Normal University; 300387 Tianjin P. R. China
| | - Bin Ding
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; MOE Key Laboratory of InorganicOrganic Hybrid Functional Material Chemistry; Tianjin Normal University; 300387 Tianjin P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; 300071 Tianjin P. R. China
| |
Collapse
|
144
|
An Overview of the Water Remediation Potential of Nanomaterials and Their Ecotoxicological Impacts. WATER 2020. [DOI: 10.3390/w12041150] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanomaterials, i.e., those materials which have at least one dimension in the 1–100 nm size range, have produced a new generation of technologies for water purification. This includes nanosized adsorbents, nanomembranes, photocatalysts, etc. On the other hand, their uncontrolled release can potentially endanger biota in various environmental domains such as soil and water systems. In this review, we point out the opportunities created by the use of nanomaterials for water remediation and also the adverse effects of such small potential pollutants on the environment. While there is still a large need to further identify the potential hazards of nanomaterials through extensive lab or even field studies, an overview on the current knowledge about the pros and cons of such systems should be helpful for their better implementation.
Collapse
|
145
|
Wang XZ, Zhang ZQ, Guo R, Zhang YY, Zhu NJ, Wang K, Sun PP, Mao XY, Liu JJ, Huo JZ, Wang XR, Ding B. Dual-emission CdTe quantum dot@ZIF-365 ratiometric fluorescent sensor and application for highly sensitive detection of l-histidine and Cu 2. Talanta 2020; 217:121010. [PMID: 32498848 DOI: 10.1016/j.talanta.2020.121010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 11/13/2022]
Abstract
l-histidine acts as a semi-essential amino acid, which is medically used in the treatment of gastric ulcer, anemia, allergies. However, the overuse of l-histidine will result in terrible damage to heart disease, slow growth of animals and water pollution in the environment. In addition, Cu2+ pollution is common environmental pollution in the industry. It has the characteristics of high accumulation, migration, and persistence. Given this, through the post-synthesis strategy, CdTe quantum dots (QDs) were the first time to introduce into zeolitic imidazolate framework-ZIF-365 to synthesis dual-emission hybrid material CdTe@ZIF-365 with high quantum yield. TEM mappings and N2 absorption tests are applied to confirm the combination mode between CdTe quantum dots and ZIF-365. It should be noted that CdTe@ZIF-365 can be successfully utilized as a bi-functional ratiometric sensor for highly sensitive discrimination of l-histidine and Cu2+. Firstly, CdTe@ZIF-365 is applied to a fluorescent ratiometric sensor for Cu2+ with high sensitivity (the Ksv value is 2.7417✕107 [M-1]) and selectivity in the mixed cation ions' solution. On the other hand, CdTe@ZIF-365 also behaved as the first example for an excellent ratiometric fluorescent senor for l-histidine with high sensitivity (the Ksv value is 6.0507✕108 [M-1]) and selectivity in the mixed amino acids' solutions.
Collapse
Affiliation(s)
- Xing Ze Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China
| | - Zi Qing Zhang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China
| | - Rui Guo
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China
| | - Yi Yun Zhang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China
| | - Na Jia Zhu
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China
| | - Kuo Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China
| | - Ping Ping Sun
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China
| | - Xin Yu Mao
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China
| | - Jun Jie Liu
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China
| | - Jian Zhong Huo
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Xin Rui Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China.
| | - Bin Ding
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, PR China.
| |
Collapse
|
146
|
Narayanan KB, Park GT, Han SS. Electrospun poly(vinyl alcohol)/reduced graphene oxide nanofibrous scaffolds for skin tissue engineering. Colloids Surf B Biointerfaces 2020; 191:110994. [PMID: 32298954 DOI: 10.1016/j.colsurfb.2020.110994] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/11/2019] [Accepted: 10/02/2019] [Indexed: 12/20/2022]
Abstract
Graphene is composed of a two-dimensional (2D) layer of carbon atoms arranged in a honeycomb lattice configuration. In this paper, we adopted a green synthetic method of producing reduced graphene oxide using glucose as a reducing and stabilizing agent. We also investigated the fabrication of electrospun nanofibers of glucose-reduced graphene oxide (GRGO) (0-1.0 wt%) reinforced with polyvinyl alcohol (PVA) as (PG) scaffolds, and chemically crosslinked with acidic glutaraldehyde (GA) in acetone medium to mimic the extracellular matrix (ECM) for skin tissue engineering applications. These PG scaffolds were evaluated for morphology, mechanical strength, surface wettability, thermal properties, hemocompatibility, and biocompatibility. Field emission-scanning electron microscopy (FE-SEM) revealed an increase in the thickness of nanofibers in PG scaffolds with an increase in the concentration of GRGO. X-ray diffraction and attenuated total reflectance-infrared and Raman spectra showed the GRGO was incorporated in the PVA nanofibrous matrix. As the concentration of GRGO was increased in PG scaffolds, tensile strengths and elongations at break decreased, whereas thermal properties increased. The biological activities of PG scaffolds were evaluated using in vitro hemolysis, using CCD-986Sk (a human skin fibroblast cell line) viability and proliferation assays, and by live/dead cell imaging. Results showed GRGO inclusion in PVA nanofibers caused a slight hydrophilic to hydrophobic shift. PG scaffolds did not cause hemolysis of red blood cells even at a GRGO loading of 1.0 wt%, and PG-1.0 scaffold (with a GRGO loading of 1.0 wt%) exhibited excellent compatibility with fibroblasts and significantly increased metabolic activity after culture for 21 days as compared with PG-0 controls. DAPI staining and live/dead imaging assays showed that all PG scaffolds increased fibroblast proliferation and viability, indicating the potential for skin tissue engineering applications.
Collapse
Affiliation(s)
- Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Department of Nano, Medical & Polymer Materials, College of Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Gyu Tae Park
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Department of Nano, Medical & Polymer Materials, College of Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Department of Nano, Medical & Polymer Materials, College of Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
147
|
Ravi SK, Singh VK, Suresh L, Ku C, Sanjairaj V, Nandakumar DK, Chen Y, Sun W, Sit PHL, Tan SC. Hydro-Assisted Self-Regenerating Brominated N-Alkylated Thiophene Diketopyrrolopyrrole Dye Nanofibers-A Sustainable Synthesis Route for Renewable Air Filter Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906319. [PMID: 32182408 DOI: 10.1002/smll.201906319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
With rising global concerns over the alarming levels of particulate pollution, a sustainable air quality management is the need of the hour. Air filtration research has gained momentum in recent years. However, the research perspective is still blinkered toward formulating new fiber systems for the energy-intensive electrospinning process to fabricate high quality factor air filters. A holistic approach on sustainable air filtration models is still lacking. The air filter model presented in this work uses a simple process involving water-induced self-organization and self-regeneration of nanofibers, and an easy recycling route after the filter life that not only facilitates reuse of the microfibrous scaffold holding the nanofibers but also allows renewal of nanofibers. Three generations of air filters are fabricated and tested, all having high particulate matter (PM)-adsorbing tendency, high filtration efficiency (>95%), and high Young's modulus (≈5 GPa). The renewable air filters offer a sustainable alternative to the present cost-intensive electrospun air filters.
Collapse
Affiliation(s)
- Sai Kishore Ravi
- Department of Materials Science and Engineering, National University of Singapore (NUS), Singapore, 117575, Singapore
| | - Varun Kumar Singh
- Department of Materials Science and Engineering, National University of Singapore (NUS), Singapore, 117575, Singapore
| | - Lakshmi Suresh
- Department of Materials Science and Engineering, National University of Singapore (NUS), Singapore, 117575, Singapore
| | - Calvin Ku
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | | | - Dilip Krishna Nandakumar
- Department of Materials Science and Engineering, National University of Singapore (NUS), Singapore, 117575, Singapore
| | - Yun Chen
- Bruker Nano Surface Division, 11 Biopolis Way #10-10, The Helios, Singapore, 138667, Singapore
| | - Wanxin Sun
- Bruker Nano Surface Division, 11 Biopolis Way #10-10, The Helios, Singapore, 138667, Singapore
| | - Patrick H-L Sit
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Swee Ching Tan
- Department of Materials Science and Engineering, National University of Singapore (NUS), Singapore, 117575, Singapore
| |
Collapse
|
148
|
Wang P, Ding M, Zhang T, Wu T, Qiao R, Zhang F, Wang X, Zhong J. Electrospraying Technique and Its Recent Application Advances for Biological Macromolecule Encapsulation of Food Bioactive Substances. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1738455] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Panpan Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
| | - Mengzhen Ding
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
| | - Ting Zhang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
| | - Tingting Wu
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
| | - Ruirui Qiao
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Fengping Zhang
- Key Laboratory of Nutrition and Healthy Culture of Aquatic Products, Livestock, and Poultry, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Sichuan Willtest Technology Co., Ltd., Tongwei Group Co., Ltd., Chengdu, Sichuan, China
| | - Xichang Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
| | - Jian Zhong
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
149
|
Bai H, Tu Z, Liu Y, Tai Q, Guo Z, Liu S. Dual-emission carbon dots-stabilized copper nanoclusters for ratiometric and visual detection of Cr 2O 72- ions and Cd 2+ ions. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121654. [PMID: 31740316 DOI: 10.1016/j.jhazmat.2019.121654] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/14/2019] [Accepted: 11/09/2019] [Indexed: 05/24/2023]
Abstract
The pollution of heavy metal increases greatly accompanying by the development of industries. So, it is very important to build up a quick and reliable technique for detection of heavy metal ions. In this work, we developed a simple and convenient method for ratiometric and visual detection of Cr2O72- ions and Cd2+ ions. We utilized glutathione as raw material to prepare cyan-emitting carbon dots (GSH@CDs). The GSH@CDs were further used as the template to prepare carbon dots-stabilized copper nanoclusters (GSH@CDs-Cu NCs) that displayed two well-separated emission peaks respectively at 450 nm and 750 nm. The GSH@CDs-Cu NCs can be applied for the ratiometric and visual detection of Cr2O72- and Cd2+ ions based on the fluorescence quenching or enhancement of GSH@CDs-Cu NCs at 750 nm. A linear range of 2-40 μmol L-1 with a detection limit of 0.9 μmol L-1 for Cr2O72- ions, and a linear range of 0-20 μmol L-1 with a detection limit of 0.6 μmol L-1 for Cd2+ ions were achieved based on this method. The fluorescent test strips for Cr2O72- ions were successfully prepared based on GSH@CDs-Cu NCs. Moreover, the GSH@CDs-Cu NCs were successfully applied to determine Cr2O72- and Cd2+ ions in real samples with promising results.
Collapse
Affiliation(s)
- Hanyu Bai
- College of Life and Health Sciences, Northeastern University, Shenyang, 110000, China
| | - Zaiqian Tu
- College of Life and Health Sciences, Northeastern University, Shenyang, 110000, China
| | - Yitong Liu
- College of Life and Health Sciences, Northeastern University, Shenyang, 110000, China
| | - Qunxi Tai
- College of Life and Health Sciences, Northeastern University, Shenyang, 110000, China
| | - Zhongkai Guo
- College of Life and Health Sciences, Northeastern University, Shenyang, 110000, China
| | - Siyu Liu
- College of Life and Health Sciences, Northeastern University, Shenyang, 110000, China.
| |
Collapse
|
150
|
Wang X, Xiang H, Song C, Zhu D, Sui J, Liu Q, Long Y. Highly efficient transparent air filter prepared by collecting-electrode-free bipolar electrospinning apparatus. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121535. [PMID: 31740311 DOI: 10.1016/j.jhazmat.2019.121535] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/13/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
Electrospinning technology has been used for a long time. A jet from a needle was formed by applying high voltage, and then the nanofibers are deposited onto a collecting electrode (usually metal) and the excess charge is conducted away to complete the electrospinning. Alternatively, it is also possible to prevent charge accumulation from hindering the progress of electrospinning by means of charge neutralization. A bipolar electrospinning technique (B-EEM) was developed to induce jets with different charges through a set of high-voltage power supplies of opposite polarity, and the two jets neutralize each other on the insulating mesh, thus completing the electrospinning process. There is no need for a collecting electrode to complete the electrospinning process. We have found that the filters produced by the new technology have better filtration efficiency while maintaining the same transparency in relative to the original technology, and this optimization is due to the distribution modification of the nanofibers on the mesh.
Collapse
Affiliation(s)
- Xiaoxiong Wang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, 266071, China
| | - Hongfei Xiang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, 266071, China; Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Chao Song
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, 266071, China
| | - Dongyang Zhu
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, 266071, China
| | - Jinxia Sui
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, 266071, China
| | - Qi Liu
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, 266071, China
| | - Yunze Long
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|