101
|
Yan B, Ran X, Jiang Y, Torrence SK, Yuan L, Shao Q, Yang ZJ. Rate-Perturbing Single Amino Acid Mutation for Hydrolases: A Statistical Profiling. J Phys Chem B 2021; 125:10682-10691. [PMID: 34524819 DOI: 10.1021/acs.jpcb.1c05901] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrolases are a critical component for modern chemical, pharmaceutical, and environmental sciences. Identifying mutations that enhance catalytic efficiency presents a roadblock to design and to discover new hydrolases for broad academic and industrial uses. Here, we report the statistical profiling for rate-perturbing mutant hydrolases with a single amino acid substitution. We constructed an integrated structure-kinetics database for hydrolases, IntEnzyDB, which contains 3907 kcats, 4175 KMs, and 2715 Protein Data Bank IDs. IntEnzyDB adopts a relational architecture with a flattened data structure, enabling facile and efficient access to clean and tabulated data for machine learning uses. We conducted statistical analyses on how single amino acids mutations influence the turnover number (i.e., kcat) and efficiency (i.e., kcat/KM), with a particular emphasis on profiling the features for rate-enhancing mutations. The results show that mutation to bulky nonpolar residues with a hydrocarbon chain involves a higher likelihood for rate acceleration than to other types of residues. Linear regression models reveal geometric descriptors of substrate and mutation residues that mediate rate-perturbing outcomes for hydrolases with bulky nonpolar mutations. On the basis of the analyses of the structure-kinetics relationship, we observe that the propensity for rate enhancement is independent of protein sizes. In addition, we observe that distal mutations (i.e., >10 Å from the active site) in hydrolases are significantly more prone to induce efficiency neutrality and avoid efficiency deletion but involve similar propensity for rate enhancement. The studies reveal the statistical features for identifying rate-enhancing mutations in hydrolases, which will potentially guide hydrolase discovery in biocatalysis.
Collapse
Affiliation(s)
- Bailu Yan
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States.,Department of Biostatistics, Vanderbilt University, Nashville, Tennessee 37203, United States
| | - Xinchun Ran
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Yaoyukun Jiang
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Sarah K Torrence
- Data Science Institute, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Li Yuan
- Data Science Institute, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Qianzhen Shao
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Zhongyue J Yang
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States.,Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States.,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States.,Data Science Institute, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
102
|
Joseph V, Levine M. Ronald C.D. Breslow (1931-2017): A career in review. Bioorg Chem 2021; 115:104868. [PMID: 34523507 DOI: 10.1016/j.bioorg.2021.104868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/23/2021] [Indexed: 11/26/2022]
Abstract
Reviewed herein are key research accomplishments of Professor Ronald Charles D. Breslow (1931-2017) throughout his more than 60 year research career. These accomplishments span a wide range of topics, most notably physical organic chemistry, medicinal chemistry, and bioorganic chemistry. These topics are reviewed, as are topics of molecular electronics and origin of chirality, which combine to make up the bulk of this review. Also reviewed briefly are Breslow's contributions to the broader chemistry profession, including his work for the American Chemical Society and his work promoting gender equity. Throughout the article, efforts are made to put Breslow's accomplishments in the context of other work being done at the time, as well as to include subsequent iterations and elaborations of the research.
Collapse
Affiliation(s)
- Vincent Joseph
- Department of Chemical Sciences, Ariel University, Israel
| | - Mindy Levine
- Department of Chemical Sciences, Ariel University, Israel.
| |
Collapse
|
103
|
Ghodke VM, Punekar NS. Environmental role of aromatic carboxylesterases. Environ Microbiol 2021; 24:2657-2668. [PMID: 34528362 DOI: 10.1111/1462-2920.15774] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 01/14/2023]
Abstract
The carboxylesterases (EC 3.1.1.x) are widely distributed and form an important yet diverse group of hydrolases catalysing the ester bond cleavage in a variety of substrates. Besides acting on plant cell wall components like cutin, tannin and feruloyl esters, they are often the first line of defence to metabolize drugs, xenobiotics, pesticides, insecticides and plastic. But for the promiscuity of some carboxylesterases and cutinases, very few enzymes act exclusively on aromatic carboxylic acid esters. Infrequent occurrence of aromatic carboxylesterases suggests that aromatic carboxylesters are inherently more difficult to hydrolyse than the regular carboxylesters because of both steric and polar effects. Naturally occurring aromatic carboxylesters were rare before the anthropogenic activity augmented their environmental presence and diversity. An appraisal of the literature shows that the hydrolysis of aromatic carboxylic esters is a uniquely difficult endeavour and hence deserves special attention. Enzymes to hydrolyse such esters are evolving rapidly in nature. Very few such enzymes are known and they often display much lower catalytic efficiencies. Obviously, the esters of aromatic carboxylic acids, including polyethylene terephthalate waste, pose an environmental challenge. In this review, we highlight the uniqueness of aromatic carboxylesters and then underscore the importance of relevant carboxylesterases.
Collapse
Affiliation(s)
- Venkatesh M Ghodke
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Narayan S Punekar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
104
|
Jerves C, Neves RPP, Ramos MJ, da Silva S, Fernandes PA. Reaction Mechanism of the PET Degrading Enzyme PETase Studied with DFT/MM Molecular Dynamics Simulations. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03700] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Carola Jerves
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
- Facultad de Ciencias Químicas, Universidad de Cuenca, Av. 12 de Abril y Av. Loja, Cuenca 010202, Ecuador
| | - Rui P. P. Neves
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Maria J. Ramos
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Saulo da Silva
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
- Facultad de Ciencias Químicas, Universidad de Cuenca, Av. 12 de Abril y Av. Loja, Cuenca 010202, Ecuador
| | - Pedro A. Fernandes
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| |
Collapse
|
105
|
Duran-Meza E, Diaz-Espinoza R. Catalytic Amyloids as Novel Synthetic Hydrolases. Int J Mol Sci 2021; 22:ijms22179166. [PMID: 34502074 PMCID: PMC8431744 DOI: 10.3390/ijms22179166] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 11/23/2022] Open
Abstract
Amyloids are supramolecular assemblies composed of polypeptides stabilized by an intermolecular beta-sheet core. These misfolded conformations have been traditionally associated with pathological conditions such as Alzheimer’s and Parkinson´s diseases. However, this classical paradigm has changed in the last decade since the discovery that the amyloid state represents a universal alternative fold accessible to virtually any polypeptide chain. Moreover, recent findings have demonstrated that the amyloid fold can serve as catalytic scaffolds, creating new opportunities for the design of novel active bionanomaterials. Here, we review the latest advances in this area, with particular emphasis on the design and development of catalytic amyloids that exhibit hydrolytic activities. To date, three different types of activities have been demonstrated: esterase, phosphoesterase and di-phosphohydrolase. These artificial hydrolases emerge upon the self-assembly of small peptides into amyloids, giving rise to catalytically active surfaces. The highly stable nature of the amyloid fold can provide an attractive alternative for the design of future synthetic hydrolases with diverse applications in the industry, such as the in situ decontamination of xenobiotics.
Collapse
Affiliation(s)
- Eva Duran-Meza
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile;
| | - Rodrigo Diaz-Espinoza
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
- Correspondence:
| |
Collapse
|
106
|
Pinto AV, Ferreira P, Neves RPP, Fernandes PA, Ramos MJ, Magalhães AL. Reaction Mechanism of MHETase, a PET Degrading Enzyme. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02444] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Alexandre V. Pinto
- LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Pedro Ferreira
- LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Rui P. P. Neves
- LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Pedro A. Fernandes
- LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Maria J. Ramos
- LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Alexandre L. Magalhães
- LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| |
Collapse
|
107
|
Ma GL, Tran HT, Low ZJ, Candra H, Pang LM, Cheang QW, Fang M, Liang ZX. Pathway Retrofitting Yields Insights into the Biosynthesis of Anthraquinone-Fused Enediynes. J Am Chem Soc 2021; 143:11500-11509. [PMID: 34293863 DOI: 10.1021/jacs.1c03911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Anthraquinone-fused enediynes (AQEs) are renowned for their distinctive molecular architecture, reactive enediyne warhead, and potent anticancer activity. Although the first members of AQEs, i.e., dynemicins, were discovered three decades ago, how their nitrogen-containing carbon skeleton is synthesized by microbial producers remains largely a mystery. In this study, we showed that the recently discovered sungeidine pathway is a "degenerative" AQE pathway that contains upstream enzymes for AQE biosynthesis. Retrofitting the sungeidine pathway with genes from the dynemicin pathway not only restored the biosynthesis of the AQE skeleton but also produced a series of novel compounds likely as the cycloaromatized derivatives of chemically unstable biosynthetic intermediates. The results suggest a cascade of highly surprising biosynthetic steps leading to the formation of the anthraquinone moiety, the hallmark C8-C9 linkage via alkyl-aryl cross-coupling, and the characteristic epoxide functionality. The findings provide unprecedented insights into the biosynthesis of AQEs and pave the way for examining these intriguing biosynthetic enzymes.
Collapse
Affiliation(s)
- Guang-Lei Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Hoa Thi Tran
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Zhen Jie Low
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Hartono Candra
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Li Mei Pang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Qing Wei Cheang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798
| | - Zhao-Xun Liang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| |
Collapse
|
108
|
Dongus JA, Parker JE. EDS1 signalling: At the nexus of intracellular and surface receptor immunity. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102039. [PMID: 33930849 DOI: 10.1016/j.pbi.2021.102039] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 05/27/2023]
Abstract
The conserved lipase-like protein EDS1 transduces signals from pathogen-activated intracellular nucleotide-binding leucine-rich repeat (NLR) receptors to transcriptional defences and host cell death. In this pivotal NLR signalling role, EDS1 works as a heterodimer with each of its partners, SAG101 and PAD4. Different properties of EDS1-SAG101 and EDS1-PAD4 complexes and functional relationships to sensor and helper NLRs have emerged. EDS1-SAG101 dimers confer effector-triggered immunity mediated by intracellular TNL receptors. In contrast, EDS1-PAD4 dimers have a broader role promoting basal immune responses that can be initiated inside cells by TNL- or CNL-type NLRs, and at the cell surface by LRR-receptor proteins. Characterizing the essential elements of these two EDS1 modules will help to connect intracellular and surface receptor signalling networks in the plant immune system.
Collapse
Affiliation(s)
- Joram A Dongus
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Jane E Parker
- Cologne-Düsseldorf Cluster of Excellence on Plant Sciences (CEPLAS), 40225, Düsseldorf, Germany; Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany.
| |
Collapse
|
109
|
Vieira PS, Bonfim IM, Araujo EA, Melo RR, Lima AR, Fessel MR, Paixão DAA, Persinoti GF, Rocco SA, Lima TB, Pirolla RAS, Morais MAB, Correa JBL, Zanphorlin LM, Diogo JA, Lima EA, Grandis A, Buckeridge MS, Gozzo FC, Benedetti CE, Polikarpov I, Giuseppe PO, Murakami MT. Xyloglucan processing machinery in Xanthomonas pathogens and its role in the transcriptional activation of virulence factors. Nat Commun 2021; 12:4049. [PMID: 34193873 PMCID: PMC8245568 DOI: 10.1038/s41467-021-24277-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
Xyloglucans are highly substituted and recalcitrant polysaccharides found in the primary cell walls of vascular plants, acting as a barrier against pathogens. Here, we reveal that the diverse and economically relevant Xanthomonas bacteria are endowed with a xyloglucan depolymerization machinery that is linked to pathogenesis. Using the citrus canker pathogen as a model organism, we show that this system encompasses distinctive glycoside hydrolases, a modular xyloglucan acetylesterase and specific membrane transporters, demonstrating that plant-associated bacteria employ distinct molecular strategies from commensal gut bacteria to cope with xyloglucans. Notably, the sugars released by this system elicit the expression of several key virulence factors, including the type III secretion system, a membrane-embedded apparatus to deliver effector proteins into the host cells. Together, these findings shed light on the molecular mechanisms underpinning the intricate enzymatic machinery of Xanthomonas to depolymerize xyloglucans and uncover a role for this system in signaling pathways driving pathogenesis.
Collapse
Affiliation(s)
- Plinio S. Vieira
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Isabela M. Bonfim
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil ,grid.411087.b0000 0001 0723 2494Graduate Program in Functional and Molecular Biology, Institute of Biology, University of Campinas, Campinas, São Paulo Brazil
| | - Evandro A. Araujo
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil ,grid.452567.70000 0004 0445 0877Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Ricardo R. Melo
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Augusto R. Lima
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Melissa R. Fessel
- grid.418514.d0000 0001 1702 8585Butantan Institute, Butantan Foundation, São Paulo, São Paulo Brazil
| | - Douglas A. A. Paixão
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Gabriela F. Persinoti
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Silvana A. Rocco
- grid.452567.70000 0004 0445 0877Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Tatiani B. Lima
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Renan A. S. Pirolla
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Mariana A. B. Morais
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Jessica B. L. Correa
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Leticia M. Zanphorlin
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Jose A. Diogo
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil ,grid.411087.b0000 0001 0723 2494Graduate Program in Functional and Molecular Biology, Institute of Biology, University of Campinas, Campinas, São Paulo Brazil
| | - Evandro A. Lima
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Adriana Grandis
- grid.11899.380000 0004 1937 0722Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Marcos S. Buckeridge
- grid.11899.380000 0004 1937 0722Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Fabio C. Gozzo
- grid.411087.b0000 0001 0723 2494Institute of Chemistry, University of Campinas, Campinas, São Paulo Brazil
| | - Celso E. Benedetti
- grid.452567.70000 0004 0445 0877Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Igor Polikarpov
- grid.11899.380000 0004 1937 0722São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo Brazil
| | - Priscila O. Giuseppe
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Mario T. Murakami
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| |
Collapse
|
110
|
Diwo M, Michel W, Aurass P, Kuhle-Keindorf K, Pippel J, Krausze J, Wamp S, Lang C, Blankenfeldt W, Flieger A. NAD(H)-mediated tetramerization controls the activity of Legionella pneumophila phospholipase PlaB. Proc Natl Acad Sci U S A 2021; 118:e2017046118. [PMID: 34074754 PMCID: PMC8201859 DOI: 10.1073/pnas.2017046118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The virulence factor PlaB promotes lung colonization, tissue destruction, and intracellular replication of Legionella pneumophila, the causative agent of Legionnaires' disease. It is a highly active phospholipase exposed at the bacterial surface and shows an extraordinary activation mechanism by tetramer deoligomerization. To unravel the molecular basis for enzyme activation and localization, we determined the crystal structure of PlaB in its tetrameric form. We found that the tetramer is a dimer of identical dimers, and a monomer consists of an N-terminal α/β-hydrolase domain expanded by two noncanonical two-stranded β-sheets, β-6/β-7 and β-9/β-10. The C-terminal domain reveals a fold displaying a bilobed β-sandwich with a hook structure required for dimer formation and structural complementation of the enzymatic domain in the neighboring monomer. This highlights the dimer as the active form. Δβ-9/β-10 mutants showed a decrease in the tetrameric fraction and altered activity profiles. The variant also revealed restricted binding to membranes resulting in mislocalization and bacterial lysis. Unexpectedly, we observed eight NAD(H) molecules at the dimer/dimer interface, suggesting that these molecules stabilize the tetramer and hence lead to enzyme inactivation. Indeed, addition of NAD(H) increased the fraction of the tetramer and concomitantly reduced activity. Together, these data reveal structural elements and an unprecedented NAD(H)-mediated tetramerization mechanism required for spatial and enzymatic control of a phospholipase virulence factor. The allosteric regulatory process identified here is suited to fine tune PlaB in a way that protects Legionella pneumophila from self-inflicted lysis while ensuring its activity at the pathogen-host interface.
Collapse
Affiliation(s)
- Maurice Diwo
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Wiebke Michel
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, 38855 Wernigerode, Germany
| | - Philipp Aurass
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, 38855 Wernigerode, Germany
| | - Katja Kuhle-Keindorf
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, 38855 Wernigerode, Germany
| | - Jan Pippel
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Joern Krausze
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Sabrina Wamp
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, 38855 Wernigerode, Germany
| | - Christina Lang
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, 38855 Wernigerode, Germany
| | - Wulf Blankenfeldt
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Antje Flieger
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, 38855 Wernigerode, Germany;
| |
Collapse
|
111
|
Bhatt P, Zhou X, Huang Y, Zhang W, Chen S. Characterization of the role of esterases in the biodegradation of organophosphate, carbamate, and pyrethroid pesticides. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125026. [PMID: 33461010 DOI: 10.1016/j.jhazmat.2020.125026] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/08/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Ester-containing organophosphate, carbamate, and pyrethroid (OCP) pesticides are used worldwide to minimize the impact of pests and increase agricultural production. The toxicity of these chemicals to humans and other organisms has been widely reported. Chemically, these pesticides share an ester bond in their parent structures. A particular group of hydrolases, known as esterases, can catalyze the first step in ester-bond hydrolysis, and this initial regulatory metabolic reaction accelerates the degradation of OCP pesticides. Esterases can be naturally found in plants, animals, and microorganisms. Previous research on the esterase enzyme mechanisms revealed that the active sites of esterases contain serine residues that catalyze reactions via a nucleophilic attack on the substrates. In this review, we have compiled the previous research on esterases from different sources to determine and summarize the current knowledge of their properties, classifications, structures, mechanisms, and their applications in the removal of pesticides from the environment. This review will enhance the understanding of the scientific community when studying esterases and their applications for the degradation of broad-spectrum ester-containing pesticides.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiaofan Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
112
|
Boneta S, Arafet K, Moliner V. QM/MM Study of the Enzymatic Biodegradation Mechanism of Polyethylene Terephthalate. J Chem Inf Model 2021; 61:3041-3051. [PMID: 34085821 PMCID: PMC8576761 DOI: 10.1021/acs.jcim.1c00394] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
The
environmental problems derived from the generalized plastic
consumption and disposal could find a friendly solution in enzymatic
biodegradation. Recently, two hydrolases from Ideonella sakaiensis 201-F6 and the metagenome-derived leaf-branch compost cutinase (LCC),
more specially the improved ICCG variant, have revealed degradation
activity toward poly ethylene terephthalate (PET). In the present
study, the reaction mechanism of this polymer breakage is studied
at an atomic level by multiscale QM/MM molecular dynamics simulations,
using semiempirical and DFT Hamiltonians to describe the QM region.
The obtained free energy surfaces confirmed a characteristic four-step
path for both systems, with activation energies in agreement with
the experimental observations. Structural analysis of the evolution
of the active site along the reaction progress and the study of electrostatic
effects generated by the proteins reveal the similarity in the behavior
of the active site of these two enzymes. The origin of the apparent
better performance of the LCC-ICCG protein over PETase must be due
to its capabilities of working at higher temperature and its intrinsic
relationship with the crystallinity grade of the polymer. Our results
may be useful for the development of more efficient enzymes in the
biodegradation of PET.
Collapse
Affiliation(s)
- Sergio Boneta
- Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castelló, Spain.,Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Kemel Arafet
- Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castelló, Spain
| | - Vicent Moliner
- Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castelló, Spain
| |
Collapse
|
113
|
Schuiten ED, Badenhorst CPS, Palm GJ, Berndt L, Lammers M, Mican J, Bednar D, Damborsky J, Bornscheuer UT. Promiscuous Dehalogenase Activity of the Epoxide Hydrolase CorEH from Corynebacterium sp. C12. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Eva D. Schuiten
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany
| | - Christoffel P. S. Badenhorst
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany
| | - Gottfried J. Palm
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany
| | - Leona Berndt
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany
| | - Michael Lammers
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany
| | - Jan Mican
- Loschmidt Laboratories, Department of Experimental Biology RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- International Clinical Research Centre, St. Anne’s Hospital, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- International Clinical Research Centre, St. Anne’s Hospital, 656 91 Brno, Czech Republic
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany
| |
Collapse
|
114
|
Nikulin M, Švedas V. Prospects of Using Biocatalysis for the Synthesis and Modification of Polymers. Molecules 2021; 26:2750. [PMID: 34067052 PMCID: PMC8124709 DOI: 10.3390/molecules26092750] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022] Open
Abstract
Trends in the dynamically developing application of biocatalysis for the synthesis and modification of polymers over the past 5 years are considered, with an emphasis on the production of biodegradable, biocompatible and functional polymeric materials oriented to medical applications. The possibilities of using enzymes not only as catalysts for polymerization but also for the preparation of monomers for polymerization or oligomers for block copolymerization are considered. Special attention is paid to the prospects and existing limitations of biocatalytic production of new synthetic biopolymers based on natural compounds and monomers from biomass, which can lead to a huge variety of functional biomaterials. The existing experience and perspectives for the integration of bio- and chemocatalysis in this area are discussed.
Collapse
Affiliation(s)
- Maksim Nikulin
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Lenin Hills 1, bldg. 40, 119991 Moscow, Russia;
| | - Vytas Švedas
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Lenin Hills 1, bldg. 73, 119991 Moscow, Russia
- Research Computing Center, Lomonosov Moscow State University, Lenin Hills 1, bldg. 4, 119991 Moscow, Russia
| |
Collapse
|
115
|
You C, Li F, Zhang X, Ma L, Zhang YZ, Zhang W, Li S. Structural basis for substrate specificity of the peroxisomal acyl-CoA hydrolase MpaH' involved in mycophenolic acid biosynthesis. FEBS J 2021; 288:5768-5780. [PMID: 33843134 DOI: 10.1111/febs.15874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/30/2021] [Accepted: 04/09/2021] [Indexed: 11/30/2022]
Abstract
Mycophenolic acid (MPA) is a fungal natural product and first-line immunosuppressive drug for organ transplantations and autoimmune diseases. In the compartmentalized biosynthesis of MPA, the acyl-coenzyme A (CoA) hydrolase MpaH' located in peroxisomes catalyzes the highly specific hydrolysis of MPA-CoA to produce the final product MPA. The strict substrate specificity of MpaH' not only averts undesired hydrolysis of various cellular acyl-CoAs, but also prevents MPA-CoA from further peroxisomal β-oxidation catabolism. To elucidate the structural basis for this important property, in this study, we solve the crystal structures of the substrate-free form of MpaH' and the MpaH'S139A mutant in complex with the product MPA. The MpaH' structure reveals a canonical α/β-hydrolase fold with an unusually large cap domain and a rare location of the acidic residue D163 of catalytic triad after strand β6. MpaH' also forms an atypical dimer with the unique C-terminal helices α13 and α14 arming the cap domain of the other protomer and indirectly participating in the substrate binding. With these characteristics, we propose that MpaH' and its homologs form a new subfamily of α/β hydrolase fold protein. The crystal structure of MpaH'S139A /MPA complex and the modeled structure of MpaH'/MPA-CoA, together with the structure-guided mutagenesis analysis and isothermal titration calorimetry (ITC) measurements, provide important mechanistic insights into the high substrate specificity of MpaH'.
Collapse
Affiliation(s)
- Cai You
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Fengwei Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xingwang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Li Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Wei Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, China
| |
Collapse
|
116
|
Berselli A, Ramos MJ, Menziani MC. Novel Pet-Degrading Enzymes: Structure-Function from a Computational Perspective. Chembiochem 2021; 22:2032-2050. [PMID: 33470503 DOI: 10.1002/cbic.202000841] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/19/2021] [Indexed: 12/12/2022]
Abstract
The bacterium strain Ideonella sakaiensis 201-F6 is able to hydrolyze low-crystallinity PET films at 30 °C due to two enzymes named PETase and MHETase. Since its discovery, many efforts have been dedicated to elucidating the structure and features of those two enzymes, and various authors have highlighted the necessity to optimize both the substrate binding site and the global structure in order to enhance the stability and catalytic activity of these PET biocatalysts so as to make them more suitable for industrial applications. In this review, the strategies adopted by different research groups to investigate the structure and functionality of both PETase and MHETase in depth are described, emphasizing the advantages provided by the use of computational methods to complement and drive experiments. Subsequently, the modifications implemented with protein engineering are discussed. The versatility of the enzymes secreted by I. sakaiensis enables the prediction that they will find several applications in the disposal of PET debris, encouraging a prioritization of efforts in this prolific research field.
Collapse
Affiliation(s)
- Alessandro Berselli
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Maria J Ramos
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Maria Cristina Menziani
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| |
Collapse
|
117
|
Silveira RL, Knott BC, Pereira CS, Crowley MF, Skaf MS, Beckham GT. Transition Path Sampling Study of the Feruloyl Esterase Mechanism. J Phys Chem B 2021; 125:2018-2030. [PMID: 33616402 DOI: 10.1021/acs.jpcb.0c09725] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Serine hydrolases cleave peptide and ester bonds and are ubiquitous in nature, with applications in biotechnology, in materials, and as drug targets. The serine hydrolase two-step mechanism employs a serine-histidine-aspartate/glutamate catalytic triad, where the histidine residue acts as a base to activate poor nucleophiles (a serine residue or a water molecule) and as an acid to allow the dissociation of poor leaving groups. This mechanism has been the subject of debate regarding how histidine shuttles the proton from the nucleophile to the leaving group. To elucidate the reaction mechanism of serine hydrolases, we employ quantum mechanics/molecular mechanics-based transition path sampling to obtain the reaction coordinate using the Aspergillus niger feruloyl esterase A (AnFaeA) as a model enzyme. The optimal reaction coordinates include terms involving nucleophilic attack on the carbonyl carbon and proton transfer to, and dissociation of, the leaving group. During the reaction, the histidine residue undergoes a reorientation on the time scale of hundreds of femtoseconds that supports the "moving histidine" mechanism, thus calling into question the "ring flip" mechanism. We find a concerted mechanism, where the transition state coincides with the tetrahedral intermediate with the histidine residue pointed between the nucleophile and the leaving group. Moreover, motions of the catalytic aspartate toward the histidine occur concertedly with proton abstraction by the catalytic histidine and help stabilize the transition state, thus partially explaining how serine hydrolases enable poor nucleophiles to attack the substrate carbonyl carbon. Rate calculations indicate that the second step (deacylation) is rate-determining, with a calculated rate constant of 66 s-1. Overall, these results reveal the pivotal role of active-site dynamics in the catalytic mechanism of AnFaeA, which is likely similar in other serine hydrolases.
Collapse
Affiliation(s)
- Rodrigo L Silveira
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States.,Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas, Campinas, Sao Paulo 13084-862, Brazil.,Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-909, Brazil
| | - Brandon C Knott
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Caroline S Pereira
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States.,Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas, Campinas, Sao Paulo 13084-862, Brazil
| | - Michael F Crowley
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Munir S Skaf
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas, Campinas, Sao Paulo 13084-862, Brazil
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| |
Collapse
|
118
|
Structural Insights into Carboxylic Polyester-Degrading Enzymes and Their Functional Depolymerizing Neighbors. Int J Mol Sci 2021; 22:ijms22052332. [PMID: 33652738 PMCID: PMC7956259 DOI: 10.3390/ijms22052332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 11/28/2022] Open
Abstract
Esters are organic compounds widely represented in cellular structures and metabolism, originated by the condensation of organic acids and alcohols. Esterification reactions are also used by chemical industries for the production of synthetic plastic polymers. Polyester plastics are an increasing source of environmental pollution due to their intrinsic stability and limited recycling efforts. Bioremediation of polyesters based on the use of specific microbial enzymes is an interesting alternative to the current methods for the valorization of used plastics. Microbial esterases are promising catalysts for the biodegradation of polyesters that can be engineered to improve their biochemical properties. In this work, we analyzed the structure-activity relationships in microbial esterases, with special focus on the recently described plastic-degrading enzymes isolated from marine microorganisms and their structural homologs. Our analysis, based on structure-alignment, molecular docking, coevolution of amino acids and surface electrostatics determined the specific characteristics of some polyester hydrolases that could be related with their efficiency in the degradation of aromatic polyesters, such as phthalates.
Collapse
|
119
|
Franz L, Kazmaier U, Truman AW, Koehnke J. Bottromycins - biosynthesis, synthesis and activity. Nat Prod Rep 2021; 38:1659-1683. [PMID: 33621290 DOI: 10.1039/d0np00097c] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: 1950s up to the end of 2020Bottromycins are a class of macrocyclic peptide natural products that are produced by several Streptomyces species and possess promising antibacterial activity against clinically relevant multidrug-resistant pathogens. They belong to the ribosomally synthesised and post-translationally modified peptide (RiPP) superfamily of natural products. The structure contains a unique four-amino acid macrocycle formed via a rare amidine linkage, C-methylation and a d-amino acid. This review covers all aspects of bottromycin research with a focus on recent years (2009-2020), in which major advances in total synthesis and understanding of bottromycin biosynthesis were achieved.
Collapse
Affiliation(s)
- Laura Franz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany
| | - Uli Kazmaier
- Saarland University, Organic Chemistry, Campus Geb. C4.2, 66123 Saarbrücken, Germany
| | - Andrew W Truman
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | - Jesko Koehnke
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany and School of Chemistry, University of Glasgow, Glasgow, UK.
| |
Collapse
|
120
|
Godehard SP, Müller H, Badenhorst CPS, Stanetty C, Suster C, Mihovilovic MD, Bornscheuer UT. Efficient Acylation of Sugars and Oligosaccharides in Aqueous Environment Using Engineered Acyltransferases. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Simon P. Godehard
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany
| | - Henrik Müller
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany
| | - Christoffel P. S. Badenhorst
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany
| | - Christian Stanetty
- Institute for Applied Synthetic Chemistry, TU Wien, A-1060 Vienna, Austria
| | - Christoph Suster
- Institute for Applied Synthetic Chemistry, TU Wien, A-1060 Vienna, Austria
| | | | - Uwe T. Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany
| |
Collapse
|
121
|
Monteiro RR, Virgen-Ortiz JJ, Berenguer-Murcia Á, da Rocha TN, dos Santos JC, Alcántara AR, Fernandez-Lafuente R. Biotechnological relevance of the lipase A from Candida antarctica. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.03.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
122
|
Revisiting the Phenomenon of Cellulase Action: Not All Endo- and Exo-Cellulase Interactions Are Synergistic. Catalysts 2021. [DOI: 10.3390/catal11020170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The conventional endo–exo synergism model has extensively been supported in literature, which is based on the perception that endoglucanases (EGs) expose or create accessible sites on the cellulose chain to facilitate the action of processive cellobiohydrolases (CBHs). However, there is a lack of information on why some bacterial and fungal CBHs and EGs do not exhibit synergism. Therefore, the present study evaluated and compared the synergistic relationships between cellulases from different microbial sources and provided insights into how different GH families govern synergism. The results showed that CmixA2 (a mixture of TlCel7A and CtCel5A) displayed the highest effect with BaCel5A (degree of synergy for reducing sugars and glucose of 1.47 and 1.41, respectively) in a protein mass ratio of 75–25%. No synergism was detected between CmixB1/B2 (as well as CmixC1/C2) and any of the EGs, and the combinations did not improve the overall cellulose hydrolysis. These findings further support the hypothesis that “not all endo-to exo-cellulase interactions are synergistic”, and that the extent of synergism is dependent on the composition of cellulase systems from various sources and their compatibility in the cellulase cocktail. This method of screening for maximal compatibility between exo- and endo-cellulases constitutes a critical step towards the design of improved synergistic cellulose-degrading cocktails for industrial-scale biomass degradation.
Collapse
|
123
|
Tan Y, Henehan GT, Kinsella GK, Ryan BJ. An extracellular lipase from Amycolatopsis mediterannei is a cutinase with plastic degrading activity. Comput Struct Biotechnol J 2021; 19:869-879. [PMID: 33598102 PMCID: PMC7851449 DOI: 10.1016/j.csbj.2021.01.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/08/2021] [Accepted: 01/14/2021] [Indexed: 11/04/2022] Open
Abstract
Amycolatopsis mediterranei lipase (AML) exhibits cutinase-like structural features. AML shows 60–70% sequence similarity to a few plastic degrading cutinases. AML has the ability to degrade poly(caprolactone) and poly(butylene succinate).
An extracellular lipase from Amycolatopsis mediteranei (AML) with potential applications in process biotechnology was recently cloned and examined in this laboratory. In the present study, the 3D structure of AML was elucidated by comparative modelling. AML lacked the ‘lid’ structure observed in most true lipases and shared similarities with plastic degrading enzymes. Modelling and substrate specificity studies showed that AML was a cutinase with a relatively exposed active site and specificity for medium chain fatty acyl moieties. AML rapidly hydrolysed the aliphatic plastics poly(ε-caprolactone) and poly(1,4-butylene succinate) extended with 1,6-diisocyanatohexane under mild conditions. These plastics are known to be slow to degrade in landfill. Poly(L-lactic acid) was not hydrolysed by AML, nor was the aromatic plastic Polyethylene Terephthalate (PET). The specificity of AML is partly explained by active site topology and analysis reveals that minor changes in the active site region can have large effects on substrate preference. These findings show that extracellular Amycolatopsis enzymes are capable of degrading a wider range of plastics than is generally recognised. The potential for application of AML in the bioremediation of plastics is discussed.
Collapse
Affiliation(s)
- Yeqi Tan
- School of Food Sciences and Environmental Health, Technological University Dublin, Grangegorman, Dublin 7 D07 H6K8, Ireland
| | - Gary T Henehan
- School of Food Sciences and Environmental Health, Technological University Dublin, Grangegorman, Dublin 7 D07 H6K8, Ireland
| | - Gemma K Kinsella
- School of Food Sciences and Environmental Health, Technological University Dublin, Grangegorman, Dublin 7 D07 H6K8, Ireland
| | - Barry J Ryan
- School of Food Sciences and Environmental Health, Technological University Dublin, Grangegorman, Dublin 7 D07 H6K8, Ireland
| |
Collapse
|
124
|
Ma'ruf IF, Widhiastuty MP, Suharti, Moeis MR, Akhmaloka. Effect of mutation at oxyanion hole residu (H110F) on activity of Lk4 lipase. ACTA ACUST UNITED AC 2021; 29:e00590. [PMID: 33532247 PMCID: PMC7823203 DOI: 10.1016/j.btre.2021.e00590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/15/2020] [Accepted: 01/01/2021] [Indexed: 11/28/2022]
Abstract
Mutant of lipase at oxyanion hole (H110 F) was constructed. The gene was highly expressed in Eschericia coli BL21 (DE3) and the recombinant protein was purified using Ni-NTA affinity chromatography. The activity of mutant enzyme was significantly increased compared to that the wild type. Further comparison showed that both of the enzymes exhibited same optimum pH and temperature, and showed highest lipolytic activity on pNP-decanoate (C10). The wild type appeared lost of activity on C14 and C16 substrates meanwhile the mutant still showed activity up to 20 %. In the presence of non polar organic solvent such as n-hexane, the wild type became inactive enzyme meanwhile the mutant still remained 50 % of its activity. The results suggested that mutation at oxyanion hole (H110 F) caused enzyme-substrate interaction change resulting on elevation of activity, better activity toward longer carbon chain substrate and improving the activity in the present of non polar organic solvent.
Collapse
Affiliation(s)
- Ilma Fauziah Ma'ruf
- Biochemistry Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia.,Genetic and Molecular Biotechnology Research Group, School of Life Sciences and Technology, Institut Teknologi Bandung, Indonesia
| | - Made Puspasari Widhiastuty
- Biochemistry Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia
| | - Suharti
- Biochemistry Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia.,Department of Chemistry, Faculty of Science and Computer, Universitas Pertamina, Indonesia
| | - Maelita Ramdani Moeis
- Genetic and Molecular Biotechnology Research Group, School of Life Sciences and Technology, Institut Teknologi Bandung, Indonesia
| | - Akhmaloka
- Biochemistry Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia.,Department of Chemistry, Faculty of Science and Computer, Universitas Pertamina, Indonesia
| |
Collapse
|
125
|
Xu Y, Caldo KMP, Singer SD, Mietkiewska E, Greer MS, Tian B, Dyer JM, Smith M, Zhou XR, Qiu X, Weselake RJ, Chen G. Physaria fendleri and Ricinus communis lecithin:cholesterol acyltransferase-like phospholipases selectively cleave hydroxy acyl chains from phosphatidylcholine. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:182-196. [PMID: 33107656 DOI: 10.1111/tpj.15050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/12/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Production of hydroxy fatty acids (HFAs) in transgenic crops represents a promising strategy to meet our demands for specialized plant oils with industrial applications. The expression of Ricinus communis (castor) OLEATE 12-HYDROXYLASE (RcFAH12) in Arabidopsis has resulted in only limited accumulation of HFAs in seeds, which probably results from inefficient transfer of HFAs from their site of synthesis (phosphatidylcholine; PC) to triacylglycerol (TAG), especially at the sn-1/3 positions of TAG. Phospholipase As (PLAs) may be directly involved in the liberation of HFAs from PC, but the functions of their over-expression in HFA accumulation and distribution at TAG in transgenic plants have not been well studied. In this work, the functions of lecithin:cholesterol acyltransferase-like PLAs (LCAT-PLAs) in HFA biosynthesis were characterized. The LCAT-PLAs were shown to exhibit homology to LCAT and mammalian lysosomal PLA2 , and to contain a conserved and functional Ser/His/Asp catalytic triad. In vitro assays revealed that LCAT-PLAs from the HFA-accumulating plant species Physaria fendleri (PfLCAT-PLA) and castor (RcLCAT-PLA) could cleave acyl chains at both the sn-1 and sn-2 positions of PC, and displayed substrate selectivity towards sn-2-ricinoleoyl-PC over sn-2-oleoyl-PC. Furthermore, co-expression of RcFAH12 with PfLCAT-PLA or RcLCAT-PLA, but not Arabidopsis AtLCAT-PLA, resulted in increased occupation of HFA at the sn-1/3 positions of TAG as well as small but insignificant increases in HFA levels in Arabidopsis seeds compared with RcFAH12 expression alone. Therefore, PfLCAT-PLA and RcLCAT-PLA may contribute to HFA turnover on PC, and represent potential candidates for engineering the production of unusual fatty acids in crops.
Collapse
Affiliation(s)
- Yang Xu
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Kristian Mark P Caldo
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Stacy D Singer
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, T1J 4B1, Canada
| | - Elzbieta Mietkiewska
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Michael S Greer
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Bo Tian
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
- CAS Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
| | - John M Dyer
- U.S. Department of Agriculture-Agricultural Research Service, US Arid-Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| | - Mark Smith
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, Saskatchewan, S7N 0X2, Canada
| | - Xue-Rong Zhou
- CSIRO Agriculture and Food, PO Box 1700, Canberra, ACT, 2601, Australia
| | - Xiao Qiu
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A8, Canada
| | - Randall J Weselake
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| |
Collapse
|
126
|
Liu X, Zhao M, Fan X, Fu Y. Reshaping the active pocket of esterase Est816 for resolution of economically important racemates. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01028j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Eight 2-arylpropionic acids with high E values were generated by engineered Est816, which overcomes the contradiction between the wide substrate scope and high enantioselectivity of esterases.
Collapse
Affiliation(s)
- Xiaolong Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Meng Zhao
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, People's Republic of China
| | - Xinjiong Fan
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, People's Republic of China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
127
|
Recazens E, Mouisel E, Langin D. Hormone-sensitive lipase: sixty years later. Prog Lipid Res 2020; 82:101084. [PMID: 33387571 DOI: 10.1016/j.plipres.2020.101084] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/12/2020] [Accepted: 12/24/2020] [Indexed: 12/19/2022]
Abstract
Hormone-sensitive lipase (HSL) was initially characterized as the hormonally regulated neutral lipase activity responsible for the breakdown of triacylglycerols into fatty acids in adipose tissue. This review aims at providing up-to-date information on structural properties, regulation of expression, activity and function as well as therapeutic potential. The lipase is expressed as different isoforms produced from tissue-specific alternative promoters. All isoforms are composed of an N-terminal domain and a C-terminal catalytic domain within which a regulatory domain containing the phosphorylation sites is embedded. Some isoforms possess additional N-terminal regions. The catalytic domain shares similarities with bacteria, fungus and vascular plant proteins but not with other mammalian lipases. HSL singularity is provided by regulatory and N-terminal domains sharing no homology with other proteins. HSL has a broad substrate specificity compared to other neutral lipases. It hydrolyzes acylglycerols, cholesteryl and retinyl esters among other substrates. A novel role of HSL, independent of its enzymatic function, has recently been described in adipocytes. Clinical studies revealed dysregulations of HSL expression and activity in disorders, such as lipodystrophy, obesity, type 2 diabetes and cancer-associated cachexia. Development of specific inhibitors positions HSL as a pharmacological target for the treatment of metabolic complications.
Collapse
Affiliation(s)
- Emeline Recazens
- Institute of Metabolic and Cardiovascular Diseases, Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, 31432 Toulouse, France; University of Toulouse, Paul Sabatier University, UMR1297, Toulouse, France
| | - Etienne Mouisel
- Institute of Metabolic and Cardiovascular Diseases, Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, 31432 Toulouse, France; University of Toulouse, Paul Sabatier University, UMR1297, Toulouse, France
| | - Dominique Langin
- Institute of Metabolic and Cardiovascular Diseases, Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, 31432 Toulouse, France; University of Toulouse, Paul Sabatier University, UMR1297, Toulouse, France; Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Paul Sabatier University, Toulouse, France; Toulouse University Hospitals, Laboratory of Clinical Biochemistry, Toulouse, France.
| |
Collapse
|
128
|
Gao DW, Jamieson CS, Wang G, Yan Y, Zhou J, Houk KN, Tang Y. A Polyketide Cyclase That Forms Medium-Ring Lactones. J Am Chem Soc 2020; 143:80-84. [PMID: 33351624 DOI: 10.1021/jacs.0c11226] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Medium-ring lactones are synthetically challenging due to unfavorable energetics involved in cyclization. We have discovered a thioesterase enzyme DcsB, from the decarestrictine C1 (1) biosynthetic pathway, that efficiently performs medium-ring lactonizations. DcsB shows broad substrate promiscuity toward linear substrates that vary in lengths and substituents, and is a potential biocatalyst for lactonization. X-ray crystal structure and computational analyses provide insights into the molecular basis of catalysis.
Collapse
Affiliation(s)
| | | | - Gaoqian Wang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China
| | | | - Jiahai Zhou
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China
| | | | | |
Collapse
|
129
|
Park H, Lee D. Biomimetic hydrogen-bonding cascade for chemical activation: telling a nucleophile from a base. Chem Sci 2020; 12:590-598. [PMID: 34163789 PMCID: PMC8178988 DOI: 10.1039/d0sc05067a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hydrogen bonding-assisted polarization is an effective strategy to promote bond-making and bond-breaking chemical reactions. Taking inspiration from the catalytic triad of serine protease active sites, we have devised a conformationally well-defined benzimidazole platform that can be systematically functionalized to install multiple hydrogen bonding donor (HBD) and acceptor (HBA) pairs in a serial fashion. We found that an increasing number of interdependent and mutually reinforcing HBD–HBA contacts facilitate the bond-forming reaction of a fluorescence-quenching aldehyde group with the cyanide ion, while suppressing the undesired Brønsted acid–base reaction. The most advanced system, evolved through iterative rule-finding studies, reacts rapidly and selectively with CN− to produce a large (>180-fold) enhancement in the fluorescence intensity at λmax = 450 nm. Biomimetic cascade hydrogen bonds promote covalent capture of a nucleophile by polarizing the electrophilic reaction site, while suppressing non-productive acid–base chemistry as the competing reaction pathway.![]()
Collapse
Affiliation(s)
- Hyunchang Park
- Department of Chemistry, Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Korea
| | - Dongwhan Lee
- Department of Chemistry, Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Korea
| |
Collapse
|
130
|
Patinios C, Lanza L, Corino I, Franssen MCR, Van der Oost J, Weusthuis RA, Kengen SWM. Eat1-Like Alcohol Acyl Transferases From Yeasts Have High Alcoholysis and Thiolysis Activity. Front Microbiol 2020; 11:579844. [PMID: 33193208 PMCID: PMC7658179 DOI: 10.3389/fmicb.2020.579844] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/09/2020] [Indexed: 11/13/2022] Open
Abstract
Esters are important flavor and fragrance compounds that are present in many food and beverage products. Many of these esters are produced by yeasts and bacteria during fermentation. While ester production in yeasts through the alcohol acyl transferase reaction has been thoroughly investigated, ester production through alcoholysis has been completely neglected. Here, we further analyze the catalytic capacity of the yeast Eat1 enzyme and demonstrate that it also has alcoholysis and thiolysis activities. Eat1 can perform alcoholysis in an aqueous environment in vitro, accepting a wide range of alcohols (C2-C10) but only a small range of acyl donors (C2-C4). We show that alcoholysis occurs in vivo in several Crabtree negative yeast species but also in engineered Saccharomyces cerevisiae strains that overexpress Eat1 homologs. The alcoholysis activity of Eat1 was also used to upgrade ethyl esters to butyl esters in vivo by overexpressing Eat1 in Clostridium beijerinckii. Approximately 17 mM of butyl acetate and 0.3 mM of butyl butyrate could be produced following our approach. Remarkably, the in vitro alcoholysis activity is 445 times higher than the previously described alcohol acyl transferase activity. Thus, alcoholysis is likely to affect the ester generation, both quantitatively and qualitatively, in food and beverage production processes. Moreover, mastering the alcoholysis activity of Eat1 may give rise to the production of novel food and beverage products.
Collapse
Affiliation(s)
- Constantinos Patinios
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
- Laboratory of Bioprocess Engineering, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Lucrezia Lanza
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Inge Corino
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Maurice C. R. Franssen
- Laboratory of Organic Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - John Van der Oost
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Ruud A. Weusthuis
- Laboratory of Bioprocess Engineering, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Servé W. M. Kengen
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
131
|
Le HH, Wrobel CJ, Cohen SM, Yu J, Park H, Helf MJ, Curtis BJ, Kruempel JC, Rodrigues PR, Hu PJ, Sternberg PW, Schroeder FC. Modular metabolite assembly in Caenorhabditis elegans depends on carboxylesterases and formation of lysosome-related organelles. eLife 2020; 9:61886. [PMID: 33063667 PMCID: PMC7641594 DOI: 10.7554/elife.61886] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023] Open
Abstract
Signaling molecules derived from attachment of diverse metabolic building blocks to ascarosides play a central role in the life history of C. elegans and other nematodes; however, many aspects of their biogenesis remain unclear. Using comparative metabolomics, we show that a pathway mediating formation of intestinal lysosome-related organelles (LROs) is required for biosynthesis of most modular ascarosides as well as previously undescribed modular glucosides. Similar to modular ascarosides, the modular glucosides are derived from highly selective assembly of moieties from nucleoside, amino acid, neurotransmitter, and lipid metabolism, suggesting that modular glucosides, like the ascarosides, may serve signaling functions. We further show that carboxylesterases that localize to intestinal organelles are required for the assembly of both modular ascarosides and glucosides via ester and amide linkages. Further exploration of LRO function and carboxylesterase homologs in C. elegans and other animals may reveal additional new compound families and signaling paradigms.
Collapse
Affiliation(s)
- Henry H Le
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Chester Jj Wrobel
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Sarah M Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Jingfang Yu
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Heenam Park
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Maximilian J Helf
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Brian J Curtis
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Joseph C Kruempel
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, United States
| | - Pedro Reis Rodrigues
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Patrick J Hu
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, United States
| | - Paul W Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| |
Collapse
|
132
|
Insights in the biocatalyzed hydrolysis, esterification and transesterification of waste cooking oil with a vegetable lipase. Catal Today 2020. [DOI: 10.1016/j.cattod.2020.09.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
133
|
Characterization and engineering of a two-enzyme system for plastics depolymerization. Proc Natl Acad Sci U S A 2020; 117:25476-25485. [PMID: 32989159 PMCID: PMC7568301 DOI: 10.1073/pnas.2006753117] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Deconstruction of recalcitrant polymers, such as cellulose or chitin, is accomplished in nature by synergistic enzyme cocktails that evolved over millions of years. In these systems, soluble dimeric or oligomeric intermediates are typically released via interfacial biocatalysis, and additional enzymes often process the soluble intermediates into monomers for microbial uptake. The recent discovery of a two-enzyme system for polyethylene terephthalate (PET) deconstruction, which employs one enzyme to convert the polymer into soluble intermediates and another enzyme to produce the constituent PET monomers (MHETase), suggests that nature may be evolving similar deconstruction strategies for synthetic plastics. This study on the characterization of the MHETase enzyme and synergy of the two-enzyme PET depolymerization system may inform enzyme cocktail-based strategies for plastics upcycling. Plastics pollution represents a global environmental crisis. In response, microbes are evolving the capacity to utilize synthetic polymers as carbon and energy sources. Recently, Ideonella sakaiensis was reported to secrete a two-enzyme system to deconstruct polyethylene terephthalate (PET) to its constituent monomers. Specifically, the I. sakaiensis PETase depolymerizes PET, liberating soluble products, including mono(2-hydroxyethyl) terephthalate (MHET), which is cleaved to terephthalic acid and ethylene glycol by MHETase. Here, we report a 1.6 Å resolution MHETase structure, illustrating that the MHETase core domain is similar to PETase, capped by a lid domain. Simulations of the catalytic itinerary predict that MHETase follows the canonical two-step serine hydrolase mechanism. Bioinformatics analysis suggests that MHETase evolved from ferulic acid esterases, and two homologous enzymes are shown to exhibit MHET turnover. Analysis of the two homologous enzymes and the MHETase S131G mutant demonstrates the importance of this residue for accommodation of MHET in the active site. We also demonstrate that the MHETase lid is crucial for hydrolysis of MHET and, furthermore, that MHETase does not turnover mono(2-hydroxyethyl)-furanoate or mono(2-hydroxyethyl)-isophthalate. A highly synergistic relationship between PETase and MHETase was observed for the conversion of amorphous PET film to monomers across all nonzero MHETase concentrations tested. Finally, we compare the performance of MHETase:PETase chimeric proteins of varying linker lengths, which all exhibit improved PET and MHET turnover relative to the free enzymes. Together, these results offer insights into the two-enzyme PET depolymerization system and will inform future efforts in the biological deconstruction and upcycling of mixed plastics.
Collapse
|
134
|
Kneller DW, Phillips G, O’Neill HM, Tan K, Joachimiak A, Coates L, Kovalevsky A. Room-temperature X-ray crystallography reveals the oxidation and reactivity of cysteine residues in SARS-CoV-2 3CL M pro: insights into enzyme mechanism and drug design. IUCRJ 2020; 7:S2052252520012634. [PMID: 33063790 PMCID: PMC7553146 DOI: 10.1107/s2052252520012634] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/16/2020] [Indexed: 05/12/2023]
Abstract
The emergence of the novel coronavirus SARS-CoV-2 has resulted in a worldwide pandemic not seen in generations. Creating treatments and vaccines to battle COVID-19, the disease caused by the virus, is of paramount importance in order to stop its spread and save lives. The viral main protease, 3CL Mpro, is indispensable for the replication of SARS-CoV-2 and is therefore an important target for the design of specific protease inhibitors. Detailed knowledge of the structure and function of 3CL Mpro is crucial to guide structure-aided and computational drug-design efforts. Here, the oxidation and reactivity of the cysteine residues of the protease are reported using room-temperature X-ray crystallography, revealing that the catalytic Cys145 can be trapped in the peroxysulfenic acid oxidation state at physiological pH, while the other surface cysteines remain reduced. Only Cys145 and Cys156 react with the alkylating agent N-ethylmaleimide. It is suggested that the zwitterionic Cys145-His45 catalytic dyad is the reactive species that initiates catalysis, rather than Cys145-to-His41 proton transfer via the general acid-base mechanism upon substrate binding. The structures also provide insight into the design of improved 3CL Mpro inhibitors.
Collapse
Affiliation(s)
- Daniel W. Kneller
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Gwyndalyn Phillips
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Hugh M. O’Neill
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Kemin Tan
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60667, USA
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60667, USA
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60367, USA
| | - Leighton Coates
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| |
Collapse
|
135
|
Fiebig T, Cramer JT, Bethe A, Baruch P, Curth U, Führing JI, Buettner FFR, Vogel U, Schubert M, Fedorov R, Mühlenhoff M. Structural and mechanistic basis of capsule O-acetylation in Neisseria meningitidis serogroup A. Nat Commun 2020; 11:4723. [PMID: 32948778 PMCID: PMC7501274 DOI: 10.1038/s41467-020-18464-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/20/2020] [Indexed: 02/08/2023] Open
Abstract
O-Acetylation of the capsular polysaccharide (CPS) of Neisseria meningitidis serogroup A (NmA) is critical for the induction of functional immune responses, making this modification mandatory for CPS-based anti-NmA vaccines. Using comprehensive NMR studies, we demonstrate that O-acetylation stabilizes the labile anomeric phosphodiester-linkages of the NmA-CPS and occurs in position C3 and C4 of the N-acetylmannosamine units due to enzymatic transfer and non-enzymatic ester migration, respectively. To shed light on the enzymatic transfer mechanism, we solved the crystal structure of the capsule O-acetyltransferase CsaC in its apo and acceptor-bound form and of the CsaC-H228A mutant as trapped acetyl-enzyme adduct in complex with CoA. Together with the results of a comprehensive mutagenesis study, the reported structures explain the strict regioselectivity of CsaC and provide insight into the catalytic mechanism, which relies on an unexpected Gln-extension of a classical Ser-His-Asp triad, embedded in an α/β-hydrolase fold.
Collapse
Affiliation(s)
- Timm Fiebig
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| | | | - Andrea Bethe
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Petra Baruch
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Ute Curth
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Jana I Führing
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
- Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
| | - Falk F R Buettner
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Ulrich Vogel
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Mario Schubert
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Roman Fedorov
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Martina Mühlenhoff
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
136
|
Abstract
Type II polyketides are a group of secondary metabolites with various biological activities. In nature, biosynthesis of type II polyketides involves multiple enzymatic steps whereby key enzymes, including ketoacyl-synthase (KSα), chain length factor (KSβ), and acyl carrier protein (ACP), are utilized to elongate the polyketide chain through a repetitive condensation reaction. During each condensation, the biosynthesis intermediates are covalently attached to KSα or ACP via a thioester bond and are then cleaved to release an elongated polyketide chain for successive postmodification. Type II polyketides are a group of secondary metabolites with various biological activities. In nature, biosynthesis of type II polyketides involves multiple enzymatic steps whereby key enzymes, including ketoacyl-synthase (KSα), chain length factor (KSβ), and acyl carrier protein (ACP), are utilized to elongate the polyketide chain through a repetitive condensation reaction. During each condensation, the biosynthesis intermediates are covalently attached to KSα or ACP via a thioester bond and are then cleaved to release an elongated polyketide chain for successive postmodification. Despite its critical role in type II polyketide biosynthesis, the enzyme and its corresponding mechanism for type II polyketide chain release through thioester bond breakage have yet to be determined. Here, kinamycin was used as a model compound to investigate the chain release step of type II polyketide biosynthesis. Using a genetic knockout strategy, we confirmed that AlpS is required for the complete biosynthesis of kinamycins. Further in vitro biochemical assays revealed high hydrolytic activity of AlpS toward a thioester bond in an aromatic polyketide-ACP analog, suggesting its distinct role in offloading the polyketide chain from ACP during the kinamycin biosynthesis. Finally, we successfully utilized AlpS to enhance the heterologous production of dehydrorabelomycin in Escherichia coli by nearly 25-fold, which resulted in 0.50 g/liter dehydrorabelomycin in a simple batch-mode shake flask culture. Taken together, our results provide critical knowledge to gain an insightful understanding of the chain-releasing process during type II polyketide synthesis, which, in turn, lays a solid foundation for future new applications in type II polyketide bioproduction.
Collapse
|
137
|
Discovery and development of a novel short-chain fatty acid ester synthetic biocatalyst under aqueous phase from Monascus purpureus isolated from Baijiu. Food Chem 2020; 338:128025. [PMID: 32927200 DOI: 10.1016/j.foodchem.2020.128025] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/23/2022]
Abstract
Short-chain fatty acid esters are important flavor chemicals in Chinese traditional fermented Baijiu. Monascus purpureus was recognized as an important microorganism contributing to ester synthesis. However, the molecular basis for ester synthesis was still lacking. The present work combined genome sequencing, transcriptome sequencing, gene library construction, and enzyme engineering to discover a novel catalyst from M. purpureus (isolated from Baijiu fermentation starter). Enzyme LIP05, belonging to the α/β hydrolase family, was identified to synthesize short-chain fatty acid esters under aqueous phase. After deleting the lid domain of LIP05, the synthesis of ethyl pentanoate, ethyl hexanoate, ethyl octanoate, or ethyl decanoate was achieved. Ethyl octanoate with the highest conversion ratio of 93.7% was obtained with the assistance of ultrasound. The study reveals the molecular basis for synthesizing short-chain fatty acid esters by M. purpureus and will promote the application of the species or the enzyme in food industry.
Collapse
|
138
|
Lapin D, Bhandari DD, Parker JE. Origins and Immunity Networking Functions of EDS1 Family Proteins. ANNUAL REVIEW OF PHYTOPATHOLOGY 2020; 58:253-276. [PMID: 32396762 DOI: 10.1146/annurev-phyto-010820-012840] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The EDS1 family of structurally unique lipase-like proteins EDS1, SAG101, and PAD4 evolved in seed plants, on top of existing phytohormone and nucleotide-binding-leucine-rich-repeat (NLR) networks, to regulate immunity pathways against host-adapted biotrophic pathogens. Exclusive heterodimers between EDS1 and SAG101 or PAD4 create essential surfaces for resistance signaling. Phylogenomic information, together with functional studies in Arabidopsis and tobacco, identify a coevolved module between the EDS1-SAG101 heterodimer and coiled-coil (CC) HET-S and LOP-B (CCHELO) domain helper NLRs that is recruited by intracellular Toll-interleukin1-receptor (TIR) domain NLR receptors to confer host cell death and pathogen immunity. EDS1-PAD4 heterodimers have a different and broader activity in basal immunity that transcriptionally reinforces local and systemic defenses triggered by various NLRs. Here, we consider EDS1 family protein functions across seed plant lineages in the context of networking with receptor and helper NLRs and downstream resistance machineries. The different modes of action and pathway connectivities of EDS1 family members go some way to explaining their central role in biotic stress resilience.
Collapse
Affiliation(s)
- Dmitry Lapin
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany;
- Cologne-Düsseldorf Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan 48824, USA
| | - Deepak D Bhandari
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany;
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan 48824, USA
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany;
- Cologne-Düsseldorf Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany
| |
Collapse
|
139
|
Zhang S, Guo F, Yan W, Dong W, Zhou J, Zhang W, Xin F, Jiang M. Perspectives for the microbial production of ethyl acetate. Appl Microbiol Biotechnol 2020; 104:7239-7245. [PMID: 32656615 DOI: 10.1007/s00253-020-10756-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/13/2020] [Accepted: 06/24/2020] [Indexed: 12/21/2022]
Abstract
Ethyl acetate is one of the short-chain esters and widely used in the food, beverage, and solvent areas. The ethyl acetate production currently proceeds through unsustainable and energy intensive processes, which are based on natural gas and crude oil. Microbial conversion of biomass-derived sugars into ethyl acetate may provide a sustainable alternative. In this review, the perspectives of bio-catalyzing ethanol and acetic acid to ethyl acetate using lipases in vitro was introduced. Besides, the crucial elements for high yield of ethyl acetate in fermentation was expounded. Also, metabolic engineering in yeasts to product ethyl acetate in vivo using alcohol acyl transferases (AAT) was discussed. KEY POINTS: •The accumulation of acetyl-CoA is crucial for synthesizing ethyl acetate in vivo; AAT-mediated metabolic engineering could efficiently improve ethyl acetate production.
Collapse
Affiliation(s)
- Shangjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Feng Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Wei Yan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China. .,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China.
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China. .,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China
| |
Collapse
|
140
|
Enhancement of hydrogen peroxide tolerance of lipase LipA from Bacillus subtilis using semi-rational design. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
141
|
Jones BJ, Evans RL, Mylrea NJ, Chaudhury D, Luo C, Guan B, Pierce CT, Gordon WR, Wilmot CM, Kazlauskas RJ. Larger active site in an ancestral hydroxynitrile lyase increases catalytically promiscuous esterase activity. PLoS One 2020; 15:e0235341. [PMID: 32603354 PMCID: PMC7326234 DOI: 10.1371/journal.pone.0235341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/14/2020] [Indexed: 12/02/2022] Open
Abstract
Hydroxynitrile lyases (HNL's) belonging to the α/β-hydrolase-fold superfamily evolved from esterases approximately 100 million years ago. Reconstruction of an ancestral hydroxynitrile lyase in the α/β-hydrolase fold superfamily yielded a catalytically active hydroxynitrile lyase, HNL1. Several properties of HNL1 differ from the modern HNL from rubber tree (HbHNL). HNL1 favors larger substrates as compared to HbHNL, is two-fold more catalytically promiscuous for ester hydrolysis (p-nitrophenyl acetate) as compared to mandelonitrile cleavage, and resists irreversible heat inactivation to 35 °C higher than for HbHNL. We hypothesized that the x-ray crystal structure of HNL1 may reveal the molecular basis for the differences in these properties. The x-ray crystal structure solved to 1.96-Å resolution shows the expected α/β-hydrolase fold, but a 60% larger active site as compared to HbHNL. This larger active site echoes its evolution from esterases since related esterase SABP2 from tobacco also has a 38% larger active site than HbHNL. The larger active site in HNL1 likely accounts for its ability to accept larger hydroxynitrile substrates. Site-directed mutagenesis of HbHNL to expand the active site increased its promiscuous esterase activity 50-fold, consistent with the larger active site in HNL1 being the primary cause of its promiscuous esterase activity. Urea-induced unfolding of HNL1 indicates that it unfolds less completely than HbHNL (m-value = 0.63 for HNL1 vs 0.93 kcal/mol·M for HbHNL), which may account for the ability of HNL1 to better resist irreversible inactivation upon heating. The structure of HNL1 shows changes in hydrogen bond networks that may stabilize regions of the folded structure.
Collapse
Affiliation(s)
- Bryan J. Jones
- Department of Biochemistry, Molecular Biology and Biophysics and The Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Robert L. Evans
- Department of Biochemistry, Molecular Biology and Biophysics and The Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Nathan J. Mylrea
- Department of Biochemistry, Molecular Biology and Biophysics and The Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Debayan Chaudhury
- Department of Biochemistry, Molecular Biology and Biophysics and The Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Christine Luo
- Department of Biochemistry, Molecular Biology and Biophysics and The Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Bo Guan
- Department of Biochemistry, Molecular Biology and Biophysics and The Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Colin T. Pierce
- Department of Biochemistry, Molecular Biology and Biophysics and The Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Wendy R. Gordon
- Department of Biochemistry, Molecular Biology and Biophysics and The Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Carrie M. Wilmot
- Department of Biochemistry, Molecular Biology and Biophysics and The Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Romas J. Kazlauskas
- Department of Biochemistry, Molecular Biology and Biophysics and The Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, United States of America
| |
Collapse
|
142
|
The bottromycin epimerase BotH defines a group of atypical α/β-hydrolase-fold enzymes. Nat Chem Biol 2020; 16:1013-1018. [DOI: 10.1038/s41589-020-0569-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 05/13/2020] [Indexed: 12/21/2022]
|
143
|
Pham VD, To TA, Gagné-Thivierge C, Couture M, Lagüe P, Yao D, Picard MÈ, Lortie LA, Attéré SA, Zhu X, Levesque RC, Charette SJ, Shi R. Structural insights into the putative bacterial acetylcholinesterase ChoE and its substrate inhibition mechanism. J Biol Chem 2020; 295:8708-8724. [PMID: 32371400 PMCID: PMC7324521 DOI: 10.1074/jbc.ra119.011809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 05/04/2020] [Indexed: 01/01/2023] Open
Abstract
Mammalian acetylcholinesterase (AChE) is well-studied, being important in both cholinergic brain synapses and the peripheral nervous systems and also a key drug target for many diseases. In contrast, little is known about the structures and molecular mechanism of prokaryotic acetylcholinesterases. We report here the structural and biochemical characterization of ChoE, a putative bacterial acetylcholinesterase from Pseudomonas aeruginosa Analysis of WT and mutant strains indicated that ChoE is indispensable for P. aeruginosa growth with acetylcholine as the sole carbon and nitrogen source. The crystal structure of ChoE at 1.35 Å resolution revealed that this enzyme adopts a typical fold of the SGNH hydrolase family. Although ChoE and eukaryotic AChEs catalyze the same reaction, their overall structures bear no similarities constituting an interesting example of convergent evolution. Among Ser-38, Asp-285, and His-288 of the catalytic triad residues, only Asp-285 was not essential for ChoE activity. Combined with kinetic analyses of WT and mutant proteins, multiple crystal structures of ChoE complexed with substrates, products, or reaction intermediate revealed the structural determinants for substrate recognition, snapshots of the various catalytic steps, and the molecular basis of substrate inhibition at high substrate concentrations. Our results indicate that substrate inhibition in ChoE is due to acetate release being blocked by the binding of a substrate molecule in a nonproductive mode. Because of the distinct overall folds and significant differences of the active site between ChoE and eukaryotic AChEs, these structures will serve as a prototype for other prokaryotic acetylcholinesterases.
Collapse
Affiliation(s)
- Van Dung Pham
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada; PROTEO, the Québec Network for Research on Protein Function, Engineering, and Applications, Québec, Canada
| | - Tuan Anh To
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada; PROTEO, the Québec Network for Research on Protein Function, Engineering, and Applications, Québec, Canada
| | - Cynthia Gagné-Thivierge
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Hôpital Laval, Québec, Canada
| | - Manon Couture
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada; PROTEO, the Québec Network for Research on Protein Function, Engineering, and Applications, Québec, Canada
| | - Patrick Lagüe
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada; PROTEO, the Québec Network for Research on Protein Function, Engineering, and Applications, Québec, Canada
| | - Deqiang Yao
- iHuman Institute, ShanghaiTech University, Shanghai, P.R. China
| | - Marie-Ève Picard
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada; PROTEO, the Québec Network for Research on Protein Function, Engineering, and Applications, Québec, Canada
| | - Louis-André Lortie
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, Canada
| | - Sabrina A Attéré
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Hôpital Laval, Québec, Canada
| | - Xiaojun Zhu
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada; PROTEO, the Québec Network for Research on Protein Function, Engineering, and Applications, Québec, Canada
| | - Roger C Levesque
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
| | - Steve J Charette
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Hôpital Laval, Québec, Canada
| | - Rong Shi
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada; PROTEO, the Québec Network for Research on Protein Function, Engineering, and Applications, Québec, Canada.
| |
Collapse
|
144
|
Casajus H, Dubreucq E, Tranchimand S, Perrier V, Nugier-Chauvin C, Cammas-Marion S. Lipase-Catalyzed Ring-Opening Polymerization of Benzyl Malolactonate: An Unusual Mechanism? Biomacromolecules 2020; 21:2874-2883. [DOI: 10.1021/acs.biomac.0c00593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hubert Casajus
- Univ Rennes, ENSCR, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| | - Eric Dubreucq
- L’Institut Agro - Montpellier SupAgro, Univ Montpellier, INRA, CIRAD - UMR IATE, F-34060 Montpellier, France
| | - Sylvain Tranchimand
- Univ Rennes, ENSCR, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| | - Véronique Perrier
- L’Institut Agro - Montpellier SupAgro, Univ Montpellier, INRA, CIRAD - UMR IATE, F-34060 Montpellier, France
| | - Caroline Nugier-Chauvin
- Univ Rennes, ENSCR, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| | - Sandrine Cammas-Marion
- Univ Rennes, ENSCR, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
- Univ Rennes, INSERM, INRA, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| |
Collapse
|
145
|
Godehard SP, Badenhorst CPS, Müller H, Bornscheuer UT. Protein Engineering for Enhanced Acyltransferase Activity, Substrate Scope, and Selectivity of the Mycobacterium smegmatis Acyltransferase MsAcT. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01767] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Simon P. Godehard
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany
| | - Christoffel P. S. Badenhorst
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany
| | - Henrik Müller
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany
| |
Collapse
|
146
|
Wilkinson RC, Rahman Pour R, Jamshidi S, Fülöp V, Bugg TDH. Extracellular alpha/beta-hydrolase from Paenibacillus species shares structural and functional homology to tobacco salicylic acid binding protein 2. J Struct Biol 2020; 210:107496. [PMID: 32224091 DOI: 10.1016/j.jsb.2020.107496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 10/24/2022]
Abstract
An alpha/ beta hydrolase annotated as a putative salicylate esterase within the genome of a species of Paenibacillus previously identified from differential and selective growth on Kraft lignin was structurally and functionally characterised. Feruloyl esterases are key to the degradation of lignin in several bacterial species and although this activity was investigated, no such activity was observed. The crystal structure of the Paenibacillus esterase, here denoted as PnbE, was determined at 1.32 Å resolution, showing high similarity to Nicotiana tabacum salicylic acid binding protein 2 from the protein database. Structural similarities between these two structures across the core domains and key catalytic residues were observed, with superposition of catalytic residues giving an RMSD of 0.5 Å across equivalent Cα atoms. Conversely, the cap domains of PnbE and Nicotiana tabacum SABP2 showed greater divergence with decreased flexibility in the PnbE cap structure. Activity of PnbE as a putative methyl salicylate esterase was supported with binding studies showing affinity for salicylic acid and functional studies showing methyl salicylate esterase activity. We hypothesise that this activity could enrich Paenibacillus sp. within the rhizosphere by increasing salicylic acid concentrations within the soil.
Collapse
Affiliation(s)
| | | | - Shirin Jamshidi
- School of Cancer and Pharmaceutical Sciences, King's College London, SE1 9NH, UK
| | - Vilmos Fülöp
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Timothy D H Bugg
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
147
|
Wang WG, Wang H, Du LQ, Li M, Chen L, Yu J, Cheng GG, Zhan MT, Hu QF, Zhang L, Yao M, Matsuda Y. Molecular Basis for the Biosynthesis of an Unusual Chain-Fused Polyketide, Gregatin A. J Am Chem Soc 2020; 142:8464-8472. [PMID: 32275405 DOI: 10.1021/jacs.0c02337] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Gregatin A (1) is a fungal polyketide featuring an alkylated furanone core, but the biosynthetic mechanism to furnish the intriguing molecular skeleton has yet to be elucidated. Herein, we have identified the biosynthetic gene cluster of gregatin A (1) in Penicillium sp. sh18 and investigated the mechanism that produces the intriguing structure of 1 by in vivo and in vitro reconstitution of its biosynthesis. Our study established the biosynthetic route leading to 1 and illuminated that 1 is generated by the fusion of two different polyketide chains, which are, amazingly, synthesized by a single polyketide synthase GrgA with the aid of a trans-acting enoylreductase GrgB. Chain fusion, as well as chain hydrolysis, is catalyzed by an α/β hydrolase, GrgF, hybridizing the C11 and C4 carbon chains by Claisen condensation. Finally, structural analysis and mutational experiments using GrgF provided insight into how the enzyme facilitates the unusual chain-fusing reaction. In unraveling a new biosynthetic strategy involving a bifunctional PKS and a polyketide fusing enzyme, our study expands our knowledge concerning fungal polyketide biosynthesis.
Collapse
Affiliation(s)
- Wei-Guang Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650031, Yunnan, China
| | - Hang Wang
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Lian-Qiong Du
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650031, Yunnan, China
| | - Min Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650031, Yunnan, China
| | - Lin Chen
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Jian Yu
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Gui-Guang Cheng
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Meng-Tao Zhan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650031, Yunnan, China
| | - Qiu-Fen Hu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650031, Yunnan, China
| | - Lihan Zhang
- School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Min Yao
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Yudai Matsuda
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| |
Collapse
|
148
|
Bouknight KD, Jurkouich KM, Compton JR, Khavrutskii IV, Guelta MA, Harvey SP, Legler PM. Structural and kinetic evidence of aging after organophosphate inhibition of human Cathepsin A. Biochem Pharmacol 2020; 177:113980. [PMID: 32305437 DOI: 10.1016/j.bcp.2020.113980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/14/2020] [Indexed: 11/30/2022]
Abstract
Human Cathepsin A (CatA) is a lysosomal serine carboxypeptidase of the renin-angiotensin system (RAS) and is structurally similar to acetylcholinesterase (AChE). CatA can remove the C-terminal amino acids of endothelin I, angiotensin I, Substance P, oxytocin, and bradykinin, and can deamidate neurokinin A. Proteomic studies identified CatA and its homologue, SCPEP1, as potential targets of organophosphates (OP). CatA could be stably inhibited by low µM to high nM concentrations of racemic sarin (GB), soman (GD), cyclosarin (GF), VX, and VR within minutes to hours at pH 7. Cyclosarin was the most potent with a kinetically measured dissociation constant (KI) of 2 µM followed by VR (KI = 2.8 µM). Bimolecular rate constants for inhibition by cyclosarin and VR were 1.3 × 103 M-1sec-1 and 1.2 × 103 M-1sec-1, respectively, and were approximately 3-orders of magnitude lower than those of human AChE indicating slower reactivity. Notably, both AChE and CatA bound diisopropylfluorophosphate (DFP) comparably and had KIDFP = 13 µM and 11 µM, respectively. At low pH, greater than 85% of the enzyme spontaneously reactivated after OP inhibition, conditions under which OP-adducts of cholinesterases irreversibly age. At pH 6.5 CatA remained stably inhibited by GB and GF and <10% of the enzyme spontaneously reactivated after 200 h. A crystal structure of DFP-inhibited CatA was determined and contained an aged adduct. Similar to AChE, CatA appears to have a "backdoor" for product release. CatA has not been shown previously to age. These results may have implications for: OP-associated inflammation; cardiovascular effects; and the dysregulation of RAS enzymes by OP.
Collapse
Affiliation(s)
- Kayla D Bouknight
- Hampton University, 100 E Queen St, Hampton, VA 23668, United States
| | - Kayla M Jurkouich
- Case Western Reserve University, Dept. of Biomedical Engineering, Cleveland, 10900 Euclid Avenue, OH 44106, United States
| | - Jaimee R Compton
- U.S. Naval Research Laboratory, 4555 Overlook Ave., Washington, DC 20375, United States
| | - Ilja V Khavrutskii
- Uniformed Services University, Armed Forces Radiobiology Research Institute, 4301 Jones Bridge Rd., Bethesda, MD 20889-5648, United States
| | - Mark A Guelta
- U.S. Army Combat Capabilities and Development Command Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, MD 21010, United States
| | - Steven P Harvey
- U.S. Army Combat Capabilities and Development Command Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, MD 21010, United States
| | - Patricia M Legler
- U.S. Naval Research Laboratory, 4555 Overlook Ave., Washington, DC 20375, United States.
| |
Collapse
|
149
|
Jones BJ, Evans RL, Mylrea NJ, Chaudhury D, Luo C, Guan B, Pierce CT, Gordon WR, Wilmot CM, Kazlauskas RJ. Larger active site in an ancestral hydroxynitrile lyase increases catalytically promiscuous esterase activity.. [DOI: 10.1101/2020.04.06.027797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
Abstract
AbstractHydroxynitrile lyases (HNL’s) belonging to the α/β-hydrolase-fold superfamily evolved from esterases approximately 100 million years ago. Reconstruction of an ancestral hydroxynitrile lyase in the α/β-hydrolase fold superfamily yielded a catalytically active hydroxynitrile lyase, HNL1. Several properties of HNL1 differ from the modern HNL from rubber tree (HbHNL). HNL1 favors larger substrates as compared to HbHNL, is two-fold more catalytically promiscuous for ester hydrolysis (p-nitrophenyl acetate) as compared to mandelonitrile cleavage, and resists irreversible heat inactivation to 35 °C higher than for HbHNL. We hypothesized that the x-ray crystal structure of HNL1 may reveal the molecular basis for the differences in these properties. The x-ray crystal structure solved to 1.96-Å resolution shows the expected α/β-hydrolase fold, but a 60% larger active site as compared to HbHNL. This larger active site echoes its evolution from esterases since related esterase SABP2 from tobacco also has a 38% larger active site than HbHNL. The larger active site in HNL1 likely accounts for its ability to accept larger hydroxynitrile substrates. Site-directed mutagenesis of HbHNL to expand the active site increased its promiscuous esterase activity 50-fold, consistent with the larger active site in HNL1 being the primary cause of its promiscuous esterase activity. Urea-induced unfolding of HNL1 indicates that it unfolds less completely than HbHNL (m-value = 0.63 for HNL1 vs 0.93 kcal/ mol·M for HbHNL), which may account for the ability of HNL1 to better resist irreversible inactivation upon heating. The structure of HNL1 shows changes in hydrogen bond networks that may stabilize regions of the folded structure.
Collapse
|
150
|
Feng K, Yang Y, Xu Y, Zhang Y, Feng T, Huang S, Liu J, Zeng Y. A Hydrolase‐Catalyzed Cyclization Forms the Fused Bicyclic β‐Lactone in Vibralactone. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ke‐Na Feng
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaYunnan Key Laboratory of Natural Medicinal ChemistryKunming Institute of BotanyChinese Academy of Sciences Kunming 650201 Yunnan China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yan‐Long Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaYunnan Key Laboratory of Natural Medicinal ChemistryKunming Institute of BotanyChinese Academy of Sciences Kunming 650201 Yunnan China
| | - Yu‐Xing Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaYunnan Key Laboratory of Natural Medicinal ChemistryKunming Institute of BotanyChinese Academy of Sciences Kunming 650201 Yunnan China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yue Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaYunnan Key Laboratory of Natural Medicinal ChemistryKunming Institute of BotanyChinese Academy of Sciences Kunming 650201 Yunnan China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Tao Feng
- School of Pharmaceutical SciencesSouth-Central University for Nationalities Wuhan 430074 Hubei China
| | - Sheng‐Xiong Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaYunnan Key Laboratory of Natural Medicinal ChemistryKunming Institute of BotanyChinese Academy of Sciences Kunming 650201 Yunnan China
| | - Ji‐Kai Liu
- School of Pharmaceutical SciencesSouth-Central University for Nationalities Wuhan 430074 Hubei China
| | - Ying Zeng
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaYunnan Key Laboratory of Natural Medicinal ChemistryKunming Institute of BotanyChinese Academy of Sciences Kunming 650201 Yunnan China
| |
Collapse
|