101
|
Lai A, Baumgartner J, Schauer JJ, Rudich Y, Pardo M. Cytotoxicity and chemical composition of women's personal PM 2.5 exposures from rural China. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2021; 1:359-371. [PMID: 34604754 PMCID: PMC8459644 DOI: 10.1039/d1ea00022e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/27/2021] [Indexed: 12/24/2022]
Abstract
Personal exposure PM samples aid in determining the sources and chemical composition of real-world exposures, particularly in settings with household air pollution. However, their use in toxicological research is limited, despite uncertainty regarding health effects in these settings and evidence of differential toxicity among PM2.5 sources and components. This study used women's PM2.5 exposure samples collected using personal exposure monitoring in rural villages in three Chinese provinces (Beijing, Shanxi, and Sichuan) during summer and winter. Water-soluble organic carbon, ions, elements, and organic tracers (e.g. levoglucosan and polycyclic aromatic hydrocarbons [PAHs]) were quantified in water and organic PM2.5 extracts. Human lung epithelial cells (A549) were exposed to the extracts. Cell death, reactive oxygen species (ROS), and gene expression were measured. Biomass burning contributions were higher in Sichuan samples than in Beijing or Shanxi. Some PM characteristics (total PAHs and coal combustion source contributions) and biological effects of organic extract exposures (cell death, ROS, and cytokine gene expression) shared a common trend of higher levels and effects in winter than in summer for Shanxi and Beijing but no seasonal differences in Sichuan. Modulation of phase I/AhR-related genes (cyp1a1 and cyp1b1) and phase II/oxidative stress-related genes (HO-1, SOD1/2, NQO-1, and catalase) was either low or insignificant, without clear trends between samples. No significant cell death or ROS production was observed for water extract treatments among all sites and seasons, even at possible higher concentrations tested. These results support organic components, particularly PAHs, as essential drivers of biological effects, which is consistent with some other evidence from ambient PM2.5. Direct measurement with personal samplers captures the chemical complexity of PM2.5 exposures better than fixed monitors. To investigate biological effects, lung cells were exposed to extracts of exposure PM2.5 samples.![]()
Collapse
Affiliation(s)
- Alexandra Lai
- Department of Earth and Planetary Sciences, Weizmann Institute of Science Rehovot Israel
| | - Jill Baumgartner
- Institute for Health and Social Policy, Department of Epidemiology, Biostatistics, and Occupational Health, McGill University Montreal Quebec Canada
| | - James J Schauer
- Environmental Chemistry & Technology Program, University of Wisconsin-Madison Madison WI USA
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science Rehovot Israel
| | - Michal Pardo
- Department of Earth and Planetary Sciences, Weizmann Institute of Science Rehovot Israel
| |
Collapse
|
102
|
Mahrt F, Newman E, Huang Y, Ammann M, Bertram AK. Phase Behavior of Hydrocarbon-like Primary Organic Aerosol and Secondary Organic Aerosol Proxies Based on Their Elemental Oxygen-to-Carbon Ratio. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12202-12214. [PMID: 34473474 DOI: 10.1021/acs.est.1c02697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A large fraction of atmospheric aerosols can be characterized as primary organic aerosol (POA) and secondary organic aerosol (SOA). Knowledge of the phase behavior, that is, the number and type of phases within internal POA + SOA mixtures, is crucial to predict their effect on climate and air quality. For example, if POA and SOA form a single phase, POA will enhance the formation of SOA by providing organic mass to absorb SOA precursors. Using microscopy, we studied the phase behavior of mixtures of SOA proxies and hydrocarbon-like POA proxies at relative humidity (RH) values of 90%, 45%, and below 5%. Internal mixtures of POA and SOA almost always formed two phases if the elemental oxygen-to-carbon ratio (O/C) of the POA was less than 0.11, which encompasses a large fraction of atmospheric hydrocarbon-like POA from fossil fuel combustion. SOA proxies mixed with POA proxies having 0.11 ≤ O/C ≤ 0.29 mostly resulted in particles with one liquid phase. However, two liquid phases were also observed, depending on the type of SOA and POA surrogates, and an increase in phase-separated particles was observed when increasing the RH in this O/C range. The results have implications for predicting atmospheric SOA formation and policy strategies to reduce SOA in urban environments.
Collapse
Affiliation(s)
- Fabian Mahrt
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T1Z1 Canada
- Laboratory of Environmental Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Elli Newman
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T1Z1 Canada
| | - Yuanzhou Huang
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T1Z1 Canada
| | - Markus Ammann
- Laboratory of Environmental Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Allan K Bertram
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T1Z1 Canada
| |
Collapse
|
103
|
Lee SH, Ha SM, Jeong MJ, Park DJ, Polo CN, Seo YJ, Kim SH. Effects of reactive oxygen species generation induced by Wonju City particulate matter on mitochondrial dysfunction in human middle ear cell. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:49244-49257. [PMID: 33932209 DOI: 10.1007/s11356-021-14216-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Atmospheric particulate matter (PM) contains different components that can elicit varying adverse health effects in humans and animals. Studies on PM toxicity and its underlying mechanisms in the middle ear are limited, and they generally use a PM standard. However, as PM composition varies temporally and geographically, it is crucial to identify the toxic PM constituents according to season and region and investigate their associated health effects. Thus, we sought to determine whether PM induces cytotoxicity and inflammatory factor and reactive oxygen species (ROS) generation in human middle ear epithelial cells obtained from patients with otitis media. The cells were treated with both standard urban PM and PM directly captured from the atmosphere in Wonju City. The association between mitochondrial dysfunction and PM was investigated. PM exposure significantly increased COX-2 and TNF-α mRNA expression, increased ROS generation, induced inflammatory responses, and caused abnormalities in mitochondrial motility and function. Furthermore, PM induced cell apoptosis, which consequently reduced cell survival, particularly at the concentration of 100 μg/mL. Overall, our study provides new insights into the toxic effects of standard and atmospheric PM on middle ear cell line.
Collapse
Affiliation(s)
- Su Hoon Lee
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Ilsan-dong, Wonju-si, Gangwon-do, 26426, South Korea
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Ilsan-dong, Wonju-si, Gangwon-do, 26426, South Korea
| | - Sun Mok Ha
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Ilsan-dong, Wonju-si, Gangwon-do, 26426, South Korea
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Ilsan-dong, Wonju-si, Gangwon-do, 26426, South Korea
| | - Min Jae Jeong
- Department of Environmental Engineering, College of Public Health, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do, 26493, South Korea
| | - Dong Jun Park
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Ilsan-dong, Wonju-si, Gangwon-do, 26426, South Korea
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Ilsan-dong, Wonju-si, Gangwon-do, 26426, South Korea
| | - Carlos Noriega Polo
- College of Medicine, Universitat de València, Av. de Blasco Ibáñez, 13, 46010, València, Valencia, Spain
| | - Young Joon Seo
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Ilsan-dong, Wonju-si, Gangwon-do, 26426, South Korea.
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Ilsan-dong, Wonju-si, Gangwon-do, 26426, South Korea.
| | - Seong Heon Kim
- Department of Environmental Engineering, College of Public Health, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do, 26493, South Korea.
| |
Collapse
|
104
|
Chen J, Chen L, Wang X, Rao Z, Sun J, Chen A, Xie X. Rare-earth single atoms decorated 2D-TiO 2 nanosheets for the photodegradation of gaseous O-xylene. J Colloid Interface Sci 2021; 605:674-684. [PMID: 34364007 DOI: 10.1016/j.jcis.2021.07.129] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 02/04/2023]
Abstract
In this work, rare-earth single atoms (La, Er) were decorated on the surface of 2D-TiO2 nanosheets by an impregnation-calcination strategy. The formation of rare-earth single atoms was certified by AC HAADF-STEM and XAS. TiO2 decorated with rare-earth single atoms (La1-TiO2 and Er1-TiO2) exhibited outstanding photocatalytic activity than pure 2D-TiO2 nanosheets (2D-TiO2) towards gas-phase degradation of O-xylene. Compared with 2D-TiO2, the rare-earth single atoms greatly improved the adsorption capacity of O-xylene without increasing their specific surface area. This is because rare-earth single atoms provide additional adsorption sites and reduce the adsorption energy of O-xylene. In addition, the hybrid orbital formed by the combination of rare-earth single atom and oxygen atom is beneficial to the rapid transmission and separation of photo-induced electrons, thereby improving the performance of photocatalytic degradation. In addition, in-situ DRIFTS and GC-MS were used to reveal the photocatalytic oxidation mechanism. Interestingly, the results showed that the La1-TiO2 and Er1-TiO2 samples can reduce the types of intermediates and simplify the reaction route, implying that the single atoms play an important role in the modulation and thorough mineralization of intermediate products. This work shows that the rare-earth single atom decorated 2D-TiO2 nanosheets have great potential in photocatalytic air pollution control.
Collapse
Affiliation(s)
- Junfeng Chen
- University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
| | - Lu Chen
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
| | - Xiao Wang
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
| | - Zepeng Rao
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
| | - Jing Sun
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
| | - Aiying Chen
- University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| | - Xiaofeng Xie
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
| |
Collapse
|
105
|
Zhang Y, Wang K, Tong H, Huang RJ, Hoffmann T. The maximum carbonyl ratio (MCR) as a new index for the structural classification of secondary organic aerosol components. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9113. [PMID: 33908097 DOI: 10.1002/rcm.9113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
RATIONALE Organic aerosols (OA) account for a large fraction of atmospheric fine particulate matter and thus are affecting climate and public health. Elucidation of the chemical composition of OA is the key for addressing the role of ambient fine particles at the atmosphere-biosphere interface and mass spectrometry is the main method to achieve this goal. METHODS High-resolution mass spectrometry (HRMS) is on its way to becoming one of the most prominent analytical techniques, also for the analysis of atmospheric aerosols. The combination of high mass resolution and accurate mass determination allows the elemental compositions of numerous compounds to be easily elucidated. Here a new parameter for the improved classification of OA is introduced - the maximum carbonyl ratio (MCR) - which is directly derived from the molecular composition and is particularly suitable for the identification and characterization of secondary organic aerosols (SOA). RESULTS The concept is exemplified by the analysis of ambient OA samples from two measurement sites (Hyytiälä, Finland; Beijing, China) and of laboratory-generated SOA based on ultrahigh-performance liquid chromatography (UHPLC) coupled to Orbitrap MS. To interpret the results, MCR-Van Krevelen (VK) diagrams are generated for the different OA samples and the individual compounds are categorized into specific areas in the diagrams. The results show that the MCR index is a valuable parameter for representing atmospheric SOA components in composition and structure-dependent visualization tools such as VK diagrams. CONCLUSIONS The MCR index is suggested as a tool for a better characterization of the sources and the processing of atmospheric OA components based on HRMS data. Since the MCR contains information on the concentration of highly electrophilic organic compounds in particulate matter (PM) as well as on the concentration of organic (hydro)peroxides, the MCR could be a promising metric for identifying health-related particulate matter parameters by HRMS.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Chemistry, Johannes Gutenberg University, Mainz, 55128, Germany
| | - Kai Wang
- Key Laboratory of Plant-Soil Interactions of MOE, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Haijie Tong
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Ru-Jin Huang
- State Key Laboratory of Loess and Quaternary Geology, Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Thorsten Hoffmann
- Department of Chemistry, Johannes Gutenberg University, Mainz, 55128, Germany
| |
Collapse
|
106
|
Li J, Knopf DA. Representation of Multiphase OH Oxidation of Amorphous Organic Aerosol for Tropospheric Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7266-7275. [PMID: 33974411 DOI: 10.1021/acs.est.0c07668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Organic aerosol (OA) is ubiquitous in the atmosphere and, during transport, can experience chemical transformation with consequences for air quality and climate. Prediction of the chemical evolution of OA depends on its reactivity with atmospheric oxidants such as the OH radical. OA particles undergo amorphous phase transitions from liquid to solid (glassy) states in response to temperature changes, which, in turn, will impact its reactivity toward OH oxidation. To improve the predictability of OA reactivity toward OH oxidation, the reactive uptake coefficients (γ) of OH radicals reacting with triacontane and squalane serving as amorphous OA surrogates were measured at temperatures from 213-293 K. γ increases strongest with temperature when the organic species is in the liquid phase, compared to when being in the semisolid or solid phase. The resistor model is applied, accounting for the amorphous phase state changes using the organic species' glass transition temperature and fragility, to evaluate the physicochemical parameters of the temperature dependent OH uptake process. This allows for the derivation of a semiempirical formula, applicable to models, to predict the degree of oxidation and chemical lifetime of the condensed-phase organic species for typical tropospheric temperature and humidity when OA particle viscosity is known.
Collapse
Affiliation(s)
- Jienan Li
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794, United States
| | - Daniel A Knopf
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
107
|
Ge M, Tong S, Wang W, Zhang W, Chen M, Peng C, Li J, Zhou L, Chen Y, Liu M. Important Oxidants and Their Impact on the Environmental Effects of Aerosols. J Phys Chem A 2021; 125:3813-3825. [PMID: 33687210 DOI: 10.1021/acs.jpca.0c10236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxidants are central species in the atmosphere, where they not only determine secondary particle formation but also impact human health and climate change. In general, they are unstable, highly reactive, and recyclable and have been studied in field observations, laboratory studies, and model simulations. The most widely investigated oxidants, such as OH radicals, O3, and Cl atom, HONO, NO3, N2O5, and Criegee Intermediates (CIs) have attracted more attention recently. Furthermore, secondary particles formed in the oxidations processes impact the particle physicochemical properties, such as hygroscopicity and optical properties and therefore impact the atmospheric radiation balance. Therefore, the newest investigation results of important oxidants (HONO, NO3, N2O5, and CIs) are reviewed in this manuscript, and the environmental effects of secondary particles formed through corresponding oxidation processes are also stated. Furthermore, some perspectives are further discussed in the article.
Collapse
Affiliation(s)
- Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shengrui Tong
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Weigang Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Wenqian Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Meifang Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,College of Chemistry and Material Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Chao Peng
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Junling Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Li Zhou
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,College of Architecture and Environment, Sichuan University, Chengdu 610065, P. R. China
| | - Yi Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, P. R. China
| | - Mingyuan Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
108
|
Cheng Z, Sharma N, Tseng KP, Kovarik L, China S. Direct observation and assessment of phase states of ambient and lab-generated sub-micron particles upon humidification. RSC Adv 2021; 11:15264-15272. [PMID: 35424057 PMCID: PMC8698329 DOI: 10.1039/d1ra02530a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
We present a new analytical platform that uses a tilted stage (60°) integrated to the Peltier cooling stage interfaced with an Environmental Scanning Electron Microscope (ESEM) to directly observe and assess the phase state of particles as a function of RH at a controlled temperature. Three types of organic particles have been studied: (a) Suwannee River Fulvic Acid (SRFA) particles, (b) lab generated soil organic particles, and (c) field-collected ambient particles. The chemical composition, morphology, and functional groups of individual particles were probed using computer-controlled scanning electron microscopy with energy-dispersive X-ray spectroscopy (CCSEM/EDX) and scanning transmission X-ray microscopy with near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Results show that all three types of particles are organic-rich, but soil organic particles and ambient particles contain a considerable amount of inorganic species. The phase state can be determined based on the particle's aspect ratio (particle width/height), which we proposed for solid, semisolid, and liquid particles are 1.00–1.30, 1.30–1.85, and >1.85, respectively. We found that solid SRFA particles transition to a semisolid state at ∼90% RH and to the liquid state at ∼97% RH, in agreement with the literature. The solid soil organic particles transition to a semisolid state at ∼85% RH and to the liquid state at ∼97% RH. The solid ambient organic particles transition to a semisolid state at ∼65% RH and the liquid state at ∼97% RH. Our results indicate that this new platform can directly observe and quantitatively indicate the phase transition of field-collected particles under different ambient conditions. We present a new analytical platform that uses a tilted and Peltier cooling stage interfaced with an environmental scanning electron microscope to directly observe and assess the phase state of individual particles as a function of relative humidity.![]()
Collapse
Affiliation(s)
- Zezhen Cheng
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory Richland Washington USA
| | - Noopur Sharma
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory Richland Washington USA
| | - Kuo-Pin Tseng
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory Richland Washington USA
| | - Libor Kovarik
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory Richland Washington USA
| | - Swarup China
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory Richland Washington USA
| |
Collapse
|
109
|
Li J, Li H, Wang X, Wang W, Ge M, Zhang H, Zhang X, Li K, Chen Y, Wu Z, Chai F, Meng F, Mu Y, Mellouki A, Bi F, Zhang Y, Wu L, Liu Y. A large-scale outdoor atmospheric simulation smog chamber for studying atmospheric photochemical processes: Characterization and preliminary application. J Environ Sci (China) 2021; 102:185-197. [PMID: 33637243 DOI: 10.1016/j.jes.2020.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 06/12/2023]
Abstract
Understanding the formation mechanisms of secondary air pollution is very important for the formulation of air pollution control countermeasures in China. Thus, a large-scale outdoor atmospheric simulation smog chamber was constructed at Chinese Research Academy of Environmental Sciences (the CRAES Chamber), which was designed for simulating the atmospheric photochemical processes under the conditions close to the real atmospheric environment. The chamber consisted of a 56-m3 fluorinated ethylene propylene (FEP) Teflon film reactor, an electrically-driven stainless steel alloy shield, an auxiliary system, and multiple detection instrumentations. By performing a series of characterization experiments, we obtained basic parameters of the CRAES chamber, such as the mixing ability, the background reactivity, and the wall loss rates of gaseous compounds (propene, NO, NO2, ozone) and aerosols (ammonium sulfate). Oxidation experiments were also performed to study the formation of ozone and secondary organic aerosol (SOA), including α-pinene ozonolysis, propene and 1,3,5-trimethylbenzene photooxidation. Temperature and seed effects on the vapor wall loss and SOA yields were obtained in this work: higher temperature and the presence of seed could reduce the vapor wall loss; SOA yield was found to depend inversely on temperature, and the presence of seed could increase SOA yield. The seed was suggested to be used in the chamber to reduce the interaction between the gas phase and chamber walls. The results above showed that the CRAES chamber was reliable and could meet the demands for investigating tropospheric chemistry.
Collapse
Affiliation(s)
- Junling Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Key Laboratory of Atmospheric Chemistry, China Meteorological Administration, Beijing 100081, China
| | - Hong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Xuezhong Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Weigang Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hao Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xin Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Kun Li
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), 5232 Villigen, Switzerland
| | - Yan Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhenhai Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fahe Chai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fan Meng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yujing Mu
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Abdelwahid Mellouki
- Institut de Combustion Aérothermique, Réactivité et Environnement, Centre National de la Recherche Scientifique (ICARE-CNRS), Observatoire des Sciences de l'Univers en région Centre (OSUC), CS 50060, 45071 cedex02 Orléans, France
| | - Fang Bi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yujie Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lingyan Wu
- Key Laboratory of Atmospheric Chemistry, China Meteorological Administration, Beijing 100081, China
| | - Yongchun Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
110
|
Petroselli C, Montalbani E, La Porta G, Crocchianti S, Moroni B, Casagrande C, Ceci E, Selvaggi R, Sebastiani B, Gandolfi I, Franzetti A, Federici E, Cappelletti D. Characterization of long-range transported bioaerosols in the Central Mediterranean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:143010. [PMID: 33131845 PMCID: PMC7571444 DOI: 10.1016/j.scitotenv.2020.143010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 05/13/2023]
Abstract
Airborne bacteria were characterized over a 2-y period via high-throughput massive sequencing of 16S rRNA gene in aerosol samples collected at a background mountain European Monitoring and Evaluation Programme (EMEP) Network site (Monte Martano, Italy) located in the Central Mediterranean area. The air mass origin of nineteen samples was identified by air mass modelling and a detailed chemical analysis was performed. Four main origins (Saharan, North-western, North-eastern, and Regional) were identified, and distinct microbial communities were associated with these air masses. Samples featured a great bacterial diversity with Protobacteria being the most abundant phylum, and Sphingomonas followed by Acidovorax, Acinetobacter and Stenotrophomonas the most abundant genera of the dataset. Bacterial genera including potential human and animal pathogens were more abundant in European and in Regional samples compared to Saharan samples; this stressed the relevance of anthropic impact on bacterial populations transported by air masses that cross densely populated areas. The principal aerosol chemical characteristics and the airborne bacterial communities were correlated by cluster analysis, similarity tests and non-metric multidimensional scaling analysis, explaining most of the variability observed. However, the strong correlation between bacterial community structure and air mass origin hampered the possibility to disentangle the effects of variations in bacterial populations and in dust provenance on variations in chemical variables.
Collapse
Affiliation(s)
- Chiara Petroselli
- Faculty of Engineering and Physical Sciences, University of Southampton, University Road, SO17 1BJ Southampton, UK
| | - Elena Montalbani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Gianandrea La Porta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Stefano Crocchianti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Beatrice Moroni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Chiara Casagrande
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Elisa Ceci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Roberta Selvaggi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Bartolomeo Sebastiani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Isabella Gandolfi
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano, Italy
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano, Italy
| | - Ermanno Federici
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - David Cappelletti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy; CNR-ISP, Institute of Polar Science, National Research Council, Via Gobetti 101, Bologna, Italy.
| |
Collapse
|
111
|
Pollet R, Chin W. Reversible Hydration of α-Dicarbonyl Compounds from Ab Initio Metadynamics Simulations: Comparison between Pyruvic and Glyoxylic Acids in Aqueous Solutions. J Phys Chem B 2021; 125:2942-2951. [PMID: 33725456 DOI: 10.1021/acs.jpcb.0c09748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glyoxylic and pyruvic oxoacids are widely available in the atmosphere as gas-phase clusters and particles or in wet aerosols. In aqueous conditions, they undergo interconversion between the unhydrated oxo and gem-diol forms, where two hydroxyl groups replace the carbonyl group. We here examine the hydration equilibrium of glyoxylic and pyruvic acids with first-principles simulations in water at ambient conditions using ab initio metadynamics to reconstruct the corresponding free-energy landscapes. The main results are as follows: (i) our simulations reveal the high conformational diversity of these species in aqueous solutions. (ii) We show that gem-diol is strongly favored in water compared to its oxo counterpart by 29 and 16 kJ/mol for glyoxylic and pyruvic acids, respectively. (iii) From our atomic-scale simulations, we present new insights into the reaction mechanisms with a special focus on hydrogen-bond arrangements and the electronic structure of the transition state.
Collapse
Affiliation(s)
- Rodolphe Pollet
- NIMBE, Université Paris-Saclay, CEA, CNRS, 91191 Gif-sur-Yvette, France
| | - Wutharath Chin
- Institut des Sciences Moléculaires d'Orsay, Université Paris-Saclay, CNRS, 91405 Orsay, France
| |
Collapse
|
112
|
The correlation of altitude with gingival status among adolescents in western China: a cross-sectional study. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:3151-3167. [PMID: 33528681 DOI: 10.1007/s10653-021-00812-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 01/07/2021] [Indexed: 02/05/2023]
Abstract
Periodontal disease is common in Chinese adolescents. There is little information about the effect of different altitudes on gingival health. This study aimed to investigate the gingival status at different altitudes and to identify relative factors that affect adolescents' gingival status. A total of 1033 adolescents aged 12-14 years were included in this cross-sectional study in Ganzi (plateau, 1400 m, 2560 m, 3300 m) and Suining (plain, 300 m). Gingival status was assessed by the presence of gingival bleeding on probing (BOP) and dental calculus (DC). Demographic variables, socioeconomic status, dairy habits and oral health-related knowledge, attitudes and behaviors were obtained via questionnaire. Univariate and multivariate binary logistic regression analyses were performed to identify potential relative factors. A total of 64.09% and 77.15% of adolescents had BOP and DC, respectively. The prevalence rates of BOP and DC were higher in the plateau than the plain (P < 0.05). After adjusting for all other factors and interaction terms, residence altitudes of 2560 m [300 m as reference: P < 0.001, odds ratio (OR) = 4.072] and 3300 m (300 m as reference: P = 0.002, OR = 4.053) were significant relative factors of BOP, and an altitude of 2560 m (300 m as reference: P = 0.001, OR = 3.866, 1400 m as reference: P = 0.001, OR = 3.944) was an important relative factor of DC. Gingival bleeding and calculus deposits were common at different altitudes. High altitude was a significant relative factor of gingival bleeding and calculus deposits.
Collapse
|
113
|
Simões EF, Almeida AS, Duarte AC, Duarte RM. Assessing reactive oxygen and nitrogen species in atmospheric and aquatic environments: Analytical challenges and opportunities. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
114
|
Cheng C, Chan CK, Lee BP, Gen M, Li M, Yang S, Hao F, Wu C, Cheng P, Wu D, Li L, Huang Z, Gao W, Fu Z, Zhou Z. Single particle diversity and mixing state of carbonaceous aerosols in Guangzhou, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142182. [PMID: 33254891 DOI: 10.1016/j.scitotenv.2020.142182] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/14/2020] [Accepted: 09/02/2020] [Indexed: 06/12/2023]
Abstract
Many field studies have investigated the formation mechanisms of organic aerosol (OA) based on bulk analysis, yet the source and formation process of individual organic particles may be quite different due to the diversity of chemical composition and mixing state in single particles. Here we present the observation results of chemical composition and mixing state of carbonaceous single particles at an urban site in Guangzhou. The carbonaceous particles accounted for 74.6% of the total detected single particles, and were grouped into four types including elemental carbon-aged (EC-aged), elemental and organic carbon (ECOC), organic carbon-rich (OC-rich) and secondary ions-rich (SEC) particles. The formation of EC-aged particles was closely associated with the absorption of organics onto fresh EC particles from primary sources, and the further enrichment of organics in EC-aged particles resulted in the production of ECOC particles. In the daytime OC-rich and SEC particles were mainly produced from the photochemical reactions, while in the nighttime their sharp increases were found along with the enrichment of nitrate and organic nitrogen fragments, suggesting the heterogeneous formation of nitrate and organic nitrogen in OC-rich and SEC particles. The production rates of carbonaceous particles were also investigated in an episodic event, and the EC-aged particles showed the highest production rate compared to the other carbonaceous particles both in the daytime and nighttime, suggesting a significant role of EC in the formation and aging process of carbonaceous particles. The results from this work have revealed different formation processes and production rates of carbonaceous particles due to their diversity in mixing state, providing further insights into the formation mechanisms of OA in field studies.
Collapse
Affiliation(s)
- Chunlei Cheng
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on-Line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Chak K Chan
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China.
| | - Berto Paul Lee
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Masao Gen
- Faculty of Frontier Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| | - Mei Li
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on-Line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China.
| | - Suxia Yang
- Institute for Environment and Climate Research, Jinan University, Guangzhou 510632, China
| | - Feng Hao
- Environmental Monitoring Center of Inner Mongolia Autonomous Region, Hohhot 010011, China
| | - Cheng Wu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on-Line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Peng Cheng
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on-Line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Dui Wu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on-Line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Lei Li
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on-Line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Zhengxu Huang
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on-Line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Wei Gao
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on-Line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Zhong Fu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Zhen Zhou
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on-Line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| |
Collapse
|
115
|
Babić S, Čižmek L, Maršavelski A, Malev O, Pflieger M, Strunjak-Perović I, Popović NT, Čož-Rakovac R, Trebše P. Utilization of the zebrafish model to unravel the harmful effects of biomass burning during Amazonian wildfires. Sci Rep 2021; 11:2527. [PMID: 33510260 PMCID: PMC7844006 DOI: 10.1038/s41598-021-81789-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/11/2021] [Indexed: 12/26/2022] Open
Abstract
Amazonian wildfires in 2019 have raised awareness about rainforest burning due to increased emissions of particulate matter and carbon. In the context of these emissions, by-products of lignin thermal degradation (i.e. methoxyphenols) are often neglected. Methoxyphenols entering the atmosphere may form intermediates with currently unknown reaction mechanisms and toxicity. This study for the first time provides a comprehensive insight into the impact of lignin degradation products [guaiacol, catechol], and their nitrated intermediates [4-nitrocatechol, 4,6-dinitroguaiacol, 5-nitroguaiacol] on zebrafish Danio rerio. Results revealed 4-nitrocatechol and catechol as the most toxic, followed by 4,6DNG > 5NG > GUA. The whole-organism bioassay integrated with molecular modeling emphasized the potential of methoxyphenols to inhibit tyrosinase, lipoxygenase, and carbonic anhydrase, consequently altering embryonic development (i.e. affected sensorial, skeletal, and physiological parameters, pigmentation formation failure, and non-hatching of larvae). The whole-organism bioassay integrated with in silico approach confirmed the harmful effects of lignin degradation products and their intermediates on aquatic organisms, emphasizing the need for their evaluation within ecotoxicity studies focused on aquatic compartments.
Collapse
Affiliation(s)
- Sanja Babić
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia.,Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Lara Čižmek
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia.,Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Aleksandra Maršavelski
- Faculty of Science, Department of Chemistry, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | - Olga Malev
- Faculty of Science, Department of Biology, University of Zagreb, Roosevelt square 6, Zagreb, Croatia. .,Laboratory for Biological Diversity, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia.
| | - Maryline Pflieger
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, Ljubljana, Slovenia
| | - Ivančica Strunjak-Perović
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia.,Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Natalija Topić Popović
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia.,Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Rozelindra Čož-Rakovac
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia.,Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Polonca Trebše
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, Ljubljana, Slovenia.
| |
Collapse
|
116
|
Abstract
Aerosol droplets play a critical role in the development of weather patterns, yet are notoriously difficult to analyze because of their small size, transient nature and potentially complex composition. As a result, there has been a surge in recent years in the development of analysis techniques aimed at the study of aerosol droplets, namely of their surface tension properties, which are thought to play a great role in aerosol/cloud growth and subsequently having an impact on the resulting weather patterns. To capture the state of the field at this key time, we have collected and described some of the most relevant and influential studies, with a focus on those that have had the most impact. This review will present and describe the most used analytical techniques for studying the surface tension of micrometer-sized aqueous droplets, with a focus on historical trends and how the current techniques are posed to revolutionize the field.
Collapse
Affiliation(s)
- Derrick M Mott
- Institute of Multidisciplinary Research for Advanced Material (IMRAM), Tohoku University, IMRAM West Building 1, Room S211, 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan
| | - Mao Fukuyama
- Institute of Multidisciplinary Research for Advanced Material (IMRAM), Tohoku University, IMRAM West Building 1, Room S211, 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan
| | - Akihide Hibara
- Institute of Multidisciplinary Research for Advanced Material (IMRAM), Tohoku University, IMRAM West Building 1, Room S211, 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan.
| |
Collapse
|
117
|
Li J, Li J, Wang G, Ho KF, Dai W, Zhang T, Wang Q, Wu C, Li L, Li L, Zhang Q. Effects of atmospheric aging processes on in vitro induced oxidative stress and chemical composition of biomass burning aerosols. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123750. [PMID: 33113732 DOI: 10.1016/j.jhazmat.2020.123750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/30/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
Biomass burning (BB) has an important impact on local/regional air quality and human health in China, but most previous studies overlooked the influence of atmospheric aging processes on cytotoxicity and chemical composition of BB aerosols. In this study, we combined a combustion chamber and an oxidation flow reactor to generate fresh and aged BB PM2.5. Human bronchial epithelial BEAS-2B cells were exposed to PM2.5 preparation for 24 h, and then determined for particle-induced reactive oxygen species (ROS) in vitro. The particle-induced ROS production increased by 11 %-64 % after two days of aging, suggesting an enhancement of in vitro-induced oxidative stress (OS) of aged BB particles. Chemical analysis showed that organic matter (OM) was the dominant component with no changes in relative abundance for the fresh and aged BB particles. Organic polycyclic aromatic compounds and some metals showed strong correlations with ROS in fresh particles, indicating the important effects of these harmful components on the OS of fresh BB aerosols. However, such correlations were not found for the aged particles, which is possibly related to the loss of non- or low-toxic semivolatile compounds and the formation of secondary harmful OM (such as some N-containing organic compounds) during the atmospheric aging processes.
Collapse
Affiliation(s)
- Jianjun Li
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China.
| | - Jin Li
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Gehui Wang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, 200241, China; Institute of Eco-Chongming, 3663 N. Zhongshan Rd., Shanghai, 200062, China.
| | - Kin Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China; Shenzhen Municipal Key Laboratory for Health Risk Analysis, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Wenting Dai
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Ting Zhang
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Qiyuan Wang
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Can Wu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, 200241, China; Institute of Eco-Chongming, 3663 N. Zhongshan Rd., Shanghai, 200062, China
| | - Lijuan Li
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China; Department of Environmental Toxicology, University of California, Davis, CA 95616, USA
| | - Li Li
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Qi Zhang
- Department of Environmental Toxicology, University of California, Davis, CA 95616, USA
| |
Collapse
|
118
|
Wei J, Fang T, Wong C, Lakey PSJ, Nizkorodov SA, Shiraiwa M. Superoxide Formation from Aqueous Reactions of Biogenic Secondary Organic Aerosols. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:260-270. [PMID: 33352036 DOI: 10.1021/acs.est.0c07789] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Reactive oxygen species (ROS) play a central role in aqueous-phase processing and health effects of atmospheric aerosols. Although hydroxyl radical (•OH) and hydrogen peroxide (H2O2) are regarded as major oxidants associated with secondary organic aerosols (SOA), the kinetics and reaction mechanisms of superoxide (O2•-) formation are rarely quantified and poorly understood. Here, we demonstrate a dominant formation of O2•- with molar yields of 0.01-0.03% from aqueous reactions of biogenic SOA generated by •OH photooxidation of isoprene, β-pinene, α-terpineol, and d-limonene. The temporal evolution of •OH and O2•- formation is elucidated by kinetic modeling with a cascade of aqueous reactions including the decomposition of organic hydroperoxides, •OH oxidation of primary or secondary alcohols, and unimolecular decomposition of α-hydroxyperoxyl radicals. Relative yields of various types of ROS reflect a relative abundance of organic hydroperoxides and alcohols contained in SOA. These findings and mechanistic understanding have important implications on the atmospheric fate of SOA and particle-phase reactions of highly oxygenated organic molecules as well as oxidative stress upon respiratory deposition.
Collapse
Affiliation(s)
- Jinlai Wei
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Ting Fang
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Cynthia Wong
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Pascale S J Lakey
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Sergey A Nizkorodov
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Manabu Shiraiwa
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
119
|
Xie W, Li Y, Bai W, Hou J, Ma T, Zeng X, Zhang L, An T. The source and transport of bioaerosols in the air: A review. FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING 2021; 15:44. [PMID: 33589868 PMCID: PMC7876263 DOI: 10.1007/s11783-020-1336-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 05/13/2023]
Abstract
Recent pandemic outbreak of the corona-virus disease 2019 (COVID-19) has raised widespread concerns about the importance of the bioaerosols. They are atmospheric aerosol particles of biological origins, mainly including bacteria, fungi, viruses, pollen, and cell debris. Bioaerosols can exert a substantial impact on ecosystems, climate change, air quality, and public health. Here, we review several relevant topics on bioaerosols, including sampling and detection techniques, characterization, effects on health and air quality, and control methods. However, very few studies have focused on the source apportionment and transport of bioaerosols. The knowledge of the sources and transport pathways of bioaerosols is essential for a comprehensive understanding of the role microorganisms play in the atmosphere and control the spread of epidemic diseases associated with them. Therefore, this review comprehensively summarizes the up to date progress on the source characteristics, source identification, and diffusion and transport process of bioaerosols. We intercompare three types of diffusion and transport models, with a special emphasis on a widely used mathematical model. This review also highlights the main factors affecting the source emission and transport process, such as biogeographic regions, land-use types, and environmental factors. Finally, this review outlines future perspectives on bioaerosols.
Collapse
Affiliation(s)
- Wenwen Xie
- School of Water and Environment, Chang’an University, Xi’an, 710054 China
| | - Yanpeng Li
- School of Water and Environment, Chang’an University, Xi’an, 710054 China
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region (Ministry of Education), Chang’an University, Xi’an, 710054 China
| | - Wenyan Bai
- School of Water and Environment, Chang’an University, Xi’an, 710054 China
| | - Junli Hou
- School of Water and Environment, Chang’an University, Xi’an, 710054 China
| | - Tianfeng Ma
- School of Water and Environment, Chang’an University, Xi’an, 710054 China
| | - Xuelin Zeng
- School of Water and Environment, Chang’an University, Xi’an, 710054 China
| | - Liyuan Zhang
- School of Water and Environment, Chang’an University, Xi’an, 710054 China
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region (Ministry of Education), Chang’an University, Xi’an, 710054 China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environment Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006 China
| |
Collapse
|
120
|
Wallace BJ, Price CL, Davies JF, Preston TC. Multicomponent diffusion in atmospheric aerosol particles. ACTA ACUST UNITED AC 2021. [DOI: 10.1039/d0ea00008f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Condensed phase mass transport in single aerosol particles is investigated using a linear quadrupole electrodynamic balance (LQ-EDB) and the Maxwell–Stefan (MS) framework.
Collapse
Affiliation(s)
- Brandon J. Wallace
- Department of Atmospheric and Oceanic Sciences
- Department of Chemistry
- McGill University
- Montreal
- Canada
| | - Chelsea L. Price
- Department of Chemistry
- University of California Riverside
- Riverside
- USA
| | - James F. Davies
- Department of Chemistry
- University of California Riverside
- Riverside
- USA
| | - Thomas C. Preston
- Department of Atmospheric and Oceanic Sciences
- Department of Chemistry
- McGill University
- Montreal
- Canada
| |
Collapse
|
121
|
Daiber A, Kuntic M, Hahad O, Delogu LG, Rohrbach S, Di Lisa F, Schulz R, Münzel T. Effects of air pollution particles (ultrafine and fine particulate matter) on mitochondrial function and oxidative stress - Implications for cardiovascular and neurodegenerative diseases. Arch Biochem Biophys 2020; 696:108662. [PMID: 33159890 DOI: 10.1016/j.abb.2020.108662] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023]
Abstract
Environmental pollution is a major cause of global mortality and burden of disease. All chemical pollution forms together may be responsible for up to 12 million annual excess deaths as estimated by the Lancet Commission on pollution and health as well as the World Health Organization. Ambient air pollution by particulate matter (PM) and ozone was found to be associated with an all-cause mortality rate of up to 9 million in the year 2015, with the majority being of cerebro- and cardiovascular nature (e.g. stroke and ischemic heart disease). Recent evidence suggests that exposure to airborne particles and gases contributes to and accelerates neurodegenerative diseases. Especially, airborne toxic particles contribute to these adverse health effects. Whereas it is well established that air pollution in the form of PM may lead to dysregulation of neurohormonal stress pathways and may trigger inflammation as well as oxidative stress, leading to secondary damage of cardiovascular structures, the mechanistic impact of PM-induced mitochondrial damage and dysfunction is not well established. With the present review we will discuss similarities between mitochondrial damage and dysfunction observed in the development and progression of cardiovascular disease and neurodegeneration as well as those adverse mitochondrial pathomechanisms induced by airborne PM.
Collapse
Affiliation(s)
- Andreas Daiber
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Marin Kuntic
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Germany
| | - Omar Hahad
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Lucia G Delogu
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
| | - Susanne Rohrbach
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| | - Thomas Münzel
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| |
Collapse
|
122
|
Su H, Cheng Y, Pöschl U. New Multiphase Chemical Processes Influencing Atmospheric Aerosols, Air Quality, and Climate in the Anthropocene. Acc Chem Res 2020; 53:2034-2043. [PMID: 32927946 PMCID: PMC7581287 DOI: 10.1021/acs.accounts.0c00246] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Atmospheric aerosols and fine particulate matter (PM2.5) are strongly affecting human health and climate in the Anthropocene,
that is, in the current era of globally pervasive and rapidly increasing
human influence on planet Earth. Poor air quality associated with high aerosol concentrations is among the
leading health risks worldwide, causing millions of attributable excess
deaths and years of life lost every year. Besides their health impact,
aerosols are also influencing climate through interactions with clouds
and solar radiation with an estimated negative total effective radiative
forcing that may compensate about half of the positive radiative forcing
of carbon dioxide but exhibits a much larger uncertainty. Heterogeneous
and multiphase chemical reactions on the surface and in the bulk of
solid, semisolid, and liquid aerosol particles have been recognized
to influence aerosol formation and transformation and thus their environmental
effects. However, atmospheric multiphase chemistry is not well understood
because of its intrinsic complexity of dealing with the matter in
multiple phases and the difficulties of distinguishing its effect
from that of gas phase reactions. Recently, research on atmospheric
multiphase chemistry received
a boost from the growing interest in understanding severe haze formation
of very high PM2.5 concentrations in polluted megacities
and densely populated regions. State-of-the-art models suggest that
the gas phase reactions, however, are not capturing the high concentrations
and rapid increase of PM2.5 observed during haze events,
suggesting a gap in our understanding of the chemical mechanisms of
aerosol formation. These haze events are characterized by high concentrations
of aerosol particles and high humidity, especially favoring multiphase
chemistry. In this Account, we review recent advances that we have
made, as well as current challenges and future perspectives for research
on multiphase chemical processes involved in atmospheric aerosol formation
and transformation. We focus on the following questions: what are
the key reaction pathways leading to aerosol formation under polluted
conditions, what is the relative importance of multiphase chemistry
versus gas-phase chemistry, and what are the implications for the
development of efficient and reliable air quality control strategies?
In particular, we discuss advances and challenges related to different
chemical regimes of sulfate, nitrate, and secondary organic aerosols
(SOAs) under haze conditions, and we synthesize new insights into
the influence of aerosol water content, aerosol pH, phase state, and
nanoparticle size effects. Overall, there is increasing evidence that
multiphase chemistry plays an important role in aerosol formation
during haze events. In contrast to the gas phase photochemical reactions,
which are self-buffered against heavy pollution, multiphase reactions
have a positive feedback mechanism, where higher particle matter levels
accelerate multiphase production, which further increases the aerosol
concentration resulting in a series of record-breaking pollution events.
We discuss perspectives to fill the gap of the current understanding
of atmospheric multiphase reactions that involve multiple physical
and chemical processes from bulk to nanoscale and from regional to
global scales. A synthetic approach combining laboratory experiments,
field measurements, instrument development, and model simulations
is suggested as a roadmap to advance future research.
Collapse
Affiliation(s)
- Hang Su
- Max Planck Institute for Chemistry, Mainz 55128, Germany
| | - Yafang Cheng
- Max Planck Institute for Chemistry, Mainz 55128, Germany
| | - Ulrich Pöschl
- Max Planck Institute for Chemistry, Mainz 55128, Germany
| |
Collapse
|
123
|
Münzel T, Steven S, Frenis K, Lelieveld J, Hahad O, Daiber A. Environmental Factors Such as Noise and Air Pollution and Vascular Disease. Antioxid Redox Signal 2020; 33:581-601. [PMID: 32245334 DOI: 10.1089/ars.2020.8090] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: According to the World Health Organization, noncommunicable diseases are the globally leading cause of mortality. Recent Advances: About 71% of 56 million deaths that occurred worldwide are due to noncommunicable cardiovascular risk factors, including tobacco smoking, unhealthy diets, lack of physical activity, overweight, arterial hypertension, diabetes, and hypercholesterolemia, which can be either avoided or substantially reduced. Critical Issues: Thus, it is estimated that 80% of premature heart disease, stroke, and diabetes can be prevented. More recent evidence indicates that environmental stressors such as noise and air pollution contribute significantly to the global burden of cardiovascular disease. In the present review, we focus primarily on important environmental stressors such as transportation noise and air pollution. We discuss the pathophysiology of vascular damage caused by these environmental stressors, with emphasis on early subclinical damage of the vasculature such as endothelial dysfunction and the role of oxidative stress. Future Directions: Lower legal thresholds and mitigation measures should be implemented and may help to prevent vascular damage.
Collapse
Affiliation(s)
- Thomas Münzel
- Center of Cardiology 1, Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Berlin, Germany
| | - Sebastian Steven
- Center of Cardiology 1, Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Katie Frenis
- Center of Cardiology 1, Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | | | - Omar Hahad
- Center of Cardiology 1, Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Berlin, Germany
| | - Andreas Daiber
- Center of Cardiology 1, Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Berlin, Germany
| |
Collapse
|
124
|
Willis MD, Rovelli G, Wilson KR. Combining Mass Spectrometry of Picoliter Samples with a Multicompartment Electrodynamic Trap for Probing the Chemistry of Droplet Arrays. Anal Chem 2020; 92:11943-11952. [PMID: 32786501 DOI: 10.1021/acs.analchem.0c02343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Single droplet levitation provides contactless access to the microphysical and chemical properties of micrometer-sized samples. Most applications of droplet levitation to chemical and biological systems use nondestructive optical techniques to probe droplet properties. To provide improved chemical specificity, we coupled a multicompartment quadrupole electrodynamic trap (QET) with single droplet mass spectrometry. Our QET continuously traps a monodisperse droplet population (tens to hundreds of droplets) and allows for the simultaneous sizing of a single droplet using its Mie scattering pattern. Single droplets are subsequently ejected into the ionization region of an ambient pressure inlet mass spectrometer. We optimized two complementary soft ionization techniques for picoliter aqueous droplets: (1) paper spray (PS) ionization and (2) thermal desorption glow discharge (TDGD) ionization. Both techniques detect oxygenated organic acids in single droplets, with signal-to-noise ratios >100 and detection limits on the order of 10 pg. Sensitivity and reproducibility across single droplets are driven by the droplet deposition location and spray stability in PS-MS and the ionization region humidity and analyte evaporation rate in TDGD-MS. Importantly, the analyte evaporation rate can control the TDGD-MS quantitative capability because high evaporation rates result in significant ion suppression. This effect is mitigated by optimizing the vaporization temperature, droplet size range, and analyte volatility. We demonstrate quantitative and reproducible measurements with a droplet internal standard (<10% RSD) and compare the sensitivity of PS-MS and TDGD-MS. Finally, we demonstrate the application of QET-MS to the study of heterogeneous chemical kinetics with the reaction of gas phase O3 and aqueous maleic acid droplets.
Collapse
Affiliation(s)
- Megan D Willis
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Grazia Rovelli
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Kevin R Wilson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| |
Collapse
|
125
|
Cañón J, Velasquez M, Molina R, Moreno S. CoMnMgAl mixed oxides prepared by a microwave assisted self-combustion synthesis for toluene total oxidation. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
126
|
Zeng M, Wilson KR. Efficient Coupling of Reaction Pathways of Criegee Intermediates and Free Radicals in the Heterogeneous Ozonolysis of Alkenes. J Phys Chem Lett 2020; 11:6580-6585. [PMID: 32787230 DOI: 10.1021/acs.jpclett.0c01823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the gas phase, ozonolysis of olefins is known to be a significant source of free radicals. However, for heterogeneous and condensed phase ozone reactions, the importance of reaction pathways that couple Criegee intermediates (CI) with hydroxyl (OH), alkoxy, and peroxy free radicals remains uncertain. Here we report experimental evidence for substantial free radical oxidation during the heterogeneous reaction of O3 with cis-9-tricosene (Tri) aerosol. A kinetic model with three coupled submechanisms that include O3, CI, and free radical reactions is used to explain how the observed Tri reactivity and its product distributions depend upon [O3], [OH], and the presence of CI scavengers. During multiphase ozonolysis, the kinetic model predicts that only ∼30% of the alkene is actually consumed by O3, while the remaining ∼70% is consumed by free radicals that cycle through pathways involving CI. These results reveal the importance of free radical oxidation during heterogeneous ozonolysis, which has been previously difficult to isolate due to the complex coupling of CI and OH reaction pathways.
Collapse
Affiliation(s)
- Meirong Zeng
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kevin R Wilson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
127
|
Ziegler K, Kunert AT, Reinmuth-Selzle K, Leifke AL, Widera D, Weller MG, Schuppan D, Fröhlich-Nowoisky J, Lucas K, Pöschl U. Chemical modification of pro-inflammatory proteins by peroxynitrite increases activation of TLR4 and NF-κB: Implications for the health effects of air pollution and oxidative stress. Redox Biol 2020; 37:101581. [PMID: 32739154 PMCID: PMC7767743 DOI: 10.1016/j.redox.2020.101581] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 01/05/2023] Open
Abstract
Environmental pollutants like fine particulate matter can cause adverse health effects through oxidative stress and inflammation. Reactive oxygen and nitrogen species (ROS/RNS) such as peroxynitrite can chemically modify proteins, but the effects of such modifications on the immune system and human health are not well understood. In the course of inflammatory processes, the Toll-like receptor 4 (TLR4) can sense damage-associated molecular patterns (DAMPs). Here, we investigate how the TLR4 response and pro-inflammatory potential of the proteinous DAMPs α-Synuclein (α-Syn), heat shock protein 60 (HSP60), and high-mobility-group box 1 protein (HMGB1), which are relevant in neurodegenerative and cardiovascular diseases, changes upon chemical modification with peroxynitrite. For the peroxynitrite-modified proteins, we found a strongly enhanced activation of TLR4 and the pro-inflammatory transcription factor NF-κB in stable reporter cell lines as well as increased mRNA expression and secretion of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-8 in human monocytes (THP-1). This enhanced activation of innate immunity via TLR4 is mediated by covalent chemical modifications of the studied DAMPs. Our results show that proteinous DAMPs modified by peroxynitrite more potently amplify inflammation via TLR4 activation than the native DAMPs, and provide first evidence that such modifications can directly enhance innate immune responses via a defined receptor. These findings suggest that environmental pollutants and related ROS/RNS may play a role in promoting acute and chronic inflammatory disorders by structurally modifying the body's own DAMPs. This may have important consequences for chronic neurodegenerative, cardiovascular or gastrointestinal diseases that are prevalent in modern societies, and calls for action, to improve air quality and climate in the Anthropocene. Pollutants and oxidative stress can cause protein nitration and oligomerization. Peroxynitrite amplifies inflammatory potential of disease-related proteins in vitro. Chemical modification of damage-associated molecular patterns (DAMPs). Positive feedback of modified DAMPs via pattern recognition receptor (TLR4). Air pollution may promote inflammatory disorders in the Anthropocene.
Collapse
Affiliation(s)
- Kira Ziegler
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, 55128, Mainz, Germany
| | - Anna T Kunert
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, 55128, Mainz, Germany
| | | | - Anna Lena Leifke
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, 55128, Mainz, Germany
| | - Darius Widera
- Stem Cell Biology and Regenerative Medicine Group, School of Pharmacy, University of Reading, RG6 6AP, Reading, UK
| | - Michael G Weller
- Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg University, 55131, Mainz, Germany; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, MA, 02215, USA
| | | | - Kurt Lucas
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, 55128, Mainz, Germany.
| | - Ulrich Pöschl
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, 55128, Mainz, Germany.
| |
Collapse
|
128
|
Wei M, Liu H, Chen J, Xu C, Li J, Xu P, Sun Z. Effects of aerosol pollution on PM 2.5-associated bacteria in typical inland and coastal cities of northern China during the winter heating season. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114188. [PMID: 32126435 DOI: 10.1016/j.envpol.2020.114188] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 05/14/2023]
Abstract
Frequent heavy aerosol pollution occurs during the winter heating season in northern China. Here, we characterized the airborne bacterial community structure and concentration, during typical pollution episodes that occurred during the winter heating season of 2017-2018 in Jinan and Weihai. During this heating season, five and four heavy pollution episodes were observed in Jinan and Weihai, respectively. Compared with December and January, pollution episodes in March were significantly affected by sand dust events. Higher Bacillales were identified in the March samples from Jinan, indicating that sand dust influences bacterial communities. During similar pollution episodes, air pollution in the coastal city of Weihai was lower than the inland city of Jinan. The predominant bacteria included Staphylococcus, Cyanobacteria, Lactobacillus, Deinococcus, Enbydrobacter, Ralstonia, Bacillus, Comamonas, and Sphingomonas. These predominant bacteria are mainly from Proteobacteria, Firmicutes, Cyanobacteria, Actinobacteria, and Bacteroidetes phyla. Bacterial concentration showed significant variation with increased airborne pollutants. The highest concentration appeared during moderate pollution (up to 106 cells/m3), whereas bacterial concentration decreased during heavy and severe pollution (105 cells/m3), which may be related to toxic effects of high pollutant concentrations during heavy or severe pollution. Community structure variation indicated that Cyanobacterial genera were dominant in clean or slight pollution. With increased PM2.5, Staphylococcus increased and became the most abundant bacteria in moderate pollution (up to 40%). During heavy or severe pollution, bacteria that are adaptable to harsh or extreme environments predominate, such as Deinococcus and Bacillus. In the assessment of health risks from air pollution, the bioaerosols risks must consider. Additionally, although most microbial genera are similar between the two cities, there are important differences associated with pollution level. During air pollution regulation in different regions with varied geographical and climatic conditions, bioaerosol pollution difference is an unignored factor.
Collapse
Affiliation(s)
- Min Wei
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Fudan Tyndall Centre, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China.
| | - Houfeng Liu
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China; Center for Environmental Technology and Policy Research, Shandong Normal University, Jinan, 250014, China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Fudan Tyndall Centre, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China
| | - Caihong Xu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Fudan Tyndall Centre, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China
| | - Jie Li
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China
| | - Pengju Xu
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China
| | - Ziwen Sun
- Center for Environmental Technology and Policy Research, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
129
|
Fang T, Lakey PSJ, Rivera-Rios JC, Keutsch FN, Shiraiwa M. Aqueous-Phase Decomposition of Isoprene Hydroxy Hydroperoxide and Hydroxyl Radical Formation by Fenton-like Reactions with Iron Ions. J Phys Chem A 2020; 124:5230-5236. [PMID: 32479080 DOI: 10.1021/acs.jpca.0c02094] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Isoprene hydroxy hydroperoxides (ISOPOOH) formed by the photooxidation of isoprene under low-NO conditions play an important role in the formation and evolution of secondary organic aerosols, yet multiphase processes of ISOPOOH are poorly understood. By applying electron paramagnetic resonance spectroscopy, we observe that ISOPOOH undergoes aqueous-phase decomposition upon interacting with Fe(II) ions to form OH and organic radicals at room temperature. To reproduce the measured dependence of OH formation on the Fe concentrations by kinetic modeling, we postulate that Fe(II) ions react with ISOPOOH via Fenton-like reactions to form OH radicals with a rate constant of 7.3 × 10-18 cm3 s-1. At low concentrations, oxalate forms monocomplexes with Fe(II) ions, which can promote OH formation by ISOPOOH. However, at high concentrations, oxalate scavenges OH radicals, thereby lowering aqueous OH concentrations. These findings provide new insight for the atmospheric fate of ISOPOOH and reactive oxygen species generation in the aqueous phase.
Collapse
Affiliation(s)
- Ting Fang
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Pascale S J Lakey
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Jean C Rivera-Rios
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Frank N Keutsch
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,Harvard John A. Paulson School of Engineering and Applied Sciences, Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Manabu Shiraiwa
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
130
|
Hahad O, Lelieveld J, Birklein F, Lieb K, Daiber A, Münzel T. Ambient Air Pollution Increases the Risk of Cerebrovascular and Neuropsychiatric Disorders through Induction of Inflammation and Oxidative Stress. Int J Mol Sci 2020; 21:ijms21124306. [PMID: 32560306 PMCID: PMC7352229 DOI: 10.3390/ijms21124306] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
Exposure to ambient air pollution is a well-established determinant of health and disease. The Lancet Commission on pollution and health concludes that air pollution is the leading environmental cause of global disease and premature death. Indeed, there is a growing body of evidence that links air pollution not only to adverse cardiorespiratory effects but also to increased risk of cerebrovascular and neuropsychiatric disorders. Despite being a relatively new area of investigation, overall, there is mounting recent evidence showing that exposure to multiple air pollutants, in particular to fine particles, may affect the central nervous system (CNS) and brain health, thereby contributing to increased risk of stroke, dementia, Parkinson's disease, cognitive dysfunction, neurodevelopmental disorders, depression and other related conditions. The underlying molecular mechanisms of susceptibility and disease remain largely elusive. However, emerging evidence suggests inflammation and oxidative stress to be crucial factors in the pathogenesis of air pollution-induced disorders, driven by the enhanced production of proinflammatory mediators and reactive oxygen species in response to exposure to various air pollutants. From a public health perspective, mitigation measures are urgent to reduce the burden of disease and premature mortality from ambient air pollution.
Collapse
Affiliation(s)
- Omar Hahad
- Center for Cardiology–Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| | - Jos Lelieveld
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany;
- Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia 1645, Cyprus
| | - Frank Birklein
- Department of Neurology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
| | - Klaus Lieb
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
- Leibniz Institute for Resilience Research, 55122 Mainz, Germany
| | - Andreas Daiber
- Center for Cardiology–Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
- Correspondence: (A.D.); (T.M.); Tel.: +49-(0)6131-176280 (A.D.); +49-(0)6131-177251 (T.M.)
| | - Thomas Münzel
- Center for Cardiology–Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
- Correspondence: (A.D.); (T.M.); Tel.: +49-(0)6131-176280 (A.D.); +49-(0)6131-177251 (T.M.)
| |
Collapse
|
131
|
Jia H, Li S, Wu L, Li S, Sharma VK, Yan B. Cytotoxic Free Radicals on Air-Borne Soot Particles Generated by Burning Wood or Low-Maturity Coals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5608-5618. [PMID: 32083475 DOI: 10.1021/acs.est.9b06395] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The traditional cook stove is a major contributor to combustion-derived soot particles, which contain various chemical species that may cause a significant impact to human health and ecosystems. However, properties and toxicity associated with environmentally persistent free radicals (EPFRs) in such emissions are not well known. This paper investigated the characteristics and cytotoxicity of soot-associated EPFRs discharged from Chinese household stoves. Our results showed that the concentrations of EPFRs were related to fuel types, and they were higher in wood-burning soot (8.9-10.5 × 1016 spins/g) than in coal-burning soot (3.9-9.7 × 1016 spins/g). Meanwhile, EPFR concentrations in soot decreased with an increase of coal maturity. The soot EPFRs, especially reactive fractions, readily induced the generation of reactive oxygen species (ROS). Potential health effects of soot EPFRs were also examined using normal human bronchial epithelial cell line 16HBE as a model. Soot particles were internalized by 16HBE cells inducing cytotoxicity. The main toxicity inducers were identified to be reactive EPFR species, which generated ROS inside human cells. Our findings provided valuable insights into potential contributions of soot EPFRs associated with different types of fuel to health problems. This information will support regulations to end or limit current stove usage in numerous households.
Collapse
Affiliation(s)
- Hanzhong Jia
- College of Resources and Environment, Northwest A&F University, Yangling 712100, China
- State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Shuaishuai Li
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Lan Wu
- College of Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Shiqing Li
- State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Virender K Sharma
- Program for the Environment and Sustainability, Department of Occupational and Environmental Health, School of Public Health, Texas A&M University, College Station, Texas 77843, United States
| | - Bing Yan
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
132
|
Pye HOT, Nenes A, Alexander B, Ault AP, Barth MC, Clegg SL, Collett JL, Fahey KM, Hennigan CJ, Herrmann H, Kanakidou M, Kelly JT, Ku IT, McNeill VF, Riemer N, Schaefer T, Shi G, Tilgner A, Walker JT, Wang T, Weber R, Xing J, Zaveri RA, Zuend A. The Acidity of Atmospheric Particles and Clouds. ATMOSPHERIC CHEMISTRY AND PHYSICS 2020; 20:4809-4888. [PMID: 33424953 PMCID: PMC7791434 DOI: 10.5194/acp-20-4809-2020] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Acidity, defined as pH, is a central component of aqueous chemistry. In the atmosphere, the acidity of condensed phases (aerosol particles, cloud water, and fog droplets) governs the phase partitioning of semi-volatile gases such as HNO3, NH3, HCl, and organic acids and bases as well as chemical reaction rates. It has implications for the atmospheric lifetime of pollutants, deposition, and human health. Despite its fundamental role in atmospheric processes, only recently has this field seen a growth in the number of studies on particle acidity. Even with this growth, many fine particle pH estimates must be based on thermodynamic model calculations since no operational techniques exist for direct measurements. Current information indicates acidic fine particles are ubiquitous, but observationally-constrained pH estimates are limited in spatial and temporal coverage. Clouds and fogs are also generally acidic, but to a lesser degree than particles, and have a range of pH that is quite sensitive to anthropogenic emissions of sulfur and nitrogen oxides, as well as ambient ammonia. Historical measurements indicate that cloud and fog droplet pH has changed in recent decades in response to controls on anthropogenic emissions, while the limited trend data for aerosol particles indicates acidity may be relatively constant due to the semi-volatile nature of the key acids and bases and buffering in particles. This paper reviews and synthesizes the current state of knowledge on the acidity of atmospheric condensed phases, specifically particles and cloud droplets. It includes recommendations for estimating acidity and pH, standard nomenclature, a synthesis of current pH estimates based on observations, and new model calculations on the local and global scale.
Collapse
Affiliation(s)
- Havala O. T. Pye
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Athanasios Nenes
- School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
- Institute for Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, GR-26504, Greece
| | - Becky Alexander
- Department of Atmospheric Science, University of Washington, Seattle, WA, 98195, USA
| | - Andrew P. Ault
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | - Mary C. Barth
- National Center for Atmospheric Research, Boulder, CO, 80307, USA
| | - Simon L. Clegg
- School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Jeffrey L. Collett
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, 80523, USA
| | - Kathleen M. Fahey
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Christopher J. Hennigan
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Hartmut Herrmann
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Leipzig, 04318, Germany
| | - Maria Kanakidou
- Department of Chemistry, University of Crete, Voutes, Heraklion Crete, 71003, Greece
| | - James T. Kelly
- Office of Air Quality Planning & Standards, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - I-Ting Ku
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, 80523, USA
| | - V. Faye McNeill
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Nicole Riemer
- Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois, 61801, USA
| | - Thomas Schaefer
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Leipzig, 04318, Germany
| | - Guoliang Shi
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Nankai University, Tianjin, 300071, China
| | - Andreas Tilgner
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Leipzig, 04318, Germany
| | - John T. Walker
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Tao Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Rodney Weber
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jia Xing
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Rahul A. Zaveri
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Andreas Zuend
- Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, H3A 0B9, Canada
| |
Collapse
|
133
|
Bao F, Jiang H, Zhang Y, Li M, Ye C, Wang W, Ge M, Chen C, Zhao J. The Key Role of Sulfate in the Photochemical Renoxification on Real PM 2.5. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3121-3128. [PMID: 32084312 DOI: 10.1021/acs.est.9b06764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The active nitrogen species (HONO, NO, and NO2) have important impacts on the atmospheric oxidative capacity and the transformation of many atmospheric species. In this study, a fast photochemical renoxification rate of adsorbed HNO3/NO3- to active nitrogen species (HONO, NO, and NO2) was detected on real urban PM2.5, and sulfate was found to play a key role in this process. Different from the reported direct photolysis pathway, the photochemical reaction of HNO3/NO3- on PM2.5 is dominated by a photosensitizing mechanism. Acidic protons are proved to be essential for this pathway. The role of sulfate, because of the nonvolatility of its conjugated acid, is to conserve the necessary acidic protons when interacting with HNO3 and thus maintain its photoreactivity. This work implies that sulfate will have important implications in atmospheric nitrogen cycling by accelerating the release of nitrogen oxides from photochemical renoxification of HNO3/NO3- adsorbed on ambient particulates and thus can cause major environmental problems.
Collapse
Affiliation(s)
- Fengxia Bao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hongyu Jiang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yue Zhang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Meng Li
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Chunxiang Ye
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Weigang Wang
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Maofa Ge
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
134
|
Wang Y, Sun G, Gong Y, Zhang Y, Liang X, Yang L. Functionalized Folate-Modified Graphene Oxide/PEI siRNA Nanocomplexes for Targeted Ovarian Cancer Gene Therapy. NANOSCALE RESEARCH LETTERS 2020; 15:57. [PMID: 32140846 PMCID: PMC7058751 DOI: 10.1186/s11671-020-3281-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/12/2020] [Indexed: 05/05/2023]
Abstract
Gene therapy is emerging as a valid method for the treatment of ovarian cancer, including small interfering RNA (siRNA). Although it is so powerful, few targeting efficient gene delivery systems seriously hindered the development of gene therapy. In this study, we synthesized a novel gene vector PEG-GO-PEI-FA by functionalized graphene oxide (GO), in which folic acid (FA) can specifically bind to the folate receptor (FR), which is overexpressed in ovarian cancer. Characterizations of the nanocomplexes were evaluated by dynamic light scattering (DLS), atomic force microscopy (AFM), and Fourier transform infrared spectroscopy (FTIR). The siRNA condensation ability and stability were assessed by agarose gel electrophoresis. Cellular uptake efficiency and lysosomal escape ability in ovarian cancer cells were investigated by confocal laser scanning microscopy. Furthermore, cellular biosafety of the system and inhibitory of the siRNA tolerability were evaluated by CCK-8 assay. The size of the PEG-GO-PEI-FA nanocomplexes was 216.1 ± 2.457 nm, exhibiting mild cytotoxicity in ovarian cancer cells. With high uptake efficiency, PEG-GO-PEI-FA can escape from the lysosome rapidly and release the gene. Moreover, PEG-GO-PEI-FA/siRNA can effectively inhibit the growth of ovarian cancer cells. By and large, the PEG-GO-PEI-FA/siRNA may offer a promising strategy for siRNA delivery in the treatment of FR-positive ovarian carcinoma or similar tumors.
Collapse
Affiliation(s)
- Yunfei Wang
- Department of Gynecology, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, 272029, Shandong, People's Republic of China.
| | - Guoping Sun
- Department of Pharmacy, Qingdao Seventh People's Hospital, 299 Nanjing Road, Qingdao, 266034, Shandong, People's Republic of China
| | - Yingying Gong
- Department of Gynecology, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, 272029, Shandong, People's Republic of China
| | - Yuying Zhang
- Department of Gynecology, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, 272029, Shandong, People's Republic of China
| | - Xiaofei Liang
- Department of State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, People's Republic of China
| | - Linqing Yang
- Department of Gynecology, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, 272029, Shandong, People's Republic of China
| |
Collapse
|
135
|
Clifton OE, Fiore AM, Massman WJ, Baublitz CB, Coyle M, Emberson L, Fares S, Farmer DK, Gentine P, Gerosa G, Guenther AB, Helmig D, Lombardozzi DL, Munger JW, Patton EG, Pusede SE, Schwede DB, Silva SJ, Sörgel M, Steiner AL, Tai APK. Dry Deposition of Ozone over Land: Processes, Measurement, and Modeling. REVIEWS OF GEOPHYSICS (WASHINGTON, D.C. : 1985) 2020; 58:10.1029/2019RG000670. [PMID: 33748825 PMCID: PMC7970530 DOI: 10.1029/2019rg000670] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/24/2020] [Indexed: 05/21/2023]
Abstract
Dry deposition of ozone is an important sink of ozone in near surface air. When dry deposition occurs through plant stomata, ozone can injure the plant, altering water and carbon cycling and reducing crop yields. Quantifying both stomatal and nonstomatal uptake accurately is relevant for understanding ozone's impact on human health as an air pollutant and on climate as a potent short-lived greenhouse gas and primary control on the removal of several reactive greenhouse gases and air pollutants. Robust ozone dry deposition estimates require knowledge of the relative importance of individual deposition pathways, but spatiotemporal variability in nonstomatal deposition is poorly understood. Here we integrate understanding of ozone deposition processes by synthesizing research from fields such as atmospheric chemistry, ecology, and meteorology. We critically review methods for measurements and modeling, highlighting the empiricism that underpins modeling and thus the interpretation of observations. Our unprecedented synthesis of knowledge on deposition pathways, particularly soil and leaf cuticles, reveals process understanding not yet included in widely-used models. If coordinated with short-term field intensives, laboratory studies, and mechanistic modeling, measurements from a few long-term sites would bridge the molecular to ecosystem scales necessary to establish the relative importance of individual deposition pathways and the extent to which they vary in space and time. Our recommended approaches seek to close knowledge gaps that currently limit quantifying the impact of ozone dry deposition on air quality, ecosystems, and climate.
Collapse
Affiliation(s)
| | - Arlene M Fiore
- Department of Earth and Environmental Sciences, Columbia University, and Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
| | - William J Massman
- USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO, USA
| | - Colleen B Baublitz
- Department of Earth and Environmental Sciences, Columbia University, and Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
| | - Mhairi Coyle
- Centre for Ecology and Hydrology, Edinburgh, Bush Estate, Penicuik, Midlothian, UK and The James Hutton Institute, Craigibuckler, Aberdeen, UK
| | - Lisa Emberson
- Stockholm Environment Institute, Environment Department, University of York, York, UK
| | - Silvano Fares
- Council of Agricultural Research and Economics, Research Centre for Forestry and Wood, and National Research Council, Institute of Bioeconomy, Rome, Italy
| | - Delphine K Farmer
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Pierre Gentine
- Department of Earth and Environmental Engineering, Columbia University, New York, NY, USA
| | - Giacomo Gerosa
- Dipartimento di Matematica e Fisica, Università Cattolica del S. C., Brescia, Italy
| | - Alex B Guenther
- Department of Earth System Science, University of California, Irvine, CA, USA
| | - Detlev Helmig
- Institute of Alpine and Arctic Research, University of Colorado at Boulder, Boulder, CO, USA
| | | | - J William Munger
- School of Engineering and Applied Sciences and Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | | | - Sally E Pusede
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| | - Donna B Schwede
- U.S. Environmental Protection Agency, National Exposure Research Laboratory, Research Triangle Park, NC, USA
| | - Sam J Silva
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthias Sörgel
- Max Plank Institute for Chemistry, Atmospheric Chemistry Department, Mainz, Germany
| | - Allison L Steiner
- Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Amos P K Tai
- Earth System Science Programme, Faculty of Science, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
136
|
Ishizaka S, Guo F, Tian X, Seng S, Tobon YA, Sobanska S. In Situ Observation of Efflorescence and Deliquescence Phase Transitions of Single NaCl and NaNO3 Mixture Particles in Air Using a Laser Trapping Technique. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shoji Ishizaka
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Fangqin Guo
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Xiaomeng Tian
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Samantha Seng
- Univ. Lille, CNRS, UMR 8516 - LASIR - Laboratoire de Spectrochimie Infrarouge et Raman, F-59000 Lille, France
| | - Yeny A. Tobon
- Univ. Lille, CNRS, UMR 8516 - LASIR - Laboratoire de Spectrochimie Infrarouge et Raman, F-59000 Lille, France
| | - Sophie Sobanska
- Institut des Sciences Moléculaires, CNRS UMR 5255, Université de Bordeaux, 351 Cours de la Libération, 33405 Talence Cedex, France
| |
Collapse
|
137
|
Ishizuka S, Matsugi A, Hama T, Enami S. Interfacial Water Mediates Oligomerization Pathways of Monoterpene Carbocations. J Phys Chem Lett 2020; 11:67-74. [PMID: 31808704 DOI: 10.1021/acs.jpclett.9b03110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The air-water interface plays central roles in "on-droplet" synthesis, living systems, and the atmosphere; however, what makes reactions at the interface specific is largely unknown. Here, we examined carbocationic reactions of monoterpene (C10H16 isomer) on an acidic water microjet by using spray ionization mass spectrometry. Gaseous monoterpenes are trapped in the uppermost layers of a water surface via proton transfer and then undergo a chain-propagation reaction. The oligomerization pathway of β-pinene (β-P), which showed prompt chain-propagation, is examined by simultaneous exposure to camphene (CMP). (CMP)H+ is the most stable isomer formed via rearrangement of (β-P)H+ in the gas phase; however, no co-oligomerization was observed. This indicates that the oligomerization of (β-P)H+ proceeded via ring-opening isomerization. Quantum chemical calculations for [carbocation-(H2O)n=1,2] complexes revealed that the ring-opened isomer is stabilized by hydrogen-π bonds. We propose that partial hydration is a key factor that makes the interfacial reaction unique.
Collapse
Affiliation(s)
- Shinnosuke Ishizuka
- National Institute for Environmental Studies , 16-2 Onogawa , Tsukuba 305-8506 , Japan
| | - Akira Matsugi
- Research Institute of Science for Safety and Sustainability , National Institute of Advanced Industrial Science and Technology , 16-1 Onogawa , Tsukuba 305-8569 , Japan
| | - Tetsuya Hama
- Institute of Low Temperature Science , Hokkaido University , Kita-19 Nishi-8 , Sapporo 060-0819 , Japan
| | - Shinichi Enami
- National Institute for Environmental Studies , 16-2 Onogawa , Tsukuba 305-8506 , Japan
| |
Collapse
|
138
|
Gosselin M, Zagury GJ. Metal(loid)s inhalation bioaccessibility and oxidative potential of particulate matter from chromated copper arsenate (CCA)-contaminated soils. CHEMOSPHERE 2020; 238:124557. [PMID: 31422311 DOI: 10.1016/j.chemosphere.2019.124557] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Field-collected chromated copper arsenate (CCA)-contaminated soils and associated particulate matter (PM) were characterized for their total metal(loid)s content (As, Cr, Cu, Fe, Mn, Ni, Pb and Zn) and physicochemical properties. Copper, Ni, Pb and Zn fractionation (using sequential extraction) and inhalation bioaccessibility (using two lung fluids) of trace elements were assessed in PM samples. In Gamble's solution (GS), low average bioaccessibility (up to 12%) was observed for As, Cu, Mn, and Ni. A strong correlation (r = 0.92, p < 0.005, n = 9) between the soluble and exchangeable fraction (F1) and bioaccessibility in GS was observed for Cu. Inhalation bioaccessibility in artificial lysosomal fluid (ALF) was higher for Cu (avg. 78.5 ± 4.2%), Mn (avg. 56.8 ± 12.1%), Zn (avg. 54.8 ± 24.5%) and As (avg. 45.4 ± 18.8%). Strong correlations between inhalation bioaccessibility in ALF and the mobile (i.e. F1+F2) metal fraction were observed for all tested metals (i.e. (Cu (r = 0.95, p < 0.005), Ni (r = 0.79, p < 0.05), Pb (r = 0.92, p < 0.005) and Zn (r = 0.98, p < 0.005)), n = 9). The oxidative potential (OP) of PM was also assessed using an ascorbate (AA) depletion assay (OPAA). Mobile Cu fractions were deemed to be the main factor influencing OPAA ((F1 (r = 0.99, p < 0.005), F2 (r = 0.97, p < 0.005)), n = 9) in PM samples. A strong correlation (r = 0.94, p < 0.005, n = 10) was also observed between Cu bioaccessibility in GS and OPAA.
Collapse
Affiliation(s)
- Mathieu Gosselin
- Department of Civil, Geological and Mining Engineering, Polytechnique Montréal (QC), H3C 3A7, Canada
| | - Gerald J Zagury
- Department of Civil, Geological and Mining Engineering, Polytechnique Montréal (QC), H3C 3A7, Canada.
| |
Collapse
|
139
|
Peng Z, Jimenez JL. Radical chemistry in oxidation flow reactors for atmospheric chemistry research. Chem Soc Rev 2020; 49:2570-2616. [DOI: 10.1039/c9cs00766k] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We summarize the studies on the chemistry in oxidation flow reactor and discuss its atmospheric relevance.
Collapse
Affiliation(s)
- Zhe Peng
- Cooperative Institute for Research in Environmental Sciences and Department of Chemistry
- University of Colorado
- Boulder
- USA
| | - Jose L. Jimenez
- Cooperative Institute for Research in Environmental Sciences and Department of Chemistry
- University of Colorado
- Boulder
- USA
| |
Collapse
|
140
|
Intercomparison of Multiple UV-LIF Spectrometers Using the Aerosol Challenge Simulator. ATMOSPHERE 2019. [DOI: 10.3390/atmos10120797] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Measurements of primary biological aerosol particles (PBAPs) have been conducted worldwide using ultraviolet light-induced fluorescence (UV-LIF) spectrometers. However, how these instruments detect and respond to known biological and non-biological particles, and how they compare, remains uncertain due to limited laboratory intercomparisons. Using the Defence Science and Technology Laboratory, Aerosol Challenge Simulator (ACS), controlled concentrations of biological and non-biological aerosol particles, singly or as mixtures, were produced for testing and intercomparison of multiple versions of the Wideband Integrated Bioaerosol Spectrometer (WIBS) and Multiparameter Bioaerosol Spectrometer (MBS). Although the results suggest some challenges in discriminating biological particle types across different versions of the same UV-LIF instrument, a difference in fluorescence intensity between the non-biological and biological samples could be identified for most instruments. While lower concentrations of fluorescent particles were detected by the MBS, the MBS demonstrates the potential to discriminate between pollen and other biological particles. This study presents the first published technical summary and use of the ACS for instrument intercomparisons. Within this work a clear overview of the data pre-processing is also presented, and documentation of instrument version/model numbers is suggested to assess potential instrument variations between different versions of the same instrument. Further laboratory studies sampling different particle types are suggested before use in quantifying impact on ambient classification.
Collapse
|
141
|
Chowdhury PH, He Q, Carmieli R, Li C, Rudich Y, Pardo M. Connecting the Oxidative Potential of Secondary Organic Aerosols with Reactive Oxygen Species in Exposed Lung Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13949-13958. [PMID: 31652049 DOI: 10.1021/acs.est.9b04449] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
It has been hypothesized that the cytotoxicity of secondary organic aerosols (SOA) is mediated through the formation of reactive oxygen species (ROS) in the exposed cells. Here, lung epithelial cells (A549) residing at the air-liquid interface were exposed to proxies of anthropogenic and biogenic SOA that were photochemically aged under varying nitrogen oxide (NOx) concentrations in an oxidation flow reactor. The total organic peroxides and ROS radical content in the SOA were quantified by the iodometric spectrophotometric method and by continuous-wave electron paramagnetic resonance. The effect of the exposure was evaluated by measuring cell viability and cellular ROS production following the exposure. The results demonstrate that SOA that aged in the absence of NOx contained more ROS than fresh SOA and were more toxic toward the cells, while varying NOx conditions had no significant influence on levels of the ROS content in fresh SOA and their toxicity. Analysis of ROS in the exposed cells using flow cytometry showed a similar trend with the total ROS content in the SOA. This study provides a first and direct observation of such association.
Collapse
|
142
|
Earla A, Walter ED, Braslau R. Synthesis and spin trapping properties of polystyrene supported trifluoromethylated cyclic nitrones. Free Radic Res 2019; 53:1084-1100. [PMID: 31739700 PMCID: PMC10805450 DOI: 10.1080/10715762.2019.1683171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 01/21/2023]
Abstract
Polystyrene supported fluorinated cyclic nitrone spin-traps: Resin-2-HFDMPO (2-hydroxymethyl-2-methyl-5-(trifluoromethyl)-3,4-dihydro-2H-pyrrole-1-oxide) and Resin-2-PFDMPO (2-(3-hydroxypropyl)-2-methyl-5-(trifluoromethyl)-3,4-dihydro-2H-pyrrole 1-oxide) containing a trifluoromethyl pyrroline-N-oxide core were developed to detect free radicals under flow conditions. A continuous flow EPR technique was used to evaluate the spin trapping properties of these tethered nitrones. While both resins trapped radicals, polymer supported nitrone Resin-2-PFDMPO with a longer and more flexible linker showed a more information rich spectrum than Resin-2-HFDMPO.
Collapse
Affiliation(s)
- Aruna Earla
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Eric D. Walter
- Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Rebecca Braslau
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
143
|
Ditto JC, Joo T, Khare P, Sheu R, Takeuchi M, Chen Y, Xu W, Bui AAT, Sun Y, Ng NL, Gentner DR. Effects of Molecular-Level Compositional Variability in Organic Aerosol on Phase State and Thermodynamic Mixing Behavior. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13009-13018. [PMID: 31525033 DOI: 10.1021/acs.est.9b02664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The molecular-level composition and structure of organic aerosol (OA) affect its chemical/physical properties, transformations, and impacts. Here, we use the molecular-level chemical composition of functionalized OA from three diverse field sites to evaluate the effect of molecular-level compositional variability on OA phase state and thermodynamic mixing favorability. For these ambient sites, modeled aerosol phase state ranges from liquid to semisolid. The observed variability in OA composition has some effect on resulting phase state, but other factors like the presence of inorganic ions, aerosol liquid water, and internal versus external mixing with water are determining factors in whether these particles exist as liquids, semisolids, or solids. Organic molecular composition plays a more important role in determining phase state for phase-separated (verus well-mixed) systems. Similarly, despite the observed OA compositional differences, the thermodynamic mixing favorability for OA samples with aerosol liquid water, isoprene oxidation products, or monoterpene oxidation products remains fairly consistent within each campaign. Mixing of filter-sampled OA and isoprene or monoterpene oxidation products is often favorable in both seasons, while mixing with water is generally unfavorable.
Collapse
Affiliation(s)
- Jenna C Ditto
- Department of Chemical and Environmental Engineering , Yale University , New Haven , Connecticut 06511 , United States
| | - Taekyu Joo
- School of Earth and Atmospheric Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Peeyush Khare
- Department of Chemical and Environmental Engineering , Yale University , New Haven , Connecticut 06511 , United States
| | - Roger Sheu
- Department of Chemical and Environmental Engineering , Yale University , New Haven , Connecticut 06511 , United States
| | - Masayuki Takeuchi
- School of Civil and Environmental Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Yunle Chen
- School of Earth and Atmospheric Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Weiqi Xu
- State Key Laboratory of Atmospheric Boundary Physics and Atmospheric Chemistry , Institute of Atmospheric Physics, Chinese Academy of Sciences , Beijing 100029 , China
- School of Chemical and Biomolecular Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Alexander A T Bui
- Department of Civil and Environmental Engineering , Rice University , Houston , Texas 77005 , United States
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Physics and Atmospheric Chemistry , Institute of Atmospheric Physics, Chinese Academy of Sciences , Beijing 100029 , China
| | - Nga L Ng
- School of Earth and Atmospheric Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
- School of Chemical and Biomolecular Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Drew R Gentner
- Department of Chemical and Environmental Engineering , Yale University , New Haven , Connecticut 06511 , United States
- Max Planck Institute for Chemistry , 55128 Mainz , Germany
| |
Collapse
|
144
|
Fang T, Lakey PSJ, Weber RJ, Shiraiwa M. Oxidative Potential of Particulate Matter and Generation of Reactive Oxygen Species in Epithelial Lining Fluid. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:12784-12792. [PMID: 31560535 DOI: 10.1021/acs.est.9b03823] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Reactive oxygen species (ROS) play a central role in adverse health effects of atmospheric particulate matter (PM). Respiratory deposition can lead to the formation of ROS in the epithelial lining fluid due to redox reactions of PM components with lung antioxidants. As direct quantification of ROS is challenging, PM oxidative potential is more commonly measured using antioxidant surrogates including dithiothreitol and ascorbic acid, assuming that the decay of surrogates corresponds to ROS formation. However, this assumption has not yet been validated and the lack of ROS quantification in the respiratory tract causes major limitations in evaluating PM impacts on oxidative stress. By combining field measurements of size-segregated chemical composition, a human respiratory tract model, and kinetic modeling, we quantified production rates and concentrations of different types of ROS in different regions of the epithelial lining fluid by considering particle-size-dependent respiratory deposition. The extrathoracic region is found to have higher ROS concentrations compared to the bronchial and alveolar regions. Although H2O2 and O2- production is governed by Fe and Cu ions, OH radicals are mainly generated by organic compounds and Fenton-like reactions of metal ions. In winter when affected by biomass burning, model comparisons suggest that humic-like substances (HULIS) contribute to ROS formation substantially. We found that PM oxidative potential is a good indicator of the chemical production of H2O2 and O2- but does not represent OH generation. These results provide rationale and limitations of the use of oxidative potential as an indicator of PM toxicity in epidemiological and toxicological studies.
Collapse
Affiliation(s)
- Ting Fang
- Department of Chemistry , University of California , Irvine , California 92697 , United States
| | - Pascale S J Lakey
- Department of Chemistry , University of California , Irvine , California 92697 , United States
| | - Rodney J Weber
- School of Earth and Atmospheric Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Manabu Shiraiwa
- Department of Chemistry , University of California , Irvine , California 92697 , United States
| |
Collapse
|
145
|
Tong H, Zhang Y, Filippi A, Wang T, Li C, Liu F, Leppla D, Kourtchev I, Wang K, Keskinen HM, Levula JT, Arangio AM, Shen F, Ditas F, Martin ST, Artaxo P, Godoi RHM, Yamamoto CI, de Souza RAF, Huang RJ, Berkemeier T, Wang Y, Su H, Cheng Y, Pope FD, Fu P, Yao M, Pöhlker C, Petäjä T, Kulmala M, Andreae MO, Shiraiwa M, Pöschl U, Hoffmann T, Kalberer M. Radical Formation by Fine Particulate Matter Associated with Highly Oxygenated Molecules. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:12506-12518. [PMID: 31536707 DOI: 10.1021/acs.est.9b05149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Highly oxygenated molecules (HOMs) play an important role in the formation and evolution of secondary organic aerosols (SOA). However, the abundance of HOMs in different environments and their relation to the oxidative potential of fine particulate matter (PM) are largely unknown. Here, we investigated the relative HOM abundance and radical yield of laboratory-generated SOA and fine PM in ambient air ranging from remote forest areas to highly polluted megacities. By electron paramagnetic resonance and mass spectrometric investigations, we found that the relative abundance of HOMs, especially the dimeric and low-volatility types, in ambient fine PM was positively correlated with the formation of radicals in aqueous PM extracts. SOA from photooxidation of isoprene, ozonolysis of α- and β-pinene, and fine PM from tropical (central Amazon) and boreal (Hyytiälä, Finland) forests exhibited a higher HOM abundance and radical yield than SOA from photooxidation of naphthalene and fine PM from urban sites (Beijing, Guangzhou, Mainz, Shanghai, and Xi'an), confirming that HOMs are important constituents of biogenic SOA to generate radicals. Our study provides new insights into the chemical relationship of HOM abundance, composition, and sources with the yield of radicals by laboratory and ambient aerosols, enabling better quantification of the component-specific contribution of source- or site-specific fine PM to its climate and health effects.
Collapse
Affiliation(s)
- Haijie Tong
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
| | - Yun Zhang
- Institute of Inorganic and Analytical Chemistry , Johannes Gutenberg University , 55128 Mainz , Germany
| | - Alexander Filippi
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
| | - Ting Wang
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
- State Key Laboratory of Multiphase Flow in Power Engineering , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Chenpei Li
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
- State Key Laboratory of Multiphase Flow in Power Engineering , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Fobang Liu
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
- School of Chemical and Biomolecular Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Denis Leppla
- Institute of Inorganic and Analytical Chemistry , Johannes Gutenberg University , 55128 Mainz , Germany
| | - Ivan Kourtchev
- Centre for Atmospheric Science, Department of Chemistry , University of Cambridge , Cambridge CB2 1EW , United Kingdom
| | - Kai Wang
- Institute of Inorganic and Analytical Chemistry , Johannes Gutenberg University , 55128 Mainz , Germany
| | - Helmi-Marja Keskinen
- Institute for Atmospheric and Earth System Research/Physics Faculty of Science , University of Helsinki , FI-00014 Helsinki , Finland
| | - Janne T Levula
- Institute for Atmospheric and Earth System Research/Physics Faculty of Science , University of Helsinki , FI-00014 Helsinki , Finland
| | - Andrea M Arangio
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
- École polytechnique fédérale de Lausanne , Lausanne 1015 , Switzerland
| | - Fangxia Shen
- School of Space and Environment , Beihang University , Beijing 100191 , China
| | - Florian Ditas
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
| | | | - Paulo Artaxo
- Physics Institute , University of São Paulo , São Paulo 05508-900 , Brazil
| | - Ricardo H M Godoi
- Environmental Engineering Department , Federal University of Paraná , Curitiba , Paraná 81531-980 , Brazil
| | - Carlos I Yamamoto
- Chemical Engineering Department , Federal University of Paraná , Curitiba , Paraná 81531-970 , Brazil
| | - Rodrigo A F de Souza
- School of Technology , Amazonas State University , Manaus , Amazonas 69065-020 , Brazil
| | - Ru-Jin Huang
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology , Institute of Earth and Environment, Chinese Academy of Sciences , Xi'an , 710061 , China
| | - Thomas Berkemeier
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
| | - Yueshe Wang
- State Key Laboratory of Multiphase Flow in Power Engineering , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Hang Su
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
| | - Yafang Cheng
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
| | - Francis D Pope
- School of Geography, Earth and Environmental Sciences , University of Birmingham , Birmingham B15 2TT , United Kingdom
| | - Pingqing Fu
- Institute of Surface-Earth System Science , Tianjin University , Tianjin 300072 , China
| | - Maosheng Yao
- College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Christopher Pöhlker
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
| | - Tuukka Petäjä
- Institute for Atmospheric and Earth System Research/Physics Faculty of Science , University of Helsinki , FI-00014 Helsinki , Finland
| | - Markku Kulmala
- Institute for Atmospheric and Earth System Research/Physics Faculty of Science , University of Helsinki , FI-00014 Helsinki , Finland
| | - Meinrat O Andreae
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
- Scripps Institution of Oceanography , University of California San Diego , San Diego , California 92093 , United States
| | - Manabu Shiraiwa
- Department of Chemistry , University of California , Irvine , California 92697-2025 , United States
| | - Ulrich Pöschl
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
| | - Thorsten Hoffmann
- Institute of Inorganic and Analytical Chemistry , Johannes Gutenberg University , 55128 Mainz , Germany
| | - Markus Kalberer
- Centre for Atmospheric Science, Department of Chemistry , University of Cambridge , Cambridge CB2 1EW , United Kingdom
- Department of Environmental Sciences , University of Basel , Klingelbergstrasse 27 , 4056 Basel , Switzerland
| |
Collapse
|
146
|
Wang Y, Li S, Wang M, Sun H, Mu Z, Zhang L, Li Y, Chen Q. Source apportionment of environmentally persistent free radicals (EPFRs) in PM 2.5 over Xi'an, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:193-202. [PMID: 31271986 DOI: 10.1016/j.scitotenv.2019.06.424] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/23/2019] [Accepted: 06/25/2019] [Indexed: 06/09/2023]
Abstract
Environmentally persistent free radicals (EPFRs) have recently attracted considerable attention as a new type of environmental risk substance due to their potential health effects. However, the sources and contributions of EPFRs in PM2.5 are not yet clear. Therefore, this study reports the sources of EPFRs in PM2.5 based on chemical analysis and positive matrix factorization (PMF). Daily PM2.5 samples (116) were collected in Xi'an city from April 4 to December 29, 2017, and were quantitatively analyzed for EPFRs and other chemical constituents. The PMF model revealed contributions from five main sources of EPFRs in PM2.5 (dust sources, coal combustion, secondary nitrates, industrial emissions and motor vehicle emissions). Coal combustion, motor vehicle emissions and dust sources are the top three contributors to EPFRs (76.12% in total). Coal combustion is highly important for PM2.5 (35.10%) and EPFRs (16.75%). A high dust source contribution to EPFRs in spring may be due to dust storm events. Motor vehicle emissions are the top contributor to EPFRs, with a mean percentage of 32.13%. Secondary nitrates barely contributes to EPFRs (3.42%), indicating an EPFR origin from primary emissions rather than secondary inorganic reactions. Industrial emissions contribute less to PM2.5 (4.31%) than to EPFRs (11.71%), which implies that fossil fuels contains many high-molecular-weight organics that could emit EPFRs. Integrating the PMF results with meteorological data revealed that atmospheric pollutants emitted in Xi'an city center could be transported to the sampling site by southern winds. These results suggest the need for further studies on the public health effects of EPFRs and can be used to help formulate source control measures to reduce the potential health risks posed by EPFRs in PM2.5.
Collapse
Affiliation(s)
- Yuqin Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Department of Earth and Atmospheric Sciences, Saint Louis University, St. Louis, MO 63108, USA
| | - Shengping Li
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Mamin Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Haoyao Sun
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhen Mu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lixin Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yanguang Li
- Key Laboratory for the Study of Focused Magmatism and Giant Ore Deposits, MLR, Xi'an 710054, China; Xi'an Center of Geological Survey, China Geological Survey, Xi'an 710054, China
| | - Qingcai Chen
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
147
|
Charan SM, Huang Y, Seinfeld JH. Computational Simulation of Secondary Organic Aerosol Formation in Laboratory Chambers. Chem Rev 2019; 119:11912-11944. [DOI: 10.1021/acs.chemrev.9b00358] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sophia M. Charan
- California Institute of Technology, Pasadena, California 91125, United States
| | - Yuanlong Huang
- California Institute of Technology, Pasadena, California 91125, United States
| | - John H. Seinfeld
- California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
148
|
Yuan S, Wang J, Jiang Q, He Z, Huang Y, Li Z, Cai L, Cao S. Long-term exposure to PM 2.5 and stroke: A systematic review and meta-analysis of cohort studies. ENVIRONMENTAL RESEARCH 2019; 177:108587. [PMID: 31326714 DOI: 10.1016/j.envres.2019.108587] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/10/2019] [Accepted: 07/14/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Stroke is one of the world's leading causes of death. Many studies have checked the relationship between short-term exposure to particulate matter (PM) and stroke, but few have focused on the effect of long-term exposure to PM2.5 (particulate matters with an aerodynamic diameter of ≤2.5 μm). This study aimed to quantitatively examine the relationship of long-term exposure to PM2.5 with stroke incidence and mortality. METHODS We identified relevant studies by searching the PubMed, EMBASE and MEDLINE. After the systematical review of pertinent studies, random-effect meta-analysis was conducted to investigate the association between long-term exposure to PM2.5 and stroke. RESULTS Our meta-analysis included 16 cohort studies with more than 2.2 million people and above 49 149 endpoint events (incident stroke and death from stroke). The pooled hazard ratio (HR) for each 5 μg/m3 increment in PM2.5 was 1.11 (95% CI: 1.05, 1.17) (CI for confidence interval) for incidence of stroke and 1.11 (95% CI:1.05, 1.17) for mortality of stroke. In the region-specific analysis, significant association between PM2.5 and incidence of stroke was found in North America (HR=1.09, 95% CI:1.05, 1.14) and Europe (HR=1.07, 95% CI:1.05, 1.10), while the pooled result of Asia showed no significance (HR=2.31, 95% CI:0.49, 10.95). CONCLUSIONS Long-term exposure to PM2.5 is an important risk factor for stroke. Since air quality is intimately related to everyone, policies aimed at reducing particulate matters will benefit public health a lot.
Collapse
Affiliation(s)
- Sheng Yuan
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China; FuWai Hospital & Key Laboratory of Pulmonary Vascular Medicine, State Key Laboratory of Cardiovascular Disease, National Centre for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy Medical Sciences, Beijing, China
| | - Jiaxin Wang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Qingqing Jiang
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ziyu He
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yuchai Huang
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhengyang Li
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Luyao Cai
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shiyi Cao
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
149
|
Wang S, Zhou S, Tao Y, Tsui WG, Ye J, Yu JZ, Murphy JG, McNeill VF, Abbatt JPD, Chan AWH. Organic Peroxides and Sulfur Dioxide in Aerosol: Source of Particulate Sulfate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10695-10704. [PMID: 31418552 DOI: 10.1021/acs.est.9b02591] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Sulfur oxides (SOx) are important atmospheric trace species in both gas and particulate phases, and sulfate is a major component of atmospheric aerosol. One potentially important source of particulate sulfate formation is the oxidation of dissolved SO2 by organic peroxides, which comprises a major fraction of secondary organic aerosol (SOA). In this study, we investigated the reaction kinetics and mechanisms between SO2 and condensed-phase peroxides. pH-dependent aqueous phase reaction rate constants between S(IV) and organic peroxide standards were measured. Highly oxygenated organic peroxides with O/C > 0.6 in α-pinene SOA react rapidly with S(IV) species in the aqueous phase. The reactions between organic peroxides and S(IV) yield both inorganic sulfate and organosulfates (OS), as observed by electrospray ionization ion mobility mass spectrometry. For the first time, 34S-labeling experiments in this study revealed that dissolved SO2 forms OS via direct reactions without forming inorganic sulfate as a reactive intermediate. Kinetics of OS formation was estimated semiquantitatively, and such reaction was found to account for 30-60% of sulfur reacted. The photochemical box model GAMMA was applied to assess the implications of the measured SO2 consumption and OS formation rates. Our findings indicate that this novel pathway of SO2-peroxide reaction is important for sulfate formation in submicron aerosol.
Collapse
Affiliation(s)
- Shunyao Wang
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| | - Shouming Zhou
- Department of Chemistry , University of Toronto , Toronto , Ontario M5S 3H6 , Canada
| | - Ye Tao
- Department of Physical and Environmental Sciences , University of Toronto Scarborough , Toronto , Ontario M1C 1A4 , Canada
| | - William G Tsui
- Department of Chemical Engineering , University of Columbia , New York , New York 10027 , United States
| | - Jianhuai Ye
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
- School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Jian Zhen Yu
- Department of Chemistry , Hong Kong University of Science and Technology , Hong Kong , China
| | - Jennifer G Murphy
- Department of Chemistry , University of Toronto , Toronto , Ontario M5S 3H6 , Canada
| | - V Faye McNeill
- Department of Chemical Engineering , University of Columbia , New York , New York 10027 , United States
| | - Jonathan P D Abbatt
- Department of Chemistry , University of Toronto , Toronto , Ontario M5S 3H6 , Canada
| | - Arthur W H Chan
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| |
Collapse
|
150
|
Rajagopalan S, Al-Kindi SG, Brook RD. Air Pollution and Cardiovascular Disease: JACC State-of-the-Art Review. J Am Coll Cardiol 2019; 72:2054-2070. [PMID: 30336830 DOI: 10.1016/j.jacc.2018.07.099] [Citation(s) in RCA: 736] [Impact Index Per Article: 122.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/25/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022]
Abstract
Fine particulate matter <2.5 μm (PM2.5) air pollution is the most important environmental risk factor contributing to global cardiovascular (CV) mortality and disability. Short-term elevations in PM2.5 increase the relative risk of acute CV events by 1% to 3% within a few days. Longer-term exposures over several years increase this risk by a larger magnitude (∼10%), which is partially attributable to the development of cardiometabolic conditions (e.g., hypertension and diabetes mellitus). As such, ambient PM2.5 poses a major threat to global public health. In this review, the authors provide an overview of air pollution and health, including assessment of exposure, impact on CV outcomes, mechanistic underpinnings, and impact of air pollution reduction strategies to mitigate CV risk. The review concludes with future challenges, including the inextricable link between air pollution and climate change, and calls for large-scale trials to allow the promulgation of formal evidence-based recommendations to lower air pollution-induced health risks.
Collapse
Affiliation(s)
- Sanjay Rajagopalan
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, Ohio; Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, Ohio.
| | - Sadeer G Al-Kindi
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, Ohio
| | - Robert D Brook
- Michigan Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|