101
|
The recent understanding of the neurotrophin's role in skeletal muscle adaptation. J Biomed Biotechnol 2011; 2011:201696. [PMID: 21960735 PMCID: PMC3179880 DOI: 10.1155/2011/201696] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 07/24/2011] [Indexed: 12/31/2022] Open
Abstract
This paper summarizes the various effects of neurotrophins in skeletal muscle and how these proteins act as potential regulators of the maintenance, function, and regeneration of skeletal muscle fibers. Increasing evidence suggests that this family of neurotrophic factors influence not only the survival and function of innervating motoneurons but also the development and differentiation of myoblasts and muscle fibers. Muscle contractions (e.g., exercise) produce BDNF mRNA and protein in skeletal muscle, and the BDNF seems to play a role in enhancing glucose metabolism and may act for myokine to improve various brain disorders (e.g., Alzheimer's disease and major depression). In adults with neuromuscular disorders, variations in neurotrophin expression are found, and the role of neurotrophins under such conditions is beginning to be elucidated. This paper provides a basis for a better understanding of the role of these factors under such pathological conditions and for treatment of human neuromuscular disease.
Collapse
|
102
|
Abstract
Proper vascular regulation is of paramount importance for the control of blood flow to tissues. In particular, the regulation of peripheral resistance arteries is essential for several physiological processes, including control of blood pressure, thermoregulation and increase of blood flow to central nervous system and heart under stress conditions such as hypoxia. Arterial tone is regulated by the periarterial autonomic nervous plexus, as well as by endothelium-dependent, myogenic and humoral mechanisms. Underscoring the importance of proper vascular regulation, defects in these processes can lead to diseases such as hypertension, orthostatic hypotension, Raynaud's phenomenon, defective thermoregulation, hand-foot syndrome, migraine and congestive heart failure. Here, we review the molecular mechanisms controlling the development of the periarterial nerve plexus, retrograde and localized signalling at neuro-effector junctions, the molecular and cellular mechanisms of vascular regulation and adult plasticity and maintenance of periarterial innervation. We particularly highlight a newly discovered role for vascular endothelial growth factor in the structural and functional maintenance of arterial neuro-effector junctions. Finally, we discuss how defects in neuronal vascular regulation can lead to disease.
Collapse
Affiliation(s)
- E Storkebaum
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Muenster, Germany.
| | | |
Collapse
|
103
|
Neurotrophin receptor TrkC is an entry receptor for Trypanosoma cruzi in neural, glial, and epithelial cells. Infect Immun 2011; 79:4081-7. [PMID: 21788388 DOI: 10.1128/iai.05403-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Trypanosoma cruzi, the agent of Chagas' disease, infects a variety of mammalian cells in a process that includes multiple cycles of intracellular division and differentiation starting with host receptor recognition by a parasite ligand(s). Earlier work in our laboratory showed that the neurotrophin-3 (NT-3) receptor TrkC is activated by T. cruzi surface trans-sialidase, also known as parasite-derived neurotrophic factor (PDNF). However, it has remained unclear whether TrkC is used by T. cruzi to enter host cells. Here, we show that a neuronal cell line (PC12-NNR5) relatively resistant to T. cruzi became highly susceptible to infection when overexpressing human TrkC but not human TrkB. Furthermore, trkC transfection conferred an ∼3.0-fold intracellular growth advantage. Sialylation-deficient Chinese hamster ovarian (CHO) epithelial cell lines Lec1 and Lec2 also became much more permissive to T. cruzi after transfection with the trkC gene. Additionally, NT-3 specifically blocked T. cruzi infection of the TrkC-NNR5 transfectants and of naturally permissive TrkC-bearing Schwann cells and astrocytes, as did recombinant PDNF. Two specific inhibitors of Trk autophosphorylation (K252a and AG879) and inhibitors of Trk-induced MAPK/Erk (U0126) and Akt kinase (LY294002) signaling, but not an inhibitor of insulin-like growth factor 1 receptor, abrogated TrkC-mediated cell invasion. Antibody to TrkC blocked T. cruzi infection of the TrkC-NNR5 transfectants and of cells that naturally express TrkC. The TrkC antibody also significantly and specifically reduced cutaneous infection in a mouse model of acute Chagas' disease. TrkC is ubiquitously expressed in the peripheral and central nervous systems, and in nonneural cells infected by T. cruzi, including cardiac and gastrointestinal muscle cells. Thus, TrkC is implicated as a functional PDNF receptor in cell entry, independently of sialic acid recognition, mediating broad T. cruzi infection both in vitro and in vivo.
Collapse
|
104
|
Mantyh PW, Koltzenburg M, Mendell LM, Tive L, Shelton DL. Antagonism of nerve growth factor-TrkA signaling and the relief of pain. Anesthesiology 2011; 115:189-204. [PMID: 21602663 PMCID: PMC3121917 DOI: 10.1097/aln.0b013e31821b1ac5] [Citation(s) in RCA: 250] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nerve growth factor (NGF) was originally discovered as a neurotrophic factor essential for the survival of sensory and sympathetic neurons during development. However, in the adult NGF has been found to play an important role in nociceptor sensitization after tissue injury. The authors outline mechanisms by which NGF activation of its cognate receptor, tropomyosin-related kinase A receptor, regulates a host of ion channels, receptors, and signaling molecules to enhance acute and chronic pain. The authors also document that peripherally restricted antagonism of NGF-tropomyosin-related kinase A receptor signaling is effective for controlling human pain while appearing to maintain normal nociceptor function. Understanding whether there are any unexpected adverse events and how humans may change their behavior and use of the injured/degenerating tissue after significant pain relief without sedation will be required to fully appreciate the patient populations that may benefit from these therapies targeting NGF.
Collapse
Affiliation(s)
- Patrick W Mantyh
- Department of Pharmacology, University of Arizona, Tucson, Arizona, USA.
| | | | | | | | | |
Collapse
|
105
|
Gould TW, Oppenheim RW. Motor neuron trophic factors: therapeutic use in ALS? BRAIN RESEARCH REVIEWS 2011; 67:1-39. [PMID: 20971133 PMCID: PMC3109102 DOI: 10.1016/j.brainresrev.2010.10.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Revised: 10/12/2010] [Accepted: 10/18/2010] [Indexed: 12/12/2022]
Abstract
The modest effects of neurotrophic factor (NTF) treatment on lifespan in both animal models and clinical studies of Amyotropic Lateral Sclerosis (ALS) may result from any one or combination of the four following explanations: 1.) NTFs block cell death in some physiological contexts but not in ALS; 2.) NTFs do not rescue motoneurons (MNs) from death in any physiological context; 3.) NTFs block cell death in ALS but to no avail; and 4.) NTFs are physiologically effective but limited by pharmacokinetic constraints. The object of this review is to critically evaluate the role of both NTFs and the intracellular cell death pathway itself in regulating the survival of spinal and cranial (lower) MNs during development, after injury and in response to disease. Because the role of molecules mediating MN survival has been most clearly resolved by the in vivo analysis of genetically engineered mice, this review will focus on studies of such mice expressing reporter, null or other mutant alleles of NTFs, NTF receptors, cell death or ALS-associated genes.
Collapse
Affiliation(s)
- Thomas W Gould
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1010, USA.
| | | |
Collapse
|
106
|
Lin L, Lee VM, Wang Y, Lin JS, Sock E, Wegner M, Lei L. Sox11 regulates survival and axonal growth of embryonic sensory neurons. Dev Dyn 2011; 240:52-64. [PMID: 21117150 DOI: 10.1002/dvdy.22489] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Sensory neurons transduce various stimuli including temperature, pain, and touch from the periphery to the central nervous system. Sensory neuron development is governed by a combination of extracellular cues and specific gene expression. We demonstrated that the transcription factor Sox11 was highly expressed in the developing sensory neurons. To test the function of Sox11, we used a knockin mouse model where the entire coding region of Sox11 was replaced by a LacZ reporter. The ablation of Sox11 caused severe reduction in sensory neuron survival in the trigeminal and dorsal root ganglia, although it did not affect migration of neural crest cells or acquisition of major sensory neuron subtypes. We further demonstrated that ablating Sox11 caused an arrest of axonal outgrowth in vivo and in vitro. This defect could not be fully rescued by blocking cell death. Our data suggest that Sox11 is a key regulator of sensory neuron development.
Collapse
Affiliation(s)
- L Lin
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
107
|
Takahashi H, Arstikaitis P, Prasad T, Bartlett TE, Wang YT, Murphy TH, Craig AM. Postsynaptic TrkC and presynaptic PTPσ function as a bidirectional excitatory synaptic organizing complex. Neuron 2011; 69:287-303. [PMID: 21262467 PMCID: PMC3056349 DOI: 10.1016/j.neuron.2010.12.024] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2010] [Indexed: 12/14/2022]
Abstract
Neurotrophin receptor tyrosine kinases (Trks) have well-defined trophic roles in nervous system development through kinase activation by neurotrophins. Yet Trks have typical cell-adhesion domains and express noncatalytic isoforms, suggesting additional functions. Here we discovered noncatalytic TrkC in an unbiased hippocampal neuron-fibroblast coculture screen for proteins that trigger differentiation of neurotransmitter release sites in axons. All TrkC isoforms, but not TrkA or TrkB, function directly in excitatory glutamatergic synaptic adhesion by neurotrophin-independent high-affinity trans binding to axonal protein tyrosine phosphatase receptor PTPσ. PTPσ triggers and TrkC mediates clustering of postsynaptic molecules in dendrites, indicating bidirectional synaptic organizing functions. Effects of a TrkC-neutralizing antibody that blocks TrkC-PTPσ interaction and TrkC knockdown in culture and in vivo reveal essential roles of TrkC-PTPσ in glutamatergic synapse formation. Thus, postsynaptic TrkC trans interaction with presynaptic PTPσ generates bidirectional adhesion and recruitment essential for excitatory synapse development and positions these signaling molecules at the center of synaptic pathways.
Collapse
Affiliation(s)
- Hideto Takahashi
- Brain Research Centre and Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada, V6T 2B5
| | - Pamela Arstikaitis
- Brain Research Centre and Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada, V6T 2B5
| | - Tuhina Prasad
- Brain Research Centre and Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada, V6T 2B5
| | - Thomas E. Bartlett
- Brain Research Centre and Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada, V6T 2B5
| | - Yu Tian Wang
- Brain Research Centre and Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada, V6T 2B5
| | - Timothy H. Murphy
- Brain Research Centre and Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada, V6T 2B5
| | - Ann Marie Craig
- Brain Research Centre and Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada, V6T 2B5
| |
Collapse
|
108
|
Vaegter CB, Jansen P, Fjorback AW, Glerup S, Skeldal S, Richner M, Erdmann B, Nyengaard JR, Tessarollo L, Lewin GR, Willnow TE, Chao MV, Nykjaer A. Sortilin associates with Trk receptors to enhance anterograde transport and neurotrophin signaling. Nat Neurosci 2011; 14:54-61. [PMID: 21102451 PMCID: PMC3808973 DOI: 10.1038/nn.2689] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 10/12/2010] [Indexed: 02/05/2023]
Abstract
Binding of target-derived neurotrophins to Trk receptors at nerve terminals is required to stimulate neuronal survival, differentiation, innervation and synaptic plasticity. The distance between the soma and nerve terminal is great, making efficient anterograde Trk transport critical for Trk synaptic translocation and signaling. The mechanism responsible for this trafficking remains poorly understood. Here we show that the sorting receptor sortilin interacts with TrkA, TrkB and TrkC and enables their anterograde axonal transport, thereby enhancing neurotrophin signaling. Cultured DRG neurons lacking sortilin showed blunted MAP kinase signaling and reduced neurite outgrowth upon stimulation with NGF. Moreover, deficiency for sortilin markedly aggravated TrkA, TrkB and TrkC phenotypes present in p75(NTR) knockouts, and resulted in increased embryonic lethality and sympathetic neuropathy in mice heterozygous for TrkA. Our findings demonstrate a role for sortilin as an anterograde trafficking receptor for Trk and a positive modulator of neurotrophin-induced neuronal survival.
Collapse
MESH Headings
- Adaptor Proteins, Vesicular Transport/deficiency
- Adaptor Proteins, Vesicular Transport/genetics
- Adaptor Proteins, Vesicular Transport/metabolism
- Adaptor Proteins, Vesicular Transport/physiology
- Animals
- Axonal Transport/genetics
- Axonal Transport/physiology
- Cell Culture Techniques
- Cerebral Cortex/metabolism
- Embryo, Mammalian/pathology
- Ganglia, Spinal/cytology
- Ganglia, Spinal/metabolism
- HEK293 Cells
- Hippocampus/metabolism
- Humans
- Mice
- Mice, Knockout
- Nerve Growth Factor/pharmacology
- Nerve Growth Factors/physiology
- Neurites/drug effects
- Neurites/physiology
- Receptor Cross-Talk/physiology
- Receptor, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/metabolism
- Receptors, Nerve Growth Factor/physiology
- Signal Transduction/physiology
- Superior Cervical Ganglion/metabolism
- Superior Cervical Ganglion/pathology
Collapse
Affiliation(s)
- Christian B. Vaegter
- The Lundbeck Foundation Research Center MIND, Department of Medical Biochemistry, Ole Worms Allé 1170, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Pernille Jansen
- The Lundbeck Foundation Research Center MIND, Department of Medical Biochemistry, Ole Worms Allé 1170, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Anja W. Fjorback
- MIND Center, Stereology and Electron Microscopy Laboratory, Aarhus University, 8000 Aarhus C, Denmark
| | - Simon Glerup
- The Lundbeck Foundation Research Center MIND, Department of Medical Biochemistry, Ole Worms Allé 1170, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Sune Skeldal
- The Lundbeck Foundation Research Center MIND, Department of Medical Biochemistry, Ole Worms Allé 1170, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Mette Richner
- The Lundbeck Foundation Research Center MIND, Department of Medical Biochemistry, Ole Worms Allé 1170, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Bettina Erdmann
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Jens R. Nyengaard
- MIND Center, Stereology and Electron Microscopy Laboratory, Aarhus University, 8000 Aarhus C, Denmark
| | - Lino Tessarollo
- Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA
| | - Gary R. Lewin
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | | | - Moses V. Chao
- Kimmel Center at Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York 10016, USA
| | - Anders Nykjaer
- The Lundbeck Foundation Research Center MIND, Department of Medical Biochemistry, Ole Worms Allé 1170, Aarhus University, DK-8000 Aarhus C, Denmark
- NeuronIcon, Gustav Wieds vej 10, DK-8000 Aarhus C, Denmark
| |
Collapse
|
109
|
Romanelli RJ, Wood TL. Directing traffic in neural cells: determinants of receptor tyrosine kinase localization and cellular responses. J Neurochem 2010; 105:2055-68. [PMID: 18248622 DOI: 10.1111/j.1471-4159.2008.05263.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The trafficking of receptor tyrosine kinases (RTKs) to distinct subcellular locations is essential for the specificity and fidelity of signal transduction and biological responses. This is particularly important in the PNS and CNS in which RTKs mediate key events in the development and maintenance of neurons and glia through a wide range of neural processes, including survival, proliferation, differentiation, neurite outgrowth, and synaptogenesis. The mechanisms that regulate the targeting of RTKs to their subcellular destinations for appropriate signal transduction, however, are still elusive. In this review, we discuss evidence for the spatial organization of signaling machinery into distinct subcellular compartments, as well as the role for ligand specificity, receptor sorting signals, and lipid raft microdomains in RTK targeting and the resultant cellular responses in neural cells.
Collapse
Affiliation(s)
- Robert J Romanelli
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon, USA
| | | |
Collapse
|
110
|
Montaño JA, Pérez-Piñera P, García-Suárez O, Cobo J, Vega JA. Development and neuronal dependence of cutaneous sensory nerve formations: Lessons from neurotrophins. Microsc Res Tech 2010; 73:513-29. [PMID: 19839059 DOI: 10.1002/jemt.20790] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Null mutations of genes from the NGF family of NTs and their receptors (NTRs) lead to loss/reduction of specific neurons in sensory ganglia; conversely, cutaneous overexpression of NTs results in skin hyperinnervation and increase or no changes in the number of sensory neurons innervating the skin. These neuronal changes are paralleled with loss of specific types of sensory nerve formations in the skin. Therefore, mice carrying mutations in NT or NTR genes represent an ideal model to identify the neuronal dependence of each type of cutaneous sensory nerve ending from a concrete subtype of sensory neuron, since the development, maintenance, and structural integrity of sensory nerve formations depend upon sensory neurons. Results obtained from these mouse strains suggest that TrkA positive neurons are connected to intraepithelial nerve fibers and other sensory nerve formations depending from C and Adelta nerve fibers; the neurons expressing TrkB and responding to BDNF and NT-4 innervate Meissner corpuscles, a subpopulation of Merkell cells, some mechanoreceptors of the piloneural complex, and the Ruffini's corpuscles; finally, a subpopulation of neurons, which are responsive to NT-3, support postnatal survival of some intraepithelial nerve fibers and Merkel cells in addition to the muscle mechanoreceptors. On the other hand, changes in NTs and NTRs affect the structure of non-nervous structures of the skin and are at the basis of several cutaneous pathologies. This review is an update about the role of NTs and NTRs in the maintenance of normal cutaneous innervation and maintenance of skin integrity.
Collapse
Affiliation(s)
- Juan A Montaño
- Departamento de Ciencias de la Salud, Universidad Católica San Antonio, Murcia, Spain
| | | | | | | | | |
Collapse
|
111
|
Ichikawa H, Zhao BR, Kano M, Shimizu Y, Suzuki T, Terayama R, Matsuo S, Sugimoto T. Tunicamycin-induced cell death in the trigeminal ganglion is suppressed by nerve growth factor in the mouse embryo. Cell Mol Neurobiol 2010; 30:461-7. [PMID: 19838798 PMCID: PMC11498787 DOI: 10.1007/s10571-009-9471-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2009] [Accepted: 10/02/2009] [Indexed: 10/20/2022]
Abstract
The effect of nerve growth factor (NGF) on tunicamycin (Tm)-treated neurons in the trigeminal ganglion was investigated by use of caspase-3 immunohistochemistry. In intact embryos at embryonic day 16.5, only a few caspase-3-immunoreactivity were detected in the ganglion neurons. Mean +/- SE of the density of the immunoreactivity was 0.22 +/- 0.03%. In contrast, the number of the immunoreactive neurons was increased at 24 h after injection of 0.5 microg Tm in 1 microl of 0.05 N NaOH solution into mouse embryos at embryonic day 15.5. The density of immunoreactivity was also increased (mean +/- SE = 1.44 +/- 0.11%) compared to intact and 0.05 N NaOH-treated embryos (mean +/- SE = 0.35 +/- 0.03%). The Tm treatment caused increase of the number of trigeminal neurons representing apoptotic profiles (intact, mean +/- SE = 79.3 +/- 8.5; 0.05 N NaOH, mean +/- SE = 132 +/- 11.5; 0.5 microg Tm, mean +/- SE = 370.2 +/- 64.8). In addition, NGF significantly prevented the increase of density of the immunoreactivity (mean +/- SE = 0.54 +/- 0.16%) and the number of apoptotic cells (mean +/- SE = 146.2 +/- 11.3). Saline application (without NGF) had no effect on Tm-induced increase of the immunoreactivity (mean +/- SE = 1.78 +/- 0.23%) or the apoptotic profiles (mean +/- SE = 431.9 +/- 80.5). These results indicate that Tm-induced cell death in the trigeminal ganglion is suppressed by NGF in the mouse embryo.
Collapse
Affiliation(s)
- Hiroyuki Ichikawa
- Division of Oral and Craniofacial Anatomy, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, 980-8575, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Angelucci F, Colantoni L. Facioscapulohumeral muscular dystrophy: do neurotrophins play a role? Muscle Nerve 2010; 41:120-7. [PMID: 19813193 DOI: 10.1002/mus.21505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Although the molecular defect of facioscapulohumeral muscular dystrophy (FSHD) is well established and involves the contraction of the polymorphic 3.3 kb D4Z4 repeat on the subtelomeric region of chromosome 4q35, the pathologic effects of this deletion remain largely unknown. As a consequence, no specific treatment for FSHD is at present available. Thus, there is the need to explore new areas in an attempt to better characterize pathophysiological alterations in FSHD that might be useful for managing the disease. Neurotrophins (nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4/5) are a class of proteins involved in the development, maintenance, and function of neurons of the peripheral and central nervous systems. In addition, neurotrophins and their RNAs are expressed in muscle, where they have a role in development and regeneration. In this article we put together the experimental evidence that indicates neurotrophins might be involved in the pathophysiology of FSHD and discuss the possible implications of this assumption.
Collapse
Affiliation(s)
- Francesco Angelucci
- IRCCS Santa Lucia Foundation, Department of Clinical and Behavioural Neurology, 00179, Rome, Italy.
| | | |
Collapse
|
113
|
BDNF is essentially required for the early postnatal survival of nociceptors. Dev Biol 2010; 339:465-76. [PMID: 20067784 DOI: 10.1016/j.ydbio.2010.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 12/13/2009] [Accepted: 01/05/2010] [Indexed: 01/19/2023]
Abstract
Neurotrophins promote the survival of specific types of neurons during development and ensure proper maintenance and function of mature responsive neurons. Significant effects of BDNF (Brain-Derived Neurotrophic Factor) on pain physiology have been reported but the contribution of this neurotrophin to the development of nociceptors has not been investigated. We present evidence that BDNF is required for the survival of a significant fraction of peptidergic and non-peptidergic nociceptors in dorsal root ganglia (DRG) postnatally. Bdnf homozygous mutant mice lose approximately half of all nociceptive neurons during the first 2 weeks of life and adult heterozygotes exhibit hypoalgesia and a loss of 25% of all nociceptive neurons. Our in vitro analyses indicate that BDNF-dependent nociceptive neurons also respond to NGF and GDNF. Expression analyses at perinatal times indicate that BDNF is predominantly produced within sensory ganglia and is more abundant than skin-derived NGF or GDNF. Function-blocking studies with BDNF specific antibodies in vitro or cultures of BDNF-deficient sensory neurons suggest that BDNF acts in an autocrine/paracrine way to promote the early postnatal survival of nociceptors that are also responsive to NGF and GDNF. Altogether, the data demonstrate an essential requirement for BDNF in the early postnatal survival of nociceptive neurons.
Collapse
|
114
|
Abstract
Parkinson's disease (PD) is a chronic, progressive neurodegenerative movement disorder for which there is currently no effective therapy. Over the past several decades, there has been a considerable interest in neuroprotective therapies using trophic factors to alleviate the symptoms of PD. Neurotrophic factors (NTFs) are a class of molecules that influence a number of neuronal functions, including cell survival and axonal growth. Experimental studies in animal models suggest that members of neurotrophin family and GDNF family of ligands (GFLs) have the potent ability to protect degenerating dopamine neurons as well as promote regeneration of the nigrostriatal dopamine system. In clinical trials, although no serious adverse events related to the NTF therapy has been reported in patients, they remain inconclusive. In this chapter, we attempt to give a brief overview on several different growth factors that have been explored for use in animal models of PD and those already used in PD patients.
Collapse
|
115
|
Luo W, Enomoto H, Rice FL, Milbrandt J, Ginty DD. Molecular identification of rapidly adapting mechanoreceptors and their developmental dependence on ret signaling. Neuron 2009; 64:841-56. [PMID: 20064391 PMCID: PMC2813518 DOI: 10.1016/j.neuron.2009.11.003] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2009] [Indexed: 01/09/2023]
Abstract
In mammals, the first step in the perception of form and texture is the activation of trigeminal or dorsal root ganglion (DRG) mechanosensory neurons, which are classified as either rapidly (RA) or slowly adapting (SA) according to their rates of adaptation to sustained stimuli. The molecular identities and mechanisms of development of RA and SA mechanoreceptors are largely unknown. We found that the "early Ret(+)" DRG neurons are RA mechanoreceptors, which form Meissner corpuscles, Pacinian corpuscles, and longitudinal lanceolate endings. The central projections of these RA mechanoreceptors innervate layers III through V of the spinal cord and terminate within discrete subdomains of the dorsal column nuclei. Moreover, mice lacking Ret signaling components are devoid of Pacinian corpuscles and exhibit a dramatic disruption of RA mechanoreceptor projections to both the spinal cord and medulla. Thus, the early Ret(+) neurons are RA mechanoreceptors and Ret signaling is required for the assembly of neural circuits underlying touch perception.
Collapse
Affiliation(s)
- Wenqin Luo
- Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205-2185
| | - Hideki Enomoto
- Laboratory for Neuronal Differentiation and Regeneration, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Frank L. Rice
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY, 12208; Integrated Tissue Dynamics, LLC, Renssalaer, NY 12144
| | - Jeffrey Milbrandt
- Department of Pathology, Washington University School of Medicine, St. Louis, MO, 63110
| | - David D. Ginty
- Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205-2185
| |
Collapse
|
116
|
Sheard PW, Bewick GS, Woolley AG, Shaw J, Fisher L, Fong SW, Duxson MJ. Investigation of neuromuscular abnormalities in neurotrophin-3-deficient mice. Eur J Neurosci 2009; 31:29-41. [PMID: 20092553 DOI: 10.1111/j.1460-9568.2009.07032.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neurotrophin-3 (NT-3) is a trophic factor that is essential for the normal development and maintenance of proprioceptive sensory neurons and is widely implicated as an important modulator of synaptic function and development. We have previously found that animals lacking NT-3 have a number of structural abnormalities in peripheral nerves and skeletal muscles. Here we investigated whether haploinsufficiency-induced reduction in NT-3 resulted in impaired neuromuscular performance and synaptic function. Motor nerve terminal function was tested by monitoring the uptake/release of the fluorescent membrane dye FM1-43 by the electrophysiological examination of synaptic transmission and electron microscopic determination of synaptic vesicle density at the presynaptic active zone. We investigated skeletal muscle form and function by measuring force in response to both nerve-mediated and direct muscle stimulation and by quantification of fiber number and area from transverse sections. Synaptic transmission was not markedly different between the two groups, although the uptake and release of FM1-43 were impaired in mature NT-3-deficient mice but not in immature mice. The electron microscopic examination of mature nerve terminals showed no genotype-dependent variation in the number of synaptic vesicles near the active zone. NT-3(+/-) mice had normal soleus muscle fiber numbers but their fibers had smaller cross-sectional areas and were more densely-packed than wild-type littermates. Moreover, the muscles of adult NT-3-deficient animals were weaker than those of wild-type animals to both nerve and direct muscle stimulation. The results indicate that a reduction in NT-3 availability during development impairs motor nerve terminal maturation and synaptic vesicle recycling and leads to a reduction in muscle fiber diameter.
Collapse
Affiliation(s)
- Philip W Sheard
- Department of Physiology, Otago School of Medical Sciences, University of Otago, PO Box 913, Dunedin, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
117
|
Alavi MV, Fuhrmann N, Nguyen HP, Yu-Wai-Man P, Heiduschka P, Chinnery PF, Wissinger B. Subtle neurological and metabolic abnormalities in an Opa1 mouse model of autosomal dominant optic atrophy. Exp Neurol 2009; 220:404-9. [DOI: 10.1016/j.expneurol.2009.09.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2009] [Revised: 09/09/2009] [Accepted: 09/28/2009] [Indexed: 12/20/2022]
|
118
|
Wang L, Liu Z, Liu H, Wan Y, Wang H, Li Z. Neuronal phenotype and tyrosine kinase receptor expression in cocultures of dorsal root ganglion and skeletal muscle cells. Anat Rec (Hoboken) 2009; 292:107-12. [PMID: 19051269 DOI: 10.1002/ar.20777] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The neuropeptide-immunoreactive (IR) and neurofilament-IR neurons are two major phenotypical classes in dorsal root ganglion (DRG). Tyrosine kinase receptor (Trk)A, TrkB, and TrkC are three members of the Trk family which may be relevant to neuronal phenotypes. Whether target skeletal muscle cells generate their expression remains unclear. Neurons containing substance P (SP), calcitonin gene-related peptide (CGRP), neurofilament 200 (NF-200), TrkA, TrkB, and TrkC were quantified using immunohistochemistry in rat DRG neuronal cultures and cocultures of DRG neurons and skeletal muscle cells. The percentage of NF-200 and TrkC-expressing neurons in cocultures of DRG neurons and skeletal muscle cells was significantly higher, 26.86% +/- 3.17% (NF-200) and 27.74% +/- 3.63% (TrkC) compared with 20.92% +/- 1.98% (NF-200) and 16.70% +/- 3.68% (TrkC) in DRG cultures; whereas the percentage of SP, CGRP, TrkA, and TrkB-expressing neurons was not changed significantly by the addition of target skeletal muscle cells. Thus, target skeletal muscle cells may influence neurofilament-phenotype and TrkC receptor but not neuropeptide-phenotype and TrkA and TrkB receptors. Anat Rec, 2009. (c) 2008 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Lihong Wang
- Department of Anatomy, Shandong University School of Medicine, Jinan, China
| | | | | | | | | | | |
Collapse
|
119
|
Ramos B, Valín A, Sun X, Gill G. Sp4-dependent repression of neurotrophin-3 limits dendritic branching. Mol Cell Neurosci 2009; 42:152-9. [PMID: 19555762 PMCID: PMC2727929 DOI: 10.1016/j.mcn.2009.06.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 06/10/2009] [Accepted: 06/12/2009] [Indexed: 01/16/2023] Open
Abstract
Regulation of neuronal gene expression is critical to establish functional connections in the mammalian nervous system. The transcription factor Sp4 regulates dendritic patterning during cerebellar granule neuron development by limiting branching and promoting activity-dependent pruning. Here, we investigate neurotrophin-3 (NT3) as a target gene important for Sp4-dependent dendritic morphogenesis. We found that Sp4 overexpression reduced NT3 promoter activity whereas knockdown of Sp4 increased NT3 promoter activity and mRNA. Moreover, Sp4 bound to the NT3 promoter in vivo, supporting a direct role for Sp4 as a repressor of NT3 expression. Addition of exogenous NT3 promoted dendritic branching in cerebellar granule neurons. Furthermore, sequestering NT3 blocked the continued addition of dendritic branches observed upon Sp4 knockdown, but had no effect on dendrite pruning. These findings demonstrate that, during cerebellar granule neuron development, Sp4-dependent repression of neurotrophin-3 is required to limit dendritic branching and thereby promote acquisition of the mature dendritic pattern.
Collapse
Affiliation(s)
- Belén Ramos
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111
- Harvard Medical School, Department of Pathology, 77 Avenue Louis Pasteur, Boston, MA 02115
- Sant Joan de Déu-SSM, Fundació Sant Joan de Déu, Centro de Investigación en Red de Salud Mental(CIBERSAM). 39-57 Santa Rosa. Esplugues de Llobregat, Barcelona 08950
| | - Alvaro Valín
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111
- Harvard Medical School, Department of Pathology, 77 Avenue Louis Pasteur, Boston, MA 02115
| | - Xinxin Sun
- Genetics Program, Sackler School of Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111
| | - Grace Gill
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111
- Harvard Medical School, Department of Pathology, 77 Avenue Louis Pasteur, Boston, MA 02115
- Genetics Program, Sackler School of Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111
| |
Collapse
|
120
|
Stifani S, Ma Q. 'Runxs and regulations' of sensory and motor neuron subtype differentiation: implications for hematopoietic development. Blood Cells Mol Dis 2009; 43:20-6. [PMID: 19349198 PMCID: PMC2700053 DOI: 10.1016/j.bcmd.2009.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 03/03/2009] [Indexed: 10/20/2022]
Abstract
Runt-related (RUNX) transcription factors are evolutionarily conserved regulators of a number of developmental mechanisms. RUNX proteins often control the balance between proliferation and differentiation and alterations of their functions are associated with different types of cancer and other human pathologies. Moreover, RUNX factors control important steps during the developmental acquisition of mature phenotypes. A number of investigations are beginning to shed light on the involvement of RUNX family members in the development of the nervous system. This review summarizes recent progress in the study of the roles of mammalian RUNX proteins during the differentiation of sensory and motor neurons in the peripheral and central nervous system, respectively. The implications of those findings for RUNX-mediated regulation of hematopoietic development will also be discussed.
Collapse
Affiliation(s)
- Stefano Stifani
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| | | |
Collapse
|
121
|
Brodeur GM, Minturn JE, Ho R, Simpson AM, Iyer R, Varela CR, Light JE, Kolla V, Evans AE. Trk receptor expression and inhibition in neuroblastomas. Clin Cancer Res 2009; 15:3244-50. [PMID: 19417027 DOI: 10.1158/1078-0432.ccr-08-1815] [Citation(s) in RCA: 227] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neuroblastoma, the most common and deadly solid tumor in children, exhibits heterogeneous clinical behavior, from spontaneous regression to relentless progression. Current evidence suggests that the TRK family of neurotrophin receptors plays a critical role in these diverse behaviors. Neuroblastomas expressing TrkA are biologically favorable and prone to spontaneous regression or differentiation, depending on the absence or presence of its ligand (NGF) in the microenvironment. In contrast, TrkB-expressing tumors frequently have MYCN amplification and are very aggressive and often fatal tumors. These tumors also express the TrkB ligand (BDNF), resulting in an autocrine or paracrine survival pathway. Exposure to BDNF promotes survival, drug resistance, and angiogenesis of TrkB-expressing tumors. Here we review the role of Trks in normal development, the different functions of Trk isoforms, and the major Trk signaling pathways. We also review the roles these receptors play in the heterogeneous biological and clinical behavior of neuroblastomas, and the activation of Trk receptors in other cancers. Finally we address the progress that has been made in developing targeted therapy with Trk-selective inhibitors to treat neuroblastomas and other tumors with activated Trk expression.
Collapse
Affiliation(s)
- Garrett M Brodeur
- Division of Oncology, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4318, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Ernsberger U. Role of neurotrophin signalling in the differentiation of neurons from dorsal root ganglia and sympathetic ganglia. Cell Tissue Res 2009; 336:349-84. [PMID: 19387688 DOI: 10.1007/s00441-009-0784-z] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 02/12/2009] [Indexed: 12/17/2022]
Abstract
Manipulation of neurotrophin (NT) signalling by administration or depletion of NTs, by transgenic overexpression or by deletion of genes coding for NTs and their receptors has demonstrated the importance of NT signalling for the survival and differentiation of neurons in sympathetic and dorsal root ganglia (DRG). Combination with mutation of the proapoptotic Bax gene allows the separation of survival and differentiation effects. These studies together with cell culture analysis suggest that NT signalling directly regulates the differentiation of neuron subpopulations and their integration into neural networks. The high-affinity NT receptors trkA, trkB and trkC are restricted to subpopulations of mature neurons, whereas their expression at early developmental stages largely overlaps. trkC is expressed throughout sympathetic ganglia and DRG early after ganglion formation but becomes restricted to small neuron subpopulations during embryogenesis when trkA is turned on. The temporal relationship between trkA and trkC expression is conserved between sympathetic ganglia and DRG. In DRG, NGF signalling is required not only for survival, but also for the differentiation of nociceptors. Expression of neuropeptides calcitonin gene-related peptide and substance P, which specify peptidergic nociceptors, depends on nerve growth factor (NGF) signalling. ret expression indicative of non-peptidergic nociceptors is also promoted by the NGF-signalling pathway. Regulation of TRP channels by NGF signalling might specify the temperature sensitivity of afferent neurons embryonically. The manipulation of NGF levels "tunes" heat sensitivity in nociceptors at postnatal and adult stages. Brain-derived neurotrophic factor signalling is required for subpopulations of DRG neurons that are not fully characterized; it affects mechanical sensitivity in slowly adapting, low-threshold mechanoreceptors and might involve the regulation of DEG/ENaC ion channels. NT3 signalling is required for the generation and survival of various DRG neuron classes, in particular proprioceptors. Its importance for peripheral projections and central connectivity of proprioceptors demonstrates the significance of NT signalling for integrating responsive neurons in neural networks. The molecular targets of NT3 signalling in proprioceptor differentiation remain to be characterized. In sympathetic ganglia, NGF signalling regulates dendritic development and axonal projections. Its role in the specification of other neuronal properties is less well analysed. In vitro analysis suggests the involvement of NT signalling in the choice between the noradrenergic and cholinergic transmitter phenotype, in the expression of various classes of ion channels and for target connectivity. In vivo analysis is required to show the degree to which NT signalling regulates these sympathetic neuron properties in developing embryos and postnatally.
Collapse
Affiliation(s)
- Uwe Ernsberger
- Interdisciplinary Center for Neurosciences (IZN), INF 307, University of Heidelberg, 69120, Heidelberg, Germany.
| |
Collapse
|
123
|
Abstract
The neurotrophin signaling network is critical to the development and survival of many neuronal populations. Especially sensitive to imbalances in the neurotrophin system, cholinergic neurons in the basal forebrain are progressively lost in Alzheimer's disease. Therapeutic use of neurotrophins to prevent this loss is hampered, however, by a number of pharmacological challenges. These include a lack of transport across the blood-brain barrier, rapid degradation in the circulation, and difficulty in production. In this review we discuss the evidence supporting the neurotrophin system's role in preventing neurodegeneration and survey some of the pharmacological strategies being pursued to develop effective therapeutics targeting neurotrophin function.
Collapse
Affiliation(s)
- Nicholas JG Webster
- Veterans Medical Research Foundation and VA San Diego Healthcare System, San Diego, California 92161, USA
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Michael C Pirrung
- Department of Chemistry, University of California, Riverside, California 92521, USA
| |
Collapse
|
124
|
|
125
|
Jessen KR, Mirsky R. Negative regulation of myelination: relevance for development, injury, and demyelinating disease. Glia 2008; 56:1552-1565. [PMID: 18803323 DOI: 10.1002/glia.20761] [Citation(s) in RCA: 389] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dedifferentiation of myelinating Schwann cells is a key feature of nerve injury and demyelinating neuropathies. We review recent evidence that this dedifferentiation depends on activation of specific intracellular signaling molecules that drive the dedifferentiation program. In particular, we discuss the idea that Schwann cells contain negative transcriptional regulators of myelination that functionally complement positive regulators such as Krox-20, and that myelination is therefore determined by a balance between two opposing transcriptional programs. Negative transcriptional regulators should be expressed prior to myelination, downregulated as myelination starts but reactivated as Schwann cells dedifferentiate following injury. The clearest evidence for a factor that works in this way relates to c-Jun, while other factors may include Notch, Sox-2, Pax-3, Id2, Krox-24, and Egr-3. The role of cell-cell signals such as neuregulin-1 and cytoplasmic signaling pathways such as the extracellular-related kinase (ERK)1/2 pathway in promoting dedifferentiation of myelinating cells is also discussed. We also review evidence that neurotrophin 3 (NT3), purinergic signaling, and nitric oxide synthase are involved in suppressing myelination. The realization that myelination is subject to negative as well as positive controls contributes significantly to the understanding of Schwann cell plasticity. Negative regulators are likely to have a major role during injury, because they promote the transformation of damaged nerves to an environment that fosters neuronal survival and axonal regrowth. In neuropathies, however, activation of these pathways is likely to be harmful because they may be key contributors to demyelination, a situation which would open new routes for clinical intervention.
Collapse
Affiliation(s)
- Kristján R Jessen
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Rhona Mirsky
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
126
|
Inoue KI, Shiga T, Ito Y. Runx transcription factors in neuronal development. Neural Dev 2008; 3:20. [PMID: 18727821 PMCID: PMC2531103 DOI: 10.1186/1749-8104-3-20] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 08/26/2008] [Indexed: 01/07/2023] Open
Abstract
Runt-related (Runx) transcription factors control diverse aspects of embryonic development and are responsible for the pathogenesis of many human diseases. In recent years, the functions of this transcription factor family in the nervous system have just begun to be understood. In dorsal root ganglion neurons, Runx1 and Runx3 play pivotal roles in the development of nociceptive and proprioceptive sensory neurons, respectively. Runx appears to control the transcriptional regulation of neurotrophin receptors, numerous ion channels and neuropeptides. As a consequence, Runx contributes to diverse aspects of the sensory system in higher vertebrates. In this review, we summarize recent progress in determining the role of Runx in neuronal development.
Collapse
Affiliation(s)
- Ken-ichi Inoue
- Department of Medical Biochemistry, Aarhus University, DK-8000C, Aarhus, Denmark.
| | | | | |
Collapse
|
127
|
von Bohlen und Halbach O, Minichiello L, Unsicker K. TrkB but not trkC receptors are necessary for postnatal maintenance of hippocampal spines. Neurobiol Aging 2008; 29:1247-55. [PMID: 17442456 DOI: 10.1016/j.neurobiolaging.2007.02.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 02/21/2007] [Accepted: 02/27/2007] [Indexed: 01/01/2023]
Abstract
Dendritic spines are major sites of excitatory synaptic transmission and changes in their densities have been linked to alterations in learning and memory. The neurotrophins brain-derived neurotrophic factor and neurotrophin-3 and their receptors, trkB and trkC, are thought to be involved in learning, memory and long-term potentiation (LTP). LTP is known to induce trkB and trkC gene expression as well as spinogenesis in the hippocampus. In the aging hippocampus, declines in trkB and trkC mRNA levels may underlie, at least in part, impairments in spatial memory and reductions in spine densities. To determine the significance of trkB and trkC for the maintenance of dendritic spines, we have analyzed Golgi-impregnated hippocampi of adult and aged mice heterozygous for trkB, trkC, or both along with respective wildtype littermates. Deletion of one allele of trkB, but not trkC, significantly reduces spine densities of CA1 pyramidal neurons in both adult and aged mice, as compared to age-matched controls. This indicates that trkB, but not trkC, receptors are necessary for the maintenance of hippocampal spines during postnatal life.
Collapse
Affiliation(s)
- O von Bohlen und Halbach
- Interdisciplinary Center for Neurosciences (IZN), Department of Neuroanatomy, University of Heidelberg, Im Neuenheimer Feld 307, D-69120 Heidelberg, Germany.
| | | | | |
Collapse
|
128
|
Neurotrophin-induced upregulation of p75NTR via a protein kinase C-delta-dependent mechanism. Brain Res 2008; 1217:10-24. [PMID: 18511024 DOI: 10.1016/j.brainres.2008.03.076] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 02/27/2008] [Accepted: 03/28/2008] [Indexed: 02/06/2023]
Abstract
Neurotrophins exert their biological effects via p75NTR and Trk receptors. Functional interplay between these two receptors has been widely explored with respect to p75NTR enhancing the activation and signalling of Trk, but few studies address the bidirectional aspects. We have previously demonstrated that the expression of p75NTR can be differentially modulated by different Trk receptor mutations. Here we investigate the mechanism of Nerve Growth Factor (NGF)-induced upregulation of p75NTR expression. We utilize pharmacological inhibition to investigate the role of various TrkA-associated signalling intermediates in this regulatory cascade. Notably, the inhibition of phospholipase C-gamma (PLC-gamma) using U73122, prevented the NGF-induced upregulation of p75NTR protein and mRNA. The inhibition of protein kinase C-delta (PKC-delta) activation by rottlerin, a selective PKC-delta inhibitor, and by small interfering RNA (siRNA) directed against PKC-delta also inhibited this NGF-induced upregulation. Finally, we also show that in cerebellar granule neurons, BDNF acting via TrkB increases p75NTR expression in a PKC-delta dependent manner. These results indicate the importance of Trk-dependent PLC-gamma and PKC-delta activation for downstream regulation of p75NTR protein expression in response to neurotrophin stimulation, a process that has implications to the survival and growth of the developing nervous system.
Collapse
|
129
|
Proprioceptive sensory neuropathy in mice with a mutation in the cytoplasmic Dynein heavy chain 1 gene. J Neurosci 2008; 27:14515-24. [PMID: 18160659 DOI: 10.1523/jneurosci.4338-07.2007] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mice heterozygous for the radiation-induced Sprawling (Swl) mutation display an early-onset sensory neuropathy with muscle spindle deficiency. The lack of an H reflex despite normal motor nerve function in the hindlimbs of these mutants strongly suggests defective proprioception. Immunohistochemical analyses reveal that proprioceptive sensory neurons are severely compromised in the lumbar dorsal root ganglia of newborn Swl/+ mice, whereas motor neuron numbers remain unaltered even in aged animals. We have used positional cloning to identify a nine base-pair deletion in the cytoplasmic dynein heavy chain 1 gene (Dync1h1) in this mutant. Furthermore, we demonstrate that Loa/+ mice, which have previously been shown to carry a missense point mutation in Dync1h1 that results in late-onset motor neuron loss, also present with a severe, early-onset proprioceptive sensory neuropathy. Interestingly, in contrast to the Loa mutation, the Swl mutation does not delay disease progression in a motor neuron disease mouse model overexpressing a human mutant superoxide dismutase (SOD1(G93A)) transgene. Together, we provide in vivo evidence that distinct mutations in cytoplasmic dynein can either result in a pure sensory neuropathy or in a sensory neuropathy with motor neuron involvement.
Collapse
|
130
|
Apoptosis of primary sensory neurons in GD1b-induced sensory ataxic neuropathy. Exp Neurol 2008; 209:279-83. [DOI: 10.1016/j.expneurol.2007.09.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 09/04/2007] [Accepted: 09/10/2007] [Indexed: 11/21/2022]
|
131
|
Esteban PF, Caprari P, Yoon HY, Randazzo PA, Tessarollo L. In vitro and in vivo analysis of neurotrophin-3 activation of Arf6 and Rac-1. Methods Enzymol 2008; 438:171-83. [PMID: 18413248 PMCID: PMC10758279 DOI: 10.1016/s0076-6879(07)38012-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Arf GTP-binding proteins and Rho-family GTPases play key roles in regulating membrane remodeling and cytoskeletal reorganization involved in cell movement. Several studies have implicated neurotrophins and their receptors as upstream activators of these small GTP-binding proteins, however, the mechanisms and the cell type specificity of this neurotrophin activity are still under investigation. Here we describe the rationale and protocols used for the dissection of an NT3 activated pathway that leads to the specific activation of Arf6 and Rac1.
Collapse
Affiliation(s)
- Pedro F Esteban
- Neural Development Group, Mouse Cancer Genetics Program, National Cancer Institute, Frederick, Maryland, USA
| | | | | | | | | |
Collapse
|
132
|
Abstract
The effects of neurotrophins during the middle and late stages of development are well known. It was previously thought that neurotrophins had no role during early development, but this is not the case and is the subject of this review article. The earliest neurotrophin receptor expressed is that for neurotrophin-3 (NT-3). TrkC is detected in the neural plate and is present in the neural tube. Initially, the distribution of TrkC is homogenous, but it becomes localized to specific regions of the neural tube as the neural tube differentiates. The receptor for brain-derived neurotrophic factor (BDNF) and neurotrophin-4/5 (NT-4/5), TrkB, is detected somewhat later than TrkC in the neural tube where it is also differentially localized. In contrast, the NGF receptor, TrkA, was not detected during early development. Both NT-3 and BDNF have been shown to have effects in vitro during early development. NT-3 caused an increase in neurite outgrowth and apoptosis in neural plate explants, and promoted differentiation of progenitors into motoneurons. BDNF increased the number of motoneurons in neural tube explants. These data suggest that NT-3 and BDNF may play a role during early development in vivo.
Collapse
Affiliation(s)
- Paulette Bernd
- Department of Anatomy and Cell Biology, State University of New York, Brooklyn, NY, USA.
| |
Collapse
|
133
|
Bartkowska K, Paquin A, Gauthier AS, Kaplan DR, Miller FD. Trk signaling regulates neural precursor cell proliferation and differentiation during cortical development. Development 2007; 134:4369-80. [DOI: 10.1242/dev.008227] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Increasing evidence indicates that development of embryonic central nervous system precursors is tightly regulated by extrinsic cues located in the local environment. Here, we asked whether neurotrophin-mediated signaling through Trk tyrosine kinase receptors is important for embryonic cortical precursor cell development. These studies demonstrate that inhibition of TrkB (Ntrk2)and/or TrkC (Ntrk3) signaling using dominant-negative Trk receptors, or genetic knockdown of TrkB using shRNA, caused a decrease in embryonic precursor cell proliferation both in culture and in vivo. Inhibition of TrkB/C also caused a delay in the generation of neurons, but not astrocytes, and ultimately perturbed the postnatal localization of cortical neurons in vivo. Conversely, overexpression of BDNF in cortical precursors in vivo promoted proliferation and enhanced neurogenesis. Together, these results indicate that neurotrophin-mediated Trk signaling plays an essential, cell-autonomous role in regulating the proliferation and differentiation of embryonic cortical precursors and thus controls cortical development at earlier stages than previously thought.
Collapse
Affiliation(s)
- Katarzyna Bartkowska
- Developmental and Stem Cell Biology, Hospital for Sick Children, University of Toronto, Toronto, Canada
- Cell Biology Programs, Hospital for Sick Children, University of Toronto,Toronto, Canada
| | - Annie Paquin
- Developmental and Stem Cell Biology, Hospital for Sick Children, University of Toronto, Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Andrée S. Gauthier
- Developmental and Stem Cell Biology, Hospital for Sick Children, University of Toronto, Toronto, Canada
- Cell Biology Programs, Hospital for Sick Children, University of Toronto,Toronto, Canada
- Departments of Molecular and Medical Genetics, University of Toronto, Toronto,Canada
| | - David R. Kaplan
- Cell Biology Programs, Hospital for Sick Children, University of Toronto,Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Departments of Molecular and Medical Genetics, University of Toronto, Toronto,Canada
| | - Freda D. Miller
- Developmental and Stem Cell Biology, Hospital for Sick Children, University of Toronto, Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Departments of Molecular and Medical Genetics, University of Toronto, Toronto,Canada
- Departments of Physiology, University of Toronto, Toronto, Canada
| |
Collapse
|
134
|
Arnett MG, Ryals JM, Wright DE. Pro-NGF, sortilin, and p75NTR: potential mediators of injury-induced apoptosis in the mouse dorsal root ganglion. Brain Res 2007; 1183:32-42. [PMID: 17964555 PMCID: PMC2156563 DOI: 10.1016/j.brainres.2007.09.051] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 09/07/2007] [Accepted: 09/12/2007] [Indexed: 11/30/2022]
Abstract
The nerve growth factor precursor (pro-NGF) may function as a death-inducing ligand that mediates its apoptotic effects via p75NTR. Pro-NGF-induced apoptosis is postulated to be dependent upon membrane expression of the sortilin receptor, which interacts with p75NTR to promote a high-affinity binding site for pro-NGF. Here, we explore the expression of pro-NGF, sortilin and p75NTR in the mouse lumbar dorsal root ganglion (DRG) to understand the potential for this trimeric signaling complex to function in injury-induced neuronal death of DRG neurons. Our results reveal the expression of all 3 components within the DRG and that a subpopulation of neurons coexpresses sortilin and p75NTR. Following sciatic nerve transection, the expression of these proteins appears insensitive to injury; however, the majority of small p75NTR-sortilin coexpressing neurons are lost 25 days after sciatic nerve transection. These results propose pro-NGF-induced, p75NTR-sortilin-mediated neuronal death as a critical aspect of nerve injury-induced death in the DRG.
Collapse
Affiliation(s)
- Melinda G Arnett
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | | | | |
Collapse
|
135
|
Bourane S, Méchaly I, Venteo S, Garces A, Fichard A, Valmier J, Carroll P. A SAGE-based screen for genes expressed in sub-populations of neurons in the mouse dorsal root ganglion. BMC Neurosci 2007; 8:97. [PMID: 18021428 PMCID: PMC2241628 DOI: 10.1186/1471-2202-8-97] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Accepted: 11/19/2007] [Indexed: 01/23/2023] Open
Abstract
Background The different sensory modalities temperature, pain, touch and muscle proprioception are carried by somatosensory neurons of the dorsal root ganglia. Study of this system is hampered by the lack of molecular markers for many of these neuronal sub-types. In order to detect genes expressed in sub-populations of somatosensory neurons, gene profiling was carried out on wild-type and TrkA mutant neonatal dorsal root ganglia (DRG) using SAGE (serial analysis of gene expression) methodology. Thermo-nociceptors constitute up to 80 % of the neurons in the DRG. In TrkA mutant DRGs, the nociceptor sub-class of sensory neurons is lost due to absence of nerve growth factor survival signaling through its receptor TrkA. Thus, comparison of wild-type and TrkA mutants allows the identification of transcripts preferentially expressed in the nociceptor or mechano-proprioceptor subclasses, respectively. Results Our comparison revealed 240 genes differentially expressed between the two tissues (P < 0.01). Some of these genes, CGRP, Scn10a are known markers of sensory neuron sub-types. Several potential markers of sub-populations, Dok4, Crip2 and Grik1/GluR5 were further analyzed by quantitative RT-PCR and double labeling with TrkA,-B,-C, c-ret, parvalbumin and isolectin B4, known markers of DRG neuron sub-types. Expression of Grik1/GluR5 was restricted to the isolectin B4+ nociceptive population, while Dok4 and Crip2 had broader expression profiles. Crip2 expression was however excluded from the proprioceptor sub-population. Conclusion We have identified and characterized the detailed expression patterns of three genes in the developing DRG, placing them in the context of the known major neuronal sub-types defined by molecular markers. Further analysis of differentially expressed genes in this tissue promises to extend our knowledge of the molecular diversity of different cell types and forms the basis for understanding their particular functional specificities.
Collapse
|
136
|
Rottkamp CA, Lobur KJ, Wladyka CL, Lucky AK, O'Gorman S. Pbx3 is required for normal locomotion and dorsal horn development. Dev Biol 2007; 314:23-39. [PMID: 18155191 DOI: 10.1016/j.ydbio.2007.10.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 09/27/2007] [Accepted: 10/25/2007] [Indexed: 01/06/2023]
Abstract
The transcription cofactor Pbx3 is critical for the function of hindbrain circuits controlling respiration in mammals, but the perinatal lethality caused by constitutively null mutations has hampered investigation of other roles it may play in neural development and function. Here we report that the conditional loss of Pbx3 function in most tissues caudal to the hindbrain resulted in progressive deficits of posture, locomotion, and sensation that became apparent during adolescence. In adult mutants, the size of the dorsal horn of the spinal cord and the numbers of calbindin-, PKC-gamma, and calretinin-expressing neurons in laminae I-III were markedly reduced, but the ventral cord and peripheral nervous system appeared normal. In the embryonic dorsal horn, Pbx3 expression was restricted to a subset of glutamatergic neurons, but its absence did not affect the initial balance of excitatory and inhibitory interneuron phenotypes. By embryonic day 15 a subset of Meis(+) glutamatergic neurons assumed abnormally superficial positions and the number of calbindin(+) neurons was increased three-fold in the mutants. Loss of Pbx3 function thus leads to the incorrect specification of some glutamatergic neurons in the dorsal horn and alters the integration of peripheral sensation into the spinal circuitry regulating locomotion.
Collapse
Affiliation(s)
- Catherine A Rottkamp
- Department of Neurosciences, Rm E640, Case School of Medicine, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
137
|
Verderio C, Bianco F, Blanchard MP, Bergami M, Canossa M, Scarfone E, Matteoli M. Cross talk between vestibular neurons and Schwann cells mediates BDNF release and neuronal regeneration. ACTA ACUST UNITED AC 2007; 35:187-201. [PMID: 17957483 DOI: 10.1007/s11068-007-9011-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 05/08/2007] [Accepted: 05/15/2007] [Indexed: 02/03/2023]
Abstract
It is now well-established that an active cross-talk occurs between neurons and glial cells, in the adult as well as in the developing and regenerating nervous systems. These functional interactions not only actively modulate synaptic transmission, but also support neuronal growth and differentiation. We have investigated the possible existence of a reciprocal interaction between inner ear vestibular neurons and Schwann cells maintained in primary cultures. We show that ATP released by the extending vestibular axons elevates intracellular calcium levels within Schwann cells. Purinergic activation of the Schwann P2X(7) receptor induces the release of neurotrophin BDNF, which occurs via a regulated, tetanus-toxin sensitive, vesicular pathway. BDNF, in turn, is required by the vestibular neuron to support its own survival and growth. Given the massive release of ATP during tissue damage, cross-talk between vestibular neurons and Schwann cells could play a primary role during regeneration.
Collapse
Affiliation(s)
- Claudia Verderio
- Department of Medical Pharmacology, CNR Institute of Neuroscience, University of Milano, Via Vanvitelli 32, 20129, Milano, Italy.
| | | | | | | | | | | | | |
Collapse
|
138
|
Lindsay RM. Therapeutic Potential of the Neurotrophins and Neurotrophin-CNTF Combinations in Peripheral Neuropathies and Motor Neuron Diseases. CIBA FOUNDATION SYMPOSIUM 196 - GROWTH FACTORS AS DRUGS FOR NEUROLOGICAL AND SENSORY DISORDERS 2007. [DOI: 10.1002/9780470514863.ch4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
139
|
Raible DW, Ungos JM. Specification of sensory neuron cell fate from the neural crest. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 589:170-80. [PMID: 17076281 DOI: 10.1007/978-0-387-46954-6_10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
How distinct cell fates are generated from initially homogeneous cell populations is a driving question in developmental biology. The neural crest is one such cell population that is capable of producing an incredible array of derivatives. Cells as different in function and form as the pigment cells in the skin or the neurons and glia of the peripheral nervous system are all derived from neural crest. How do these cells choose to migrate along distinct routes, populate defined regions of the embryo and differentiate into specific cell types? This chapter focuses on the development of one particular neural crest derivative, sensory neurons, as a model for studying these questions of cell fate specification. In the head, sensory neurons reside in the trigeminal and epibranchial ganglia, while in the trunk they form the spinal or dorsal root ganglia (DRG). The development of the DRG will be the main focus of this review. The neurons and glia of the DRG derive from trunk neural crest cells that coalesce at the lateral edge of the spinal cord (Fig. 1). These neural crest cells migrate along the same routes as neural crest cells that populate the autonomic sympathetic ganglia located along the dorsal aorta. Somehow DRG precursors must make the decision to stop and adopt a sensory fate adjacent to the spinal cord rather than continuing on to become part of the autonomic ganglia. Moreover, once the DRG precursors aggregate in their final positions there are still a number of fate choices to be made. The mature DRG is composed of many neurons with different morphologies and distinct biochemical properties as well as glial cells that support these neurons.
Collapse
Affiliation(s)
- David W Raible
- Department of Biological Structure, University of Washington, Seattle, Washington, USA.
| | | |
Collapse
|
140
|
Hardy WR, Li L, Wang Z, Sedy J, Fawcett J, Frank E, Kucera J, Pawson T. Combinatorial ShcA docking interactions support diversity in tissue morphogenesis. Science 2007; 317:251-6. [PMID: 17626887 PMCID: PMC2575375 DOI: 10.1126/science.1140114] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Changes in protein-protein interactions may allow polypeptides to perform unexpected regulatory functions. Mammalian ShcA docking proteins have amino-terminal phosphotyrosine (pTyr) binding (PTB) and carboxyl-terminal Src homology 2 (SH2) domains, which recognize specific pTyr sites on activated receptors, and a central region with two phosphorylated tyrosine-X-asparagine (pYXN) motifs (where X represents any amino acid) that each bind the growth factor receptor-bound protein 2 (Grb2) adaptor. Phylogenetic analysis indicates that ShcA may signal through both pYXN-dependent and -independent pathways. We show that, in mice, cardiomyocyte-expressed ShcA directs mid-gestational heart development by a PTB-dependent mechanism that does not require the pYXN motifs. In contrast, the pYXN motifs are required with PTB and SH2 domains in the same ShcA molecule for the formation of muscle spindles, skeletal muscle sensory organs that regulate motor behavior. Thus, combinatorial differences in ShcA docking interactions may yield multiple signaling mechanisms to support diversity in tissue morphogenesis.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/chemistry
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Amino Acid Motifs
- Animals
- Ataxia
- Excitatory Postsynaptic Potentials
- Genetic Complementation Test
- Heart/embryology
- Mice
- Mice, Knockout
- Morphogenesis
- Motor Activity
- Muscle Spindles/embryology
- Muscle, Skeletal/embryology
- Muscle, Skeletal/metabolism
- Mutation
- Myocytes, Cardiac/metabolism
- Neurons, Afferent/physiology
- Phosphorylation
- Protein Structure, Tertiary
- Shc Signaling Adaptor Proteins
- Signal Transduction
- Src Homology 2 Domain-Containing, Transforming Protein 1
- src Homology Domains
Collapse
Affiliation(s)
- W Rod Hardy
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | | | | | | | | | | | | | | |
Collapse
|
141
|
Biressi S, Molinaro M, Cossu G. Cellular heterogeneity during vertebrate skeletal muscle development. Dev Biol 2007; 308:281-93. [PMID: 17612520 DOI: 10.1016/j.ydbio.2007.06.006] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 06/03/2007] [Accepted: 06/08/2007] [Indexed: 12/29/2022]
Abstract
Although skeletal muscles appear superficially alike at different anatomical locations, in reality there is considerably more diversity than previously anticipated. Heterogeneity is not only restricted to completely developed fibers, but is clearly apparent during development at the molecular, cellular and anatomical level. Multiple waves of muscle precursors with different features appear before birth and contribute to muscular diversification. Recent cell lineage and gene expression studies have expanded our knowledge on how skeletal muscle is formed and how its heterogeneity is generated. This review will present a comprehensive view of relevant findings in this field.
Collapse
Affiliation(s)
- Stefano Biressi
- Stem Cell Research Institute, DiBiT, San Raffaele Scientific Institute, 58 via Olgettina, 20132 Milan, Italy.
| | | | | |
Collapse
|
142
|
Clowry GJ. The dependence of spinal cord development on corticospinal input and its significance in understanding and treating spastic cerebral palsy. Neurosci Biobehav Rev 2007; 31:1114-24. [PMID: 17544509 DOI: 10.1016/j.neubiorev.2007.04.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Accepted: 04/24/2007] [Indexed: 11/18/2022]
Abstract
The final phase of spinal cord development follows the arrival of descending pathways which brings about a reorganisation that allows mature motor behaviours to emerge under the control of higher brain centres. Observations made during typical human development have shown that low threshold stretch reflexes, including excitatory reflexes between agonist and antagonist muscle pairs are a feature of the newborn. However, perinatal lesions of the corticospinal tract can lead to abnormal development of spinal reflexes that includes retention and reinforcement of developmental features that do not emerge in adult stroke victims, even though they also suffer from spasticity. This review describes investigations in animal models into how corticospinal input may drive segmental maturation. It compares their findings with observations made in humans and discusses how therapeutic interventions in cerebral palsy might aim to correct imbalances between descending and segmental inputs, bearing in mind that descending activity may play the crucial role in development.
Collapse
Affiliation(s)
- Gavin J Clowry
- Neural Development, Plasticity and Repair, School of Clinical Medical Sciences and Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
143
|
Laneve P, Di Marcotullio L, Gioia U, Fiori ME, Ferretti E, Gulino A, Bozzoni I, Caffarelli E. The interplay between microRNAs and the neurotrophin receptor tropomyosin-related kinase C controls proliferation of human neuroblastoma cells. Proc Natl Acad Sci U S A 2007; 104:7957-62. [PMID: 17483472 PMCID: PMC1876554 DOI: 10.1073/pnas.0700071104] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs (miRNAs) are tiny noncoding RNAs whose function as modulators of gene expression is crucial for the proper control of cell growth and differentiation. Although the profile of miRNA expression has been defined for many different cellular systems, the elucidation of the regulatory networks in which they are involved is only just emerging. In this work, we identify a crucial role for three neuronal miRNAs (9, 125a, and 125b) in controlling human neuroblastoma cell proliferation. We show that these molecules act in an additive manner by repressing a common target, the truncated isoform of the neurotrophin receptor tropomyosin-related kinase C, and we demonstrate that the down-regulation of this isoform is critical for regulating neuroblastoma cell growth. Consistently with their function, these miRNAs were found to be down-modulated in primary neuroblastoma tumors.
Collapse
Affiliation(s)
- Pietro Laneve
- *Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche (Italy)
- Institute Pasteur Cenci-Bolognetti, Department of Genetics and Molecular Biology, and
| | - Lucia Di Marcotullio
- Department of Experimental Medicine, University of Rome “La Sapienza,” Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Ubaldo Gioia
- Institute Pasteur Cenci-Bolognetti, Department of Genetics and Molecular Biology, and
| | - Micol E. Fiori
- Institute Pasteur Cenci-Bolognetti, Department of Genetics and Molecular Biology, and
| | - Elisabetta Ferretti
- Department of Experimental Medicine, University of Rome “La Sapienza,” Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Alberto Gulino
- Department of Experimental Medicine, University of Rome “La Sapienza,” Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Irene Bozzoni
- *Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche (Italy)
- Institute Pasteur Cenci-Bolognetti, Department of Genetics and Molecular Biology, and
- To whom correspondence may be addressed: E-mail: or
| | - Elisa Caffarelli
- *Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche (Italy)
- To whom correspondence may be addressed: E-mail: or
| |
Collapse
|
144
|
Wang Z, Li LY, Taylor MD, Wright DE, Frank E. Prenatal exposure to elevated NT3 disrupts synaptic selectivity in the spinal cord. J Neurosci 2007; 27:3686-94. [PMID: 17409232 PMCID: PMC2562665 DOI: 10.1523/jneurosci.0197-07.2007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 02/13/2007] [Accepted: 03/05/2007] [Indexed: 01/20/2023] Open
Abstract
Monosynaptic connections between muscle spindle (Ia) afferents and motoneurons (MNs), the central portion of the stretch reflex circuit, are highly specific, but the mechanisms underlying this specificity are primarily unknown. In this study, we report that embryonic overexpression of neurotrophin-3 (NT3) in muscles disrupts the development of these specific Ia-MN connections, using transgenic (mlc/NT3) mice that express elevated levels of NT3 in muscles during development. In mlc/NT3 mice, there is a substantial increase in the amplitudes of monosynaptic EPSPs evoked by Ia afferents in MNs as measured with extracellular recordings from ventral roots. Despite this increased functional projection of Ia afferents, there is no obvious change in the anatomical density of Ia projections into the ventral horn of the spinal cord. Intracellular recordings from MNs revealed a major disruption in the pattern of Ia-MN connections. In addition to the normal connections between Ia afferents and MNs supplying the same muscle, there were also strong monosynaptic inputs from Ia afferents supplying unrelated muscles, which explains the increase seen in extracellular recordings. There was also a large variability in the strength of Ia input to individual MNs, both from correct and incorrect Ia afferents. Postnatal muscular administration of NT3 did not cause these changes in connectivity. These results indicate that prenatal exposure to elevated levels of NT3 disrupts the normal mechanisms responsible for synaptic selectivity in the stretch reflex circuit.
Collapse
Affiliation(s)
- Zhi Wang
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, and
| | - Ling Ying Li
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, and
| | - Michael D. Taylor
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Douglas E. Wright
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Eric Frank
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, and
| |
Collapse
|
145
|
Abstract
A critical step in the formation of correct patterns of sensory inputs to the spinal cord is the guidance of specific subsets of sensory axons to their appropriate target regions. Yoshida et al. demonstrate in this issue of Neuron that a repulsive interaction between plexinA1 and sema6C/6D prevents the growth of proprioceptive sensory axons into the superficial laminae of the dorsal horn where cutaneous sensory axons terminate.
Collapse
Affiliation(s)
- Eric Frank
- Department of Physiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, Massachusetts 02111, USA
| |
Collapse
|
146
|
Yoshida Y, Han B, Mendelsohn M, Jessell TM. PlexinA1 signaling directs the segregation of proprioceptive sensory axons in the developing spinal cord. Neuron 2006; 52:775-88. [PMID: 17145500 PMCID: PMC1847564 DOI: 10.1016/j.neuron.2006.10.032] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 09/21/2006] [Accepted: 10/20/2006] [Indexed: 11/30/2022]
Abstract
As different classes of sensory neurons project into the CNS, their axons segregate and establish distinct trajectories and target zones. One striking instance of axonal segregation is the projection of sensory neurons into the spinal cord, where proprioceptive axons avoid the superficial dorsal horn-the target zone of many cutaneous afferent fibers. PlexinA1 is a proprioceptive sensory axon-specific receptor for sema6C and sema6D, which are expressed in a dynamic pattern in the dorsal horn. The loss of plexinA1 signaling causes the shafts of proprioceptive axons to invade the superficial dorsal horn, disrupting the organization of cutaneous afferents. This disruptive influence appears to involve the intermediary action of oligodendrocytes, which accompany displaced proprioceptive axon shafts into the dorsal horn. Our findings reveal a dedicated program of axonal shaft positioning in the mammalian CNS and establish a role for plexinA1-mediated axonal exclusion in organizing the projection pattern of spinal sensory afferents.
Collapse
Affiliation(s)
- Yutaka Yoshida
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Center for Neurobiology and Behavior, Columbia University, New York, New York 10032, USA.
| | | | | | | |
Collapse
|
147
|
Abstract
Neurotrophins are a small family of dimeric secretory proteins in vertebrate neurons with a broad spectrum of functions. They are generated as pro-proteins with a functionality that is distinct from the proteolytically processed form. The cellular responses of neurotrophins are mediated by three different types of receptor proteins, the receptor tyrosine kinases of the Trk family, the neurotrophin receptor p75(NTR), which is a member of the tumor necrosis factor receptor (TNFR) superfamily, and sortilin, previously characterized as neurotensin receptor. Recent studies have revealed an intriguing pattern: neurotrophins can elicit opposing signals utilising their variable configuration and different receptor types.
Collapse
Affiliation(s)
- Rüdiger Schweigreiter
- Biocenter Innsbruck, Division of Neurobiochemistry, Medical University Innsbruck, Fritz-Pregl-Strasse 3, A-6020 Innsbruck Innsbruck, Austria.
| |
Collapse
|
148
|
Li LY, Wang Z, Sedý J, Quazi R, Walro JM, Frank E, Kucera J. Neurotrophin-3 ameliorates sensory-motor deficits in Er81-deficient mice. Dev Dyn 2006; 235:3039-50. [PMID: 17013886 PMCID: PMC2587023 DOI: 10.1002/dvdy.20964] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Two factors, the ETS transcription factor ER81 and skeletal muscle-derived neurotrophin-3 (NT3), are essential for the formation of muscle spindles and the function of spindle afferent-motoneuron synapses in the spinal cord. Spindles either degenerate completely or are abnormal, and spindle afferents fail to project to spinal motoneurons in Er81 null mice; however, the interactions between ER81 and NT3 during the processes of afferent neuron and muscle spindle development are poorly understood. To examine if overexpression of NT3 in muscle rescues spindles and afferent-motoneuron connectivity in the absence of ER81, we generated myoNT3;Er81(-/-) double-mutant mice that selectively overexpress NT3 in muscle in the absence of ER81. Spindle reflex arcs in myoNT3;Er81(-/-) mutants differed greatly from Er81 null mice. Muscle spindle densities were greater and more afferents projected into the ventral spinal cord in myoNT3;Er81(-/-) mice. Spindles of myoNT3;Er81(-/-) muscles responded normally to repetitive muscle taps, and the monosynaptic inputs from Ia afferents to motoneurons, grossly reduced in Er81(-/-) mutants, were restored to wild-type levels in myoNT3;Er81(-/-) mice. Thus, an excess of muscle-derived NT3 reverses deficits in spindle numbers and afferent function induced by the absence of ER81. We conclude that muscle-derived NT3 can modulate spindle density and afferent-motoneuron connectivity independently of ER81.
Collapse
Affiliation(s)
- L Y Li
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
149
|
Kawamata T, Ninomiya T, Toriyabe M, Yamamoto J, Niiyama Y, Omote K, Namiki A. Immunohistochemical analysis of acid-sensing ion channel 2 expression in rat dorsal root ganglion and effects of axotomy. Neuroscience 2006; 143:175-87. [PMID: 16949762 DOI: 10.1016/j.neuroscience.2006.07.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 07/04/2006] [Accepted: 07/18/2006] [Indexed: 12/22/2022]
Abstract
Several studies have suggested that acid-sensing ion channel 2 (ASIC2) plays a role in mechanoperception and acid sensing in the peripheral nervous system. We examined the expression and distribution of ASIC2 in the rat dorsal root ganglion, the co-localization of ASIC2 with tropomyosin-related kinase (trk) receptors, and the effects of axotomy on ASIC2 expression. ASIC2 immunoreactivity was observed in both neurons and satellite cells. ASIC2-positive neurons accounted for 16.5 +/- 2.4% of the total neurons in normal dorsal root ganglion. Most ASIC2-positive neurons were medium-to-large neurons and were labeled with neurofilament 200 kD (NF200). Within these neurons, ASIC2 was not evenly distributed throughout the cytoplasm, but rather was accumulated prominently in the cytoplasm adjacent to the axon hillock and axonal process. We next examined the co-localization of ASIC2 with trk receptors. trkA was expressed in few ASIC2-positive neurons, and trkB and trkC were observed in 85.2% and 53.4% of ASIC2-positive neurons, respectively, while only 6.9% of ASIC2-positive neurons were co-localized with trkC alone. Peripheral axotomy markedly reduced ASIC2 expression in the axotomized dorsal root ganglion neurons. On the other hand, intense ASIC2 staining was observed in satellite cells. These results show that ASIC2 is expressed in the distinct neurochemical population of sensory neurons as well as satellite cells, and that peripheral axotomy induced marked reductions in ASIC2 in neurons.
Collapse
Affiliation(s)
- T Kawamata
- Department of Anesthesiology, Sapporo Medical University School of Medicine, South 1, West 16, Chuo-ku, Sapporo, Hokkaido 060-8543, Japan.
| | | | | | | | | | | | | |
Collapse
|
150
|
Mojsilovic-Petrovic J, Arneja A, Kalb RG. Enprofylline protects motor neurons from in vitro excitotoxic challenge. NEURODEGENER DIS 2006; 2:160-5. [PMID: 16909021 DOI: 10.1159/000089621] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The death of motor neurons in amyotrophic lateral sclerosis (ALS) is believed to result, in part, from unrestrained activation of glutamate receptors (excitotoxicity). In some in vitro models, excitotoxic death only occurs if motor neurons develop in the presence of the growth factor, brain-derived neurotrophic factor (BDNF). OBJECTIVE Since the increased vulnerability of motor neurons evoked by BDNF is mediated by activation of TrkB, we sought to identify pharmacological agents that can block this pathway. Adenosine receptors are known to transactivate Trk receptors, leading us to examine the effects of manipulating of adenosine receptor signaling on Trk signaling and excitotoxic sensitivity. METHODS Spinal cord cultures were treated with adenosine receptor agonists and antagonists. The biochemical effects on Trk signaling and excitotoxic motor neuron death were examined. RESULTS We show here that adenosine A(2a) antagonists can reduce activation of Trk receptors and are neuroprotective. Conversely, activating adenosine A(2a) receptors in the absence of BDNF signaling makes motor neurons vulnerable to excitotoxic challenge. CONCLUSION Selective, high-affinity adenosine A(2a) antagonists merit consideration as therapeutic agents for the treatment of ALS.
Collapse
|