101
|
Parenteau J, Durand M, Véronneau S, Lacombe AA, Morin G, Guérin V, Cecez B, Gervais-Bird J, Koh CS, Brunelle D, Wellinger RJ, Chabot B, Abou Elela S. Deletion of many yeast introns reveals a minority of genes that require splicing for function. Mol Biol Cell 2008; 19:1932-41. [PMID: 18287520 DOI: 10.1091/mbc.e07-12-1254] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Splicing regulates gene expression and contributes to proteomic diversity in higher eukaryotes. However, in yeast only 283 of the 6000 genes contain introns and their impact on cell function is not clear. To assess the contribution of introns to cell function, we initiated large-scale intron deletions in yeast with the ultimate goal of creating an intron-free model eukaryote. We show that about one-third of yeast introns are not essential for growth. Only three intron deletions caused severe growth defects, but normal growth was restored in all cases by expressing the intronless mRNA from a heterologous promoter. Twenty percent of the intron deletions caused minor phenotypes under different growth conditions. Strikingly, the combined deletion of all introns from the 15 cytoskeleton-related genes did not affect growth or strain fitness. Together, our results show that although the presence of introns may optimize gene expression and provide benefit under stress, a majority of introns could be removed with minor consequences on growth under laboratory conditions, supporting the view that many introns could be phased out of Saccharomyces cerevisiae without blocking cell growth.
Collapse
Affiliation(s)
- Julie Parenteau
- Laboratoire de génomique fonctionnelle de l'Université de Sherbrooke, Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Bertrand E, Bordonné R. Assembly and Traffic of Small Nuclear RNPs. RNA TRAFFICKING AND NUCLEAR STRUCTURE DYNAMICS 2008; 35:79-97. [PMID: 15113080 DOI: 10.1007/978-3-540-74266-1_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535-IFR 122, 1919 route de Mende, 34293, Montpellier Cedex 5, France.
| | | |
Collapse
|
103
|
Targeted pre-mRNA modification for gene silencing and regulation. Nat Methods 2007; 5:95-100. [PMID: 18066073 DOI: 10.1038/nmeth1142] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 11/14/2007] [Indexed: 11/08/2022]
Abstract
Most eukaryotic box C/D small nucleolar (sno) or Cajal body-specific RNAs guide base pairing with target RNAs and direct site-specific 2'-O-methylation. We designed an artificial C/D RNA to target the branch point adenosine of ACT1 pre-mRNA to block its splicing. Saccharomyces cerevisiae expressing this guide RNA gene controlled by a GAL1 promoter grew normally on dextrose but not on galactose medium. The pre-mRNA was specifically 2'-O-methylated, prohibiting maturation of ACT1 mRNA. Targeting other adenosines in this region while maintaining almost identical complementarity did not affect ACT1 mRNA level or cell growth, suggesting that targeting the branch-point adenosine was truly 2'-O-methylation-specific rather than an antisense effect; moreover, only the 3'-most branch site adenosine served as the branch point. We targeted other essential intron-containing genes, and observed a similar phenotype. We demonstrated that a Box C/D RNA can guide modification at the pre-mRNA branch point, thus silencing its expression and inducing cell death.
Collapse
|
104
|
Ying SY, Chang DC, Lin SL. The microRNA (miRNA): overview of the RNA genes that modulate gene function. Mol Biotechnol 2007; 38:257-68. [PMID: 17999201 PMCID: PMC7091389 DOI: 10.1007/s12033-007-9013-8] [Citation(s) in RCA: 189] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 10/22/2007] [Indexed: 12/30/2022]
Abstract
MicroRNAs (miRNAs), widely distributed, small regulatory RNA genes, target both messenger RNA (mRNA) degradation and suppression of protein translation based on sequence complementarity between the miRNA and its targeted mRNA. Different names have been used to describe various types of miRNA. During evolution, RNA retroviruses or transgenes invaded the eukaryotic genome and inserted in the non-coding regions of DNA, conceivably acting as transposon-like jumping genes, providing defense from viral invasion and fine-funing of gene expression as a secondary level of gene modulation in eukaryotes. When a transposon is inserted in the intron, it becomes an intronic miRNA, taking advantage of the protein synthesis machinery, i.e., mRNA transcription and splicing, as a means for processing and maturation. Recently, miRNAs have been found to play an important, but not life-threatening, role in embryonic development. They might play a pivotal role in diverse biological systems in various organisms, facilitating a quick response and accurate plotting of body physiology and structures. Based on these unique properties, man-made intronic miRNAs have been developed for in vitro evaluation of gene function, in vivo gene therapy and generation of transgenic animal models. The biogenesis and identification of miRNAs, potential applications, and future directions for research are presented, hopefully providing a guideline for further miRNA and gene function studies.
Collapse
Affiliation(s)
- Shao-Yao Ying
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, 1333 San Pablo Street, BMT-403, Los Angeles, CA, 90033, USA.
| | | | | |
Collapse
|
105
|
|
106
|
Ideue T, Sasaki YT, Hagiwara M, Hirose T. Introns play an essential role in splicing-dependent formation of the exon junction complex. Genes Dev 2007; 21:1993-8. [PMID: 17675447 PMCID: PMC1948854 DOI: 10.1101/gad.1557907] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Pre-mRNA splicing specifically deposits the exon junction complex (EJC) onto spliced mRNA, which is important for downstream events. Here, we show that EJC components are primarily recruited to the spliceosome by association with the intron via the intron-binding protein, IBP160. This initial association of EJC components occurs in the absence of the final EJC-binding site on the exon. RNA interference (RNAi) knockdown of IBP160 arrested EJC association with cytoplasmic RNAs following nonsense-mediated decay. We propose that the intron has a crucial role in the early steps of EJC formation and is indispensable for the subsequent formation of a functional EJC.
Collapse
Affiliation(s)
- Takashi Ideue
- Biological Information Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Koto-Ku, Tokyo 135-0064, Japan
- Japan Biological Informatics Consortium (JBIC), Koto-Ku, Tokyo 135-0064, Japan
| | - Yasnory T.F. Sasaki
- Biological Information Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Koto-Ku, Tokyo 135-0064, Japan
| | - Masatoshi Hagiwara
- Department of Functional Genomics, Medical Research Institute, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo 110-8510, Japan
| | - Tetsuro Hirose
- Biological Information Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Koto-Ku, Tokyo 135-0064, Japan
- Corresponding author.E-MAIL ; FAX 81-3-3599-8521
| |
Collapse
|
107
|
Oruganti S, Zhang Y, Li H, Robinson H, Terns MP, Terns RM, Yang W, Li H. Alternative Conformations of the Archaeal Nop56/58-Fibrillarin Complex Imply Flexibility in Box C/D RNPs. J Mol Biol 2007; 371:1141-50. [PMID: 17617422 DOI: 10.1016/j.jmb.2007.06.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 06/05/2007] [Accepted: 06/12/2007] [Indexed: 12/31/2022]
Abstract
The Nop56/58-fibrillarin heterocomplex is a core protein complex of the box C/D ribonucleoprotein particles that modify and process ribosomal RNAs. The previous crystal structure of the Archaeoglobus fulgidus complex revealed a symmetric dimer of two Nop56/58-fibrillarin complexes linked by the coiled-coil domains of the Nop56/68 proteins. However, because the A. fulgidus Nop56/58 protein lacks some domains found in most other species, it was thought that the bipartite architecture of the heterocomplex was not likely a general phenomenon. Here we report the crystal structure of the Nop56/58-fibrillarin complex bound with methylation cofactor, S-adenosyl-L-methionine from Pyrococcus furiosus, at 2.7 A. The new complex confirms the generality of the previously observed bipartite arrangement. In addition however, the conformation of Nop56/58 in the new structure differs substantially from that in the earlier structure. The distinct conformations of Nop56/58 suggest potential flexibility in Nop56/58. Computational normal mode analysis supports this view. Importantly, fibrillarin is repositioned within the two complexes. We propose that hinge motion within Nop56/58 has important implications for the possibility of simultaneously positioning two catalytic sites at the two target sites of a bipartite box C/D guide RNA.
Collapse
Affiliation(s)
- Sri Oruganti
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Tanaka-Fujita R, Soeno Y, Satoh H, Nakamura Y, Mori S. Human and mouse protein-noncoding snoRNA host genes with dissimilar nucleotide sequences show chromosomal synteny. RNA (NEW YORK, N.Y.) 2007; 13:811-6. [PMID: 17468437 PMCID: PMC1869039 DOI: 10.1261/rna.209707] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
snoRNAs are small protein-noncoding RNAs essential for pre-rRNA processing and ribosome biogenesis, and are encoded intronically in host genes (HGs) that are either protein coding or noncoding. mRNAs of protein-noncoding HGs differ in their nucleotide sequences among species. Although the reason for such sequential divergence has not been well explained, we present evidence here that such structurally different HGs have evolved from a common ancestral gene. We first identified two novel protein-noncoding HGs (mU50HG-a and mU50HG-b) that intronically encode a mouse ortholog of a human snoRNA, hU50. The sequences of mU50HG mRNA differed from that of hU50HG. However, a chromosome mapping study revealed that mU50HG is located at 9E3-1, the murine segment syntenic to human 6q15, where hU50HG is located. Synteny is a phenomenon whereby gene orthologs are arranged in the same order at equivalent chromosomal loci in different species; synteny between two species means it is highly likely that the genes have evolved from a common ancestral gene. We then extended this mapping study to other protein-noncoding snoRNA-HGs, and found again that they are syntenic, implying that they have evolved from genes of common ancestral species. Furthermore, on these syntenic segments, exons of adjacent protein-coding genes were found to be far better conserved than those of noncoding HGs, suggesting that the exons of protein-noncoding snoRNA-HGs have been much more fragile during evolution.
Collapse
Affiliation(s)
- Ritsuko Tanaka-Fujita
- Division of Pathology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | | | | | | | | |
Collapse
|
109
|
Royo H, Basyuk E, Marty V, Marques M, Bertrand E, Cavaillé J. Bsr, a nuclear-retained RNA with monoallelic expression. Mol Biol Cell 2007; 18:2817-27. [PMID: 17507654 PMCID: PMC1949380 DOI: 10.1091/mbc.e06-10-0920] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The imprinted Dlk1-Gtl2 and Prader-Willi syndrome (PWS) regions are characterized by a complex noncoding transcription unit spanning arrays of tandemly repeated C/D RNA genes. These noncoding RNAs (ncRNAs) are thought to play an essential but still poorly understood role. To better understand the intracellular fate of these large ncRNAs, fluorescence in situ hybridization was carried out at the rat Dlk1-Gtl2 domain. This locus contains a approximately 100-kb-long gene cluster comprising 86 homologous RBII-36 C/D RNA gene copies, all of them intron-encoded within the ncRNA gene Bsr. Here, we demonstrate that the Bsr gene is monoallelically expressed in primary rat embryonic fibroblasts as well as in hypothalamic neurons and yields a large amount of unspliced and spliced RNAs at the transcription site, mostly as elongated RNA signals. Surprisingly, spliced Bsr RNAs released from the transcription site mainly concentrate as numerous, stable nuclear foci that do not colocalize with any known subnuclear structures. On drug treatments, a fraction of Bsr RNA relocalizes to the cytoplasm and associates with stress granules (SGs), but not with P-bodies, pointing to a potential link between SGs and the metabolism of ncRNA. Thus, Bsr might represent a novel type of nuclear-retained transcript.
Collapse
Affiliation(s)
- Hélène Royo
- *Laboratoire de Biologie Moléculaire Eucaryote-Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5095, Institut d'Exploration Fonctionnelle des Génomes 109, 31062 Cedex Toulouse, France; and
| | - Eugenia Basyuk
- Institut Génétique Moléculaire Montpellier-Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5535, Université Montpellier II, 34293 Montpellier Cedex 5, France
| | - Virginie Marty
- *Laboratoire de Biologie Moléculaire Eucaryote-Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5095, Institut d'Exploration Fonctionnelle des Génomes 109, 31062 Cedex Toulouse, France; and
| | - Maud Marques
- *Laboratoire de Biologie Moléculaire Eucaryote-Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5095, Institut d'Exploration Fonctionnelle des Génomes 109, 31062 Cedex Toulouse, France; and
| | - Edouard Bertrand
- Institut Génétique Moléculaire Montpellier-Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5535, Université Montpellier II, 34293 Montpellier Cedex 5, France
| | - Jérôme Cavaillé
- *Laboratoire de Biologie Moléculaire Eucaryote-Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5095, Institut d'Exploration Fonctionnelle des Génomes 109, 31062 Cedex Toulouse, France; and
| |
Collapse
|
110
|
Abstract
SUMMARY
It is usually thought that the development of complex organisms is controlled by protein regulatory factors and morphogenetic signals exchanged between cells and differentiating tissues during ontogeny. However, it is now evident that the majority of all animal genomes is transcribed, apparently in a developmentally regulated manner, suggesting that these genomes largely encode RNA machines and that there may be a vast hidden layer of RNA regulatory transactions in the background. I propose that the epigenetic trajectories of differentiation and development are primarily programmed by feed-forward RNA regulatory networks and that most of the information required for multicellular development is embedded in these networks, with cell–cell signalling required to provide important positional information and to correct stochastic errors in the endogenous RNA-directed program.
Collapse
Affiliation(s)
- John S Mattick
- ARC Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, St Lucia QLD 4072, Australia.
| |
Collapse
|
111
|
Huang ZP, Chen CJ, Zhou H, Li BB, Qu LH. A combined computational and experimental analysis of two families of snoRNA genes from Caenorhabditis elegans, revealing the expression and evolution pattern of snoRNAs in nematodes. Genomics 2007; 89:490-501. [PMID: 17222528 DOI: 10.1016/j.ygeno.2006.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 11/09/2006] [Accepted: 12/02/2006] [Indexed: 12/28/2022]
Abstract
Small nucleolar RNAs (snoRNAs) are an abundant group of noncoding RNAs mainly involved in the posttranscriptional modifications of rRNAs in eukaryotes. Prior to this study, only 28 snoRNA genes had been identified from Caenorhabditis elegans, indicating that most snoRNA genes are hidden in the worm genome, which represents a simple multicellular metazoan. In this study, a genome-wide analysis of the two major families of snoRNA genes in C. elegans was performed using the snoscan and snoGPS programs incorporating comparative genome analyses. Seventy gene variants, including 36 box C/D and 34 box H/ACA snoRNA genes, were identified, of which 50 are novel. Two families of snoRNAs showed a characteristic genomic organization. Notably, 6 box C/D snoRNA genes were located in the antisense orientation of introns. In contrast to insect and mammal, the distances between many intronic snoRNAs and 3' splice sites of introns were less than 50 nt in the worm, an unexpected finding as intron-encoded snoRNAs in C. elegans are supposed to be expressed in a splicing-dependent pathway. Interestingly, a canonical H/ACA snoRNA, PsiCeU5-48, was revealed to be partially homologous to small Cajal body-specific RNA (scaRNA) U85 and U89 in fly and human, indicating a possible evolutionary relationship between snoRNAs and scaRNAs.
Collapse
Affiliation(s)
- Zhan-Peng Huang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Zhongshan University, Guangzhou, 510275, China
| | | | | | | | | |
Collapse
|
112
|
Zheng D, Gerstein MB. The ambiguous boundary between genes and pseudogenes: the dead rise up, or do they? Trends Genet 2007; 23:219-24. [PMID: 17382428 DOI: 10.1016/j.tig.2007.03.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 02/06/2007] [Accepted: 03/09/2007] [Indexed: 10/23/2022]
Abstract
Pseudogenes have long been considered to be 'dead', nonfunctional by-products of genome evolution. However, several lines of evidence now show that some pseudogenes are transcriptionally 'alive', and a few might even have biochemical roles. Therefore, the boundary between genes (often considered to be 'living') and pseudogenes (often considered to be 'dead') might be ambiguous and difficult to define. Here, we examine the evidence for and against pseudogene functionality, and we argue that the time is ripe for revising the definition of a pseudogene. Furthermore, we suggest a classification system to accommodate pseudogenes with various levels of functionality.
Collapse
Affiliation(s)
- Deyou Zheng
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA.
| | | |
Collapse
|
113
|
Makarova JA, Kramerov DA. Small nucleolar RNA genes. RUSS J GENET+ 2007. [DOI: 10.1134/s1022795407020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
114
|
Yoshihama M, Nguyen HD, Kenmochi N. Intron dynamics in ribosomal protein genes. PLoS One 2007; 2:e141. [PMID: 17206276 PMCID: PMC1764039 DOI: 10.1371/journal.pone.0000141] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 11/09/2006] [Indexed: 11/26/2022] Open
Abstract
The role of spliceosomal introns in eukaryotic genomes remains obscure. A large scale analysis of intron presence/absence patterns in many gene families and species is a necessary step to clarify the role of these introns. In this analysis, we used a maximum likelihood method to reconstruct the evolution of 2,961 introns in a dataset of 76 ribosomal protein genes from 22 eukaryotes and validated the results by a maximum parsimony method. Our results show that the trends of intron gain and loss differed across species in a given kingdom but appeared to be consistent within subphyla. Most subphyla in the dataset diverged around 1 billion years ago, when the “Big Bang” radiation occurred. We speculate that spliceosomal introns may play a role in the explosion of many eukaryotes at the Big Bang radiation.
Collapse
Affiliation(s)
- Maki Yoshihama
- Frontier Science Research Center, University of Miyazaki, Kiyotake, Miyazaki, Japan
| | - Hung D. Nguyen
- Frontier Science Research Center, University of Miyazaki, Kiyotake, Miyazaki, Japan
| | - Naoya Kenmochi
- Frontier Science Research Center, University of Miyazaki, Kiyotake, Miyazaki, Japan
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
115
|
Abstract
Research into the origins of introns is at a critical juncture in the resolution of theories on the evolution of early life (which came first, RNA or DNA?), the identity of LUCA (the last universal common ancestor, was it prokaryotic- or eukaryotic-like?), and the significance of noncoding nucleotide variation. One early notion was that introns would have evolved as a component of an efficient mechanism for the origin of genes. But alternative theories emerged as well. From the debate between the "introns-early" and "introns-late" theories came the proposal that introns arose before the origin of genetically encoded proteins and DNA, and the more recent "introns-first" theory, which postulates the presence of introns at that early evolutionary stage from a reconstruction of the "RNA world." Here we review seminal and recent ideas about intron origins. Recent discoveries about the patterns and causes of intron evolution make this one of the most hotly debated and exciting topics in molecular evolutionary biology today.
Collapse
Affiliation(s)
- Francisco Rodríguez-Trelles
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697-2525, USA.
| | | | | |
Collapse
|
116
|
Abstract
Small nucleolar RNAs (snoRNAs) of the H/ACA box and C/D box categories guide the pseudouridylation and the 2′-O-ribose methylation of ribosomal RNAs by forming short duplexes with their target. Similarly, small Cajal body–specific RNAs (scaRNAs) guide modifications of spliceosomal RNAs. The vast majority of vertebrate sno/scaRNAs are located in introns of genes transcribed by RNA polymerase II and processed by exonucleolytic trimming after splicing. A bioinformatic search for orthologues of human sno/scaRNAs in sequenced mammalian genomes reveals the presence of species- or lineage-specific sno/scaRNA retroposons (sno/scaRTs) characterized by an A-rich tail and an ∼14-bp target site duplication that corresponds to their insertion site, as determined by interspecific genomic alignments. Three classes of snoRTs are defined based on the extent of intron and exon sequences from the snoRNA parental host gene they contain. SnoRTs frequently insert in gene introns in the sense orientation at genomic hot spots shared with other genetic mobile elements. Previously characterized human snoRNAs are encoded in retroposons whose parental copies can be identified by phylogenic analysis, showing that snoRTs can be faithfully processed. These results identify snoRNAs as a new family of mobile genetic elements. The insertion of new snoRNA copies might constitute a safeguard mechanism by which the biological activity of snoRNAs is maintained in spite of the risk of mutations in the parental copy. I furthermore propose that retroposition followed by genetic drift is a mechanism that increased snoRNA diversity during vertebrate evolution to eventually acquire new RNA-modification functions. Large parts of vertebrate genomes are made of repeated sequences that were first considered to be junk DNA, but are now recognized as important actors in genome evolution. Most are genetic mobile elements that can gain additional genomic copies by a copy-and-paste mechanism involving an RNA intermediate. One class, the L1 elements, encodes two proteins required for its integration at new sites. Others, like primate Alu elements, hijack the L1 machinery for their mobilization, and are thus referred to as nonautonomous. In this article, Weber describes a new class of vertebrate nonautonomous mobile elements derived from small nucleolar RNAs (snoRNAs). These nonprotein-coding RNAs are encoded in gene introns and are involved in chemical modifications of selected bases of ribosomal RNAs. The article shows that new snoRNA copies were generated in vertebrate genomes via the copy-and-paste mechanism. Many of them are species-specific, and their insertion point was precisely determined by alignment with the corresponding genomic portion from a neighbour species. The mobilization of snoRNA gene sequences might ensure the presence of a functional copy when the parental one becomes invalidated by mutations. Moreover, such copies could evolve on their own to acquire the capacity of guiding new modifications of ribosomal RNAs.
Collapse
Affiliation(s)
- Michel J Weber
- Laboratoire de Biologie Moléculaire Eucaryote, CNRS/Université de Toulouse-Paul Sabatier, Toulouse, France.
| |
Collapse
|
117
|
Identification and evolutionary implication of four novel box H/ACA snoRNAs from Giardia lamblia. ACTA ACUST UNITED AC 2006. [DOI: 10.1007/s11434-006-2131-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
118
|
Missal K, Zhu X, Rose D, Deng W, Skogerbø G, Chen R, Stadler PF. Prediction of structured non-coding RNAs in the genomes of the nematodesCaenorhabditis elegans andCaenorhabditis briggsae. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2006; 306:379-92. [PMID: 16425273 DOI: 10.1002/jez.b.21086] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We present a survey for non-coding RNAs and other structured RNA motifs in the genomes of Caenorhabditis elegans and Caenorhabditis briggsae using the RNAz program. This approach explicitly evaluates comparative sequence information to detect stabilizing selection acting on RNA secondary structure. We detect 3,672 structured RNA motifs, of which only 678 are known non-translated RNAs (ncRNAs) or clear homologs of known C. elegans ncRNAs. Most of these signals are located in introns or at a distance from known protein-coding genes. With an estimated false positive rate of about 50% and a sensitivity on the order of 50%, we estimate that the nematode genomes contain between 3,000 and 4,000 RNAs with evolutionary conserved secondary structures. Only a small fraction of these belongs to the known RNA classes, including tRNAs, snoRNAs, snRNAs, or microRNAs. A relatively small class of ncRNA candidates is associated with previously observed RNA-specific upstream elements.
Collapse
Affiliation(s)
- Kristin Missal
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstrasse 16 18, D 04107 Leipzig, Germany.
| | | | | | | | | | | | | |
Collapse
|
119
|
Zemann A, op de Bekke A, Kiefmann M, Brosius J, Schmitz J. Evolution of small nucleolar RNAs in nematodes. Nucleic Acids Res 2006; 34:2676-85. [PMID: 16714446 PMCID: PMC1464110 DOI: 10.1093/nar/gkl359] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In contrast to mRNAs, which are templates for translating proteins, non-protein coding (npc) RNAs (also known as ‘non-coding’ RNA, ncRNA), exhibit various functions in different compartments and developmental stages of the cell. Small nucleolar RNAs (snoRNAs), one of the largest classes of npcRNAs, guide post-transcriptional modifications of other RNAs that are crucial for appropriate RNA folding as well as for RNA–RNA and RNA–protein interactions. Although snoRNA genes comprise a significant fraction of the eutherian genome, identifying and characterizing large numbers of them is not sufficiently accessible by classical computer searches alone. Furthermore, most previous investigations of snoRNAs yielded only limited indications of their evolution. Using data obtained by a combination of high-throughput cDNA library screening and computational search strategies based on a modified DNAMAN program, we characterized 151 npcRNAs, and in particular 121 snoRNAs, from Caenorhabditis elegans and extensively compared them with those in the related, Caenorhabditis briggsae. Detailed comparisons of paralog snoRNAs in the two nematodes revealed, in addition to trans-duplication, a novel, cis-duplication distribution strategy with insertions near to the original loci. Some snoRNAs coevolved with their modification target sites, demonstrating the close interaction of complementary regions. Some target sites modified by snoRNAs were changed, added or lost, documenting a high degree of evolutionary plasticity of npcRNAs.
Collapse
MESH Headings
- Animals
- Caenorhabditis/genetics
- Caenorhabditis elegans/genetics
- Computational Biology
- Evolution, Molecular
- Gene Duplication
- Gene Library
- Phylogeny
- RNA, Helminth/chemistry
- RNA, Helminth/classification
- RNA, Helminth/genetics
- RNA, Ribosomal/chemistry
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/classification
- RNA, Small Nucleolar/genetics
- RNA, Untranslated/classification
- RNA, Untranslated/genetics
Collapse
Affiliation(s)
- Anja Zemann
- Institute of Experimental Pathology (ZMBE), University of Münster, D-48149 Münster, Germany
| | | | | | | | | |
Collapse
|
120
|
Abstract
This review highlights the unexpectedly complicated nuclear egress and nuclear import of small RNAs. Although nucleus/cytoplasm trafficking was thought to be restricted to snRNAs of many, but not all, eukaryotes, recent data indicate that such traffic may be more common than previously appreciated. First, in conflict with numerous previous reports, new information indicates that Saccharomyces cerevisiae snRNAs may cycle between the nucleus and the cytoplasm. Second, recent studies also provide evidence that other small RNAs that function exclusively in the nucleus-the budding yeast telomerase RNA and possibly small nucleolar RNAs-may exit to the cytoplasm, only to return to the nucleus. Third, nucleus/cytoplasm cycling of RNAs also occurs for RNAs that function solely in the cytoplasm, as it has been discovered that cytoplasmic tRNAs of budding yeast travel "retrograde" to the nucleus and, perhaps, back again to the cytoplasm to function in protein synthesis. Fourth, there is at least one example in ciliates of small double-stranded RNAs traveling multiple cycles between the cytoplasm and distinct nuclei to direct genome structure. This report discusses data that support or argue against nucleus/cytoplasm bidirectional movement for each category of small RNA and the possible roles that such movement may serve.
Collapse
Affiliation(s)
- Anita K Hopper
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| |
Collapse
|
121
|
Xiao Y, Zhou H, Qu LH. Characterization of three novel imprinted snoRNAs from mouse Irm gene. Biochem Biophys Res Commun 2006; 340:1217-23. [PMID: 16405918 DOI: 10.1016/j.bbrc.2005.12.128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Accepted: 12/20/2005] [Indexed: 11/29/2022]
Abstract
Most, if not all, of snoRNAs in mammals are intron-encoded, implying the expressional and functional relativeness between the snoRNA and their hosts. By computational analysis of an intron database extracted from 65 known mouse imprinted genes, three novel orphan box C/D snoRNAs were identified from Irm gene which is maternally expressed and related to human disorders. The snoRNAs were positively detected and found to express in all the mouse tissues except kidney. The imprinted snoRNAs exhibit stringent structures, but quite variable in locations at their host introns, suggesting their maturation probably through a splicing independent manner. We characterized Irm as a new kind of snoRNA host gene which has no protein-coding capacity and no 5'TOP structure in its mRNA. The newly identified snoRNAs appear mouse-specific, however, their function remains to be elucidated.
Collapse
Affiliation(s)
- Yu Xiao
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Zhongshan University, Guangzhou 510275, People's Republic of China
| | | | | |
Collapse
|
122
|
Combs DJ, Nagel RJ, Ares M, Stevens SW. Prp43p is a DEAH-box spliceosome disassembly factor essential for ribosome biogenesis. Mol Cell Biol 2006; 26:523-34. [PMID: 16382144 PMCID: PMC1346896 DOI: 10.1128/mcb.26.2.523-534.2006] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Revised: 07/13/2005] [Accepted: 10/17/2005] [Indexed: 11/20/2022] Open
Abstract
The known function of the DEXH/D-box protein Prp43p is the removal of the U2, U5, and U6 snRNPs from the postsplicing lariat-intron ribonucleoprotein complex. We demonstrate that affinity-purified Prp43p-associated material includes the expected spliceosomal components; however, we also identify several preribosomal complexes that are specifically purified with Prp43p. Conditional prp43 mutant alleles confer a 35S pre-rRNA processing defect, with subsequent depletion of 27S and 20S precursors. Upon a shift to a nonpermissive temperature, both large and small-ribosomal-subunit proteins accumulate in the nucleolus of prp43 mutants. Pulse-chase analysis demonstrates delayed kinetics of 35S, 27S, and 20S pre-rRNA processing with turnover of these intermediates. Microarray analysis of pre-mRNA splicing defects in prp43 mutants shows a very mild effect, similar to that of nonessential pre-mRNA splicing factors. Prp43p is the first DEXH/D-box protein shown to function in both RNA polymerase I and polymerase II transcript metabolism. Its essential function is in its newly characterized role in ribosome biogenesis of both ribosomal subunits, positioning Prp43p to regulate both pre-mRNA splicing and ribosome biogenesis.
Collapse
Affiliation(s)
- D Joshua Combs
- Program in Cellular and Molecular Biology, University of Texas at Austin, 1 University Station #A4800, 2500 Speedway 2.448, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
123
|
Vo N, Klein ME, Varlamova O, Keller DM, Yamamoto T, Goodman RH, Impey S. A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci U S A 2005; 102:16426-31. [PMID: 16260724 PMCID: PMC1283476 DOI: 10.1073/pnas.0508448102] [Citation(s) in RCA: 671] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) regulate cellular fate by controlling the stability or translation of mRNA transcripts. Although the spatial and temporal patterning of miRNA expression is tightly controlled, little is known about signals that induce their expression nor mechanisms of their transcriptional regulation. Furthermore, few miRNA targets have been validated experimentally. The miRNA, miR132, was identified through a genome-wide screen as a target of the transcription factor, cAMP-response element binding protein (CREB). miR132 is enriched in neurons and, like many neuronal CREB targets, is highly induced by neurotrophins. Expression of miR132 in cortical neurons induced neurite outgrowth. Conversely, inhibition of miR132 function attenuated neuronal outgrowth. We provide evidence that miR132 regulates neuronal morphogenesis by decreasing levels of the GTPase-activating protein, p250GAP. These data reveal that a CREB-regulated miRNA regulates neuronal morphogenesis by responding to extrinsic trophic cues.
Collapse
Affiliation(s)
- Ngan Vo
- Vollum Institute, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | | | | | | | | | | | |
Collapse
|
124
|
Makarova JA, Kramerov DA. Noncoding RNA of U87 host gene is associated with ribosomes and is relatively resistant to nonsense-mediated decay. Gene 2005; 363:51-60. [PMID: 16226852 DOI: 10.1016/j.gene.2005.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 08/17/2005] [Accepted: 08/18/2005] [Indexed: 12/01/2022]
Abstract
Non-coding RNAs are involved in many cellular processes. In particular, most of C/D box small nucleolar RNAs (snoRNAs) function as guide RNAs in site-specific 2'-O-methylation of rRNAs. While most snoRNA genes reside in introns of protein-coding genes, here we demonstrated an unusual snoRNA gene occupying an intron of a previously unknown non-protein-coding gene U87HG. We characterized this host gene in human, mouse, rat, and dog. It is a member of 5'TOP gene family, which includes many translation apparatus genes. U87HG RNA carried multiple stop-codons and was associated with ribosomes, suggesting that it may be a target for nonsense-mediated mRNA decay (NMD), a process that eliminates transcripts bearing nonsense mutations. Surprisingly, we found that U87HG RNA was hardly susceptible to NMD. Possible mechanisms (translation reinitiation, ribosomal leaky scanning, and low efficiency of translation) of this phenomenon are discussed. Unlike transcripts of four other known non-protein-coding host genes, U87HG RNA shows a relatively high degree of conservation suggesting a selective pressure and a possible functional activity of U87HG apart from producing U87 snoRNA.
Collapse
Affiliation(s)
- Julia A Makarova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
125
|
Huang ZP, Zhou H, He HL, Chen CL, Liang D, Qu LH. Genome-wide analyses of two families of snoRNA genes from Drosophila melanogaster, demonstrating the extensive utilization of introns for coding of snoRNAs. RNA (NEW YORK, N.Y.) 2005; 11:1303-16. [PMID: 15987805 PMCID: PMC1370813 DOI: 10.1261/rna.2380905] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Small nucleolar RNAs (snoRNAs) are an abundant group of noncoding RNAs mainly involved in the post-transcriptional modifications of rRNAs in eukaryotes. In this study, a large-scale genome-wide analysis of the two major families of snoRNA genes in the fruit fly Drosophila melanogaster has been performed using experimental and computational RNomics methods. Two hundred and twelve gene variants, encoding 56 box H/ACA and 63 box C/D snoRNAs, were identified, of which 57 novel snoRNAs have been reported for the first time. These snoRNAs were predicted to guide a total of 147 methylations and pseudouridylations on rRNAs and snRNAs, showing a more comprehensive pattern of rRNA modification in the fruit fly. With the exception of nine, all the snoRNAs identified to date in D. melanogaster are intron encoded. Remarkably, the genomic organization of the snoRNAs is characteristic of 8 dUhg genes and 17 intronic gene clusters, demonstrating that distinct organizations dominate the expression of the two families of snoRNAs in the fruit fly. Of the 267 introns in the host genes, more than half have been identified as host introns for coding of snoRNAs. In contrast to mammals, the variation in size of the host introns is mainly due to differences in the number of snoRNAs they contain. These results demonstrate the extensive utilization of introns for coding of snoRNAs in the host genes and shed light on further research of other noncoding RNA genes in the large introns of the Drosophila genome.
Collapse
Affiliation(s)
- Zhan-Peng Huang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, Zhongshan University, Guangzhou 510275, Republic of China
| | | | | | | | | | | |
Collapse
|
126
|
Abstract
Mammalian cells harbor numerous small non-protein-coding RNAs, including small nucleolar RNAs (snoRNAs), microRNAs (miRNAs), short interfering RNAs (siRNAs) and small double-stranded RNAs, which regulate gene expression at many levels including chromatin architecture, RNA editing, RNA stability, translation, and quite possibly transcription and splicing. These RNAs are processed by multistep pathways from the introns and exons of longer primary transcripts, including protein-coding transcripts. Most show distinctive temporal- and tissue-specific expression patterns in different tissues, including embryonal stem cells and the brain, and some are imprinted. Small RNAs control a wide range of developmental and physiological pathways in animals, including hematopoietic differentiation, adipocyte differentiation and insulin secretion in mammals, and have been shown to be perturbed in cancer and other diseases. The extent of transcription of non-coding sequences and the abundance of small RNAs suggests the existence of an extensive regulatory network on the basis of RNA signaling which may underpin the development and much of the phenotypic variation in mammals and other complex organisms and which may have different genetic signatures from sequences encoding proteins.
Collapse
Affiliation(s)
- John S Mattick
- ARC Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia.
| | | |
Collapse
|
127
|
|
128
|
Li SG, Zhou H, Luo YP, Zhang P, Qu LH. Identification and functional analysis of 20 Box H/ACA small nucleolar RNAs (snoRNAs) from Schizosaccharomyces pombe. J Biol Chem 2005; 280:16446-55. [PMID: 15716270 DOI: 10.1074/jbc.m500326200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Considering all small nucleolar RNAs (snoRNAs) enriched in the nucleolus, we generated a specialized cDNA library of small nuclear RNAs from Schizosaccharomyces pombe and isolated, for the first time, 20 novel box H/ACA snoRNAs. Thirteen of these were characterized as novel guides that were predicted to direct 19 pseudouridylations in 18 S and 25 S rRNAs. The remaining seven snoRNAs were considered as orphan guides that lack sequence complementarity to either rRNAs or snRNAs. We have experimentally demonstrated the function of the 10 novel snoRNAs by gene deletion in the fission yeast. The snoRNAs were shown to be dispensable for the viability of S. pombe, although an impact of snR94 depletion on yeast growth, especially at 23 degrees C, was revealed. A total of 30 pseudouridylation sites were precisely mapped in the S. pombe rRNAs, showing a distinctive pseudouridylation pattern in the budding yeast. Interestingly, the absence of pseudouridylation on U2347 in S. pombe 25 S rRNA pointed out a critical role for Psi2345 in conferring a growth advantage for yeast. In contrast to the intron-encoded box C/D sno-RNAs in yeast, all box H/ACA snoRNAs appeared to be transcribed independently from intergenic regions between two protein-coding genes, except for snR35, which was nested in an open reading frame encoding for a hypothetical protein, although expressed from the opposite strand. Remarkably, snR90 was cotranscribed with an intron-encoded box C/D snoRNA, and this is the first demonstration of a non-coding RNA gene that encodes two different types of snoRNAs by its exon and intron. A detailed comparison of the S. pombe snoRNAs, with their functional homologues in diverse organisms, suggests a mechanism by which the snoRNAs have evolved in coordination with rRNAs to preserve the post-transcriptional modification sites among distant eukaryotes.
Collapse
Affiliation(s)
- Si-Guang Li
- Key Laboratory of Gene Engineering of the Ministry of Education, Biotechnology Research Center, Zhongshan University, Guangzhou 510275, China
| | | | | | | | | |
Collapse
|
129
|
Fischer HP. Towards quantitative biology: integration of biological information to elucidate disease pathways and to guide drug discovery. BIOTECHNOLOGY ANNUAL REVIEW 2005; 11:1-68. [PMID: 16216773 DOI: 10.1016/s1387-2656(05)11001-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Developing a new drug is a tedious and expensive undertaking. The recently developed high-throughput experimental technologies, summarised by the terms genomics, transcriptomics, proteomics and metabolomics provide for the first time ever the means to comprehensively monitor the molecular level of disease processes. The "-omics" technologies facilitate the systematic characterisation of a drug target's physiology, thereby helping to reduce the typically high attrition rates in discovery projects, and improving the overall efficiency of pharmaceutical research processes. Currently, the bottleneck for taking full advantage of the new experimental technologies are the rapidly growing volumes of automatically produced biological data. A lack of scalable database systems and computational tools for target discovery has been recognised as a major hurdle. In this review, an overview will be given on recent progress in computational biology that has an impact on drug discovery applications. The focus will be on novel in silico methods to reconstruct regulatory networks, signalling cascades, and metabolic pathways, with an emphasis on comparative genomics and microarray-based approaches. Promising methods, such as the mathematical simulation of pathway dynamics are discussed in the context of applications in discovery projects. The review concludes by exemplifying concrete data-driven studies in pharmaceutical research that demonstrate the value of integrated computational systems for drug target identification and validation, screening assay development, as well as drug candidate efficacy and toxicity evaluations.
Collapse
|
130
|
Mechanisms and functions of RNA-guided RNA modification. FINE-TUNING OF RNA FUNCTIONS BY MODIFICATION AND EDITING 2004. [DOI: 10.1007/b105585] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
131
|
Abstract
Conservation of microRNAs (miRNAs) among species suggests that they bear conserved biological functions. However, sequencing of new miRNAs has not always been accompanied by a search for orthologues in other species. I report herein the results of a systematic search for interspecies orthologues of miRNA precursors, leading to the identification of 35 human and 45 mouse new putative miRNA genes. MicroRNA tracks were written to visualize miRNAs in human and mouse genomes on the UCSC Genome Browser. Based on their localization, miRNA precursors can be excised either from introns or exons of mRNAs. When intronic miRNAs are antisense to the apparent host gene, they appear to originate from ill-characterized antisense transcription units. Exonic miRNAs are, in general, nonprotein-coding, poorly conserved genes in sense orientation. In three cases, the excision of an miRNA from a protein-coding mRNA might lead to the degradation of the rest of the transcript. Moreover, three new examples of miRNAs fully complementary to an mRNA are reported. Among these, miR135a might control the stability and/or translation of an alternative form of the glycerate kinase mRNA by RNA interference. I also discuss the presence of human miRNAs in introns of paralogous genes and in miRNA clusters.
Collapse
Affiliation(s)
- Michel J Weber
- Laboratoire de Biologie Moléculaire Eucaryote, UMR5099, CNRS and Université Paul Sabatier, IFR109, Toulouse, France.
| |
Collapse
|
132
|
Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A. Identification of mammalian microRNA host genes and transcription units. Genome Res 2004; 14:1902-10. [PMID: 15364901 PMCID: PMC524413 DOI: 10.1101/gr.2722704] [Citation(s) in RCA: 1453] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Accepted: 07/27/2004] [Indexed: 12/13/2022]
Abstract
To derive a global perspective on the transcription of microRNAs (miRNAs) in mammals, we annotated the genomic position and context of this class of noncoding RNAs (ncRNAs) in the human and mouse genomes. Of the 232 known mammalian miRNAs, we found that 161 overlap with 123 defined transcription units (TUs). We identified miRNAs within introns of 90 protein-coding genes with a broad spectrum of molecular functions, and in both introns and exons of 66 mRNA-like noncoding RNAs (mlncRNAs). In addition, novel families of miRNAs based on host gene identity were identified. The transcription patterns of all miRNA host genes were curated from a variety of sources illustrating spatial, temporal, and physiological regulation of miRNA expression. These findings strongly suggest that miRNAs are transcribed in parallel with their host transcripts, and that the two different transcription classes of miRNAs ('exonic' and 'intronic') identified here may require slightly different mechanisms of biogenesis.
Collapse
Affiliation(s)
- Antony Rodriguez
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | | | | | | |
Collapse
|
133
|
García JH, Osuna MD, Castrejon FM, Enriquez LG, Reyes PA, Hermosillo JJC. Methods to detect antifibrillarin antibodies in patients with systemic sclerosis (SSc): a comparison. J Clin Lab Anal 2004; 18:19-26. [PMID: 14730553 PMCID: PMC6808019 DOI: 10.1002/jcla.20003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Autoantibodies against nucleolar antigens are common in systemic sclerosis (SSc). They include autoantibodies against fibrillarin (Fb), which are serological markers for SSc. Fb is associated with the evolutionally-conserved box C/D of small nucleolar RNAs (snoRNAs). We compared indirect immunofluorescence (IIF), Western blot (WB), and immunoprecipitation (IPP) of total small RNAs assays to determine which of these techniques is most specific for the detection of snoRNPs. We also examined the frequency and specificity of autoantibodies from SSc patients to snoRNAs, snRNAs, and scRNAs, and concluded that 1) IIF can not determine autoantibody specificity against Fb, 2) 36% of SSc sera were false-negative by WB, and 3) by IPP, anti-Fb autoantibodies from SSc patients can bind U3, U8, U13, U15, and U22 snoRNAs.
Collapse
Affiliation(s)
- Josefina Huerta García
- Department of Molecular Biochemistry, Centro de Biología Experimental, Universidad Autónoma de Zacatecas, Guadalupe, Mexico
| | - Monica Delgado Osuna
- Department of Molecular Biochemistry, Centro de Biología Experimental, Universidad Autónoma de Zacatecas, Guadalupe, Mexico
| | - Filiberto Martinez Castrejon
- Department of Molecular Biochemistry, Centro de Biología Experimental, Universidad Autónoma de Zacatecas, Guadalupe, Mexico
| | - Laura Guzman Enriquez
- Department of Molecular Biochemistry, Centro de Biología Experimental, Universidad Autónoma de Zacatecas, Guadalupe, Mexico
| | - Pedro A. Reyes
- Department of Immunology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico, D.F
| | - J. Jesus Cortes Hermosillo
- Department of Molecular Biochemistry, Centro de Biología Experimental, Universidad Autónoma de Zacatecas, Guadalupe, Mexico
| |
Collapse
|
134
|
Huang ZP, Zhou H, Liang D, Qu LH. Different expression strategy: multiple intronic gene clusters of box H/ACA snoRNA in Drosophila melanogaster. J Mol Biol 2004; 341:669-83. [PMID: 15288778 DOI: 10.1016/j.jmb.2004.06.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2004] [Revised: 05/24/2004] [Accepted: 06/14/2004] [Indexed: 11/30/2022]
Abstract
The high degree of rRNA pseudouridylation in Drosophila melanogaster provides a good model for studying the genomic organization, structural and functional diversity of box H/ACA small nucleolar RNAs (snoRNAs). Accounting for both conserved sequence motifs and secondary structures, we have developed a computer-assisted method for box H/ACA snoRNA searching. Ten snoRNA clusters containing 42 box H/ACA snoRNAs were identified from D.melanogaster. Strikingly, they are located in the introns of eight protein-coding genes. In contrast to the mode of one snoRNA per intron so far observed in all animals, our results demonstrate for the first time a novel polycistronic organization that implies a different expression strategy for a box H/ACA snoRNA gene when compared to box C/D snoRNAs in D.melanogaster. Mutiple isoforms of the box H/ACA snoRNAs, from which most clusters are made up, were observed in D.melanogaster. The degree of sequence similarity between the isoforms varies from 99% to 70%, implying duplication events in different periods and a trend of enlarging the intronic snoRNA clusters. The variation in the functional elements of the isoforms could lead to partial alternation of snoRNA's function in loss or gain of rRNA complementary sequences and probably contributes to the great diversity of rRNA pseudouridylation in D.melanogaster.
Collapse
Affiliation(s)
- Zhan-Peng Huang
- Key Laboratory of Gene Engineering of the Ministry of Education, Biotechnology Research Center, Zhongshan University, Guangzhou, 510275, People's Republic of China
| | | | | | | |
Collapse
|
135
|
Holbrook JA, Neu-Yilik G, Hentze MW, Kulozik AE. Nonsense-mediated decay approaches the clinic. Nat Genet 2004; 36:801-8. [PMID: 15284851 DOI: 10.1038/ng1403] [Citation(s) in RCA: 470] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Accepted: 06/16/2004] [Indexed: 11/09/2022]
Abstract
Nonsense-mediated decay (NMD) eliminates mRNAs containing premature termination codons and thus helps limit the synthesis of abnormal proteins. New results uncover a broader role of NMD as a pathway that also affects the expression of wild-type genes and alternative-splice products. Because the mechanisms by which NMD operates have received much attention, we discuss here the emerging awareness of the impact of NMD on the manifestation of human genetic diseases. We explore how an understanding of NMD accounts for phenotypic differences in diseases caused by premature termination codons. Specifically, we consider how the protective function of NMD sometimes benefits heterozygous carriers and, in contrast, sometimes contributes to a clinical picture of protein deficiency by inhibiting expression of partially functional proteins. Potential 'NMD therapeutics' will therefore need to strike a balance between the general physiological benefits of NMD and its detrimental effects in cases of specific genetic mutations.
Collapse
Affiliation(s)
- Jill A Holbrook
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
136
|
Kiss AM, Jády BE, Bertrand E, Kiss T. Human box H/ACA pseudouridylation guide RNA machinery. Mol Cell Biol 2004; 24:5797-807. [PMID: 15199136 PMCID: PMC480876 DOI: 10.1128/mcb.24.13.5797-5807.2004] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Revised: 03/23/2004] [Accepted: 04/01/2004] [Indexed: 01/15/2023] Open
Abstract
Pseudouridine, the most abundant modified nucleoside in RNA, is synthesized by posttranscriptional isomerization of uridines. In eukaryotic RNAs, site-specific synthesis of pseudouridines is directed primarily by box H/ACA guide RNAs. In this study, we have identified 61 novel putative pseudouridylation guide RNAs by construction and characterization of a cDNA library of human box H/ACA RNAs. The majority of the new box H/ACA RNAs are predicted to direct pseudouridine synthesis in rRNAs and spliceosomal small nuclear RNAs. We can attribute RNA-directed modification to 79 of the 97 pseudouridylation sites present in the human 18S, 5.8S, and 28S rRNAs and to 11 of the 21 pseudouridines reported for the U1, U2, U4, U5, and U6 spliceosomal RNAs. We have also identified 12 novel box H/ACA RNAs which lack apparent target pseudouridines in rRNAs and small nuclear RNAs. These putative guide RNAs likely function in the pseudouridylation of some other types of cellular RNAs, suggesting that RNA-guided pseudouridylation is more general than assumed before. The genomic organization of the new box H/ACA RNA genes indicates that in human cells, all box H/ACA pseudouridylation guide RNAs are processed from introns of pre-mRNA transcripts which either encode a protein product or lack protein-coding capacity.
Collapse
Affiliation(s)
- Arnold M Kiss
- Laboratoire de Biologie Moleculaire Eucaryote du CNRS, UMR5099, IFR109 CNRS, Toulouse, France
| | | | | | | |
Collapse
|
137
|
Osipovich AB, White-Grindley EK, Hicks GG, Roshon MJ, Shaffer C, Moore JH, Ruley HE. Activation of cryptic 3' splice sites within introns of cellular genes following gene entrapment. Nucleic Acids Res 2004; 32:2912-24. [PMID: 15155860 PMCID: PMC419606 DOI: 10.1093/nar/gkh604] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gene trap vectors developed for genome-wide mutagenesis can be used to study factors governing the expression of exons inserted throughout the genome. For example, entrapment vectors consisting of a partial 3'-terminal exon [i.e. a neomycin resistance gene (Neo), a poly(A) site, but no 3' splice site] were typically expressed following insertion into introns, from cellular transcripts that spliced to cryptic 3' splice sites present either within the targeting vector or in the adjacent intron. A vector (U3NeoSV1) containing the wild-type Neo sequence preferentially disrupted genes that spliced in-frame to a cryptic 3' splice site in the Neo coding sequence and expressed functional neomycin phosphotransferase fusion proteins. Removal of the cryptic Neo 3' splice site did not reduce the proportion of clones with inserts in introns; rather, the fusion transcripts utilized cryptic 3' splice sites present in the adjacent intron or generated by virus integration. However, gene entrapment with U3NeoSV2 was considerably more random than with U3NeoSV1, consistent with the widespread occurrence of potential 3' splice site sequences in the introns of cellular genes. These results clarify the mechanisms of gene entrapment by U3 gene trap vectors and illustrate features of exon definition required for 3' processing and polyadenylation of cellular transcripts.
Collapse
Affiliation(s)
- Anna B Osipovich
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, TN 37232-2363, USA
| | | | | | | | | | | | | |
Collapse
|
138
|
Affiliation(s)
- John S Mattick
- ARC Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
139
|
Zhou H, Zhao J, Yu CH, Luo QJ, Chen YQ, Xiao Y, Qu LH. Identification of a novel box C/D snoRNA from mouse nucleolar cDNA library. Gene 2004; 327:99-105. [PMID: 14960365 DOI: 10.1016/j.gene.2003.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2003] [Revised: 06/24/2003] [Accepted: 11/07/2003] [Indexed: 11/28/2022]
Abstract
By construction and screen of mouse nucleolar cDNA library, a novel mammalian small nucleolar RNAs (snoRNA) was identified. The novel snoRNA, 70 nt in length, displays structural features typical of C/D box snoRNA family. The snoRNA possesses an 11-nt-long rRNA antisense element and is predicted to guide the 2'-O-methylation of mouse 28S rRNA at G4043, a site unknown so far to be modified in vertebrates. The comparison of functional element of snoRNA guides among eukaryotes reveals that the novel snoRNA is a mammalian counterpart of yeast snR38 despite highly divergent sequence between them. Mouse and human snR38 and other cognates in distant vertebrates were positively detected with slight length variability. As expected, the rRNA ribose-methylation site predicted by mouse snR38 was precisely mapped by specific-primer extension assay. Furthermore, our analyses show that mouse and human snR38 gene have multiple variants and are nested in the introns of different host genes with unknown function. Thus, snR38 is a phylogenetically conserved methylation guide but exhibits different genomic organization in eukaryotes.
Collapse
Affiliation(s)
- Hui Zhou
- Key Laboratory of Gene Engineering of the Ministry of Education, Biotechnology Research Center, Zhongshan University, Guangzhou 510275, PR China
| | | | | | | | | | | | | |
Collapse
|
140
|
Mattick JS. Challenging the dogma: the hidden layer of non-protein-coding RNAs in complex organisms. Bioessays 2003; 25:930-9. [PMID: 14505360 DOI: 10.1002/bies.10332] [Citation(s) in RCA: 317] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The central dogma of biology holds that genetic information normally flows from DNA to RNA to protein. As a consequence it has been generally assumed that genes generally code for proteins, and that proteins fulfil not only most structural and catalytic but also most regulatory functions, in all cells, from microbes to mammals. However, the latter may not be the case in complex organisms. A number of startling observations about the extent of non-protein-coding RNA (ncRNA) transcription in the higher eukaryotes and the range of genetic and epigenetic phenomena that are RNA-directed suggests that the traditional view of the structure of genetic regulatory systems in animals and plants may be incorrect. ncRNA dominates the genomic output of the higher organisms and has been shown to control chromosome architecture, mRNA turnover and the developmental timing of protein expression, and may also regulate transcription and alternative splicing. This paper re-examines the available evidence and suggests a new framework for considering and understanding the genomic programming of biological complexity, autopoietic development and phenotypic variation.
Collapse
Affiliation(s)
- John S Mattick
- ARC Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, St. Lucia QLD 4072, Australia.
| |
Collapse
|
141
|
Abstract
Small nucleolar RNAs (snoRNAs) are involved in precursor ribosomal RNA (pre-rRNA) processing and rRNA base modifications (2'-O-ribose methylation and pseudouridylation). Their genomic organization show great flexibility: some are individually or polycistronically transcribed, while others are encoded within introns of other genes. Here, we present an evolutionary analysis of the U49 gene in seven species. In all species analyzed, U49 contains the typical hallmarks of C and D box motifs, and a conserved 12-15 nt sequence complementary to rRNA that define them as homologs. In mouse, human, and Drosophila U49 is found encoded within introns of different genes, and in plants it is transcribed polycistronically from four different locations. In addition, U49 has two copies in two different introns of the RpL14 gene in Drosophila. The results indicate a substantial degree of duplication and translocation of the U49 gene in evolution. In light of its variable organization we discuss which of the two proposed mechanisms of rearrangement has acted upon the U49 snoRNA gene: chromosomal duplication or transposition through an RNA intermediate.
Collapse
Affiliation(s)
- Espen Enerly
- Division of Molecular Biology, Institute of Biology, University of Oslo, Blindern, Oslo, Norway
| | | | | | | |
Collapse
|
142
|
Gerbi SA, Borovjagin AV, Ezrokhi M, Lange TS. Ribosome biogenesis: role of small nucleolar RNA in maturation of eukaryotic rRNA. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:575-90. [PMID: 12762059 DOI: 10.1101/sqb.2001.66.575] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- S A Gerbi
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | |
Collapse
|
143
|
Numata K, Kanai A, Saito R, Kondo S, Adachi J, Wilming LG, Hume DA, Hayashizaki Y, Tomita M. Identification of putative noncoding RNAs among the RIKEN mouse full-length cDNA collection. Genome Res 2003; 13:1301-6. [PMID: 12819127 PMCID: PMC403720 DOI: 10.1101/gr.1011603] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
With the sequencing and annotation of genomes and transcriptomes of several eukaryotes, the importance of noncoding RNA (ncRNA)-RNA molecules that are not translated to protein products-has become more evident. A subclass of ncRNA transcripts are encoded by highly regulated, multi-exon, transcriptional units, are processed like typical protein-coding mRNAs and are increasingly implicated in regulation of many cellular functions in eukaryotes. This study describes the identification of candidate functional ncRNAs from among the RIKEN mouse full-length cDNA collection, which contains 60,770 sequences, by using a systematic computational filtering approach. We initially searched for previously reported ncRNAs and found nine murine ncRNAs and homologs of several previously described nonmouse ncRNAs. Through our computational approach to filter artifact-free clones that lack protein coding potential, we extracted 4280 transcripts as the largest-candidate set. Many clones in the set had EST hits, potential CpG islands surrounding the transcription start sites, and homologies with the human genome. This implies that many candidates are indeed transcribed in a regulated manner. Our results demonstrate that ncRNAs are a major functional subclass of processed transcripts in mammals.
Collapse
Affiliation(s)
- Koji Numata
- Graduate School of Media and Governance, Bioinformatics Program, Keio University, Fujisawa, Kanagawa 252-8520, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Chen CL, Liang D, Zhou H, Zhuo M, Chen YQ, Qu LH. The high diversity of snoRNAs in plants: identification and comparative study of 120 snoRNA genes from Oryza sativa. Nucleic Acids Res 2003; 31:2601-13. [PMID: 12736310 PMCID: PMC156054 DOI: 10.1093/nar/gkg373] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2003] [Revised: 02/18/2003] [Accepted: 03/25/2003] [Indexed: 11/14/2022] Open
Abstract
Using a powerful computer-assisted analysis strategy, a large-scale search of small nucleolar RNA (snoRNA) genes in the recently released draft sequence of the rice genome was carried out. This analysis identified 120 different box C/D snoRNA genes with a total of 346 gene variants, which were predicted to guide 135 2'-O-ribose methylation sites in rice rRNAs. Though not exhaustive, this analysis has revealed that rice has the highest number of known box C/D snoRNAs among eukaryotes. Interestingly, although many snoRNA genes are conserved between rice and Arabidopsis, almost half of the identified snoRNA genes are rice specific, which may highlight further the differences in rRNA methylation patterns between monocotyledons and dicotyledons. In addition to 76 singletons, 70 clusters involving 270 snoRNA genes were also found in rice. The large number of the novel snoRNA polycistrons found in the introns of rice protein-coding genes is in contrast to the one-snoRNA-per-intron organization of vertebrates and yeast, and of Arabidopsis in which only a few intronic snoRNA gene clusters were identified. Furthermore, due to a high degree of gene duplication, rice snoRNA genes are clearly redundant and exhibit great sequence variation among isoforms, allowing generation of new snoRNAs for selection. Thus, the large snoRNA gene family in plants can serve as an excellent model for a rapid and functional evolution.
Collapse
MESH Headings
- Base Sequence
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Gene Library
- Genes, Plant/genetics
- Genetic Variation
- Genome, Plant
- Methylation
- Molecular Sequence Data
- Multigene Family/genetics
- Oryza/genetics
- Plants/genetics
- RNA, Ribosomal/metabolism
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- Ribose/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- Chun-Long Chen
- Key Laboratory of Gene Engineering of the Ministry of Education, Biotechnology Research Center, Zhoushan University, Guangzhou 510275, China
| | | | | | | | | | | |
Collapse
|
145
|
Affiliation(s)
- Michael Snyder
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
146
|
Abstract
Non-coding ribonucleic acids (RNAs) do not contain a peptide-encoding open reading frame and are therefore not translated into proteins. They are expressed in all phyla, and in eukaryotic cells they are found in the nucleus, cytoplasm, and mitochondria. Non-coding RNAs either can exert structural functions, as do transfer and ribosomal RNAs, or they can regulate gene expression. Non-coding RNAs with regulatory functions differ in size ranging from a few nucleotides to over 100 kb and have diverse cell- or development-specific functions. Some of the non-coding RNAs associate with human diseases. This chapter summarizes the current knowledge about regulatory non-coding RNAs.
Collapse
Affiliation(s)
- Uwe Michel
- Department of Neurology, Laboratory of Neurobiology, Göttingen, Germany
| |
Collapse
|
147
|
Kruszka K, Barneche F, Guyot R, Ailhas J, Meneau I, Schiffer S, Marchfelder A, Echeverría M. Plant dicistronic tRNA-snoRNA genes: a new mode of expression of the small nucleolar RNAs processed by RNase Z. EMBO J 2003; 22:621-32. [PMID: 12554662 PMCID: PMC140725 DOI: 10.1093/emboj/cdg040] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Small nucleolar RNAs (snoRNAs) guiding modifications of ribosomal RNAs and other RNAs display diverse modes of gene organization and expression depending on the eukaryotic system: in animals most are intron encoded, in yeast many are monocistronic genes and in plants most are polycistronic (independent or intronic) genes. Here we report an unprecedented organization: plant dicistronic tRNA-snoRNA genes. In Arabidopsis thaliana we identified a gene family encoding 12 novel box C/D snoRNAs (snoR43) located just downstream from tRNA(Gly) genes. We confirmed that they are transcribed, probably from the tRNA gene promoter, producing dicistronic tRNA(Gly)-snoR43 precursors. Using transgenic lines expressing a tagged tRNA-snoR43.1 gene we show that the dicistronic precursor is accurately processed to both snoR43.1 and tRNA(Gly). In addition, we show that a recombinant RNase Z, the plant tRNA 3' processing enzyme, efficiently cleaves the dicistronic precursor in vitro releasing the snoR43.1 from the tRNA(Gly). Finally, we describe a similar case in rice implicating a tRNA(Met-e) expressed in fusion with a novel C/D snoRNA, showing that this mode of snoRNA expression is found in distant plant species.
Collapse
Affiliation(s)
| | - Fredy Barneche
- Laboratoire Génome et Développement des Plantes, UMR CNRS 5096, Université de Perpignan, 66860 Perpignan cedex, France,
Molecular Biology Department, University of Geneva-Sciences II, 30 Quai Ernest Ansermet, 1211-Geneva, Institut of Plant Biology, University of Zurich, Zollikerstrasse 19, 8008-Zurich, Switzerland and Molekulare Botanik, Universität Ulm, 89069 Ulm, Germany Corresponding author e-mail:
K.Kruszka, F.Barneche and R.Guyot contributed equally to this work
| | - Romain Guyot
- Laboratoire Génome et Développement des Plantes, UMR CNRS 5096, Université de Perpignan, 66860 Perpignan cedex, France,
Molecular Biology Department, University of Geneva-Sciences II, 30 Quai Ernest Ansermet, 1211-Geneva, Institut of Plant Biology, University of Zurich, Zollikerstrasse 19, 8008-Zurich, Switzerland and Molekulare Botanik, Universität Ulm, 89069 Ulm, Germany Corresponding author e-mail:
K.Kruszka, F.Barneche and R.Guyot contributed equally to this work
| | | | | | - Steffen Schiffer
- Laboratoire Génome et Développement des Plantes, UMR CNRS 5096, Université de Perpignan, 66860 Perpignan cedex, France,
Molecular Biology Department, University of Geneva-Sciences II, 30 Quai Ernest Ansermet, 1211-Geneva, Institut of Plant Biology, University of Zurich, Zollikerstrasse 19, 8008-Zurich, Switzerland and Molekulare Botanik, Universität Ulm, 89069 Ulm, Germany Corresponding author e-mail:
K.Kruszka, F.Barneche and R.Guyot contributed equally to this work
| | - Anita Marchfelder
- Laboratoire Génome et Développement des Plantes, UMR CNRS 5096, Université de Perpignan, 66860 Perpignan cedex, France,
Molecular Biology Department, University of Geneva-Sciences II, 30 Quai Ernest Ansermet, 1211-Geneva, Institut of Plant Biology, University of Zurich, Zollikerstrasse 19, 8008-Zurich, Switzerland and Molekulare Botanik, Universität Ulm, 89069 Ulm, Germany Corresponding author e-mail:
K.Kruszka, F.Barneche and R.Guyot contributed equally to this work
| | - Manuel Echeverría
- Laboratoire Génome et Développement des Plantes, UMR CNRS 5096, Université de Perpignan, 66860 Perpignan cedex, France,
Molecular Biology Department, University of Geneva-Sciences II, 30 Quai Ernest Ansermet, 1211-Geneva, Institut of Plant Biology, University of Zurich, Zollikerstrasse 19, 8008-Zurich, Switzerland and Molekulare Botanik, Universität Ulm, 89069 Ulm, Germany Corresponding author e-mail:
K.Kruszka, F.Barneche and R.Guyot contributed equally to this work
| |
Collapse
|
148
|
Brosius J. The contribution of RNAs and retroposition to evolutionary novelties. CONTEMPORARY ISSUES IN GENETICS AND EVOLUTION 2003. [DOI: 10.1007/978-94-010-0229-5_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
149
|
Abstract
Four novel small nucleolar RNAs (snoRNAs), h5sn1, h5sn2, h5sn3, and h5sn4, were successfully amplified from human total RNAs using RT-PCR. They exhibited the structural hallmarks of box H/ACA snoRNAs and formed sequence complementarity to 5S rRNA. The nucleotide sequences of the snoRNAs from different donors were highly conserved as evidenced by single-stranded conformational polymorphism and direct nucleotide sequence analysis. Although their host genes had no protein-coding potential, the expression of the snoRNAs was differentially displayed in different tissues. Noticeably, h5sn2 was highly expressed in normal brain, but its expression drastically decreased in meningioma. This opens the fascinating possibility of the relationship between the processing of snoRNAs and carcinogenesis.
Collapse
Affiliation(s)
- Long Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, 804, Kaohsiung, Taiwan.
| | | | | | | |
Collapse
|
150
|
Kiss AM, Jády BE, Darzacq X, Verheggen C, Bertrand E, Kiss T. A Cajal body-specific pseudouridylation guide RNA is composed of two box H/ACA snoRNA-like domains. Nucleic Acids Res 2002; 30:4643-9. [PMID: 12409454 PMCID: PMC135803 DOI: 10.1093/nar/gkf592] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2002] [Revised: 09/09/2002] [Accepted: 09/09/2002] [Indexed: 11/13/2022] Open
Abstract
Site-specific post-transcriptional conversion of uridines to pseudouridine in ribosomal RNAs and small nuclear RNAs (snRNAs) is directed by guide RNAs which possess the conserved box H and ACA sequence elements and fold into the consensus 'hairpin-hinge-hairpin-tail' secondary structure. Here, we describe an unusual mammalian pseudouridylation guide RNA, called U93, that is composed of two tandemly arranged box H/ACA RNA domains. The U93 RNA therefore carries two H and two ACA box motifs, all of which are essential for accumulation of the full-length RNA. The human U93 RNA accumulates in Cajal (coiled) bodies and it is predicted to function in pseudouridylation of the U2 spliceosomal snRNA. Our results lend further support to the notion that modification of the RNA polymerase II-transcribed spliceosomal snRNAs takes place in Cajal bodies.
Collapse
Affiliation(s)
- Arnold M Kiss
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex, France
| | | | | | | | | | | |
Collapse
|