101
|
Zheng X, Zhang K, Zhao Y, Fent K. Environmental chemicals affect circadian rhythms: An underexplored effect influencing health and fitness in animals and humans. ENVIRONMENT INTERNATIONAL 2021; 149:106159. [PMID: 33508534 DOI: 10.1016/j.envint.2020.106159] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 06/12/2023]
Abstract
Circadian rhythms control the life of virtually all organisms. They regulate numerous aspects ranging from cellular processes to reproduction and behavior. Besides the light-dark cycle, there are additional environmental factors that regulate the circadian rhythms in animals as well as humans. Here, we outline the circadian rhythm system and considers zebrafish (Danio rerio) as a representative vertebrate organism. We characterize multiple physiological processes, which are affected by circadian rhythm disrupting compounds (circadian disrupters). We focus on and summarize 40 natural and anthropogenic environmental circadian disrupters in fish. They can be divided into six major categories: steroid hormones, metals, pesticides and biocides, polychlorinated biphenyls, neuroactive drugs and other compounds such as cyanobacterial toxins and bisphenol A. Steroid hormones as well as metals are most studied. Especially for progestins and glucocorticoids, circadian dysregulation was demonstrated in zebrafish on the molecular and physiological level, which comprise mainly behavioral alterations. Our review summarizes the current state of knowledge on circadian disrupters, highlights their risks to fish and identifies knowledge gaps in animals and humans. While most studies focus on transcriptional and behavioral alterations, additional effects and consequences are underexplored. Forthcoming studies should explore, which additional environmental circadian disrupters exist. They should clarify the underlying molecular mechanisms and aim to better understand the consequences for physiological processes.
Collapse
Affiliation(s)
- Xuehan Zheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Kun Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yanbin Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132 Muttenz, Switzerland; ETH Zürich, Institute of Biogeochemistry and Pollution Dynamics, Department of Environmental Systems Science, CH-8092 Zürich, Switzerland.
| |
Collapse
|
102
|
Zhang M, Zhu S, Ho CT, Huang Q. Citrus polymethoxyflavones as regulators of metabolic homoeostasis: Recent advances for possible mechanisms. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
103
|
Assessment of Selected Clock Proteins (CLOCK and CRY1) and Their Relationship with Biochemical, Anthropometric, and Lifestyle Parameters in Hypertensive Patients. Biomolecules 2021; 11:biom11040517. [PMID: 33808431 PMCID: PMC8067097 DOI: 10.3390/biom11040517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/29/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Circadian rhythms misalignment is associated with hypertension. The aim of the study was to evaluate the concentration of selected clock proteins-cryptochrome 1 (CRY1) and circadian locomotor output cycles kaput (CLOCK) to determine their relationships with biochemical and anthropometric parameters and lifestyle elements (diet, physical activity, and quality of sleep) in hypertensive patients. METHODS In 31 females with hypertension (HT) and 55 non-hypertensive women (NHT) the CRY1 and CLOCK concentrations, total antioxidant status (TAS), lipid profile, and glycemia were analyzed. Blood pressure and anthropometric measurements, nutritional, exercise, and sleep analyses were performed. RESULTS In the HT group, the CRY1 level was 37.38% lower than in the NHT group. No differences were noted in CLOCK concentration between groups. BMI, FBG, and TG were higher in the HT group compared to the NHT group, while TC, LDL, and HDL levels were similar. The study showed no relationship between CRY1 or CLOCK concentrations and glucose or lipids profile, amount of physical activity, or sleep quality, although CRY1 was associated with some anthropometric indicators. In the HT group, increased CLOCK and CRY1 values were associated with a high TAS level. CONCLUSIONS The serum level of CRY1 could be considered in a detailed diagnostic of hypertension risk in populations with abnormal anthropometric indices.
Collapse
|
104
|
Yi JS, Díaz NM, D'Souza S, Buhr ED. The molecular clockwork of mammalian cells. Semin Cell Dev Biol 2021; 126:87-96. [PMID: 33810978 DOI: 10.1016/j.semcdb.2021.03.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/20/2022]
Abstract
Most organisms contain self-sustained circadian clocks. These clocks can be synchronized by environmental stimuli, but can also oscillate indefinitely in isolation. In mammals this is true at the molecular level for the majority of cell types that have been examined. A core set of "clock genes" form a transcriptional/translational feedback loop (TTFL) which repeats with a period of approximately 24 h. The exact mechanism of the TTFL differs slightly in various cell types, but all involve similar family members of the core cohort of clock genes. The clock has many outputs which are unique for different tissues. Cells in diverse tissues will convert the timing signals provided by the TTFL into uniquely orchestrated transcriptional oscillations of many clock-controlled genes and cellular processes.
Collapse
Affiliation(s)
- Jonathan S Yi
- University of Washington, Dept. of Ophthalmology, 750 Republican St., Seattle, WA 98109, USA
| | - Nicolás M Díaz
- University of Washington, Dept. of Ophthalmology, 750 Republican St., Seattle, WA 98109, USA
| | - Shane D'Souza
- Center for Chronobiology, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| | - Ethan D Buhr
- University of Washington, Dept. of Ophthalmology, 750 Republican St., Seattle, WA 98109, USA.
| |
Collapse
|
105
|
Kwon PK, Kim HM, Kang B, Kim SW, Hwang SM, Im SH, Roh TY, Kim KT. hnRNP K supports the maintenance of RORγ circadian rhythm through ERK signaling. FASEB J 2021; 35:e21507. [PMID: 33724572 DOI: 10.1096/fj.202002076r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 11/11/2022]
Abstract
Retinoic acid-related orphan receptor γ (RORγ) maintains the circadian rhythms of its downstream genes. However, the mechanism behind the transcriptional activation of RORγ itself remains unclear. Here, we demonstrate that transcription of RORγ is activated by heterogeneous nuclear ribonucleoprotein K (hnRNP K) via the poly(C) motif within its proximal promoter. Interestingly, we confirmed the binding of endogenous hnRNP K within RORγ1 and RORγ2 promoter along with the recruitment of RNA polymerase 2 through chromatin immunoprecipitation (ChIP). Furthermore, an assay for transposase accessible chromatin (ATAC)-qPCR showed that hnRNP K induced higher chromatin accessibility within the RORγ1 and RORγ2 promoter. Then we found that the knockdown of hnRNP K lowers RORγ mRNA oscillation amplitude in both RORγ and RORγ-dependent metabolic genes. Moreover, we demonstrated that time-dependent extracellular signal-regulated kinase (ERK) activation controls mRNA oscillation of RORγ and RORγ-dependent metabolic genes through hnRNP K. Taken together, our results provide new insight into the regulation of RORγ by hnRNP K as a transcriptional activator, along with its physiological significance in metabolism.
Collapse
Affiliation(s)
- Paul Kwangho Kwon
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Hyo-Min Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Byunghee Kang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sung Wook Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sung-Min Hwang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sin-Hyeog Im
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.,Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Tae-Young Roh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.,Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Kyong-Tai Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.,Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| |
Collapse
|
106
|
Aging selectively dampens oscillation of lipid abundance in white and brown adipose tissue. Sci Rep 2021; 11:5932. [PMID: 33723320 PMCID: PMC7961067 DOI: 10.1038/s41598-021-85455-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/28/2021] [Indexed: 02/07/2023] Open
Abstract
Lipid metabolism is under the control of the circadian system and circadian dysregulation has been linked to obesity and dyslipidemia. These factors and outcomes have also been associated to, or affected by, the process of aging. Here, we investigated whether murine white (WAT) and brown (BAT) adipose tissue lipids exhibit rhythmicity and if this is affected by aging. To this end, we have measured the 24 h lipid profiles of WAT and BAT using a global lipidomics analysis of > 1100 lipids. We observed rhythmicity in nearly all lipid classes including glycerolipids, glycerophospholipids, sterol lipids and sphingolipids. Overall, ~ 22% of the analyzed lipids were considered rhythmic in WAT and BAT. Despite a general accumulation of lipids upon aging the fraction of oscillating lipids decreased in both tissues to 14% and 18%, respectively. Diurnal profiles of lipids in BAT appeared to depend on the lipid acyl chain length and this specific regulation was lost in aged mice. Our study revealed how aging affects the rhythmicity of lipid metabolism and could contribute to the quest for targets that improve diurnal lipid homeostasis to maintain cardiometabolic health during aging.
Collapse
|
107
|
Zhang LL, He QK, Lv YN, Zhang ZJ, Xiang YK. Expression pattern and prognostic value of circadian clock genes in pancreatic adenocarcinoma. Chronobiol Int 2021; 38:681-693. [PMID: 33691542 DOI: 10.1080/07420528.2021.1890760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Accumulating studies indicate that circadian clock genes are pivotal regulators of tumorigenesis and development of various cancers. Nevertheless, their implications in pancreatic adenocarcinoma (PAAD) remain poorly characterized. We investigated the expression pattern of circadian clock genes and evaluated their prognostic values in PAAD. Firstly, we systematically analyzed data from The Cancer Genome Atlas (TCGA) database pertaining to patient clinical information and gene expression data. We found that 19 of 20 circadian clock genes showed significantly different expression levels in comparisons between PAAD and normal tissues. In addition, 10 circadian clock genes with regression coefficients were selected to construct a new risk signature, which was then identified as an independent prognostic factor for PAAD. Mechanistically, circadian clock genes in PAAD may impact the basic state of cells and the composition of tumor-infiltrating immune cells, thus affecting disease prognosis. Finally, we construct a novel prognostic nomogram on the basis of histological nodes and risk score to precisely predict prognosis of patients with PAAD. In conclusion, our study uncovered the important role of circadian clock genes in PAAD and developed a risk signature as a promising prognostic biomarker for patients with PAAD.
Collapse
Affiliation(s)
- Le-Le Zhang
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qi-Kuan He
- Department of General Surgery, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Yan-Ning Lv
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhong-Jing Zhang
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yu-Kai Xiang
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of General Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
108
|
Circadian depression: A mood disorder phenotype. Neurosci Biobehav Rev 2021; 126:79-101. [PMID: 33689801 DOI: 10.1016/j.neubiorev.2021.02.045] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 02/18/2021] [Accepted: 02/28/2021] [Indexed: 12/15/2022]
Abstract
Major mood syndromes are among the most common and disabling mental disorders. However, a lack of clear delineation of their underlying pathophysiological mechanisms is a major barrier to prevention and optimised treatments. Dysfunction of the 24-h circadian system is a candidate mechanism that has genetic, behavioural, and neurobiological links to mood syndromes. Here, we outline evidence for a new clinical phenotype, which we have called 'circadian depression'. We propose that key clinical characteristics of circadian depression include disrupted 24-h sleep-wake cycles, reduced motor activity, low subjective energy, and weight gain. The illness course includes early age-of-onset, phenomena suggestive of bipolarity (defined by bidirectional associations between objective motor and subjective energy/mood states), poor response to conventional antidepressant medications, and concurrent cardiometabolic and inflammatory disturbances. Identifying this phenotype could be clinically valuable, as circadian-targeted strategies show promise for reducing depressive symptoms and stabilising illness course. Further investigation of underlying circadian disturbances in mood syndromes is needed to evaluate the clinical utility of this phenotype and guide the optimal use of circadian-targeted interventions.
Collapse
|
109
|
Hu X, Liu X, Li C, Zhang Y, Li C, Li Y, Chen Y, Guo H, Bai X, Liu M. Time-resolved transcriptional profiling of Trichinella-infected murine myocytes helps to elucidate host-pathogen interactions in the muscle stage. Parasit Vectors 2021; 14:130. [PMID: 33648561 PMCID: PMC7919990 DOI: 10.1186/s13071-021-04624-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/03/2021] [Indexed: 11/30/2022] Open
Abstract
Background Parasites of the genus Trichinella are the pathogenic agents of trichinellosis, which is a widespread and severe foodborne parasitic disease. Trichinella spiralis resides primarily in mammalian skeletal muscle cells. After invading the cells of the host organism, T. spiralis must elude or invalidate the host’s innate and adaptive immune responses to survive. It is necessary to characterize the pathogenesis of trichinellosis to help to prevent the occurrence and further progression of this disease. The aims of this study were to elucidate the mechanisms of nurse cell formation, pathogenesis and immune evasion of T. spiralis, to provide valuable information for further research investigating the basic cell biology of Trichinella-infected muscle cells and the interaction between T. spiralis and its host. Methods We performed transcriptome profiling by RNA sequencing to identify global changes at 1, 3, 7, 10 and 15 days post-infection (dpi) in gene expression in the diaphragm after the parasite entered and persisted within the murine myocytes; the mice were infected by intravenous injection of newborn larvae. Gene expression analysis was based on the alignment results. Differentially expressed genes (DEGs) were identified based on their expression levels in various samples, and functional annotation and enrichment analysis were performed. Results The most extensive and dynamic gene expression responses in host diaphragms were observed during early infection (1 dpi). The number of DEGs and genes annotated in the Kyoto Encyclopedia of Genes and Genomes and Gene Ontology databases decreased significantly in the infected mice compared to the uninfected mice at 3 and 7 dpi, suddenly increased sharply at 10 dpi, and then decreased to a lower level at 15 dpi, similar to that observed at 3 and 7 dpi. The massive initial reaction of the murine muscle cells to Trichinella infection steadied in the later stages of infection, with little additional changes detected for the remaining duration of the studied process. Although there were hundreds of DEGs at each time point, only 11 genes were consistently up- or downregulated at all 5 time points. Conclusions The gene expression patterns identified in this study can be employed to characterize the coordinated response of T. spiralis-infected myocytes in a time-resolved manner. This comprehensive dataset presents a distinct and sensitive picture of the interaction between host and parasite during intracellular infection, which can help to elucidate how pathogens evade host defenses and coordinate the biological functions of host cells to survive in the mammalian environment. ![]()
Collapse
Affiliation(s)
- Xiaoxiang Hu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xiaolei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Chen Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yulu Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Chengyao Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yanfeng Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yingxi Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Heng Guo
- Beijing Hi-Tech Institute, Beijing, 100085, China
| | - Xue Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.
| |
Collapse
|
110
|
Detection of melatonin-onset in real settings via wearable sensors and artificial intelligence. A pilot study. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2020.102386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
111
|
Velingkaar N, Mezhnina V, Poe A, Kondratov RV. Two-meal caloric restriction induces 12-hour rhythms and improves glucose homeostasis. FASEB J 2021; 35:e21342. [PMID: 33543540 PMCID: PMC7898832 DOI: 10.1096/fj.202002470r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/10/2020] [Accepted: 12/21/2020] [Indexed: 01/20/2023]
Abstract
Glucose metabolism is tightly regulated and disrupting glucose homeostasis is a hallmark of many diseases. Caloric restriction (CR), periodic fasting, and circadian rhythms are interlinked with glucose metabolism. Here, we directly investigated if CR depends on periodic fasting and circadian rhythms to improve glucose metabolism. CR was implemented as two-meals per day (2M-CR), provided at 12-hour intervals, and compared with one meal per day CR, mealtime (MT), and ad libitum (AL) feeding. The 2M-CR impacted the circadian rhythms in blood glucose, metabolic signaling, circadian clock, and glucose metabolism gene expression. 2M-CR significantly reduced around the clock blood glucose and improved glucose tolerance. Twenty-four-hour rhythms in mTOR signaling and gene expression observed under AL, MT, and CR, became 12-hour rhythms in 2M-CR. The 12-hour rhythms in behavior, gene expression, and signaling persisted in fasted mice, implicating some internal regulation. The study highlights that the reduction in caloric intake rather than meal frequency and duration of fasting is essential for metabolic reprograming and improvement in glucose metabolism and provides evidence on food-entrained molecular pacemaker, which can be uncoupled from the light-entrained circadian clock and rhythms.
Collapse
Affiliation(s)
- Nikkhil Velingkaar
- Center for Gene Regulation in Health and Disease and Department of Biological Geological and Environmental Sciences, Cleveland State University, Cleveland, OH, USA
| | - Volha Mezhnina
- Center for Gene Regulation in Health and Disease and Department of Biological Geological and Environmental Sciences, Cleveland State University, Cleveland, OH, USA
| | - Allan Poe
- Center for Gene Regulation in Health and Disease and Department of Biological Geological and Environmental Sciences, Cleveland State University, Cleveland, OH, USA
| | - Roman V Kondratov
- Center for Gene Regulation in Health and Disease and Department of Biological Geological and Environmental Sciences, Cleveland State University, Cleveland, OH, USA
| |
Collapse
|
112
|
Narasimamurthy R, Virshup DM. The phosphorylation switch that regulates ticking of the circadian clock. Mol Cell 2021; 81:1133-1146. [PMID: 33545069 DOI: 10.1016/j.molcel.2021.01.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/18/2020] [Accepted: 01/05/2021] [Indexed: 02/08/2023]
Abstract
In our 24/7 well-lit world, it's easy to skip or delay sleep to work, study, and play. However, our circadian rhythms are not easily fooled; the consequences of jet lag and shift work are many and severe, including metabolic, mood, and malignant disorders. The internal clock that keeps track of time has at its heart the reversible phosphorylation of the PERIOD proteins, regulated by isoforms of casein kinase 1 (CK1). In-depth biochemical, genetic, and structural studies of these kinases, their mutants, and their splice variants have combined over the past several years to provide a robust understanding of how the core clock is regulated by a phosphoswitch whereby phosphorylation of a stabilizing site on PER blocks phosphorylation of a distant phosphodegron. The recent structure of a circadian mutant form of CK1 implicates an internal activation loop switch that regulates this phosphoswitch and points to new approaches to regulation of the clock.
Collapse
Affiliation(s)
- Rajesh Narasimamurthy
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore.
| | - David M Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore; Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
113
|
Martínez CF, Ortiz-Panozo E, Mattei J, Campos H, Flores-Aldana M, Lajous M. Breakfast Frequency Is Inversely Associated with Weight Gain in a Cohort of Mexican Women. J Nutr 2021; 151:405-411. [PMID: 33382425 DOI: 10.1093/jn/nxaa367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/31/2020] [Accepted: 10/23/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Food timing affects circadian rhythms involved in weight control. Regular consumption of breakfast may affect body weight. OBJECTIVE We examined the relation between breakfast frequency with weight change in middle-age women over a 3-y period. METHODS We used data from 65,099 nonpregnant women aged >20 y participating in the Mexican Teachers' Cohort (MTC) who at baseline (2006-2008) were cancer free and for whom self-reported breakfast frequency at baseline was available. We analyzed body weight change between baseline and the first follow-up (2011) according to breakfast frequency. Participants were classified according to baseline breakfast frequency 0, 1-3, 4-6, or 7 d/wk and meal frequency 1-2, 3-4, or ≥5 meals/d. We used linear and modified Poisson regression to analyze body weight change as a continuous variable and for weight gain ≥5 kg (yes/no), respectively. Models were adjusted for sociodemographic and lifestyle confounders. RESULTS At baseline, 25% of participants were daily breakfast consumers and 18.4% of women increased ≥5 kg between 2008 and 2011. The prevalence of weight gain ≥5 kg among daily breakfast consumers was 7% lower than among those who skipped breakfast (prevalence ratio: 0.93; 95% CI: 0.89, 0.97; P-trend = 0.02). The association was stronger among normal-weight women at baseline with a corresponding estimate of 0.87 (95% CI: 0.79, 0.97; P-trend = 0.02). CONCLUSION Daily breakfast consumption was inversely associated with weight gain ≥5 kg over 3 y in middle-aged Mexican women. Regular breakfast may be an important dietary factor for body weight change.
Collapse
Affiliation(s)
- Claudia F Martínez
- School of Public Health, National Institute of Public Health, Cuernavaca, Morelos, Mexico.,Social Security and Services Institute for Employees of the State (ISSSTE), Guadalajara, Jalisco, Mexico
| | - Eduardo Ortiz-Panozo
- Center for Research on Population Health, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Josiemer Mattei
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Hannia Campos
- Centro de Investigación e Innovación en Nutrición Traslacional y Salud (CIINT), San José, Costa Rica.,Universidad Hispanoamericana, San José, Costa Rica
| | - Mario Flores-Aldana
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Martín Lajous
- Center for Research on Population Health, National Institute of Public Health, Cuernavaca, Morelos, Mexico.,Department of Global Health and Population, Harvard TH Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
114
|
Chen Y, Wang J, Xu D, Xiang Z, Ding J, Yang X, Li D, Han X. m 6A mRNA methylation regulates testosterone synthesis through modulating autophagy in Leydig cells. Autophagy 2021; 17:457-475. [PMID: 31983283 PMCID: PMC8007139 DOI: 10.1080/15548627.2020.1720431] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 12/21/2022] Open
Abstract
Macroautophagy/autophagy is indispensable for testosterone synthesis in Leydig cells (LCs), and here we report a negative association between m6A modification and autophagy in LCs during testosterone synthesis. A gradual decrease of METTL14 (methyltransferase like 14) and an increase of ALKBH5 (alkB homolog 5, RNA demethylase) were observed in LCs during their differentiation from stem LCs to adult LCs. These events led to reduced mRNA methylation levels of N6-methyladenosine (m6A) and enhanced autophagy in LCs. Similar regulation of METTL14, ALKBH5, and m6A was also observed in LCs upon treatment with human chorionic gonadotropin (HsCG). Mechanistically, m6A modification promoted translation of PPM1A (protein phosphatase 1A, magnesium dependent, alpha isoform), a negative AMP-activated protein kinase (AMPK) regulator, but decreased expression of CAMKK2 (calcium/calmodulin-dependent protein kinase kinase 2, beta), a positive AMPK regulator, by reducing its RNA stability. Thus, m6A modification resulted in reduced AMPK activity and subsequent autophagy inhibition. We further demonstrated that ALKBH5 upregulation by HsCG was dependent on enhanced binding of the transcriptional factor CEBPB (CCAAT/enhancer binding protein [C/EBP], beta) and the TFEB (transcription factor EB) to its gene promoter. Moreover, HsCG treatment decreased METTL14 by reducing its stability. Collectively, this study highlights a vital role of m6A RNA methylation in the modulation of testosterone synthesis in LCs, providing insight into novel therapeutic strategies by exploiting m6A RNA methylation as targets for treating azoospermatism and oligospermatism patients with reduction in serum testosterone.Abbreviations: 3-MA: 3-methyladenine; ACTB: Actin, beta; ALKBH5: alkB homolog 5, RNA demethylase; AMPK: AMP-activated protein kinase; BafA1: bafilomycin A1; CAMKK2: calcium/calmodulin-dependent protein kinase kinase 2, beta; CEBPB: CCAAT/enhancer-binding protein (C/EBP), beta; ChIP: chromatin immunoprecipitation; FTO: fat mass and obesity associated; HsCG: human chorionic gonadotropin; HSD3B: 3β-hydroxysteroid dehydrogenase; LCs: Leydig cells; m6A: N6-methyladenosine; METTL14: methyltransferase like 14; METTL3: methyltransferase like 3; MTOR: mechanistic target of rapamycin kinase; PPM1A: protein phosphatase 1A, magnesium dependent, alpha isoform; PRKAA: 5'-AMP-activated protein kinase catalytic subunit alpha; SQSTM1: sequestosome 1; STK11/LKB1: serine/threonine kinase 11; TFEB: transcription factor EB; ULK1: unc-51-like kinase 1; WTAP: Wilms tumor 1-associating protein; YTHDF: YTH N6-methyladenosine RNA binding protein.
Collapse
Affiliation(s)
- Yabing Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Jing Wang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Dihui Xu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Zou Xiang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jie Ding
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Xiaoyu Yang
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Hospital of Nanjing Medical University, Nanjing, China
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
115
|
Steckler R, Tamir S, Gutman R. Mice held at an environmental photic cycle oscillating at their tau-like period length do not show the high-fat diet-induced obesity that develops under the 24-hour photic cycle. Chronobiol Int 2021; 38:598-612. [PMID: 33455455 DOI: 10.1080/07420528.2020.1869029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Circadian disruptions precede high-fat diet (HFD)-induced obesity (DIO). Deviation of the endogenous circadian rhythm period length (tau) from 24 hours correlates with mice inter-strain DIO under the 24-hour light-dark cycle (T-cycle). Additionally, entrainment to a tau-resembling T-cycle attenuates DIO, to some extent, in muted mice. These phenomena suggest that entrainment to a 24-hour T-cycle promotes DIO beyond that expected from the HFD-induced metabolic disruptions. However, the hypothesis that entrainment to a tau-resembling T-cycle attenuates DIO has not been tested in wild-type mice. Therefore, we examined, in newborn female FVB/N mice, whether DIO found under their 'regular' 24-hour T-cycle is attenuated under a T-cycle oscillating at their tau-resembling period of 23.7 h, which is diverted from 24 hours by only 0.3 h. Compared to mice fed a low-fat diet, those fed an HFD under the 24-hour T-cycle showed a disrupted pattern of circadian locomotor activity prior to DIO onset. Both these phenomena were absent under the tau-like T-cycle. DIO developed under the 24-hour T-cycle despite similar caloric intake, and was associated with the lower locomotor activity of HFD-fed mice compared to the other mouse groups. These results demonstrated that DIO is secondary to HFD-induced circadian disruptions that are not harmonized by the strongest Zeitgeber (light-dark cycle) when oscillating at a period that diverts by as little as ca. 0.3-h from tau. More importantly, imposing a light-dark cycle oscillating at a tau-like period length, which enhances entrainment and presumably reinforces endogenous circadian rhythms, prevented HFD-induced circadian disruptions and enabled tighter control of energy homeostasis, as manifested by the absence of DIO, even under ad-lib HFD feeding. These results support the identification of tau-related biomarkers, which may be considered as risk-factors for DIO. Moreover, these findings may promote the development of clock-related pharmaceutical interventions that will reduce the gap between tau and 24 hours, and increase the robustness of the endogenous and entrained circadian rhythms. This will enable reducing DIO, even without caloric restriction or time-restricted feeding.
Collapse
Affiliation(s)
- Rafi Steckler
- Laboratory of Integrative Physiology (LIP), The Department of Nutrition and Natural Products, MIGAL - Galilee Research Institute, Kiryat Shmona, Israel.,Department of Nutritional Sciences, Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, Israel
| | - Snait Tamir
- Department of Nutritional Sciences, Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, Israel.,Laboratory of Human Health and Nutrition Sciences, MIGAL - Galilee Research Institute, Kiryat Shmona, Israel
| | - Roee Gutman
- Laboratory of Integrative Physiology (LIP), The Department of Nutrition and Natural Products, MIGAL - Galilee Research Institute, Kiryat Shmona, Israel.,Department of Nutritional Sciences, Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, Israel.,Department of Animal Sciences, Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, Israel
| |
Collapse
|
116
|
Ch R, Rey G, Ray S, Jha PK, Driscoll PC, Dos Santos MS, Malik DM, Lach R, Weljie AM, MacRae JI, Valekunja UK, Reddy AB. Rhythmic glucose metabolism regulates the redox circadian clockwork in human red blood cells. Nat Commun 2021; 12:377. [PMID: 33452240 PMCID: PMC7810875 DOI: 10.1038/s41467-020-20479-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
Circadian clocks coordinate mammalian behavior and physiology enabling organisms to anticipate 24-hour cycles. Transcription-translation feedback loops are thought to drive these clocks in most of mammalian cells. However, red blood cells (RBCs), which do not contain a nucleus, and cannot perform transcription or translation, nonetheless exhibit circadian redox rhythms. Here we show human RBCs display circadian regulation of glucose metabolism, which is required to sustain daily redox oscillations. We found daily rhythms of metabolite levels and flux through glycolysis and the pentose phosphate pathway (PPP). We show that inhibition of critical enzymes in either pathway abolished 24-hour rhythms in metabolic flux and redox oscillations, and determined that metabolic oscillations are necessary for redox rhythmicity. Furthermore, metabolic flux rhythms also occur in nucleated cells, and persist when the core transcriptional circadian clockwork is absent in Bmal1 knockouts. Thus, we propose that rhythmic glucose metabolism is an integral process in circadian rhythms.
Collapse
Affiliation(s)
- Ratnasekhar Ch
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
- School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Guillaume Rey
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
- Unilabs Genetics Laboratory, 1003, Lausanne, Switzerland
| | - Sandipan Ray
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, 19104, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285, Telangana, India
| | - Pawan K Jha
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, 19104, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Paul C Driscoll
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | | | - Dania M Malik
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, 19104, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Radoslaw Lach
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
- Department of Oncology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Aalim M Weljie
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, 19104, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - James I MacRae
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Utham K Valekunja
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, 19104, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Akhilesh B Reddy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, 19104, USA.
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Chronobiology and Sleep institute (CSI), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
117
|
Świątkiewicz I, Woźniak A, Taub PR. Time-Restricted Eating and Metabolic Syndrome: Current Status and Future Perspectives. Nutrients 2021; 13:nu13010221. [PMID: 33466692 PMCID: PMC7828812 DOI: 10.3390/nu13010221] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Metabolic syndrome (MetS) occurs in ~30% of adults and is associated with increased risk of cardiovascular disease and diabetes mellitus. MetS reflects the clustering of individual cardiometabolic risk factors including central obesity, elevated fasting plasma glucose, dyslipidemia, and elevated blood pressure. Erratic eating patterns such as eating over a prolonged period per day and irregular meal timing are common in patients with MetS. Misalignment between daily rhythms of food intake and circadian timing system can contribute to circadian rhythm disruption which results in abnormal metabolic regulation and adversely impacts cardiometabolic health. Novel approaches which aim at restoring robust circadian rhythms through modification of timing and duration of daily eating represent a promising strategy for patients with MetS. Restricting eating period during a day (time-restricted eating, TRE) can aid in mitigating circadian disruption and improving cardiometabolic outcomes. Previous pilot TRE study of patients with MetS showed the feasibility of TRE and improvements in body weight and fat, abdominal obesity, atherogenic lipids, and blood pressure, which were observed despite no overt attempt to change diet quantity and quality or physical activity. The present article aims at giving an overview of TRE human studies of individuals with MetS or its components, summarizing current clinical evidence for improving cardiometabolic health through TRE intervention in these populations, and presenting future perspectives for an implementation of TRE to treat and prevent MetS. Previous TRE trials laid the groundwork and indicate a need for further clinical research including large-scale controlled trials to determine TRE efficacy for reducing long-term cardiometabolic risk, providing tools for sustained lifestyle changes and, ultimately, improving overall health in individuals with MetS.
Collapse
Affiliation(s)
- Iwona Świątkiewicz
- Department of Cardiology and Internal Medicine, Collegium Medicum, Nicolaus Copernicus University, 85-094 Bydgoszcz, Poland
- Division of Cardiovascular Medicine, University of California San Diego, La Jolla, CA 92037, USA;
- Correspondence: ; Tel.: +1-858-249-1308
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Collegium Medicum, Nicolaus Copernicus University, 85-092 Bydgoszcz, Poland;
| | - Pam R. Taub
- Division of Cardiovascular Medicine, University of California San Diego, La Jolla, CA 92037, USA;
| |
Collapse
|
118
|
Rojas M, Chávez-Castillo M, Pírela D, Ortega Á, Salazar J, Cano C, Chacín M, Riaño M, Batista MJ, Díaz EA, Rojas-Quintero J, Bermúdez V. Chronobiology and Chronotherapy in Depression: Current Knowledge and Chronotherapeutic Promises. CURRENT PSYCHIATRY RESEARCH AND REVIEWS 2021. [DOI: 10.2174/2666082216999201124152432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Depression is a heavily prevalent mental disorder. Symptoms of depression
extend beyond mood, cognition, and behavior to include a spectrum of somatic manifestations in all
organic systems. Changes in sleep and neuroendocrine rhythms are especially prominent, and disruptions
of circadian rhythms have been closely related to the neurobiology of depression. With the
advent of increased research in chronobiology, various pathophysiologic mechanisms have been
proposed, including anomalies of sleep architecture, the effects of clock gene polymorphisms in
monoamine metabolism, and the deleterious impact of social zeitgebers. The identification of these
chronodisruptions has propelled the emergence of several chronotherapeutic strategies, both pharmacological
and non-pharmacological, with varying degrees of clinical evidence.
Methods:
The fundamental objective of this review is to integrate current knowledge about the role
of chronobiology and depression and to summarize the interventions developed to resynchronize
biorhythms both within an individual and with geophysical time.
Results:
We have found that among the non-pharmacological alternatives, triple chronotherapywhich
encompasses bright light therapy, sleep deprivation therapy, and consecutive sleep phase
advance therapy-has garnered the most considerable scientific interest. On the other hand,
agomelatine appears to be the most promising pharmacological option, given its unique melatonergic
pharmacodynamics.
Conclusions:
Research in chronotherapy as a treatment for depression is currently booming. Novel
interventions could play a significant role in adopting new options for the treatment of depression,
with Tripe Cronotherapy standing out as the most promising treatment.
Collapse
Affiliation(s)
- Milagros Rojas
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Mervin Chávez-Castillo
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Daniela Pírela
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Ángel Ortega
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Juan Salazar
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Maricarmen Chacín
- Universidad Simon Bolivar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| | - Manuel Riaño
- Universidad Simon Bolívar, Facultad de Ciencias Juridicas y Sociales, Cucuta, Colombia
| | - María Judith Batista
- Universidad Simon Bolívar, Facultad de Ciencias Juridicas y Sociales, Cucuta, Colombia
| | - Edgar Alexis Díaz
- Universidad Simon Bolívar, Facultad de Ciencias Juridicas y Sociales, Cucuta, Colombia
| | - Joselyn Rojas-Quintero
- Pulmonary and Critical Care Medicine Department, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Valmore Bermúdez
- Universidad Simon Bolivar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| |
Collapse
|
119
|
Rombouts J, Gelens L. Dynamic bistable switches enhance robustness and accuracy of cell cycle transitions. PLoS Comput Biol 2021; 17:e1008231. [PMID: 33411761 PMCID: PMC7817062 DOI: 10.1371/journal.pcbi.1008231] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/20/2021] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Bistability is a common mechanism to ensure robust and irreversible cell cycle transitions. Whenever biological parameters or external conditions change such that a threshold is crossed, the system abruptly switches between different cell cycle states. Experimental studies have uncovered mechanisms that can make the shape of the bistable response curve change dynamically in time. Here, we show how such a dynamically changing bistable switch can provide a cell with better control over the timing of cell cycle transitions. Moreover, cell cycle oscillations built on bistable switches are more robust when the bistability is modulated in time. Our results are not specific to cell cycle models and may apply to other bistable systems in which the bistable response curve is time-dependent. Many systems in nature show bistability, which means they can evolve to one of two stable steady states under exactly the same conditions. Which state they evolve to depends on where the system comes from. Such bistability underlies the switching behavior that is essential for cells to progress in the cell division cycle. A quick switch happens when the cell jumps from one steady state to another steady state. Typical of this switching behavior is its robustness and irreversibility. In this paper, we expand this viewpoint of the dynamics of the cell cycle by considering bistable switches which themselves are changing in time. This gives the cell an extra layer of control over transitions both in time and in space, and can make those transitions more robust. Such dynamically changing bistability can appear very naturally. We show this in a model of mitotic entry, in which we include a nuclear and cytoplasmic compartment. The activity of a crucial cell cycle protein follows a bistable switch in each compartment, but the shape of its response is changing in time as proteins are imported into and exported from the nucleus.
Collapse
Affiliation(s)
- Jan Rombouts
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), B-3000 Leuven, Belgium
- * E-mail: (J.R.); (L.G.)
| | - Lendert Gelens
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), B-3000 Leuven, Belgium
- * E-mail: (J.R.); (L.G.)
| |
Collapse
|
120
|
Zerón-Rugerio MF, Díez-Noguera A, Izquierdo-Pulido M, Cambras T. Higher eating frequency is associated with lower adiposity and robust circadian rhythms: a cross-sectional study. Am J Clin Nutr 2021; 113:17-27. [PMID: 33094802 DOI: 10.1093/ajcn/nqaa282] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Although overweight and obesity are assumed to arise from an energy imbalance, evidence has shown that the frequency and timing of meals are also potential risk factors for obesity. However, the lack of a consistent approach to define eating patterns relative to internal circadian rhythms limits the extent of these findings. OBJECTIVES The objective of this study was to investigate the association of the circadian pattern of energy intake with adiposity and with internal circadian rhythms. METHODS A total of 260 Spanish adults (aged 20-30 y; 78.1% women) were included in a 6-d cross-sectional study. Participants documented sleep and dietary intake within the study period. From these data, we evaluated the chronotype, eating patterns (meal timing, eating duration, and eating frequency), and we obtained the daily profile of energy intake. In addition, we evaluated the circadian pattern of wrist temperature (internal circadian rhythm marker). Circadian patterns of energy intake and wrist temperature were analyzed, and their association among them and with anthropometric variables and diet quality was studied. RESULTS The greater fragmentation of the circadian pattern of energy intake was associated with lower BMI (in kg/m2; -10.55; 95% CI: -16.96, -4.13; P = 0.001). In addition, a greater eating frequency (≥5 eating occasions/d) was significantly associated with lower BMI (-1.88; 95% CI: -3.27, -0.48) and higher energy intake after 20:00 (4.14% of kcal; 95% CI: 1.67, 7.16). Furthermore, a greater eating frequency was associated with lower fragmentation (P = 0.042) and greater stability of the circadian pattern of wrist temperature (P = 0.016). CONCLUSIONS The daily pattern of energy intake is associated with adiposity and robust circadian rhythms. Our results shed light on the relevance of eating frequency as a potential zeitgeber for the circadian system. Although more evidence is needed, eating frequency could be considered for future chrono-nutritional recommendations for the prevention of circadian misalignment and obesity.
Collapse
Affiliation(s)
- María Fernanda Zerón-Rugerio
- Department of Nutrition, Food Science, and Gastronomy, School of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Nutrition and Food Safety Research Institute (INSA-UB), University of Barcelona, Barcelona, Spain
| | - Antoni Díez-Noguera
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
| | - Maria Izquierdo-Pulido
- Department of Nutrition, Food Science, and Gastronomy, School of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Nutrition and Food Safety Research Institute (INSA-UB), University of Barcelona, Barcelona, Spain
| | - Trinitat Cambras
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
| |
Collapse
|
121
|
Duez H, Pourcet B. Nuclear Receptors in the Control of the NLRP3 Inflammasome Pathway. Front Endocrinol (Lausanne) 2021; 12:630536. [PMID: 33716981 PMCID: PMC7947301 DOI: 10.3389/fendo.2021.630536] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
The innate immune system is the first line of defense specialized in the clearing of invaders whether foreign elements like microbes or self-elements that accumulate abnormally including cellular debris. Inflammasomes are master regulators of the innate immune system, especially in macrophages, and are key sensors involved in maintaining cellular health in response to cytolytic pathogens or stress signals. Inflammasomes are cytoplasmic complexes typically composed of a sensor molecule such as NOD-Like Receptors (NLRs), an adaptor protein including ASC and an effector protein such as caspase 1. Upon stimulation, inflammasome complex components associate to promote the cleavage of the pro-caspase 1 into active caspase-1 and the subsequent activation of pro-inflammatory cytokines including IL-18 and IL-1β. Deficiency or overactivation of such important sensors leads to critical diseases including Alzheimer diseases, chronic inflammatory diseases, cancers, acute liver diseases, and cardiometabolic diseases. Inflammasomes are tightly controlled by a two-step activation regulatory process consisting in a priming step, which activates the transcription of inflammasome components, and an activation step which leads to the inflammasome complex formation and the subsequent cleavage of pro-IL1 cytokines. Apart from the NF-κB pathway, nuclear receptors have recently been proposed as additional regulators of this pathway. This review will discuss the role of nuclear receptors in the control of the NLRP3 inflammasome and the putative beneficial effect of new modulators of inflammasomes in the treatment of inflammatory diseases including colitis, fulminant hepatitis, cardiac ischemia-reperfusion and brain diseases.
Collapse
|
122
|
Chiou YY, Li TY, Yang Y, Sancar A. A Sextuple Knockout Cell Line System to Study the Differential Roles of CRY, PER, and NR1D in the Transcription-Translation Feedback Loop of the Circadian Clock. Front Neurosci 2021; 14:616802. [PMID: 33381013 PMCID: PMC7768009 DOI: 10.3389/fnins.2020.616802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/23/2020] [Indexed: 01/12/2023] Open
Abstract
The transcription-translation feedback loop (TTFL) is the core mechanism of the circadian rhythm. In mammalian cells, CLOCK-BMAL1 proteins activate the downstream genes by binding on the E-box sequence of the clock-controlled genes. Among these gene products, CRY1, CRY2, PER1, PER2, NR1D1, and NR1D2 can regulate the CLOCK-BMAL1-mediated transcription to form the feedback loop. However, the detailed mechanism of the TTFL is unclear because of the complicated inter-regulation of these proteins. Here, we generated a cell line lacking CRY1, CRY2, PER1, PER2, NR1D1, and NR1D2 (Cry/Per/Nr1d_KO) to study TTFL. We compared the Dbp transcription after serum-shock and dexamethasone-shock between Cry/Per/Nr1d_KO cells and cells expressing endogenous CRY (Per/Nr1d_KO) or NR1D (Cry/Per_KO). Furthermore, we found that CRY1-mediated repression of Dbp could persist more than 24 h in the absence of other proteins in the negative limb of the TTFL. Our Cry/Per/Nr1d_KO cells is a suitable system for the studying of differential roles of CRY, PER, and NR1D in the TTFL.
Collapse
Affiliation(s)
- Yi-Ying Chiou
- Graduate Institute of Biochemistry, National Chung Hsing University, Taichung City, Taiwan
| | - Tzu-Ying Li
- Graduate Institute of Biochemistry, National Chung Hsing University, Taichung City, Taiwan
| | - Yanyan Yang
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|
123
|
Cal-Kayitmazbatir S, Kulkoyluoglu-Cotul E, Growe J, Selby CP, Rhoades SD, Malik D, Oner H, Asimgil H, Francey LJ, Sancar A, Kruger WD, Hogenesch JB, Weljie A, Anafi RC, Kavakli IH. CRY1-CBS binding regulates circadian clock function and metabolism. FEBS J 2021; 288:614-639. [PMID: 32383312 PMCID: PMC7648728 DOI: 10.1111/febs.15360] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/09/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
Circadian disruption influences metabolic health. Metabolism modulates circadian function. However, the mechanisms coupling circadian rhythms and metabolism remain poorly understood. Here, we report that cystathionine β-synthase (CBS), a central enzyme in one-carbon metabolism, functionally interacts with the core circadian protein cryptochrome 1 (CRY1). In cells, CBS augments CRY1-mediated repression of the CLOCK/BMAL1 complex and shortens circadian period. Notably, we find that mutant CBS-I278T protein, the most common cause of homocystinuria, does not bind CRY1 or regulate its repressor activity. Transgenic CbsZn/Zn mice, while maintaining circadian locomotor activity period, exhibit reduced circadian power and increased expression of E-BOX outputs. CBS function is reciprocally influenced by CRY1 binding. CRY1 modulates enzymatic activity of the CBS. Liver extracts from Cry1-/- mice show reduced CBS activity that normalizes after the addition of exogenous wild-type (WT) CRY1. Metabolomic analysis of WT, CbsZn/Zn , Cry1-/- , and Cry2-/- samples highlights the metabolic importance of endogenous CRY1. We observed temporal variation in one-carbon and transsulfuration pathways attributable to CRY1-induced CBS activation. CBS-CRY1 binding provides a post-translational switch to modulate cellular circadian physiology and metabolic control.
Collapse
Affiliation(s)
- Sibel Cal-Kayitmazbatir
- Department Molecular Biology and Genetics, Koc University
Rumelifeneri Yolu, Sariyer, Istanbul, Turkey
| | - Eylem Kulkoyluoglu-Cotul
- Department Chemical and Biological Engineering Koc
University Rumelifeneri Yolu, Sariyer, Istanbul, Turkey
| | - Jacqueline Growe
- Systems Pharmacology and Translational Therapeutics,
University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Christopher P. Selby
- Department of Biochemistry and Biophysics, University of
North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Seth D. Rhoades
- Systems Pharmacology and Translational Therapeutics,
University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Dania Malik
- Systems Pharmacology and Translational Therapeutics,
University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Hasimcan Oner
- Department Chemical and Biological Engineering Koc
University Rumelifeneri Yolu, Sariyer, Istanbul, Turkey
| | - Hande Asimgil
- Department Chemical and Biological Engineering Koc
University Rumelifeneri Yolu, Sariyer, Istanbul, Turkey
| | - Lauren J. Francey
- Divisions of Human Genetics and Immunobiology, Cincinnati
Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of
North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Warren D. Kruger
- Cancer Biology Program, Fox Chase Cancer Center,
Philadelphia, PA, USA
| | - John B. Hogenesch
- Systems Pharmacology and Translational Therapeutics,
University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Divisions of Human Genetics and Immunobiology, Cincinnati
Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Aalim Weljie
- Systems Pharmacology and Translational Therapeutics,
University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ron C. Anafi
- Department of Medicine, Chronobiology and Sleep Institute,
University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ibrahim Halil Kavakli
- Department Molecular Biology and Genetics, Koc University
Rumelifeneri Yolu, Sariyer, Istanbul, Turkey
- Department Chemical and Biological Engineering Koc
University Rumelifeneri Yolu, Sariyer, Istanbul, Turkey
| |
Collapse
|
124
|
Later Meal and Sleep Timing Predicts Higher Percent Body Fat. Nutrients 2020; 13:nu13010073. [PMID: 33383648 PMCID: PMC7823810 DOI: 10.3390/nu13010073] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/12/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022] Open
Abstract
Accumulating evidence suggests that later timing of energy intake (EI) is associated with increased risk of obesity. In this study, 83 individuals with overweight and obesity underwent assessment of a 7-day period of data collection, including measures of body weight and body composition (DXA) and 24-h measures of EI (photographic food records), sleep (actigraphy), and physical activity (PA, activity monitors) for 7 days. Relationships between body mass index (BMI) and percent body fat (DXA) with meal timing, sleep, and PA were examined. For every 1 h later start of eating, there was a 1.25 (95% CI: 0.60, 1.91) unit increase in percent body fat (False Discovery Rate (FDR) adjusted p value = 0.010). For every 1 h later midpoint of the eating window, there was a 1.35 (95% CI: 0.51, 2.19) unit increase in percent body fat (FDR p value = 0.029). For every 1 h increase in the end of the sleep period, there was a 1.64 (95% CI: 0.56, 2.72) unit increase in percent body fat (FDR p value = 0.044). Later meal and sleep timing were also associated with lower PA levels. In summary, later timing of EI and sleep are associated with higher body fat and lower levels of PA in people with overweight and obesity.
Collapse
|
125
|
Moraes AB, Giacomini ACVV, Genario R, Marcon L, Scolari N, Bueno BW, Demin KA, Amstislavskaya TG, Strekalova T, Soares MC, de Abreu MS, Kalueff AV. Pro-social and anxiolytic-like behavior following a single 24-h exposure to 17β-estradiol in adult male zebrafish. Neurosci Lett 2020; 747:135591. [PMID: 33359732 DOI: 10.1016/j.neulet.2020.135591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/30/2020] [Accepted: 12/18/2020] [Indexed: 01/06/2023]
Abstract
Estradiol (17β-estradiol, E2) is a crucial estrogen hormone that regulates sexual, cognitive, social and affective behaviors in various species. However, complex central nervous system (CNS) effects of E2, including its activity in males, remain poorly understood. The zebrafish (Danio rerio) is rapidly becoming a powerful novel model system in translational neuroscience research. Here, we evaluate the effects of a single 24-h exposure to 20 μg/L of E2 on behavioral and endocrine (cortisol) responses in adult male zebrafish. Overall, E2 exerted pro-social effect in the social preference test, reduced whole-body cortisol levels, elevated exploration in the novel tank test and increased the shoal size in the shoaling test, indicative of an anxiolytic-like profile of this hormone in male zebrafish. Supporting mounting human and rodent evidence on the role of E2 in behavioral regulation, the observed pro-social and anxiolytic-like effects of E2 in male zebrafish reinforce the use of this aquatic organism in studying steroid-mediated CNS mechanisms of complex affective and social behaviors.
Collapse
Affiliation(s)
- Andréia B Moraes
- Postgraduate Program in Environmental Sciences, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Ana C V V Giacomini
- Postgraduate Program in Environmental Sciences, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil; Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Rafael Genario
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Leticia Marcon
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Naiara Scolari
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Barbara W Bueno
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medcial Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Granov Russian Scientific Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Neuroscience Program, Sirius University, Sochi, Russia
| | - Tamara G Amstislavskaya
- Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, Russia; Zelman Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, Maastricht University, Netherlands; Laboratory of Psychiatric Neurobiology, Sechenov 1st Moscow State Medical University, Moscow, Russia; Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Marta C Soares
- CIBIO, Research Centre in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
| | - Murilo S de Abreu
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA; Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia; Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil.
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia.
| |
Collapse
|
126
|
Flanagan A, Bechtold DA, Pot GK, Johnston JD. Chrono-nutrition: From molecular and neuronal mechanisms to human epidemiology and timed feeding patterns. J Neurochem 2020; 157:53-72. [PMID: 33222161 DOI: 10.1111/jnc.15246] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023]
Abstract
The circadian timing system governs daily biological rhythms, synchronising physiology and behaviour to the temporal world. External time cues, including the light-dark cycle and timing of food intake, provide daily signals for entrainment of the central, master circadian clock in the hypothalamic suprachiasmatic nuclei (SCN), and of metabolic rhythms in peripheral tissues, respectively. Chrono-nutrition is an emerging field building on the relationship between temporal eating patterns, circadian rhythms, and metabolic health. Evidence from both animal and human research demonstrates adverse metabolic consequences of circadian disruption. Conversely, a growing body of evidence indicates that aligning food intake to periods of the day when circadian rhythms in metabolic processes are optimised for nutrition may be effective for improving metabolic health. Circadian rhythms in glucose and lipid homeostasis, insulin responsiveness and sensitivity, energy expenditure, and postprandial metabolism, may favour eating patterns characterised by earlier temporal distribution of energy. This review details the molecular basis for metabolic clocks, the regulation of feeding behaviour, and the evidence for meal timing as an entraining signal for the circadian system in animal models. The epidemiology of temporal eating patterns in humans is examined, together with evidence from human intervention studies investigating the metabolic effects of morning compared to evening energy intake, and emerging chrono-nutrition interventions such as time-restricted feeding. Chrono-nutrition may have therapeutic application for individuals with and at-risk of metabolic disease and convey health benefits within the general population.
Collapse
Affiliation(s)
- Alan Flanagan
- Section of Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.,Section of Metabolic Medicine, Food and Macronutrients, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - David A Bechtold
- Division of Diabetes, Endocrinology & Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Gerda K Pot
- Department of Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.,Nutrition and Health Department, Louis Bolk Instituut, Bunnik, the Netherlands
| | - Jonathan D Johnston
- Section of Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
127
|
Schäbler S, Amatobi KM, Horn M, Rieger D, Helfrich-Förster C, Mueller MJ, Wegener C, Fekete A. Loss of function in the Drosophila clock gene period results in altered intermediary lipid metabolism and increased susceptibility to starvation. Cell Mol Life Sci 2020; 77:4939-4956. [PMID: 31960114 PMCID: PMC7658074 DOI: 10.1007/s00018-019-03441-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 11/27/2019] [Accepted: 12/23/2019] [Indexed: 12/14/2022]
Abstract
The fruit fly Drosophila is a prime model in circadian research, but still little is known about its circadian regulation of metabolism. Daily rhythmicity in levels of several metabolites has been found, but knowledge about hydrophobic metabolites is limited. We here compared metabolite levels including lipids between period01 (per01) clock mutants and Canton-S wildtype (WTCS) flies in an isogenic and non-isogenic background using LC-MS. In the non-isogenic background, metabolites with differing levels comprised essential amino acids, kynurenines, pterinates, glycero(phospho)lipids, and fatty acid esters. Notably, detectable diacylglycerols (DAG) and acylcarnitines (AC), involved in lipid metabolism, showed lower levels in per01 mutants. Most of these differences disappeared in the isogenic background, yet the level differences for AC as well as DAG were consistent for fly bodies. AC levels were dependent on the time of day in WTCS in phase with food consumption under LD conditions, while DAGs showed weak daily oscillations. Two short-chain ACs continued to cycle even in constant darkness. per01 mutants in LD showed no or very weak diel AC oscillations out of phase with feeding activity. The low levels of DAGs and ACs in per01 did not correlate with lower total food consumption, body mass or weight. Clock mutant flies showed higher sensitivity to starvation independent of their background-dependent activity level. Our results suggest that neither feeding, energy storage nor mobilisation is significantly affected in per01 mutants, but point towards impaired mitochondrial activity, supported by upregulation of the mitochondrial stress marker 4EBP in the clock mutants.
Collapse
Affiliation(s)
- Stefan Schäbler
- Pharmaceutical Biology, Julius-Von-Sachs-Institute, Biocenter, University of Würzburg, Julius-von-Sachs Platz 2, 97084, Würzburg, Germany
| | - Kelechi M Amatobi
- Pharmaceutical Biology, Julius-Von-Sachs-Institute, Biocenter, University of Würzburg, Julius-von-Sachs Platz 2, 97084, Würzburg, Germany
| | - Melanie Horn
- Neurobiology and Genetics, Würzburg Insect Research, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Dirk Rieger
- Neurobiology and Genetics, Würzburg Insect Research, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Würzburg Insect Research, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Martin J Mueller
- Pharmaceutical Biology, Julius-Von-Sachs-Institute, Biocenter, University of Würzburg, Julius-von-Sachs Platz 2, 97084, Würzburg, Germany
| | - Christian Wegener
- Neurobiology and Genetics, Würzburg Insect Research, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| | - Agnes Fekete
- Pharmaceutical Biology, Julius-Von-Sachs-Institute, Biocenter, University of Würzburg, Julius-von-Sachs Platz 2, 97084, Würzburg, Germany.
| |
Collapse
|
128
|
Greco CM, Cervantes M, Fustin JM, Ito K, Ceglia N, Samad M, Shi J, Koronowski KB, Forne I, Ranjit S, Gaucher J, Kinouchi K, Kojima R, Gratton E, Li W, Baldi P, Imhof A, Okamura H, Sassone-Corsi P. S-adenosyl-l-homocysteine hydrolase links methionine metabolism to the circadian clock and chromatin remodeling. SCIENCE ADVANCES 2020; 6:eabc5629. [PMID: 33328229 PMCID: PMC7744083 DOI: 10.1126/sciadv.abc5629] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/30/2020] [Indexed: 05/03/2023]
Abstract
Circadian gene expression driven by transcription activators CLOCK and BMAL1 is intimately associated with dynamic chromatin remodeling. However, how cellular metabolism directs circadian chromatin remodeling is virtually unexplored. We report that the S-adenosylhomocysteine (SAH) hydrolyzing enzyme adenosylhomocysteinase (AHCY) cyclically associates to CLOCK-BMAL1 at chromatin sites and promotes circadian transcriptional activity. SAH is a potent feedback inhibitor of S-adenosylmethionine (SAM)-dependent methyltransferases, and timely hydrolysis of SAH by AHCY is critical to sustain methylation reactions. We show that AHCY is essential for cyclic H3K4 trimethylation, genome-wide recruitment of BMAL1 to chromatin, and subsequent circadian transcription. Depletion or targeted pharmacological inhibition of AHCY in mammalian cells markedly decreases the amplitude of circadian gene expression. In mice, pharmacological inhibition of AHCY in the hypothalamus alters circadian locomotor activity and rhythmic transcription within the suprachiasmatic nucleus. These results reveal a previously unappreciated connection between cellular metabolism, chromatin dynamics, and circadian regulation.
Collapse
Affiliation(s)
- Carolina Magdalen Greco
- Center for Epigenetics and Metabolism; U1233 INSERM; Department of Biological Chemistry, School of Medicine, University of California, Irvine (UCI), Irvine, CA, USA.
| | - Marlene Cervantes
- Center for Epigenetics and Metabolism; U1233 INSERM; Department of Biological Chemistry, School of Medicine, University of California, Irvine (UCI), Irvine, CA, USA
| | - Jean-Michel Fustin
- Graduate School of Pharmaceutical Sciences, Department of Systems Biology, Kyoto University, Kyoto 606-8501, Japan
| | - Kakeru Ito
- Graduate School of Pharmaceutical Sciences, Department of Systems Biology, Kyoto University, Kyoto 606-8501, Japan
| | - Nicholas Ceglia
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California Irvine (UCI), Irvine, CA, USA
| | - Muntaha Samad
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California Irvine (UCI), Irvine, CA, USA
| | - Jiejun Shi
- Department of Biological Chemistry, School of Medicine, University of California Irvine (UCI), Irvine, CA, USA
- Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Kevin Brian Koronowski
- Center for Epigenetics and Metabolism; U1233 INSERM; Department of Biological Chemistry, School of Medicine, University of California, Irvine (UCI), Irvine, CA, USA
| | - Ignasi Forne
- Biomedical Center, Protein Analysis Unit, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Suman Ranjit
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California Irvine (UCI), Irvine, CA, USA
| | - Jonathan Gaucher
- Center for Epigenetics and Metabolism; U1233 INSERM; Department of Biological Chemistry, School of Medicine, University of California, Irvine (UCI), Irvine, CA, USA
| | - Kenichiro Kinouchi
- Center for Epigenetics and Metabolism; U1233 INSERM; Department of Biological Chemistry, School of Medicine, University of California, Irvine (UCI), Irvine, CA, USA
| | - Rika Kojima
- Graduate School of Pharmaceutical Sciences, Department of Systems Biology, Kyoto University, Kyoto 606-8501, Japan
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California Irvine (UCI), Irvine, CA, USA
| | - Wei Li
- Department of Biological Chemistry, School of Medicine, University of California Irvine (UCI), Irvine, CA, USA
- Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Pierre Baldi
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California Irvine (UCI), Irvine, CA, USA
| | - Axel Imhof
- Biomedical Center, Protein Analysis Unit, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Hitoshi Okamura
- Graduate School of Pharmaceutical Sciences, Department of Systems Biology, Kyoto University, Kyoto 606-8501, Japan
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism; U1233 INSERM; Department of Biological Chemistry, School of Medicine, University of California, Irvine (UCI), Irvine, CA, USA.
| |
Collapse
|
129
|
Bishehsari F, Voigt RM, Keshavarzian A. Circadian rhythms and the gut microbiota: from the metabolic syndrome to cancer. Nat Rev Endocrinol 2020; 16:731-739. [PMID: 33106657 PMCID: PMC8085809 DOI: 10.1038/s41574-020-00427-4] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2020] [Indexed: 12/13/2022]
Abstract
The metabolic syndrome is prevalent in developed nations and accounts for the largest burden of non-communicable diseases worldwide. The metabolic syndrome has direct effects on health and increases the risk of developing cancer. Lifestyle factors that are known to promote the metabolic syndrome generally cause pro-inflammatory alterations in microbiota communities in the intestine. Indeed, alterations to the structure and function of intestinal microbiota are sufficient to promote the metabolic syndrome, inflammation and cancer. Among the lifestyle factors that are associated with the metabolic syndrome, disruption of the circadian system, known as circadian dysrhythmia, is increasingly common. Disruption of the circadian system can alter microbiome communities and can perturb host metabolism, energy homeostasis and inflammatory pathways, which leads to the metabolic syndrome. This Perspective discusses the role of intestinal microbiota and microbial metabolites in mediating the effects of disruption of circadian rhythms on human health.
Collapse
Affiliation(s)
- Faraz Bishehsari
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL, USA
| | - Robin M Voigt
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL, USA
| | - Ali Keshavarzian
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL, USA.
- Department of Physiology, Rush University Medical Center, Chicago, IL, USA.
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
130
|
Gao WK, Shu YY, Ye J, Pan XL. Circadian clock and liver energy metabolism. Shijie Huaren Xiaohua Zazhi 2020; 28:1025-1035. [DOI: 10.11569/wcjd.v28.i20.1025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Circadian rhythm, generated by the circadian clock, is an internal rhythm that the body evolved to adapt to the diurnal changes in the external environment. Under its influence, mammals have distinct feeding and fasting cycles, which cause rhythmic changes in nutrient supply and demand. In recent years, many studies have shown that biorhythms are closely related to body metabolism. The liver, as the metabolism center of the body, is affected by circadian rhythm. However, with the acceleration of the pace of modern life and the change of life styles, the body's original rhythm is disrupted, resulting in a significant increase in the incidence of liver related metabolic diseases. Meanwhile, the disorder of circadian rhythm can also promote the occurrence and development of these diseases, and affect their prognosis and outcome. This paper reviews the relationship between the function of liver clock genes and the metabolism of liver glucose, lipids, bile acids, protein, etc.
Collapse
Affiliation(s)
- Wen-Kang Gao
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Yan-Yun Shu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Jin Ye
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Xiao-Li Pan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| |
Collapse
|
131
|
Mukherji A, Dachraoui M, Baumert TF. Perturbation of the circadian clock and pathogenesis of NAFLD. Metabolism 2020; 111S:154337. [PMID: 32795560 PMCID: PMC7613429 DOI: 10.1016/j.metabol.2020.154337] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 12/12/2022]
Abstract
All living organisms including humans, experience changes in the light exposure generated by the Earth's rotation. In anticipation of this unavoidable geo-physical variability, and to generate an appropriate biochemical response, species of many phyla, including mammals have evolved a nearly 24-hour endogenous timing device known as the circadian clock (CC), which is self-sustained, cell autonomous and is present in every cell type. At the heart of the 'clock' functioning resides the CC-oscillator, an elegantly designed transcriptional-translational feedback system. Notably, the core components of the CC-oscillator not only drive daily rhythmicity of their own synthesis, but also generate circadian phase-specific variability in the expression levels of thousands of target genes through transcriptional, post-transcriptional and post-translational mechanisms. Thereby, this 'clock'-system provides proper chronological coordination in the functioning of cells, tissues and organs. The CC governs many physiologically critical functions. Among these functions, the key role of the CC in maintaining metabolic homeostasis deserves special emphasis. Indeed, the several features of the modern lifestyle (e.g. travel-induced jet lag, rotating shift work, energy-dense food) which, force disruption of circadian rhythms have recently emerged as a major driver to global health problems like obesity, cardiovascular disease and metabolic liver disease such as non-alcoholic fatty liver disease (NAFLD). Here we review, the CC-dependent pathways in different tissues which play critical roles in mediating several critical metabolic functions under physiological conditions and discuss their impact for the development of metabolic disease with a focus on the liver.
Collapse
Affiliation(s)
- Atish Mukherji
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques INSERM, UMR_S 1110, Strasbourg, France.
| | - Mayssa Dachraoui
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques INSERM, UMR_S 1110, Strasbourg, France
| | - Thomas F Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques INSERM, UMR_S 1110, Strasbourg, France; Pôle Hépato-Digestif, Institut Hospitalo-Universitaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| |
Collapse
|
132
|
Prior KF, Rijo-Ferreira F, Assis PA, Hirako IC, Weaver DR, Gazzinelli RT, Reece SE. Periodic Parasites and Daily Host Rhythms. Cell Host Microbe 2020; 27:176-187. [PMID: 32053788 DOI: 10.1016/j.chom.2020.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biological rhythms appear to be an elegant solution to the challenge of coordinating activities with the consequences of the Earth's daily and seasonal rotation. The genes and molecular mechanisms underpinning circadian clocks in multicellular organisms are well understood. In contrast, the regulatory mechanisms and fitness consequences of biological rhythms exhibited by parasites remain mysterious. Here, we explore how periodicity in parasite traits is generated and why daily rhythms matter for parasite fitness. We focus on malaria (Plasmodium) parasites which exhibit developmental rhythms during replication in the mammalian host's blood and in transmission to vectors. Rhythmic in-host parasite replication is responsible for eliciting inflammatory responses, the severity of disease symptoms, and fueling transmission, as well as conferring tolerance to anti-parasite drugs. Thus, understanding both how and why the timing and synchrony of parasites are connected to the daily rhythms of hosts and vectors may make treatment more effective and less toxic to hosts.
Collapse
Affiliation(s)
- Kimberley F Prior
- Institute of Evolutionary Biology & Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK.
| | - Filipa Rijo-Ferreira
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute & Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Patricia A Assis
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Isabella C Hirako
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA; Laboratório de Imunopatologia, Fundação Oswaldo Cruz - Minas, Belo Horizonte, MG, Brazil
| | - David R Weaver
- Department of Neurobiology & NeuroNexus Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ricardo T Gazzinelli
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA; Laboratório de Imunopatologia, Fundação Oswaldo Cruz - Minas, Belo Horizonte, MG, Brazil
| | - Sarah E Reece
- Institute of Evolutionary Biology & Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
133
|
Abstract
The ability of organisms to keep track of external time, by means of the circadian clock interacting with the environment, is essential for health. The focus of this review is recent methods to detect the internal circadian time of an omics sample. Before reaching our main topic, we introduce the circadian clock, its hierarchical structure, and its main functions; we will also explain the notion of internal time, or circadian phase, and how it differs from the geophysical time. We then focus on the role played by the clock in the maintenance of human heath, in particular in the context of cancer. Thereafter, we analyze an important methodological question: how to infer the circadian phase of unlabeled omics snapshot measurements. Answering this question could both significantly increase our understanding of the circadian clock and allow the use of this knowledge in biomedical applications. We review existing methods, focusing on the more recent ones, following a historical trajectory. We explain the basic concepts underlying the methods, as well as some crucial technical aspects of each. We conclude by reporting how some of these methods have, more or less effectively, enabled furthering our understanding of the clock and given insights regarding potential biomedical applications.
Collapse
Affiliation(s)
- Lorenzo Talamanca
- The Institute of Bioengineering (IBI), School of Life Science, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Felix Naef
- The Institute of Bioengineering (IBI), School of Life Science, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
134
|
Ogata H, Horie M, Kayaba M, Tanaka Y, Ando A, Park I, Zhang S, Yajima K, Shoda JI, Omi N, Kaneko M, Kiyono K, Satoh M, Tokuyama K. Skipping Breakfast for 6 Days Delayed the Circadian Rhythm of the Body Temperature without Altering Clock Gene Expression in Human Leukocytes. Nutrients 2020; 12:nu12092797. [PMID: 32932677 PMCID: PMC7551061 DOI: 10.3390/nu12092797] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/03/2020] [Accepted: 09/10/2020] [Indexed: 01/20/2023] Open
Abstract
Breakfast is often described as “the most important meal of the day” and human studies have revealed that post-prandial responses are dependent on meal timing, but little is known of the effects of meal timing per se on human circadian rhythms. We evaluated the effects of skipping breakfast for 6 days on core body temperature, dim light melatonin onset, heart rate variability, and clock gene expression in 10 healthy young men, with a repeated-measures design. Subjects were provided an isocaloric diet three times daily (3M) or two times daily (2M, i.e., breakfast skipping condition) over 6 days. Compared with the 3M condition, the diurnal rhythm of the core body temperature in the 2M condition was delayed by 42.0 ± 16.2 min (p = 0.038). On the other hand, dim light melatonin onset, heart rate variability, and clock gene expression were not affected in the 2M condition. Skipping breakfast for 6 days caused a phase delay in the core body temperature in healthy young men, even though the sleep–wake cycle remained unchanged. Chronic effects of skipping breakfast on circadian rhythms remain to be studied.
Collapse
Affiliation(s)
- Hitomi Ogata
- Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
- Correspondence: ; Tel.: +81-82-424-6589
| | - Masaki Horie
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8574, Japan; (M.H.); (Y.T.); (A.A.); (J.-i.S.); (N.O.)
| | - Momoko Kayaba
- Department of Somnology, Tokyo Medical University, 5-10-10 Yoyogi, Shibuya-ku, Tokyo 151-0053, Japan;
| | - Yoshiaki Tanaka
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8574, Japan; (M.H.); (Y.T.); (A.A.); (J.-i.S.); (N.O.)
| | - Akira Ando
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8574, Japan; (M.H.); (Y.T.); (A.A.); (J.-i.S.); (N.O.)
| | - Insung Park
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8550, Japan; (I.P.); (S.Z.); (M.S.); (K.T.)
| | - Simeng Zhang
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8550, Japan; (I.P.); (S.Z.); (M.S.); (K.T.)
| | - Katsuhiko Yajima
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan;
| | - Jun-ichi Shoda
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8574, Japan; (M.H.); (Y.T.); (A.A.); (J.-i.S.); (N.O.)
| | - Naomi Omi
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8574, Japan; (M.H.); (Y.T.); (A.A.); (J.-i.S.); (N.O.)
| | - Miki Kaneko
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan; (M.K.); (K.K.)
| | - Ken Kiyono
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan; (M.K.); (K.K.)
| | - Makoto Satoh
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8550, Japan; (I.P.); (S.Z.); (M.S.); (K.T.)
| | - Kumpei Tokuyama
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8550, Japan; (I.P.); (S.Z.); (M.S.); (K.T.)
| |
Collapse
|
135
|
Garbarino S, Lanteri P, Prada V, Falkenstein M, Sannita WG. Circadian Rhythms, Sleep, and Aging. J PSYCHOPHYSIOL 2020. [DOI: 10.1027/0269-8803/a000267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Abstract. Circadian mechanisms and the sleep-wakefulness rhythms guarantee survival, adaptation, efficient action in everyday life or in emergencies and well-being. Disordered circadian processes at central and/or cellular levels, sleep disorders, and unhealthy wakefulness/sleep rhythms can impair the physiological circadian organization and result in subjective, professional, or behavioral changes ranging from functional inadequacy to higher risks at work or on the road to medical relevance. Circadian rhythms and the sleep organization change ontogenetically; major changes result from normal aging and from the multiple diseases that are often associated. There are circular functional interactions involving sleep/sleep disorders, the autonomic and immune systems, and the functional changes in the circadian system due to aging that deserve attention but have been overlooked thus far.
Collapse
Affiliation(s)
- Sergio Garbarino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences, University of Genova, Polyclinic Hospital San Martino IRCCS, Genova, Italy
| | - Paola Lanteri
- Department of Diagnostics and Applied Technology, Neurophysiopathology Center, Fondazione IRCCS, Istituto Neurologico C. Besta, Milano, Italy
| | - Valeria Prada
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences, University of Genova, Polyclinic Hospital San Martino IRCCS, Genova, Italy
| | | | - Walter G. Sannita
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences, University of Genova, Polyclinic Hospital San Martino IRCCS, Genova, Italy
| |
Collapse
|
136
|
Waldman HS, Renteria LI, McAllister MJ. Time-restricted feeding for the prevention of cardiometabolic diseases in high-stress occupations: a mechanistic review. Nutr Rev 2020; 78:459-464. [PMID: 31774508 DOI: 10.1093/nutrit/nuz090] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Factors such as shift work, poor diet, lack of physical activity, and irregular sleep patterns put men and women employed in high-stress occupations (e.g., firefighters, police officers) at risk for cardiometabolic diseases. Time-restricted feeding (TRF) is a new approach to combatting many of these diseases; it places an emphasis on when meals are consumed, rather than calorie content. By only manipulating the eating "window," and without changing the food composition of the diet, research in rodent models has shown promising results that have health implications in people, such as obesity prevention, improved insulin sensitivity, and decreased oxidative stress, inflammation, and cholesterol synthesis. Human trials remain limited and the current data are mixed with regard to TRF and improving health. Present findings suggest the timing of the feeding-fasting window, with feeding taking place in the waking hours and fasting in the evening hours, might offer the greatest benefit for improving cardiometabolic markers. Although additional human trials are needed, TRF might reset and synchronize metabolic "clocks" found throughout the body that are disturbed with obesity, shift work, and frequent eating. Therefore, TRF might offer an effective feeding-fasting paradigm with significant clinical implications for the management and treatment of cardiometabolic diseases observed in individuals in high-stress occupations in the United States and in the US population in general. This review outlines the current rodent and human evidence in these areas and the efficacy of TRF for improving human health.
Collapse
Affiliation(s)
- Hunter S Waldman
- Human Performance Laboratory, Department of Kinesiology, University of North Alabama, Florence, Alabama, USA
| | - Liliana I Renteria
- Metabolic and Applied Physiology Laboratory, Department of Health and Human Performance, Texas State University, San Marcos, Texas, USA
| | - Matthew J McAllister
- Metabolic and Applied Physiology Laboratory, Department of Health and Human Performance, Texas State University, San Marcos, Texas, USA
| |
Collapse
|
137
|
Marcheva B, Perelis M, Weidemann BJ, Taguchi A, Lin H, Omura C, Kobayashi Y, Newman MV, Wyatt EJ, McNally EM, Fox JEM, Hong H, Shankar A, Wheeler EC, Ramsey KM, MacDonald PE, Yeo GW, Bass J. A role for alternative splicing in circadian control of exocytosis and glucose homeostasis. Genes Dev 2020; 34:1089-1105. [PMID: 32616519 PMCID: PMC7397853 DOI: 10.1101/gad.338178.120] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/10/2020] [Indexed: 11/24/2022]
Abstract
The circadian clock is encoded by a negative transcriptional feedback loop that coordinates physiology and behavior through molecular programs that remain incompletely understood. Here, we reveal rhythmic genome-wide alternative splicing (AS) of pre-mRNAs encoding regulators of peptidergic secretion within pancreatic β cells that are perturbed in Clock-/- and Bmal1-/- β-cell lines. We show that the RNA-binding protein THRAP3 (thyroid hormone receptor-associated protein 3) regulates circadian clock-dependent AS by binding to exons at coding sequences flanking exons that are more frequently skipped in clock mutant β cells, including transcripts encoding Cask (calcium/calmodulin-dependent serine protein kinase) and Madd (MAP kinase-activating death domain). Depletion of THRAP3 restores expression of the long isoforms of Cask and Madd, and mimicking exon skipping in these transcripts through antisense oligonucleotide delivery in wild-type islets reduces glucose-stimulated insulin secretion. Finally, we identify shared networks of alternatively spliced exocytic genes from islets of rodent models of diet-induced obesity that significantly overlap with clock mutants. Our results establish a role for pre-mRNA alternative splicing in β-cell function across the sleep/wake cycle.
Collapse
Affiliation(s)
- Biliana Marcheva
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Mark Perelis
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Benjamin J Weidemann
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Akihiko Taguchi
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Haopeng Lin
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Chiaki Omura
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Yumiko Kobayashi
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Marsha V Newman
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Eugene J Wyatt
- Center for Genetic Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Jocelyn E Manning Fox
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Heekyung Hong
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Archana Shankar
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Emily C Wheeler
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Kathryn Moynihan Ramsey
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Patrick E MacDonald
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
138
|
Kaneko M, Ishihara K, Nakanishi S. Redox-Active Polymers Connecting Living Microbial Cells to an Extracellular Electrical Circuit. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001849. [PMID: 32734709 DOI: 10.1002/smll.202001849] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Microbial electrochemical systems in which metabolic electrons in living microbes have been extracted to or injected from an extracellular electrical circuit have attracted considerable attention as environmentally-friendly energy conversion systems. Since general microbes cannot exchange electrons with extracellular solids, electron mediators are needed to connect living cells to an extracellular electrode. Although hydrophobic small molecules that can penetrate cell membranes are commonly used as electron mediators, they cannot be dissolved at high concentrations in aqueous media. The use of hydrophobic mediators in combination with small hydrophilic redox molecules can substantially increase the efficiency of the extracellular electron transfer process, but this method has side effects, in some cases, such as cytotoxicity and environmental pollution. In this Review, recently-developed redox-active polymers are highlighted as a new type of electron mediator that has less cytotoxicity than many conventional electron mediators. Owing to the design flexibility of polymer structures, important parameters that affect electron transport properties, such as redox potential, the balance of hydrophobicity and hydrophilicity, and electron conductivity, can be systematically regulated.
Collapse
Affiliation(s)
- Masahiro Kaneko
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shuji Nakanishi
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
- Graduate School of Engineering Science Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| |
Collapse
|
139
|
Pourcet B, Duez H. Circadian Control of Inflammasome Pathways: Implications for Circadian Medicine. Front Immunol 2020; 11:1630. [PMID: 32849554 PMCID: PMC7410924 DOI: 10.3389/fimmu.2020.01630] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/18/2020] [Indexed: 12/25/2022] Open
Abstract
The innate immune system senses “non-self” molecules derived from pathogens (PAMPs) as well as endogenous damage-associated molecular patterns (DAMPs) and promotes sterile inflammation that is necessary for injury resolution, tissue repair/regeneration, and homeostasis. The NOD-, LRR- and pyrin domain containing protein 3 (NLRP3) is an innate immune signaling complex whose assembly and activation can be triggered by various signals ranging from microbial molecules to ATP or the abnormal accumulation of crystals, thus leading to IL-1β and IL-18 maturation and secretion. Deregulation of the NLRP3 signaling cascade is associated with numerous inflammatory and metabolic diseases including rheumatoid arthritis, gout, atherosclerosis or type 2 diabetes. Interestingly, the circadian clock controls numerous inflammatory processes while clock disruption leads to or exacerbates inflammation. Recently, the biological clock was demonstrated to control NLRP3 expression and activation, thereby controlling IL-1β and IL-18 secretion in diverse tissues and immune cells, particularly macrophages. Circadian oscillations of NLRP3 signaling is lost in models of clock disruption, contributing to the development of peritonitis, hepatitis, or colitis. Sterile inflammation is also an important driver of atherosclerosis, and targeting the production of IL-1β has proven to be a promising approach for atherosclerosis management in humans. Interestingly, the extent of injury after fulminant hepatitis or myocardial infarction is time-of-day dependent under the control of the clock, and chronotherapy represents a promising approach for the management of pathologies involving deregulation of NLRP3 signaling.
Collapse
Affiliation(s)
- Benoit Pourcet
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Hélène Duez
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| |
Collapse
|
140
|
Lee T, Cho CH, Kim WR, Moon JH, Kim S, Geum D, In HP, Lee HJ. Development of model based on clock gene expression of human hair follicle cells to estimate circadian time. Chronobiol Int 2020; 37:993-1001. [PMID: 32654537 DOI: 10.1080/07420528.2020.1777150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Considering the effects of circadian misalignment on human pathophysiology and behavior, it is important to be able to detect an individual's endogenous circadian time. We developed an endogenous Clock Estimation Model (eCEM) based on a machine learning process using the expression of 10 circadian genes. Hair follicle cells were collected from 18 healthy subjects at 08:00, 11:00, 15:00, 19:00, and 23:00 h for two consecutive days, and the expression patterns of 10 circadian genes were obtained. The eCEM was designed using the inverse form of the circadian gene rhythm function (i.e., Circadian Time = F(gene)), and the accuracy of eCEM was evaluated by leave-one-out cross-validation (LOOCV). As a result, six genes (PER1, PER3, CLOCK, CRY2, NPAS2, and NR1D2) were selected as the best model, and the error range between actual and predicted time was 3.24 h. The eCEM is simple and applicable in that a single time-point sampling of hair follicle cells at any time of the day is sufficient to estimate the endogenous circadian time.
Collapse
Affiliation(s)
- Taek Lee
- Department of Convergence Security Engineering, Sungshin University , Seoul, Republic of Korea
| | - Chul-Hyun Cho
- Department of Psychiatry, Chungnam National University , Daejeon, Republic of Korea
| | | | - Joung Ho Moon
- Department of Psychiatry.,Chronobiology Institute, Korea University College of Medicine
| | | | | | - Hoh Peter In
- Department of Computer Science, Korea University College of Information , Seoul, Republic of Korea
| | - Heon-Jeong Lee
- Department of Biomedical Sciences.,Department of Psychiatry.,Chronobiology Institute, Korea University College of Medicine
| |
Collapse
|
141
|
Fonseca Costa SS, Robinson-Rechavi M, Ripperger JA. Single-cell transcriptomics allows novel insights into aging and circadian processes. Brief Funct Genomics 2020; 19:343-349. [PMID: 32633783 PMCID: PMC7716582 DOI: 10.1093/bfgp/elaa014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/18/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
Aging and circadian rhythms are two biological processes that affect an organism, although at different time scales. Nevertheless, due to the overlap of their actions, it was speculated that both interfere or interact with each other. However, to address this question, a much deeper insight into these processes is necessary, especially at the cellular level. New methods such as single-cell RNA-sequencing (scRNA-Seq) have the potential to close this gap in our knowledge. In this review, we analyze applications of scRNA-Seq from the aging and circadian rhythm fields and highlight new findings emerging from the analysis of single cells, especially in humans or rodents. Furthermore, we judge the potential of scRNA-Seq to identify common traits of both processes. Overall, this method offers several advantages over more traditional methods analyzing gene expression and will become an important tool to unravel the link between these biological processes.
Collapse
Affiliation(s)
- Sara S Fonseca Costa
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | | |
Collapse
|
142
|
Gutierrez-Monreal MA, Harmsen JF, Schrauwen P, Esser KA. Ticking for Metabolic Health: The Skeletal-Muscle Clocks. Obesity (Silver Spring) 2020; 28 Suppl 1:S46-S54. [PMID: 32468732 PMCID: PMC7381376 DOI: 10.1002/oby.22826] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 12/18/2022]
Abstract
To be prepared for alternating metabolic demands occurring over the 24-hour day, the body preserves information on time in skeletal muscle, and in all cells, through a circadian-clock mechanism. Skeletal muscle can be considered the largest collection of peripheral clocks in the body, with a major contribution to whole-body energy metabolism. Comparison of circadian-clock gene expression between skeletal muscle of nocturnal rodents and diurnal humans reveals very common patterns based on rest/active cycles rather than light/dark cycles. Rodent studies in which the circadian clock is disrupted in skeletal muscle demonstrate impaired glucose handling and insulin resistance. Experimental circadian misalignment in humans modifies the skeletal-muscle clocks and leads to disturbed energy metabolism and insulin resistance. Preclinical studies have revealed that timing of exercise over the day can influence the beneficial effects of exercise on skeletal-muscle metabolism, and studies suggest similar applicability in humans. Current strategies to improve metabolic health (e.g., exercise) should be reinvestigated in their capability to modify the skeletal-muscle clocks by taking timing of the intervention into account.
Collapse
Affiliation(s)
| | - Jan-Frieder Harmsen
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht University, Maastricht, the Netherlands
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht University, Maastricht, the Netherlands
| | - Karyn A Esser
- Department of Physiology and Functional Genomics, University of Florida, Florida, USA
| |
Collapse
|
143
|
Cardiolipin Synthesis in Skeletal Muscle Is Rhythmic and Modifiable by Age and Diet. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5304768. [PMID: 32617138 PMCID: PMC7313160 DOI: 10.1155/2020/5304768] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/13/2020] [Accepted: 05/18/2020] [Indexed: 01/08/2023]
Abstract
Circadian clocks regulate metabolic processes in a tissue-specific manner, which deteriorates during aging. Skeletal muscle is the largest metabolic organ in our body, and our previous studies highlight a key role of circadian regulation of skeletal muscle mitochondria in healthy aging. However, a possible circadian regulation of cardiolipin (CL), the signature lipid class in the mitochondrial inner membrane, remains largely unclear. Here, we show that CL levels oscillate during the diurnal cycle in C2C12 myotubes. Disruption of the Ror genes, encoding the ROR nuclear receptors in the secondary loop of the circadian oscillator, in C2C12 cells was found to dampen core circadian gene expression. Importantly, several genes involved in CL synthesis, including Taz and Ptpmt1, displayed rhythmic expression which was disrupted or diminished in Ror-deficient C2C12 cells. In vivo studies using skeletal muscle tissues collected from young and aged mice showed diverse effects of the clock and aging on the oscillatory expression of CL genes, and CL levels in skeletal muscle were enhanced in aged mice relative to young mice. Finally, consistent with a regulatory role of RORs, Nobiletin, a natural agonist of RORs, was found to partially restore transcripts levels of CL synthesis genes in aged muscle under a dietary challenge condition. Together, these observations highlight a rhythmic CL synthesis in skeletal muscle that is dependent on RORs and modifiable by age and diet.
Collapse
|
144
|
Abel JH, Lecamwasam K, Hilaire MAS, Klerman EB. Recent advances in modeling sleep: from the clinic to society and disease. CURRENT OPINION IN PHYSIOLOGY 2020; 15:37-46. [PMID: 34485783 PMCID: PMC8415470 DOI: 10.1016/j.cophys.2019.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the past few decades, advances in understanding sleep-wake neurophysiology have occurred hand-in-hand with advances in mathematical modeling of sleep and wake. In this review, we summarize recent updates in modeling the timing and durations of sleep and wake, the underlying neurophysiology of sleep and wake, and the application of these models in understanding cognition and disease. Throughout, we highlight the role modeling has played in developing our understanding of sleep and its underlying mechanisms. We present open questions and controversies in the field and propose the utility of individualized models of sleep for precision sleep medicine.
Collapse
Affiliation(s)
- John H Abel
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115
| | | | - Melissa A St Hilaire
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115
| | - Elizabeth B Klerman
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114
| |
Collapse
|
145
|
Alvarez Y, Glotfelty LG, Blank N, Dohnalová L, Thaiss CA. The Microbiome as a Circadian Coordinator of Metabolism. Endocrinology 2020; 161:bqaa059. [PMID: 32291454 PMCID: PMC7899566 DOI: 10.1210/endocr/bqaa059] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 04/13/2020] [Indexed: 12/15/2022]
Abstract
The microbiome is critically involved in the regulation of systemic metabolism. An important but poorly understood facet of this regulation is the diurnal activity of the microbiome. Herein, we summarize recent developments in our understanding of the diurnal properties of the microbiome and their integration into the circadian regulation of organismal metabolism. The microbiome may be involved in the detrimental consequences of circadian disruption for host metabolism and the development of metabolic disease. At the same time, the mechanisms by which microbiome diurnal activity is integrated into host physiology reveal several translational opportunities by which the time of day can be harnessed to optimize microbiome-based therapies. The study of circadian microbiome properties may thus provide a new avenue for treating disorders associated with circadian disruption from the gut.
Collapse
Affiliation(s)
- Yelina Alvarez
- Microbiology Department, Institute for Immunology, and Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lila G Glotfelty
- Microbiology Department, Institute for Immunology, and Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Niklas Blank
- Microbiology Department, Institute for Immunology, and Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - Lenka Dohnalová
- Microbiology Department, Institute for Immunology, and Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christoph A Thaiss
- Microbiology Department, Institute for Immunology, and Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
146
|
Malik DM, Paschos GK, Sehgal A, Weljie AM. Circadian and Sleep Metabolomics Across Species. J Mol Biol 2020; 432:3578-3610. [PMID: 32376454 PMCID: PMC7781158 DOI: 10.1016/j.jmb.2020.04.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023]
Abstract
Under normal circadian function, metabolic control is temporally coordinated across tissues and behaviors with a 24-h period. However, circadian disruption results in negative consequences for metabolic homeostasis including energy or redox imbalances. Yet, circadian disruption has become increasingly prevalent within today's society due to many factors including sleep loss. Metabolic consequences of both have been revealed by metabolomics analyses of circadian biology and sleep. Specifically, two primary analytical platforms, mass spectrometry and nuclear magnetic resonance spectroscopy, have been used to study molecular clock and sleep influences on overall metabolic rhythmicity. For example, human studies have demonstrated the prevalence of metabolic rhythms in human biology, as well as pan-metabolome consequences of sleep disruption. However, human studies are limited to peripheral metabolic readouts primarily through minimally invasive procedures. For further tissue- and organism-specific investigations, a number of model systems have been studied, based upon the conserved nature of both the molecular clock and sleep across species. Here we summarize human studies as well as key findings from metabolomics studies using mice, Drosophila, and zebrafish. While informative, a limitation in existing literature is a lack of interpretation regarding dynamic synthesis or catabolism within metabolite pools. To this extent, future work incorporating isotope tracers, specific metabolite reporters, and single-cell metabolomics may provide a means of exploring dynamic activity in pathways of interest.
Collapse
Affiliation(s)
- Dania M Malik
- Pharmacology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Georgios K Paschos
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amita Sehgal
- Penn Chronobiology, University of Pennsylvania, Philadelphia, PA 19104, USA; Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Aalim M Weljie
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
147
|
Molecular Regulation of Circadian Chromatin. J Mol Biol 2020; 432:3466-3482. [PMID: 31954735 DOI: 10.1016/j.jmb.2020.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/13/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
Abstract
Circadian rhythms are generated by transcriptional negative feedback loops and require histone modifications and chromatin remodeling to ensure appropriate timing and amplitude of clock gene expression. Circadian modifications to histones are important for transcriptional initiation and feedback inhibition serving as signaling platform for chromatin-remodeling enzymes. Current models indicate circadian-regulated facultative heterochromatin (CRFH) is a conserved mechanism at clock genes in Neurospora, Drosophila, and mice. CRFH consists of antiphasic rhythms in activating and repressive modifications generating chromatin states that cycle between transcriptionally permissive and nonpermissive. There are rhythms in histone H3 lysine 9 and 27 acetylation (H3K9ac and H3K27ac) and histone H3 lysine 4 methylation (H3K4me) during activation; while deacetylation, histone H3 lysine 9 methylation (H3K9me) and heterochromatin protein 1 (HP1) are hallmarks of repression. ATP-dependent chromatin-remodeling enzymes control accessibility, nucleosome positioning/occupancy, and nuclear organization. In Neurospora, the rhythm in facultative heterochromatin is mediated by the frequency (frq) natural antisense transcript (NAT) qrf. While in mammals, histone deacetylases (HDACs), histone H3 lysine 9 methyltransferase (KMT1/SUV39), and components of nucleosome remodeling and deacetylase (NuRD) are part of the nuclear PERIOD complex (PER complex). Genomics efforts have found relationships among rhythmic chromatin modifications at clock-controlled genes (ccg) revealing circadian control of genome-wide chromatin states. There are also circadian clock-regulated lncRNAs with an emerging function that includes assisting in chromatin dynamics. In this review, we explore the connections between circadian clock, chromatin remodeling, lncRNAs, and CRFH and how these impact rhythmicity, amplitude, period, and phase of circadian clock genes.
Collapse
|
148
|
Wagner PM, Monjes NM, Guido ME. Chemotherapeutic Effect of SR9009, a REV-ERB Agonist, on the Human Glioblastoma T98G Cells. ASN Neuro 2020; 11:1759091419892713. [PMID: 31825658 PMCID: PMC6909277 DOI: 10.1177/1759091419892713] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma multiforme is the most aggressive brain tumor, and human T98G cells constitute a useful glioblastoma multiforme model to evaluate the chemotherapeutic agents. Modern life (shiftwork, jetlag, etc.) may cause circadian disorganization promoting higher cancer risk and metabolic disorders. Although little is known about the tumor-intrinsic circadian clock function, pharmacological modulation of circadian components may offer selective anticancer strategies. REV-ERBs are heme-binding circadian clock components acting as repressors of processes involved in tumorigenesis such as metabolism, proliferation, and inflammation. A synthetic pyrrole derivative (SR9009) that acts as REV-ERBs-specific agonists exhibits potent in vivo activity on metabolism and tumor cell viability. Here, we investigated SR9009 effects on T98G cell viability, differential chemotherapy time responses, and underlying metabolic processes (reactive oxygen species [ROS] and lipid droplets [LDs]) and compared it with the proteasome inhibitor Bortezomib treatment. SR9009-treated cells exhibited significant reduction in cell viability with consequences on cell cycle progression. Dexamethasone synchronized cells displayed differential time responses to SR9009 treatment with highest responses 18 to 30 h after synchronization. SR9009 treatment decreased ROS levels while Bortezomib increased them. However, both treatments significantly increased LD levels, whereas the combined treatment showed additive or synergistic effects between both drugs. In addition, we extended these studies to HepG2 cells which also showed a significant decrease in cell viability and ROS levels and the increase in LD levels after SR9009 treatment. Our results suggest that the pharmacological modulation of the tumor-intrinsic clock by REV-ERB agonists severely affects cell metabolism and promotes cytotoxic effects on cancer cells.
Collapse
Affiliation(s)
- Paula M Wagner
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Departamento de Química Biológica "Ranwel Caputto," Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Natalia M Monjes
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Departamento de Química Biológica "Ranwel Caputto," Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mario E Guido
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Departamento de Química Biológica "Ranwel Caputto," Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
149
|
Liu Y, Lang H, Zhou M, Huang L, Hui S, Wang X, Chen K, Mi M. The Preventive Effects of Pterostilbene on the Exercise Intolerance and Circadian Misalignment of Mice Subjected to Sleep Restriction. Mol Nutr Food Res 2020; 64:e1900991. [PMID: 32277569 DOI: 10.1002/mnfr.201900991] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/27/2020] [Indexed: 12/12/2022]
Abstract
SCOPE The study investigates the effects of pterostilbene (PTE) on exercise endurance and circadian rhythm in sleep-restricted (SR) mice. METHODS AND RESULTS The SR model is established by keeping mice awake during the first 8 h of light period for 5 d and PTE (100 mg kg-1 d-1 ) is given once a day. PTE improves endurance in SR mice by significantly prolonging the exhaustive swimming time and ameliorating exercise fatigue biochemical parameters, including creatine kinase and lactate dehydrogenase. It is observed that PTE effectively regained mitochondrial function by improving mitochondrial swelling and maintaining oxidative phosphorylation system-related genes expression, and inhibited the decrease of mitochondrial biogenesis-related genes expression. Furthermore, PTE restores rhythms of AMP-activated protein kinase (AMPK) phosphorylation activity, silent information regulator 1 (SIRT1) deacetylation activity, and SIRT1-mediated peroxisome proliferator-activated receptor coactivator 1α (PGC-1α) deacetylation in SR mice. Finally, the results demonstrate that the AMPK/SIRT1/PGC-1α pathway may be correlated with the relationships between mitochondrial function and circadian rhythms, markedly regulating the expression of skeletal muscle clock genes, circadian locomotor output cycles kaput, and brain and muscle arnt-like 1. CONCLUSIONS PTE ameliorates SR-induced exercise intolerance associated with circadian misalignment and mitochondrial dysfunction through AMPK/SIRT1/PGC-1α pathway.
Collapse
Affiliation(s)
- Yang Liu
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Hedong Lang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Min Zhou
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Li Huang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Suocheng Hui
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Xiaolan Wang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Ka Chen
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Mantian Mi
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| |
Collapse
|
150
|
Mechanisms of Lifespan Regulation by Calorie Restriction and Intermittent Fasting in Model Organisms. Nutrients 2020; 12:nu12041194. [PMID: 32344591 PMCID: PMC7230387 DOI: 10.3390/nu12041194] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022] Open
Abstract
Genetic and pharmacological interventions have successfully extended healthspan and lifespan in animals, but their genetic interventions are not appropriate options for human applications and pharmacological intervention needs more solid clinical evidence. Consequently, dietary manipulations are the only practical and probable strategies to promote health and longevity in humans. Caloric restriction (CR), reduction of calorie intake to a level that does not compromise overall health, has been considered as being one of the most promising dietary interventions to extend lifespan in humans. Although it is straightforward, continuous reduction of calorie or food intake is not easy to practice in real lives of humans. Recently, fasting-related interventions such as intermittent fasting (IF) and time-restricted feeding (TRF) have emerged as alternatives of CR. Here, we review the history of CR and fasting-related strategies in animal models, discuss the molecular mechanisms underlying these interventions, and propose future directions that can fill the missing gaps in the current understanding of these dietary interventions. CR and fasting appear to extend lifespan by both partially overlapping common mechanisms such as the target of rapamycin (TOR) pathway and circadian clock, and distinct independent mechanisms that remain to be discovered. We propose that a systems approach combining global transcriptomic, metabolomic, and proteomic analyses followed by genetic perturbation studies targeting multiple candidate pathways will allow us to better understand how CR and fasting interact with each other to promote longevity.
Collapse
|