101
|
Merali N, Chouari T, Sweeney C, Halle-Smith J, Jessel MD, Wang B, O’ Brien J, Suyama S, Jiménez JI, Roberts KJ, Velliou E, Sivakumar S, Rockall TA, Demirkan A, Pedicord V, Deng D, Giovannetti E, Annels NE, Frampton AE. The microbial composition of pancreatic ductal adenocarcinoma: a systematic review of 16S rRNA gene sequencing. Int J Surg 2024; 110:6771-6799. [PMID: 38874485 PMCID: PMC11487005 DOI: 10.1097/js9.0000000000001762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/24/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Pancreatic cancer, specifically pancreatic ductal adenocarcinoma (PDAC), continues to pose a significant clinical and scientific challenge. The most significant finding of recent years is that PDAC tumours harbour their specific microbiome, which differs amongst tumour entities and is distinct from healthy tissue. This review aims to evaluate and summarise all PDAC studies that have used the next-generation technique, 16S rRNA gene amplicon sequencing within each bodily compartment. As well as establishing a causal relationship between PDAC and the microbiome. MATERIALS AND METHODS This systematic review was carried out according to the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines. A comprehensive search strategy was designed, and 1727 studies were analysed. RESULTS In total, 38 studies were selected for qualitative analysis and summarised significant PDAC bacterial signatures. Despite the growing amount of data provided, we are not able to state a universal 16S rRNA gene microbial signature that can be used for PDAC screening. This is most certainly due to the heterogeneity of the presentation of results, lack of available datasets, and the intrinsic selection bias between studies. CONCLUSION Several key studies have begun to shed light on causality and the influence the microbiome constituents and their produced metabolites could play in tumorigenesis and influencing outcomes. The challenge in this field is to shape the available microbial data into targetable signatures. Making sequenced data readily available is critical, coupled with the coordinated standardisation of data and the need for consensus guidelines in studies investigating the microbiome in PDAC.
Collapse
Affiliation(s)
- Nabeel Merali
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey Hospital NHS Foundation Trust
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey
| | - Tarak Chouari
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey Hospital NHS Foundation Trust
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey
| | - Casie Sweeney
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey Hospital NHS Foundation Trust
| | - James Halle-Smith
- Hepatobiliary and Pancreatic Surgery Unit, Queen Elizabeth Hospital Birmingham, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Maria-Danae Jessel
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey
| | - Bing Wang
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam
| | - James O’ Brien
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey Hospital NHS Foundation Trust
| | - Satoshi Suyama
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge
| | | | - Keith J. Roberts
- Hepatobiliary and Pancreatic Surgery Unit, Queen Elizabeth Hospital Birmingham, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Eirini Velliou
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London (UCL), London
| | - Shivan Sivakumar
- Oncology Department and Institute of Immunology and Immunotherapy, Birmingham Medical School, University of Birmingham
| | - Timothy A. Rockall
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey Hospital NHS Foundation Trust
| | - Ayse Demirkan
- Section of Statistical Multi-Omics, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey
- Surrey Institute for People-Centred AI, University of Surrey, Guildford, Surrey
| | - Virginia Pedicord
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam
- Fondazione Pisa per la Scienza, San Giuliano, Italy
| | - Nicola E. Annels
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey
| | - Adam E. Frampton
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey Hospital NHS Foundation Trust
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey
| |
Collapse
|
102
|
Yadav S, Sapra L, Srivastava RK. Polysaccharides to postbiotics: Nurturing bone health via modulating "gut-immune axis". Int J Biol Macromol 2024; 278:134655. [PMID: 39128750 DOI: 10.1016/j.ijbiomac.2024.134655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
The increasing prevalence of individuals affected by bone pathologies globally has sparked catastrophic concerns. Ankylosing spondylitis, osteoporosis, rheumatoid arthritis, osteoarthritis, and fractures alone impact an estimated 1.71 billion people worldwide. The gut microbiota plays a crucial role in interacting with the host through the synthesis of a diverse range of metabolites called gut-associated metabolites (GAMs), which originate from external dietary substrates or endogenous host compounds. Many metabolic disorders have been linked to alterations in the gut microbiota's activity and composition. The development of metabolic illnesses has been linked to certain microbiota-derived metabolites, such as branched-chain amino acids, bile acids, short-chain fatty acids, tryptophan, trimethylamine N-oxide, and indole derivatives. Moreover, the modulation of gut microbiota through biotics (prebiotics, probiotics and postbiotics) presents a promising avenue for therapeutic intervention. Biotics selectively promote the growth of beneficial gut bacteria, thereby enhancing the production of GAMs with potential beneficial effects on bone metabolism. Understanding the intricate interplay between GAMs, and bone-associated genes through molecular informatics holds significant promise for early diagnosis, prognosis, and novel treatment strategies for various bone disorders.
Collapse
Affiliation(s)
- Sumedha Yadav
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Leena Sapra
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Rupesh K Srivastava
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India.
| |
Collapse
|
103
|
Qu S, Yu Z, Zhou Y, Wang S, Jia M, Chen T, Zhang X. Gut microbiota modulates neurotransmitter and gut-brain signaling. Microbiol Res 2024; 287:127858. [PMID: 39106786 DOI: 10.1016/j.micres.2024.127858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/16/2024] [Accepted: 07/22/2024] [Indexed: 08/09/2024]
Abstract
Neurotransmitters, including 5-hydroxytryptamine (5-HT), dopamine (DA), gamma-aminobutyric acid (GABA), and glutamate, are essential transductors in the Gut-Brain Axis (GBA), playing critical roles both peripherally and centrally. Accumulating evidence suggests that the gut microbiota modulates intestinal neurotransmitter metabolism and gut-to-brain signaling, shedding light on the crucial role of the gut microbiota in brain function and the pathogenesis of various neuropsychiatric diseases, such as major depression disorder (MDD), anxiety, addiction and Parkinson's disease (PD). Despite the exciting findings, the mechanisms underlying the modulation of neurotransmitter metabolism and function by the gut microbiota are still being elucidated. In this review, we aim to provide a comprehensive overview of the existing knowledge about the role of the gut microbiota in neurotransmitter metabolism and function in animal and clinical experiments. Moreover, we will discuss the potential mechanisms through which gut microbiota-derived neurotransmitters contribute to the pathogenesis of neuropsychiatric diseases, thus highlighting a novel therapeutic target for these conditions.
Collapse
Affiliation(s)
- Shiyan Qu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China; National Clinic Research Center for Mental Disorders, Changsha, Hunan 410000, China; National Technology Institute on Mental Disorders, Changsha, Hunan 410000, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410000, China; Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha 410000, China
| | - Zijin Yu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China; National Clinic Research Center for Mental Disorders, Changsha, Hunan 410000, China; National Technology Institute on Mental Disorders, Changsha, Hunan 410000, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410000, China; Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha 410000, China
| | - Yaxuan Zhou
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China; National Clinic Research Center for Mental Disorders, Changsha, Hunan 410000, China; National Technology Institute on Mental Disorders, Changsha, Hunan 410000, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410000, China; Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha 410000, China
| | - Shiyi Wang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China; National Clinic Research Center for Mental Disorders, Changsha, Hunan 410000, China; National Technology Institute on Mental Disorders, Changsha, Hunan 410000, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410000, China; Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha 410000, China
| | - Minqi Jia
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China; National Clinic Research Center for Mental Disorders, Changsha, Hunan 410000, China; National Technology Institute on Mental Disorders, Changsha, Hunan 410000, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410000, China; Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha 410000, China
| | - Ti Chen
- Clinical Laboratory, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
| | - Xiaojie Zhang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China; National Clinic Research Center for Mental Disorders, Changsha, Hunan 410000, China; National Technology Institute on Mental Disorders, Changsha, Hunan 410000, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410000, China; Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha 410000, China.
| |
Collapse
|
104
|
Luo C, Yang Y, Jiang C, Lv A, Zuo W, Ye Y, Ke J. Influenza and the gut microbiota: A hidden therapeutic link. Heliyon 2024; 10:e37661. [PMID: 39315196 PMCID: PMC11417228 DOI: 10.1016/j.heliyon.2024.e37661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/31/2024] [Accepted: 09/07/2024] [Indexed: 09/25/2024] Open
Abstract
Background The extensive community of gut microbiota significantly influences various biological functions throughout the body, making its characterization a focal point in biomedicine research. Over the past few decades, studies have revealed a potential link between specific gut bacteria, their associated metabolic pathways, and influenza. Bacterial metabolites can communicate directly or indirectly with organs beyond the gut via the intestinal barrier, thereby impacting the physiological functions of the host. As the microbiota increasingly emerges as a 'gut signature' in influenza, gaining a deeper understanding of its role may offer new insights into its pathophysiological relevance and open avenues for novel therapeutic targets. In this Review, we explore the differences in gut microbiota between healthy individuals and those with influenza, the relationship between gut microbiota metabolites and influenza, and potential strategies for preventing and treating influenza through the regulation of gut microbiota and its metabolites, including fecal microbiota transplantation and microecological preparations. Methods We utilized PubMed and Web of Science as our search databases, employing keywords such as "influenza," "gut microbiota," "traditional Chinese medicine," "metabolites," "prebiotics," "probiotics," and "machine learning" to retrieve studies examining the potential therapeutic connections between the modulation of gut microbiota and its metabolites in the treatment of influenza. The search encompassed literature from the inception of the databases up to December 2023. Results Fecal microbiota transplantation (FMT), microbial preparations (probiotics and prebiotics), and traditional Chinese medicine have unique advantages in regulating intestinal microbiota and its metabolites to improve influenza outcomes. The primary mechanism involves increasing beneficial intestinal bacteria such as Bacteroidetes and Bifidobacterium while reducing harmful bacteria such as Proteobacteria. These interventions act directly or indirectly on metabolites such as short-chain fatty acids (SCFAs), amino acids (AAs), bile acids, and monoamines to alleviate lung inflammation, reduce viral load, and exert anti-influenza virus effects. Conclusion The gut microbiota and its metabolites have direct or indirect therapeutic effects on influenza, presenting broad research potential for providing new directions in influenza research and offering references for clinical prevention and treatment. Future research should focus on identifying key strains, specific metabolites, and immune regulation mechanisms within the gut microbiota to accurately target microbiota interventions and prevent respiratory viral infections such as influenza.
Collapse
Affiliation(s)
- Cheng Luo
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, China
| | - Yi Yang
- Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Academy of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, 430074, China
| | - Cheng Jiang
- Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Academy of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, 430074, China
| | - Anqi Lv
- College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Wanzhao Zuo
- College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Yuanhang Ye
- College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Jia Ke
- Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Academy of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, 430074, China
| |
Collapse
|
105
|
González A, Fullaondo A, Odriozola I, Odriozola A. Microbiota and beneficial metabolites in colorectal cancer. ADVANCES IN GENETICS 2024; 112:367-409. [PMID: 39396841 DOI: 10.1016/bs.adgen.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related death worldwide. In recent years, the impact of the gut microbiota on the development of CRC has become clear. The gut microbiota is the community of microorganisms living in the gut symbiotic relationship with the host. These microorganisms contribute to the development of CRC through various mechanisms that are not yet fully understood. Increasing scientific evidence suggests that metabolites produced by the gut microbiota may influence CRC development by exerting protective and deleterious effects. This article reviews the metabolites produced by the gut microbiota, which are derived from the intake of complex carbohydrates, proteins, dairy products, and phytochemicals from plant foods and are associated with a reduced risk of CRC. These metabolites include short-chain fatty acids (SCFAs), indole and its derivatives, conjugated linoleic acid (CLA) and polyphenols. Each metabolite, its association with CRC risk, the possible mechanisms by which they exert anti-tumour functions and their relationship with the gut microbiota are described. In addition, other gut microbiota-derived metabolites that are gaining importance for their role as CRC suppressors are included.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Iñaki Odriozola
- Health Department of Basque Government, Donostia-San Sebastián, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| |
Collapse
|
106
|
La Barbera G, Praticò G, Dragsted LO, Cuparencu C. Metabolomics-based biomarkers of fermented dairy and red meat intake: a randomized controlled trial in healthy adults. Front Chem 2024; 12:1461331. [PMID: 39380951 PMCID: PMC11459089 DOI: 10.3389/fchem.2024.1461331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/13/2024] [Indexed: 10/10/2024] Open
Abstract
Background Dietary assessment is usually performed through imprecise tools, leading to error-prone associations between diet and health-related outcomes. Metabolomics has been applied in recent years to develop biomarkers of food intake (BFIs) and to study metabolites in the diet-microbiome crosstalk. Candidate BFIs exist to detect intake of meat and to a lesser extent dairy, but validation and further development of BFIs are needed. Here, we aim to identify biomarkers that differentiate between intakes of red meat and dairy, to validate previously reported BFIs for these foods, and to explore the effect of protein-matched meals on selected microbial metabolites. Methods We conducted a randomized, controlled, cross-over single-meal study comparing a meal with highly fermented yogurt and cheese, and a meal with beef and pork meatballs. Postprandial urine samples from 17 subjects were collected sequentially after each meal up to 24 h and analyzed by untargeted metabolomics through ultra-high-performance-liquid chromatography (UHPLC) coupled via electrospray (ESI) source to a qTOF mass spectrometer. Univariate (repeated measures ANOVA) and multivariate (PLSDA, ML-PLSDA) data analyses were used to select BFIs differentiating the two meals. 3-Indoxyl sulfate, p-cresol sulfate, and several other microbial amino acid catabolites were additionally explored within the urine profiles. Results Thirty-eight markers of meat and dairy intake were selected and are presented along with their excretion kinetics. Carnosine, taurine, and creatine, as well as hydroxyproline-based dipeptides are confirmed as meat BFIs. For dairy, previously reported metabolites such as acyl-glycines are confirmed, while proline-based dipeptides are reported as novel putative BFIs. Microbial metabolites showed only marginal evidence of differential formation after the two meals. Conclusion This study allowed us to validate the postprandial kinetics of previously suggested biomarkers of meat and dairy intake and to identify new potential biomarkers. The excretion kinetics are useful to ensure that the collection of urine covers the correct time window in future dietary studies. The BFIs add to the existing body of biomarkers and may further be used in combination to provide a more reliable assessment of meat and dairy intake. Proteolytic microbial metabolites should be further investigated to assess the effect of different protein sources on health.
Collapse
Affiliation(s)
- Giorgia La Barbera
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
107
|
Datta S, Pasham S, Inavolu S, Boini KM, Koka S. Role of Gut Microbial Metabolites in Cardiovascular Diseases-Current Insights and the Road Ahead. Int J Mol Sci 2024; 25:10208. [PMID: 39337693 PMCID: PMC11432476 DOI: 10.3390/ijms251810208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of premature morbidity and mortality globally. The identification of novel risk factors contributing to CVD onset and progression has enabled an improved understanding of CVD pathophysiology. In addition to the conventional risk factors like high blood pressure, diabetes, obesity and smoking, the role of gut microbiome and intestinal microbe-derived metabolites in maintaining cardiovascular health has gained recent attention in the field of CVD pathophysiology. The human gastrointestinal tract caters to a highly diverse spectrum of microbes recognized as the gut microbiota, which are central to several physiologically significant cascades such as metabolism, nutrient absorption, and energy balance. The manipulation of the gut microbial subtleties potentially contributes to CVD, inflammation, neurodegeneration, obesity, and diabetic onset. The existing paradigm of studies suggests that the disruption of the gut microbial dynamics contributes towards CVD incidence. However, the exact mechanistic understanding of such a correlation from a signaling perspective remains elusive. This review has focused upon an in-depth characterization of gut microbial metabolites and their role in varied pathophysiological conditions, and highlights the potential molecular and signaling mechanisms governing the gut microbial metabolites in CVDs. In addition, it summarizes the existing courses of therapy in modulating the gut microbiome and its metabolites, limitations and scientific gaps in our current understanding, as well as future directions of studies involving the modulation of the gut microbiome and its metabolites, which can be undertaken to develop CVD-associated treatment options. Clarity in the understanding of the molecular interaction(s) and associations governing the gut microbiome and CVD shall potentially enable the development of novel druggable targets to ameliorate CVD in the years to come.
Collapse
Affiliation(s)
- Sayantap Datta
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Sindhura Pasham
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Sriram Inavolu
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Krishna M Boini
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Saisudha Koka
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| |
Collapse
|
108
|
Liu R, Luo Y, Ma J, Zhang Q, Sheng Y, Li J, Li H, Zhao T. Traditional Chinese medicine for functional gastrointestinal disorders and inflammatory bowel disease: narrative review of the evidence and potential mechanisms involving the brain-gut axis. Front Pharmacol 2024; 15:1444922. [PMID: 39355776 PMCID: PMC11443704 DOI: 10.3389/fphar.2024.1444922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/23/2024] [Indexed: 10/03/2024] Open
Abstract
Functional gastrointestinal disorders (FGIDs) and inflammatory bowel disease (IBD) are common clinical disorders characterized by recurrent diarrhea and abdominal pain. Although their pathogenesis has not been fully clarified, disruptions in intestinal motility and immune function are widely accepted as contributing factors to both conditions, and the brain-gut axis plays a key role in these processes. Traditional Chinese Medicine (TCM) employs a holistic approach to treatment, considers spleen and stomach impairments and liver abnormality the main pathogenesis of these two diseases, and offers a unique therapeutic strategy that targets these interconnected pathways. Clinical evidence shows the great potential of TCM in treating FGIDs and IBD. This study presents a systematic description of the pathological mechanisms of FGIDs and IBD in the context of the brain-gut axis, discusses clinical and preclinical studies on TCM and acupuncture for the treatment of these diseases, and summarizes TCM targets and pathways for the treatment of FGIDs and IBD, integrating ancient wisdom with contemporary biomedical insights. The alleviating effects of TCM on FGID and IBD symptoms are mainly mediated through the modulation of intestinal immunity and inflammation, sensory transmission, neuroendocrine-immune network, and microbiota and their metabolism through brain-gut axis mechanisms. TCM may be a promising treatment option in controlling FGIDs and IBD; however, further high-quality research is required. This review provides a reference for an in-depth exploration of the interventional effects and mechanisms of TCM in FGIDs and IBD, underscoring TCM's potential to recalibrate the dysregulated brain-gut axis in FGIDs and IBD.
Collapse
Affiliation(s)
- RuiXuan Liu
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - YunTian Luo
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - JinYing Ma
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qi Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yudong Sheng
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiashan Li
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongjiao Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - TianYi Zhao
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
109
|
Lu S, Wang C, Ma J, Wang Y. Metabolic mediators: microbial-derived metabolites as key regulators of anti-tumor immunity, immunotherapy, and chemotherapy. Front Immunol 2024; 15:1456030. [PMID: 39351241 PMCID: PMC11439727 DOI: 10.3389/fimmu.2024.1456030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
The human microbiome has recently emerged as a focal point in cancer research, specifically in anti-tumor immunity, immunotherapy, and chemotherapy. This review explores microbial-derived metabolites, emphasizing their crucial roles in shaping fundamental aspects of cancer treatment. Metabolites such as short-chain fatty acids (SCFAs), Trimethylamine N-Oxide (TMAO), and Tryptophan Metabolites take the spotlight, underscoring their diverse origins and functions and their profound impact on the host immune system. The focus is on SCFAs' remarkable ability to modulate immune responses, reduce inflammation, and enhance anti-tumor immunity within the intricate tumor microenvironment (TME). The review critically evaluates TMAO, intricately tied to dietary choices and gut microbiota composition, assessing its implications for cancer susceptibility, progression, and immunosuppression. Additionally, the involvement of tryptophan and other amino acid metabolites in shaping immune responses is discussed, highlighting their influence on immune checkpoints, immunosuppression, and immunotherapy effectiveness. The examination extends to their dynamic interaction with chemotherapy, emphasizing the potential of microbial-derived metabolites to alter treatment protocols and optimize outcomes for cancer patients. A comprehensive understanding of their role in cancer therapy is attained by exploring their impacts on drug metabolism, therapeutic responses, and resistance development. In conclusion, this review underscores the pivotal contributions of microbial-derived metabolites in regulating anti-tumor immunity, immunotherapy responses, and chemotherapy outcomes. By illuminating the intricate interactions between these metabolites and cancer therapy, the article enhances our understanding of cancer biology, paving the way for the development of more effective treatment options in the ongoing battle against cancer.
Collapse
Affiliation(s)
- Shan Lu
- Department of General Practice, The Second Hospital of Jilin University, Changchun, China
| | - Chunling Wang
- Medical Affairs Department, The Second Hospital of Jilin University, Changchun, China
| | - Jingru Ma
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun, China
| | - Yichao Wang
- Department of Obstetrics and Gynecology, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
110
|
Etlin S, Rose J, Bielski L, Walter C, Kleinman AS, Mason CE. The human microbiome in space: parallels between Earth-based dysbiosis, implications for long-duration spaceflight, and possible mitigation strategies. Clin Microbiol Rev 2024; 37:e0016322. [PMID: 39136453 PMCID: PMC11391694 DOI: 10.1128/cmr.00163-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
SUMMARYThe human microbiota encompasses the diverse communities of microorganisms that reside in, on, and around various parts of the human body, such as the skin, nasal passages, and gastrointestinal tract. Although research is ongoing, it is well established that the microbiota exert a substantial influence on the body through the production and modification of metabolites and small molecules. Disruptions in the composition of the microbiota-dysbiosis-have also been linked to various negative health outcomes. As humans embark upon longer-duration space missions, it is important to understand how the conditions of space travel impact the microbiota and, consequently, astronaut health. This article will first characterize the main taxa of the human gut microbiota and their associated metabolites, before discussing potential dysbiosis and negative health consequences. It will also detail the microbial changes observed in astronauts during spaceflight, focusing on gut microbiota composition and pathogenic virulence and survival. Analysis will then turn to how astronaut health may be protected from adverse microbial changes via diet, exercise, and antibiotics before concluding with a discussion of the microbiota of spacecraft and microbial culturing methods in space. The implications of this review are critical, particularly with NASA's ongoing implementation of the Moon to Mars Architecture, which will include weeks or months of living in space and new habitats.
Collapse
Affiliation(s)
- Sofia Etlin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Department of Biology, Cornell University, Ithaca, New York, USA
- BioAstra Inc., New York, New York, USA
| | - Julianna Rose
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Department of Biology, Cornell University, Ithaca, New York, USA
- BioAstra Inc., New York, New York, USA
| | - Luca Bielski
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Department of Biology, Cornell University, Ithaca, New York, USA
| | - Claire Walter
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Department of Biology, Cornell University, Ithaca, New York, USA
- BioAstra Inc., New York, New York, USA
| | - Ashley S Kleinman
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- BioAstra Inc., New York, New York, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
- Tri-Institutional Biology and Medicine program, Weill Cornell Medicine, New York, New York, USA
- WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
111
|
Chojnacki J, Popławski T, Kaczka A, Romanowska N, Chojnacki C, Gąsiorowska A. Assessment of Urinary Dopamine and Serotonin Metabolites in Relation to Dysbiosis Indicators in Patients with Functional Constipation. Nutrients 2024; 16:2981. [PMID: 39275296 PMCID: PMC11397005 DOI: 10.3390/nu16172981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/16/2024] Open
Abstract
BACKGROUND The causes of functional constipation (FC) in adults are unclear, but changes in the gut microbiome may play an important role. The present study aimed to assess the relationship between urinary metabolites of dopamine and serotonin and some dysbiosis indicators in patients with FC. The study included 40 healthy women and 40 women with FC aged 21-46 years. METHODS Urinary levels of homovanillic acid (HVA), 5-hydoxyindoleacetic acid (5-HIAA), p-hydroxyphenylacetic acid (PhAc), and 3-indoxyl sulfate, as final metabolites of dopamine, serotonin, and indole pathway, respectively, were determined using the LC-Ms/Ms method. However, hydrogen-methane and ammonia breath tests were performed. The GA-map Dysbiosis Test was used to identify and characterize the dysbiosis index (DI). RESULTS In patients with FC, the DI was significantly higher than in the control group: 4.05 ± 0.53 vs. 1.52 ± 0.81 points (p < 0.001), but the number of many types of bacteria varied among individuals. The levels of HVA were higher, while 5-HIAA levels were lower in patients. Moreover, the HVA/5-HIAA ratio had a positive correlation with DI as well as with the severity of symptoms. CONCLUSIONS In patients with functional constipation, the balance in dopamine and serotonin secretion is disturbed, which is associated with changes in the gut microbiome.
Collapse
Affiliation(s)
- Jan Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland
| | - Tomasz Popławski
- Department of Pharmaceutical Microbiology and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| | - Aleksandra Kaczka
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland
| | - Natalia Romanowska
- Department of Gastroenterology, Medical University of Lodz, 92-213 Lodz, Poland
| | - Cezary Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland
| | - Anita Gąsiorowska
- Department of Gastroenterology, Medical University of Lodz, 92-213 Lodz, Poland
| |
Collapse
|
112
|
Wei W, Lyu X, Markhard AL, Fu S, Mardjuki RE, Cavanagh PE, Zeng X, Rajniak J, Lu N, Xiao S, Zhao M, Moya-Garzon MD, Truong SD, Chou JCC, Wat LW, Chidambaranathan-Reghupaty S, Coassolo L, Xu D, Shen F, Huang W, Ramirez CB, Jang C, Li L, Svensson KJ, Fischbach MA, Long JZ. PTER is a N-acetyltaurine hydrolase that regulates feeding and obesity. Nature 2024; 633:182-188. [PMID: 39112712 PMCID: PMC11374699 DOI: 10.1038/s41586-024-07801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 07/09/2024] [Indexed: 08/11/2024]
Abstract
Taurine is a conditionally essential micronutrient and one of the most abundant amino acids in humans1-3. In endogenous taurine metabolism, dedicated enzymes are involved in the biosynthesis of taurine from cysteine and in the downstream metabolism of secondary taurine metabolites4,5. One taurine metabolite is N-acetyltaurine6. Levels of N-acetyltaurine are dynamically regulated by stimuli that alter taurine or acetate flux, including endurance exercise7, dietary taurine supplementation8 and alcohol consumption6,9. So far, the identities of the enzymes involved in N-acetyltaurine metabolism, and the potential functions of N-acetyltaurine itself, have remained unknown. Here we show that the body mass index associated orphan enzyme phosphotriesterase-related (PTER)10 is a physiological N-acetyltaurine hydrolase. In vitro, PTER catalyses the hydrolysis of N-acetyltaurine to taurine and acetate. In mice, PTER is expressed in the kidney, liver and brainstem. Genetic ablation of Pter in mice results in complete loss of tissue N-acetyltaurine hydrolysis activity and a systemic increase in N-acetyltaurine levels. After stimuli that increase taurine levels, Pter knockout mice exhibit reduced food intake, resistance to diet-induced obesity and improved glucose homeostasis. Administration of N-acetyltaurine to obese wild-type mice also reduces food intake and body weight in a GFRAL-dependent manner. These data place PTER into a central enzymatic node of secondary taurine metabolism and uncover a role for PTER and N-acetyltaurine in body weight control and energy balance.
Collapse
Affiliation(s)
- Wei Wei
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Xuchao Lyu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
| | - Andrew L Markhard
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Sipei Fu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Rachel E Mardjuki
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, Stanford University, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Peter E Cavanagh
- Department of Biochemistry, Stanford University, Stanford, CA, USA
| | - Xianfeng Zeng
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Jakub Rajniak
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Nannan Lu
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Shuke Xiao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Meng Zhao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Maria Dolores Moya-Garzon
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
| | - Steven D Truong
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | | | - Lianna W Wat
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Saranya Chidambaranathan-Reghupaty
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Laetitia Coassolo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Duo Xu
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, Stanford University, Stanford, CA, USA
| | - Fangfang Shen
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Wentao Huang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Cuauhtemoc B Ramirez
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Lingyin Li
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, Stanford University, Stanford, CA, USA
- Arc Institute, Palo Alto, CA, USA
| | - Katrin J Svensson
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael A Fischbach
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Jonathan Z Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA.
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA.
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
- The Phil and Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
113
|
Zhang X, Yang G, Jiang S, Ji B, Xie W, Li H, Sun J, Li Y. Causal Relationship Between Gut Microbiota, Metabolites, and Sarcopenia: A Mendelian Randomization Study. J Gerontol A Biol Sci Med Sci 2024; 79:glae173. [PMID: 38995073 PMCID: PMC11329623 DOI: 10.1093/gerona/glae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Gut microbiota imbalance and sarcopenia are frequently observed in older adults. Gut microbiota and their metabolites are considered risk factors contributing to the heightened risk of sarcopenia, but whether these associations are causal remains unclear. METHODS We conducted linkage disequilibrium score regression and 2-sample Mendelian randomization (MR) methods with single-nucleotide polymorphisms sourced from large-scale genome-wide association studies as instrumental variables to examine the causal associations linking gut microbiota with their metabolites to the sarcopenia. Following the MR analysis, subsequent sensitivity analyses were conducted to reinforce the robustness and credibility of the obtained results. RESULTS MR analysis yielded compelling evidence demonstrating the correlation between genetically predicted gut microbiota and metabolites and the risk of sarcopenia. The abundance of Porphyromonadaceae, Rikenellaceae, Terrisporobacter, and Victivallis was found to be associated with walking pace. Our study also found suggestive associations of 12 intestinal bacteria with appendicular lean mass, and of Streptococcaceae, Intestinibacter, Paraprevotella, Ruminococcaceae UCG009, and Sutterella with grip strength. Specifically, we identified 21 gut microbiota-derived metabolites that may be associated with the risk of sarcopenia. CONCLUSIONS Utilizing a 2-sample MR approach, our study elucidates the causal interplay among gut microbiota, gut microbiota-derived metabolites, and the occurrence of sarcopenia. These findings suggest that gut microbiota and metabolites may represent a potential underlying risk factor for sarcopenia, and offer the promise of novel therapeutic focal points.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Guang Yang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shide Jiang
- Department of Orthopedics, The Central Hospital of Yongzhou, Yongzhou, China
| | - Bingzhou Ji
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hengzhen Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jianfeng Sun
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
114
|
Li X, Shang S, Wu M, Song Q, Chen D. Gut microbial metabolites in lung cancer development and immunotherapy: Novel insights into gut-lung axis. Cancer Lett 2024; 598:217096. [PMID: 38969161 DOI: 10.1016/j.canlet.2024.217096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
Metabolic derivatives of numerous microorganisms inhabiting the human gut can participate in regulating physiological activities and immune status of the lungs through the gut-lung axis. The current well-established microbial metabolites include short-chain fatty acids (SCFAs), tryptophan and its derivatives, polyamines (PAs), secondary bile acids (SBAs), etc. As the study continues to deepen, the critical function of microbial metabolites in the occurrence and treatment of lung cancer has gradually been revealed. Microbial derivates can enter the circulation system to modulate the immune microenvironment of lung cancer. Mechanistically, oncometabolites damage host DNA and promote the occurrence of lung cancer, while tumor-suppresive metabolites directly affect the immune system to combat the malignant properties of cancer cells and even show considerable application potential in improving the efficacy of lung cancer immunotherapy. Considering the crosstalk along the gut-lung axis, in-depth exploration of microbial metabolites in patients' feces or serum will provide novel guidance for lung cancer diagnosis and treatment selection strategies. In addition, targeted therapeutics on microbial metabolites are expected to overcome the bottleneck of lung cancer immunotherapy and alleviate adverse reactions, including fecal microbiota transplantation, microecological preparations, metabolite synthesis and drugs targeting metabolic pathways. In summary, this review provides novel insights and explanations on the intricate interplay between gut microbial metabolites and lung cancer development, and immunotherapy through the lens of the gut-lung axis, which further confirms the possible translational potential of the microbiome metabolome in lung cancer treatment.
Collapse
Affiliation(s)
- Xinpei Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shijie Shang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China; Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Wu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qian Song
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| | - Dawei Chen
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
115
|
Liu R, Wang J, Liu Y, Gao Y, Yang R. Regulation of gut microbiota on immune cell ferroptosis: A novel insight for immunotherapy against tumor. Cancer Lett 2024; 598:217115. [PMID: 39025428 DOI: 10.1016/j.canlet.2024.217115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Gut microbiota contributes to the homeostasis of immune system and is related to various diseases such as tumorigenesis. Ferroptosis, a new type of cell death, is also involved in the disease pathogenesis. Recent studies have found the correlations of gut microbiota mediated ferroptosis and immune cell death. Gut microbiota derived immunosuppressive metabolites, which can promote differentiation and function of immune cells, tend to inhibit ferroptosis through their receptors, whereas inflammatory metabolites from gut microbiota also affect the differentiation and function of immune cells and their ferroptosis. Thus, it is possible for gut microbiota to regulate immune cell ferroptosis. Indeed, gut microbiota metabolite receptor aryl hydrocarbon receptor (AhR) can affect ferroptosis of intestinal intraepithelial lymphocytes, leading to disease pathogenesis. Since immune cell ferroptosis in tumor microenvironment (TME) affects the occurrence and development of tumor, the modulation of gut microbiota in these cell ferroptosis might influence on the tumorigenesis, and also immunotherapy against tumors. Here we will summarize the recent advance of ferroptosis mediated by gut microbiota metabolites, which potentially acts as regulator(s) on immune cells in TME for therapy against tumor.
Collapse
Affiliation(s)
- Ruobing Liu
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Juanjuan Wang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Yuqing Liu
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Yunhuan Gao
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, China.
| |
Collapse
|
116
|
He Y, Zhao C, Su N, Yang W, Yang H, Yuan C, Zhang N, Hu X, Fu Y. Disturbances of the gut microbiota-derived tryptophan metabolites as key actors in vagotomy-induced mastitis in mice. Cell Rep 2024; 43:114585. [PMID: 39110590 DOI: 10.1016/j.celrep.2024.114585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/24/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
Previous studies have demonstrated that gut microbiota dysbiosis promotes the development of mastitis. The interaction of the vagus nerve and gut microbiota endows host homeostasis and regulates disease development, but whether the vagus nerve participates in the pathogenesis of mastitis is unclear. Here, vagotomized mice exhibit disruption of the blood-milk barrier and mammary gland inflammation. Notably, mastitis and barrier damage caused by vagotomy are dependent on the gut microbiota, as evidenced by antibiotic treatment and fecal microbiota transplantation. Vagotomy significantly alters the gut microbial composition and tryptophan metabolism and reduces the 5-hydroxyindole acetic acid (5-HIAA) level. Supplementation with 5-HIAA alleviates vagotomy-induced mastitis, which is associated with the activation of the aryl hydrocarbon receptor (AhR) and subsequent inhibition of the NF-κB pathway. Collectively, our findings indicate the important role of the vagus-mediated gut-mammary axis in the pathogenesis of mastitis and imply a potential strategy for the treatment of mastitis by targeting the vagus-gut microbiota interaction.
Collapse
Affiliation(s)
- Yuhong He
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Caijun Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Niri Su
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Wencheng Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Hengyi Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Chongshan Yuan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China.
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China.
| |
Collapse
|
117
|
Meinarovich P, Pautova A, Zuev E, Sorokina E, Chernevskaya E, Beloborodova N. An Integrated Approach Based on Clinical Data Combined with Metabolites and Biomarkers for the Assessment of Post-Operative Complications after Cardiac Surgery. J Clin Med 2024; 13:5054. [PMID: 39274267 PMCID: PMC11395730 DOI: 10.3390/jcm13175054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Background: Early diagnosis of post-operative complications is an urgent task, allowing timely prescribing of appropriate therapy and reducing the cost of patient treatment. The purpose of this study was to determine whether an integrated approach based on clinical data, along with metabolites and biomarkers, had greater predictive value than the models built on fewer data in the early diagnosis of post-operative complications after cardiac surgery. Methods: The study included patients (n = 62) admitted for planned cardiac surgery (coronary artery bypass grafting with cardiopulmonary bypass) with (n = 26) or without (n = 36) post-operative complications. Clinical and laboratory data on the first day after surgery were analyzed. Additionally, patients' blood samples were collected before and on the first day after surgery to determine biomarkers and metabolites. Results: Multivariate PLS-DA models, predicting the presence or absence of post-operative complications, were built using clinical data, concentrations of metabolites and biomarkers, and the entire data set (ROC-AUC = 0.80, 0.71, and 0.85, respectively). For comparison, we built univariate models using the EuroScore2 and SOFA scales, concentrations of lactate, the dynamic changes of 4-hydroxyphenyllactic acid, and the sum of three sepsis-associated metabolites (ROC-AUC = 0.54, 0.79, 0.62, 0.58, and 0.70, respectively). Conclusions: The proposed complex model using the entire dataset had the best characteristics, which confirms the expediency of searching for new predictive models based on a variety of factors.
Collapse
Affiliation(s)
- Peter Meinarovich
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25-2 Petrovka Str., 107031 Moscow, Russia
| | - Alisa Pautova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25-2 Petrovka Str., 107031 Moscow, Russia
| | - Evgenii Zuev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25-2 Petrovka Str., 107031 Moscow, Russia
| | - Ekaterina Sorokina
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25-2 Petrovka Str., 107031 Moscow, Russia
| | - Ekaterina Chernevskaya
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25-2 Petrovka Str., 107031 Moscow, Russia
| | - Natalia Beloborodova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25-2 Petrovka Str., 107031 Moscow, Russia
| |
Collapse
|
118
|
Cheng W, Zhu N, Wang J, Yang R. A role of gut microbiota metabolites in HLA-E and NKG2 blockage immunotherapy against tumors: new insights for clinical application. Front Immunol 2024; 15:1331518. [PMID: 39229258 PMCID: PMC11368731 DOI: 10.3389/fimmu.2024.1331518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/16/2024] [Indexed: 09/05/2024] Open
Abstract
One of major breakthroughs in immunotherapy against tumor is from blocking immune checkpoint molecules on tumor and reactive T cells. The development of CTLA-4 and PD-1 blockage antibodies has triggered to search for additional effective therapeutic strategies. This causes recent findings that blocking the interaction of checkpoint molecule NKG2A in NK and CD8 T cells with HLA-E in tumors is effective in defensing tumors. Interestingly, gut microbiota also affects this immune checkpoint immunotherapy against tumor. Gut microbiota such as bacteria can contribute to the regulation of host immune response and homeostasis. They not only promote the differentiation and function of immunosuppressive cells but also the inflammatory cells through the metabolites such as tryptophan (Trp) and bile acid (BA) metabolites as well as short chain fatty acids (SCFAs). These gut microbiota metabolites (GMMs) educated immune cells can affect the differentiation and function of effective CD8 and NK cells. Notably, these metabolites also directly affect the activity of CD8 and NK cells. Furthermore, the expression of CD94/NKG2A in the immune cells and/or their ligand HLA-E in the tumor cells is also regulated by gut microbiota associated immune factors. These findings offer new insights for the clinical application of gut microbiota in precise and/or personalized treatments of tumors. In this review, we will discuss the impacts of GMMs and GMM educated immune cells on the activity of effective CD8 and NK cells and the expression of CD94/NKG2A in immune cells and/or their ligand HLA-E in tumor cells.
Collapse
Affiliation(s)
- Wenyue Cheng
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Ningning Zhu
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Juanjuan Wang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Rongcun Yang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| |
Collapse
|
119
|
Zeng Y, Guo M, Wu Q, Tan X, Jiang C, Teng F, Chen J, Zhang F, Ma X, Li X, Gu J, Huang W, Zhang C, Yuen-Kwan Law B, Long Y, Xu Y. Gut microbiota-derived indole-3-propionic acid alleviates diabetic kidney disease through its mitochondrial protective effect via reducing ubiquitination mediated-degradation of SIRT1. J Adv Res 2024:S2090-1232(24)00361-8. [PMID: 39147198 DOI: 10.1016/j.jare.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/15/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024] Open
Abstract
INTRODUCTION Gut microbes and their metabolites play crucial roles in the pathogenesis of diabetic kidney disease (DKD). However, which one and how specific gut-derived metabolites affect the progression of DKD remain largely unknown. OBJECTIVES This study aimed to investigate the potential roles of indole-3-propionic acid (IPA), a microbial metabolite of tryptophan, in DKD. METHODS Metagenomic sequencing was performed to analyze the microbiome structure in DKD. Metabolomics screening and validation were conducted to identify characteristic metabolites associated with DKD. The protective effect of IPA on DKD glomerular endothelial cells (GECs) was assessed through in vivo and in vitro experiments. Further validation via western blot, immunoprecipitation, gene knockout, and site-directed mutation elucidated the mechanism of IPA on mitochondrial injury. RESULTS Alterations in gut microbial community structure and dysregulated tryptophan metabolism were evident in DKD mice. Serum IPA levels were significantly reduced in DKD patients and correlated with fasting blood glucose, HbA1c, urine albumin-to-creatinine ratio (UACR), and estimated glomerular filtration rate (eGFR). IPA supplementation ameliorated albuminuria, bolstered the integrity of the glomerular filtration barrier, and mitigated mitochondrial impairments in GECs. Mechanistically, IPA hindered SIRT1 phosphorylation-mediated ubiquitin-proteasome degradation, restoring SIRT1's role in promoting PGC-1α deacetylation and nuclear translocation, thereby upregulating genes associated with mitochondrial biosynthesis and antioxidant defense. CONCLUSION Our findings underscore the potential of the microbial metabolite IPA to attenuate DKD progression, offering novel insights and potential therapeutic strategies for its management.
Collapse
Affiliation(s)
- Yan Zeng
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China; Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou 646000, Sichuan, China; Sichuan Clinical Research Center for Nephropathy, Luzhou 646000, Sichuan, China
| | - Man Guo
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou 646000, Sichuan, China; Sichuan Clinical Research Center for Nephropathy, Luzhou 646000, Sichuan, China
| | - Qi Wu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou 646000, Sichuan, China; Sichuan Clinical Research Center for Nephropathy, Luzhou 646000, Sichuan, China; Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Xiaozhen Tan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou 646000, Sichuan, China; Sichuan Clinical Research Center for Nephropathy, Luzhou 646000, Sichuan, China; Experimental Medicine Center, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Chunxia Jiang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China; Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou 646000, Sichuan, China; Sichuan Clinical Research Center for Nephropathy, Luzhou 646000, Sichuan, China
| | - Fangyuan Teng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou 646000, Sichuan, China; Sichuan Clinical Research Center for Nephropathy, Luzhou 646000, Sichuan, China; Experimental Medicine Center, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Jiao Chen
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou 646000, Sichuan, China; Sichuan Clinical Research Center for Nephropathy, Luzhou 646000, Sichuan, China
| | - Fanjie Zhang
- Department of Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Xiumei Ma
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610000, Sichuan, China
| | - Xinyue Li
- Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610000, Sichuan, China
| | - Junling Gu
- Department of Endocrinology, Yibin Second People's Hospital-West China Yibin Hospital, Sichuan University, Yibin 644000, Sichuan, China
| | - Wei Huang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou 646000, Sichuan, China; Sichuan Clinical Research Center for Nephropathy, Luzhou 646000, Sichuan, China
| | - Chunxiang Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Betty Yuen-Kwan Law
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China.
| | - Yang Long
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou 646000, Sichuan, China; Sichuan Clinical Research Center for Nephropathy, Luzhou 646000, Sichuan, China; Experimental Medicine Center, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Yong Xu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China; Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou 646000, Sichuan, China; Sichuan Clinical Research Center for Nephropathy, Luzhou 646000, Sichuan, China.
| |
Collapse
|
120
|
Zhang Y, Li S, Fan X, Wu Y. Pretreatment with Indole-3-Propionic Acid Attenuates Lipopolysaccharide-Induced Cardiac Dysfunction and Inflammation Through the AhR/NF-κB/NLRP3 Pathway. J Inflamm Res 2024; 17:5293-5309. [PMID: 39157586 PMCID: PMC11330251 DOI: 10.2147/jir.s466777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024] Open
Abstract
Background Patients with sepsis frequently develop septic cardiomyopathy, which is known to be closely related to excessive inflammatory responses. Indole-3-propionic acid (IPA) is a tryptophan metabolite with anti-inflammatory properties that have been demonstrated in various studies. In this study, we investigated the underlying mechanisms and therapeutic role of IPA in septic cardiomyopathy. Methods To investigate the role of IPA in septic cardiomyopathy, we constructed a lipopolysaccharide (LPS)-induced rat model of septic cardiomyopathy, and treated rats with IPA. Inflammatory factors and the NF-κB/NLRP3 pathway were evaluated in myocardial tissues and cells after IPA treatment using RT-qPCR, ELISA, Western blotting, and immunohistochemistry. To further elucidate the role of the aryl hydrocarbon receptor (AhR), we detected changes in inflammatory mediators and the NF-κB/NLRP3 pathway in in vivo and in vitro models of septic cardiomyopathy, which were treated with the AhR antagonist CH-223191 and/or AhR agonist FICZ. Results IPA supplementation improved cardiac dysfunction in rats with septic cardiomyopathy. IPA reduced inflammatory cytokine release and inhibited NF-κB/NLRP3 signaling pathway in myocardial tissue and in H9c2 cells. CH-223191 impaired the anti-inflammatory effect of IPA in LPS-treated cells, whereas FICZ exerted the same effect as IPA. IPA also exhibited anti-inflammatory activity by binding to the AhR. Our results indicated that IPA attenuated septic cardiomyopathy in rats via AhR/NF-κB/NLRP3 signaling. Conclusion Our study revealed that IPA improved left heart dysfunction and myocardial inflammation caused by sepsis via AhR/NF-κB/NLRP3 signaling, suggesting that IPA is a potential therapy for septic cardiomyopathy.
Collapse
Affiliation(s)
- Yiqiong Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Shanshan Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Xiaojuan Fan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Yue Wu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
121
|
Du L, Wang J, Qiu X, Wang Q, Peng H, Huang J, Yang F, Liu Z, Qi R. Clostridium sporogenes increases fat accumulation in mice by enhancing energy absorption and adipogenesis. Microbiol Spectr 2024; 12:e0411623. [PMID: 38916334 PMCID: PMC11302664 DOI: 10.1128/spectrum.04116-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/09/2024] [Indexed: 06/26/2024] Open
Abstract
Gut bacteria belonging to the Clostridium family play a pivotal role in regulating host energy balance and metabolic homeostasis. As a commensal bacterium, Clostridium sporogenes has been implicated in modulating host energy homeostasis, albeit the underlying mechanism remains elusive. Therefore, this study aimed to investigate the impact of C. sporogenes supplementation on various physiological parameters, intestinal morphology, particularly adipose tissue accumulation, and glucolipid metabolism in mice. The findings reveal that mice supplemented with C. sporogenes for 6 weeks exhibited a notable increase in body weight, fat mass, adipocyte size, and serum triglyceride (TG) levels. Notably, the increased fat accumulation is observed despite consistent feed intake in treated mice. Mechanistically, C. sporogenes supplementation significantly improved the structure integrity of intestinal villi and enhanced energy absorption efficiency while reducing excretion of carbohydrates and fatty acids in feces. This was accompanied by upregulation of glucose and fatty acid transporter expression. Furthermore, supplementation with C. sporogenes promoted adipogenesis in both liver and adipose tissues, as evidenced by increased levels of hepatic pyruvate, acetyl-CoA, and TG, along with elevated expression levels of genes associated with lipid synthesis. Regarding the microbiological aspect, C. sporogenes supplementation correlated with an increased abundance of Clostridium genus bacteria and enhanced carbohydrate enzyme activity. In summary, C. sporogenes supplementation significantly promotes fat accumulation in mice by augmenting energy absorption and adipogenesis, possibly mediated by the expansion of Clostridium bacteria population with robust glycolipid metabolic ability. IMPORTANCE The Clostridia clusters have been implicated in energy metabolism, the specific species and underlying mechanisms remain unclear. This present study is the first to report Clostridium sporogenes is able to affect fat accumulation and glycolipid metabolism. We indicated that gavage of C. sporogenes promoted the adipogenesis and fat accumulation in mice by not only increasing the abundance of Clostridium bacteria but by also enhancing the metabolic absorption of carbohydrates and fatty acids significantly. Obviously, changes of gut microbiota caused by the C. sporogenes, especially the significant increase of Clostridium bacteria, contributed to the fat accumulation of mice. In addition, the enhancement of Clostridium genus bacteria remarkably improved the synthesis of hepatic pyruvate, acetyl-CoA, and triglyceride levels, as well as reduced the excretion of fecal carbohydrates, short-chain fatty acids, and free fatty acids remarkably. These findings will help us to understand the relationship of specific bacteria and host energy homeostasis.
Collapse
Affiliation(s)
- Lei Du
- Chongqing Academy of Animal Science, Chongqing, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
| | - Jing Wang
- Chongqing Academy of Animal Science, Chongqing, China
| | - Xiaoyu Qiu
- Chongqing Academy of Animal Science, Chongqing, China
| | - Qi Wang
- Chongqing Academy of Animal Science, Chongqing, China
| | - Han Peng
- Sichuan Animal Science Academy, Chengdu, China
| | - Jinxiu Huang
- Chongqing Academy of Animal Science, Chongqing, China
| | - Feiyun Yang
- Chongqing Academy of Animal Science, Chongqing, China
- National Pig Technology Innovation Center, Chongqing, China
| | - Zuohua Liu
- Chongqing Academy of Animal Science, Chongqing, China
- National Pig Technology Innovation Center, Chongqing, China
| | - Renli Qi
- Chongqing Academy of Animal Science, Chongqing, China
- National Pig Technology Innovation Center, Chongqing, China
| |
Collapse
|
122
|
Wang D, He J, Chen Y, Liu B, Wu Z, Pan X, Niu X. Harnessing in vivo synthesis of bioactive multiarylmethanes in Escherichia coli via oxygen-mediated free radical reaction induced by simple phenols. Microb Cell Fact 2024; 23:219. [PMID: 39103877 DOI: 10.1186/s12934-024-02494-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Xanthenes and multi-aryl carbon core containing compounds represent different types of complex and condensed architectures that have impressive wide range of pharmacological, industrial and synthetic applications. Moreover, indoles as building blocks were only found in naturally occurring metabolites with di-aryl carbon cores and in chemically synthesized tri-aryl carbon core containing compounds. Up to date, rare xanthenes with indole bearing multicaryl carbon core have been reported in natural or synthetic products. The underlying mechanism of fluorescein-like arthrocolins with tetra-arylmethyl core were synthesized in an engineered Escherichia coli fed with toluquinol remained unclear. RESULTS In this study, the Keio collection of single gene knockout strains of 3901 mutants of E. coli BW25113, together with 14 distinct E. coli strains, was applied to explore the origins of endogenous building blocks and the biogenesis for arthrocolin assemblage. Deficiency in bacterial respiratory and aromatic compound degradation genes ubiX, cydB, sucA and ssuE inhibited the mutant growth fed with toluquinol. Metabolomics of the cultures of 3897 mutants revealed that only disruption of tnaA involving in transforming tryptophan to indole, resulted in absence of arthrocolins. Further media optimization, thermal cell killing and cell free analysis indicated that a non-enzyme reaction was involved in the arthrocolin biosynthesis in E. coli. Evaluation of redox potentials and free radicals suggested that an oxygen-mediated free radical reaction was responsible for arthrocolins formation in E. coli. Regulation of oxygen combined with distinct phenol derivatives as inducer, 31 arylmethyl core containing metabolites including 13 new and 8 biological active, were isolated and characterized. Among them, novel arthrocolins with p-hydroxylbenzene ring from tyrosine were achieved through large scale of aerobic fermentation and elucidated x-ray diffraction analysis. Moreover, most of the known compounds in this study were for the first time synthesized in a microbe instead of chemical synthesis. Through feeding the rat with toluquinol after colonizing the intestines of rat with E. coli, arthrocolins also appeared in the rat blood. CONCLUSION Our findings provide a mechanistic insight into in vivo synthesis of complex and condensed arthrocolins induced by simple phenols and exploits a quinol based method to generate endogenous aromatic building blocks, as well as a methylidene unit, for the bacteria-facilitated synthesis of multiarylmethanes.
Collapse
Affiliation(s)
- Donglou Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China
| | - Jiangbo He
- Kunming Key Laboratory of Respiratory Disease, Kunming University, Kunming, 650214, P. R. China
| | - Yonghong Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China
| | - Boran Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China
| | - Zhuang Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China
| | - Xuerong Pan
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China
| | - Xuemei Niu
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China.
| |
Collapse
|
123
|
Almhjell PJ, Johnston KE, Porter NJ, Kennemur JL, Bhethanabotla VC, Ducharme J, Arnold FH. The β-subunit of tryptophan synthase is a latent tyrosine synthase. Nat Chem Biol 2024; 20:1086-1093. [PMID: 38744987 PMCID: PMC11288773 DOI: 10.1038/s41589-024-01619-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/04/2024] [Indexed: 05/16/2024]
Abstract
Aromatic amino acids and their derivatives are diverse primary and secondary metabolites with critical roles in protein synthesis, cell structure and integrity, defense and signaling. All de novo aromatic amino acid production relies on a set of ancient and highly conserved chemistries. Here we introduce a new enzymatic transformation for L-tyrosine synthesis by demonstrating that the β-subunit of tryptophan synthase-which natively couples indole and L-serine to form L-tryptophan-can act as a latent 'tyrosine synthase'. A single substitution of a near-universally conserved catalytic residue unlocks activity toward simple phenol analogs and yields exclusive para carbon-carbon bond formation to furnish L-tyrosines. Structural and mechanistic studies show how a new active-site water molecule orients phenols for a nonnative mechanism of alkylation, with additional directed evolution resulting in a net >30,000-fold rate enhancement. This new biocatalyst can be used to efficiently prepare valuable L-tyrosine analogs at gram scales and provides the missing chemistry for a conceptually different pathway to L-tyrosine.
Collapse
Affiliation(s)
- Patrick J Almhjell
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Biochemistry, Stanford University, Stanford, CA, USA
| | - Kadina E Johnston
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Merck & Co., Inc, South San Francisco, CA, USA
| | - Nicholas J Porter
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
- Codexis, Inc., Redwood City, CA, USA
| | - Jennifer L Kennemur
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Vignesh C Bhethanabotla
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Julie Ducharme
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
- Quebec Government Office, Los Angeles, CA, USA
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
124
|
Zhang S, Hou R, Sun C, Huang Q, Lin L, Li H, Liu S, Cheng Y, Xu X. Metabolic activity of gut microbial enrichment cultures from different marine species and their transformation abilities to plastic additives. ENVIRONMENT INTERNATIONAL 2024; 190:108882. [PMID: 38996798 DOI: 10.1016/j.envint.2024.108882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
The role of the gut microbiota in host physiology has been previously elucidated for some marine organisms, but little information is available on their metabolic activity involved in transformation of environmental pollutants. This study assessed the metabolic profiles of the gut microbial cultures from grouper (Epinephelus coioides), green mussel (Perna viridis) and giant tiger prawn (Penaeus monodon) and investigated their transformation mechanisms to typical plastic additives. Community-level physiological profiling analysis confirmed the utilization profiles of the microbial cultures including carbon sources of carbohydrates, amines, carboxylic acids, phenolic compounds, polymers and amino acids, and the plastic additives of organophosphate flame retardants, tetrabromobisphenol A derivates and bisphenols. Using in vitro incubation, triphenyl phosphate (TPHP) was found to be rapidly metabolized into diphenyl phosphate by the gut microbiota as a representative ester-containing plastic additive, whereas the transformation of BPA (a representative phenol) was relatively slower. Interestingly, all three kinds of microbial cultures efficiently transformed the hepatic metabolite of BPA (BPA-G) back to BPA, thereby increasing its bioavailability in the body. The specific enzyme analysis confirmed the ability of the gut microbiota to perform the metabolic reactions. The results of 16S rRNA sequencing and network analysis revealed that the genera Escherichia-Shigella, Citrobacter, and Anaerospora were functional microbes, and their collaboration with fermentative microbes played pivotal roles in the transformation of the plastic additives. The structure-specific transformations by the gut microbiota and their distinct bioavailability deserve more attention in the future.
Collapse
Affiliation(s)
- Siqi Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Hou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Chuansheng Sun
- Marine College, Shandong University, Weihai 264209, China
| | - Qianyi Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lang Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Hengxiang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Shan Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yuanyue Cheng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiangrong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| |
Collapse
|
125
|
Lee J, Reiman D, Singh S, Chang A, Morel L, Chervonsky AV. Microbial influences on severity and sex bias of systemic autoimmunity. Immunol Rev 2024; 325:64-76. [PMID: 38716867 PMCID: PMC11338725 DOI: 10.1111/imr.13341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Commensal microbes have the capacity to affect development and severity of autoimmune diseases. Germ-free (GF) animals have proven to be a fine tool to obtain definitive answers to the queries about the microbial role in these diseases. Moreover, GF and gnotobiotic animals can be used to dissect the complex symptoms and determine which are regulated (enhanced or attenuated) by microbes. These include disease manifestations that are sex biased. Here, we review comparative analyses conducted between GF and Specific-Pathogen Free (SPF) mouse models of autoimmunity. We present data from the B6;NZM-Sle1NZM2410/AegSle2NZM2410/AegSle3NZM2410/Aeg-/LmoJ (B6.NZM) mouse model of systemic lupus erythematosus (SLE) characterized by multiple measurable features. We compared the severity and sex bias of SPF, GF, and ex-GF mice and found variability in the severity and sex bias of some manifestations. Colonization of GF mice with the microbiotas taken from B6.NZM mice housed in two independent institutions variably affected severity and sexual dimorphism of different parameters. Thus, microbes regulate both the severity and sexual dimorphism of select SLE traits. The sensitivity of particular trait to microbial influence can be used to further dissect the mechanisms driving the disease. Our results demonstrate the complexity of the problem and open avenues for further investigations.
Collapse
Affiliation(s)
- Jean Lee
- Committee on Cancer Biology, The University of Chicago, Chicago, Illinois, USA
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | - Derek Reiman
- Toyota Technological Institute at Chicago, Chicago, Illinois, USA
| | - Samara Singh
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | - Anthony Chang
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | - Laurence Morel
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Alexander V Chervonsky
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
- Committee on Immunology, The University of Chicago, Chicago, Illinois, USA
- Committee on Microbiology, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
126
|
Sinha AK, Laursen MF, Brinck JE, Rybtke ML, Hjørne AP, Procházková N, Pedersen M, Roager HM, Licht TR. Dietary fibre directs microbial tryptophan metabolism via metabolic interactions in the gut microbiota. Nat Microbiol 2024; 9:1964-1978. [PMID: 38918470 PMCID: PMC11306097 DOI: 10.1038/s41564-024-01737-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/17/2024] [Indexed: 06/27/2024]
Abstract
Tryptophan is catabolized by gut microorganisms resulting in a wide range of metabolites implicated in both beneficial and adverse host effects. How gut microbial tryptophan metabolism is directed towards indole, associated with chronic kidney disease, or towards protective indolelactic acid (ILA) and indolepropionic acid (IPA) is unclear. Here we used in vitro culturing and animal experiments to assess gut microbial competition for tryptophan and the resulting metabolites in a controlled three-species defined community and in complex undefined human faecal communities. The generation of specific tryptophan-derived metabolites was not predominantly determined by the abundance of tryptophan-metabolizing bacteria, but rather by substrate-dependent regulation of specific metabolic pathways. Indole-producing Escherichia coli and ILA- and IPA-producing Clostridium sporogenes competed for tryptophan within the three-species community in vitro and in vivo. Importantly, fibre-degrading Bacteroides thetaiotaomicron affected this competition by cross-feeding monosaccharides to E. coli. This inhibited indole production through catabolite repression, thus making more tryptophan available to C. sporogenes, resulting in increased ILA and IPA production. The fibre-dependent reduction in indole was confirmed using human faecal cultures and faecal-microbiota-transplanted gnotobiotic mice. Our findings explain why consumption of fermentable fibres suppresses indole production but promotes the generation of other tryptophan metabolites associated with health benefits.
Collapse
Affiliation(s)
- Anurag K Sinha
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Martin F Laursen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Julius E Brinck
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Morten L Rybtke
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anna Pii Hjørne
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nicola Procházková
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Mikael Pedersen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Henrik M Roager
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Tine R Licht
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
127
|
Zhou J, Han J, Wei Y, Wang Y. Desaminotyrosine is a redox-active microbial metabolite that bolsters macrophage antimicrobial functions while attenuating IL-6 production. FASEB J 2024; 38:e23844. [PMID: 39046365 DOI: 10.1096/fj.202400638r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/23/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
Intestinal microbiota contributes to host defense against pathogens while avoiding the induction of inflammation in homeostatic conditions, but the mechanism is not fully understood. To investigate the potential role of the bacterial metabolite desaminotyrosine (DAT) in regulating host defense and inflammation, we pretreated mouse bone marrow-derived macrophages (BMDMs) with DAT for 12 hours and then challenged with bacterial lipopolysaccharide (LPS). We found that DAT priming-enhanced type I interferon response while selectively inhibiting proinflammatory interleukin (IL)-6 production after exposure to LPS. This is related to the fact that DAT is a natural antioxidant determined by radical scavenging assay in a cell-free system. DAT-primed cells had increased levels of the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) upon LPS stimulation. Countering the increased NADPH by supplementing extra oxidized NADP+ to cells reversed DAT's effect on LPS-induced Il-6 and interferon-stimulated gene expressions. DAT-primed cells also were more resistant to oxidative stress-induced generation of reactive oxygen species and cell death. DAT promoted the production of antimicrobial effector nitric oxide in a cellular redox-dependent manner, leading to enhanced macrophage antimicrobial activity during Salmonella enterica infection. Our data suggest that DAT acts as a host-microbiota crosstalk signal in shaping host immune defense and inflammatory response.
Collapse
Affiliation(s)
- Junyang Zhou
- Laboratory of Infection and Immunity, Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jinzhi Han
- Laboratory of Infection and Immunity, Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Xuzhou Center for Disease Control and Prevention, Xuzhou, Jiangsu, China
| | - Yanxia Wei
- Laboratory of Infection and Immunity, Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yugang Wang
- Laboratory of Infection and Immunity, Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
128
|
Li L, Yang C, Jia M, Wang Y, Zhao Y, Li Q, Gong J, He Y, Xu K, Liu X, Chen X, Hu J, Liu Z. Synbiotic therapy with Clostridium sporogenes and xylan promotes gut-derived indole-3-propionic acid and improves cognitive impairments in an Alzheimer's disease mouse model. Food Funct 2024; 15:7865-7882. [PMID: 38967039 DOI: 10.1039/d4fo00886c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized primarily by cognitive impairment. Recent investigations have highlighted the potential of nutritional interventions that target the gut-brain axis, such as probiotics and prebiotics, in forestalling the onset of AD. In this study, whole-genome sequencing was employed to identify xylan as the optimal carbon source for the tryptophan metabolism regulating probiotic Clostridium sporogenes (C. sporogenes). Subsequent in vivo studies demonstrated that administration of a synbiotic formulation comprising C. sporogenes (1 × 1010 CFU per day) and xylan (1%, w/w) over a duration of 30 days markedly enhanced cognitive performance and spatial memory faculties in the 5xFAD transgenic AD mouse model. The synbiotic treatment significantly reduced amyloid-β (Aβ) accumulation in the cortex and hippocampus of the brain. Importantly, synbiotic therapy substantially restored the synaptic ultrastructure in AD mice and suppressed neuroinflammatory responses. Moreover, the intervention escalated levels of the microbial metabolite indole-3-propionic acid (IPA) and augmented the relative prevalence of IPA-synthesizing bacteria, Lachnospira and Clostridium, while reducing the dominant bacteria in AD, such as Aquabacterium, Corynebacterium, and Romboutsia. Notably, synbiotic treatment also prevented the disruption of gut barrier integrity. Correlation analysis indicated a strong positive association between gut microbiota-generated IPA levels and behavioral changes. In conclusion, this study demonstrates that synbiotic supplementation significantly improves cognitive and intellectual deficits in 5xFAD mice, which could be partly attributed to enhanced IPA production by gut microbiota. These findings provide a theoretical basis for considering synbiotic therapy as a novel microbiota-targeted approach for the treatment of metabolic and neurodegenerative diseases.
Collapse
Affiliation(s)
- Ling Li
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Yang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengzhen Jia
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuhao Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yu Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingyuan Li
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Gong
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ying He
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kun Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuhui Chen
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518004, China
| | - Jun Hu
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518004, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518000, China
| |
Collapse
|
129
|
Liu Q, Li X, Pan Y, Liu Q, Li Y, He C, Zheng N, Wang Y, Wang H, Wang Y, Sheng L, Zhang B, Shen T, Wu G, Li H, Wang X, Zhang W, Hu Y, Zhao Y. Efficacy and safety of Qushi Huayu, a traditional Chinese medicine, in patients with nonalcoholic fatty liver disease in a randomized controlled trial. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155398. [PMID: 38788390 DOI: 10.1016/j.phymed.2024.155398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/19/2024] [Accepted: 01/28/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND The effective treatment of non-alcoholic fatty liver disease (NAFLD) is an unmet medical need. Qushi Huayu (QSHY) is an empirical herbal formula with promising effects in NAFLD rodent models and a connection to gut microbiota regulation. HYPOTHESIS/PURPOSE This study aimed to evaluate the effects of QSHY in patients with NAFLD through a multicenter, randomized, double-blind, double-dummy clinical trial. STUDY DESIGN A total of 246 eligible patients with NAFLD and liver dysfunction were evenly divided to receive either QSHY and Dangfei Liganning capsule (DFLG) simulant or QSHY simulant and DFLG (an approved proprietary Chinese medicine for NAFLD in China) for 24 weeks. The primary outcomes were changes in liver fat content, assessed using vibration-controlled transient elastography, and serum alanine aminotransferase (ALT) levels from baseline to Week 24. RESULTS Both QSHY and DFLG led to reductions in liver fat content and liver enzyme levels post-intervention (p < 0.05). Compared to DFLG, QSHY treatment improved ALT (β, -0.128 [95 % CI, -0.25, -0.005], p = 0.041), aspartate transaminase (β, -0.134 [95 % CI, -0.256 to -0.012], p = 0.032), and fibrosis-4 score (β, -0.129 [95 % CI, -0.254 to -0.003], p = 0.044) levels. QSHY markedly improved gut dysbiosis compared to DFLG, with changes in Escherichia-Shigella and Bacteroides abundance linked to its therapeutic effect on reducing ALT. Patients with a high ALT response after QSHY treatment showed superior reductions in peripheral levels of phenylalanine and tyrosine, along with an elevation in the related microbial metabolite p-Hydroxyphenylacetic acid. CONCLUSION Our results demonstrate favorable clinical potential for QSHY in the treatment of NAFLD.
Collapse
Affiliation(s)
- Qiaohong Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaojing Li
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuqing Pan
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qian Liu
- Department of gastroenterology, Baoshan District Hospital of Integrated Traditional Chinese Medicine of Shanghai, Shanghai 201900, China
| | - Ying Li
- Department of Infectious disease, Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Cong He
- Department of gastroenterology, Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Ningning Zheng
- School of Pharmacy, Shanghai University of Traditional ChineseMedicine, Shanghai 201203, China
| | - Yan Wang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Huichao Wang
- Department of gastroenterology, Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yan Wang
- Department of Infectious disease, Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lili Sheng
- School of Pharmacy, Shanghai University of Traditional ChineseMedicine, Shanghai 201203, China
| | - Binbin Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tianbai Shen
- Department of Infectious disease, Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Gaosong Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Houkai Li
- School of Pharmacy, Shanghai University of Traditional ChineseMedicine, Shanghai 201203, China
| | - Xiaosu Wang
- Department of gastroenterology, Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| | - Wei Zhang
- Department of Infectious disease, Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Yiyang Hu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yu Zhao
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
130
|
Sun Y, Yang Z, Zhang C, Xia J, Li Y, Liu X, Sun L, Tan S. Indole-3-propionic acid regulates lateral root development by targeting auxin signaling in Arabidopsis. iScience 2024; 27:110363. [PMID: 39071891 PMCID: PMC11278081 DOI: 10.1016/j.isci.2024.110363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/30/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024] Open
Abstract
Indole-3-propionic acid (IPA) is known to be a microbe-derived compound with a similar structure to the phytohormone auxin (indole-3-acetic acid, IAA). Previous studies reported that IPA exhibited auxin-like bioactivities in plants. However, the underlying molecular mechanism is not totally understood. Here, we revealed that IPA modulated lateral root (LR) development via auxin signaling in the model plant Arabidopsis thaliana. Genetic analysis indicated that deficiency of the TIR1/AFB-Aux/IAA-ARF auxin signaling pathway abolished the effects of IPA on regulating LR development. Further biochemical, transcriptomic profiling and cell biological analyses revealed that IPA directly bound to the TIR1/AFB-Aux/IAA coreceptor complex and thus activated downstream gene expression. Therefore, our work revealed that IPA is a potential signaling molecule that modulates plant growth and development by targeting the TIR1/AFB-Aux/IAA-mediated auxin signaling pathway, providing potential insights into root growth regulation in plants.
Collapse
Affiliation(s)
- Yue Sun
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Zhisen Yang
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Caoli Zhang
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jing Xia
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yawen Li
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Xin Liu
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Linfeng Sun
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Shutang Tan
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
131
|
Bui TPN. The Human Microbiome as a Therapeutic Target for Metabolic Diseases. Nutrients 2024; 16:2322. [PMID: 39064765 PMCID: PMC11280041 DOI: 10.3390/nu16142322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
The human microbiome functions as a separate organ in a symbiotic relationship with the host. Disruption of this host-microbe symbiosis can lead to serious health problems. Modifications to the composition and function of the microbiome have been linked to changes in host metabolic outcomes. Industrial lifestyles with high consumption of processed foods, alcoholic beverages and antibiotic use have significantly altered the gut microbiome in unfavorable ways. Therefore, understanding the causal relationship between the human microbiome and host metabolism will provide important insights into how we can better intervene in metabolic health. In this review, I will discuss the potential use of the human microbiome as a therapeutic target to improve host metabolism.
Collapse
Affiliation(s)
- Thi Phuong Nam Bui
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
132
|
Sejbuk M, Siebieszuk A, Witkowska AM. The Role of Gut Microbiome in Sleep Quality and Health: Dietary Strategies for Microbiota Support. Nutrients 2024; 16:2259. [PMID: 39064702 PMCID: PMC11279861 DOI: 10.3390/nu16142259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Dietary components, including dietary fiber, unsaturated fatty acids, and polyphenols, along with meal timing and spacing, significantly affect the microbiota's capacity to produce various metabolites essential for quality sleep and overall health. This review explores the role of gut microbiota in regulating sleep through various metabolites such as short-chain fatty acids, tryptophan, serotonin, melatonin, and gamma-aminobutyric acid. A balanced diet rich in plant-based foods enhances the production of these sleep-regulating metabolites, potentially benefiting overall health. This review aims to investigate how dietary habits affect gut microbiota composition, the metabolites it produces, and the subsequent impact on sleep quality and related health conditions.
Collapse
Affiliation(s)
- Monika Sejbuk
- Department of Food Biotechnology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland;
| | - Adam Siebieszuk
- Department of Physiology, Faculty of Medicine, Medical University of Bialystok, Mickiewicza 2C, 15-222 Białystok, Poland;
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland;
| |
Collapse
|
133
|
Kim S, Seo SU, Kweon MN. Gut microbiota-derived metabolites tune host homeostasis fate. Semin Immunopathol 2024; 46:2. [PMID: 38990345 PMCID: PMC11239740 DOI: 10.1007/s00281-024-01012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/15/2024] [Indexed: 07/12/2024]
Abstract
The gut microbiota, housing trillions of microorganisms within the gastrointestinal tract, has emerged as a critical regulator of host health and homeostasis. Through complex metabolic interactions, these microorganisms produce a diverse range of metabolites that substantially impact various physiological processes within the host. This review aims to delve into the intricate relationships of gut microbiota-derived metabolites and their influence on the host homeostasis. We will explore how these metabolites affect crucial aspects of host physiology, including metabolism, mucosal integrity, and communication among gut tissues. Moreover, we will spotlight the potential therapeutic applications of targeting these metabolites to restore and sustain host equilibrium. Understanding the intricate interplay between gut microbiota and their metabolites is crucial for developing innovative strategies to promote wellbeing and improve outcomes of chronic diseases.
Collapse
Affiliation(s)
- Seungil Kim
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine / Asan Medical Center, Seoul, Republic of Korea
- Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang-Uk Seo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mi-Na Kweon
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine / Asan Medical Center, Seoul, Republic of Korea.
- Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
134
|
Tan S, Li Q, Guo C, Chen S, Kamal-Eldin A, Chen G. Reveal the mechanism of hepatic oxidative stress in mice induced by photo-oxidation milk using multi-omics analysis techniques. J Adv Res 2024:S2090-1232(24)00271-6. [PMID: 38986809 DOI: 10.1016/j.jare.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/06/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024] Open
Abstract
INTRODUCTION Photo-oxidation is recognized as a contributor to the deterioration of milk quality, posing potential safety hazards to human health. However, there has been limited investigation into the impact of consuming photo-oxidized milk on health. OBJECTIVES This study employs multi-omics analysis techniques to elucidate the mechanisms by which photo-oxidized milk induces oxidative stress in the liver. METHODS Mouse model was used to determine the effect of the gavage administration of milk with varying degrees of photo-oxidation on the mouse liver. The damage degree was established by measuring serum markers indicative of oxidative stress, and with a subsequent histopathological examination of liver tissues. In addition, comprehensive metabolome, lipidome, and transcriptome analyses were conducted to elucidate the underlying molecular mechanisms of hepatic damage caused by photo-oxidized milk. RESULTS A significant elevation in the oxidative stress levels and the presence of hepatocellular swelling and inflammation subsequent to the gavage administration of photo-oxidized milk to mice. Significant alterations in the levels of metabolites such as lumichrome, all-trans-retinal, L-valine, phosphatidylglycerol, and phosphatidylcholine within the hepatic tissue of mice. Moreover, photo-oxidized milk exerted a pronounced detrimental impact on the glycerophospholipid metabolism of mice liver. The peroxisome proliferator-activated receptors (PPAR) signaling pathway enrichment appreciated in the animals that consumed photo-oxidized milk further supports the substantial negative influence of photo-oxidized milk on hepatic lipid metabolism. Gene set enrichment and interaction analyses revealed that photo-oxidized milk inhibited the cytochrome P450 pathway in mice, while also affecting other pathways associated with cellular stress response and lipid biosynthesis. CONCLUSION This comprehensive study provides significant evidence regarding the potential health risks associated with photo-oxidized milk, particularly in terms of hepatic oxidative damage. It establishes a scientific foundation for assessing the safety of such milk and ensuring the quality of dairy products.
Collapse
Affiliation(s)
- Sijia Tan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048, China; Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Qiangqiang Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China.
| | - Can Guo
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Sumeng Chen
- China Agricultural University, Beijing 100193, China
| | - Afaf Kamal-Eldin
- College of Food and Agriculture, Department of Food, Nutrition and Health (CFA), United Arab Emirates University, Al Ain 10008115551, United Arab Emirates
| | - Gang Chen
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048, China.
| |
Collapse
|
135
|
Devereaux J, Robinson AM, Stavely R, Davidson M, Dargahi N, Ephraim R, Kiatos D, Apostolopoulos V, Nurgali K. Alterations in tryptophan metabolism and de novo NAD + biosynthesis within the microbiota-gut-brain axis in chronic intestinal inflammation. Front Med (Lausanne) 2024; 11:1379335. [PMID: 39015786 PMCID: PMC11250461 DOI: 10.3389/fmed.2024.1379335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Background Inflammatory bowel disease is an incurable and idiopathic disease characterized by recurrent gastrointestinal tract inflammation. Tryptophan metabolism in mammalian cells and some gut microbes comprise intricate chemical networks facilitated by catalytic enzymes that affect the downstream metabolic pathways of de novo nicotinamide adenine dinucleotide (NAD+) synthesis. It is hypothesized that a correlation exists between tryptophan de novo NAD+ synthesis and chronic intestinal inflammation. Methods Transcriptome analysis was performed using high-throughput sequencing of mRNA extracted from the distal colon and brain tissue of Winnie mice with spontaneous chronic colitis and C57BL/6 littermates. Metabolites were assessed using ultra-fast liquid chromatography to determine differences in concentrations of tryptophan metabolites. To evaluate the relative abundance of gut microbial genera involved in tryptophan and nicotinamide metabolism, we performed 16S rRNA gene amplicon sequencing of fecal samples from C57BL/6 and Winnie mice. Results Tryptophan and nicotinamide metabolism-associated gene expression was altered in distal colons and brains of Winnie mice with chronic intestinal inflammation. Changes in these metabolic pathways were reflected by increases in colon tryptophan metabolites and decreases in brain tryptophan metabolites in Winnie mice. Furthermore, dysbiosis of gut microbiota involved in tryptophan and nicotinamide metabolism was evident in fecal samples from Winnie mice. Our findings shed light on the physiological alterations in tryptophan metabolism, specifically, its diversion from the serotonergic pathway toward the kynurenine pathway and consequential effects on de novo NAD+ synthesis in chronic intestinal inflammation. Conclusion The results of this study reveal differential expression of tryptophan and nicotinamide metabolism-associated genes in the distal colon and brain in Winnie mice with chronic intestinal inflammation. These data provide evidence supporting the role of tryptophan metabolism and de novo NAD+ synthesis in IBD pathophysiology.
Collapse
Affiliation(s)
- Jeannie Devereaux
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Ainsley M. Robinson
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- School of Rural Health, La Trobe University, Melbourne, VIC, Australia
- Department of Medicine, Western Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Rhian Stavely
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Majid Davidson
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Narges Dargahi
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Ramya Ephraim
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Dimitros Kiatos
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Department of Medicine, Western Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
- Immunology Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Department of Medicine, Western Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
- Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia
| |
Collapse
|
136
|
Maulina N, Hayati Z, Hasballah K, Zulkarnain Z. Tryptophan and Its Derived Metabolites as Biomarkers for Tuberculosis Disease: A Systematic Review. IRANIAN BIOMEDICAL JOURNAL 2024; 28:140-7. [PMID: 39034495 PMCID: PMC11444479 DOI: 10.61186/ibj.4174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Feasible diagnostic assays are required to detect new tuberculosis (TB) cases and monitor treatment. This study aimed to evaluate evidence on tryptophan (Trp) and its metabolites as proposed biomarkers for TB. Through specific keyword searches, we identified 170 relevant literature sources and included seven publications (from 2013 to 2023). The biomarker used in these studies were indoleamine 2, 3-dioxygenase (IDO) activity, IDO-1 gene expression, and plasma IDO protein, measured using ELISA, liquid chromatography-mass spectrometry, ultraperformance liquid chromatography mass spectrometry, and transcriptional profiling. The studies encompassed a pediatric case-control and six studies involving adults, pregnant women with TB-HIV, and individuals with multidrug-resistant tuberculosis, active TB, and latent TB. The assessment of IDO activity and IDO protein level demonstrated promising performance in distinguishing active TB from controls and in evaluating treatment failure and recurrent cases to controls. Trp and its metabolites fulfilled nearly all of target product profile criteria for detecting active TB. This study highlights the potential of utilizing host Trp and its metabolites as non-sputum-based biomarker for TB infection.
Collapse
Affiliation(s)
- Novi Maulina
- Doctorate Student of Doctoral Program in Medical Sciences, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, 23116, Indonesia
- Microbiology Department, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, 23116, Indonesia
| | - Zinatul Hayati
- Microbiology Department, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, 23116, Indonesia
| | - Kartini Hasballah
- Pharmacology Department, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, 23116, Indonesia
| | - Zulkarnain Zulkarnain
- Physiology Department, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, 23116, Indonesia
| |
Collapse
|
137
|
Miao T, Zhang X, Zhang C, Wu J, Zhu Y, Xiao M, Zhang N, Zhong Y, Liu Y, Lin Y, Wu Y, Li W, Song C, Liu Y, Wang X. Type 3 resistant starch from Canna edulis reduce lipid levels in patients with mild hyperlipidemia through altering gut microbiome: A double- blind randomized controlled trial. Pharmacol Res 2024; 205:107232. [PMID: 38825157 DOI: 10.1016/j.phrs.2024.107232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/04/2024]
Abstract
Type 3 resistant starch from Canna edulis (Ce-RS3) is an insoluble dietary fiber which could improve blood lipids in animals, but clinically robust evidence is still lacking. We performed a double-blind randomized controlled trial to assess the effects of Ce-RS3 on lipids in mild hyperlipidemia. One hundred and fifteen patients were included followed the recruitment criteria, and were randomly allocated to receive Ce-RS3 or placebo (native starch from Canna edulis) for 12 weeks (20 g/day). In addition to serum lipids, complete blood counts, serum inflammatory factors, antioxidant indexes, and dietary survey, 16 S rRNA sequencing technique was utilized to analyze the gut microbiota alterations. Targeted quantitative metabolomics (TQM) was used to detect metabolite changes. Compared with the placebo, Ce- RS3 significantly decreased levels of total cholesterol, lowdensity lipoprotein cholesterol, and non-high-density lipoprotein cholesterol, and increased the glutathione peroxidase. Based on the 16 S rRNA sequencing, TQM, the correlation analysis, as well as the Kyoto Encyclopedia of Genes (KEGG) and Genomes and Human Metabolome Database (HMDB) analysis, we found that Ce-RS3 could increase the abundances of genera Faecalibacterium and Agathobacter, while reduce the abundances of genera norank_f_Ruminococcaceae and Christensenellaceae_R-7_ group to regulate phenylalanine metabolism, which could reduce the fatty acid biosynthesis and fatty acid elongation in the mitochondria to lower blood lipids. Conclusively, we firstly confirmed the feasibility of Ce-RS3 for clinical application, which presents a novel, effective therapy for the mild hyperlipidemia. (Chictr. org. cn. Clinical study on anti-mild hyperlipidemia of Canna edulis RS3 resistant starch, ID Number: ChiCTR2200062871).
Collapse
Affiliation(s)
- Tingting Miao
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xinsheng Zhang
- The First Medical Center of PLA General Hospital of China, Beijing 100089, China
| | - Caijuan Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jiahui Wu
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yingli Zhu
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Maochun Xiao
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Nan Zhang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yucheng Zhong
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu Liu
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yasi Lin
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuanhua Wu
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guizhou 550001, China
| | - Wenmao Li
- Qianxinan Autonomous Prefecture Hospital of Traditional Chinese Medicine, Xingyi 562400, China
| | - Chunying Song
- Qianxinan Autonomous Prefecture Hospital of Traditional Chinese Medicine, Xingyi 562400, China
| | - Yinghua Liu
- The First Medical Center of PLA General Hospital of China, Beijing 100089, China.
| | - Xueyong Wang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
138
|
Huang Z, Wells JM, Fogliano V, Capuano E. Microbial tryptophan catabolism as an actionable target via diet-microbiome interactions. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 38950607 DOI: 10.1080/10408398.2024.2369947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
In recent years, the role of microbial tryptophan (Trp) catabolism in host-microbiota crosstalk has become a major area of scientific interest. Microbiota-derived Trp catabolites positively contribute to intestinal and systemic homeostasis by acting as ligands of aryl hydrocarbon receptor and pregnane X receptor, and as signaling molecules in microbial communities. Accumulating evidence suggests that microbial Trp catabolism could be therapeutic targets in treating human diseases. A number of bacteria and metabolic pathways have been identified to be responsible for the conversion of Trp in the intestine. Interestingly, many Trp-degrading bacteria can benefit from the supplementation of specific dietary fibers and polyphenols, which in turn increase the microbial production of beneficial Trp catabolites. Thus, this review aims to highlight the emerging role of diets and food components, i.e., food matrix, fiber, and polyphenol, in modulating the microbial catabolism of Trp and discuss the opportunities for potential therapeutic interventions via specifically designed diets targeting the Trp-microbiome axis.
Collapse
Affiliation(s)
- Zhan Huang
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University, Wageningen, the Netherlands
| | - Jerry M Wells
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University, Wageningen, the Netherlands
| | - Vincenzo Fogliano
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
| | - Edoardo Capuano
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
139
|
Christopher MW, Klug AC, Lee JH, Ericson AC, Feizbakhsh Bazargani S, Dinglasan RR, Prentice BM, Garrett TJ. Indole-3-pyruvate: Analysis and Control of Tautomerism and Reactivity. Anal Chem 2024; 96:10399-10407. [PMID: 38858849 DOI: 10.1021/acs.analchem.4c01584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
It is well-known in biochemistry that structure confers function, meaning that chemical structural elucidation is critical to truly understanding the function of a given metabolite. Indole-3-pyruvate (IPyA) exists in an equilibrium between the keto and enol tautomeric forms. IPyA is suggested to play a role in immune function; however, determining whether the tautomeric forms function differently can only be studied if an analytical method is capable of distinguishing between the two forms. Herein, we describe the use of UHPLC-HRMS to gain insight into the physical variables that govern IPyA tautomer equilibrium, reactivity, and detection limit. We use hydrogen-deuterium exchange (HDX) to identify enol and keto peaks, and we show that tautomers exhibit a valley of fronting followed by a tailing peak shape (though separation is still attainable) and identical MS/MS spectra. We observed drastically different ratios of keto and enol forms in different solvents, which is an important consideration for in vitro studies. IPyA was found to be highly unstable with accelerated reactivity in peroxides. Through in vitro reactivity studies, IPyA produced a myriad of known and unknown metabolites via nonenzymatic processes, many of which were mapped in vivo via the analysis of human plasma. Finally, we show that vitamin C (ascorbic acid) can slow this reactivity and enable sensitive detection in whole blood.
Collapse
Affiliation(s)
- Michael W Christopher
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Alexander C Klug
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Jae Hwan Lee
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Aiden C Ericson
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | | | - Rhoel R Dinglasan
- Department of Infectious Disease and Immunology, University of Florida, College of Veterinary Medicine, Gainesville, Florida 32608, United States
| | - Boone M Prentice
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Timothy J Garrett
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, College of Medicine, Gainesville, Florida 32608, United States
| |
Collapse
|
140
|
Martin-Grau M, Monleón D. The Role of Microbiota-Related Co-Metabolites in MASLD Progression: A Narrative Review. Curr Issues Mol Biol 2024; 46:6377-6389. [PMID: 39057023 PMCID: PMC11276081 DOI: 10.3390/cimb46070381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a growing health concern due to its increasing prevalence worldwide. Metabolic homeostasis encompasses the stable internal conditions vital for efficient metabolism. This equilibrium extends to the intestinal microbiota, whose metabolic activities profoundly influence overall metabolic balance and organ health. The metabolites derived from the gut microbiota metabolism can be defined as microbiota-related co-metabolites. They serve as mediators between the gut microbiota and the host, influencing various physiological processes. The recent redefinition of the term MASLD has highlighted the metabolic dysfunction that characterize the disease. Metabolic dysfunction encompasses a spectrum of abnormalities, including impaired glucose regulation, dyslipidemia, mitochondrial dysfunction, inflammation, and accumulation of toxic byproducts. In addition, MASLD progression has been linked to dysregulation in the gut microbiota and associated co-metabolites. Short-chain fatty acids (SCFAs), hippurate, indole derivatives, branched-chain amino acids (BCAAs), and bile acids (BAs) are among the key co-metabolites implicated in MASLD progression. In this review, we will unravel the relationship between the microbiota-related metabolites which have been associated with MASLD and that could play an important role for developing effective therapeutic interventions for MASLD and related metabolic disorders.
Collapse
Affiliation(s)
- Maria Martin-Grau
- Department of Pathology, University of Valencia, 46010 Valencia, Spain
- University Clinical Hospital of Valencia Research Foundation (INCLIVA), 46010 Valencia, Spain
| | - Daniel Monleón
- Department of Pathology, University of Valencia, 46010 Valencia, Spain
- University Clinical Hospital of Valencia Research Foundation (INCLIVA), 46010 Valencia, Spain
| |
Collapse
|
141
|
Lou X, Li P, Luo X, Lei Z, Liu X, Liu Y, Gao L, Xu W, Liu X. Dietary patterns interfere with gut microbiota to combat obesity. Front Nutr 2024; 11:1387394. [PMID: 38953044 PMCID: PMC11215203 DOI: 10.3389/fnut.2024.1387394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/07/2024] [Indexed: 07/03/2024] Open
Abstract
Obesity and obesity-related metabolic disorders are global epidemics that occur when there is chronic energy intake exceeding energy expenditure. Growing evidence suggests that healthy dietary patterns not only decrease the risk of obesity but also influence the composition and function of the gut microbiota. Numerous studies manifest that the development of obesity is associated with gut microbiota. One promising supplementation strategy is modulating gut microbiota composition by dietary patterns to combat obesity. In this review, we discuss the changes of gut microbiota in obesity and obesity-related metabolic disorders, with a particular emphasis on the impact of dietary components on gut microbiota and how common food patterns can intervene in gut microbiota to prevent obesity. While there is promise in intervening with the gut microbiota to combat obesity through the regulation of dietary patterns, numerous key questions remain unanswered. In this review, we critically review the associations between dietary patterns, gut microbes, and obesity, aiming to contribute to the further development and application of dietary patterns against obesity in humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiaomeng Liu
- Nutrition and Food Hygiene Laboratory, School of Public Health, Xinxiang Medical College, Xinxiang, China
| |
Collapse
|
142
|
Ross PA, Xu W, Jalomo-Khayrova E, Bange G, Gumerov VM, Bradley PH, Sourjik V, Zhulin IB. Framework for exploring the sensory repertoire of the human gut microbiota. mBio 2024; 15:e0103924. [PMID: 38757952 PMCID: PMC11237719 DOI: 10.1128/mbio.01039-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Bacteria sense changes in their environment and transduce signals to adjust their cellular functions accordingly. For this purpose, bacteria employ various sensors feeding into multiple signal transduction pathways. Signal recognition by bacterial sensors is studied mainly in a few model organisms, but advances in genome sequencing and analysis offer new ways of exploring the sensory repertoire of many understudied organisms. The human gut is a natural target of this line of study: it is a nutrient-rich and dynamic environment and is home to thousands of bacterial species whose activities impact human health. Many gut commensals are also poorly studied compared to model organisms and are mainly known through their genome sequences. To begin exploring the signals human gut commensals sense and respond to, we have designed a framework that enables the identification of sensory domains, prediction of signals that they recognize, and experimental verification of these predictions. We validate this framework's functionality by systematically identifying amino acid sensors in selected bacterial genomes and metagenomes, characterizing their amino acid binding properties, and demonstrating their signal transduction potential.IMPORTANCESignal transduction is a central process governing how bacteria sense and respond to their environment. The human gut is a complex environment with many living organisms and fluctuating streams of nutrients. One gut inhabitant, Escherichia coli, is a model organism for studying signal transduction. However, E. coli is not representative of most gut microbes, and signaling pathways in the thousands of other organisms comprising the human gut microbiota remain poorly understood. This work provides a foundation for how to explore signals recognized by these organisms.
Collapse
Affiliation(s)
- Patricia A. Ross
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio, USA
| | - Wenhao Xu
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Ekaterina Jalomo-Khayrova
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Gert Bange
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Vadim M. Gumerov
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio, USA
| | - Patrick H. Bradley
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Igor B. Zhulin
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
143
|
Cheng W, Li F, Yang R. The Roles of Gut Microbiota Metabolites in the Occurrence and Development of Colorectal Cancer: Multiple Insights for Potential Clinical Applications. GASTRO HEP ADVANCES 2024; 3:855-870. [PMID: 39280926 PMCID: PMC11401567 DOI: 10.1016/j.gastha.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/21/2024] [Indexed: 09/18/2024]
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. The occurrence and development of CRC are related to multiple risk factors such as gut microbiota. Indeed, gut microbiota plays an important role in the different phases of colorectal cancers (CRCs) from oncogenesis to metastasis. Some specific bacteria such as Fusobacterium nucleatum (F. nucleatum) associated with CRCs have been found. However, recently identified bile acid and tryptophan metabolites as well as short chain fatty acids (SCFAs), which are derived from gut microbiota, can also exert effects on the CRCs such as that SCFAs directly inhibit CRC growth. Importantly these metabolites also modulate immune responses to affect CRCs. They not only act as tumor inhibiting factor(s) but also promotor(s) in the occurrence, development, and metastasis of CRCs. While gut microbiota metabolites (GMMs) inhibit immunity against CRCs, some of them also improve immune responses to CRCs. Notably, GMMs also potentially affect the shaping of immune-privileged metastatic niches through direct roles or immune cells such as macrophages and myeloid-derived suppressive cells. These findings offer new insights for clinical application of gut microbiota in precise and personalized treatments of CRCs. Here, we will mainly discuss direct and indirect (via immune cells) effects of GMMs, especially SCFAs, bile acid and tryptophan metabolites on the occurrence, development and metastasis of CRCs.
Collapse
Affiliation(s)
- Wenyue Cheng
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Fan Li
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Rongcun Yang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| |
Collapse
|
144
|
Ismail HM, Liu J, Netherland M, Evans-Molina C, DiMeglio LA. Safety and effects of acetylated and butyrylated high amylose maize starch in recently diagnosed youths with type 1 diabetes; a Pilot Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.17.24307489. [PMID: 38798462 PMCID: PMC11118639 DOI: 10.1101/2024.05.17.24307489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Acetylated and butyrylated high amylose starch (HAMS-AB) is a prebiotic shown to be effective in type 1 diabetes (T1D) prevention in mouse models and is safe in adults with established T1D. HAMS-AB alters the gut microbiome profile with increased bacterial fermenters that produce short chain fatty acids (SCFAs) with anti-inflammatory and immune-modulatory effects. We performed a pilot study using a cross-over design to assess the safety and efficacy of 4 weeks of oral HAMS-AB consumption by recently diagnosed (< 2 years of diagnosis) youths with T1D. Seven individuals completed the study. The mean±SD age was 15.0±1.2 years, diabetes duration 19.5±6.3 months, 5/7 were female and 4/7 were White, all with a BMI of < 85th%. The prebiotic was safe. Following prebiotic intake, gut microbiome changes were seen, including a notable increase in the relative abundance of fermenters such as Bifidobacterium and Faecalibacterium. Treatment was also associated with changes in bacterial functional pathways associated with either improved energy metabolism (upregulation of tyrosine metabolism) or anti-inflammatory effects (reduced geraniol degradation). There were no differences in stool SCFA levels. Plasma metabolites associated with improved glycemia, such as hippurate, were significantly increased after treatment and there were positive and significant changes in the immune regulatory function of mucosal associated invariant T cells. There was a significant decrease in the area under the curve glucose but not C-peptide, as measured during a mixed meal tolerance testing, following the prebiotic consumption. In summary, the prebiotic HAMS-AB was safe in adolescents with T1D and showed promising effects on the gut microbiome composition, function and immune regulatory function.
Collapse
Affiliation(s)
- Heba M Ismail
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jianyun Liu
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Carmella Evans-Molina
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Linda A DiMeglio
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
145
|
Zhang HJ, Fu J, Yu H, Xu H, Hu JC, Lu JY, Bu MM, Zhai Z, Wang JY, Ye ML, Zuo HT, Song JY, Zhao Y, Jiang JD, Wang Y. Berberine promotes the degradation of phenylacetic acid to prevent thrombosis by modulating gut microbiota. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155517. [PMID: 38518650 DOI: 10.1016/j.phymed.2024.155517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/11/2024] [Accepted: 03/07/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Berberine is the main bioactive constituent of Coptis chinensis, a quaternary ammonium alkaloid. While berberine's cardiovascular benefits are well-documented, its impact on thrombosis remains not fully understood. PURPOSE This study investigates the potential of intestinal microbiota as a novel target for preventing thrombosis, with a focus on berberine, a natural compound known for its effectiveness in managing cardiovascular conditions. METHODS Intraperitoneal injection of carrageenan induces the secretion of chemical mediators such as histamine and serotonin from mast cells to promote thrombosis. This model can directly and visually observe the progression of thrombosis in a time-dependent manner. Thrombosis was induced by intravenous injection of 1 % carrageenan solution (20 mg/kg) to all mice except the vehicle control group. Quantitative analysis of gut microbiota metabolites through LC/MS. Then, the gut microbiota of mice was analyzed using 16S rRNA sequencing to assess the changes. Finally, the effects of gut microbiota on thrombosis were explored by fecal microbiota transplantation. RESULTS Our research shows that berberine inhibits thrombosis by altering intestinal microbiota composition and related metabolites. Notably, berberine curtails the biosynthesis of phenylacetylglycine, a thrombosis-promoting coproduct of the host-intestinal microbiota, by promoting phenylacetic acid degradation. This research underscores the significance of phenylacetylglycine as a thrombosis-promoting risk factor, as evidenced by the ability of intraperitoneal phenylacetylglycine injection to reverse berberine's efficacy. Fecal microbiota transplantation experiment confirms the crucial role of intestinal microbiota in thrombus formation. CONCLUSION Initiating our investigation from the perspective of the gut microbiota, we have, for the first time, unveiled that berberine inhibits thrombus formation by promoting the degradation of phenylacetic acid, consequently suppressing the biosynthesis of PAG. This discovery further substantiates the intricate interplay between the gut microbiota and thrombosis. Our study advances the understanding that intestinal microbiota plays a crucial role in thrombosis development and highlights berberine-mediated intestinal microbiota modulation as a promising therapeutic approach for thrombosis prevention.
Collapse
Affiliation(s)
- Hao-Jian Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences/Peking Union Medical College, 100050 Beijing, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Jie Fu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Hang Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Hui Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Jia-Chun Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Jin-Yue Lu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Meng-Meng Bu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Zhao Zhai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Jing-Yue Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Meng-Liang Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Heng-Tong Zuo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Jian-Ye Song
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Yi Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Jian-Dong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences/Peking Union Medical College, 100050 Beijing, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China.
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
146
|
Tan S, Santolaya JL, Wright TF, Liu Q, Fujikawa T, Chi S, Bergstrom CP, Lopez A, Chen Q, Vale G, McDonald JG, Schmidt A, Vo N, Kim J, Baniasadi H, Li L, Zhu G, He TC, Zhan X, Obata Y, Jin A, Jia D, Elmquist JK, Sifuentes-Dominguez L, Burstein E. Interaction between the gut microbiota and colonic enteroendocrine cells regulates host metabolism. Nat Metab 2024; 6:1076-1091. [PMID: 38777856 PMCID: PMC12001959 DOI: 10.1038/s42255-024-01044-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 04/09/2024] [Indexed: 05/25/2024]
Abstract
Nutrient handling is an essential function of the gastrointestinal tract. Hormonal responses of small intestinal enteroendocrine cells (EECs) have been extensively studied but much less is known about the role of colonic EECs in metabolic regulation. To address this core question, we investigated a mouse model deficient in colonic EECs. Here we show that colonic EEC deficiency leads to hyperphagia and obesity. Furthermore, colonic EEC deficiency results in altered microbiota composition and metabolism, which we found through antibiotic treatment, germ-free rederivation and transfer to germ-free recipients, to be both necessary and sufficient for the development of obesity. Moreover, studying stool and blood metabolomes, we show that differential glutamate production by intestinal microbiota corresponds to increased appetite and that colonic glutamate administration can directly increase food intake. These observations shed light on an unanticipated host-microbiota axis in the colon, part of a larger gut-brain axis, that regulates host metabolism and body weight.
Collapse
Affiliation(s)
- Shuai Tan
- Department of Endocrinology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, P. R. China.
- Division of Digestive and Liver Diseases, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Jacobo L Santolaya
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tiffany Freeney Wright
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qi Liu
- Division of Digestive and Liver Diseases, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Teppei Fujikawa
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Peter O'Donnell Jr. Brain Institute, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sensen Chi
- Department of Immunology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Colin P Bergstrom
- Division of Digestive and Liver Diseases, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Adam Lopez
- Division of Digestive and Liver Diseases, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qing Chen
- Division of Digestive and Liver Diseases, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Goncalo Vale
- Department of Molecular Genetics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey G McDonald
- Department of Molecular Genetics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andrew Schmidt
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nguyen Vo
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jiwoong Kim
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hamid Baniasadi
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Li Li
- Department of Endocrinology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, P. R. China
| | - Gaohui Zhu
- Department of Endocrinology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, P. R. China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Xiaowei Zhan
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yuuki Obata
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Aishun Jin
- Department of Immunology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Joel K Elmquist
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Peter O'Donnell Jr. Brain Institute, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Ezra Burstein
- Division of Digestive and Liver Diseases, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
147
|
Bhave VM, Ament Z, Levy DE, Thorndike AN, Kimberly WT. Workplace food purchases, dietary intake, and gut microbial metabolites in a secondary analysis of the ChooseWell 365 study. Am J Clin Nutr 2024; 119:1504-1513. [PMID: 38677520 PMCID: PMC11196865 DOI: 10.1016/j.ajcnut.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Dietary choices can affect human health through alterations in gut microbial metabolism, and gut microbial metabolites could serve as biomarkers for disease risk conferred by dietary intake. However, self-reported dietary intake may not reflect true intake. OBJECTIVES We identified circulating metabolites, including gut microbiome-related metabolites, associated with adherence to a healthy diet in the ChooseWell 365 study. In this randomized clinical trial, the dietary choices of hospital employees were assessed over 24 mo using not only 24-h dietary recalls but also electronic records of hospital cafeteria purchases. METHODS Plasma metabolites were profiled from 470 participants. Two targeted metabolomics methods were developed and implemented to expand detection coverage for metabolites related to gut microbial activity. Linear regression models were used to associate metabolites with Healthy Purchasing Scores (HPSs) derived from cafeteria purchases and Healthy Eating Index-2015 (HEI-15) scores derived from dietary recalls. RESULTS Fourteen metabolites were concordantly associated with the HPS and HEI-15 scores in multivariable models adjusted for age, gender, and race, including the gut microbiome-related metabolites indole-3-propionic acid (HPS, β: 0.16, 95% CI: 0.07, 0.26, P = 7.32 × 10-4; HEI-15, β: 0.16, 95% CI: 0.07, 0.25, P = 6.79 × 10-4), hippuric acid (HPS, β: 0.11, 95% CI: 0.02, 0.21, P = 1.97 × 10-2; HEI-15, β: 0.10, 95% CI: 0.01, 0.19, P = 3.14 × 10-2), and indoxyl sulfate (HPS, β = -0.13, 95% CI: -0.23, -0.03, P = 8.21 × 10-3; HEI-15, β: -0.12, 95% CI: -0.22, -0.03, P = 8.50 × 10-3). These gut microbial metabolites were associated with the intake of specific food groups, such as whole fruits. These metabolites were also associated with clinical variables, including blood pressure, diabetes or prediabetes, and body mass index. CONCLUSIONS In a secondary analysis of the ChooseWell 365 study, associations between circulating gut microbiome-related metabolites and a healthy diet were confirmed using both objective and subjective measures of consumption. Accurate identification of diet-associated metabolites may help guide dietary or microbiome-based interventions aimed at disease prevention.
Collapse
Affiliation(s)
| | - Zsuzsanna Ament
- Harvard Medical School, Boston, MA, United States; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States; Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Douglas E Levy
- Harvard Medical School, Boston, MA, United States; Mongan Institute Health Policy Research Center, Massachusetts General Hospital, Boston, MA, United States
| | - Anne N Thorndike
- Harvard Medical School, Boston, MA, United States; Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - W Taylor Kimberly
- Harvard Medical School, Boston, MA, United States; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States; Department of Neurology, Massachusetts General Hospital, Boston, MA, United States.
| |
Collapse
|
148
|
Guan J, Zhu J, Liu H, Yang H, Zhong S, Chen W, Yi X, Chen C, Tan F, Shen J, Luo P. Arogenate dehydratase isoforms strategically deregulate phenylalanine biosynthesis in Akebia trifoliata. Int J Biol Macromol 2024; 271:132587. [PMID: 38788880 DOI: 10.1016/j.ijbiomac.2024.132587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/01/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Arogenate dehydratase (ADT) is key for phenylalanine (Phe) biosynthesis in plants. To examine ADT components and function in Akebia trifoliata, a representative of Ranunculaceae, we first identified eight ADTs (AktADT1-8, encoding sequences varying from 1032 to 1962 bp) in the A. trifoliata reference genome and five proteins (AktADT1, AktADT4, AktADT7, AktADT8 and AktADT8s) with moonlighting prephenate dehydratase (PDT) activity and Km values varying from 0.43 to 2.17 mM. Structurally, two basic residue combinations (Val314/Ala317 and Ala314/Val317) in the PAC domain are essential for the moonlighting PDT activity of ADTs. Functionally, AktADT4 and AktADT8 successfully restored the wild-type phenotype of pha2, a knockout mutant of Saccharomyces cerevisiae. In addition, AktADTs are ubiquitously expressed, but their expression levels are tissue specific, and the half maximal inhibitory concentration (IC50) of Phe for AktADTs ranged from 49.81 to 331.17 μM. Both AktADT4 and AktADT8 and AktADT8s localized to chloroplast stromules and the cytosol, respectively, while the remaining AktADTs localized to the chloroplast stroma. These findings suggest that various strategies exist for regulating Phe biosynthesis in A. trifoliata. This provides a reasonable explanation for the high Phe content and insights for further genetic improvement of the edible fruits of A. trifoliata.
Collapse
Affiliation(s)
- Ju Guan
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Chengdu 611130, Sichuan, China; Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 611130, China
| | - Jun Zhu
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Hao Liu
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Hao Yang
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Chengdu 611130, Sichuan, China; Sichuan Akebia trifoliata Biotechnology Co., Ltd., Chengdu 611130, China
| | - Shengfu Zhong
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Wei Chen
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Chengdu 611130, Sichuan, China; Sichuan Akebia trifoliata Biotechnology Co., Ltd., Chengdu 611130, China
| | - Xiaoxiao Yi
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Chen Chen
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Feiquan Tan
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Jinliang Shen
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Peigao Luo
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Chengdu 611130, Sichuan, China.
| |
Collapse
|
149
|
Wang X, Wen X, Yuan S, Zhang J. Gut-brain axis in the pathogenesis of sepsis-associated encephalopathy. Neurobiol Dis 2024; 195:106499. [PMID: 38588753 DOI: 10.1016/j.nbd.2024.106499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024] Open
Abstract
The gut-brain axis is a bidirectional communication network linking the gut and the brain, overseeing digestive functions, emotional responses, body immunity, brain development, and overall health. Substantial research highlights a connection between disruptions of the gut-brain axis and various psychiatric and neurological conditions, including depression and Alzheimer's disease. Given the impact of the gut-brain axis on behavior, cognition, and brain diseases, some studies have started to pay attention to the role of the axis in sepsis-associated encephalopathy (SAE), where cognitive impairment is the primary manifestation. SAE emerges as the primary and earliest form of organ dysfunction following sepsis, potentially leading to acute cognitive impairment and long-term cognitive decline in patients. Notably, the neuronal damage in SAE does not stem directly from the central nervous system (CNS) infection but rather from an infection occurring outside the brain. The gut-brain axis is posited as a pivotal factor in this process. This review will delve into the gut-brain axis, exploring four crucial pathways through which inflammatory signals are transmitted and elevate the incidence of SAE. These pathways encompass the vagus nerve pathway, the neuroendocrine pathway involving the hypothalamic-pituitary-adrenal (HPA) axis and serotonin (5-HT) regulation, the neuroimmune pathway, and the microbial regulation. These pathways can operate independently or collaboratively on the CNS to modulate brain activity. Understanding how the gut affects and regulates the CNS could offer the potential to identify novel targets for preventing and treating this condition, ultimately enhancing the prognosis for individuals with SAE.
Collapse
Affiliation(s)
- Xin Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Xiaoyue Wen
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China.
| | - Jiancheng Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China.
| |
Collapse
|
150
|
Ballanti M, Antonetti L, Mavilio M, Casagrande V, Moscatelli A, Pietrucci D, Teofani A, Internò C, Cardellini M, Paoluzi O, Monteleone G, Lefebvre P, Staels B, Mingrone G, Menghini R, Federici M. Decreased circulating IPA levels identify subjects with metabolic comorbidities: A multi-omics study. Pharmacol Res 2024; 204:107207. [PMID: 38734193 DOI: 10.1016/j.phrs.2024.107207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/05/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
In recent years several experimental observations demonstrated that the gut microbiome plays a role in regulating positively or negatively metabolic homeostasis. Indole-3-propionic acid (IPA), a Tryptophan catabolic product mainly produced by C. Sporogenes, has been recently shown to exert either favorable or unfavorable effects in the context of metabolic and cardiovascular diseases. We performed a study to delineate clinical and multiomics characteristics of human subjects characterized by low and high IPA levels. Subjects with low IPA blood levels showed insulin resistance, overweight, low-grade inflammation, and features of metabolic syndrome compared to those with high IPA. Metabolomics analysis revealed that IPA was negatively correlated with leucine, isoleucine, and valine metabolism. Transcriptomics analysis in colon tissue revealed the enrichment of several signaling, regulatory, and metabolic processes. Metagenomics revealed several OTU of ruminococcus, alistipes, blautia, butyrivibrio and akkermansia were significantly enriched in highIPA group while in lowIPA group Escherichia-Shigella, megasphera, and Desulfovibrio genus were more abundant. Next, we tested the hypothesis that treatment with IPA in a mouse model may recapitulate the observations of human subjects, at least in part. We found that a short treatment with IPA (4 days at 20/mg/kg) improved glucose tolerance and Akt phosphorylation in the skeletal muscle level, while regulating blood BCAA levels and gene expression in colon tissue, all consistent with results observed in human subjects stratified for IPA levels. Our results suggest that treatment with IPA may be considered a potential strategy to improve insulin resistance in subjects with dysbiosis.
Collapse
Affiliation(s)
- Marta Ballanti
- Center for Atherosclerosis and Internal Medicine Unit, Policlinico Tor Vergata University Hospital, Via Oxford 81, Rome 00133, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Lorenzo Antonetti
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Maria Mavilio
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Viviana Casagrande
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Alessandro Moscatelli
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy; Laboratory of Neuromotor Physiology, Santa Lucia Foundation IRCCS, Rome, 00179, Italy
| | - Daniele Pietrucci
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| | - Adelaide Teofani
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Chiara Internò
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Marina Cardellini
- Center for Atherosclerosis and Internal Medicine Unit, Policlinico Tor Vergata University Hospital, Via Oxford 81, Rome 00133, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Omero Paoluzi
- Unit of Gastroenterology, Policlinico Tor Vergata University Hospital, Via Oxford 81, 00133 Rome, Italy
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy; Unit of Gastroenterology, Policlinico Tor Vergata University Hospital, Via Oxford 81, 00133 Rome, Italy
| | - Philippe Lefebvre
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 EGID, Lille France
| | - Bart Staels
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 EGID, Lille France
| | - Geltrude Mingrone
- Department of Internal Medicine, Catholic University, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; Diabetes and Nutritional Sciences, Hodgkin Building, Guy's Campus, King's College London, London WC2R 2LS, UK
| | - Rossella Menghini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Massimo Federici
- Center for Atherosclerosis and Internal Medicine Unit, Policlinico Tor Vergata University Hospital, Via Oxford 81, Rome 00133, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy.
| |
Collapse
|