101
|
Boyce KJ, Andrianopoulos A. Ste20-related kinases: effectors of signaling and morphogenesis in fungi. Trends Microbiol 2011; 19:400-10. [PMID: 21640592 DOI: 10.1016/j.tim.2011.04.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 04/11/2011] [Accepted: 04/28/2011] [Indexed: 11/17/2022]
Abstract
The family of Ste20-related kinases is conserved from yeast to mammals and includes the p21 activated kinases (PAKs) and germinal centre kinases (GCKs). These kinases have been shown to be involved in signaling through mitogen activated protein kinase (MAPK) pathways and in morphogenesis through the regulation of cytokinesis and actin-dependent polarized growth. This review concentrates on the role of Ste20-related kinases in fungi where recent research has revealed roles for both PAKs and GCKs in the regulation of cytokinesis and in previously unidentified roles in promoting hyphal growth and differentiation of asexual development structures. In particular, the importance of PAKs during pathogenesis will be examined.
Collapse
Affiliation(s)
- Kylie J Boyce
- Department of Genetics, University of Melbourne, Victoria, Australia
| | | |
Collapse
|
102
|
Prosser DC, Drivas TG, Maldonado-Báez L, Wendland B. Existence of a novel clathrin-independent endocytic pathway in yeast that depends on Rho1 and formin. ACTA ACUST UNITED AC 2011; 195:657-71. [PMID: 22065638 PMCID: PMC3257529 DOI: 10.1083/jcb.201104045] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Much like mammalian cells, yeast contain a Rho-dependent pathway for endocytosis in addition to canonical clathrin-dependent endocytosis. Yeast is a powerful model organism for dissecting the temporal stages and choreography of the complex protein machinery during endocytosis. The only known mechanism for endocytosis in yeast is clathrin-mediated endocytosis, even though clathrin-independent endocytic pathways have been described in other eukaryotes. Here, we provide evidence for a clathrin-independent endocytic pathway in yeast. In cells lacking the clathrin-binding adaptor proteins Ent1, Ent2, Yap1801, and Yap1802, we identify a second endocytic pathway that depends on the GTPase Rho1, the downstream formin Bni1, and the Bni1 cofactors Bud6 and Spa2. This second pathway does not require components of the better-studied endocytic pathway, including clathrin and Arp2/3 complex activators. Thus, our results reveal the existence of a second pathway for endocytosis in yeast, which suggests similarities with the RhoA-dependent endocytic pathways of mammalian cells.
Collapse
Affiliation(s)
- Derek C Prosser
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
103
|
Berepiki A, Lichius A, Read ND. Actin organization and dynamics in filamentous fungi. Nat Rev Microbiol 2011; 9:876-87. [PMID: 22048737 DOI: 10.1038/nrmicro2666] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Growth and morphogenesis of filamentous fungi is underpinned by dynamic reorganization and polarization of the actin cytoskeleton. Actin has crucial roles in exocytosis, endocytosis, organelle movement and cytokinesis in fungi, and these processes are coupled to the production of distinct higher-order structures (actin patches, cables and rings) that generate forces or serve as tracks for intracellular transport. New approaches for imaging actin in living cells are revealing important similarities and differences in actin architecture and organization within the fungal kingdom, and have yielded key insights into cell polarity, tip growth and long-distance intracellular transport. In this Review, we discuss the contribution that recent live-cell imaging and mutational studies have made to our understanding of the dynamics and regulation of actin in filamentous fungi.
Collapse
Affiliation(s)
- Adokiye Berepiki
- Fungal Cell Biology Group, Institute of Cell Biology, Rutherford Building, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
104
|
Chesarone-Cataldo M, Guérin C, Yu JH, Wedlich-Soldner R, Blanchoin L, Goode BL. The myosin passenger protein Smy1 controls actin cable structure and dynamics by acting as a formin damper. Dev Cell 2011; 21:217-30. [PMID: 21839918 DOI: 10.1016/j.devcel.2011.07.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 05/23/2011] [Accepted: 07/07/2011] [Indexed: 01/01/2023]
Abstract
Formins are a conserved family of proteins with robust effects in promoting actin nucleation and elongation. However, the mechanisms restraining formin activities in cells to generate actin networks with particular dynamics and architectures are not well understood. In S. cerevisiae, formins assemble actin cables, which serve as tracks for myosin-dependent intracellular transport. Here, we show that the kinesin-like myosin passenger-protein Smy1 interacts with the FH2 domain of the formin Bnr1 to decrease rates of actin filament elongation, which is distinct from the formin displacement activity of Bud14. In vivo analysis of smy1Δ mutants demonstrates that this "damper" mechanism is critical for maintaining proper actin cable architecture, dynamics, and function. We directly observe Smy1-3GFP being transported by myosin V and transiently pausing at the neck in a manner dependent on Bnr1. These observations suggest that Smy1 is part of a negative feedback mechanism that detects cable length and prevents overgrowth.
Collapse
Affiliation(s)
- Melissa Chesarone-Cataldo
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA
| | | | | | | | | | | |
Collapse
|
105
|
Spiliotis ET, Gladfelter AS. Spatial guidance of cell asymmetry: septin GTPases show the way. Traffic 2011; 13:195-203. [PMID: 21883761 DOI: 10.1111/j.1600-0854.2011.01268.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 08/18/2011] [Accepted: 08/18/2011] [Indexed: 11/30/2022]
Abstract
Eukaryotic cells develop asymmetric shapes suited for specific physiological functions. Morphogenesis of polarized domains and structures requires the amplification of molecular asymmetries by scaffold proteins and regulatory feedback loops. Small monomeric GTPases signal polarity, but how their downstream effectors and targets are spatially co-ordinated to break cell symmetry is poorly understood. Septins comprise a novel family of GTPases that polymerize into non-polar filamentous structures which scaffold and restrict protein localization. Recent studies show that septins demarcate distinct plasma membrane domains and cytoskeletal tracks, enabling the formation of intracellular asymmetries. Here, we review these findings and discuss emerging mechanisms by which septins promote cell asymmetry in fungi and animals.
Collapse
Affiliation(s)
- Elias T Spiliotis
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
106
|
Kelly FD, Nurse P. Spatial control of Cdc42 activation determines cell width in fission yeast. Mol Biol Cell 2011; 22:3801-11. [PMID: 21849474 PMCID: PMC3192860 DOI: 10.1091/mbc.e11-01-0057] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe is a rod-shaped cell that grows by linear extension at the cell tips, with a nearly constant width throughout the cell cycle. This simple geometry makes it an ideal system for studying the control of cellular dimensions. In this study, we carried out a near-genome-wide screen for mutants wider than wild-type cells. We found 11 deletion mutants that were wider; seven of the deleted genes are implicated in the control of the small GTPase Cdc42, including the Cdc42 guanine nucleotide exchange factor (GEF) Scd1 and the Cdc42 GTPase-activating protein (GAP) Rga4. Deletions of rga4 and scd1 had additive effects on cell width, and the proteins localized independently of one another, with Rga4 located at the cell sides and Scd1 at the cell tips. Activated Cdc42 localization is altered in rga4Δ, scd1Δ, and scd2Δ mutants. Delocalization and ectopic retargeting experiments showed that the localizations of Rga4 and Scd1 are crucial for their roles in determining cell width. We propose that the GAP Rga4 and the GEF Scd1 establish a gradient of activated Cdc42 within the cellular tip plasma membrane, and it is this gradient that determines cell growth-zone size and normal cell width.
Collapse
|
107
|
|
108
|
Kamble C, Jain S, Murphy E, Kim K. Requirements of Slm proteins for proper eisosome organization, endocytic trafficking and recycling in the yeast Saccharomyces cerevisiae. J Biosci 2011; 36:79-96. [PMID: 21451250 DOI: 10.1007/s12038-011-9018-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Eisosomes are large immobile assemblies at the cortex of a cell under the membrane compartment of Can1 (MCC) in yeast. Slm1 has recently been identified as an MCC component that acts downstream of Mss4 in a pathway that regulates actin cytoskeleton organization in response to stress. In this study, we showed that inactivation of Slm proteins disrupts proper localization of the primary eisosome marker Pil1, providing evidence that Slm proteins play a role in eisosome organization. Furthermore, we found that slm ts mutant cells exhibit actin defects in both the ability to polarize cortical F-actin and the formation of cytoplasmic actin cables even at the permissive temperature (30 degrees C). We further demonstrated that the actin defect accounts for the slow traffic of FM4-64- labelled endosome in the cytoplasm, supporting the notion that intact actin is essential for endosome trafficking. However, our real-time microscopic analysis of Abp1-RFP revealed that the actin defect in slm ts cells was not accompanied by a noticeable defect in actin patch internalization during receptor-mediated endocytosis. In addition, we found that slm ts cells displayed impaired membrane recycling and that recycling occurred in an actin-independent manner. Our data provide evidence for the requirement of Slm proteins in eisosome organization and endosome trafficking and recycling.
Collapse
Affiliation(s)
- Chitra Kamble
- Department of Biology, Missouri State University, 901 South National Ave, Springfield, MO 65897, USA
| | | | | | | |
Collapse
|
109
|
Yu H, Wedlich-Söldner R. Cortical actin dynamics: Generating randomness by formin(g) and moving. BIOARCHITECTURE 2011; 1:165-168. [PMID: 22069508 DOI: 10.4161/bioa.1.4.17314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 07/13/2011] [Accepted: 07/14/2011] [Indexed: 12/29/2022]
Abstract
The actin cytoskeleton plays essential roles in cell polarization and cell morphogenesis of the budding yeast Saccharomyces cerevisiae. Yeast cells utilize formin-generated actin cables as tracks for polarized transport, which forms the basis for a positive feedback loop driving Cdc42-dependent cell polarization. Previous studies on cable organization mostly focused on polarized actin cables in budded cells and their role as relatively static tracks for myosin-dependent organelle transport. Using quantitative live cell imaging, we have recently characterized the dynamics of cortical actin cables throughout the yeast cell cycle. Surprisingly, randomly oriented actin cables in G(1) cells exhibited the highest level of dynamics, while cable dynamics was markedly slowed down upon cell polarization. We further demonstrated that the rapid dynamics of randomly oriented cables were driven by the formin Bni1 and Myosin V. Our data suggested a precise spatio-temporal regulation of the two yeast formins, as well as an unexpected mechanism of actin cable rearrangement through myosins. Here we discuss the immediate significance of these findings, which illustrates the importance of generating randomness for cellular organization.
Collapse
Affiliation(s)
- Haochen Yu
- Institute of Biochemistry; ETH Zürich; Zurich, Switzerland
| | | |
Collapse
|
110
|
Lichius A, Berepiki A, Read ND. Form follows function – The versatile fungal cytoskeleton. Fungal Biol 2011; 115:518-40. [DOI: 10.1016/j.funbio.2011.02.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 02/15/2011] [Accepted: 02/17/2011] [Indexed: 12/11/2022]
|
111
|
Chapa-Y-Lazo B, Lee S, Regan H, Sudbery P. The mating projections of Saccharomyces cerevisiae and Candida albicans show key characteristics of hyphal growth. Fungal Biol 2011; 115:547-56. [PMID: 21640318 DOI: 10.1016/j.funbio.2011.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 02/01/2011] [Accepted: 02/02/2011] [Indexed: 02/06/2023]
Abstract
Fungi can grow in a variety of growth forms: yeast, pseudohyphae and hyphae. The human fungal pathogen Candida albicans can grow in all three of these forms. In this fungus, hyphal growth is distinguished by the presence of a Spitzenkörper-like structure at the hyphal tip and a band of septin bars around the base of newly evaginated germ tubes. The budding yeast Saccharomyces cerevisiae grows as yeast and pseudohyphae, but is not normally considered to show hyphal growth. We show here that in mating projections of both C. albicans and S. cerevisiae a Spitzenkörper-like structure is present at the growing tip and a band of septin bars is present at the base. Furthermore, in S. cerevisiae mating projections, Spa2 and Bni1 form a cap to the 3-dimensional ball of FM4-64 staining, exactly as previously observed in C. albicans hyphae, suggesting that the putative Spitzenkörper may be a distinct structure from the polarisome. Taken together this work shows that mating projections of both S. cerevisiae and C. albicans show the key characteristics of hyphal growth.
Collapse
Affiliation(s)
- Bernardo Chapa-Y-Lazo
- Sheffield University, Department of Molecular Biology and Biotechnology, Western Bank, Sheffield S10 2TN, United Kingdom.
| | | | | | | |
Collapse
|
112
|
Silverman-Gavrila R, Silverman-Gavrila L, Hou G, Zhang M, Charlton M, Bendeck MP. Rear polarization of the microtubule-organizing center in neointimal smooth muscle cells depends on PKCα, ARPC5, and RHAMM. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:895-910. [PMID: 21281821 DOI: 10.1016/j.ajpath.2010.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 09/13/2010] [Accepted: 10/05/2010] [Indexed: 01/01/2023]
Abstract
Directed migration of smooth muscle cells (SMCs) from the media to the intima in arteries occurs during atherosclerotic plaque formation and during restenosis after angioplasty or stent application. The polarized orientation of the microtubule-organizing center (MTOC) is a key determinant of this process, and we therefore investigated factors that regulate MTOC polarity in vascular SMCs. SMCs migrating in vivo from the medial to the intimal layer of the rat carotid artery following balloon catheter injury were rear polarized, with the MTOC located posterior of the nucleus. In tissue culture, migrating neointimal cells maintained rear polarization, whereas medial cells were front polarized. Using phosphoproteomic screening and mass spectrometry, we identified ARPC5 and RHAMM as protein kinase C (PKC)-phosphorylated proteins associated with rear polarization of the MTOC in neointimal SMCs. RNA silencing of ARPC5 and RHAMM, PKC inhibition, and transfection with a mutated nonphosphorylatable ARPC5 showed that these proteins regulate rear polarization by organizing the actin and microtubule cytoskeletons in neointimal SMCs. Both ARPC5 and RHAMM, in addition to PKC, were required for migration of neointimal SMCs.
Collapse
|
113
|
Freitag J, Lanver D, Böhmer C, Schink KO, Bölker M, Sandrock B. Septation of infectious hyphae is critical for appressoria formation and virulence in the smut fungus Ustilago maydis. PLoS Pathog 2011; 7:e1002044. [PMID: 21625538 PMCID: PMC3098242 DOI: 10.1371/journal.ppat.1002044] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 03/14/2011] [Indexed: 12/24/2022] Open
Abstract
Differentiation of hyphae into specialized infection structures, known as appressoria, is a common feature of plant pathogenic fungi that penetrate the plant cuticle. Appressorium formation in U. maydis is triggered by environmental signals but the molecular mechanism of this hyphal differentiation is largely unknown. Infectious hyphae grow on the leaf surface by inserting regularly spaced retraction septa at the distal end of the tip cell leaving empty sections of collapsed hyphae behind. Here we show that formation of retraction septa is critical for appressorium formation and virulence in U. maydis. We demonstrate that the diaphanous-related formin Drf1 is necessary for actomyosin ring formation during septation of infectious hyphae. Drf1 acts as an effector of a Cdc42 GTPase signaling module, which also consists of the Cdc42-specific guanine nucleotide exchange factor Don1 and the Ste20-like kinase Don3. Deletion of drf1, don1 or don3 abolished formation of retraction septa resulting in reduced virulence. Appressorium formation in these mutants was not completely blocked but infection structures were found only at the tip of short filaments indicating that retraction septa are necessary for appressorium formation in extended infectious hyphae. In addition, appressoria of drf1 mutants penetrated the plant tissue less frequently. Pathogens exhibit various developmental stages during the process of infection and proliferation. The basidiomycete Ustilago maydis is a model organism for plant pathogenic fungi. On the plant surface U. maydis grows as a cell-cycle arrested filament. Growth of infectious hyphae involves regular formation of retraction septa leaving empty sections behind. The tip cell forms an appressorium and penetrates the cuticle. In this study we identified for the first time a signaling module regulating formation of retraction septa in fungal hyphae. The module consists of the highly conserved small GTPase Cdc42, its activator Don1 and the actin-organizing formin Drf1. After penetration of the plant, cell cycle arrest is released and hyphal septation is resumed in planta but was found to be independent of Cdc42 and Drf1. Thus, during infection Cdc42 signaling and Drf1 coordinate hyphal septation events specifically in infectious hyphae in U. maydis. The inability to form retraction septa affects filament elongation and appressorium formation resulting in significantly reduced virulence. We observed a threshold size of the cytoplasm filled tip compartment above which appressorium formation is blocked. These findings highlight that formation of retraction septa, a common feature of filamentous fungi, is an important virulence determinant of U. maydis.
Collapse
Affiliation(s)
- Johannes Freitag
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Daniel Lanver
- Max-Planck-Institute for Terrestrial Microbiology, Department of Organismic Interactions, Marburg, Germany
| | - Christian Böhmer
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Kay Oliver Schink
- Department of Biology, Philipps-University Marburg, Marburg, Germany
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
| | - Michael Bölker
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Björn Sandrock
- Department of Biology, Philipps-University Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
114
|
Yu JH, Crevenna AH, Bettenbühl M, Freisinger T, Wedlich-Söldner R. Cortical actin dynamics driven by formins and myosin V. J Cell Sci 2011; 124:1533-41. [PMID: 21486946 DOI: 10.1242/jcs.079038] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell morphogenesis requires complex and rapid reorganization of the actin cytoskeleton. The budding yeast Saccharomyces cerevisiae is an invaluable model system for studying molecular mechanisms driving actin dynamics. Actin cables in yeast are formin-generated linear actin arrays that serve as tracks for directed intracellular transport by type V myosins. Cables are constantly reorganized throughout the cell cycle but the molecular basis for such dynamics remains poorly understood. By combining total internal reflection microscopy, quantitative image analyses and genetic manipulations we identify kinetically distinct subpopulations of cables that are differentially driven by formins and myosin. Bni1 drives elongation of randomly oriented actin cables in unpolarized cells, whereas both formins Bnr1 and Bni1 mediate slower polymerization of cables in polarized cells. Type V myosin Myo2 surprisingly acts as a motor for translational cable motility along the cell cortex. During polarization, cells change from fast to slow cable dynamics through spatio-temporal regulation of Bni1, Bnr1 and Myo2. In summary, we identify molecular mechanisms for the regulation of cable dynamics and suggest that fast actin reorganization is necessary for fidelity of cell polarization.
Collapse
Affiliation(s)
- Jerry H Yu
- AG Cellular Dynamics and Cell Patterning, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | | | | | | |
Collapse
|
115
|
Xue XH, Guo CQ, Du F, Lu QL, Zhang CM, Ren HY. AtFH8 is involved in root development under effect of low-dose latrunculin B in dividing cells. MOLECULAR PLANT 2011; 4:264-78. [PMID: 21307369 DOI: 10.1093/mp/ssq085] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Formins have been paid much attention for their potent nucleating activity. However, the connection between the in vivo functions of AtFHs (Arabidopsis thaliana formin homologs) and their effects on actin organization is poorly understood. In this study, we characterized the bundling activity of AtFH8 in vitro and in vivo. Biochemical analysis showed that AtFH8(FH1FH2) could form dimers and bundle preformed actin filaments or induce stellar structures during actin polymerization. Expression of truncated forms of AtFH8 and immunolocalization analysis showed that AtFH8 localized primarily to nuclear envelope in interphase and to the new cell wall after cytokinesis, depending primarily on its N-terminal transmembrane domain. GUS histochemical staining showed AtFH8 was predominantly expressed in Arabidopsis root meristem, vasculature, and outgrowth points of lateral roots. The primary root growth and lateral root initiation of atfh8 could be decreased by latrunculin B (LatB). Analysis of the number of dividing cells in Arabidopsis root tips showed that much fewer dividing cells in Lat B-treated atfh8 plants than wild-type plants, which indicates that AtFH8 was involved in cell division. Actin cytoskeleton in root meristem of atfh8-1 was more sensitive to LatB treatment than that of wild-type. Altogether, our results indicate that AtFH8 is an actin filament nucleator and bundler that functions in cell division and root development.
Collapse
Affiliation(s)
- Xiu-Hua Xue
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| | | | | | | | | | | |
Collapse
|
116
|
Fang X, Luo J, Nishihama R, Wloka C, Dravis C, Travaglia M, Iwase M, Vallen EA, Bi E. Biphasic targeting and cleavage furrow ingression directed by the tail of a myosin II. J Cell Biol 2010; 191:1333-50. [PMID: 21173112 PMCID: PMC3010076 DOI: 10.1083/jcb.201005134] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 11/29/2010] [Indexed: 02/07/2023] Open
Abstract
Cytokinesis in animal and fungal cells utilizes a contractile actomyosin ring (AMR). However, how myosin II is targeted to the division site and promotes AMR assembly, and how the AMR coordinates with membrane trafficking during cytokinesis, remains poorly understood. Here we show that Myo1 is a two-headed myosin II in Saccharomyces cerevisiae, and that Myo1 localizes to the division site via two distinct targeting signals in its tail that act sequentially during the cell cycle. Before cytokinesis, Myo1 localization depends on the septin-binding protein Bni5. During cytokinesis, Myo1 localization depends on the IQGAP Iqg1. We also show that the Myo1 tail is sufficient for promoting the assembly of a "headless" AMR, which guides membrane deposition and extracellular matrix remodeling at the division site. Our study establishes a biphasic targeting mechanism for myosin II and highlights an underappreciated role of the AMR in cytokinesis beyond force generation.
Collapse
Affiliation(s)
- Xiaodong Fang
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Jianying Luo
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Ryuichi Nishihama
- Department of Genetics, Stanford University of School of Medicine, Stanford, CA 94305
| | - Carsten Wloka
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Department of Biology, Chemistry and Pharmacy, Free University of Berlin, D-14195 Berlin, Germany
| | - Christopher Dravis
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Mirko Travaglia
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Masayuki Iwase
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | | | - Erfei Bi
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
117
|
Bendezú FO, Martin SG. Actin cables and the exocyst form two independent morphogenesis pathways in the fission yeast. Mol Biol Cell 2010; 22:44-53. [PMID: 21148300 PMCID: PMC3016976 DOI: 10.1091/mbc.e10-08-0720] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In fission yeast, long-range transport and vesicle tethering by the exocyst are individually dispensable but together essential for cell morphogenesis. Both pathways function downstream of Cdc42. The exocyst localizes to growing cell tips independently of the cytoskeleton and instead depends on PIP2. Cell morphogenesis depends on polarized exocytosis. One widely held model posits that long-range transport and exocyst-dependent tethering of exocytic vesicles at the plasma membrane sequentially drive this process. Here, we describe that disruption of either actin-based long-range transport and microtubules or the exocyst did not abolish polarized growth in rod-shaped fission yeast cells. However, disruption of both actin cables and exocyst led to isotropic growth. Exocytic vesicles localized to cell tips in single mutants but were dispersed in double mutants. In contrast, a marker for active Cdc42, a major polarity landmark, localized to discreet cortical sites even in double mutants. Localization and photobleaching studies show that the exocyst subunits Sec6 and Sec8 localize to cell tips largely independently of the actin cytoskeleton, but in a cdc42 and phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2)–dependent manner. Thus in fission yeast long-range cytoskeletal transport and PIP2-dependent exocyst represent parallel morphogenetic modules downstream of Cdc42, raising the possibility of similar mechanisms in other cell types.
Collapse
Affiliation(s)
- Felipe O Bendezú
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | |
Collapse
|
118
|
Borth N, Walther A, Reijnst P, Jorde S, Schaub Y, Wendland J. Candida albicans Vrp1 is required for polarized morphogenesis and interacts with Wal1 and Myo5. Microbiology (Reading) 2010; 156:2962-2969. [DOI: 10.1099/mic.0.041707-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recently, a link between endocytosis and hyphal morphogenesis has been identified in Candida albicans via the Wiskott–Aldrich syndrome gene homologue WAL1. To get a more detailed mechanistic understanding of this link we have investigated a potentially conserved interaction between Wal1 and the C. albicans WASP-interacting protein (WIP) homologue encoded by VRP1. Deletion of both alleles of VRP1 results in strong hyphal growth defects under serum inducing conditions but filamentation can be observed on Spider medium. Mutant vrp1 cells show a delay in endocytosis – measured as the uptake and delivery of the lipophilic dye FM4-64 into small endocytic vesicles – compared to the wild-type. Vacuolar morphology was found to be fragmented in a subset of cells and the cortical actin cytoskeleton was depolarized in vrp1 daughter cells. The morphology of the vrp1 null mutant could be complemented by reintegration of the wild-type VRP1 gene at the BUD3 locus. Using the yeast two-hybrid system we could demonstrate an interaction between the C-terminal part of Vrp1 and the N-terminal part of Wal1, which contains the WH1 domain. Furthermore, we found that Myo5 has several potential interaction sites on Vrp1. This suggests that a Wal1–Vrp1–Myo5 complex plays an important role in endocytosis and the polarized localization of the cortical actin cytoskeleton to promote polarized hyphal growth in C. albicans.
Collapse
Affiliation(s)
- Nicole Borth
- Junior Research Group: Growth Control of Fungal Pathogens, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute and Department of Microbiology, Friedrich Schiller University, D-07745 Jena, Germany
- Carlsberg Laboratory, Yeast Biology, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark
| | - Andrea Walther
- Junior Research Group: Growth Control of Fungal Pathogens, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute and Department of Microbiology, Friedrich Schiller University, D-07745 Jena, Germany
- Carlsberg Laboratory, Yeast Biology, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark
| | - Patrick Reijnst
- Carlsberg Laboratory, Yeast Biology, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark
| | - Sigyn Jorde
- Carlsberg Laboratory, Yeast Biology, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark
| | - Yvonne Schaub
- Junior Research Group: Growth Control of Fungal Pathogens, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute and Department of Microbiology, Friedrich Schiller University, D-07745 Jena, Germany
| | - Jürgen Wendland
- Junior Research Group: Growth Control of Fungal Pathogens, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute and Department of Microbiology, Friedrich Schiller University, D-07745 Jena, Germany
- Carlsberg Laboratory, Yeast Biology, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark
| |
Collapse
|
119
|
Otomo T, Tomchick DR, Otomo C, Machius M, Rosen MK. Crystal structure of the Formin mDia1 in autoinhibited conformation. PLoS One 2010; 5. [PMID: 20927343 PMCID: PMC2948019 DOI: 10.1371/journal.pone.0012896] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 08/27/2010] [Indexed: 11/21/2022] Open
Abstract
Background Formin proteins utilize a conserved formin homology 2 (FH2) domain to nucleate new actin filaments. In mammalian diaphanous-related formins (DRFs) the FH2 domain is inhibited through an unknown mechanism by intramolecular binding of the diaphanous autoinhibitory domain (DAD) and the diaphanous inhibitory domain (DID). Methodology/Principal Findings Here we report the crystal structure of a complex between DID and FH2-DAD fragments of the mammalian DRF, mDia1 (mammalian diaphanous 1 also called Drf1 or p140mDia). The structure shows a tetrameric configuration (4 FH2 + 4 DID) in which the actin-binding sites on the FH2 domain are sterically occluded. However biochemical data suggest the full-length mDia1 is a dimer in solution (2 FH2 + 2 DID). Based on the crystal structure, we have generated possible dimer models and found that architectures of all of these models are incompatible with binding to actin filament but not to actin monomer. Furthermore, we show that the minimal functional monomeric unit in the FH2 domain, termed the bridge element, can be inhibited by isolated monomeric DID. NMR data on the bridge-DID system revealed that at least one of the two actin-binding sites on the bridge element is accessible to actin monomer in the inhibited state. Conclusions/Significance Our findings suggest that autoinhibition in the native DRF dimer involves steric hindrance with the actin filament. Although the structure of a full-length DRF would be required for clarification of the presented models, our work here provides the first structural insights into the mechanism of the DRF autoinhibition.
Collapse
Affiliation(s)
- Takanori Otomo
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Diana R. Tomchick
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Chinatsu Otomo
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Mischa Machius
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Michael K. Rosen
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
120
|
Crystal structure of a complex between amino and carboxy terminal fragments of mDia1: insights into autoinhibition of diaphanous-related formins. PLoS One 2010; 5. [PMID: 20927338 PMCID: PMC2948013 DOI: 10.1371/journal.pone.0012992] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 08/27/2010] [Indexed: 11/19/2022] Open
Abstract
Formin proteins direct the nucleation and assembly of linear actin filaments in a variety of cellular processes using their conserved formin homology 2 (FH2) domain. Diaphanous-related formins (DRFs) are effectors of Rho-family GTPases, and in the absence of Rho activation they are maintained in an inactive state by intramolecular interactions between their regulatory N-terminal region and a C-terminal segment referred to as the DAD domain. Although structures are available for the isolated DAD segment in complex with the interacting region in the N-terminus, it remains unclear how this leads to inhibition of actin assembly by the FH2 domain. Here we describe the crystal structure of the N-terminal regulatory region of formin mDia1 in complex with a C-terminal fragment containing both the FH2 and DAD domains. In the crystal structure and in solution, these fragments form a tetrameric complex composed of two interlocking N+C dimers. Formation of the tetramer is likely a consequence of the particular N-terminal construct employed, as we show that a nearly full-length mDia1 protein is dimeric, as are other autoinhibited N+C complexes containing longer N-terminal fragments. The structure provides the first view of the intact C-terminus of a DRF, revealing the relationship of the DAD to the FH2 domain. Delineation of alternative dimeric N+C interactions within the tetramer provides two general models for autoinhibition in intact formins. In both models, engagement of the DAD by the N-terminus is incompatible with actin filament formation on the FH2, and in one model the actin binding surfaces of the FH2 domain are directly blocked by the N-terminus.
Collapse
|
121
|
Molecular mechanisms of organelle inheritance: lessons from peroxisomes in yeast. Nat Rev Mol Cell Biol 2010; 11:644-54. [PMID: 20717147 DOI: 10.1038/nrm2960] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Preserving a functional set of cytoplasmic organelles in a eukaryotic cell requires a process of accurate organelle inheritance at cell division. Studies of peroxisome inheritance in yeast have revealed that polarized transport of a subset of peroxisomes to the emergent daughter cell is balanced by retention mechanisms operating in both mother cell and bud to achieve an equitable distribution of peroxisomes between them. It is becoming apparent that some common mechanistic principles apply to the inheritance of all organelles, but at the same time, inheritance factors specific for each organelle type allow the cell to differentially and specifically control the inheritance of its different organelle populations.
Collapse
|
122
|
Spitzenkorper, exocyst, and polarisome components in Candida albicans hyphae show different patterns of localization and have distinct dynamic properties. EUKARYOTIC CELL 2010; 9:1455-65. [PMID: 20693302 DOI: 10.1128/ec.00109-10] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
During the extreme polarized growth of fungal hyphae, secretory vesicles are thought to accumulate in a subapical region called the Spitzenkörper. The human fungal pathogen Candida albicans can grow in a budding yeast or hyphal form. When it grows as hyphae, Mlc1 accumulates in a subapical spot suggestive of a Spitzenkörper-like structure, while the polarisome components Spa2 and Bud6 localize to a surface crescent. Here we show that the vesicle-associated protein Sec4 also localizes to a spot, confirming that secretory vesicles accumulate in the putative C. albicans Spitzenkörper. In contrast, exocyst components localize to a surface crescent. Using a combination of fluorescence recovery after photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP) experiments and cytochalasin A to disrupt actin cables, we showed that Spitzenkörper-located proteins are highly dynamic. In contrast, exocyst and polarisome components are stably located at the cell surface. It is thought that in Saccharomyces cerevisiae exocyst components are transported to the cell surface on secretory vesicles along actin cables. If each vesicle carried its own complement of exocyst components, then it would be expected that exocyst components would be as dynamic as Sec4 and would have the same pattern of localization. This is not what we observe in C. albicans. We propose a model in which a stream of vesicles arrives at the tip and accumulates in the Spitzenkörper before onward delivery to the plasma membrane mediated by exocyst and polarisome components that are more stable residents of the cell surface.
Collapse
|
123
|
Wang J, Wang HY, Zhao PM, Han LB, Jiao GL, Zheng YY, Huang SJ, Xia GX. Overexpression of a profilin (GhPFN2) promotes the progression of developmental phases in cotton fibers. PLANT & CELL PHYSIOLOGY 2010; 51:1276-90. [PMID: 20558432 DOI: 10.1093/pcp/pcq086] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cotton fiber development at the stages of elongation and secondary wall synthesis determines the traits of fiber length and strength. To date, the mechanisms controlling the progression of these two phases remain elusive. In this work, the function of a fiber-preferential actin-binding protein (GhPFN2) was characterized by cytological and molecular studies on the fibers of transgenic green-colored cotton (Gossypium hirsutum) through three successive generations. Overexpression of GhPFN2 caused pre-terminated cell elongation, resulting in a marked decrease in the length of mature fibers. Cytoskeleton staining and quantitative assay revealed that thicker and more abundant F-actin bundles formed during the elongation stage in GhPFN2-overexpressing fibers. Accompanying this alteration, the developmental reorientation of transverse microtubules to the oblique direction was advanced by 2 d at the period of transition from elongation to secondary wall deposition. Birefringence and reverse transcription-PCR analyses showed that earlier onset of secondary wall synthesis occurred in parallel. These data demonstrate that formation of the higher actin structure plays a determinant role in the progression of developmental phases in cotton fibers, and that GhPFN2 acts as a critical modulator in this process. Such a function of the actin cytoskeleton in cell phase conversion may be common to other secondary wall-containing plant cells.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Ubiquitylation Regulates Interactions of Astral Microtubules with the Cleavage Apparatus. Curr Biol 2010; 20:1233-43. [DOI: 10.1016/j.cub.2010.05.064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 05/20/2010] [Accepted: 05/25/2010] [Indexed: 01/24/2023]
|
125
|
Structures of actin-bound Wiskott-Aldrich syndrome protein homology 2 (WH2) domains of Spire and the implication for filament nucleation. Proc Natl Acad Sci U S A 2010; 107:11757-62. [PMID: 20538977 DOI: 10.1073/pnas.1005347107] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Three classes of proteins are known to nucleate new filaments: the Arp2/3 complex, formins, and the third group of proteins that contain ca. 25 amino acid long actin-binding Wiskott-Aldrich syndrome protein homology 2 domains, called the WH2 repeats. Crystal structures of the complexes between the actin-binding WH2 repeats of the Spire protein and actin were determined for the Spire single WH2 domain D, the double (SpirCD), triple (SpirBCD), quadruple (SpirABCD) domains, and an artificial Spire WH2 construct comprising three identical D repeats (SpirDDD). SpirCD represents the minimal functional core of Spire that can nucleate actin filaments. Packing in the crystals of the actin complexes with SpirCD, SpirBCD, SpirABCD, and SpirDDD shows the presence of two types of assemblies, "side-to-side" and "straight-longitudinal," which can serve as actin filament nuclei. The principal feature of these structures is their loose, open conformations, in which the sides of actins that normally constitute the inner interface core of a filament are flipped inside out. These Spire structures are distant from those seen in the filamentous nuclei of Arp2/3, formins, and in the F-actin filament.
Collapse
|
126
|
Suchkov DV, DeFlorio R, Draper E, Ismael A, Sukumar M, Arkowitz R, Stone DE. Polarization of the yeast pheromone receptor requires its internalization but not actin-dependent secretion. Mol Biol Cell 2010; 21:1737-52. [PMID: 20335504 PMCID: PMC2869379 DOI: 10.1091/mbc.e09-08-0706] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The data presented in this paper suggest that pheromone-induced receptor phosphorylation and internalization, but not actin-dependent directed secretion, are required to establish receptor polarity. In the best understood models of eukaryotic directional sensing, chemotactic cells maintain a uniform distribution of surface receptors even when responding to chemical gradients. The yeast pheromone receptor is also uniformly distributed on the plasma membrane of vegetative cells, but pheromone induces its polarization into “crescents” that cap the future mating projection. Here, we find that in pheromone-treated cells, receptor crescents are visible before detectable polarization of actin cables and that the receptor can polarize in the absence of actin-dependent directed secretion. Receptor internalization, in contrast, seems to be essential for the generation of receptor polarity, and mutations that deregulate this process confer dramatic defects in directional sensing. We also show that pheromone induces the internalization and subsequent polarization of the mating-specific Gα and Gβ proteins and that the changes in G protein localization depend on receptor internalization and receptor–Gα coupling. Our data suggest that the polarization of the receptor and its G protein precedes actin polarization and is important for gradient sensing. We propose that the establishment of receptor/G protein polarity depends on a novel mechanism involving differential internalization and that this serves to amplify the shallow gradient of activated receptor across the cell.
Collapse
Affiliation(s)
- Dmitry V Suchkov
- Laboratory for Molecular Biology, Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | | | | | | | | | |
Collapse
|
127
|
Nuclear dynamics, mitosis, and the cytoskeleton during the early stages of colony initiation in Neurospora crassa. EUKARYOTIC CELL 2010; 9:1171-83. [PMID: 20207852 DOI: 10.1128/ec.00329-09] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neurospora crassa macroconidia form germ tubes that are involved in colony establishment and conidial anastomosis tubes (CATs) that fuse to form interconnected networks of conidial germlings. Nuclear and cytoskeletal behaviors were analyzed in macroconidia, germ tubes, and CATs in strains that expressed fluorescently labeled proteins. Heterokaryons formed by CAT fusion provided a rapid method for the imaging of multiple labeled fusion proteins and minimized the potential risk of overexpression artifacts. Mitosis occurred more slowly in nongerminated macroconidia (1.0 to 1.5 h) than in germ tubes (16 to 20 min). The nucleoporin SON-1 was not released from the nuclear envelope during mitosis, which suggests that N. crassa exhibits a form of "closed mitosis." During CAT homing, nuclei did not enter CATs, and mitosis was arrested. Benomyl treatment showed that CAT induction, homing, fusion, as well as nuclear migration through fused CATs do not require microtubules or mitosis. Three ropy mutants (ro-1, ro-3, and ro-11) defective in the dynein/dynactin microtubule motor were impaired in nuclear positioning, but nuclei still migrated through fused CATs. Latrunculin B treatment, imaging of F-actin in living cells using Lifeact-red fluorescent protein (RFP), and analysis of mutants defective in the Arp2/3 complex demonstrated that actin plays important roles in CAT fusion.
Collapse
|
128
|
Larson JR, Kozubowski L, Tatchell K. Changes in Bni4 localization induced by cell stress in Saccharomyces cerevisiae. J Cell Sci 2010; 123:1050-9. [PMID: 20197406 DOI: 10.1242/jcs.066258] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Septin complexes at the bud neck in Saccharomyces cerevisiae serve as a scaffold for proteins involved in signaling, cell cycle control, and cell wall synthesis. Many of these bind asymmetrically, associating with either the mother- or daughter-side of the neck. Septin structures are inherently apolar so the basis for the asymmetric binding remains unknown. Bni4, a regulatory subunit of yeast protein phosphatase type 1, Glc7, binds to the outside of the septin ring prior to bud formation and remains restricted to the mother-side of the bud neck after bud emergence. Bni4 is responsible for targeting Glc7 to the mother-side of the bud neck for proper deposition of the chitin ring. We show here that Bni4 localizes symmetrically, as two distinct rings on both sides of the bud neck following energy depletion or activation of cell cycle checkpoints. Our data indicate that loss of Bni4 asymmetry can occur via at least two different mechanisms. Furthermore, we show that Bni4 has a Swe1-dependent role in regulating the cell morphogenesis checkpoint in response to hydroxyurea, which suggests that the change in localization of Bni4 following checkpoint activation may help stabilize the cell cycle regulator Swe1 during cell cycle arrest.
Collapse
Affiliation(s)
- Jennifer R Larson
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | | | | |
Collapse
|
129
|
Disruption of the Rickettsia rickettsii Sca2 autotransporter inhibits actin-based motility. Infect Immun 2010; 78:2240-7. [PMID: 20194597 DOI: 10.1128/iai.00100-10] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Rickettsii rickettsii, the etiologic agent of Rocky Mountain spotted fever, replicates within the cytosol of infected cells and uses actin-based motility to spread inter- and intracellularly. Although the ultrastructure of the actin tail and host proteins associated with it are distinct from those of Listeria or Shigella, comparatively little is known regarding the rickettsial proteins involved in its organization. Here, we have used random transposon mutagenesis of R. rickettsii to generate a small-plaque mutant that is defective in actin-based motility and does not spread directly from cell to cell as is characteristic of spotted fever group rickettsiae. The transposon insertion site of this mutant strain was within Sca2, a member of a family of large autotransporter proteins. Sca2 exhibits several features suggestive of its apparent role in actin-based motility. It displays an N-terminal secretory signal peptide, a C-terminal predicted autotransporter domain, up to four predicted Wasp homology 2 (WH2) domains, and two proline-rich domains, one with similarity to eukaryotic formins. In a guinea pig model of infection, the Sca2 mutant did not elicit fever, suggesting that Sca2 and actin-based motility are virulence factors of spotted fever group rickettsiae.
Collapse
|
130
|
Effect of tropomyosin on formin-bound actin filaments. Biophys J 2010; 96:162-8. [PMID: 18931257 DOI: 10.1529/biophysj.108.138420] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2008] [Accepted: 09/12/2008] [Indexed: 11/18/2022] Open
Abstract
Formins are conservative proteins with important roles in the regulation of the microfilament system in eukaryotic cells. Previous studies showed that the binding of formins to actin made the structure of actin filaments more flexible. Here, the effects of tropomyosin on formin-induced changes in actin filaments were investigated using fluorescence spectroscopic methods. The temperature dependence of the Förster-type resonance energy transfer showed that the formin-induced increase of flexibility of actin filaments was diminished by the binding of tropomyosin to actin. Fluorescence anisotropy decay measurements also revealed that the structure of flexible formin-bound actin filaments was stabilized by the binding of tropomyosin. The stabilizing effect reached its maximum when all binding sites on actin were occupied by tropomyosin. The effect of tropomyosin on actin filaments was independent of ionic strength, but became stronger as the magnesium concentration increased. Based on these observations, we propose that in cells there is a molecular mechanism in which tropomyosin binding to actin plays an important role in forming mechanically stable actin filaments, even in the case of formin-induced rapid filament assembly.
Collapse
|
131
|
Yamamoto T, Mochida J, Kadota J, Takeda M, Bi E, Tanaka K. Initial polarized bud growth by endocytic recycling in the absence of actin cable-dependent vesicle transport in yeast. Mol Biol Cell 2010; 21:1237-52. [PMID: 20147449 PMCID: PMC2847527 DOI: 10.1091/mbc.e09-05-0412] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Budding yeast mutants in assembly of actin cables, which are thought to be the only actin structures essential for budding, still could form a small bud. Mutations in actin patch endocytic machineries/endocytic recycling factors inhibited this budding, suggesting a mechanism that promotes polarized growth by local recycling of endocytic vesicles. The assembly of filamentous actin is essential for polarized bud growth in budding yeast. Actin cables, which are assembled by the formins Bni1p and Bnr1p, are thought to be the only actin structures that are essential for budding. However, we found that formin or tropomyosin mutants, which lack actin cables, are still able to form a small bud. Additional mutations in components for cortical actin patches, which are assembled by the Arp2/3 complex to play a pivotal role in endocytic vesicle formation, inhibited this budding. Genes involved in endocytic recycling were also required for small-bud formation in actin cable-less mutants. These results suggest that budding yeast possesses a mechanism that promotes polarized growth by local recycling of endocytic vesicles. Interestingly, the type V myosin Myo2p, which was thought to use only actin cables to track, also contributed to budding in the absence of actin cables. These results suggest that some actin network may serve as the track for Myo2p-driven vesicle transport in the absence of actin cables or that Myo2p can function independent of actin filaments. Our results also show that polarity regulators including Cdc42p were still polarized in mutants defective in both actin cables and cortical actin patches, suggesting that the actin cytoskeleton does not play a major role in cortical assembly of polarity regulators in budding yeast.
Collapse
Affiliation(s)
- Takaharu Yamamoto
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
132
|
Gao L, Liu W, Bretscher A. The yeast formin Bnr1p has two localization regions that show spatially and temporally distinct association with septin structures. Mol Biol Cell 2010; 21:1253-62. [PMID: 20147448 PMCID: PMC2847528 DOI: 10.1091/mbc.e09-10-0861] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Formins are conserved eukaryotic proteins that direct the nucleation and elongation of unbranched actin filaments. We define two nonoverlapping regions, Bnr1p-L1 (1-466) and Bnr1p-L2 (466-733) that can each localize to the bud neck independently of endogenous Bnr1p. Formins are conserved eukaryotic proteins that direct the nucleation and elongation of unbranched actin filaments. The yeast formins, Bni1p and Bnr1p, assemble actin cables from the bud cortex and bud neck, respectively, to guide overall cell polarity. Here we examine the regions of Bnr1p responsible for bud neck localization. We define two non-overlapping regions, Bnr1p-L1 (1-466) and Bnr1p-L2 (466-733), that can each localize to the bud neck independently of endogenous Bnr1p. Bnr1p-L1 and Bnr1p-L2 localize with septins at the bud neck, but show slightly differently spatial and temporal localization, reflecting the localization (Bnr1p-L1) or cell cycle timing (Bnr1p-L2) of full-length Bnr1p. Bnr1p is known to be very stably localized at the bud neck, and both Bnr1p-L1 and Bnr1p-L2 also show relatively stable localization there. Overexpression of Bnr1p-L1, but not Bnr1p-L2, disrupts septin organization at the bud neck. Thus Bnr1p has two separable regions that each contribute to its bud neck localization.
Collapse
Affiliation(s)
- Lina Gao
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
133
|
Abstract
This study demonstrates the utility of Lifeact for the investigation of actin dynamics in Neurospora crassa and also represents the first report of simultaneous live-cell imaging of the actin and microtubule cytoskeletons in filamentous fungi. Lifeact is a 17-amino-acid peptide derived from the nonessential Saccharomyces cerevisiae actin-binding protein Abp140p. Fused to green fluorescent protein (GFP) or red fluorescent protein (TagRFP), Lifeact allowed live-cell imaging of actin patches, cables, and rings in N. crassa without interfering with cellular functions. Actin cables and patches localized to sites of active growth during the establishment and maintenance of cell polarity in germ tubes and conidial anastomosis tubes (CATs). Recurrent phases of formation and retrograde movement of complex arrays of actin cables were observed at growing tips of germ tubes and CATs. Two populations of actin patches exhibiting slow and fast movement were distinguished, and rapid (1.2 microm/s) saltatory transport of patches along cables was observed. Actin cables accumulated and subsequently condensed into actin rings associated with septum formation. F-actin organization was markedly different in the tip regions of mature hyphae and in germ tubes. Only mature hyphae displayed a subapical collar of actin patches and a concentration of F-actin within the core of the Spitzenkörper. Coexpression of Lifeact-TagRFP and beta-tubulin-GFP revealed distinct but interrelated localization patterns of F-actin and microtubules during the initiation and maintenance of tip growth.
Collapse
|
134
|
Liu R, Linardopoulou EV, Osborn GE, Parkhurst SM. Formins in development: orchestrating body plan origami. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1803:207-25. [PMID: 18996154 PMCID: PMC2838992 DOI: 10.1016/j.bbamcr.2008.09.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 08/21/2008] [Accepted: 09/26/2008] [Indexed: 01/21/2023]
Abstract
Formins, proteins defined by the presence of an FH2 domain and their ability to nucleate linear F-actin de novo, play a key role in the regulation of the cytoskeleton. Initially thought to primarily regulate actin, recent studies have highlighted a role for formins in the regulation of microtubule dynamics, and most recently have uncovered the ability of some formins to coordinate the organization of both the microtubule and actin cytoskeletons. While biochemical analyses of this family of proteins have yielded many insights into how formins regulate diverse cytoskeletal reorganizations, we are only beginning to appreciate how and when these functional properties are relevant to biological processes in a developmental or organismal context. Developmental genetic studies in fungi, Dictyostelium, vertebrates, plants and other model organisms have revealed conserved roles for formins in cell polarity, actin cable assembly and cytokinesis. However, roles have also been discovered for formins that are specific to particular organisms. Thus, formins perform both global and specific functions, with some of these roles concurring with previous biochemical data and others exposing new properties of formins. While not all family members have been examined across all organisms, the analyses to date highlight the significance of the flexibility within the formin family to regulate a broad spectrum of diverse cytoskeletal processes during development.
Collapse
Affiliation(s)
- Raymond Liu
- Division of Basic Sciences Fred Hutchinson Cancer Research Center 1100 Fairview Avenue North Seattle, WA 98109 USA
| | - Elena V. Linardopoulou
- Division of Basic Sciences Fred Hutchinson Cancer Research Center 1100 Fairview Avenue North Seattle, WA 98109 USA
| | - Gregory E. Osborn
- Division of Basic Sciences Fred Hutchinson Cancer Research Center 1100 Fairview Avenue North Seattle, WA 98109 USA
| | - Susan M. Parkhurst
- Division of Basic Sciences Fred Hutchinson Cancer Research Center 1100 Fairview Avenue North Seattle, WA 98109 USA
| |
Collapse
|
135
|
|
136
|
Bartolini F, Gundersen GG. Formins and microtubules. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1803:164-73. [PMID: 19631698 PMCID: PMC2856479 DOI: 10.1016/j.bbamcr.2009.07.006] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 05/29/2009] [Accepted: 07/04/2009] [Indexed: 02/06/2023]
Abstract
Formins have recently been recognized as prominent regulators of the microtubule (MT) cytoskeleton where they modulate the dynamics of selected MTs in interphase and mitosis. The association of formins with the MT cytoskeleton and their action on MT dynamics are relatively unexplored areas, yet growing evidence supports a direct role in their regulation of MT stability independent of their activity on actin. Formins regulate MT stability alone or in combination with accessory MT binding proteins that have previously been implicated in the stabilization of MTs downstream of polarity cues. As actin and MT arrays are typically remodeled downstream of signaling pathways that orchestrate cell shape and division, formins are emerging as excellent candidates for coordinating the responses of the cytoskeletal in diverse regulated and homeostatic processes.
Collapse
Affiliation(s)
- F Bartolini
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | | |
Collapse
|
137
|
Blanchoin L, Staiger CJ. Plant formins: Diverse isoforms and unique molecular mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:201-6. [PMID: 18977251 DOI: 10.1016/j.bbamcr.2008.09.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 07/03/2008] [Accepted: 09/26/2008] [Indexed: 10/21/2022]
|
138
|
|
139
|
Chesarone MA, DuPage AG, Goode BL. Unleashing formins to remodel the actin and microtubule cytoskeletons. Nat Rev Mol Cell Biol 2009; 11:62-74. [PMID: 19997130 DOI: 10.1038/nrm2816] [Citation(s) in RCA: 410] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Formins are highly conserved proteins that have essential roles in remodelling the actin and microtubule cytoskeletons to influence eukaryotic cell shape and behaviour. Recent work has identified numerous cellular factors that locally recruit, activate or inactivate formins to bridle and unleash their potent effects on actin nucleation and elongation. The effects of formins on microtubules have also begun to be described, which places formins in a prime position to coordinate actin and microtubule dynamics. The emerging complexity in the mechanisms governing formins mirrors the wide range of essential functions that they perform in cell motility, cell division and cell and tissue morphogenesis.
Collapse
Affiliation(s)
- Melissa A Chesarone
- Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | |
Collapse
|
140
|
Ye J, Zheng Y, Yan A, Chen N, Wang Z, Huang S, Yang Z. Arabidopsis formin3 directs the formation of actin cables and polarized growth in pollen tubes. THE PLANT CELL 2009; 21:3868-84. [PMID: 20023198 PMCID: PMC2814512 DOI: 10.1105/tpc.109.068700] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 11/07/2009] [Accepted: 11/18/2009] [Indexed: 05/18/2023]
Abstract
Cytoplasmic actin cables are the most prominent actin structures in plant cells, but the molecular mechanism underlying their formation is unknown. The function of these actin cables, which are proposed to modulate cytoplasmic streaming and intracellular movement of many organelles in plants, has not been studied by genetic means. Here, we show that Arabidopsis thaliana formin3 (AFH3) is an actin nucleation factor responsible for the formation of longitudinal actin cables in pollen tubes. The Arabidopsis AFH3 gene encodes a 785-amino acid polypeptide, which contains a formin homology 1 (FH1) and a FH2 domain. In vitro analysis revealed that the AFH3 FH1FH2 domains interact with the barbed end of actin filaments and have actin nucleation activity in the presence of G-actin or G actin-profilin. Overexpression of AFH3 in tobacco (Nicotiana tabacum) pollen tubes induced excessive actin cables, which extended into the tubes' apices. Specific downregulation of AFH3 eliminated actin cables in Arabidopsis pollen tubes and reduced the level of actin polymers in pollen grains. This led to the disruption of the reverse fountain streaming pattern in pollen tubes, confirming a role for actin cables in the regulation of cytoplasmic streaming. Furthermore, these tubes became wide and short and swelled at their tips, suggesting that actin cables may regulate growth polarity in pollen tubes. Thus, AFH3 regulates the formation of actin cables, which are important for cytoplasmic streaming and polarized growth in pollen tubes.
Collapse
Affiliation(s)
- Jianrong Ye
- College of Biological Science, China Agricultural University, Beijing 100193, China
- China Agricultural University-University of California-Riverside Joint Center for Biological Sciences and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yiyan Zheng
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - An Yan
- China Agricultural University-University of California-Riverside Joint Center for Biological Sciences and Biotechnology, China Agricultural University, Beijing 100193, China
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Naizhi Chen
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhangkui Wang
- College of Biological Science, China Agricultural University, Beijing 100193, China
- China Agricultural University-University of California-Riverside Joint Center for Biological Sciences and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shanjin Huang
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Address correspondence to or
| | - Zhenbiao Yang
- China Agricultural University-University of California-Riverside Joint Center for Biological Sciences and Biotechnology, China Agricultural University, Beijing 100193, China
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
- Address correspondence to or
| |
Collapse
|
141
|
Thomas C, Tholl S, Moes D, Dieterle M, Papuga J, Moreau F, Steinmetz A. Actin bundling in plants. ACTA ACUST UNITED AC 2009; 66:940-57. [DOI: 10.1002/cm.20389] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
142
|
Slaughter BD, Smith SE, Li R. Symmetry breaking in the life cycle of the budding yeast. Cold Spring Harb Perspect Biol 2009; 1:a003384. [PMID: 20066112 PMCID: PMC2773630 DOI: 10.1101/cshperspect.a003384] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The budding yeast Saccharomyces cerevisiae has been an invaluable model system for the study of the establishment of cellular asymmetry and growth polarity in response to specific physiological cues. A large body of experimental observations has shown that yeast cells are able to break symmetry and establish polarity through two coupled and partially redundant intrinsic mechanisms, even in the absence of any pre-existing external asymmetry. One of these mechanisms is dependent upon interplay between the actin cytoskeleton and the Rho family GTPase Cdc42, whereas the other relies on a Cdc42 GTPase signaling network. Integral to these mechanisms appear to be positive feedback loops capable of amplifying small and stochastic asymmetries. Spatial cues, such as bud scars and pheromone gradients, orient cell polarity by modulating the regulation of the Cdc42 GTPase cycle, thereby biasing the site of asymmetry amplification.
Collapse
Affiliation(s)
- Brian D Slaughter
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, Missouri 64110, USA.
| | | | | |
Collapse
|
143
|
Pujol N, Bonet C, Vilella F, Petkova MI, Mozo-Villarías A, de la Torre-Ruiz MA. Two proteins from Saccharomyces cerevisiae: Pfy1 and Pkc1, play a dual role in activating actin polymerization and in increasing cell viability in the adaptive response to oxidative stress. FEMS Yeast Res 2009; 9:1196-207. [PMID: 19765090 DOI: 10.1111/j.1567-1364.2009.00565.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In this work, we show that the proteins Pkc1 and Pfy1 play a role in the repolarization of the actin cytoskeleton and in cell survival in response to oxidative stress. We have also developed an assay to determine the actin polymerization capacity of total protein extracts using fluorescence recovery after photobleaching techniques and actin purified from rabbit muscle. This assay allowed us to demonstrate that Pfy1 promotes actin polymerization under conditions of oxidative stress, while Pkc1 induces actin polymerization and cell survival under all the conditions tested. Our assay also points to a relationship between Pkc1 and Pfy1 in the actin cytoskeleton polymerization that is required to adapt to oxidative stress.
Collapse
Affiliation(s)
- Nuria Pujol
- Department de Ciències Mèdiques Bàsiques-IRBLleida, Faculty of Medicine, University of Lleida, Lleida. Spain
| | | | | | | | | | | |
Collapse
|
144
|
Paul AS, Pollard TD. Review of the mechanism of processive actin filament elongation by formins. CELL MOTILITY AND THE CYTOSKELETON 2009; 66:606-17. [PMID: 19459187 PMCID: PMC2871153 DOI: 10.1002/cm.20379] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We review recent structural and biophysical studies of the mechanism of action of formins, proteins that direct the assembly of unbranched actin filaments for cytokinetic contractile rings and other cellular structures. Formins use free actin monomers to nucleate filaments and then remain bound to the barbed ends of these filaments as they elongate. In addition to variable regulatory domains, formins typically have formin homology 1 (FH1) and formin homology 2 (FH2) domains. FH1 domains have multiple binding sites for profilin, an abundant actin monomer binding protein. FH2 homodimers encircle the barbed end of a filament. Most FH2 domains inhibit actin filament elongation, but FH1 domains concentrate multiple profilin-actin complexes near the end of the filament. FH1 domains transfer actin very rapidly onto the barbed end of the filament, allowing elongation at rates that exceed the rate of elongation by the addition of free actin monomers diffusing in solution. Binding of actin to the end of the filament provides the energy for the highly processive movement of the FH2 as a filament adds thousands of actin subunits. These biophysical insights provide the context to understand how formins contribute to actin assembly in cells. Cell Motil. Cytoskeleton 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Aditya S Paul
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | | |
Collapse
|
145
|
Motizuki M, Xu Z. Importance of Polarisome Proteins in Reorganization of Actin Cytoskeleton at Low pH in Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2009; 146:705-12. [DOI: 10.1093/jb/mvp116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
146
|
Lai SL, Chien AJ, Moon RT. Wnt/Fz signaling and the cytoskeleton: potential roles in tumorigenesis. Cell Res 2009; 19:532-45. [PMID: 19365405 DOI: 10.1038/cr.2009.41] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Wnt/beta-catenin regulates cellular functions related to tumor initiation and progression, cell proliferation, differentiation, survival, and adhesion. Beta-catenin-independent Wnt pathways have been proposed to regulate cell polarity and migration, including metastasis. In this review, we discuss the possible roles of both beta-catenin-dependent and -independent signaling pathways in tumor progression, with an emphasis on their regulation of Rho-family GTPases, cytoskeletal remodeling, and relationships with cell-cell adhesion and cilia/ciliogenesis.
Collapse
Affiliation(s)
- Shih-Lei Lai
- Howard Hughes Medical Institute, Department of Pharmacology, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | |
Collapse
|
147
|
Wang J, Neo SP, Cai M. Regulation of the Yeast Formin Bni1p by the Actin-Regulating Kinase Prk1p. Traffic 2009; 10:528-35. [DOI: 10.1111/j.1600-0854.2009.00893.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
148
|
Gao L, Bretscher A. Polarized growth in budding yeast in the absence of a localized formin. Mol Biol Cell 2009; 20:2540-8. [PMID: 19297522 PMCID: PMC2682595 DOI: 10.1091/mbc.e09-03-0194] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 03/11/2009] [Indexed: 11/11/2022] Open
Abstract
Polarity is achieved partly through the localized assembly of the cytoskeleton. During growth in budding yeast, the bud cortex and neck localized formins Bni1p and Bnr1p nucleate and assemble actin cables that extend along the bud-mother axis, providing tracks for secretory vesicle delivery. Localized formins are believed to determine the location and polarity of cables, hence growth. However, yeast expressing the nonlocalized actin nucleating/assembly formin homology (FH) 1-FH2 domains of Bnr1p or Bni1p as the sole formin grow well. Although cables are significantly disorganized, analysis of directed transport of secretory vesicles is still biased toward the bud, reflecting a bias in correctly oriented cables, thereby permitting polarized growth. Myosin II, localized at the bud neck, contributes to polarized growth as a mutant unable to interact with F-actin further compromises growth in cells with an unlocalized formin but not with a localized formin. Our results show that multiple mechanisms contribute to cable orientation and polarized growth, with localized formins and myosin II being two major contributors.
Collapse
Affiliation(s)
- Lina Gao
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Weill Hall, Cornell University, Ithaca, NY 14853
| | - Anthony Bretscher
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Weill Hall, Cornell University, Ithaca, NY 14853
| |
Collapse
|
149
|
Wen KK, Rubenstein PA. Differential regulation of actin polymerization and structure by yeast formin isoforms. J Biol Chem 2009; 284:16776-16783. [PMID: 19386598 DOI: 10.1074/jbc.m109.006981] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The budding yeast formins, Bnr1 and Bni1, behave very differently with respect to their interactions with muscle actin. However, the mechanisms underlying these differences are unclear, and these formins do not interact with muscle actin in vivo. We use yeast wild type and mutant actins to further assess these differences between Bnr1 and Bni1. Low ionic strength G-buffer does not promote actin polymerization. However, Bnr1, but not Bni1, causes the polymerization of pyrene-labeled Mg-G-actin in G-buffer into single filaments based on fluorometric and EM observations. Polymerization by Bnr1 does not occur with Ca-G-actin. By cosedimentation, maximum filament formation occurs at a Bnr1:actin ratio of 1:2. The interaction of Bnr1 with pyrene-labeled S265C Mg-actin yields a pyrene excimer peak, from the cross-strand interaction of pyrene probes, which only occurs in the context of F-actin. In F-buffer, Bnr1 promotes much faster yeast actin polymerization than Bni1. It also bundles the F-actin in contrast to the low ionic strength situation where only single filaments form. Thus, the differences previously observed with muscle actin are not actin isoform-specific. The binding of both formins to F-actin saturate at an equimolar ratio, but only about 30% of each formin cosediments with F-actin. Finally, addition of Bnr1 but not Bni1 to pyrene-labeled wild type and S265C Mg-F actins enhanced the pyrene- and pyrene-excimer fluorescence, respectively, suggesting Bnr1 also alters F-actin structure. These differences may facilitate the ability of Bnr1 to form the actin cables needed for polarized delivery of nutrients and organelles to the growing yeast bud.
Collapse
Affiliation(s)
- Kuo-Kuang Wen
- From the Department of Biochemistry, Roy A. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Peter A Rubenstein
- From the Department of Biochemistry, Roy A. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242.
| |
Collapse
|
150
|
Chesarone MA, Goode BL. Actin nucleation and elongation factors: mechanisms and interplay. Curr Opin Cell Biol 2009; 21:28-37. [PMID: 19168341 PMCID: PMC2671392 DOI: 10.1016/j.ceb.2008.12.001] [Citation(s) in RCA: 225] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 12/09/2008] [Accepted: 12/19/2008] [Indexed: 11/18/2022]
Abstract
Cells require actin nucleators to catalyze the de novo assembly of filaments and actin elongation factors to control the rate and extent of polymerization. Nucleation and elongation factors identified to date include Arp2/3 complex, formins, Ena/VASP, and newcomers Spire, Cobl, and Lmod. Here, we discuss recent advances in understanding their activities and mechanisms and new evidence for their cooperation and interaction in vivo. Earlier models had suggested that different nucleators function independently to assemble distinct actin arrays. However, more recent observations indicate that the construction of most cellular actin networks depends on the activities of multiple actin assembly-promoting factors working in concert.
Collapse
Affiliation(s)
- Melissa A Chesarone
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | | |
Collapse
|