101
|
PELLEGRINI M, ARGIBAY P, GOMEZ D. Dietary factors, genetic and epigenetic influences in colorectal cancer. Exp Ther Med 2010; 1:241-250. [PMID: 22993535 PMCID: PMC3445943 DOI: 10.3892/etm_00000038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 11/10/2009] [Indexed: 01/05/2023] Open
Abstract
Genetic influences, together with epigenetic components and dietary factors, play a fundamental role in the initiation and progression of cancer by causing a number of deregulations. Colorectal cancer (CRC) is a disease influenced by dietary factors, for which established genetic and epigenetic alterations have been identified. Within CRC, there are hereditary syndromes that present mutations in the germ-line hMLH1, and also alterations in the methylation of the promoters. Epigenetics has also been established as a pathway of carcinogenesis. In the present review, we analyzed studies conducted to discern the different pathways leading to established CRC, stressing the importance of identifying factors that may predict CRC at an early stage, since it is mostly a silent disease observed at the clinical level in advanced stages.
Collapse
Affiliation(s)
- M.L. PELLEGRINI
- Instituto de Ciencias Básicas y Medicina Experimental, Hospital Italiano de Buenos Aires
| | - P. ARGIBAY
- Instituto de Ciencias Básicas y Medicina Experimental, Hospital Italiano de Buenos Aires
| | - D.E. GOMEZ
- Laboratorio de Oncología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires,
Argentina
| |
Collapse
|
102
|
Vu TH, Nguyen AH, Hoffman AR. Loss of IGF2 imprinting is associated with abrogation of long-range intrachromosomal interactions in human cancer cells. Hum Mol Genet 2009; 19:901-19. [PMID: 20015958 DOI: 10.1093/hmg/ddp558] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nuclear architecture and chromatin geography are important factors in the regulation of gene expression, as these components may play a vital epigenetic role both in normal physiology as well as in the initiation and progression of malignancies. Using a modification of the chromosome conformation capture (3C) technique, we examined long-range chromatin interactions of the imprinted human IGF2 gene. We demonstrate that numerous intrachromosomal interactions occur along both parental alleles in normal tissues, where the IGF2 is paternally expressed, as well as in normal liver where gene expression is biallelic. Long-range and allele-specific interactions occur between the IGF2/H19 imprinting control region-1 (ICR1) and ICR2, a region which regulates an imprinted gene cluster nearly a megabase distant from IGF2. Loss of genomic imprinting is a common epigenetic event in cancer, and long-range interactions have not been examined in malignant cells. In cancer cell lines in which IGF2 imprinting is maintained (MOI), essentially all of the 3C interactions seen in normal cells were preserved. However, in cells in which IGF2 imprinting was lost (LOI), nearly all of the long-range chromatin interactions involving IGF2 were abrogated. A three-dimensional computer model depicts the physical interactions between the IGF2 promoter and ICR1 in MOI cells, while the model of LOI lung cancer cells is flattened with few long-range interactions. This dramatic change in the three-dimension configuration of the chromatin at the IGF2 locus in LOI cancer cells suggests that the loss of imprinting may lead to a variety of changes in gene expression in addition to changes in IGF2 transcription.
Collapse
Affiliation(s)
- Thanh H Vu
- VA Palo Alto Health Care System and Stanford University, Palo Alto, CA 94301, USA
| | | | | |
Collapse
|
103
|
Kim NH, Lee CH, Lee AY. H19 RNA downregulation stimulated melanogenesis in melasma. Pigment Cell Melanoma Res 2009; 23:84-92. [DOI: 10.1111/j.1755-148x.2009.00659.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
104
|
Freyer C, Renfree MB. The mammalian yolk sac placenta. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312:545-54. [DOI: 10.1002/jez.b.21239] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
105
|
Lefebvre L, Mar L, Bogutz A, Oh-McGinnis R, Mandegar MA, Paderova J, Gertsenstein M, Squire JA, Nagy A. The interval between Ins2 and Ascl2 is dispensable for imprinting centre function in the murine Beckwith-Wiedemann region. Hum Mol Genet 2009; 18:4255-67. [PMID: 19684026 DOI: 10.1093/hmg/ddp379] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Imprinted genes are commonly clustered in domains across the mammalian genome, suggesting a degree of coregulation via long-range coordination of their monoallelic transcription. The distal end of mouse chromosome 7 (Chr 7) contains two clusters of imprinted genes within a approximately 1 Mb domain. This region is conserved on human 11p15.5 where it is implicated in the Beckwith-Wiedemann syndrome. In both species, imprinted regulation requires two critical cis-acting imprinting centres, carrying different germline epigenetic marks and mediating imprinted expression in the proximal and distal sub-domains. The clusters are separated by a region containing the gene for tyrosine hydroxylase (Th) as well as a high density of short repeats and retrotransposons in the mouse. We have used the Cre-loxP recombination system in vivo to engineer an interstitial deletion of this approximately 280-kb intervening region previously proposed to participate in the imprinting mechanism or to act as a boundary between the two sub-domains. The deletion allele, Del(7AI), is silent with respect to epigenetic marking at the two flanking imprinting centres. Reciprocal inheritance of Del(7AI) demonstrates that the deleted region, which represents more than a quarter of the previously defined imprinted domain, is associated with intrauterine growth restriction in maternal heterozygotes. In homozygotes, the deficiency behaves as a Th null allele and can be rescued pharmacologically by bypassing the metabolic requirement for TH in utero. Our results show that the deleted interval is not required for normal imprinting on distal Chr 7 and uncover a new imprinted growth phenotype.
Collapse
Affiliation(s)
- Louis Lefebvre
- Department of Medical Genetics and Molecular Epigenetics Group, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Smith IM, Glazer CA, Mithani SK, Ochs MF, Sun W, Bhan S, Vostrov A, Abdullaev Z, Lobanenkov V, Gray A, Liu C, Chang SS, Ostrow KL, Westra WH, Begum S, Dhara M, Califano J. Coordinated activation of candidate proto-oncogenes and cancer testes antigens via promoter demethylation in head and neck cancer and lung cancer. PLoS One 2009; 4:e4961. [PMID: 19305507 PMCID: PMC2654921 DOI: 10.1371/journal.pone.0004961] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2008] [Accepted: 02/03/2009] [Indexed: 12/03/2022] Open
Abstract
Background Epigenetic alterations have been implicated in the pathogenesis of solid tumors, however, proto-oncogenes activated by promoter demethylation have been sporadically reported. We used an integrative method to analyze expression in primary head and neck squamous cell carcinoma (HNSCC) and pharmacologically demethylated cell lines to identify aberrantly demethylated and expressed candidate proto-oncogenes and cancer testes antigens in HNSCC. Methodology/Principal Findings We noted coordinated promoter demethylation and simultaneous transcriptional upregulation of proto-oncogene candidates with promoter homology, and phylogenetic footprinting of these promoters demonstrated potential recognition sites for the transcription factor BORIS. Aberrant BORIS expression correlated with upregulation of candidate proto-oncogenes in multiple human malignancies including primary non-small cell lung cancers and HNSCC, induced coordinated proto-oncogene specific promoter demethylation and expression in non-tumorigenic cells, and transformed NIH3T3 cells. Conclusions/Significance Coordinated, epigenetic unmasking of multiple genes with growth promoting activity occurs in aerodigestive cancers, and BORIS is implicated in the coordinated promoter demethylation and reactivation of epigenetically silenced genes in human cancers.
Collapse
Affiliation(s)
- Ian M. Smith
- Department of Otolaryngology—Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Chad A. Glazer
- Department of Otolaryngology—Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Suhail K. Mithani
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Michael F. Ochs
- Division of Oncology Biostatistics, Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Wenyue Sun
- Department of Otolaryngology—Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Sheetal Bhan
- Department of Otolaryngology—Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Alexander Vostrov
- Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, Maryland, United States of America
| | - Ziedulla Abdullaev
- Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, Maryland, United States of America
| | - Victor Lobanenkov
- Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, Maryland, United States of America
| | - Andrew Gray
- Department of Otolaryngology—Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Chunyan Liu
- Department of Otolaryngology—Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Steven S. Chang
- Department of Otolaryngology—Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Kimberly L. Ostrow
- Department of Otolaryngology—Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - William H. Westra
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Shahnaz Begum
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Mousumi Dhara
- Department of Otolaryngology—Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Joseph Califano
- Department of Otolaryngology—Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
- Milton J. Dance Head and Neck Center, Greater Baltimore Medical Center, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
107
|
Rampersaud E, Mitchell BD, Naj AC, Pollin TI. Investigating parent of origin effects in studies of type 2 diabetes and obesity. Curr Diabetes Rev 2008; 4:329-39. [PMID: 18991601 PMCID: PMC2896493 DOI: 10.2174/157339908786241179] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The role of parent-of-origin effects (POE) in the etiology of complex diseases such as type 2 diabetes (T2DM) and obesity is currently of intense interest, but still largely unclear. POE are transmittable genetic effects whereby the expression of the phenotype in the offspring depends upon whether the transmission originated from the mother or father. In mammals, POE can be caused by genetic imprinting, intrauterine effects, or maternally inherited mitochondrial genes. In this paper, we describe the different mechanisms underlying POE, characterize known examples of POE in rare forms of diabetes, and review the evidence from linkage and association studies for POE in T2DM and obesity. Finally, we summarize some of the new and established statistical and experimental approaches commonly used to detect POE. Through this paper, we hope emphasizes the potentially significant importance of POE in the etiology of T2DM and obesity.
Collapse
Affiliation(s)
- Evadnie Rampersaud
- Division of Endocrinology, Diabetes and Nutrition, University of Maryland, Baltimore, MD, USA.
| | | | | | | |
Collapse
|
108
|
Fu VX, Dobosy JR, Desotelle JA, Almassi N, Ewald JA, Srinivasan R, Berres M, Svaren J, Weindruch R, Jarrard DF. Aging and cancer-related loss of insulin-like growth factor 2 imprinting in the mouse and human prostate. Cancer Res 2008; 68:6797-802. [PMID: 18701505 DOI: 10.1158/0008-5472.can-08-1714] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Loss of imprinting (LOI) is an epigenetic alteration involving loss of parental origin-specific expression at normally imprinted genes. A LOI for Igf2, a paracrine growth factor, is important in cancer progression. Epigenetic modifications may be altered by environmental factors. However, is not known whether changes in imprinting occur with aging in prostate and other tissues susceptible to cancer development. We found a LOI for Igf2 occurs specifically in the mouse prostate associated with increased Igf2 expression during aging. In older animals, expression of the chromatin insulator protein CTCF and its binding to the Igf2-H19 imprint control region was reduced. Forced down-regulation of CTCF leads to Igf2 LOI. We further show that Igf2 LOI occurs with aging in histologically normal human prostate tissues and that this epigenetic alteration was more extensive in men with associated cancer. This finding may contribute to a postulated field of cancer susceptibility that occurs with aging. Moreover, Igf2 LOI may serve as a marker for the presence of prostate cancer.
Collapse
Affiliation(s)
- Vivian X Fu
- Department of Urology, University of Wisconsin School of Medicine and Public Health, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Spencer HG. Effects of genomic imprinting on quantitative traits. Genetica 2008; 136:285-93. [PMID: 18690543 DOI: 10.1007/s10709-008-9300-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2008] [Accepted: 07/16/2008] [Indexed: 02/03/2023]
Abstract
Standard Mendelian genetic processes incorporate several symmetries, one of which is that the level of expression of a gene inherited from an organism's mother is identical to the level should that gene have been inherited paternally. For a small number of loci in a variety of taxa, this symmetry does not hold; such genes are said to be "genomically imprinted" (or simply "imprinted"). The best known examples of imprinted loci come from mammals and angiosperms, although there are also cases from several insects and some data suggesting that imprinting exists in zebra fish. Imprinting means that reciprocal heterozygotes need not be, on average, phenotypically identical. When this difference is incorporated into the standard quantitative-genetic model for two alleles at a single locus, a number of standard expressions are altered in fundamental ways. Most importantly, in contrast to the case with euMendelian expression, the additive and dominance deviations are correlated. It would clearly be of interest to be able to separate imprinting effects from maternal genetic effects, but when the latter are added to the model, the well-known generalized least-squares approach to deriving breeding values cannot be applied. Distinguishing these two types of parent-of-origin effects is not a simple problem and requires further research.
Collapse
Affiliation(s)
- Hamish G Spencer
- National Research Centre for Growth & Development and Allan Wilson Centre for Molecular Ecology & Evolution, Department of Zoology, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
110
|
Holloway DT, Kon M, DeLisi C. In silico regulatory analysis for exploring human disease progression. Biol Direct 2008; 3:24. [PMID: 18564415 PMCID: PMC2464594 DOI: 10.1186/1745-6150-3-24] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Accepted: 06/18/2008] [Indexed: 12/24/2022] Open
Abstract
Background An important goal in bioinformatics is to unravel the network of transcription factors (TFs) and their targets. This is important in the human genome, where many TFs are involved in disease progression. Here, classification methods are applied to identify new targets for 152 transcriptional regulators using publicly-available targets as training examples. Three types of sequence information are used: composition, conservation, and overrepresentation. Results Starting with 8817 TF-target interactions we predict an additional 9333 targets for 152 TFs. Randomized classifiers make few predictions (~2/18660) indicating that our predictions for many TFs are significantly enriched for true targets. An enrichment score is calculated and used to filter new predictions. Two case-studies for the TFs OCT4 and WT1 illustrate the usefulness of our predictions: • Many predicted OCT4 targets fall into the Wnt-pathway. This is consistent with known biology as OCT4 is developmentally related and Wnt pathway plays a role in early development. • Beginning with 15 known targets, 354 predictions are made for WT1. WT1 has a role in formation of Wilms' tumor. Chromosomal regions previously implicated in Wilms' tumor by cytological evidence are statistically enriched in predicted WT1 targets. These findings may shed light on Wilms' tumor progression, suggesting that the tumor progresses either by loss of WT1 or by loss of regions harbouring its targets. • Targets of WT1 are statistically enriched for cancer related functions including metastasis and apoptosis. Among new targets are BAX and PDE4B, which may help mediate the established anti-apoptotic effects of WT1. • Of the thirteen TFs found which co-regulate genes with WT1 (p ≤ 0.02), 8 have been previously implicated in cancer. The regulatory-network for WT1 targets in genomic regions relevant to Wilms' tumor is provided. Conclusion We have assembled a set of features for the targets of human TFs and used them to develop classifiers for the determination of new regulatory targets. Many predicted targets are consistent with the known biology of their regulators, and new targets for the Wilms' tumor regulator, WT1, are proposed. We speculate that Wilms' tumor development is mediated by chromosomal rearrangements in the location of WT1 targets. Reviewers This article was reviewed by Trey Ideker, Vladimir A. Kuznetsov(nominated by Frank Eisenhaber), and Tzachi Pilpel.
Collapse
Affiliation(s)
- Dustin T Holloway
- Molecular Biology Cell Biology and Biochemistry Department, Boston University, 5 Cummington Street, Boston, USA
| | | | | |
Collapse
|
111
|
Hsu E, Feghali-Bostwick CA. Insulin-like growth factor-II is increased in systemic sclerosis-associated pulmonary fibrosis and contributes to the fibrotic process via Jun N-terminal kinase- and phosphatidylinositol-3 kinase-dependent pathways. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:1580-90. [PMID: 18467708 DOI: 10.2353/ajpath.2008.071021] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Systemic sclerosis (SSc)-related pulmonary fibrosis, for which there are few effective therapies, is the most common cause of SSc-related mortality. We examined insulin-like growth factor (IGF)-II expression in explanted lung tissues from control and SSc patients to determine its role in the pathogenesis of fibrosis. IGF-II levels in vivo were detected using immunohistochemistry. Primary lung fibroblasts were cultured from lung tissues, and IGF-II mRNA was measured using reverse transcriptase-polymerase chain reaction. Western blot analysis measured extracellular matrix (ECM) production and phosphorylated signaling molecules. Immunostaining revealed increased IGF-II expression in fibroblastic foci of SSc lungs. Furthermore, primary SSc lung fibroblasts had a fourfold increase in IGF-II mRNA and a twofold increase in IGF-II protein compared with normal lung fibroblasts. IGF-II mRNA in SSc lung fibroblasts was expressed primarily from the P3 promoter of the IGF-II gene, and IGF-II induced both a dose- and time-dependent increase in collagen type I and fibronectin production. IGF-II triggered the activation of both phosphatidylinositol-3 kinase and Jun N-terminal kinase signaling cascades, the inhibition of which diminished IGF-II-induced ECM production. Our study demonstrates increased local IGF-II expression in SSc-associated pulmonary fibrosis both in vitro and in vivo as well as IGF-II-induced ECM production through both phosphatidylinositol-3 kinase- and Jun N-terminal kinase-dependent pathways. Our results provide novel insights into the role of IGF-II in the pathogenesis of SSc-associated pulmonary fibrosis.
Collapse
Affiliation(s)
- Eileen Hsu
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
112
|
Li C, Bin Y, Curchoe C, Yang L, Feng D, Jiang Q, O'Neill M, Tian XC, Zhang S. Genetic imprinting of H19 and IGF2 in domestic pigs (Sus scrofa). Anim Biotechnol 2008; 19:22-7. [PMID: 18228173 DOI: 10.1080/10495390701758563] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The genes insulin-like growth factor 2 (IGF2) and H19 express paternally and maternally, respectively, in humans, mice, sheep, and cattle. Additionally, IGF2 has been shown to be regulated by at least four promoters in a tissue- or development-specific manner. In the domestic pigs, the promoter- and tissue-specific imprinting pattern of IGF2 has not been well characterized, nor is the imprinting pattern of H19. In the present study, we identified two polymorphisms in each of IGF2 (exons 2 and 9) and H19 (exons 1 and 5) and determined the imprinting status of these two genes in 13 organs / tissues of week-old pigs. IGF2 P1 transcript is bi-allelically expressed (not imprinted) in all major organs studied, while the majority of IGF2 transcripts are expressed from promoters 2-4 and are imprinted. H19 is exclusively expressed from the maternal allele in all major organs, concurrent with observations in other species.
Collapse
Affiliation(s)
- Chao Li
- College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Byun HM, Wong HL, Birnstein EA, Wolff EM, Liang G, Yang AS. Examination of IGF2 and H19 loss of imprinting in bladder cancer. Cancer Res 2007; 67:10753-8. [PMID: 18006818 DOI: 10.1158/0008-5472.can-07-0329] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Loss of imprinting (LOI) is a common epigenetic event in cancer and may serve as an early biomarker in some cancers. To obtain a better understanding of LOI, we studied 41 bladder tumors and their adjacent normal bladder mucosa. We found 2/9 (22.2%) cases that displayed LOI of IGF2 and 2/16 (12.5%) that had LOI of H19, as determined by the evaluation of mRNA for biallelic expression. In addition, we examined allele-specific methylation of the differentially methylated regions (DMR) of IGF2 and H19 using a new allele-specific pyrosequencing assay. We found that DNA methylation changes were a common finding (21/30, 70%) in the DMR regions, but could not clearly link DNA methylation changes with LOI as measured by biallelic expression. LOI and allele-specific DNA methylation changes are present in bladder cancer; however, a better understanding of the biology of LOI and its relationship to DNA methylation changes is needed before its use as an epigenetic biomarker.
Collapse
Affiliation(s)
- Hyang-Min Byun
- Division of Hematology, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, California 90033, USA
| | | | | | | | | | | |
Collapse
|
114
|
Möller B, Kerschbaumer G, Komor M, Kerschbaumer F, Ottmann OG, Hoelzer D, Hofmann WK. Genomic imprinting of insulin-like growth factor 2 (IGF-2) in chronic synovitis. Growth Horm IGF Res 2007; 17:500-505. [PMID: 17590364 DOI: 10.1016/j.ghir.2007.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 05/10/2007] [Accepted: 05/15/2007] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To search for relaxation or loss of IGF-2 imprinting (LOI) in rheumatoid arthritis (RA) synovial tissues. DESIGN The genotype of IGF-2 was determined in 25 freshly isolated synovial tissue samples with signs of active inflammation by polymerase chain reaction (PCR) and restriction fragment length polymorphism. Imprinting was determined in synovial tissue mononuclear cells (STMC) of five informative heterozygous patients by reverse transcriptase (RT)-PCR. Mitogen-stimulated peripheral blood mononuclear cells (PBMC) from six informative healthy donors were selected for control. RESULTS In vitro proliferation of CD4+ and CD8+ PB T cells, and also of CD19+ PB B cells was detectable upon mitogen stimulation. Furthermore, MHC II molecule expression on synovial B and T cells indicated in vivo cell activation. Monoallelic IGF-2 expression was seen in PBMC cultures from two healthy donors under both, resting and stimulating conditions. In two other PBMC cultures, LOI occurred exclusively after 24 h of stimulation. PBMC from two other healthy donors showed LOI under both, resting and stimulating conditions. Mitogen induced and spontaneous LOI was reversible in each one PBMC culture after 72 h. In contrast, none of the informative STMC cultures showed LOI. CONCLUSIONS LOI in lymphocytes may occur spontaneously or inducible. However, longstanding activation of lymphocytes in RA synovitis appears not to be related to this mechanism.
Collapse
Affiliation(s)
- B Möller
- Inselspital - University Hospital Bern, Klinik für Rheumatologie, klinische Immunologie und Allergologie, CH-3010 Bern, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
115
|
Adkins RM, Fain JN, Krushkal J, Klauser CK, Magann EF, Morrison JC. Association between paternally inherited haplotypes upstream of the insulin gene and umbilical cord IGF-II levels. Pediatr Res 2007; 62:451-5. [PMID: 17667841 DOI: 10.1203/pdr.0b013e3181425841] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The insulin (INS) and IGF 2 (IGF2) genes are in close proximity to each other and undergo maternal imprinting during fetal growth. We investigated the association between maternal and umbilical cord IGF 2 protein (IGF-II) levels and single nucleotide polymorphisms (SNPs) in the INS and IGF2 genes in 207 healthy African-American mother-newborn pairs. No association was found between maternal IGF-II levels and polymorphism in the INS-IGF2 locus. A significant association was found between newborn IGF-II levels and two SNPs (rs3842738 and rs689) at the 5' end of the INS-IGF2 locus. Analyses of haplotypes inferred from these two SNPs demonstrate a significant relationship between paternally transmitted haplotypes and newborn IGF-II levels, but no association with maternally transmitted haplotypes.
Collapse
Affiliation(s)
- Ronald M Adkins
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee 38103, USA.
| | | | | | | | | | | |
Collapse
|
116
|
Adkins RM, Krushkal J, Klauser CK, Magann EF, Morrison JC, Somes G. Association between small for gestational age and paternally inherited 5' insulin haplotypes. Int J Obes (Lond) 2007; 32:372-80. [PMID: 17700581 DOI: 10.1038/sj.ijo.0803700] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To test the association between small for gestational age and polymorphisms in the insulin gene in newborns and their mothers, as well as the effect of the parental transmission of haplotypes. SUBJECTS Pairs of healthy African-American full-term newborns (N=207) and mothers were recruited from Memphis TN and Jackson MS with birth weights ranging from 2210 to 4735 g. METHODS Six single nucleotide polymorphisms (SNPs) located in the insulin (INS) and insulin-like growth factor 2 (IGF2) genes were genotyped in mothers and newborns. Haplotypes composed of three SNPs in the 5' region of the INS-IGF2 locus were computationally inferred. Odds ratios for risk of small for gestational age (SGA) birth were calculated for individual SNPs and inferred haplotypes in the newborns and in the mothers using logistic regression. For 162 mother--newborn pairs the parental transmission of the haplotypes could be inferred, and the risks for SGA birth were calculated for the three common haplotypes in this sample. RESULTS Three INS SNPs exhibited significant association with risk for SGA birth. The SNP alleles associated with increased risk for SGA were opposite in the maternal and newborn genomes, implying opposing influences on the rate of fetal growth. Consistent with these results, haplotypes composed of complementary nucleotide sequences (CAC at rs3842738, rs689 and rs3842748, respectively, in the newborn versus GTG in the mother) were significantly associated with risk for SGA birth. In analyses of haplotypes according to parental transmission, the same trend in risk for SGA was observed for both maternally and paternally transmitted haplotypes, although a significant difference in risk was observed only for paternally transmitted haplotypes. CONCLUSION Polymorphisms near the 5' end of the INS-IGF2 locus are significantly associated with risk for SGA birth with a major effect due to the paternally transmitted haplotype, which is preferentially expressed due to imprinting.
Collapse
Affiliation(s)
- R M Adkins
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA.
| | | | | | | | | | | |
Collapse
|
117
|
Abstract
Insulin-like growth factor 2 (IGF2) is an imprinted gene expressed in most tissues affecting lean muscle content in mice, pigs and cattle. We previously identified the bovine IGF2 c.-292C>T SNP in the non-translated exon 2. Using this SNP, we demonstrated biallelic expression of IGF2 after birth. Seven alternatively spliced mRNA transcripts of IGF2 were expressed among 15 tissues. An IGF2 pseudogene (psiIGF2) was identified with sequence identical to at least IGF2 exons 2 and 3 without the intervening intron. The biallelic expression of this c.-292C>T SNP was associated with an increase in rib eye area (REA) in two populations of cattle, with the C.-292C allele associated with a 10% increase. A significant association with per cent fat was found in one of the populations.
Collapse
Affiliation(s)
- J J Goodall
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada.
| | | |
Collapse
|
118
|
Engström W, Shokrai A, Otte K, Granérus M, Gessbo A, Bierke P, Madej A, Sjölund M, Ward A. Transcriptional regulation and biological significance of the insulin like growth factor II gene. Cell Prolif 2007; 31:173-89. [PMID: 9925986 PMCID: PMC6647699 DOI: 10.1111/j.1365-2184.1998.tb01196.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The insulin like growth factors I and II are the most ubiquitous in the mammalian embryo. Moreover they play a pivotal role in the development and growth of tumours. The bioavailability of these growth factors is regulated on a transcriptional as well as on a posttranslational level. The expression of non-signalling receptors as well as binding proteins does further tune the local concentration of IGFs. This paper aims at reviewing how the transcription of the IGF genes is regulated. The biological significance of these control mechanisms will be discussed.
Collapse
Affiliation(s)
- W Engström
- Department of Pathology, Faculty of Veterinary Medicine, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Abstract
The practice of clinical oncology historically has been rooted in therapy for established cancers, and over the past decade, early detection of the malignancy has occurred increasingly, allowing an increasing chance of cure by surgical intervention. Cancer prevention has been targeted largely to generic reduction of exposure to environmental carcinogens, such as smoking reduction. However, targeted identification of patients at increased risk and therapeutic tailored intervention in those patients have not taken hold in oncology, despite the enormous success of that approach in preventive cardiology. A paradigm of such a strategy for oncology may be the identification of patients with epigenetic alterations in progenitor cells and intervention before the development of the earliest identifiable neoplasms. We review studies of loss of imprinting of insulin-like growth factor 2 in colorectal cancer as an example of such a target for preventive oncology.
Collapse
Affiliation(s)
- Andrew P Feinberg
- Division of Molecular Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
120
|
Beeghly AC, Katsaros D, Wiley AL, Rigault de la Longrais IA, Prescott AT, Chen H, Puopolo M, Rutherford TJ, Yu H. IGF-II promoter methylation and ovarian cancer prognosis. J Cancer Res Clin Oncol 2007; 133:713-23. [PMID: 17569086 DOI: 10.1007/s00432-007-0211-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 03/23/2007] [Indexed: 12/22/2022]
Abstract
PURPOSE The insulin-like growth factor-II (IGF-II) gene has four promoters that produce distinct transcripts which vary by tissue type and developmental stage. Dysregulation of normal promoter usage has been shown to occur in cancer; DNA methylation regulates promoter use. Thus, we sought to examine if DNA methylation varies among IGF-II promoters in ovarian cancer and if methylation patterns are related to clinical features of the disease. STUDY DESIGN Tumor tissue, clinical data, and follow-up information were collected from 215 patients diagnosed with primary epithelial ovarian cancer. DNA extracted from tumor tissues was analyzed for IGF-II promoter methylation with seven methylation specific PCR (MSP) assays: three for promoter 2 (P2) and two assays each for promoters 3 and 4 (P3 and P4). RESULTS Methylation was found to vary among the seven assays: 19.3% in P2A, 45.6% in P2B, 50.9% in P2C, 48.4% in P3A, 13.1% in P3B, 5.1% in P4A, and 6.1% in P4B. Methylation in any of the three P2 assays was associated with high tumor grade (P = 0.043), suboptimal debulking (P = 0.036), and disease progression [hazards ratio (HR) = 1.73, 95% confidence interval (CI) 1.09-2.74]. When comparing promoter methylation patterns, differential methylation of P2 and P3 was found to be associated with disease prognosis; patients with P3 but not P2 methylation were less likely to have disease progression (HR = 0.39, 95% CI 0.17-0.91) compared to patients with P2 but not P3 methylation. CONCLUSIONS This study shows that methylation varies among three IGF-II promoters in ovarian cancer and that this variation seems to have biologic implications as it relates to clinical features and prognosis of the disease.
Collapse
Affiliation(s)
- A C Beeghly
- Department of Epidemiology and Public Health, Yale University School of Medicine, 60 College Street, New Haven, CT, 06520-8034, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Van Cleve J, Feldman MW. Sex-specific viability, sex linkage and dominance in genomic imprinting. Genetics 2007; 176:1101-18. [PMID: 17435253 PMCID: PMC1894577 DOI: 10.1534/genetics.107.071555] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 04/03/2007] [Indexed: 01/02/2023] Open
Abstract
Genomic imprinting is a phenomenon by which the expression of an allele at a locus depends on the parent of origin. Two different two-locus evolutionary models are presented in which a second locus modifies the imprinting status of the primary locus, which is under differential selection in males and females. In the first model, a modifier allele that imprints the primary locus invades the population when the average dominance coefficient among females and males is >12 and selection is weak. The condition for invasion is always heavily contingent upon the extent of dominance. Imprinting is more likely in the sex experiencing weaker selection only under some parameter regimes, whereas imprinting by either sex is equally likely under other regimes. The second model shows that a modifier allele that induces imprinting will increase when imprinting has a direct selective advantage. The results are not qualitatively dependent on whether the modifier locus is autosomal or X linked.
Collapse
Affiliation(s)
- Jeremy Van Cleve
- Department of Biological Sciences, Stanford University, Stanford, California 94305, USA.
| | | |
Collapse
|
122
|
Xu H, Bourne PA, Spaulding BO, Wang HL. High-grade neuroendocrine carcinomas of the lung express K homology domain containing protein overexpressed in cancer but carcinoid tumors do not. Hum Pathol 2007; 38:555-63. [PMID: 17316760 DOI: 10.1016/j.humpath.2006.11.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Revised: 11/10/2006] [Accepted: 11/13/2006] [Indexed: 11/30/2022]
Abstract
K homology domain containing protein overexpressed in cancer (KOC) is a member of the insulin-like growth factor (IGF) messenger RNA-binding protein family and is expressed during embryogenesis and in certain malignancies. KOC, known as L523S and IGF messenger RNA-binding protein 3, was shown to be frequently expressed in high-grade neuroendocrine carcinomas of the lung in our immunohistochemical studies using a monoclonal antibody against human KOC. Specifically, all 10 small cell lung carcinomas (SCLCs) exhibited strong cytoplasmic staining, 9 with diffuse positivity and 1 with focal positivity. Among 14 large cell neuroendocrine carcinomas (LCNECs), 9 exhibited strong and diffuse cytoplasmic staining, and 5 cases showed focal immunoreactivity. In contrast, no KOC was detected in 21 typical and atypical carcinoids, except for one atypical carcinoid with oncocytic cells showing weak cytoplasmic staining. Although SCLCs exhibited a strong and diffuse staining pattern more frequently (90%) than LCNECs (64%), the difference did not reach statistical significance (P = .3408). Interestingly, our immunohistochemical studies demonstrated that IGF-II, reportedly regulated by KOC, was comparably expressed in SCLC, LCNEC, and typical and atypical carcinoids, irrespective of KOC expression status of the tumors. These results support the formulation that KOC may play an important role in the regulation of biologic behavior of high-grade neuroendocrine carcinomas. In addition, detection of KOC expression may be diagnostically useful in distinguishing high-grade neuroendocrine carcinomas from carcinoid tumors. Our findings of equivalent IGF-II expression in KOC-positive SCLC and LCNEC and KOC-negative carcinoid tumors suggest different regulatory mechanisms involved in the control of IGF-II expression in these tumors.
Collapse
Affiliation(s)
- Haodong Xu
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | | | | | | |
Collapse
|
123
|
Vambergue A, Fajardy I, Dufour P, Valat AS, Vandersippe M, Fontaine P, Danze PM, Rousseaux J. No loss of genomic imprinting of IGF-II and H19 in placentas of diabetic pregnancies with fetal macrosomia. Growth Horm IGF Res 2007; 17:130-136. [PMID: 17306581 DOI: 10.1016/j.ghir.2007.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Indexed: 10/23/2022]
Abstract
OBJECTIVES Fetal macrosomia is a common complication of maternal diabetes mellitus and is associated with substantial morbidity, but the precise cellular and molecular mechanisms that induce fetal macrosomia are not well understood. The imprinted genes IGF-II and H19 are crucial for placental development and fetal growth. The term placentas from diabetic pregnancies express more insulin-like growth factor II (IGF-II) than those from normal pregnancies. Deregulation of their imprinting status is observed in the macrosomia-associated syndrome, the Beckwith-Wiedemann syndrome. The aim of this study was to determine whether loss of imprinting hence biallelic expression was also a hallmark of macrosomia in diabetic pregnancies. DESIGN AND METHODS IGF-II and H19 maternal and paternal expressions were studied in placentas from two groups of type 1 diabetic mothers: one with macrosomic babies and the other with babies of normal weight. Maternal or paternal allele specific expressions were defined by using DNA polymorphic markers of the IGF-II and H19 genes. RFLP analysis was performed on PCR products from genomic DNA of the father, the mother and the child, and on RT-PCR products from placental mRNA. RESULTS RFLP analysis showed that the IGF-II gene remains paternally expressed and the H19 gene remains maternally expressed in all placentas examined, independently of the birth weight status. CONCLUSIONS These results suggest that, in contrast with Beckwith-Wiedemann syndrome-associated macrosomia, loss of imprinting for IGF-II or H19 is not a common feature of diabetic pregnancies associated with macrosomia.
Collapse
Affiliation(s)
- A Vambergue
- Department of Endocrinology and Diabetes, Marc Linquette Hospital, CHRU Lille, France.
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Kaku K, Osada H, Seki K, Sekiya S. Insulin-like growth factor 2 (IGF2) and IGF2 receptor gene variants are associated with fetal growth. Acta Paediatr 2007; 96:363-7. [PMID: 17407457 DOI: 10.1111/j.1651-2227.2006.00120.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM Normal variation in size at birth is a result of the interaction between fetal genetic factors and the maternal uterine environment. It is, however, unclear how genetic factors contribute to fetal growth. The insulin-like growth factor (IGF) system regulates uterine, placental and fetal development, thereby partially controlling the rate of fetal growth. The aim of this study was to investigate the associations between the neonatal birth weight and the genotypes of polymorphic loci in the IGF2 and IGF2 receptor (IGF2R) genes. METHODS We determined the genotypes of two polymorphic loci in the IGF2 gene and four loci in the IGF2R gene in 884 pairs of normal Japanese mothers and their neonates, and compared the genotypes with the birth weight converted into standard deviation scores (SDSs) according to sex, parity and gestational weeks at delivery. RESULTS There was a significant difference in birth weight SDSs among the three neonatal +3123/ApaI genotypes of the IGF2 gene; AA, AG and GG. There was also a significant difference in birth weight among the three neonatal c.901C > G genotypes of the IGF2R gene; CC, CG and GG. CONCLUSION These findings indicate that both IGF2 and IGF2R gene variants are associated with fetal growth.
Collapse
Affiliation(s)
- K Kaku
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Chiba University Hospital, Chiba, Japan
| | | | | | | |
Collapse
|
125
|
Jelinic P, Stehle JC, Shaw P. The testis-specific factor CTCFL cooperates with the protein methyltransferase PRMT7 in H19 imprinting control region methylation. PLoS Biol 2007; 4:e355. [PMID: 17048991 PMCID: PMC1609128 DOI: 10.1371/journal.pbio.0040355] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 08/25/2006] [Indexed: 12/13/2022] Open
Abstract
Expression of imprinted genes is restricted to a single parental allele as a result of epigenetic regulation—DNA methylation and histone modifications. Igf2/H19 is a reciprocally imprinted locus exhibiting paternal Igf2 and maternal H19 expression. Their expression is regulated by a paternally methylated imprinting control region (ICR) located between the two genes. Although the de novo DNA methyltransferases have been shown to be necessary for the establishment of ICR methylation, the mechanism by which they are targeted to the region remains unknown. We demonstrate that CTCFL/BORIS, a paralog of CTCF, is an ICR-binding protein expressed during embryonic male germ cell development, coinciding with the timing of ICR methylation. PRMT7, a protein arginine methyltransferase with which CTCFL interacts, is also expressed during embryonic testis development. Symmetrical dimethyl arginine 3 of histone H4, a modification catalyzed by PRMT7, accumulates in germ cells during this developmental period. This modified histone is also found enriched in both H19 ICR and Gtl2 differentially methylated region (DMR) chromatin of testis by chromatin immunoprecipitation (ChIP) analysis. In vitro studies demonstrate that CTCFL stimulates the histone-methyltransferase activity of PRMT7 via interactions with both histones and PRMT7. Finally, H19 ICR methylation is demonstrated by nuclear co-injection of expression vectors encoding CTCFL, PRMT7, and the de novo DNA methyltransferases, Dnmt3a, -b and -L, in Xenopus oocytes. These results suggest that CTCFL and PRMT7 may play a role in male germline imprinted gene methylation. The testes-specific factor CTCFL (also called BORIS) can cooperate with the arginine histone methyltransferase (PRMT7) to induce de novo DNA methylation at an imprinting control region.
Collapse
Affiliation(s)
- Petar Jelinic
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | | | - Phillip Shaw
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
126
|
Apostolidou S, Abu-Amero S, O'Donoghue K, Frost J, Olafsdottir O, Chavele KM, Whittaker JC, Loughna P, Stanier P, Moore GE. Elevated placental expression of the imprinted PHLDA2 gene is associated with low birth weight. J Mol Med (Berl) 2006; 85:379-87. [PMID: 17180344 DOI: 10.1007/s00109-006-0131-8] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 10/27/2006] [Accepted: 10/30/2006] [Indexed: 01/17/2023]
Abstract
The identification of genes that regulate fetal growth will help establish the reasons for intrauterine growth restriction. Most autosomal genes are expressed biallelically, but some are imprinted, expressed only from one parental allele. Imprinted genes are associated with fetal growth and development. The growth of the fetus in utero relies on effective nutrient transfer from the mother to the fetus via the placenta. Some current research on the genetic control of fetal growth has focused on genes that display imprinted expression in utero. The expression levels of four imprinted genes, the paternally expressed insulin growth factor 2 (IGF2), the mesoderm-specific transcript isoform 1 (MEST); the maternally expressed pleckstrin homology-like domain, family A, member 2 (PHLDA2); and the polymorphically imprinted insulin-like growth factor 2 (IGF2R) gene are all known to have roles in fetal growth and were studied in the placentae of 200 white European, normal term babies. The quantitative expression analysis with real-time PCR showed the maternally expressing PHLDA2 but not the paternally expressing IGF2 and MEST, nor the polymorphic maternally expressing IGF2R placental levels to have a statistically significant effect on birth weight. PHLDA2 expression levels are negatively correlated with size at birth. These data implicate PHLDA2 as an imprinted gene important in fetal growth and also as a potential marker of fetal growth.
Collapse
Affiliation(s)
- S Apostolidou
- Translational Research Laboratory, Department of Gynaecological Oncology, The Windeyer Institute of Medical Sciences, 46 Cleveland Street, London, W1T 4JF, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Abu-Amero S, Monk D, Apostolidou S, Stanier P, Moore G. Imprinted genes and their role in human fetal growth. Cytogenet Genome Res 2006; 113:262-70. [PMID: 16575189 DOI: 10.1159/000090841] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Accepted: 07/06/2005] [Indexed: 01/16/2023] Open
Abstract
Growth is defined as the progressive increase in size and is listed as one of the eight main characteristics of life. In human gestation the most rapid growth phase is from 16 to 32 weeks when first there is both cell number and size increase and then from 32 weeks onwards there is continued size increase (Pollack and Divon, 1992). The mechanism of growth in utero is of fundamental interest to clinicians and scientists because of its implications for neonatal health. Growth is multifactorial in origin with both genetics and environment contributing equally large parts. Despite this complexity analysis of the candidate genes involved is possible using simple tissue biopsies at the relevant stages of development. Of particular interest in understanding fetal growth is the analysis of a group of genes that show a parent-of-origin effect known as genomic imprinting. Imprinted genes are not only found in eutherian (placental) and metatherian (marsupial) mammals but surprisingly also in plants. Nevertheless, their evolution in mammals appears to be linked primarily to placentation. It is thought to result from a potential conflict between the parents in terms of the drive to successfully propagate their own separate genes and the mother's added drive for her survival through the pregnancy to reproduce again. This means that the mother wants to restrict fetal growth and the father to enhance it.
Collapse
Affiliation(s)
- S Abu-Amero
- Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College, London Hammersmith Campus, London, UK
| | | | | | | | | |
Collapse
|
128
|
Sun Y, Gao D, Liu Y, Huang J, Lessnick S, Tanaka S. IGF2 is critical for tumorigenesis by synovial sarcoma oncoprotein SYT-SSX1. Oncogene 2006; 25:1042-52. [PMID: 16247461 DOI: 10.1038/sj.onc.1209143] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Synovial sarcoma is an aggressive soft tissue tumor characterized by a specific chromosomal translocation between chromosome 18 and X. This translocation can generate a fusion transcript encoding SYT-SSX1, a transforming oncoprotein. We present evidence that SYT-SSX1 induces insulin-like growth factor II expression in fibroblast cells. SYT-SSX2, a fusion also frequently found in synovial sarcoma, is necessary for maintaining Igf2 expression in the synovial sarcoma cell line, and the increased IGF2 synthesis protects cells from anoikis and is required for tumor formation in vivo. We also found a loss of imprinting (LOI) for Igf2 in a limited number of primary synovial sarcomas despite demethylation of CpG dinucleotides critical for maintaining imprinting. These findings suggest that inhibition of the IGF2/IGF1-R signaling pathway may represent a significant therapeutic modality for treating synovial sarcoma.
Collapse
Affiliation(s)
- Y Sun
- Department of Biomedical Genetics Univeristy of Rochester, Rochester, NY 14642, USA.
| | | | | | | | | | | |
Collapse
|
129
|
Yu Y, Wylie-Sears J, Boscolo E, Mulliken JB, Bischoff J. Genomic imprinting of IGF2 is maintained in infantile hemangioma despite its high level of expression. Mol Med 2006; 10:117-23. [PMID: 15706404 PMCID: PMC1431374 DOI: 10.2119/2004-00045.bischoff] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Accepted: 12/28/2004] [Indexed: 11/06/2022] Open
Abstract
Hemangioma, the most common tumor of infancy, is characterized by rapid growth and slow regression. Increased mRNA expression of insulin-like growth factor 2 (IGF2) has been detected in the proliferating phase by cDNA microarray analysis, but the underlying mechanism causing the increase remains unknown. Here, using quantitative real-time polymerase chain reaction (PCR) and immunohistochemistry, we show that IGF2 is highly expressed in both proliferating and involuting phase hemangioma, but is not detectable in other vascular lesions such as pyogenic granuloma, venous malformation, lymphatic malformation, or in normal infant skin. Loss of imprinting of the Igf2 gene has been associated with IGF2 overexpression in a variety of childhood tumors. To determine if loss of imprinting and consequent bi-allelic expression might contribute to the increased expression of IGF2, we examined the genomic imprinting status of Igf2 in 48 individual hemangiomas. We determined allele-specific Igf2 expression using reverse transcriptase-PCR combined with analysis of an Apa I-sensitive restriction fragment length polymorphism. Similar to heterozygous normal skin controls, all 15 informative hemangiomas showed uniform mono-allelic expression of Igf2. Therefore, loss of imprinting is not involved in the increased expression of IGF2 in infantile hemangioma.
Collapse
Affiliation(s)
- Ying Yu
- Vascular Biology Program and Department of Surgery, Children’s Hospital Boston, Boston, Massachusetts, USA
- Department of Surgey, Harvard Medical School, Boston, Massachusetts, USA
| | - Jill Wylie-Sears
- Vascular Biology Program and Department of Surgery, Children’s Hospital Boston, Boston, Massachusetts, USA
| | - Elisa Boscolo
- Vascular Biology Program and Department of Surgery, Children’s Hospital Boston, Boston, Massachusetts, USA
| | - John B Mulliken
- Division of Plastic Surgery, Children’s Hospital Boston, Boston, Massachusetts, USA
- Department of Surgey, Harvard Medical School, Boston, Massachusetts, USA
| | - Joyce Bischoff
- Vascular Biology Program and Department of Surgery, Children’s Hospital Boston, Boston, Massachusetts, USA
- Department of Surgey, Harvard Medical School, Boston, Massachusetts, USA
- Address correspondence and reprint requests to Joyce Bischoff, Vascular Biology Program, Department of Surgery, Children’s Hospital Boston, Boston, MA 02115. Phone: 617-919-2192; fax: 617-730-0231; e-mail:
| |
Collapse
|
130
|
Flisikowski K, Maj A, Zwierzchowski L, Adamowicz T, Switoński M, Hiendleder S, Pareek C. Nucleotide sequence and variation of IGF2 gene exon 6 in Bos taurus and Bos indicus cattle. Anim Biotechnol 2006; 16:203-8. [PMID: 16335812 DOI: 10.1080/10495390500278060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The major assumption of this study is that polymorphism of a gene could be used to investigate its allele-specific expression as well as its methylation and imprinting status. Therefore, the aim of this study was to analyze the polymorphism of the coding region of the bovine IGF2 gene and to determine the sequence of its gene exon 6 in Bos taurus and Bos indicus cattle. A single nucleotide "C" deletion/insertion polymorphism was found in both cattle subspecies and a G/T transversion (RFLP-MboII) in the Bos indicus IGF2 gene. A 407-bp fragment of bovine IGF2 exon 6 was sequenced and the sequences (including variable nucleotides) were deposited in the GenBank database. A comparative analysis was performed for this fragment from different species; 99.5% identity was found between Bos taurus and Bos indicus cattle.
Collapse
Affiliation(s)
- Krzysztof Flisikowski
- Institute of Genetics and Animal Breeding, Jastrzebiec, 05-552 Wólka Kosowska, Poland.
| | | | | | | | | | | | | |
Collapse
|
131
|
Braidotti G, Baubec T, Pauler F, Seidl C, Smrzka O, Stricker S, Yotova I, Barlow DP. The Air noncoding RNA: an imprinted cis-silencing transcript. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2005; 69:55-66. [PMID: 16117633 PMCID: PMC2847179 DOI: 10.1101/sqb.2004.69.55] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- G Braidotti
- AFI, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Anjos SM, Shao W, Marchand L, Polychronakos C. Allelic effects on gene regulation at the autoimmunity-predisposing CTLA4 locus: a re-evaluation of the 3' +6230G>A polymorphism. Genes Immun 2005; 6:305-11. [PMID: 15858600 DOI: 10.1038/sj.gene.6364211] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Genetic variation at a linkage disequilibrium block encompassing the cytotoxic T-lymphocyte antigen-4 (CTLA4) gene influences susceptibility to autoimmunity, but identifying the polymorphism(s) responsible for this effect has been challenging. Recently, a single-nucleotide polymorphism (SNP) located 3' to the known polyadenylation site of CTLA4 (+6230G>A) and strongly associated with autoimmune disease was reported to regulate levels of soluble CTLA4 isoform (sCTLA4) but not the full-length isoform. The purpose of the present study is to define the mechanistic effect of the 3'SNP on the isoforms of CTLA4 (alternative splicing vs polyadenylation vs effects on RNA stability). However, using allele-specific single-nucleotide primer extension, we found no difference between mRNA transcripts derived from either +6230G>A allele in 11 heterozygous individuals, in either of the two known CTLA4 isoforms. We also found no effect of this polymorphism on ICOS (inducible costimulator), a putative downstream target. In addition, repeated attempts at 3' RACE (3'rapid amplification of cDNA ends) were unsuccessful in amplifying any contiguous sequence past the known CTLA4 polyadenylation site and no such sequence was found in the EST databases. We conclude that the mechanism of the observed association of the +6230 SNP with autoimmune disease remains to be determined, but does not involve modulation of steady-state mRNA of any known CTLA4 isoform.
Collapse
Affiliation(s)
- S M Anjos
- Endocrine Genetics Laboratory, Department of Pediatrics, Division of Pediatric Endocrinology, The McGill University Health Center (Montreal Children's Hospital), Montréal, Québec, Canada
| | | | | | | |
Collapse
|
133
|
Marques C, Fernandes S, Carvalho F, Silva J, Sousa M, Barros A. Estudo do imprinting genómico em espermatozóides de pacientes com oligozoospermia. Rev Int Androl 2005. [DOI: 10.1016/s1698-031x(05)73255-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
134
|
Abstract
Wilms' tumour, or nephroblastoma, is a common childhood tumour that is intimately linked to early kidney development and is often associated with persistent embryonic renal tissue and other kidney abnormalities. WT1, the first gene found to be inactivated in Wilms' tumour, encodes a transcription factor that functions as both a tumour suppressor and a critical regulator of renal organogenesis. Our understanding of the roles of WT1 in tumour formation and organogenesis have advanced in parallel, providing a striking example of the intersection between tumour biology, cellular differentiation and normal organogenesis.
Collapse
Affiliation(s)
- Miguel N Rivera
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts 02129, USA.
| | | |
Collapse
|
135
|
Curchoe C, Zhang S, Bin Y, Zhang X, Yang L, Feng D, O'Neill M, Tian XC. Promoter-specific expression of the imprinted IGF2 gene in cattle (Bos taurus). Biol Reprod 2005; 73:1275-81. [PMID: 16120826 DOI: 10.1095/biolreprod.105.044727] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The domestic cattle (Bos taurus) has been a good animal model for embryo biotechnologies, such as in vitro fertilization and nuclear transfer. However, animals produced from these technologies often suffer from large-calf syndrome, suggesting fetal growth disregulation. The product of the insulin-like growth factor 2 (IGF2) gene is one of the most important fetal mitogens known to date. A detailed analysis of age-, tissue-, and allele-specific expression of IGF2 has not been performed in the bovine mainly because the majority of the bovine sequence has been unavailable. In the present study, we obtained virtually the entire sequence of the bovine IGF2 cDNA, identified expressed single-nucleotide polymorphisms (SNPs) in both exons 3 and 10, and determined the age-, tissue-, and promoter-specific expression of bovine IGF2 in fetal, calf, and adult tissues. We found that, similar to the human and mouse, bovine IGF2 is subjected to extensive transcriptional regulation through multiple promoters, alternative splicing and polyadenylation, as well as genetic imprinting. However, major differences were found in the regulation of the bovine IGF2 in nearly all aspects of age-, tissue-, promoter-, and allele-specific expression of IGF2, and the promoter-specific loss of imprinting from every other species studied, including cattle's close relatives, the sheep and the pig. The data presented here are of important reference value to cattle produced from embryo biotechnologies.
Collapse
Affiliation(s)
- Carol Curchoe
- Department of Animal Science/Center for Regenerative Biology, University of Connecticut, Storrs 06269, USA
| | | | | | | | | | | | | | | |
Collapse
|
136
|
Berteaux N, Lottin S, Monté D, Pinte S, Quatannens B, Coll J, Hondermarck H, Curgy JJ, Dugimont T, Adriaenssens E. H19 mRNA-like noncoding RNA promotes breast cancer cell proliferation through positive control by E2F1. J Biol Chem 2005; 280:29625-36. [PMID: 15985428 DOI: 10.1074/jbc.m504033200] [Citation(s) in RCA: 293] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The imprinted H19 gene has riboregulatory functions. We show here that H19 transcription is up-regulated during the S-phase of growth-stimulated cells and that the H19 promoter is activated by E2F1 in breast cancer cells. H19 repression by pRb and E2F6 confirms the E2F1-dependent control of the H19 promoter. Consistently, we demonstrate by chromatin immunoprecipitation assays that endogenous E2F1 is recruited to the H19 promoter in vivo. The functionality of E2F promoter sites was further confirmed by gel shift and mutagenesis experiments, revealing that these sites are required for binding and promoter response to E2F1 exogenous expression and serum stimulation. Furthermore, we show that H19 overexpression confers a growth advantage on breast cancer cells released from growth arrest as well as in asynchronously growing cells. The H19 knockdown by small interfering RNA duplexes impedes S-phase entry in both wild-type and stably H19-transfected cells. Based on these findings, we conclude that the H19 RNA is actively linked to E2F1 to promote cell cycle progression of breast cancer cells. This clearly supports the H19 oncogenic function in breast tumor genesis.
Collapse
Affiliation(s)
- Nathalie Berteaux
- ERI-8 INSERM Signalisation des Facteurs de Croissance dans le Cancer du Sein, Protéomique Fonctionnelle, UPRES-EA 1033, IFR 118, Université des Sciences et Technologies de Lille (USTL), Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Fujimoto A, Mitalipov SM, Clepper LL, Wolf DP. Development of a monkey model for the study of primate genomic imprinting. ACTA ACUST UNITED AC 2005; 11:413-22. [PMID: 15908455 DOI: 10.1093/molehr/gah180] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
An understanding of the role of imprinted genes in primate development requires the identification of suitable genetic markers that allow analysis of allele-specific expression and methylation status. Four genes, NDN (Necdin), H19, SNRPN and IGF2, known to be imprinted in mice and humans, were selected for study in rhesus monkeys along with two imprinting centres (ICs) associated with the regulation of H19/IGF2, NDN and SNRPN. GAPD was employed as a non-imprinted control gene. Primers designed to amplify polymorphic regions in these genes and ICs were based on human sequences. Genomic DNA was isolated from peripheral blood leukocytes of 93 rhesus macaques of Indian or Chinese-origin. Sequence analysis of amplicons resulted in the identification of 32 unique SNPs. Country-of-origin related differences in SNP distributions were evident. Since disruptions in imprinted gene expression and associated developmental abnormalities may result from in vitro embryo manipulation, we also examined imprinting in NDN, H19, SNRPN and IGF2 in rhesus monkey infants produced by natural mating or by ICSI. Muscle biopsies followed by RT-PCR and sequence analysis were performed in four heterozygous animals produced by natural mating and all four genes were expressed monoallelically supporting the conclusion that these genes are normally imprinted in monkeys. In the case of ICSI, five informative infants were selected based on parental analysis. Allele-specific studies indicated that the expected uniparental expression patterns were retained in animals produced from manipulated embryos. Moreover, methylation analysis revealed that CpG islands within H19/IGF2 and SNURF/SNRPN ICs were differentially methylated. The approach described here will allow examination of imprinting in the embryos and embryonic stem cells of the monkey.
Collapse
Affiliation(s)
- A Fujimoto
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | |
Collapse
|
138
|
Petry CJ, Ong KK, Barratt BJ, Wingate D, Cordell HJ, Ring SM, Pembrey ME, Reik W, Todd JA, Dunger DB. Common polymorphism in H19 associated with birthweight and cord blood IGF-II levels in humans. BMC Genet 2005; 6:22. [PMID: 15885138 PMCID: PMC1140752 DOI: 10.1186/1471-2156-6-22] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Accepted: 05/10/2005] [Indexed: 01/21/2023] Open
Abstract
Background Common genetic variation at genes that are imprinted and exclusively maternally expressed could explain the apparent maternal-specific inheritance of low birthweight reported in large family pedigrees. We identified ten single nucleotide polymorphisms (SNPs) in H19, and we genotyped three of these SNPs in families from the contemporary ALSPAC UK birth cohort (1,696 children, 822 mothers and 661 fathers) in order to explore associations with size at birth and cord blood IGF-II levels. Results Both offspring's and mother's H19 2992C>T SNP genotypes showed associations with offspring birthweight (P = 0.03 to P = 0.003) and mother's genotype was also associated with cord blood IGF-II levels (P = 0.0003 to P = 0.0001). The offspring genotype association with birthweight was independent of mother's genotype (P = 0.01 to P = 0.007). However, mother's untransmitted H19 2992T allele was also associated with larger birthweight (P = 0.04) and higher cord blood IGF-II levels (P = 0.002), suggesting a direct effect of mother's genotype on placental IGF-II expression and fetal growth. The association between mother's untransmitted allele and cord blood IGF-II levels was more apparent in offspring of first pregnancies than subsequent pregnancies (P-interaction = 0.03). Study of the independent Cambridge birth cohort with available DNA in mothers (N = 646) provided additional support for mother's H19 2992 genotype associations with birthweight (P = 0.04) and with mother's glucose levels (P = 0.01) in first pregnancies. Conclusion The common H19 2992T allele, in the mother or offspring or both, may confer reduced fetal growth restraint, as indicated by associations with larger offspring birth size, higher cord blood IGF-II levels, and lower compensatory early postnatal catch-up weight gain, that are more evident among mother's smaller first-born infants.
Collapse
Affiliation(s)
- Clive J Petry
- Department of Paediatrics, University of Cambridge, Addenbrooke's Hospital Level 8, Box 116, Cambridge CB2 2QQ, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Fukuoka H, Aoyama M, Miyazawa K, Asai K, Goto S. Hypoxic stress enhances osteoclast differentiation via increasing IGF2 production by non-osteoclastic cells. Biochem Biophys Res Commun 2005; 328:885-94. [PMID: 15707961 DOI: 10.1016/j.bbrc.2005.01.042] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Indexed: 11/26/2022]
Abstract
Development of bone depends on a continuous supply of bone-degrading osteoclasts. Although several factors such as cytokines and integrins have been shown to be important for osteoclast recruitment, their mechanism of action is poorly understood. In this study, we demonstrated the enhancement of osteoclast formation by hypoxia and investigated the molecular mechanisms involved. Primary mouse bone marrow cells were cultured in normoxic and hypoxic conditions, and RNA was prepared from each group of cells. Total RNAs were applied to a DNA microarray analysis and then RT-PCR was performed to confirm the microarray data. The most interesting finding of our microarray analysis was upregulation of insulin-like growth factor 2 (IGF2) and stromal cell-derived factor 1 (SDF1) under hypoxic conditions. RT-PCR analysis revealed that IGF2 expression was markedly upregulated in the non-osteoclastic cells. The addition of exogenous IGF2 increased the number of osteoclastic TRAP-positive multinuclear cells formed under normoxic conditions, whereas the addition of exogenous SDF1 did not change osteoclast formation. These results suggest that the upregulation of IGF2 derived from non-osteoclastic cells might be a crucial factor for osteoclast differentiation.
Collapse
Affiliation(s)
- Hayato Fukuoka
- Department of Orthodontics, School of Dentistry, Aichi-Gakuin University, Chikusa-ku, Nagoya 464-8651, Japan
| | | | | | | | | |
Collapse
|
140
|
Verona RI, Bartolomei MS. Role of H19 3' sequences in controlling H19 and Igf2 imprinting and expression. Genomics 2005; 84:59-68. [PMID: 15203204 DOI: 10.1016/j.ygeno.2003.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2003] [Accepted: 12/02/2003] [Indexed: 01/19/2023]
Abstract
The regulation of H19 and Igf2 imprinting and expression depends on common elements. Using comparative analysis between human and mouse, we identified conserved regions 3' of the H19 transcription unit, including the H19/Igf2 endodermal enhancers and elements within a 4.2-kb domain between the H19 transcription unit and the enhancers. Transgene experiments implicate these elements in imprinting regulation. To establish whether they are required at the endogenous locus, first we replaced the endodermal enhancers with the alpha-fetoprotein endodermal enhancers (H19Afp). Second, we deleted the 4.2-kb region (H19delta4.2). Our analysis revealed that H19 and Igf2 imprinting and tissue-specific expression were maintained for both mutations, except for a slight reduction in paternal Igf2 expression from the H19Afp allele in liver. These results demonstrate that the H19 insulator can interact with heterologous enhancers to imprint Igf2. Furthermore, for H19, chromatin context or additional sequences possibly compensate for loss of conserved 3' elements.
Collapse
Affiliation(s)
- Raluca I Verona
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
141
|
Spencer HG, Feldman MW, Clark AG, Weisstein AE. The effect of genetic conflict on genomic imprinting and modification of expression at a sex-linked locus. Genetics 2004; 166:565-79. [PMID: 15020445 PMCID: PMC1470692 DOI: 10.1534/genetics.166.1.565] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We examine how genomic imprinting may have evolved at an X-linked locus, using six diallelic models of selection in which one allele is imprintable and the other is not. Selection pressures are generated by genetic conflict between mothers and their offspring. The various models describe cases of maternal and paternal inactivation, in which females may be monogamous or bigamous. When inactivation is maternal, we examine the situations in which only female offspring exhibit imprinting as well as when both sexes do. We compare our results to those previously obtained for an autosomal locus and to four models in which a dominant modifier of biallelic expression is subjected to the same selection pressures. We find that, in accord with verbal predictions, maternal inactivation of growth enhancers and paternal inactivation of growth inhibitors are more likely than imprinting in the respective opposite directions, although these latter outcomes are possible for certain parameter combinations. The expected outcomes are easier to evolve than the same outcomes for autosomal loci, contradicting the available evidence concerning the direction of imprinting on mammalian sex chromosomes. In most of our models stable polymorphism of imprinting status is possible, a behavior not predicted by verbal accounts.
Collapse
Affiliation(s)
- Hamish G Spencer
- Allan Wilson Centre for Molecular Ecology and Evolution, Department of Zoology, University of Otago, Dunedin, New Zealand.
| | | | | | | |
Collapse
|
142
|
Abstract
Intrauterine growth restriction is known to be associated with many medical problems for the baby, both before and after delivery. The mechanisms involved in fetal growth are not well understood, with an increasing range of metabolic diseases being implicated. Several key genes involved in normal embryonic and fetal growth and development are now known to be imprinted. Disruption of this parent-specific mono-allelic expression causes phenotypic changes, many of which are important for growth and development. Two growth disorders, Beckwith-Wiedemann syndrome and Silver-Russell syndrome, are discussed in detail as they represent well-characterized phenotypes that arise as a consequence of disrupted imprinting. These human models will allow us to elucidate key genes and mechanisms important in normal fetal growth.
Collapse
Affiliation(s)
- David Monk
- Institute of Developmental and Reproductive Biology, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | | |
Collapse
|
143
|
Kukuvitis A, Georgiou I, Syrrou M, Andronikou S, Dickerman Z, Islam A, McCann J, Polychronakos C. Lack of association of birth size with polymorphisms of two imprinted genes, IGF2R and GRB10. J Pediatr Endocrinol Metab 2004; 17:1215-20. [PMID: 15506681 DOI: 10.1515/jpem.2004.17.9.1215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Little is known about the determinants of birth size variability among individuals. Maternal and nutritional factors have been studied, but familial clustering suggests genetic factors as well. As a first step in testing this hypothesis, we examined common sequence variants in IGF2R and GRB10, two genes involved in the regulation of growth and subject to parental imprinting. The IGF2R gene was scanned with five polymorphisms spanning the coding and 3'-UTR for possible association with birth size in a set of 97 normal newborns in Greece. In addition, a silent SNP in GRB10 exon 2 was similarly tested as an exploratory first step. Birth weight and length were compared between groups of newborns divided according to which allele they had received from heterozygous parents. No significant differences were found between alleles in either gene, examined either by parental origin or in aggregate. Thus, we found no evidence that IGF2R variants modulate intrauterine growth within the normal range. If such variants exist in GRB10, they are not in linkage disequilibrium with the marker studied.
Collapse
Affiliation(s)
- A Kukuvitis
- Department of Pedriatics, McGill University, Montréal, Canada
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Fisher RA, Nucci MR, Thaker HM, Weremowicz S, Genest DR, Castrillon DH. Complete hydatidiform mole retaining a chromosome 11 of maternal origin: molecular genetic analysis of a case. Mod Pathol 2004; 17:1155-60. [PMID: 15314611 DOI: 10.1038/modpathol.3800175] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hydatidiform moles are pregnancies characterized by abnormal development of both embryonic and extraembryonic tissues and are associated with the misexpression of imprinted genes. The vast majority of complete hydatidiform moles are diploid and androgenetic, whereas partial hydatidiform moles are triploid, with an extra set of chromosomes of paternal origin. Here, we present an unusual complete mole that showed strong expression of two imprinted, maternally transcribed genes, CDKN1C (encoding p57(KIP2)) and PHLDA2 (TSSC3/IPL), both part of a large imprinted gene domain on chromosome 11. Using microsatellite genotyping and fluorescent in situ hybridization, we show that this paradoxical gene expression was due to retention of a maternal copy of chromosome 11 in addition to the two paternal copies normally present in complete moles. These findings demonstrate that, despite being predominantly androgenetic, some complete moles contain small amounts of DNA of maternal origin. Furthermore, these results provide an explanation for rare false negatives that can arise when p57(KIP2) is used as a diagnostic marker for complete moles.
Collapse
Affiliation(s)
- Rosemary A Fisher
- Department of Cancer Medicine, Faculty of Medicine, Imperial College London, Charing Cross Hospital, London, UK
| | | | | | | | | | | |
Collapse
|
145
|
Thomae TL, Glover E, Bradfield CA. A maternal Ahr null genotype sensitizes embryos to chemical teratogenesis. J Biol Chem 2004; 279:30189-94. [PMID: 15145931 DOI: 10.1074/jbc.m403690200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The aryl hydrocarbon receptor (encoded by the Ahr locus) is a ligand-activated transcription factor that mediates the toxicology and teratology of 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin). In an effort to understand the role of the maternal compartment in dioxin teratology, we designed a breeding strategy that allowed us to compare the teratogenic response in embryos from Ahr(-/-) (null) and Ahr(+/+) (wild-type) dams. Using this strategy, we demonstrate that embryos from the Ahr(-/-) dams are 5-fold more sensitive to dioxin-induced cleft palate and hydronephrosis as compared with embryos from an Ahr(+/+) dam. Moreover, this increased teratogenic sensitivity extends beyond dioxin, because embryos from Ahr(-/-) dams exhibited a 9-fold increase in their sensitivity to the fetotoxic effects of the glucocorticoid, dexamethasone. In searching for an explanation for this increased sensitivity, we found that more dioxin and dexamethasone reached the embryos from Ahr(-/-) dams as compared with embryos from Ahr(+/+) dams. We propose that increased deposition of teratogens/fetotoxicants to the embryonic compartment is the result of porto-systemic shunting and/or blocked P4501A induction in Ahr(-/-) dams. In addition to demonstrating the importance of maternal AHR in teratogenesis, these data may have implications that reach beyond the mechanism of action of dioxin. In this regard, the Ahr(-/-) mouse may provide a system that allows pharmacological agents and toxicants to be more easily studied in a model where first pass clearance is a significant obstacle.
Collapse
Affiliation(s)
- Tami L Thomae
- McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
146
|
Ong KK, Petry CJ, Barratt BJ, Ring S, Cordell HJ, Wingate DL, Pembrey ME, Todd JA, Dunger DB. Maternal-fetal interactions and birth order influence insulin variable number of tandem repeats allele class associations with head size at birth and childhood weight gain. Diabetes 2004; 53:1128-33. [PMID: 15047631 DOI: 10.2337/diabetes.53.4.1128] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Polymorphism of the insulin gene (INS) variable number of tandem repeats (VNTR; class I or class III alleles) locus has been associated with adult diseases and with birth size. Therefore, this variant is a potential contributory factor to the reported fetal origins of adult disease. In the population-based Avon Longitudinal Study of Pregnancy and Childhood birth cohort, we have confirmed in the present study the association between the INS VNTR III/III genotype and larger head circumference at birth (odds ratio [OR] 1.92, 95% CI 1.23-3.07; P = 0.004) and identified an association with higher cord blood IGF-II levels (P = 0.05 to 0.0001). The genotype association with head circumference was influenced by maternal parity (birth order): the III/III OR for larger head circumference was stronger in second and subsequent pregnancies (OR 5.0, 95% CI 2.2-11.5; P = 0.00003) than in first pregnancies (1.2, 0.6-2.2; P = 0.8; interaction with birth order, P = 0.02). During childhood, the III/III genotype remained associated with larger head circumference (P = 0.004) and was also associated with greater BMI (P = 0.03), waist circumference (P = 0.03), and higher fasting insulin levels in girls (P = 0.02). In addition, there were interactions between INS VNTR genotype and early postnatal weight gain in determining childhood BMI (P = 0.001 for interaction), weight (P = 0.005), and waist circumference (P = 0.0005), such that in the approximately 25% of children (n = 286) with rapid early postnatal weight gain, class III genotype-negative children among this group gained weight more rapidly. Our results indicate that complex prenatal and postnatal gene-maternal/fetal interactions influence size at birth and childhood risk factors for adult disease.
Collapse
Affiliation(s)
- Ken K Ong
- Department of Pediatrics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Anjos S, Polychronakos C. Mechanisms of genetic susceptibility to type I diabetes: beyond HLA. Mol Genet Metab 2004; 81:187-95. [PMID: 14972324 DOI: 10.1016/j.ymgme.2003.11.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2003] [Revised: 11/14/2003] [Accepted: 11/14/2003] [Indexed: 01/04/2023]
Abstract
An individual's predisposition to Type I diabetes (T1D) is largely determined by complex interactions between several genetic loci and other, nonheritable factors. In T1D, the HLA locus has been known for decades to contribute 50% of the inherited risk. Outside the HLA are many proposed candidate loci with smaller effects, but only two confirmed candidate genes, the INS-VNTR and the CTLA-4 genes, which together do not contribute more than 15% of the risk. Because of the high frequency of the disease-associated DNA variants of these genes, understanding the biological mechanisms of such DNA variation in the context of T1D can have tremendous impact on the development of preventive therapeutics. However, establishing a causal relationship between common DNA variations and disease-predisposing functional effects is not trivial and remains difficult, as the effects are expected to be subtle. The variable-number tandem-repeat (VNTR) region upstream of the insulin gene is known to mediate expression in the thymus and pancreas, whereas various polymorphisms in the 5' and 3' regulatory regions of CTLA-4 are thought to alter gene expression and a coding A49G polymorphism exerts effects on post-translational processing. This review details the latest efforts in elucidating the functional mechanisms that explain the genetic association of the INS-VNTR and CTLA-4 genes with T1D.
Collapse
Affiliation(s)
- Suzana Anjos
- Endocrine Genetics Laboratory, Department of Pediatrics, Division of Pediatric Endocrinology, McGill University Health Sciences Center, Montréal, Québec, Canada
| | | |
Collapse
|
148
|
Affiliation(s)
- Andrew P Feinberg
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
149
|
Abstract
An intriguing characteristic of imprinted genes is that they often cluster in large chromosomal domains, raising the possibility that gene-specific and domain-specific mechanisms regulate imprinting. Several common features emerged from comparative analysis of four imprinted domains in mice and humans: (a) Certain genes appear to be imprinted by secondary events, possibly indicating a lack of gene-specific imprinting marks; (b) some genes appear to resist silencing, predicting the presence of cis-elements that oppose domain-specific imprinting control; (c) the nature of the imprinting mark remains incompletely understood. In addition, common silencing mechanisms are employed by the various imprinting domains, including silencer elements that nucleate and propagate a silent chromatin state, insulator elements that prevent promoter-enhancer interactions when hypomethylated on one parental allele, and antisense RNAs that function in silencing the overlapping sense gene and more distantly located genes. These commonalities are reminiscent of the behavior of genes subjected to, and the mechanisms employed in, dosage compensation.
Collapse
Affiliation(s)
- Raluca I Verona
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148, USA.
| | | | | |
Collapse
|
150
|
Li W, Trovero F, Cordier J, Wang Y, Drieu K, Papadopoulos V. Prenatal exposure of rats to Ginkgo biloba extract (EGb 761) increases neuronal survival/growth and alters gene expression in the developing fetal hippocampus. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 144:169-80. [PMID: 12935914 DOI: 10.1016/s0165-3806(03)00168-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Hippocampal neuron survival/growth and gene expression have been examined after prenatal (in utero) exposure of rats to EGb 761, a leaf extract of Ginkgo biloba. Oral administration of EGb 761 (100 or 300 mg/kg/day) to pregnant dams for 5 days increased the number of hippocampal neurons (maintained in culture) of their fetuses, indicating a neurotrophic effect of the extract. Using large-scale oligonucleotide microarrays containing over 8000 combined rat genes and expressed sequence tag clusters, it was shown that treatment of pregnant dams with EGb 761 (25, 50 or 100 mg/kg/day for 5 days) altered the expression of 187 genes in the hippocampi of male fetuses and 160 genes in those of female fetuses. Using gene-cluster analysis, these genes were grouped into 18 distinct clusters for males and 17 distinct clusters for females. Among these clusters, 35 genes shared a common expression pattern in male and female hippocampal development. Of these genes, the changes observed in insulin growth factor II, insulin growth factor binding protein 2, testosterone repressed prostate message-2, glutathione-dependent dehydroascorbate reductase, lipoprotein lipase, guanylate cyclase and DNA binding protein Brn-2 were confirmed by real-time quantitative polymerase chain reaction. These findings, which have provided the first genetic profile of the effects of EGb 761 on the developing rat hippocampus, increase our understanding of the molecular and genetic programs that are activated by the extract. These effects of EGb 761 may underlie its neuroprotective properties.
Collapse
Affiliation(s)
- Wenping Li
- Department of Cell Biology, Division of Hormone Research, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington, DC 20057, USA
| | | | | | | | | | | |
Collapse
|