101
|
Cai Z, Zhang S, Wu P, Ren Q, Wei P, Hong M, Feng Y, Wong CK, Tang H, Zeng H. A novel potential target of IL-35-regulated JAK/STAT signaling pathway in lupus nephritis. Clin Transl Med 2021; 11:e309. [PMID: 33634995 PMCID: PMC7851357 DOI: 10.1002/ctm2.309] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND In this study, we have investigated the potential regulatory mechanisms of IL-35 to relieve lupus nephritis (LN) through regulating Janus kinase (JAK)/signal transducers and activators of transcription (STAT) signaling pathway in mesangial cells. RESULTS Among 105 significant differentially expressed proteins (DEPs) between juvenile systemic lupus erythematosus (JSLE) patients with LN and healthy controls, LAIR1, PDGFRβ, VTN, EPHB4, and EPHA4 were downregulated in JSLE-LN. They consist of an interactive network with PTPN11 and FN1, which involved in IL-35-related JAK/STAT signaling pathway. Besides, urinary LAIR1 was significantly correlated with JSLE-LN clinical parameters such as SLEDAI-2K, %CD19+ B, and %CD3+ T cells. Through bioinformatics analysis of co-immunoprecipitation with mass spectrometry results, including GO, KEGG, and STRING, five genes interacted with Lair1 were upregulated by IL-35, but only Myh10 was downregulated. Therefore, we presumed an interactive network among these DEPs, JAK/STAT, and IL-35. Moreover, the downregulated phosphorylated (p)-STAT3, p-p38 MAPK, and p-ERK, and the upregulated p-JAK2/p-STAT1/4 in IL-35 overexpressed mesangial cells, and RNA-sequencing results validated the potential regulatory mechanisms of IL-35 in alleviating JSLE-LN disease. Moreover, the relieved histopathological features of nephritis including urine protein and leukocyte scores, a decreased %CD90+ αSMA+ mesangial cells and pro-inflammatory cytokines, the inactivated JAK/STAT signals and the significant upregulated Tregs in spleen, thymus and peripheral blood were validated in Tregs and IL-35 overexpression plasmid-treated lupus mice. CONCLUSIONS Our study provided a reference proteomic map of urinary biomarkers for JSLE-LN and elucidated evidence that IL-35 may regulate the interactive network of LAIR1-PTPN11-JAK-STAT-FN1 to affect JAK/STAT and MAPK signaling pathways to alleviate inflammation in JSLE-LN. This finding may provide a further prospective mechanism for JSLE-LN clinical treatment.
Collapse
Affiliation(s)
- Zhe Cai
- The Joint Center for Infection and Immunity, Guangzhou Institute of PediatricsGuangzhou Women and Children's Medical Center, Guangzhou Meidcal University, Guangzhou, ChinaInstitute Pasteur of ShanghaiChinese Academy of ScienceShanghaiChina
- Department of AllergyImmunology and RheumatologyGuangzhou Women and Children's Medical Center, Guangzhou Meidcal UniversityGuangzhouChina
- Department of Chemical PathologyPrince of Wales HospitalThe Chinese University of Hong KongHong KongChina
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal PlantsThe Chinese University of Hong KongHong KongChina
| | - Song Zhang
- Department of AllergyImmunology and RheumatologyGuangzhou Women and Children's Medical Center, Guangzhou Meidcal UniversityGuangzhouChina
- Jinan UniversityGuangzhouChina
| | - Ping Wu
- Department of AllergyImmunology and RheumatologyGuangzhou Women and Children's Medical Center, Guangzhou Meidcal UniversityGuangzhouChina
| | - Qi Ren
- Department of AllergyImmunology and RheumatologyGuangzhou Women and Children's Medical Center, Guangzhou Meidcal UniversityGuangzhouChina
| | - Ping Wei
- Department of AllergyImmunology and RheumatologyGuangzhou Women and Children's Medical Center, Guangzhou Meidcal UniversityGuangzhouChina
| | - Ming Hong
- Institute of Advanced Diagnostic and Clinical Medicine, Zhongshan People's HospitalGuangzhou University & Zhongshan People's Hospital Joint Biomedical Institute2 Sunwen East RoadZhongshanChina
| | - Yu Feng
- Department of TraumatologyNingxia Hui Autonomous RegionGeneral Hospital of Ningxia Medical UniversityYinchuanChina
| | - Chun Kwok Wong
- Department of Chemical PathologyPrince of Wales HospitalThe Chinese University of Hong KongHong KongChina
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal PlantsThe Chinese University of Hong KongHong KongChina
| | - Hong Tang
- Institute Pasteur of ShanghaiChinese Academy of ScienceShanghaiChina
| | - Huasong Zeng
- Department of AllergyImmunology and RheumatologyGuangzhou Women and Children's Medical Center, Guangzhou Meidcal UniversityGuangzhouChina
| |
Collapse
|
102
|
Dadey RE, Workman CJ, Vignali DAA. Regulatory T Cells in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1273:105-134. [PMID: 33119878 DOI: 10.1007/978-3-030-49270-0_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulatory T cells (Tregs) are an immunosuppressive subpopulation of CD4+ T cells that are endowed with potent suppressive activity and function to limit immune activation and maintain homeostasis. These cells are identified by the hallmark transcription factor FOXP3 and the high-affinity interleukin-2 (IL-2) receptor chain CD25. Tregs can be recruited to and persist within the tumor microenvironment (TME), acting as a potent barrier to effective antitumor immunity. This chapter will discuss [i] the history and hallmarks of Tregs; [ii] the recruitment, development, and persistence of Tregs within the TME; [iii] Treg function within TME; asnd [iv] the therapeutic targeting of Tregs in the clinic. This chapter will conclude with a discussion of likely trends and future directions.
Collapse
Affiliation(s)
- Rebekah E Dadey
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, USA.,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, USA.,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, USA. .,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
103
|
Mirlekar B, Pylayeva-Gupta Y. IL-12 Family Cytokines in Cancer and Immunotherapy. Cancers (Basel) 2021; 13:E167. [PMID: 33418929 PMCID: PMC7825035 DOI: 10.3390/cancers13020167] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
The IL-12 family cytokines are a group of unique heterodimeric cytokines that include IL-12, IL-23, IL-27, IL-35 and, most recently, IL-39. Recent studies have solidified the importance of IL-12 cytokines in shaping innate and adaptive immune responses in cancer and identified multipronged roles for distinct IL-12 family members, ranging from effector to regulatory immune functions. These cytokines could serve as promising candidates for the development of immunomodulatory therapeutic approaches. Overall, IL-12 can be considered an effector cytokine and has been found to engage anti-tumor immunity by activating the effector Th1 response, which is required for the activation of cytotoxic T and NK cells and tumor clearance. IL-23 and IL-27 play dual roles in tumor immunity, as they can both activate effector immune responses and promote tumor growth by favoring immune suppression. IL-35 is a potent regulatory cytokine and plays a largely pro-tumorigenic role by inhibiting effector T cells. In this review, we summarize the recent findings on IL-12 family cytokines in the control of tumor growth with an emphasis primarily on immune regulation. We underscore the clinical implications for the use of these cytokines either in the setting of monotherapy or in combination with other conventional therapies for the more effective treatment of malignancies.
Collapse
Affiliation(s)
- Bhalchandra Mirlekar
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA;
| | - Yuliya Pylayeva-Gupta
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA;
- Department of Genetics, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
104
|
Michaud D, Steward CR, Mirlekar B, Pylayeva-Gupta Y. Regulatory B cells in cancer. Immunol Rev 2021; 299:74-92. [PMID: 33368346 PMCID: PMC7965344 DOI: 10.1111/imr.12939] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/25/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022]
Abstract
Tumorigenesis proceeds through discrete steps where acquisition of genetic lesions and changes in the surrounding microenvironment combine to drive unrestricted neoplastic proliferation and metastasis. The ability of tumor-infiltrating immune cells to promote tumor growth via the provision of signals that enable tumor cell survival and proliferation as well as contribute to immune suppression is an active area of research. Recent efforts have provided us with mechanistic insights into how B cells can positively and negatively regulate immune responses. Negative regulation of immune responses in cancer can be mediated by regulatory B cells and is often a result of increased production of cytokines that can directly and indirectly affect anti-tumor immune function and cancer cell growth. Signals that lead to the expansion of regulatory B cells and the spectrum of their functional roles are not well understood and are the subject of active research by many groups. Here, we elaborate broadly on the history of regulatory B cells in cancer and summarize recent studies that have established genetic models for the study of regulatory B cell function and their potential for therapeutic intervention in the setting of solid cancers.
Collapse
Affiliation(s)
- Daniel Michaud
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Colleen R Steward
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Bhalchandra Mirlekar
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Genetics, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Yuliya Pylayeva-Gupta
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Genetics, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
105
|
Zhao N, Liu X, Guo H, Zhao X, Qiu Y, Wang W. Interleukin-35: An emerging player in the progression of liver diseases. Clin Res Hepatol Gastroenterol 2021; 45:101518. [PMID: 33387857 DOI: 10.1016/j.clinre.2020.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/31/2020] [Indexed: 02/04/2023]
Abstract
Interleukin-35(IL-35), a newly identified immunosuppressive cytokine, has recently been shown to play a significant role in the progression of various autoimmune diseases and malignant tumors. The liver is the largest organ in the body and is generally regarded as an important lymphoid organ by an increasing number of immunologists. A number of reports have demonstrated that IL-35 plays essential roles in maintaining the immune homeostasis of the liver microenvironment. This review summarizes the existing studies of IL-35 in liver diseases, including viral hepatitis, immune liver injury, liver cirrhosis and carcinoma. We aimed to provide a comprehensive overview of the vital roles of IL-35 in hepatic damage and explore new alternative therapeutic targets for these diseases.
Collapse
Affiliation(s)
- Na Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Xin Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hao Guo
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xiangnan Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yujie Qiu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wei Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
106
|
Vitamin D as a Key Player in Modulating Rheumatoid Arthritis-derived Immune Response. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.4.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic inflammatory disease with chronic nature of joints related to autoimmunity. Vitamin D was found to modulate cell growth, function of immune cells and anti-inflammatory action. The aims of that study were to investigate serum level of vitamin D and some cytokines and to identify the correlation between vitamin D and these cytokines in RA. Totally 40 RA patients without vitamin D supplement were involved in this study. Serum level of vitamin D, interleukin-6 (IL-6), IL-10, IL-35, C-reactive protein (CRP) and tumor necrosis factor α (TNF-α), all of them were measure in all patients by enzyme-linked immunosorbent assay (ELISA). Patients were classified according to Vitamin D levels into two groups; RA patients with Vit. D deficiency (n=25) and RA patients with Vit. D sufficiency (n=15). IL-6 was lower significantly (P = 0.03) in RA patients with Vit. D sufficiency than RA patients with Vit. D deficiency. IL-10 and IL-35 were higher significantly (P = 0.0234, P = 0.0356 respectively) in RA patients with Vit. D sufficiency than RA patients with Vit. D deficiency. Vit. D was significantly positively correlated with both IL-10 (r = 0.4516, P = 0.0034) and IL-35 (r = 0.3424, P = 0.0329) and negatively correlated with IL-6 (r = -0.3188, P = 0.0479). Sufficient serum level of Vit. D is correlated with higher level of anti-inflammatory cytokines (IL-10 and IL-35) and lower level of IL-6. This support the immunomodulatory effect of Vit. D in RA.
Collapse
|
107
|
Kang S, Narazaki M, Metwally H, Kishimoto T. Historical overview of the interleukin-6 family cytokine. J Exp Med 2020; 217:151633. [PMID: 32267936 PMCID: PMC7201933 DOI: 10.1084/jem.20190347] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/20/2019] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
Interleukin-6 (IL-6) has been identified as a 26-kD secreted protein that stimulates B cells to produce antibodies. Later, IL-6 was revealed to have various functions that overlap with other IL-6 family cytokines and use the common IL-6 signal transducer gp130. IL-6 stimulates cells through multiple pathways, using both membrane and soluble IL-6 receptors. As indicated by the expanding market for IL-6 inhibitors, it has become a primary therapeutic target among IL-6 family cytokines. Here, we revisit the discovery of IL-6; discuss insights regarding the roles of this family of cytokines; and highlight recent advances in our understanding of regulation of IL-6 expression.
Collapse
Affiliation(s)
- Sujin Kang
- Department of Immune Regulation, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masashi Narazaki
- Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hozaifa Metwally
- Department of Immune Regulation, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Tadamitsu Kishimoto
- Department of Immune Regulation, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| |
Collapse
|
108
|
Ritter K, Rousseau J, Hölscher C. The Role of gp130 Cytokines in Tuberculosis. Cells 2020; 9:E2695. [PMID: 33334075 PMCID: PMC7765486 DOI: 10.3390/cells9122695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/01/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
Protective immune responses to Mycobacterium tuberculosis (Mtb) infection substantially depend on a delicate balance within cytokine networks. Thus, immunosuppressive therapy by cytokine blockers, as successfully used in the management of various chronic inflammatory diseases, is often connected with an increased risk for tuberculosis (TB) reactivation. Hence, identification of alternative therapeutics which allow the treatment of inflammatory diseases without compromising anti-mycobacterial immunity remains an important issue. On the other hand, in the context of novel therapeutic approaches for the management of TB, host-directed adjunct therapies, which combine administration of antibiotics with immunomodulatory drugs, play an increasingly important role, particularly to reduce the duration of treatment. In both respects, cytokines/cytokine receptors related to the common receptor subunit gp130 may serve as promising target candidates. Within the gp130 cytokine family, interleukin (IL)-6, IL-11 and IL-27 are most explored in the context of TB. This review summarizes the differential roles of these cytokines in protection and immunopathology during Mtb infection and discusses potential therapeutic implementations with respect to the aforementioned approaches.
Collapse
Affiliation(s)
- Kristina Ritter
- Infection Immunology, Research Centre Borstel, D-23845 Borstel, Germany; (K.R.); (J.R.)
| | - Jasmin Rousseau
- Infection Immunology, Research Centre Borstel, D-23845 Borstel, Germany; (K.R.); (J.R.)
| | - Christoph Hölscher
- Infection Immunology, Research Centre Borstel, D-23845 Borstel, Germany; (K.R.); (J.R.)
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Borstel-Lübeck-Riems, D-23845 Borstel, Germany
| |
Collapse
|
109
|
Ullrich KAM, Schulze LL, Paap EM, Müller TM, Neurath MF, Zundler S. Immunology of IL-12: An update on functional activities and implications for disease. EXCLI JOURNAL 2020; 19:1563-1589. [PMID: 33408595 PMCID: PMC7783470 DOI: 10.17179/excli2020-3104] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022]
Abstract
As its first identified member, Interleukin-12 (IL-12) named a whole family of cytokines. In response to pathogens, the heterodimeric protein, consisting of the two subunits p35 and p40, is secreted by phagocytic cells. Binding of IL-12 to the IL-12 receptor (IL-12R) on T and natural killer (NK) cells leads to signaling via signal transducer and activator of transcription 4 (STAT4) and subsequent interferon gamma (IFN-γ) production and secretion. Signaling downstream of IFN-γ includes activation of T-box transcription factor TBX21 (Tbet) and induces pro-inflammatory functions of T helper 1 (TH1) cells, thereby linking innate and adaptive immune responses. Initial views on the role of IL-12 and clinical efforts to translate them into therapeutic approaches had to be re-interpreted following the discovery of other members of the IL-12 family, such as IL-23, sharing a subunit with IL-12. However, the importance of IL-12 with regard to immune processes in the context of infection and (auto-) inflammation is still beyond doubt. In this review, we will provide an update on functional activities of IL-12 and their implications for disease. We will begin with a summary on structure and function of the cytokine itself as well as its receptor and outline the signal transduction and the transcriptional regulation of IL-12 secretion. In the second part of the review, we will depict the involvement of IL-12 in immune-mediated diseases and relevant experimental disease models, while also providing an outlook on potential translational approaches.
Collapse
Affiliation(s)
- Karen A.-M. Ullrich
- Department of Medicine and Deutsches Zentrum Immuntherapie, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
| | - Lisa Lou Schulze
- Department of Medicine and Deutsches Zentrum Immuntherapie, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
| | - Eva-Maria Paap
- Department of Medicine and Deutsches Zentrum Immuntherapie, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
| | - Tanja M. Müller
- Department of Medicine and Deutsches Zentrum Immuntherapie, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
| | - Markus F. Neurath
- Department of Medicine and Deutsches Zentrum Immuntherapie, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
| | - Sebastian Zundler
- Department of Medicine and Deutsches Zentrum Immuntherapie, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
| |
Collapse
|
110
|
Zhu JJ, Shan NN. Immunomodulatory cytokine interleukin-35 and immune thrombocytopaenia. J Int Med Res 2020; 48:300060520976477. [PMID: 33356722 PMCID: PMC7768574 DOI: 10.1177/0300060520976477] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022] Open
Abstract
Considerable attention has been paid to interleukin (IL)-35 because of its immunosuppressive effects in a variety of autoimmune diseases. IL-35, a recently identified cytokine of the IL-12 family, is a negative regulatory factor secreted by IL-35-inducible regulatory T cells (iTr35 cells) and the recently reported regulatory B cells (Breg cells). Four biological effects of IL-35 have been discovered in vitro and in vivo: (i) suppression of T cell proliferation; (ii) conversion of naive T cells into iTr35 cells; (iii) downregulation of type 17 helper T (Th17) cells; and (iv) conversion of Breg cells into a Breg subset that produces IL-35 and IL-10. IL-35 plays an important role in a variety of autoimmune diseases, such as rheumatoid arthritis, allergic asthma and systemic lupus erythematosus. Primary immune thrombocytopaenia (ITP), which is characterized by isolated thrombocytopaenia and mild mucocutaneous to life-threatening bleeding, is an autoimmune disease with complex dysregulation of the immune system. Both antibody-mediated and/or T cell-mediated platelet destruction are key processes. In addition, impairment of T cells and cytokine imbalances have now been recognized to be important. This review summarizes the immunomodulatory effects of IL-35 and its role in the pathogenesis of ITP as mediated by T and B cells.
Collapse
Affiliation(s)
- Jing-Jing Zhu
- Department of Haematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Ning-Ning Shan
- Department of Haematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| |
Collapse
|
111
|
Abstract
Viruses commonly antagonize the antiviral type I interferon response by targeting signal transducer and activator of transcription 1 (STAT1) and STAT2, key mediators of interferon signaling. Other STAT family members mediate signaling by diverse cytokines important to infection, but their relationship with viruses is more complex. Importantly, virus-STAT interaction can be antagonistic or stimulatory depending on diverse viral and cellular factors. While STAT antagonism can suppress immune pathways, many viruses promote activation of specific STATs to support viral gene expression and/or produce cellular conditions conducive to infection. It is also becoming increasingly clear that viruses can hijack noncanonical STAT functions to benefit infection. For a number of viruses, STAT function is dynamically modulated through infection as requirements for replication change. Given the critical role of STATs in infection by diverse viruses, the virus-STAT interface is an attractive target for the development of antivirals and live-attenuated viral vaccines. Here, we review current understanding of the complex and dynamic virus-STAT interface and discuss how this relationship might be harnessed for medical applications.
Collapse
|
112
|
Role of the JAK/STAT Pathway in Cervical Cancer: Its Relationship with HPV E6/E7 Oncoproteins. Cells 2020; 9:cells9102297. [PMID: 33076315 PMCID: PMC7602614 DOI: 10.3390/cells9102297] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
The janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway is associated with the regulation of essential cellular mechanisms, such as proliferation, invasion, survival, inflammation, and immunity. Aberrant JAK/STAT signaling contributes to cancer progression and metastatic development. STAT proteins play an essential role in the development of cervical cancer, and the inhibition of the JAK/STAT pathway may be essential for enhancing tumor cell death. Persistent activation of different STATs is present in a variety of cancers, including cervical cancer, and their overactivation may be associated with a poor prognosis and poor overall survival. The oncoproteins E6 and E7 play a critical role in the progression of cervical cancer and may mediate the activation of the JAK/STAT pathway. Inhibition of STAT proteins appears to show promise for establishing new targets in cancer treatment. The present review summarizes the knowledge about the participation of the different components of the JAK/STAT pathway and the participation of the human papillomavirus (HPV) associated with the process of cellular malignancy.
Collapse
|
113
|
Fu H, Sun Y, Shao Y, Saredy J, Cueto R, Liu L, Drummer C, Johnson C, Xu K, Lu Y, Li X, Meng S, Xue ER, Tan J, Jhala NC, Yu D, Zhou Y, Bayless KJ, Yu J, Rogers TJ, Hu W, Snyder NW, Sun J, Qin X, Jiang X, Wang H, Yang X. Interleukin 35 Delays Hindlimb Ischemia-Induced Angiogenesis Through Regulating ROS-Extracellular Matrix but Spares Later Regenerative Angiogenesis. Front Immunol 2020; 11:595813. [PMID: 33154757 PMCID: PMC7591706 DOI: 10.3389/fimmu.2020.595813] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Interleukin (IL) 35 is a novel immunosuppressive heterodimeric cytokine in IL-12 family. Whether and how IL-35 regulates ischemia-induced angiogenesis in peripheral artery diseases are unrevealed. To fill this important knowledge gap, we used loss-of-function, gain-of-function, omics data analysis, RNA-Seq, in vivo and in vitro experiments, and we have made the following significant findings: i) IL-35 and its receptor subunit IL-12RB2, but not IL-6ST, are induced in the muscle after hindlimb ischemia (HLI); ii) HLI-induced angiogenesis is improved in Il12rb2-/- mice, in ApoE-/-/Il12rb2-/- mice compared to WT and ApoE-/- controls, respectively, where hyperlipidemia inhibits angiogenesis in vivo and in vitro; iii) IL-35 cytokine injection as a gain-of-function approach delays blood perfusion recovery at day 14 after HLI; iv) IL-35 spares regenerative angiogenesis at the late phase of HLI recovery after day 14 of HLI; v) Transcriptome analysis of endothelial cells (ECs) at 14 days post-HLI reveals a disturbed extracellular matrix re-organization in IL-35-injected mice; vi) IL-35 downregulates three reactive oxygen species (ROS) promoters and upregulates one ROS attenuator, which may functionally mediate IL-35 upregulation of anti-angiogenic extracellular matrix proteins in ECs; and vii) IL-35 inhibits human microvascular EC migration and tube formation in vitro mainly through upregulating anti-angiogenic extracellular matrix-remodeling proteins. These findings provide a novel insight on the future therapeutic potential of IL-35 in suppressing ischemia/inflammation-triggered inflammatory angiogenesis at early phase but sparing regenerative angiogenesis at late phase.
Collapse
Affiliation(s)
- Hangfei Fu
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yu Sun
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ying Shao
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jason Saredy
- Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ramon Cueto
- Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Lu Liu
- Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Charles Drummer
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Candice Johnson
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Keman Xu
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yifan Lu
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xinyuan Li
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Shu Meng
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Eric R Xue
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Judy Tan
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Nirag C Jhala
- Department of Pathology & Laboratory Medicine Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Daohai Yu
- Department of Clinical Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Temple Health, Philadelphia, PA, United States
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, United States
| | - Jun Yu
- Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Thomas J Rogers
- Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Wenhui Hu
- Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Nathaniel W Snyder
- Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jianxin Sun
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Xuebin Qin
- National Primate Research Center, Tulane University, Covington, LA, United States
| | - Xiaohua Jiang
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hong Wang
- Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
114
|
Nanotechnology Solutions for Controlled Cytokine Delivery: An Applied Perspective. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10207098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Around 200 cytokines with roles in cell signaling have been identified and studied, with the vast majority belonging to the four-α-helix bundle family. These proteins exert their function by binding to specific receptors and are implicated in many diseases. The use of several cytokines as therapeutic targets has been approved by the FDA, however their rapid clearance in vivo still greatly limits their efficacy. Nano-based drug delivery systems have been widely applied in nanomedicine to develop safe, specific and controlled delivery techniques. Nevertheless, each nanomaterial has its own specifications and their suitability towards the biochemical and biophysical properties of the selected drug needs to be determined, weighing in the final choice of the ideal nano drug delivery system. Nanoparticles remain the most used vehicle for cytokine delivery, where polymeric carriers represent the vast majority of the studied systems. Liposomes and gold or silica nanoparticles are also explored and discussed in this review. Additionally, surface functionalization is of great importance to facilitate the attachment of a wide variety of molecules and modify features such as bioavailability. Since the monitoring of cytokine levels has an important role in early clinical diagnosis and for assessing therapeutic efficacy, nanotechnological advances are also valuable for nanosensor development.
Collapse
|
115
|
Clinical Aspects of Janus Kinase (JAK) Inhibitors in the Cardiovascular System in Patients with Rheumatoid Arthritis. Int J Mol Sci 2020; 21:ijms21197390. [PMID: 33036382 PMCID: PMC7583966 DOI: 10.3390/ijms21197390] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 12/17/2022] Open
Abstract
Janus kinase (JAK) inhibitors, a novel class of targeted synthetic disease-modifying antirheumatic drugs (DMARDs), have shown their safety and efficacy in rheumatoid arthritis (RA) and are being intensively tested in other autoimmune and inflammatory disorders. Targeting several cytokines with a single small compound leads to blocking the physiological response of hundreds of genes, thereby providing the background to stabilize the immune response. Unfortunately, blocking many cytokines with a single drug may also bring some negative consequences. In this review, we focused on the activity of JAK inhibitors in the cardiovascular system of patients with RA. Special emphasis was put on the modification of heart performance, progression of atherosclerosis, lipid profile disturbance, and risk of thromboembolic complications. We also discussed potential pathophysiological mechanisms that may be responsible for such JAK inhibitor-associated side effects.
Collapse
|
116
|
Widjaja AA, Chothani SP, Cook SA. Different roles of interleukin 6 and interleukin 11 in the liver: implications for therapy. Hum Vaccin Immunother 2020; 16:2357-2362. [PMID: 32530750 PMCID: PMC7644218 DOI: 10.1080/21645515.2020.1761203] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
The interleukin 6 (IL6) family of proteins regulate important cellular processes and act through a variety of signaling pathways via a shared gp130 receptor. In the liver, there is a large body of evidence showing a protective and pro-regenerative role for IL6 cis and trans signaling. While a few studies suggest a pathological role for IL6 trans-signaling in the liver. IL11 is often thought of as similar to IL6 and redundancy has been inferred. However, recent studies reveal that IL6R and IL11RA are expressed on dissimilar cell types and these cytokines actually have very different roles in biology and pathology. In the liver, IL6R is mostly expressed on immune cells, whereas IL11RA is highly expressed on hepatocytes and hepatic stellate cells, both of which exhibit autocrine IL11 activity. In contrast to the beneficial effects of IL6 in the liver, IL11 causes liver disease and its expression in stromal and parenchymal cells leads to fibrosis, inflammation, steatosis and hepatic failure. In this review, we address IL6 and IL11 in the context of liver function. We end by discussing the possibility of IL6 gain-of-function versus IL11 inhibition as therapeutic approaches to treat liver disease. 1,2.
Collapse
Affiliation(s)
- Anissa A. Widjaja
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
| | - Sonia P. Chothani
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
| | - Stuart A. Cook
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
- National Heart and Lung Institute, Imperial College London, London, UK
- MRC-London Institute of Medical Sciences, Hammersmith Hospital Campus, London, UK
| |
Collapse
|
117
|
Zhang LY, Wang R, Liu T, Cai Y. [The expression and significance of interleukin-35 receptor in oral lichen planus]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2020; 38:513-518. [PMID: 33085234 DOI: 10.7518/hxkq.2020.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To investigate the expression of glycoprotein 130 (gp130) and interleukin 12 receptor β2 (IL-12Rβ2) in two subunits of interleukin-35 receptor (IL-35R), singal transducer and activator of transcription (STAT) 1 and STAT4 in oral lichen planus (OLP) tissues, and to explore the role and significance of IL-35R in the formation and development of OLP lesions. METHODS Totally 41 samples of OLP tissues (OLP group) and 15 samples of normal oral mucosa (control group) were collected. The expression levels of gp130, IL-12Rβ2, STAT1, STAT4 mRNA in the tissues were detected by real-time fluorescent quantitative polymerase chain reaction and the distribution and expression of protein gp130 and IL-12Rβ2 were detected by immunohistochemistry. The potential relationship between gp130 and IL-12Rβ2 and clinical features of OLP was analyzed. RESULTS 1) The expression levels of gp130, IL-12Rβ2, STAT1 and STAT4 mRNA in the OLP group were significantly higher than those in the control group (P<0.05). 2) The positive expression rates of gp130 and IL-12Rβ2 protein in the OLP group were higher than those in the control group (P<0.05). The expression of gp130 and IL-12Rβ2 proteins in OLP tissues were positively correlated (r=0.984, P<0.001). 3) The expression rates of gp130 and IL-12Rβ2 protein in erosive OLP tissues were significantly higher than those in non-erosive ones (P<0.05). CONCLUSIONS The expression of IL-35R and STAT is up-regulated in OLP tissues, and the expression of IL-35R is related to the clinical classification of OLP, suggesting that IL-35R might play an important role in the formation and development of damage OLP lesions.
Collapse
Affiliation(s)
- Ling-Yan Zhang
- School of Stomatology, Guizhou Medical University, Guiyang 550004, China; Dept. of Periodontics and Oral Medicine, Stomatological Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Rong Wang
- School of Stomatology, Guizhou Medical University, Guiyang 550004, China; Dept. of Stomatology, Mianyang Central Hospital, Mianyang 621000, China
| | - Ting Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yang Cai
- Dept. of Periodontics and Oral Medicine, Stomatological Hospital of Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
118
|
Bohnacker S, Hildenbrand K, Aschenbrenner I, Müller SI, Bieren JEV, Feige MJ. Influence of glycosylation on IL-12 family cytokine biogenesis and function. Mol Immunol 2020; 126:120-128. [DOI: 10.1016/j.molimm.2020.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023]
|
119
|
IL-12 and IL-23-Close Relatives with Structural Homologies but Distinct Immunological Functions. Cells 2020; 9:cells9102184. [PMID: 32998371 PMCID: PMC7600943 DOI: 10.3390/cells9102184] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 12/21/2022] Open
Abstract
Cytokines of the IL-12 family show structural similarities but have distinct functions in the immune system. Prominent members of this cytokine family are the pro-inflammatory cytokines IL-12 and IL-23. These two cytokines share cytokine subunits and receptor chains but have different functions in autoimmune diseases, cancer and infections. Accordingly, structural knowledge about receptor complex formation is essential for the development of new therapeutic strategies preventing and/or inhibiting cytokine:receptor interaction. In addition, intracellular signaling cascades can be targeted to inhibit cytokine-mediated effects. Single nucleotide polymorphisms can lead to alteration in the amino acid sequence and thereby influencing protein functions or protein–protein interactions. To understand the biology of IL-12 and IL-23 and to establish efficient targeting strategies structural knowledge about cytokines and respective receptors is crucial. A highly efficient therapy might be a combination of different drugs targeting extracellular cytokine:receptor assembly and intracellular signaling pathways.
Collapse
|
120
|
FOXP3rs3761548 gene variant and interleukin-35 serum levels as biomarkers in patients with multiple sclerosis. Rev Neurol (Paris) 2020; 177:647-654. [PMID: 32988630 DOI: 10.1016/j.neurol.2020.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/09/2020] [Accepted: 07/01/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS). Aberrant expression of transcription factor forkhead box P3 (FoxP3) has been suggested to underlie different immunological disorders as FOXP3 expression is essential for T regulatory cells (Tregs) to maintain their suppressive and anti-inflammatory functions and exert immunologic self-tolerance. Interleukin-35 (IL-35) is an important immunosuppressive cytokine that is produced mainly by CD4+ FOXP3+ Tregs. OBJECTIVES To assess the possible role of the FOXP3 rs3761548 (C/A) single-nucleotide variation (SNV) in relapsing-remitting multiple sclerosis (RRMS). Also, measurement of the serum IL-35 concentration and study its relation to different genotypes and the degree of disease-related disability. METHODS A total of 100 RRMS patients and 90 healthy control subjects were subjected to genotyping for the FOXP3 (rs3761548) variant by TaqMan real-time PCR, and measurement of the IL-35 level in their sera by Elisa. RESULTS The frequencies of the AA genotype and A allele were significantly higher in the MS patients than in the healthy controls (P=0.008, OR=2.53, 95% CI=1.27-5.04; P=0.001, OR=1.98, 95% CI=1.31-3.00, respectively). There was a significant association between FOXP3 rs3761548 variant and female MS patients. The serum IL-35 level was significantly higher in MS patients (1372 [575-2192] pg/mL) compared to healthy controls (604 [454-696] pg/mL) (P<0.0001). No significant differences were found between the different FOXP3 genotypes and EDSS score (P=0.730). CONCLUSION The FOXP3rs3761548 gene variant may influence the genetic susceptibility to MS rather than affecting its course, severity or progression. The serum IL-35 level might have a role in the development of the disease, however its role in disease-related disability is questionable.
Collapse
|
121
|
Harrison AR, Lieu KG, Larrous F, Ito N, Bourhy H, Moseley GW. Lyssavirus P-protein selectively targets STAT3-STAT1 heterodimers to modulate cytokine signalling. PLoS Pathog 2020; 16:e1008767. [PMID: 32903273 PMCID: PMC7480851 DOI: 10.1371/journal.ppat.1008767] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/01/2020] [Indexed: 12/24/2022] Open
Abstract
Many viruses target signal transducer and activator of transcription (STAT) 1 to antagonise antiviral interferon signalling, but targeting of STAT3, a pleiotropic molecule that mediates signalling by diverse cytokines, is poorly understood. Here, using lyssavirus infection, quantitative live cell imaging, innate immune signalling and protein interaction assays, and complementation/depletion of STAT expression, we show that STAT3 antagonism is conserved among P-proteins of diverse pathogenic lyssaviruses and correlates with pathogenesis. Importantly, P-protein targeting of STAT3 involves a highly selective mechanism whereby P-protein antagonises cytokine-activated STAT3-STAT1 heterodimers, but not STAT3 homodimers. RT-qPCR and reporter gene assays indicate that this results in specific modulation of interleukin-6-dependent pathways, effecting differential antagonism of target genes. These data provide novel insights into mechanisms by which viruses can modulate cellular function to support infection through discriminatory targeting of immune signalling complexes. The findings also highlight the potential application of selective interferon-antagonists as tools to delineate signalling by particular STAT complexes, significant not only to pathogen-host interactions but also cell physiology, development and cancer.
Collapse
Affiliation(s)
- Angela R. Harrison
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kim G. Lieu
- Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Florence Larrous
- Lyssavirus Epidemiology and Neuropathology Unit, Institut Pasteur, Paris, France
| | - Naoto Ito
- Laboratory of Zoonotic Diseases, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Hervé Bourhy
- Lyssavirus Epidemiology and Neuropathology Unit, Institut Pasteur, Paris, France
| | - Gregory W. Moseley
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
122
|
Liu Y, Qi G, Bellanti JA, Moser R, Ryffel B, Zheng SG. Regulatory T cells: A potential weapon to combat COVID-19? MedComm (Beijing) 2020; 1:157-164. [PMID: 32838397 PMCID: PMC7436572 DOI: 10.1002/mco2.12] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
Since the end of December 2019, a novel coronavirus SARS-CoV-2 began to spread, an infection disease termed COVID-19. The virus has spread throughout the world in a short period of time, resulting in a pandemic. The number of reported cases in global reached 5 695 596 including 352 460 deaths, as of May 27, 2020. Due to the lack of effective treatment options for COVID-19, various strategies are being tested. Recently, pathologic studies conducted by two teams in China revealed immunopathologic abnormalities in lung tissue. These results have implications for immunotherapy that could offer a novel therapy strategy for combating lethal viral pneumonia. This review discusses the clinical and pathological features of COVID-19, the roles of immune cells in pathological processes, and the possible avenues for induction of immunosuppressive T regulatory cells attenuating lung inflammation due to viral infection. It is our hope that these proposals may both be helpful in understanding the novel features of SARS-CoV-2 pneumonia as well as providing new immunological strategies for treating the severe sequelae of disease manifestations seen in people infected with SARS-CoV-2.
Collapse
Affiliation(s)
- Yu Liu
- Department of Clinical ImmunologySun Yat‐sen University Third Affiliated HospitalGuangzhouP. R. China
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental RegulationGuilin Medical UniversityGuilinP. R. China
| | - Guangying Qi
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental RegulationGuilin Medical UniversityGuilinP. R. China
| | - Joseph A. Bellanti
- Department of Pediatrics and Microbiology‐ImmunologyGeorgetown University Medical CenterWashingtonDistrict of Columbia
| | - René Moser
- Institute for Biopharmaceutical ResearchMatzingenSwitzerland
| | - Bernhard Ryffel
- Experimental and Molecular Immunology and Neurogenetics (INEM)UMR 7355 INEMCNRS‐University of OrleansOrleansFrance
| | - Song Guo Zheng
- Department of Internal MedicineOhio State University College of Medicine and Wexner Medical Center, Medical CenterColumbusOhio
| |
Collapse
|
123
|
Mossner S, Kuchner M, Fazel Modares N, Knebel B, Al-Hasani H, Floss DM, Scheller J. Synthetic interleukin 22 (IL-22) signaling reveals biological activity of homodimeric IL-10 receptor 2 and functional cross-talk with the IL-6 receptor gp130. J Biol Chem 2020; 295:12378-12397. [PMID: 32611765 PMCID: PMC7458808 DOI: 10.1074/jbc.ra120.013927] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/22/2020] [Indexed: 12/22/2022] Open
Abstract
Cytokine signaling is transmitted by cell-surface receptors that function as biological switches controlling mainly immune-related processes. Recently, we have designed synthetic cytokine receptors (SyCyRs) consisting of GFP and mCherry nanobodies fused to transmembrane and intracellular domains of cytokine receptors that phenocopy cytokine signaling induced by nonphysiological homo- and heterodimeric GFP-mCherry ligands. Interleukin 22 (IL-22) signals via both IL-22 receptor α1 (IL-22Rα1) and the common IL-10R2, belongs to the IL-10 cytokine family, and is critically involved in tissue regeneration. Here, IL-22 SyCyRs phenocopied native IL-22 signal transduction, indicated by induction of cytokine-dependent cellular proliferation, signal transduction, and transcriptome analysis. Whereas homodimeric IL-22Rα1 SyCyRs failed to activate signaling, homodimerization of the second IL-22 signaling chain, SyCyR(IL-10R2), which previously was considered not to induce signal transduction, led to induction of signal transduction. Interestingly, the SyCyR(IL-10R2) and SyCyR(IL-22Rα1) constructs could form functional heterodimeric receptor signaling complexes with the synthetic IL-6 receptor chain SyCyR(gp130). In summary, we have demonstrated that IL-22 signaling can be phenocopied by synthetic cytokine receptors, identified a functional IL-10R2 homodimeric receptor complex, and uncovered broad receptor cross-talk of IL-22Rα1 and IL-20R2 with gp130.
Collapse
Affiliation(s)
- Sofie Mossner
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Marcus Kuchner
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Nastaran Fazel Modares
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Birgit Knebel
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
124
|
Sullivan JA, AlAdra DP, Olson BM, McNeel DG, Burlingham WJ. Infectious Tolerance as Seen With 2020 Vision: The Role of IL-35 and Extracellular Vesicles. Front Immunol 2020; 11:1867. [PMID: 32983104 PMCID: PMC7480133 DOI: 10.3389/fimmu.2020.01867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/13/2020] [Indexed: 12/26/2022] Open
Abstract
Originally identified as lymphocyte regulation of fellow lymphocytes, our understanding of infectious tolerance has undergone significant evolutions in understanding since being proposed in the early 1970s by Gershon and Kondo and expanded upon by Herman Waldman two decades later. The evolution of our understanding of infectious tolerance has coincided with significant cellular and humoral discoveries. The early studies leading to the isolation and identification of Regulatory T cells (Tregs) and cytokines including TGFβ and IL-10 in the control of peripheral tolerance was a paradigm shift in our understanding of infectious tolerance. More recently, another potential, paradigm shift in our understanding of the "infectious" aspect of infectious tolerance was proposed, identifying extracellular vesicles (EVs) as a mechanism for propagating infectious tolerance. In this review, we will outline the history of infectious tolerance, focusing on a potential EV mechanism for infectious tolerance and a novel, EV-associated form for the cytokine IL-35, ideally suited to the task of propagating tolerance by "infecting" other lymphocytes.
Collapse
Affiliation(s)
- Jeremy A Sullivan
- Department of Surgery-Transplant Division, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - David P AlAdra
- Department of Surgery-Transplant Division, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Brian M Olson
- Departments of Hematology and Medical Oncology, Urology, and Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Douglas G McNeel
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - William J Burlingham
- Department of Surgery-Transplant Division, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
125
|
Analysis of a breast cancer mathematical model by a new method to find an optimal protocol for HER2-positive cancer. Biosystems 2020; 197:104191. [PMID: 32791173 DOI: 10.1016/j.biosystems.2020.104191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/15/2020] [Accepted: 06/20/2020] [Indexed: 12/23/2022]
Abstract
Treatment of breast cancer (positive for HER2, i.e., ERBB2) is described by a mathematical model involving non-linear ordinary differential equations with a hidden hierarchy. To reveal the hierarchy of dynamical variables of the system being considered, we applied the singular perturbed vector field (SPVF) method, where a system of equations can be decomposed to fast and slow sub-systems with explicit small parameters. This new form of the model, which is called a singular perturbed system, enables us to apply a semi-analytical method called the method of directly defining inverse mapping (MDDiM), which is based on the homotopy analysis asymptotic method. We introduced the treatment protocol in explicit form, through an analytical function that describes the exact dose and intervals between treatments in a cyclical manner. In addition, a new algorithm for the optimal dosage that causes tumour shrinkage is presented in this study. Furthermore, we took the concept of protocol optimisation a step further and derived a differential equation that represents vaccination depending on tumour size and yields an optimal protocol of different doses at every time point. We introduced the treatment protocol in explicit form, through an analytical function that describes the exact dose and intervals between treatments in a cyclical manner. In addition, a new algorithm for finding the optimal dosage that causes tumour shrinkage is presented in this study. Additionally, we took the concept of protocol optimisation a step further and derived a differential equation that represents vaccination depending on tumour size and yields an optimal protocol of different doses at every time point.
Collapse
|
126
|
Zhao S, Liang T, Zhang C, Shi D, Jiang W, Su C, Hou G. IL-27 Rα + cells promoted allorejection via enhancing STAT1/3/5 phosphorylation. J Cell Mol Med 2020; 24:10756-10767. [PMID: 32761753 PMCID: PMC7521268 DOI: 10.1111/jcmm.15700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 06/23/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022] Open
Abstract
Recently, emerging evidence strongly suggested that the activation of interleukin-27 Receptor α (IL-27Rα) could modulate different inflammatory diseases. However, whether IL-27Rα affects allotransplantation rejection is not fully understood. Here, we investigated the role of IL-27Rα on allorejection both in vivo and in vitro. The skin allotransplantation mice models were established, and the dynamic IL-27Rα/IL-27 expression was detected, and IL-27Rα+ spleen cells adoptive transfer was performed. STAT1/3/5 phosphorylation, proliferation and apoptosis were investigated in mixed lymphocyte reaction (MLR) with recombinant IL-27 (rIL-27) stimulation. Finally, IFN-γ/ IL-10 in graft/serum from model mice was detected. Results showed higher IL-27Rα/IL-27 expression in allografted group compared that syngrafted group on day 10 (top point of allorejection). IL-27Rα+ spleen cells accelerated allograft rejection in vivo. rIL-27 significantly promoted proliferation, inhibited apoptosis and increased STAT1/3/5 phosphorylation of alloreactive splenocytes, and these effects of rIL-27 could be almost totally blocked by JAK/ STAT inhibitor and anti-IL-27 p28 Ab. Finally, higher IL-27Rα+ IFN-γ+ cells and lower IL-27Rα+ IL-10+ cells within allografts, and high IFN-γ/low IL-10 in serum of allorejecting mice were detected. In conclusion, these data suggested that IL-27Rα+ cells apparently promoted allograft rejection through enhancing alloreactive proliferation, inhibiting apoptosis and up-regulating IFN-γ via enhancing STAT pathway. Blocking IL-27 pathway may favour to prevent allorejection, and IL-27Rα may be as a high selective molecule for targeting diagnosis and therapy for allotransplantation rejection.
Collapse
Affiliation(s)
- Shanshan Zhao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ting Liang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chao Zhang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dai Shi
- Key Laboratory for Experimental Teratology of the Ministry of Education and Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wen Jiang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chen Su
- Key Laboratory for Experimental Teratology of the Ministry of Education and Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guihua Hou
- Key Laboratory for Experimental Teratology of the Ministry of Education and Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
127
|
Interleukin 35 Regulatory B Cells. J Mol Biol 2020; 433:166607. [PMID: 32755620 DOI: 10.1016/j.jmb.2020.07.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023]
Abstract
B lymphocytes play a central role in host immunity. They orchestrate humoral immune responses that modulate activities of other immune cells and produce neutralizing antibodies that confer lasting immunity to infectious diseases including smallpox, measles and poliomyelitis. In addition to these traditional functions is the recent recognition that B cells also play critical role in maintaining peripheral tolerance and suppressing the development or severity of autoimmune diseases. Their immune suppressive function is attributed to relatively rare populations of regulatory B cells (Bregs) that produce anti-inflammatory cytokines including interleukin 10 (IL-10), IL-35 and transforming growth factor-β. The IL-35-producing B cell (i35-Breg) is the newest Breg subset described. i35-Bregs suppress central nervous system autoimmune diseases by inducing infectious tolerance whereby conventional B cells acquire regulatory functions that suppress pathogenic Th17 responses. In this review, we discuss immunobiology of i35-Breg cell, i35-Breg therapies for autoimmune diseases and potential therapeutic strategies for depleting i35-Bregs that suppress immune responses against pathogens and tumor cells.
Collapse
|
128
|
Garrido-Trigo A, Salas A. Molecular Structure and Function of Janus Kinases: Implications for the Development of Inhibitors. J Crohns Colitis 2020; 14:S713-S724. [PMID: 32083640 PMCID: PMC7395311 DOI: 10.1093/ecco-jcc/jjz206] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cytokines can trigger multiple signalling pathways, including Janus tyrosine kinases [JAK] and signal transducers and activators of transcription [STATS] pathways. JAKs are cytoplasmic proteins that, following the binding of cytokines to their receptors, transduce the signal by phosphorylating STAT proteins which enter the nuclei and rapidly target gene promoters to regulate gene transcription. Due to the critical involvement of JAK proteins in mediating innate and adaptive immune responses, these family of kinases have become desirable pharmacological targets in inflammatory diseases, including ulcerative colitis and Crohn's disease. In this review we provide an overview of the main cytokines that signal through the JAK/STAT pathway and the available in vivo evidence on mutant or deleted JAK proteins, and discuss the implications of pharmacologically targeting this kinase family in the context of inflammatory diseases.
Collapse
Affiliation(s)
- Alba Garrido-Trigo
- Department of Gastroenterology, Institut d’Investigacions Biomèdiques August Pi i Sunyer [IDIBAPS] – CIBEREHD, Barcelona, Spain
| | - Azucena Salas
- Department of Gastroenterology, Institut d’Investigacions Biomèdiques August Pi i Sunyer [IDIBAPS] – CIBEREHD, Barcelona, Spain,Corresponding author: Azucena Salas, PhD, Inflammatory Bowel Disease Unit, Department of Gastroenterology, Institut d’Investigacions Biomèdiques August Pi i Sunyer [IDIBAPS] – CIBEREHD, Rosselló 149-153, Barcelona 08036, Spain.
| |
Collapse
|
129
|
Metcalfe RD, Putoczki TL, Griffin MDW. Structural Understanding of Interleukin 6 Family Cytokine Signaling and Targeted Therapies: Focus on Interleukin 11. Front Immunol 2020; 11:1424. [PMID: 32765502 PMCID: PMC7378365 DOI: 10.3389/fimmu.2020.01424] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
Cytokines are small signaling proteins that have central roles in inflammation and cell survival. In the half-century since the discovery of the first cytokines, the interferons, over fifty cytokines have been identified. Amongst these is interleukin (IL)-6, the first and prototypical member of the IL-6 family of cytokines, nearly all of which utilize the common signaling receptor, gp130. In the last decade, there have been numerous advances in our understanding of the structural mechanisms of IL-6 family signaling, particularly for IL-6 itself. However, our understanding of the detailed structural mechanisms underlying signaling by most IL-6 family members remains limited. With the emergence of new roles for IL-6 family cytokines in disease and, in particular, roles of IL-11 in cardiovascular disease, lung disease, and cancer, there is an emerging need to develop therapeutics that can progress to clinical use. Here we outline our current knowledge of the structural mechanism of signaling by the IL-6 family of cytokines. We discuss how this knowledge allows us to understand the mechanism of action of currently available inhibitors targeting IL-6 family cytokine signaling, and most importantly how it allows for improved opportunities to pharmacologically disrupt cytokine signaling. We focus specifically on the need to develop and understand inhibitors that disrupt IL-11 signaling.
Collapse
Affiliation(s)
- Riley D Metcalfe
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Technology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Tracy L Putoczki
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Technology Institute, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
130
|
Hu H, Fu Y, Li M, Xia H, Liu Y, Sun X, Hu Y, Song F, Cheng X, Li P, Wu Y. Interleukin-35 pretreatment attenuates lipopolysaccharide-induced heart injury by inhibition of inflammation, apoptosis and fibrotic reactions. Int Immunopharmacol 2020; 86:106725. [PMID: 32679538 DOI: 10.1016/j.intimp.2020.106725] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/07/2020] [Accepted: 06/17/2020] [Indexed: 12/14/2022]
Abstract
Previous studies have demonstrated that targeting inflammation is a promising strategy for treating lipopolysaccharide (LPS)-induced sepsis and related heart injury. Interleukin-35 (IL-35), which consists of two subunits, Epstein-Barr virus-induced gene 3 (EBI3) and p35, is an immunosuppressive cytokine of the IL-12 family and exhibits strong anti-inflammatory activity. However, the role of IL-35 in LPS-induced heart injury reains obscure. In this study, we explored the role of IL-35 in heart injury induced by LPS and its potential mechanisms. Mice were treated with a plasmid encoding IL-35 (pIL-35) and then injected intraperitoneally (ip) with LPS (10 mg/kg). Cardiac function was assessed by echocardiography 12 h later. LPS apparently decreased the expression of EBI3 and p35 and caused cardiac dysfunction and pathological changes, which were significantly improved by pIL-35 pretreatment. Moreover, pIL-35 pretreatment significantly decreased the levels of cardiac proinflammatory cytokines including TNF-α, IL-6, and IL-1β, and the NLRP3 inflammasome. Furthermore, decreased number of apoptotic myocardial cells, increased BCL-2 levels and decreased BAX levels inhibited apoptosis, and LPS-induced upregulation of the expression of cardiac pro-fibrotic genes (MMP2 and MMP9) and fibrotic factor (Collagen type I) was inhibited. Further investigation indicated that pIL-35 pretreatment might suppressed the activation of the cardiac NF-κBp65 and TGF-β1/Smad2/3 signaling pathways in LPS-treated mice. Similar cardioprotective effects of IL-35 pretreatment were observed in mouse myocardial fibroblasts challenged with LPS in vitro. In summary, IL-35 pretreatment can attenuate cardiac inflammation, apoptosis, and fibrotic reactions induced by LPS, implicating IL-35 as a promising therapeutic target in sepsis-related cardiac injury.
Collapse
Affiliation(s)
- Huan Hu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yang Fu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Meng Li
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Huasong Xia
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yue Liu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xiaopei Sun
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yang Hu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Fulin Song
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xiaoshu Cheng
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Ping Li
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yanqing Wu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| |
Collapse
|
131
|
Akkaya B, Shevach EM. Regulatory T cells: Master thieves of the immune system. Cell Immunol 2020; 355:104160. [PMID: 32711171 DOI: 10.1016/j.cellimm.2020.104160] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022]
Abstract
Treg cells are the immune system's in-house combatants against pathological immune activation. Because they are vital to maintenance of peripheral tolerance, it is important to understand how they perform their functions. To this end, various mechanisms have been proposed for Treg-mediated immune inhibition. A major group of mechanisms picture Treg cells as skilled thieves stealing a plethora of molecules that would otherwise promote immune effector functions. This suggests that several million years of evolution have endowed Treg cells with efficient ways to deprive immune effectors of activating stimuli to prevent immunopathology for survival of the host. Although we are still long way from deciphering their complete set of tricks, this review will focus on the types of "crimes" committed by these master thieves in both secondary lymphoid organs and non-lymphoid tissue.
Collapse
Affiliation(s)
- Billur Akkaya
- Laboratory of Immune System Biology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ethan M Shevach
- Laboratory of Immune System Biology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
132
|
Esch A, Masiarz A, Mossner S, Moll JM, Grötzinger J, Schröder J, Scheller J, Floss DM. Deciphering site 3 interactions of interleukin 12 and interleukin 23 with their cognate murine and human receptors. J Biol Chem 2020; 295:10478-10492. [PMID: 32518162 DOI: 10.1074/jbc.ra120.013935] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/03/2020] [Indexed: 01/04/2023] Open
Abstract
Interleukin (IL)-12 and IL-23 belong to the IL-12 type family and are composite cytokines, consisting of the common β subunit p40 and the specific cytokine α subunit p35 and p19, respectively. IL-12 signals via the IL-12Rβ1·IL-12Rβ2 receptor complex, and IL-23 uses also IL-12Rβ1 but engages IL-23R as second receptor. Importantly, binding of IL-12 and IL-23 to IL-12Rβ1 is mediated by p40, and binding to IL-12Rβ2 and IL-23R is mediated by p35 and p19, respectively. Previously, we have identified a W157A substitution at site 3 of murine IL-23p19 that abrogates binding to murine IL-23R. Here, we demonstrate that the analogous Y185R site 3 substitution in murine and Y189R site 3 substitution in human IL-12p35 abolishes binding to IL-12Rβ2 in a cross-species manner. Although Trp157 is conserved between murine and human IL-23p19 (Trp156 in the human ortholog), the site 3 W156A substitution in hIL-23p19 did not affect signaling of cells expressing human IL-12Rβ1 and IL-23R, suggesting that the interface of murine IL-23p19 required for binding to IL-23R is different from that in the human ortholog. Hence, we introduced additional hIL-23p19 substitutions within its binding interface to hIL-23R and found that the combined site 3 substitutions of W156A and L160E, which become buried at the complex interface, disrupt binding of hIL-23p19 to hIL-23R. In summary, we have identified substitutions in IL-12p35 and IL-23p19 that disrupt binding to their cognate receptors IL-12Rβ2 and IL-23R in a murine/human cross-species manner.
Collapse
Affiliation(s)
- Alessandra Esch
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Anna Masiarz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Sofie Mossner
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jens M Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Joachim Grötzinger
- Institute of Biochemistry, Medical Faculty, Christian Albrechts University, Kiel, Germany
| | - Jutta Schröder
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
133
|
Byrne-Hoffman CN, Deng W, McGrath O, Wang P, Rojanasakul Y, Klinke DJ. Interleukin-12 elicits a non-canonical response in B16 melanoma cells to enhance survival. Cell Commun Signal 2020; 18:78. [PMID: 32450888 PMCID: PMC7249691 DOI: 10.1186/s12964-020-00547-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/06/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Oncogenesis rewires signaling networks to confer a fitness advantage to malignant cells. For instance, the B16F0 melanoma cell model creates a cytokine sink for Interleukin-12 (IL-12) to deprive neighboring cells of this important anti-tumor immune signal. While a cytokine sink provides an indirect fitness advantage, does IL-12 provide an intrinsic advantage to B16F0 cells? METHODS Acute in vitro viability assays were used to compare the cytotoxic effect of imatinib on a melanoma cell line of spontaneous origin (B16F0) with a normal melanocyte cell line (Melan-A) in the presence of IL-12. The results were analyzed using a mathematical model coupled with a Markov Chain Monte Carlo approach to obtain a posterior distribution in the parameters that quantified the biological effect of imatinib and IL-12. Intracellular signaling responses to IL-12 were compared using flow cytometry in 2D6 cells, a cell model for canonical signaling, and B16F0 cells, where potential non-canonical signaling occurs. Bayes Factors were used to select among competing signaling mechanisms that were formulated as mathematical models. Analysis of single cell RNAseq data from human melanoma patients was used to explore generalizability. RESULTS Functionally, IL-12 enhanced the survival of B16F0 cells but not normal Melan-A melanocytes that were challenged with a cytotoxic agent. Interestingly, the ratio of IL-12 receptor components (IL12RB2:IL12RB1) was increased in B16F0 cells. A similar pattern was observed in human melanoma. To identify a mechanism, we assayed the phosphorylation of proteins involved in canonical IL-12 signaling, STAT4, and cell survival, Akt. In contrast to T cells that exhibited a canonical response to IL-12 by phosphorylating STAT4, IL-12 stimulation of B16F0 cells predominantly phosphorylated Akt. Mechanistically, the differential response in B16F0 cells is explained by both ligand-dependent and ligand-independent aspects to initiate PI3K-AKT signaling upon IL12RB2 homodimerization. Namely, IL-12 promotes IL12RB2 homodimerization with low affinity and IL12RB2 overexpression promotes homodimerization via molecular crowding on the plasma membrane. CONCLUSIONS The data suggest that B16F0 cells shifted the intracellular response to IL-12 from engaging immune surveillance to favoring cell survival. Identifying how signaling networks are rewired in model systems of spontaneous origin can inspire therapeutic strategies in humans. Interleukin-12 is a key cytokine that promotes anti-tumor immunity, as it is secreted by antigen presenting cells to activate Natural Killer cells and T cells present within the tumor microenvironment. Thinking of cancer as an evolutionary process implies that an immunosuppressive tumor microenvironment could arise during oncogenesis by interfering with endogenous anti-tumor immune signals, like IL-12. Previously, we found that B16F0 cells, a cell line derived from a spontaneous melanoma, interrupts this secreted heterocellular signal by sequestering IL-12, which provides an indirect fitness advantage. Normally, IL-12 signals via a receptor comprised of two components, IL12RB1 and IL12RB2, that are expressed in a 1:1 ratio and activates STAT4 as a downstream effector. Here, we report that B16F0 cells gain an intrinsic advantage by rewiring the canonical response to IL-12 to instead initiate PI3K-AKT signaling, which promotes cell survival. The data suggest a model where overexpressing one component of the IL-12 receptor, IL12RB2, enables melanoma cells to shift the functional response via both IL-12-mediated and molecular crowding-based IL12RB2 homodimerization. To explore the generalizability of these results, we also found that the expression of IL12RB2:IL12RB1 is similarly skewed in human melanoma based on transcriptional profiles of melanoma cells and tumor-infiltrating lymphocytes. Additional file 6: Video abstract. (MP4 600 kb).
Collapse
Affiliation(s)
- Christina N Byrne-Hoffman
- Department of Pharmaceutical Sciences; West Virginia University, 1 Medical Center Drive, Morgantown, 26506, WV, US
| | - Wentao Deng
- Department of Microbiology, Immunology, and Cell Biology; West Virginia University, 1 Medical Center Drive, Morgantown, 26506, WV, US
| | - Owen McGrath
- Department of Chemical and Biomedical Engineering; West Virginia University, 395 Evansdale Drive, Morgantown, 26506, WV, US
| | - Peng Wang
- Department of Pharmaceutical Sciences; West Virginia University, 1 Medical Center Drive, Morgantown, 26506, WV, US
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences; West Virginia University, 1 Medical Center Drive, Morgantown, 26506, WV, US
| | - David J Klinke
- Department of Microbiology, Immunology, and Cell Biology; West Virginia University, 1 Medical Center Drive, Morgantown, 26506, WV, US. .,Department of Chemical and Biomedical Engineering; West Virginia University, 395 Evansdale Drive, Morgantown, 26506, WV, US. .,WVU Cancer Institute; West Virginia University, 1 Medical Center Drive, Morgantown, 26506, WV, US.
| |
Collapse
|
134
|
Qiao J, He R, Yin Y, Tian L, Li L, Lian Z, Fang P, Liu Z. rIL-35 prevents murine transfusion-related acute lung injury by inhibiting the activation of endothelial cells. Transfusion 2020; 60:1434-1442. [PMID: 32452053 DOI: 10.1111/trf.15805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/15/2020] [Accepted: 03/15/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Transfusion-related acute lung injury (TRALI) is an important cause of death associated with transfusion, and no specific clinical treatments are available. Endothelial cells are believed to play an important role in the development of TRALI. This study investigated whether IL-35, an endothelial stabilizing cytokine could regulate the severity of antibody-mediated TRALI in vivo. STUDY DESIGN AND METHODS Human microvascular endothelial cells (HMVECs) were cultured in vitro, rIL-35(2 μg/mL) was added before HMVECs activation, and HMVECs were fully activated by LPS (0.5 μg/mL). Then cells were collected for flow cytometry analysis. We used a previously established "two-event" mouse model of TRALI with naive and lipopolysaccharide (LPS)-injected mice as controls. rIL-35(100 μg/kg) was injected into the tail vein for 3 consecutive days before the induction of the TRALI model. Samples were collected 2 hours after TRALI induction and tested for lung tissue myeloperoxidase activity, total protein levels, lung tissue histology, endothelial cell activation assay, and cytokine assay. RESULTS In vitro culture of HMVECs with rIL-35 verified that rIL-35 inhibited endothelial cells. In a mouse model, prophylactic administration of rIL-35 prevented pulmonary edema, increased lung protein levels, and reduced polymorphonuclear neutrophil accumulation in the lung. CONCLUSIONS This work suggests that antibody-mediated murine TRALI can be prevented by rIL-35, and that rIL-35 appears to work by inhibiting the activation of lung endothelial cells.
Collapse
Affiliation(s)
- Jiajia Qiao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China.,Key Laboratory of Transfusion Adverse Reactions, Chinese Academy of Medical Sciences, Chengdu, China
| | - Rui He
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China.,Key Laboratory of Transfusion Adverse Reactions, Chinese Academy of Medical Sciences, Chengdu, China
| | - Yonghua Yin
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China.,Key Laboratory of Transfusion Adverse Reactions, Chinese Academy of Medical Sciences, Chengdu, China
| | - Li Tian
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China.,Key Laboratory of Transfusion Adverse Reactions, Chinese Academy of Medical Sciences, Chengdu, China
| | - Ling Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China.,Key Laboratory of Transfusion Adverse Reactions, Chinese Academy of Medical Sciences, Chengdu, China
| | - Zhengqiu Lian
- The Third People's Hospital of Chengdu, Chengdu, China
| | - Peng Fang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China.,Key Laboratory of Transfusion Adverse Reactions, Chinese Academy of Medical Sciences, Chengdu, China.,School of Public Health, Anhui Medical University, Hefei, China
| | - Zhong Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China.,Key Laboratory of Transfusion Adverse Reactions, Chinese Academy of Medical Sciences, Chengdu, China
| |
Collapse
|
135
|
Fedele V, Melisi D. Permissive State of EMT: The Role of Immune Cell Compartment. Front Oncol 2020; 10:587. [PMID: 32391271 PMCID: PMC7189417 DOI: 10.3389/fonc.2020.00587] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
The Epithelial to Mesenchymal Transition (EMT) type 3 is a reversible dynamic process recognized as a major determinant of the metastatic event, although many questions regarding its role throughout this process remain unanswered. The ability of cancer cells to migrate and colonize distant organs is a key aspect of tumor progression and evolution, requiring constant tumor cells and tumor microenvironment (TME) changes, as well as constant changes affecting the cross-talk between the two aforementioned compartments. Alterations affecting tumor cells, such as transcription factors, trans-membrane receptors, chromatin remodeling complexes and metabolic pathways, leading to the disappearance of the epithelial phenotype and concomitant gaining of the undifferentiated mesenchymal phenotype are undoubtedly major players of the EMT process. However, several lines of evidence point out toward a more critical role of TME composition in creating an “EMT-permissive state.” The “EMT-permissive state” consists in changes affecting physical and biochemical properties (i.e., stiffness and/or hypoxia) as well as changes of the TME cellular component (i.e., immune-cell, blood vessel, lymphatic vessels, fibroblasts, and fat cells) that favor and induce the epithelial mesenchymal transition. In this mini review, we will discuss the role of the tumor microenvironment cellular component that are involved in supporting the EMT, with particular emphasis on the immune-inflammatory cells component.
Collapse
Affiliation(s)
- Vita Fedele
- Digestive Molecular Clinical Oncology Research Unit, Section of Medical Oncology, Università degli Studi di Verona, Verona, Italy
| | - Davide Melisi
- Digestive Molecular Clinical Oncology Research Unit, Section of Medical Oncology, Università degli Studi di Verona, Verona, Italy
| |
Collapse
|
136
|
Li W, Gao R, Xin T, Gao P. Different expression levels of interleukin-35 in asthma phenotypes. Respir Res 2020; 21:89. [PMID: 32295589 PMCID: PMC7160921 DOI: 10.1186/s12931-020-01356-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 04/06/2020] [Indexed: 12/24/2022] Open
Abstract
Background Interleukin (IL)-35 is a newly discovered inhibitory cytokine which is produced by regulatory B and T lymphocytes and belongs to the IL-12 family. It plays a suppressive role in human inflammatory diseases; however, its role in asthma phenotypes is unclear. Our study focuses on the sputum IL-35 level in patients and investigates different airway inflammation capacities of sputum IL-35 in patients with different asthma phenotypes. Objective We aimed to determine the sputum IL-35 levels in asthmatic patients with clinical remission phenotypes and control subjects and to investigate possible correlations among lung function, age, sex, fractional exhaled nitric oxide (FeNO), and smoking history in these phenotypes. Methods Sputum samples were collected from patients with clinical asthma remission (n = 89, 37 males, age 52.24 ± 13.32 years) and a healthy control group (n = 19, 9 males, age 44.58 ± 16.3 years). All subjects underwent sputum induction. Induced sputum was assessed for inflammatory cell count, and sputum levels of IL-35 and other cytokines were measured by ELISA and Cytometric Bead Array, respectively. Results Sputum IL-35 (median (q1, q3)) levels showed no significant difference between asthma patients (4.89 ng/mL (2.97, 22.75)) and healthy controls (6.01 ng/mL (4.09, 30.47)). However, the sputum IL-35 level was significantly reduced in patients with eosinophilic asthma (EA) (3.95 ng/mL (2.80, 11.00)) compared to patients with neutrophilic asthma (NA) (40.59 ng/mL (20.59, 65.06), p = 0.002), paucigranulocytic asthma (PA) (6.25 ng/mL (3.10, 24.60), p = 0.012), and mixed granulocytic asthma (MA) (22.54 ng/mL (2.58, 52.45), p = 0.026). IL-35 levels in sputum showed a positive correlation with sputum neutrophil cells and a negative correlation with FeNO, FEV1% predicted, and FVC predicted. Furthermore, sputum IL-35 had a significant positive association with Th1-related factors and a negative correlation with Th2-related factors. Conclusions Sputum IL-35 is likely involved in different pathophysiological mechanisms of NA and EA and exerts different effects in asthma phenotypes.
Collapse
Affiliation(s)
- Wei Li
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China
| | - Ruihan Gao
- Department of Medical Laboratory Technology, Beihua University, Jilin, 132013, Jilin, China
| | - Tong Xin
- Department of Respiratory, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Peng Gao
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China.
| |
Collapse
|
137
|
Dong Y, Li X, Yu Y, Lv F, Chen Y. JAK/STAT signaling is involved in IL-35-induced inhibition of hepatitis B virus antigen-specific cytotoxic T cell exhaustion in chronic hepatitis B. Life Sci 2020; 252:117663. [PMID: 32302624 DOI: 10.1016/j.lfs.2020.117663] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/23/2020] [Accepted: 04/09/2020] [Indexed: 12/19/2022]
Abstract
AIMS Interleukin-35 (IL-35) is a new member of the interleukin-12 family and is composed of the P35 and EB virus-inducible gene 3 subunits. The aims of this study were to examine the roles of IL-35 in the exhaustion of HBV-specific CTLs, as little as known on the subject. MAIN METHODS The relative levels of serum HBV markers were detected using automated biochemical techniques. The HBV DNA copies were measured by RT-qPCR. The expression of inhibitory receptors and the cell cytokines on the surface of CTLs were determined by flow cytometry. The pSTAT1-pSTAT4 protein levels expression was determined by flow cytometry, confocal microscopy and Western blot. KEY FINDINGS Our results showed that IL-35 can activate the Janus kinase 1 (JAK1)/tyrosine kinase 2 (TYK2)/signal transducer and activator of transcription 1 (STAT1)/STAT4 pathway in CTLs in vitro. Interferon-γ and tumor necrosis alpha-α expression increased in CTLs in the presence of a JAK/STAT-pathway blocker. In addition, we evaluated the expression of the exhaustion-associated molecules programmed death-1, cytotoxic T lymphocyte-associated protein-4, and lymphocyte activation gene-3 in CTLs after adding the JAK-STAT inhibitor The results showed that the expression of exhaustion-associated molecules on the CTL surface decreased after blocking the JAK-STAT pathway. IL-35 inhibited the function of HBV-specific CTLs through the JAK1/TYK2/STAT1/STAT4 pathway, and the function of CTLs was recovered after blocking the JAK/STAT pathway. SIGNIFICANCE These data provide a new experimental basis for immunotherapy for chronic hepatitis B.
Collapse
Affiliation(s)
- Yuejiao Dong
- Department of Laboratory Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Department of Laboratory Medicine, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China.
| | - Xuefen Li
- Department of Laboratory Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Department of Laboratory Medicine, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China
| | - Yanying Yu
- Department of Laboratory Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Department of Laboratory Medicine, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China
| | - Feifei Lv
- Department of Laboratory Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Department of Laboratory Medicine, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China
| | - Yu Chen
- Department of Laboratory Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Department of Laboratory Medicine, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
138
|
Xing H, Tian G. Increased Interleukin-35 suppresses peripheral CD14 + monocytes function in patients with Kawasaki disease. BMC Immunol 2020; 21:17. [PMID: 32276581 PMCID: PMC7149926 DOI: 10.1186/s12865-020-00348-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
Background Interleukin-35 (IL-35) is a newly identified IL-12 cytokine family member, which regulates the activity of immune cells in infectious diseases and autoimmune disorders. However, the regulatory function of IL-35 in Kawasaki disease is not well elucidated. Methods Thirty-three patients with Kawasaki disease and seventeen healthy controls were studied. Peripheral IL-35 concentration was measured by enzyme linked immunosorbent assay. CD14+ monocytes were purified, and mRNA expression of IL-35 receptor (IL-12Rβ2 and gp130) was semi-quantified by real-time polymerase chain reaction. CD14+ monocytes were stimulated with recombinant IL-35. The modulatory role of IL-35 treated CD14+ monocytes to naïve CD4+ T cell activation was investigated by flow cytometry. The influence of IL-35 to cytotoxicity of CD14+ monocytes was assessed by measuring target cell death, cytokine and granzyme secretion. Results Plasma IL-35 concentration was elevated in patients with Kawasaki disease. There was no significant differences of either IL-12Rβ2 or gp130 mRNA expression in CD14+ monocytes between Kawasaki disease patients and controls. IL-35 suppressed CD14+ monocytes induced naïve CD4+ T cell activation in Kawasaki disease, and this process required direct cell-to-cell contact. IL-35 also inhibited tumor necrosis factor-α and granzyme B secretion by CD14+ monocytes from patients with Kawasaki disease, however, only granzyme B was responsible for the cytotoxicity of CD14+ monocytes. Conclusions IL-35 played an important immunosuppressive role to CD14+ monocytes function in Kawasaki disease.
Collapse
Affiliation(s)
- Haijian Xing
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, Shaanxi Province, China.,Department of Cardiovascular Medicine, The Children's Hospital Affiliated to Xi'an Jiaotong University (Xi'an Children's Hospital), Xi'an, 710003, Shaanxi Province, China
| | - Gang Tian
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, Shaanxi Province, China.
| |
Collapse
|
139
|
Mossner S, Phan HT, Triller S, Moll JM, Conrad U, Scheller J. Multimerization strategies for efficient production and purification of highly active synthetic cytokine receptor ligands. PLoS One 2020; 15:e0230804. [PMID: 32236103 PMCID: PMC7112226 DOI: 10.1371/journal.pone.0230804] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/09/2020] [Indexed: 01/28/2023] Open
Abstract
Cytokine signaling is transmitted by cell surface receptors which act as natural biological switches to control cellular functions such as immune reactions. Recently, we have designed synthetic cytokine receptors (SyCyRs) consisting of green fluorescent protein (GFP)- and mCherry-nanobodies fused to the transmembrane and intracellular domains of cytokine receptors. Following stimulation with homo- and heterodimeric GFP-mCherry fusion proteins, the resulting receptors phenocopied signaling induced by physiologically occurring cytokines. GFP and mCherry fusion proteins were produced in E. coli or CHO-K1 cells, but the overall yield and stability was low. Therefore, we applied two alternative multimerization strategies and achieved immunoglobulin Fc-mediated dimeric and coiled-coil GCN4pII-mediated trimeric assemblies. GFP- and/or mCherry-Fc homodimers activated synthetic gp130 cytokine receptors, which naturally respond to Interleukin 6 family cytokines. Activation of these synthetic gp130 receptors resulted in STAT3 and ERK phosphorylation and subsequent proliferation of Ba/F3-gp130 cells. Half-maximal effective concentrations (EC50) of 8.1 ng/ml and 0.64 ng/ml were determined for dimeric GFP-Fc and mCherry-Fc, respectively. This is well within the expected EC50 range of the native cytokines. Moreover, we generated tetrameric and hexameric GFP-mCherry-Fc fusion proteins, which were also biologically active. This highlighted the importance of close juxtaposition of two cytokine receptors for efficient receptor activation. Finally, we used a trimeric GCN4pII motif to generate homo-trimeric GFP and mCherry complexes. These synthetic cytokines showed improved EC50 values (GFP3: 0.58 ng/ml; mCherrry3: 0.37 ng/ml), over dimeric Fc fused variants. In conclusion, we successfully generated highly effective and stable multimeric synthetic cytokine receptor ligands for activation of synthetic cytokine receptors.
Collapse
Affiliation(s)
- Sofie Mossner
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hoang T. Phan
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Stadt Seeland, Gatersleben, Germany
| | - Saskia Triller
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Stadt Seeland, Gatersleben, Germany
| | - Jens M. Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Udo Conrad
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Stadt Seeland, Gatersleben, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
140
|
Kamiya Y, Kikuchi T, Goto H, Okabe I, Takayanagi Y, Suzuki Y, Sawada N, Okabe T, Suzuki Y, Kondo S, Hayashi JI, Mitani A. IL-35 and RANKL Synergistically Induce Osteoclastogenesis in RAW264 Mouse Monocytic Cells. Int J Mol Sci 2020; 21:ijms21062069. [PMID: 32197293 PMCID: PMC7139320 DOI: 10.3390/ijms21062069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023] Open
Abstract
Interleukin (IL)-35 is an immunosuppressive cytokine mainly produced by regulatory T cells. IL-35 mediates immunological functions by suppressing the inflammatory immune response. However, the role of IL-35 in bone-destructive diseases remains unclear, especially in terms of osteoclastogenesis. Therefore, the current study investigated the synergistic effect of IL-35 on osteoclastogenesis that is involved the pathogeneses of periodontitis and rheumatoid arthritis. Osteoclastic differentiation and osteoclastogenesis of RAW264 (RAW) cells induced by receptor activator of nuclear factor (NF)-κB ligand (RANKL) and IL-35 were evaluated by tartrate-resistant acid phosphate staining, hydroxyapatite resorption assays, and quantitative polymerase chain reaction. The effect of IL-35 on RANKL-stimulated signaling pathways was assessed by Western blot analysis. Costimulation of RAW cells by RANKL and IL-35 induced osteoclastogenesis significantly compared with stimulation by RANKL alone. Phosphorylations of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase tended to be increased by RANKL and IL-35 compared with RANKL or IL-35 alone. Additionally, the osteoclastogenesis induced by RANKL and IL-35 was suppressed by inhibition of ERK. In this study, IL-35 and RANKL induced osteoclastogenesis synergistically. Previous reports have shown that IL-35 suppresses the differentiation of osteoclasts. Therefore, IL-35 might play dual roles of destruction and protection in osteoclastogenesis.
Collapse
|
141
|
Yang C, Mai H, Peng J, Zhou B, Hou J, Jiang D. STAT4: an immunoregulator contributing to diverse human diseases. Int J Biol Sci 2020; 16:1575-1585. [PMID: 32226303 PMCID: PMC7097918 DOI: 10.7150/ijbs.41852] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Signal transducer and activator of transcription 4 (STAT4) is a member of the STAT family and localizes to the cytoplasm. STAT4 is phosphorylated after a variety of cytokines bind to the membrane, and then dimerized STAT4 translocates to the nucleus to regulate gene expression. We reviewed the essential role played by STAT4 in a wide variety of cells and the pathogenesis of diverse human diseases, especially many kinds of autoimmune and inflammatory diseases, via activation by different cytokines through the Janus kinase (JAK)-STAT signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Deke Jiang
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, GuangZhou, China
| |
Collapse
|
142
|
Ye J, Wang Y, Wang Z, Liu L, Yang Z, Wang M, Xu Y, Ye D, Zhang J, Lin Y, Ji Q, Wan J. Roles and Mechanisms of Interleukin-12 Family Members in Cardiovascular Diseases: Opportunities and Challenges. Front Pharmacol 2020; 11:129. [PMID: 32194399 PMCID: PMC7064549 DOI: 10.3389/fphar.2020.00129] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/30/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular diseases represent a complex group of clinical syndromes caused by a variety of interacting pathological factors. They include the most extensive disease population and rank first in all-cause mortality worldwide. Accumulating evidence demonstrates that cytokines play critical roles in the presence and development of cardiovascular diseases. Interleukin-12 family members, including IL-12, IL-23, IL-27 and IL-35, are a class of cytokines that regulate a variety of biological effects; they are closely related to the progression of various cardiovascular diseases, including atherosclerosis, hypertension, aortic dissection, cardiac hypertrophy, myocardial infarction, and acute cardiac injury. This paper mainly discusses the role of IL-12 family members in cardiovascular diseases, and the molecular and cellular mechanisms potentially involved in their action in order to identify possible intervention targets for the prevention and clinical treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Jing Ye
- Hubei Key Laboratory of Cardiology, Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Yuan Wang
- Department of Thyroid Breast Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhen Wang
- Hubei Key Laboratory of Cardiology, Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Ling Liu
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zicong Yang
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Menglong Wang
- Hubei Key Laboratory of Cardiology, Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Yao Xu
- Hubei Key Laboratory of Cardiology, Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Di Ye
- Hubei Key Laboratory of Cardiology, Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Jishou Zhang
- Hubei Key Laboratory of Cardiology, Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Yingzhong Lin
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qingwei Ji
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jun Wan
- Hubei Key Laboratory of Cardiology, Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| |
Collapse
|
143
|
Mirlekar B, Michaud D, Lee SJ, Kren NP, Harris C, Greene K, Goldman EC, Gupta GP, Fields RC, Hawkins WG, DeNardo DG, Rashid NU, Yeh JJ, McRee AJ, Vincent BG, Vignali DAA, Pylayeva-Gupta Y. B cell-Derived IL35 Drives STAT3-Dependent CD8 + T-cell Exclusion in Pancreatic Cancer. Cancer Immunol Res 2020; 8:292-308. [PMID: 32024640 PMCID: PMC7056532 DOI: 10.1158/2326-6066.cir-19-0349] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/13/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is an aggressive malignancy characterized by a paucity of tumor-proximal CD8+ T cells and resistance to immunotherapeutic interventions. Cancer-associated mechanisms that elicit CD8+ T-cell exclusion and resistance to immunotherapy are not well-known. Here, using a Kras- and p53-driven model of PDA, we describe a mechanism of action for the protumorigenic cytokine IL35 through STAT3 activation in CD8+ T cells. Distinct from its action on CD4+ T cells, IL35 signaling in gp130+CD8+ T cells activated the transcription factor STAT3, which antagonized intratumoral infiltration and effector function of CD8+ T cells via suppression of CXCR3, CCR5, and IFNγ expression. Inhibition of STAT3 signaling in tumor-educated CD8+ T cells improved PDA growth control upon adoptive transfer to tumor-bearing mice. We showed that activation of STAT3 in CD8+ T cells was driven by B cell- but not regulatory T cell-specific production of IL35. We also demonstrated that B cell-specific deletion of IL35 facilitated CD8+ T-cell activation independently of effector or regulatory CD4+ T cells and was sufficient to phenocopy therapeutic anti-IL35 blockade in overcoming resistance to anti-PD-1 immunotherapy. Finally, we identified a circulating IL35+ B-cell subset in patients with PDA and demonstrated that the presence of IL35+ cells predicted increased occurrence of phosphorylated (p)Stat3+CXCR3-CD8+ T cells in tumors and inversely correlated with a cytotoxic T-cell signature in patients. Together, these data identified B cell-mediated IL35/gp130/STAT3 signaling as an important direct link to CD8+ T-cell exclusion and immunotherapy resistance in PDA.
Collapse
MESH Headings
- Animals
- Apoptosis/immunology
- B-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/therapy
- Case-Control Studies
- Cell Proliferation/physiology
- Humans
- Immunotherapy, Adoptive/methods
- Interleukins/genetics
- Interleukins/immunology
- Lymphocyte Activation
- Lymphocytes, Tumor-Infiltrating/immunology
- Mice
- Mice, Inbred C57BL
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/therapy
- Receptors, CCR5/genetics
- Receptors, CCR5/immunology
- Receptors, CXCR3/genetics
- Receptors, CXCR3/immunology
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/immunology
- Signal Transduction/immunology
- T-Lymphocytes, Regulatory/immunology
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Bhalchandra Mirlekar
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Daniel Michaud
- Department of Cell Biology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Samuel J Lee
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Nancy P Kren
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Cameron Harris
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Kevin Greene
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Emily C Goldman
- Department of Radiation Oncology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Gaorav P Gupta
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
- Department of Radiation Oncology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Ryan C Fields
- Department of Surgery, Barnes-Jewish Hospital and the Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - William G Hawkins
- Department of Surgery, Barnes-Jewish Hospital and the Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - David G DeNardo
- Department of Medicine, Barnes-Jewish Hospital and the Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - Naim U Rashid
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
- Department of Biostatistics, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Jen Jen Yeh
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
- Department of Surgery, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Autumn J McRee
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
- Department of Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Benjamin G Vincent
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
- Department of Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yuliya Pylayeva-Gupta
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina.
- Department of Genetics, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
144
|
Yang H, Han L, Zhou Y, Ding J, Cai Y, Hong R, Hao Y, Zhu D, Shen X, Guan Y. Lower serum interleukin-22 and interleukin-35 levels are associated with disease status in neuromyelitis optica spectrum disorders. CNS Neurosci Ther 2020; 26:251-259. [PMID: 31342670 PMCID: PMC6978267 DOI: 10.1111/cns.13198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 02/06/2023] Open
Abstract
AIMS The exact pathogenesis of neuromyelitis optica spectrum disorder (NMOSD) remains unclear. A variety of cytokines are involved, but few studies have been performed to explore the novel roles of interleukin-22 (IL-22) and interleukin-35 (IL-35) in NMOSD. Therefore, this study was designed to investigate serum levels of IL-22 and IL-35, and their correlations with clinical and laboratory characteristics in NMOSD. METHODS We performed a cross-section study, 18 patients with acute NMOSD, 23 patients with remission NMOSD, and 36 healthy controls were consecutively enrolled. Serum levels of IL-22 and IL-35 were measured by enzyme-linked immunosorbent assay (ELISA). The correlations between serum IL-22 and IL-35 levels and clinical and laboratory characteristics were evaluated by Spearman's rank or Pearson's correlation coefficient. RESULTS The serum levels of IL-22 and IL-35 were significantly lower in patients with acute NMOSD and remission NMOSD than in healthy controls (IL-22: 76.96 ± 13.62 pg/mL, 87.30 ± 12.79 pg/mL, and 94.02 ± 8.52 pg/mL, respectively, P < .0001; IL-35: 45.52 ± 7.04 pg/mL, 57.07 ± 7.68 pg/mL, and 60.05 ± 20.181 pg/mL, respectively, P < .0001). Serum levels of IL-35 were negatively correlated with EDSS scores and cerebrospinal fluid protein levels (r = -.5438, P = .0002 and r = -.3523, P = .0258, respectively) in all patients. CONCLUSIONS Lower serum levels of IL-22 and IL-35 are associated with disease status in NMOSD. Additionally, lower serum levels of IL-35 are associated with disease severity in NMOSD.
Collapse
Affiliation(s)
- Hong Yang
- Department of Neurology, The First Rehabilitation Hospital of Shanghai, School of MedicineTong Ji UniversityShanghaiChina
| | - Lu Han
- Department of Neurology, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Yun‐Jia Zhou
- Department of Neurology, The First Rehabilitation Hospital of Shanghai, School of MedicineTong Ji UniversityShanghaiChina
| | - Jie Ding
- Department of Neurology, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Yu Cai
- Department of Neurology, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Rong‐Hua Hong
- Department of Neurology, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Yong Hao
- Department of Neurology, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - De‐Sheng Zhu
- Department of Neurology, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Xia‐Feng Shen
- Department of Neurology, The First Rehabilitation Hospital of Shanghai, School of MedicineTong Ji UniversityShanghaiChina
| | - Yang‐Tai Guan
- Department of Neurology, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
145
|
Epigenetic histone modulation contributes to improvements in inflammatory bowel disease via EBI3. Cell Mol Life Sci 2020; 77:5017-5030. [PMID: 31955243 PMCID: PMC7658076 DOI: 10.1007/s00018-020-03451-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/10/2019] [Accepted: 01/02/2020] [Indexed: 02/08/2023]
Abstract
Ulcerative colitis (UC) is characterized by relapsing–remitting inflammatory episodes paralleled by varying cytokine levels, suggesting that switching epigenetic processes might be involved. However, the epigenetic impact on cytokine levels in colitis is mostly unexplored. The heterodimeric interleukin (IL)-12 cytokine family have various functions in both pro- and anti-inflammatory processes. The family member IL-35 (EBI3/IL-12p35) was recently reported to play an anti-inflammatory role in UC. Therefore, we aimed to investigate a possible epigenetic regulation of the IL-35 subunits in vitro and in vivo, and to examine the epigenetic targeting of EBI3 expression as a therapeutic option for UC. Exposure to either the pro-inflammatory TNFα or to histone deacetylase inhibitors (HDACi) significantly increased EBI3 expression in Human Colon Epithelial Cells (HCEC) generated from healthy tissue. When applied in combination, a drastic upregulation of EBI3 expression occurred, suggesting a synergistic mechanism. Consequently, IL-35 was increased as well. In vivo, the intestines of HDACi-treated wild-type mice exhibited reduced pathological signs of colitis compared to non-treated colitic mice. However, the improvement by HDACi treatment was completely lost in Ebi3-deficient mice (Ebi3−/−). In fact, HDACi appeared to exacerbate the disease phenotype in Ebi3−/−. In conclusion, our results reveal that under inflammatory conditions, EBI3 is upregulated by the epigenetic mechanism of histone acetylation. The in vivo data show that the deficiency of EBI3 plays a key role in colitis manifestation. Concordantly, our data suggest that conditions promoting histone acetylation, such as upon HDACi application, improve colitis by a mechanism involving the local formation of the anti-inflammatory cytokine IL-35.
Collapse
|
146
|
Zhou X, Xia N, Lv B, Tang T, Nie S, Zhang M, Jiao J, Liu J, Xu C, Hou G, Yang X, Hu Y, Liao Y, Cheng X. Interleukin 35 ameliorates myocardial ischemia‐reperfusion injury by activating the gp130‐STAT3 axis. FASEB J 2020; 34:3224-3238. [PMID: 31917470 DOI: 10.1096/fj.201901718rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Xingdi Zhou
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Key Laboratory of Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Ni Xia
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Key Laboratory of Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Bingjie Lv
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Key Laboratory of Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Tingting Tang
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Key Laboratory of Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Shaofang Nie
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Key Laboratory of Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Min Zhang
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Key Laboratory of Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Jiao Jiao
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Key Laboratory of Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Jianfeng Liu
- Sino‐France Laboratory of cellular signaling, Key Laboratory of Molecular Biophysics of Ministry of Education College of Life Science and Technology and Collaborative Innovation Center for Genetics and Development Huazhong University of Science and Technology Wuhan Hubei China
| | - Chanjuan Xu
- Sino‐France Laboratory of cellular signaling, Key Laboratory of Molecular Biophysics of Ministry of Education College of Life Science and Technology and Collaborative Innovation Center for Genetics and Development Huazhong University of Science and Technology Wuhan Hubei China
| | - Guofei Hou
- Sino‐France Laboratory of cellular signaling, Key Laboratory of Molecular Biophysics of Ministry of Education College of Life Science and Technology and Collaborative Innovation Center for Genetics and Development Huazhong University of Science and Technology Wuhan Hubei China
| | - Xiangping Yang
- School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Yu Hu
- Key Laboratory of Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Institute of Hematology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Yuhua Liao
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Key Laboratory of Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Xiang Cheng
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Key Laboratory of Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
147
|
Moghbeli M. Genetic and Molecular Biology of Multiple Sclerosis Among Iranian Patients: An Overview. Cell Mol Neurobiol 2020; 40:65-85. [PMID: 31482432 PMCID: PMC11448812 DOI: 10.1007/s10571-019-00731-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/24/2019] [Indexed: 12/16/2022]
Abstract
Multiple sclerosis (MS) is one if the common types of autoimmune disorders in developed countries. Various environmental and genetic factors are associated with initiation and progression of MS. It is believed that the life style changes can be one of the main environmental risk factors. The environmental factors are widely studied and reported, whereas minority of reports have considered the role of genetic factors in biology of MS. Although Iran is a low-risk country in the case of MS prevalence, it has been shown that there was a dramatically rising trend of MS prevalence among Iranian population during recent decades. Therefore, it is required to assess the probable MS risk factors in Iran. In the present study, we summarized all of the reported genes until now which have been associated with MS susceptibility among Iranian patients. To clarify the probable molecular biology of MS progression, we categorized these reported genes based on their cellular functions. This review paves the way of introducing a specific population-based diagnostic panel of genetic markers among the Iranian population for the first time in the world.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
148
|
Xu R, Shears RK, Sharma R, Krishna M, Webb C, Ali R, Wei X, Kadioglu A, Zhang Q. IL-35 is critical in suppressing superantigenic Staphylococcus aureus-driven inflammatory Th17 responses in human nasopharynx-associated lymphoid tissue. Mucosal Immunol 2020; 13:460-470. [PMID: 31896761 PMCID: PMC7181393 DOI: 10.1038/s41385-019-0246-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/08/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023]
Abstract
The human nasopharynx is frequently exposed to microbial pathogens, including superantigen-producing Staphylococcus aureus (SAg-Sau), which activates potent pro-inflammatory T cell responses. However, cellular mechanisms that control SAg-Sau-driven T cell activation are poorly understood. Using human nasopharynx-associated lymphoid tissue (NALT), we show that SAg-Sau drove a strong Th17 activation, which was associated with an impaired CD4+ T cell-mediated immune regulation. This impairment of immune control correlated with a significant downregulation of interleukin-35 (IL-35) expression in tonsillar CD4+ T cells by SAg-Sau. Supplementing recombinant IL-35 suppressed SAg-Sau-activated Th17 responses, and this IL-35-mediated suppression positively correlated with the level of Th17 activation. Interestingly, SAg-Sau stimulation induced Foxp3+ Treg expansion and interleukin-10 (IL-10) production, which effectively suppressed the Th1 response, but failed to control the activation of Th17 cells. Overall, our results reveal an aberrant T cell regulation on SAg-Sau-driven Th17 activation and identify IL-35 as a critical cytokine to control superantigenic S.aureus-activated Th17 responses.
Collapse
Affiliation(s)
- Rong Xu
- 0000 0004 1936 8470grid.10025.36Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Rebecca K. Shears
- 0000 0004 1936 8470grid.10025.36Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Ravi Sharma
- 0000 0001 0503 2798grid.413582.9ENT Department, Alder Hey Children’s Hospital, Liverpool, UK
| | - Madhan Krishna
- 0000 0001 0503 2798grid.413582.9ENT Department, Alder Hey Children’s Hospital, Liverpool, UK
| | - Christopher Webb
- 0000 0004 0421 1585grid.269741.fENT Department, Royal Liverpool and Broadgreen University Hospitals, Liverpool, UK
| | - Richard Ali
- 0000 0001 0807 5670grid.5600.3Institute of Tissue Engineering and Repair, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Xiaoqing Wei
- 0000 0001 0807 5670grid.5600.3Institute of Tissue Engineering and Repair, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Aras Kadioglu
- 0000 0004 1936 8470grid.10025.36Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Qibo Zhang
- 0000 0004 1936 8470grid.10025.36Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
149
|
Li X, Dong Y, Tu K, Wang W. Proteomics analysis reveals the interleukin-35-dependent regulatory mechanisms affecting CD8 + T-cell functions. Cell Immunol 2019; 348:104022. [PMID: 31879030 DOI: 10.1016/j.cellimm.2019.104022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 01/11/2023]
Abstract
Interleukin (IL)-35 strongly suppresses the immune effects of CD8+ T cells. However, the mechanisms mediating these effects are not clear. Here, we investigated the potential inhibitory mechanisms of IL-35 using proteomics technology. The changes of differentially expressed proteins (DEPs) were evaluated using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. IL-35 negatively regulated the expression of proteins in the biological processes category. GO analysis identified cellular immunosuppression regulation and external stimulation of regulatory proteins as pathways that were most affected by IL-35. Among the proteins regulated in these pathways, cell-matrix adhesion junction and anchoring junction proteins were more abundant. KEGG pathway analysis showed that cytochrome c and IL-12A were significantly altered. DEPs were related to cell signaling, migration, inhibition, apoptosis, and enrichment of arachidonic acid metabolism. These findings improved our understanding of the roles of IL-35 in inhibition of CD8+ T cells.
Collapse
Affiliation(s)
- Xuefen Li
- Department of Laboratory Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, The First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Yuejiao Dong
- Department of Laboratory Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, The First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Kexin Tu
- Department of Laboratory Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, The First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Weilin Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China; Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
| |
Collapse
|
150
|
Zhao M, Gu J, Wang Z. B cells in Crohn's patients presented reduced IL-35 expression capacity. Mol Immunol 2019; 118:124-131. [PMID: 31874344 DOI: 10.1016/j.molimm.2019.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/02/2019] [Accepted: 12/10/2019] [Indexed: 10/25/2022]
Abstract
Interleukin (IL)-35 has capacity to ameliorate experimental colitis and is upregulated in immune cells from active Crohn's disease (CD) patients. Nonetheless, CD continues to be an incurable disease with characteristics of chronic relapsing-remitting inflammation. In this study, we investigated the production of IL-35 by B cells from active CD patients and non-CD controls. Immediately ex vivo, the mRNA transcription of IL-12/IL-35 subunit IL12A was significantly higher in CD B cells than in control B cells, and the mRNA transcription of IL-27/IL-35 subunit EBI3 was significantly higher in mild CD and moderate CD B cells than in control B cells. However, we also found that CpG-activated B cells and BCR + CD40-activated B cells from CD subjects presented significantly lower IL12A and lower EBI3 transcription than their counterparts from control subjects. We further evaluated IL-35 protein secretion and confirmed that B cell-mediated IL-35 protein secretion was lower in CD patients than in controls. However, IL-35-Fc preconditioning was able to significantly increase IL-35 production from B cells and to eliminate the difference in IL-35 production capacity between controls and CD patients. Furthermore, these IL-35-Fc-preconditioned B cells were able to suppress IFN-γ and IL-17 production from CD4+CD25- T cells more potently than Fc control-preconditioned B cells. Rh IL-27Rα-Fc, a soluble form of B cell-specific IL-35 receptor, significantly increased IFN-γ and IL-17 production. Together, these data supported a role of B cell-mediated IL-35 in suppressing IFN-γ and IL-17 inflammation. However, despite the fact that CD B cells presented higher transcription of IL-35 subunits directly ex vivo, CD B cells also presented reduced capacity for further IL-35 production upon activation.
Collapse
Affiliation(s)
- Mingning Zhao
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Gu
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhongchuan Wang
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|