101
|
Abstract
The extracellular matrix is part of the microenvironment and its functions are associated with the physical and chemical properties of the tissue. Among the extracellular components, the glycosaminoglycan hyaluronan is a key component, defining both the physical and biochemical characteristics of the healthy matrices. The hyaluronan metabolism is strictly regulated in physiological conditions, but in the tumoral tissues, its expression, size and binding proteins interaction are dysregulated. Hyaluronan from the tumor microenvironment promotes tumor cell proliferation, invasion, immune evasion, stemness alterations as well as drug resistance. This chapter describes data regarding novel concepts of hyaluronan functions in the tumor. Additionally, we discuss potential clinical applications of targeting HA metabolism in cancer therapy.
Collapse
|
102
|
Sabri AH, Kim Y, Marlow M, Scurr DJ, Segal J, Banga AK, Kagan L, Lee JB. Intradermal and transdermal drug delivery using microneedles - Fabrication, performance evaluation and application to lymphatic delivery. Adv Drug Deliv Rev 2020; 153:195-215. [PMID: 31634516 DOI: 10.1016/j.addr.2019.10.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/26/2019] [Accepted: 10/15/2019] [Indexed: 12/20/2022]
Abstract
The progress in microneedle research is evidenced by the transition from simple 'poke and patch' solid microneedles fabricated from silicon and stainless steel to the development of bioresponsive systems such as hydrogel-forming and dissolving microneedles. In this review, we provide an outline on various microneedle fabrication techniques which are currently employed. As a range of factors, including materials, geometry and design of the microneedles, affect the performance, it is important to understand the relationships between them and the resulting delivery of therapeutics. Accordingly, there is a need for appropriate methodologies and techniques for characterization and evaluation of microneedle performance, which will also be discussed. As the research expands, it has been observed that therapeutics delivered via microneedles has gained expedited access to the lymphatics, which makes them a favorable delivery method for targeting the lymphatic system. Such opportunity is valuable in the area of vaccination and treatment of lymphatic disorders, which is the final focus of the review.
Collapse
|
103
|
Targeting Tumor Endothelial Cells with Nanoparticles. Int J Mol Sci 2019; 20:ijms20235819. [PMID: 31756900 PMCID: PMC6928777 DOI: 10.3390/ijms20235819] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Because angiogenesis is a major contributor to cancer progression and metastasis, it is an attractive target for cancer therapy. Although a diverse number of small compounds for anti-angiogenic therapy have been developed, severe adverse effects commonly occur, since small compounds can affect not only tumor endothelial cells (TECs), but also normal endothelial cells. This low selectivity for TECs has motivated researchers to develop alternate types of drug delivery systems (DDSs). In this review, we summarize the current state of knowledge concerning the delivery of nano DDSs to TECs. Their payloads range from small compounds to nucleic acids. Perspectives regarding new therapeutic targets are also mentioned.
Collapse
|
104
|
Saxena V, Li L, Paluskievicz C, Kasinath V, Bean A, Abdi R, Jewell CM, Bromberg JS. Role of lymph node stroma and microenvironment in T cell tolerance. Immunol Rev 2019; 292:9-23. [PMID: 31538349 PMCID: PMC6935411 DOI: 10.1111/imr.12799] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/22/2019] [Indexed: 12/12/2022]
Abstract
Lymph nodes (LNs) are at the cross roads of immunity and tolerance. These tissues are compartmentalized into specialized niche areas by lymph node stromal cells (LN SCs). LN SCs shape the LN microenvironment and guide immunological cells into different zones through establishment of a CCL19 and CCL21 gradient. Following local immunological cues, LN SCs modulate activity to support immune cell priming, activation, and fate. This review will present our current understanding of LN SC subsets roles in regulating T cell tolerance. Three major types of LN SC subsets, namely fibroblastic reticular cells, lymphatic endothelial cells, and blood endothelial cells, are discussed. These subsets serve as scaffolds to support and regulate T cell homeostasis. They contribute to tolerance by presenting peripheral tissue antigens to both CD4 and CD8 T cells. The role of LN SCs in regulating T cell migration and tolerance induction is discussed. Looking forward, recent advances in bioengineered materials and approaches to leverage LN SCs to induce T cell tolerance are highlighted, as are current clinical practices that allow for manipulation of the LN microenvironment to induce tolerance. Increased understanding of LN architecture, how different LN SCs integrate immunological cues and shape immune responses, and approaches to induce T cell tolerance will help further combat autoimmune diseases and graft rejection.
Collapse
Affiliation(s)
- Vikas Saxena
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Lushen Li
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Christina Paluskievicz
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Vivek Kasinath
- Transplantation Research Center, Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Asher Bean
- Transplantation Research Center, Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Reza Abdi
- Transplantation Research Center, Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher M. Jewell
- Fischell Department of Bioengineering, Robert E. Fischell Institute for Biomedical Devices University of Maryland, College Park, MD 20742, USA
- United States Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD 21201, USA
| | - Jonathan S. Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
105
|
Arokiasamy S, King R, Boulaghrasse H, Poston RN, Nourshargh S, Wang W, Voisin MB. Heparanase-Dependent Remodeling of Initial Lymphatic Glycocalyx Regulates Tissue-Fluid Drainage During Acute Inflammation in vivo. Front Immunol 2019; 10:2316. [PMID: 31636638 PMCID: PMC6787176 DOI: 10.3389/fimmu.2019.02316] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/12/2019] [Indexed: 11/13/2022] Open
Abstract
The glycocalyx is a dense layer of carbohydrate chains involved in numerous and fundamental biological processes, such as cellular and tissue homeostasis, inflammation and disease development. Composed of membrane-bound glycoproteins, sulfated proteoglycans and glycosaminoglycan side-chains, this structure is particularly essential for blood vascular barrier functions and leukocyte diapedesis. Interestingly, whilst the glycocalyx of blood vascular endothelium has been extensively studied, little is known about the composition and function of this glycan layer present on tissue-associated lymphatic vessels (LVs). Here, we applied confocal microscopy to characterize the composition of endothelial glycocalyx of initial lymphatic capillaries in murine cremaster muscles during homeostatic and inflamed conditions using an anti-heparan sulfate (HS) antibody and a panel of lectins recognizing different glycan moieties of the glycocalyx. Our data show the presence of HS, α-D-galactosyl moieties, α2,3-linked sialic acids and, to a lesser extent, N-Acetylglucosamine moieties. A similar expression profile was also observed for LVs of mouse and human skins. Interestingly, inflammation of mouse cremaster tissues or ear skin as induced by TNF-stimulation induced a rapid (within 16 h) remodeling of the LV glycocalyx, as observed by reduced expression of HS and galactosyl moieties, whilst levels of α2,3-linked sialic acids remains unchanged. Furthermore, whilst this response was associated with neutrophil recruitment from the blood circulation and their migration into tissue-associated LVs, specific neutrophil depletion did not impact LV glycocalyx remodeling. Mechanistically, treatment with a non-anticoagulant heparanase inhibitor suppressed LV HS degradation without impacting neutrophil migration into LVs. Interestingly however, inhibition of glycocalyx degradation reduced the capacity of initial LVs to drain interstitial fluid during acute inflammation. Collectively, our data suggest that rapid remodeling of endothelial glycocalyx of tissue-associated LVs supports drainage of fluid and macromolecules but has no role in regulating neutrophil trafficking out of inflamed tissues via initial LVs.
Collapse
Affiliation(s)
- Samantha Arokiasamy
- Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London, United Kingdom
| | - Ross King
- Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Hidayah Boulaghrasse
- Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Robin N. Poston
- Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Sussan Nourshargh
- Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Wen Wang
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London, United Kingdom
| | - Mathieu-Benoit Voisin
- Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
106
|
Liang Q, Zhang L, Wood RW, Ji RC, Boyce BF, Schwarz EM, Wang Y, Xing L. Avian Reticuloendotheliosis Viral Oncogene Related B Regulates Lymphatic Endothelial Cells during Vessel Maturation and Is Required for Lymphatic Vessel Function in Adult Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:2516-2530. [PMID: 31539516 DOI: 10.1016/j.ajpath.2019.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 08/05/2019] [Accepted: 08/22/2019] [Indexed: 12/16/2022]
Abstract
NF-κB signals through canonical transcription factor p65 (RelA)/p50 and noncanonical avian reticuloendotheliosis viral oncogene related B (RelB)/p52 pathways. The RelA/p50 is involved in basal and inflammatory lymphangiogenesis. However, the role of RelB/p52 in lymphatic vessel biology is unknown. Herein, we investigated changes in lymphatic vessels (LVs) in mice deficient in noncanonical NF-κB signaling and the function of RelB in lymphatic endothelial cells (LECs). LVs were examined in Relb-/-, p52-/-, or control mice, and the gene expression profiles in LECs with RelB knockdown. Relb-/-, but not p52-/-, mice exhibited multiple LV abnormalities. They include the following: i) increased capillary vessel diameter, ii) reduced smooth muscle cell (SMC) coverage of mature vessels, iii) leakage, and iv) loss of active and passive lymphatic flow. Relb-/- mature LVs had thinner vessel walls, more apoptotic LECs and SMCs, and fewer LEC junctions. RelB knockdown LECs had decreased growth, survival, and adhesion, and dysregulated signaling pathways involving these cellular events. These results suggest that Relb-/- mice have abnormal LVs, mainly in mature vessels with reduced SMC coverage, leakage, and loss of contractions. RelB knockdown in LECs leads to reduced growth, survival, and adhesion. RelB plays a vital role in LEC-mediated LV maturation and function.
Collapse
Affiliation(s)
- Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Li Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Ronald W Wood
- Department of Obstetrics and Gynecology, Urology, and Neurobiology and Anatomy, University of Rochester Medical Center, Rochester, New York
| | | | - Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York; Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York
| | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York; Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York.
| |
Collapse
|
107
|
Sun M, Puri S, Mutoji KN, Coulson-Thomas YM, Hascall VC, Jackson DG, Gesteira TF, Coulson-Thomas VJ. Hyaluronan Derived From the Limbus is a Key Regulator of Corneal Lymphangiogenesis. Invest Ophthalmol Vis Sci 2019; 60:1050-1062. [PMID: 30897620 PMCID: PMC6432804 DOI: 10.1167/iovs.18-25920] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose We recently reported that the glycosaminoglycan hyaluronan (HA), which promotes inflammatory angiogenesis in other vascular beds, is an abundant component of the limbal extracellular matrix. Consequently, we have explored the possibility that HA contributes to lymphangiogenesis in the inflamed cornea. Methods To study the role of HA on lymphangiogenesis, we used mice lacking the hyaluronan synthases and injury models that induce lymphangiogenesis. Results Here we report that HA regulates corneal lymphangiogenesis, both during post-natal development and in response to adult corneal injury. Furthermore, we show that injury to the cornea by alkali burn upregulates both HA production and lymphangiogenesis and that these processes are ablated in HA synthase 2 deficient mice. Conclusion These findings raise the possibility that therapeutic blockade of HA-mediated lymphangiogenesis might prevent the corneal scarring and rejection that frequently results from corneal transplantation.
Collapse
Affiliation(s)
- Mingxia Sun
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Sudan Puri
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Kazadi N Mutoji
- College of Optometry, University of Houston, Houston, Texas, United States
| | | | | | - David G Jackson
- MRC Human Immunology Unit, University of Oxford, Oxford, United Kingdom
| | - Tarsis F Gesteira
- College of Optometry, University of Houston, Houston, Texas, United States.,Universidade Federal de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
108
|
Serum sLYVE-1 is not associated with coronary disease but with renal dysfunction: a retrospective study. Sci Rep 2019; 9:10816. [PMID: 31346234 PMCID: PMC6658538 DOI: 10.1038/s41598-019-47367-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 07/16/2019] [Indexed: 01/14/2023] Open
Abstract
Recent evidence has indicated that the lymphatic vessel endothelial hyaluronan receptor (LYVE-1) is implicated in chronic inflammation and the lymphatic immune response. The soluble form of LYVE-1 (sLYVE-1) is produced by ectodomain shedding of LYVE-1 under pathological conditions including cancer and chronic inflammation. In this study, 1014 consecutive patients who underwent coronary angiography from May 2015 to September 2015 were included to investigate whether serum sLYVE-1 is associated with coronary artery disease (CAD) and its concomitant diseases includes chronic kidney disease (CKD). Results showed that there was no significant difference in sLYVE-1 levels between patients with CAD and without. However, a significantly higher level of sLYVE-1 was seen in patients with renal dysfunction compared to those with a normal eGFR. Results were validated in a separate cohort of 259 patients who were divided into four groups based on their kidney function assessed by estimated glomerular filtration rate (eGFR). Simple bivariate correlation analysis revealed that Lg[sLYVE-1] was negatively correlated with eGFR (r = −0.358, p < 0.001) and cystatin C (r = 0.303, p < 0.001). Multivariable logistic regression analysis revealed that the increase in Lg[sLYVE-1] was an independent determinant of renal dysfunction (odds ratio = 1.633, p = 0.007). Therefore, renal function should be considered when serum sLYVE-1 is used as a biomarker for the detection of pathological conditions such as chronic inflammation and cancer. Further study is required to elucidate the exact role of sLYVE-1 in renal function.
Collapse
|
109
|
Tsepkolenko A, Tsepkolenko V, Dash S, Mishra A, Bader A, Melerzanov A, Giri S. The regenerative potential of skin and the immune system. Clin Cosmet Investig Dermatol 2019; 12:519-532. [PMID: 31410045 PMCID: PMC6643261 DOI: 10.2147/ccid.s196364] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 05/22/2019] [Indexed: 12/11/2022]
Abstract
Skin has the natural ability to heal and replace dead cells regulated by a network of complex immune processes. This ability is conferred by the population of resident immune cells that act in coordination with other players to provide a homeostatic environment under constant challenge. Other than providing structure and integrity, the epidermis and dermis also house distinct immune properties. The dermal part is represented by fibroblasts and endothelial cells followed by an array of immune cells which includes dendritic cells (DCs), macrophages, mast cells, NK-cells, neutrophils, basophils, eosinophils, αβ T lymphocytes, B-cells and platelets. On the other hand, the functionally active immune cells in the epidermis comprise keratinocytes, DCs, NKT-cells, γδ T cells and αβ T cells (CD4+ and CD8+). Keratinocytes create a unique microenvironment for the cells of the immune system by promoting immune recognition and cellular differentiation. T lymphocytes exhibit tissue-specific tropism toward the epidermis and the lymphatic drainage system important for their function in immune regulation. This diversity in immune regulators makes the skin a unique organ to overcome pathogenic or foreign invasion. In addition, the highly coordinated molecular events make the skin an attractive model to understand and explore its regenerative potential.
Collapse
Affiliation(s)
| | | | - Sabyasachi Dash
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10044, USA
| | - Apoorva Mishra
- Moscow Institute of Physics and Technology
, Dolgoprudny, Moscow Region141700, Russia
| | - Augustinus Bader
- Applied Stem Cell Biology and Cell Technology, Biomedical and Biotechnological Center (BBZ), Medical Faculty, University of Leipzig, Leipzig, D-04103, Germany
| | - Alexander Melerzanov
- Moscow Institute of Physics and Technology
, Dolgoprudny, Moscow Region141700, Russia
| | - Shibashish Giri
- Applied Stem Cell Biology and Cell Technology, Biomedical and Biotechnological Center (BBZ), Medical Faculty, University of Leipzig, Leipzig, D-04103, Germany
- Department of Plastic and Hand Surgery, University Hospital Rechts der Isar, Munich Technical University, Munich, Germany
| |
Collapse
|
110
|
Hos D, Matthaei M, Bock F, Maruyama K, Notara M, Clahsen T, Hou Y, Le VNH, Salabarria AC, Horstmann J, Bachmann BO, Cursiefen C. Immune reactions after modern lamellar (DALK, DSAEK, DMEK) versus conventional penetrating corneal transplantation. Prog Retin Eye Res 2019; 73:100768. [PMID: 31279005 DOI: 10.1016/j.preteyeres.2019.07.001] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022]
Abstract
In the past decade, novel lamellar keratoplasty techniques such as Deep Anterior Lamellar Keratoplasty (DALK) for anterior keratoplasty and Descemet stripping automated endothelial keratoplasty (DSAEK)/Descemet membrane endothelial keratoplasty (DMEK) for posterior keratoplasty have been developed. DALK eliminates the possibility of endothelial allograft rejection, which is the main reason for graft failure after penetrating keratoplasty (PK). Compared to PK, the risk of endothelial graft rejection is significantly reduced after DSAEK/DMEK. Thus, with modern lamellar techniques, the clinical problem of endothelial graft rejection seems to be nearly solved in the low-risk situation. However, even with lamellar grafts there are epithelial, subepithelial and stromal immune reactions in DALK and endothelial immune reactions in DSAEK/DMEK, and not all keratoplasties can be performed in a lamellar fashion. Therefore, endothelial graft rejection in PK is still highly relevant, especially in the "high-risk" setting, where the cornea's (lymph)angiogenic and immune privilege is lost due to severe inflammation and pathological neovascularization. For these eyes, currently available treatment options are still unsatisfactory. In this review, we will describe currently used keratoplasty techniques, namely PK, DALK, DSAEK, and DMEK. We will summarize their indications, provide surgical descriptions, and comment on their complications and outcomes. Furthermore, we will give an overview on corneal transplant immunology. A specific focus will be placed on endothelial graft rejection and we will report on its incidence, clinical presentation, and current/future treatment and prevention options. Finally, we will speculate how the field of keratoplasty and prevention of corneal allograft rejection will develop in the future.
Collapse
Affiliation(s)
- Deniz Hos
- Department of Ophthalmology, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Mario Matthaei
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Felix Bock
- Department of Ophthalmology, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Kazuichi Maruyama
- Department of Innovative Visual Science, Graduate School of Medicine, Osaka University, Japan
| | - Maria Notara
- Department of Ophthalmology, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Thomas Clahsen
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Yanhong Hou
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Viet Nhat Hung Le
- Department of Ophthalmology, University of Cologne, Cologne, Germany; Department of Ophthalmology, Hue College of Medicine and Pharmacy, Hue University, Viet Nam
| | | | - Jens Horstmann
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Bjoern O Bachmann
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
111
|
Pei G, Yao Y, Yang Q, Wang M, Wang Y, Wu J, Wang P, Li Y, Zhu F, Yang J, Zhang Y, Yang W, Deng X, Zhao Z, Zhu H, Ge S, Han M, Zeng R, Xu G. Lymphangiogenesis in kidney and lymph node mediates renal inflammation and fibrosis. SCIENCE ADVANCES 2019; 5:eaaw5075. [PMID: 31249871 PMCID: PMC6594767 DOI: 10.1126/sciadv.aaw5075] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/22/2019] [Indexed: 06/01/2023]
Abstract
Lymphangiogenesis is associated with chronic kidney disease (CKD) and occurs following kidney transplant. Here, we demonstrate that expanding lymphatic vessels (LVs) in kidneys and corresponding renal draining lymph nodes (RDLNs) play critical roles in promoting intrarenal inflammation and fibrosis following renal injury. Our studies show that lymphangiogenesis in the kidney and RDLN is driven by proliferation of preexisting lymphatic endothelium expressing the essential C-C chemokine ligand 21 (CCL21). New injury-induced LVs also express CCL21, stimulating recruitment of more CCR7+ dendritic cells (DCs) and lymphocytes into both RDLNs and spleen, resulting in a systemic lymphocyte expansion. Injury-induced intrarenal inflammation and fibrosis could be attenuated by blocking the recruitment of CCR7+ cells into RDLN and spleen or inhibiting lymphangiogenesis. Elucidating the role of lymphangiogenesis in promoting intrarenal inflammation and fibrosis provides a key insight that can facilitate the development of novel therapeutic strategies to prevent progression of CKD-associated fibrosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Rui Zeng
- Corresponding author. (G.X.); (R.Z.)
| | - Gang Xu
- Corresponding author. (G.X.); (R.Z.)
| |
Collapse
|
112
|
Abstract
Lymphatic vessels collect interstitial fluid that has extravasated from blood vessels and return it to the circulatory system. Another important function of the lymphatic network is to facilitate immune cell migration and antigen transport from the periphery to draining lymph nodes. This migration plays a crucial role in immune surveillance, initiation of immune responses and tolerance. Here we discuss the significance and mechanisms of lymphatic migration of innate and adaptive immune cells in homeostasis, inflammation and cancer.
Collapse
Affiliation(s)
| | - Tatyana Chtanova
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Faculty of Medicine, St. Vincent's Clinical School, University of New South Wales Sydney, Kensington, NSW, Australia
| |
Collapse
|
113
|
Garnier L, Gkountidi AO, Hugues S. Tumor-Associated Lymphatic Vessel Features and Immunomodulatory Functions. Front Immunol 2019; 10:720. [PMID: 31024552 PMCID: PMC6465591 DOI: 10.3389/fimmu.2019.00720] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/18/2019] [Indexed: 12/21/2022] Open
Abstract
The lymphatic system comprises a network of lymphoid tissues and vessels that drains the extracellular compartment of most tissues. During tumor development, lymphatic endothelial cells (LECs) substantially expand in response to VEGFR-3 engagement by VEGF-C produced in the tumor microenvironment, a process known as tumor-associated lymphangiogenesis. Lymphatic drainage from the tumor to the draining lymph nodes consequently increases, powering interstitial flow in the tumor stroma. The ability of a tumor to induce and activate lymphatic growth has been positively correlated with metastasis. Much effort has been made to identify genes responsible for tumor-associated lymphangiogenesis. Inhibition of lymphangiogenesis with soluble VEGFR-3 or with specific monoclonal antibodies decreases tumor spread to LNs in rodent models. Importantly, tumor-associated lymphatics do not only operate as tumor cell transporters but also play critical roles in anti-tumor immunity. Therefore, metastatic as well as primary tumor progression can be affected by manipulating tumor-associated lymphatic remodeling or function. Here, we review and discuss our current knowledge on the contribution of LECs immersed in the tumor microenvironment as immunoregulators, as well as a possible functional remodeling of LECs subsets depending on the organ microenvironment.
Collapse
Affiliation(s)
- Laure Garnier
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Anastasia-Olga Gkountidi
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Stephanie Hugues
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
114
|
Jackson DG. Leucocyte Trafficking via the Lymphatic Vasculature- Mechanisms and Consequences. Front Immunol 2019; 10:471. [PMID: 30923528 PMCID: PMC6426755 DOI: 10.3389/fimmu.2019.00471] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 02/21/2019] [Indexed: 01/15/2023] Open
Abstract
The lymphatics fulfill a vital physiological function as the conduits through which leucocytes traffic between the tissues and draining lymph nodes for the initiation and modulation of immune responses. However, until recently many of the molecular mechanisms controlling such migration have been unclear. As a result of careful research, it is now apparent that the process is regulated at multiple stages from initial leucocyte entry and intraluminal crawling in peripheral tissue lymphatics, through to leucocyte exit in draining lymph nodes where the migrating cells either participate in immune responses or return to the circulation via efferent lymph. Furthermore, it is increasingly evident that most if not all leucocyte populations migrate in lymph and that such migration is not only important for immune modulation, but also for the timely repair and resolution of tissue inflammation. In this article, I review the latest research findings in these areas, arising from new insights into the distinctive ultrastructure of lymphatic capillaries and lymph node sinuses. Accordingly, I highlight the emerging importance of the leucocyte glycocalyx and its novel interactions with the endothelial receptor LYVE-1, the intricacies of endothelial chemokine secretion and sequestration that direct leucocyte trafficking and the significance of the process for normal immune function and pathology.
Collapse
Affiliation(s)
- David G Jackson
- MRC Human Immunology Unit, Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
115
|
Enhanced transdermal lymphatic delivery of doxorubicin via hyaluronic acid based transfersomes/microneedle complex for tumor metastasis therapy. Int J Biol Macromol 2019; 125:9-16. [DOI: 10.1016/j.ijbiomac.2018.11.230] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/07/2018] [Accepted: 11/25/2018] [Indexed: 11/21/2022]
|
116
|
Hyaluronan biology: A complex balancing act of structure, function, location and context. Matrix Biol 2019; 78-79:1-10. [PMID: 30802498 DOI: 10.1016/j.matbio.2019.02.002] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 02/07/2023]
Abstract
Cell-matrix interactions are fundamental to many developmental, homeostatic, immune and pathologic processes. Hyaluronan (HA), a critical component of the extracellular matrix (ECM) that regulates normal structural integrity and development, also regulates tissue responses during injury, repair, and regeneration. Though simple in its primary structure, HA regulates biological responses in a highly complex manner with balanced contributions from its molecular size and concentration, synthesis versus enzymatic and/or oxidative-nitrative fragmentation, interactions with key HA binding proteins and cell associated receptors, and its cell context-specific signaling. This review highlights the different, but inter-related factors that dictate the biological activity of HA and introduces the overarching themes that weave throughout this special issue of Matrix Biology on hyaluronan.
Collapse
|
117
|
Abstract
PURPOSE OF REVIEW To evaluate role of the lymph node in immune regulation and tolerance in transplantation and recent advances in the delivery of antigen and immune modulatory signals to the lymph node. RECENT FINDINGS Lymph nodes are a primary site of immune cell priming, activation, and modulation, and changes within the lymph node microenvironment have the potential to induce specific regulation, suppression, and potentially tolerance. Antigen enters the lymph node either from tissues via lymphatics, from blood via high endothelial venules, or directly via injection. Here we review different techniques and materials to deliver antigen to the lymph node including microparticles or nanoparticles, ex-vivo antigen presenting cell manipulation, and use of receptor conjugation for specific intralymph node targeting locations. SUMMARY The promising results point to powerful techniques to harness the lymph node microenvironment and direct systemic immune regulation. The materials, techniques, and approaches suggest that translational and clinical trials in nonhuman primate and patients may soon be possible.
Collapse
|
118
|
Cho H, Shen GQ, Wang X, Wang F, Archacki S, Li Y, Yu G, Chakrabarti S, Chen Q, Wang QK. Long noncoding RNA ANRIL regulates endothelial cell activities associated with coronary artery disease by up-regulating CLIP1, EZR, and LYVE1 genes. J Biol Chem 2019; 294:3881-3898. [PMID: 30655286 DOI: 10.1074/jbc.ra118.005050] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 01/11/2019] [Indexed: 12/15/2022] Open
Abstract
Coronary artery disease (CAD) is the leading cause of death worldwide. Long noncoding RNAs (lncRNAs) are a class of noncoding transcripts of > 200 nucleotides and are increasingly recognized as playing functional roles in physiology and disease. ANRIL is an lncRNA gene mapped to the chromosome 9p21 genetic locus for CAD identified by the first series of genome-wide association studies (GWAS). However, ANRIL's role in CAD and the underlying molecular mechanism are unknown. Here, we show that the major ANRIL transcript in endothelial cells (ECs) is DQ485454 with a much higher expression level in ECs than in THP-1 monocytes. Of note, DQ485454 expression was down-regulated in CAD coronary arteries compared with non-CAD arteries. DQ485454 overexpression significantly reduced monocyte adhesion to ECs, transendothelial monocyte migration (TEM), and EC migration, which are critical cellular processes involved in CAD initiation, whereas siRNA-mediated ANRIL knockdown (KD) had the opposite effect. Microarray and follow-up quantitative RT-PCR analyses revealed that the ANRIL KD down-regulated expression of AHNAK2, CLIP1, CXCL11, ENC1, EZR, LYVE1, WASL, and TNFSF10 genes and up-regulated TMEM100 and TMEM106B genes. Mechanistic studies disclosed that overexpression of CLIP1, EZR, and LYVE1 reversed the effects of ANRIL KD on monocyte adhesion to ECs, TEM, and EC migration. These findings indicate that ANRIL regulates EC functions directly related to CAD, supporting the hypothesis that ANRIL is involved in CAD pathogenesis at the 9p21 genetic locus and identifying a molecular mechanism underlying lncRNA-mediated regulation of EC function and CAD development.
Collapse
Affiliation(s)
- Hyosuk Cho
- From the Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio 44106.,the Departments of Cardiovascular and Metabolic Sciences and.,the Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195, and
| | - Gong-Qing Shen
- the Departments of Cardiovascular and Metabolic Sciences and.,the Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195, and
| | - Xiaofeng Wang
- Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Fan Wang
- the Departments of Cardiovascular and Metabolic Sciences and.,the Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195, and
| | - Stephen Archacki
- the Departments of Cardiovascular and Metabolic Sciences and.,the Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195, and
| | - Yabo Li
- the Departments of Cardiovascular and Metabolic Sciences and.,the Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195, and
| | - Gang Yu
- the Departments of Cardiovascular and Metabolic Sciences and.,the Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195, and.,the Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan 430073, China
| | - Susmita Chakrabarti
- the Departments of Cardiovascular and Metabolic Sciences and.,the Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195, and
| | - Qiuyun Chen
- the Departments of Cardiovascular and Metabolic Sciences and .,the Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195, and
| | - Qing Kenneth Wang
- From the Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio 44106, .,the Departments of Cardiovascular and Metabolic Sciences and.,the Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195, and.,the Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan 430073, China
| |
Collapse
|
119
|
Schiano C, Soricelli A, De Nigris F, Napoli C. New challenges in integrated diagnosis by imaging and osteo-immunology in bone lesions. Expert Rev Clin Immunol 2019; 15:289-301. [PMID: 30570412 DOI: 10.1080/1744666x.2019.1561283] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION High-resolution imaging is the gold standard to measure the functional and biological features of bone lesions. Imaging markers have allowed the characterization both of tumour heterogeneity and metabolic data. Besides, ongoing studies are evaluating a combined use of 'imaging markers', such as SUVs, MATV, TLG, ADC from PET and MRI techniques respectively, and several 'biomarkers' spanning from chemokine immune-modulators, such as PD-1, RANK/RANKL, CXCR4/CXCL12 to transcription factors, such as TP53, RB1, MDM2, RUNX family, EZH2, YY1, MAD2. Osteoimmunology may improve diagnosis and prognosis leading to precision medicine in bone lesion treatment. Areas covered: We investigated modalities (molecular and imaging approach) useful to identify bone lesions deriving both from primary bone tumours and from osteotropic tumours, which have a higher incidence, prevalence and prognosis. Here, we summarized the recent advances in imaging techniques and osteoimmunology biomarkers which could play a pivotal role in personalized treatment. Expert commentary: Although imaging and molecular integration could allow both early diagnosis and stratification of cancer prognosis, large scale clinical trials will be necessary to translate pilot studies in the current clinical setting. ABBREVIATIONS ADC: apparent diffusion coefficient; ALCAM: Activated Leukocyte Cell Adhesion Molecule; ALP: Alkaline phosphatases; BC: Breast cancer; BSAP: B-Cell Lineage Specific Activator; BSAP: bone-specific alkaline phosphatase; BSP: bone sialoprotein; CRIP1: cysteine-rich intestinal protein 1; CD44: cluster of differentiation 44; CT: computed tomography; CXCL12: C-X-C motif ligand 12; CXCR4: C-X-C C-X-C chemokine receptor type 4; CTLA-4: Cytotoxic T-lymphocyte antigen 4; CTX-1: C-terminal end of the telopeptide of type I collagen; DC: dendritic cell; DWI: Diffusion-weighted MR image; EMT: mesenchymal transition; ET-1: endothelin-1; FDA: Food and Drug Administration; FDG: 18F-2-fluoro-2-deoxy-D-glucose; FGF: fibroblast growth factor; FOXC2: forkhead box protein C2: HK-2: hexokinase-2; ICTP: carboxyterminal cross-linked telopeptide of type I collagen; IGF-1R: Insulin Like Growth Factor 1 Receptor; ILC: innate lymphocytes cells; LC: lung cancer; IL-1: interleukin-1; LYVE1: lymphatic vessel endothelial hyaluronic acid receptor 1; MAD2: mitotic arrest deficient 2; MATV: metabolically active tumour volume; M-CSF: macrophage colony stimulating factor; MM: multiple myeloma; MIP1a: macrophage inflammatory protein 1a; MSC: mesenchymal stem cell; MRI: magnetic resonance imaging; PC: prostate cancer; NRP2: neuropilin 2; OPG: osteoprotogerin; PDGF: platelet-derived growth factor; PD-1: Programmed Cell Death 1; PET: positron emission tomography; PINP: procollagen type I N propeptide; PROX1: prospero homeobox protein 1; PSA: Prostate-specific antigen; PTH: parathyroid hormone; RANK: Receptor activator of NF-kB ligand; RECK: Reversion-inducing-cysteine-rich protein; SEMAs: semaphorins; SPECT: single photon computed tomography; SUV: standard uptake value; TLG: total lesion glycolysis; TP53: tumour protein 53; VCAM-1: vascular endothelial molecule-1; VOI: volume of interest; YY1: Yin Yang 1.
Collapse
Affiliation(s)
- Concetta Schiano
- a Department of Biochemical and Clinical Diagnostic , IRCCS SDN , Naples , Italy
| | - Andrea Soricelli
- a Department of Biochemical and Clinical Diagnostic , IRCCS SDN , Naples , Italy.,b Department of Motor Sciences and Healthiness , University of Naples Parthenope , Naples , Italy
| | - Filomena De Nigris
- c Department of Precision Medicine , University of Campania "Luigi Vanvitelli" , Naples , Italy
| | - Claudio Napoli
- a Department of Biochemical and Clinical Diagnostic , IRCCS SDN , Naples , Italy.,d Department of Medical, Surgical, Neurological, Metabolic and Geriatric Sciences , University of Campania "Luigi Vanvitelli" , Naples , Italy
| |
Collapse
|
120
|
Shin MH, Park EY, Han S, Jung HS, Keum DH, Lee GH, Kim T, Kim C, Kim KS, Yun SH, Hahn SK. Multimodal Cancer Theranosis Using Hyaluronate-Conjugated Molybdenum Disulfide. Adv Healthc Mater 2019; 8:e1801036. [PMID: 30480380 DOI: 10.1002/adhm.201801036] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/29/2018] [Indexed: 12/11/2022]
Abstract
Among various 2D nanomaterials, molybdenum disulfide (MoS2 ) exhibits unique visible photoluminescence with high absorption at the near-infrared (NIR) range. Despite these optical properties, the efforts to use MoS2 nanomaterials for optical imaging and photothermal therapy are hampered by their instability and low intracellular delivery efficiency. Multifunctional MoS2 conjugated with hyaluronate (HA) for cancer theranosis is reported herein. HA facilitates the delivery of MoS2 to tumor cells by the HA-receptor mediated endocytosis. In BALB/c nude mice inoculated with a colorectal cancer cell line of HCT116, HA-MoS2 conjugates appear to be accumulated in the primary tumor at a content more than that in the liver and kidney. The disulfide bonding between MoS2 and thiolated HA seems to degrade in the cytoplasm, releasing MoS2 sheets in stacks and enhancing luminescence efficiency. The HA-MoS2 conjugates are readily detected via photoacoustic imaging as well as upconversion and downconversion fluorescence imaging. With NIR light illumination, HA-MoS2 conjugates enable highly effective photothermal tumor ablation. All these results confirm the promising potential of HA-MoS2 conjugates for cancer theranosis.
Collapse
Affiliation(s)
- Myeong-Hwan Shin
- Department of Materials Science and Engineering; Pohang University of Science and Technology (POSTECH); 77 Cheongam-ro, Nam-gu Pohang Gyeongbuk 37673 Republic of Korea
| | - Eun-Yeong Park
- Department of Electrical Engineering; Pohang University of Science and Technology (POSTECH); 77 Cheongam-ro, Nam-gu Pohang Gyeongbuk 37673 Republic of Korea
| | - Seulgi Han
- Department of Materials Science and Engineering; Pohang University of Science and Technology (POSTECH); 77 Cheongam-ro, Nam-gu Pohang Gyeongbuk 37673 Republic of Korea
| | - Ho Sang Jung
- Department of Materials Science and Engineering; Pohang University of Science and Technology (POSTECH); 77 Cheongam-ro, Nam-gu Pohang Gyeongbuk 37673 Republic of Korea
| | - Do Hee Keum
- Department of Materials Science and Engineering; Pohang University of Science and Technology (POSTECH); 77 Cheongam-ro, Nam-gu Pohang Gyeongbuk 37673 Republic of Korea
| | - Geon-Hui Lee
- Department of Materials Science and Engineering; Pohang University of Science and Technology (POSTECH); 77 Cheongam-ro, Nam-gu Pohang Gyeongbuk 37673 Republic of Korea
| | - Taeyeon Kim
- Department of Materials Science and Engineering; Pohang University of Science and Technology (POSTECH); 77 Cheongam-ro, Nam-gu Pohang Gyeongbuk 37673 Republic of Korea
| | - Chulhong Kim
- Department of Electrical Engineering; Pohang University of Science and Technology (POSTECH); 77 Cheongam-ro, Nam-gu Pohang Gyeongbuk 37673 Republic of Korea
- Department of Creative IT Engineering; Pohang University of Science and Technology (POSTECH); 77 Cheongam-ro, Nam-gu Pohang Gyeongbuk 37673 Republic of Korea
| | - Ki Su Kim
- Department of Organic Materials Science and Engineering; College of Engineering; Pusan National University; 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu Busan 46241 Republic of Korea
- PHI BIOMED Co.; #613, 12 Gangnam-daero 65-gil, Seocho-gu Seoul 06612 Republic of Korea
- Wellman Center for Photomedicine; Harvard Medical School and Massachusetts General Hospital; 65 Landsdowne St. UP-5 Cambridge MA 02139 USA
| | - Seok Hyun Yun
- Wellman Center for Photomedicine; Harvard Medical School and Massachusetts General Hospital; 65 Landsdowne St. UP-5 Cambridge MA 02139 USA
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering; Pohang University of Science and Technology (POSTECH); 77 Cheongam-ro, Nam-gu Pohang Gyeongbuk 37673 Republic of Korea
- Department of Creative IT Engineering; Pohang University of Science and Technology (POSTECH); 77 Cheongam-ro, Nam-gu Pohang Gyeongbuk 37673 Republic of Korea
- PHI BIOMED Co.; #613, 12 Gangnam-daero 65-gil, Seocho-gu Seoul 06612 Republic of Korea
| |
Collapse
|
121
|
Lane RS, Femel J, Breazeale AP, Loo CP, Thibault G, Kaempf A, Mori M, Tsujikawa T, Chang YH, Lund AW. IFNγ-activated dermal lymphatic vessels inhibit cytotoxic T cells in melanoma and inflamed skin. J Exp Med 2018; 215:3057-3074. [PMID: 30381467 PMCID: PMC6279400 DOI: 10.1084/jem.20180654] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/16/2018] [Accepted: 10/17/2018] [Indexed: 12/22/2022] Open
Abstract
Mechanisms of immune suppression in peripheral tissues counteract protective immunity to prevent immunopathology and are coopted by tumors for immune evasion. While lymphatic vessels facilitate T cell priming, they also exert immune suppressive effects in lymph nodes at steady-state. Therefore, we hypothesized that peripheral lymphatic vessels acquire suppressive mechanisms to limit local effector CD8+ T cell accumulation in murine skin. We demonstrate that nonhematopoietic PD-L1 is largely expressed by lymphatic and blood endothelial cells and limits CD8+ T cell accumulation in tumor microenvironments. IFNγ produced by tissue-infiltrating, antigen-specific CD8+ T cells, which are in close proximity to tumor-associated lymphatic vessels, is sufficient to induce lymphatic vessel PD-L1 expression. Disruption of IFNγ-dependent crosstalk through lymphatic-specific loss of IFNγR boosts T cell accumulation in infected and malignant skin leading to increased viral pathology and tumor control, respectively. Consequently, we identify IFNγR as an immunological switch in lymphatic vessels that balances protective immunity and immunopathology leading to adaptive immune resistance in melanoma.
Collapse
Affiliation(s)
- Ryan S Lane
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR
| | - Julia Femel
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR
| | - Alec P Breazeale
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR
| | - Christopher P Loo
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR
| | - Guillaume Thibault
- Department of Biomedical Engineering and Computational Biology Program, Oregon Health and Science University, Portland, OR
- OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, OR
| | - Andy Kaempf
- Knight Cancer Institute, Biostatistics Shared Resource, Oregon Health and Science University, Portland, OR
| | - Motomi Mori
- Knight Cancer Institute, Biostatistics Shared Resource, Oregon Health and Science University, Portland, OR
| | - Takahiro Tsujikawa
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto City, Kyoto, Japan
| | - Young Hwan Chang
- Department of Biomedical Engineering and Computational Biology Program, Oregon Health and Science University, Portland, OR
- OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, OR
| | - Amanda W Lund
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR
- OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, OR
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR
- Department of Dermatology, Oregon Health and Science University, Portland, OR
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR
| |
Collapse
|
122
|
Extracellular DAMPs in Plants and Mammals: Immunity, Tissue Damage and Repair. Trends Immunol 2018; 39:937-950. [PMID: 30293747 DOI: 10.1016/j.it.2018.09.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 01/13/2023]
Abstract
Innate immune receptors, well known mediators of response to non-self-molecules and inflammation, also act as mediators of immunity triggered by 'damage-associated molecular patterns' (DAMPs). Pathogen-associated molecular patterns (PAMPs) cause inflammation in mammals and a rapid immune response in plants, while DAMPs trigger more complex responses, including immunity, tissue maintenance and repair. DAMPs, their receptors and downstream transduction mechanisms are often conserved within a kingdom or, due to convergent evolution, are similar across the kingdoms of life. Herein, we describe the dynamics and functionality of specific extracellular DAMP classes and their receptors in immunity, inflammation and repair of tissue damage in plants and mammals.
Collapse
|
123
|
Identification of a Prognostic Hypoxia-Associated Gene Set in IDH-Mutant Glioma. Int J Mol Sci 2018; 19:ijms19102903. [PMID: 30257451 PMCID: PMC6212863 DOI: 10.3390/ijms19102903] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/15/2018] [Accepted: 09/20/2018] [Indexed: 01/09/2023] Open
Abstract
Glioma growth is often accompanied by a hypoxic microenvironment favorable for the induction and maintenance of the glioma stem cell (GSC) phenotype. Due to the paucity of cell models of Isocitrate Dehydrogenase 1 mutant (IDH1mut) GSCs, biology under hypoxic conditions has not been sufficiently studied as compared to IDH1 wildtype (IDH1wt) GSCs. We therefore grew well-characterized IDH1mut (n = 4) and IDH1wt (n = 4) GSC lines under normoxic (20%) and hypoxic (1.5%) culture conditions and harvested mRNA after 72 h. Transcriptome analyses were performed and hypoxia regulated genes were further analyzed using the expression and clinical data of the lower grade glioma cohort of The Cancer Genome Atlas (LGG TCGA) in a confirmatory approach and to test for possible survival associations. Results show that global expression changes were more pronounced in IDH1wt than in IDH1mut GSCs. However, when focusing on known hypoxia-regulated gene sets, enrichment analyses showed a comparable regulation in both IDH1mut and IDH1wt GSCs. Of 272 significantly up-regulated genes under hypoxic conditions in IDH1mut GSCs a hypoxia-related survival score (HRS-score) of five genes (LYVE1, FAM162A, WNT6, OTP, PLOD1) was identified by the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm which was able to predict survival independent of age, 1p19q co-deletion status and WHO grade (II vs. III) in the LGG TCGA cohort and in the Rembrandt dataset. Altogether, we were able to identify and validate a novel hypoxia-related survival score in IDH1mut GSCs consisting of five hypoxia-regulated genes which was significantly associated with patient survival independent of known prognostic confounders.
Collapse
|
124
|
Xu H, Yang Y, Chen Y, Mueller U, Iyer S, Presland J, Yang R, Kariv I. Determination of EPAC2 function using EPAC2 null Min6 sublines generated through CRISPR-Cas9 technology. Mol Cell Endocrinol 2018; 473:114-123. [PMID: 29407196 DOI: 10.1016/j.mce.2018.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 11/21/2022]
Abstract
Min6 cells, a mouse β cell line derived from transgenic mouse expressing the large T-antigen of SV40 in pancreatic beta cells, are commonly utilized as an in vitro cellular model for investigating targets involved in insulin secretion. Epac2, an exchange protein that can be directly activated by cyclic AMP (cAMP), is critical for pharmacologic stimuli-induced insulin secretion and has been hypothesized to be a direct target of sulfonylurea. Previous loss of function studies only specifically knocked out EPAC2 isoform A, leaving the other two isoforms intact. In this study, we investigated the function of EPAC2 in Min6 cells by generating EPAC2 knock-out sublines using CRISPR-Cas9 technology, by removing all three isoforms of EPAC2. Our results indicate that Min6 cells can be successfully cloned from a single cell after electroporation with plasmids expressing EPAC2 specific guide RNA, Cas9 and GFP, followed by sorting for GFP expressing single cells. Two clones were found to have a single nucleotide deletion in targeted site of EPAC2 gene by sequencing, therefore creating a frame shift in exon 13. The EPAC2 null clones have an unexpectedly increased secretion of insulin at basal level and an elevated total intracellular insulin content. However, EPAC2 deficiency impaires glucose and sulfonylurea induced insulin secretion without affecting sulfonylurea binding to cells. Potassium chloride induced insulin secretion remains intact. Interestingly, cAMP levels remained unchanged in EPAC2 null cells during these processes. To understand the global function of EPAC2, RNA Seq study was performed, which reveals that EPAC2 deficiency affects expression of multiple previously unrecognized genes, suggesting that EPAC2 can function through multiple pathways in addition to being a cAMP sensor.
Collapse
Affiliation(s)
- Haiyan Xu
- Department of Early Discovery Pharmacology, Cellular Pharmacology, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, MA 02115, USA.
| | - Yi Yang
- Department of Early Discovery Pharmacology, Cellular Pharmacology, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, MA 02115, USA
| | - Yiping Chen
- Department of Early Discovery Pharmacology, Cellular Pharmacology, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, MA 02115, USA
| | - Uwe Mueller
- Department of Early Discovery Pharmacology, Cellular Pharmacology, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, MA 02115, USA
| | - Sharanya Iyer
- Department of Early Discovery Pharmacology, Cellular Pharmacology, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, MA 02115, USA
| | - Jeremy Presland
- Department of Early Discovery Pharmacology, Cellular Pharmacology, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, MA 02115, USA
| | - Ruojing Yang
- Department of Early Discovery Pharmacology, Cellular Pharmacology, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, MA 02115, USA
| | - Ilona Kariv
- Department of Early Discovery Pharmacology, Cellular Pharmacology, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
125
|
Hammerschmidt SI, Werth K, Rothe M, Galla M, Permanyer M, Patzer GE, Bubke A, Frenk DN, Selich A, Lange L, Schambach A, Bošnjak B, Förster R. CRISPR/Cas9 Immunoengineering of Hoxb8-Immortalized Progenitor Cells for Revealing CCR7-Mediated Dendritic Cell Signaling and Migration Mechanisms in vivo. Front Immunol 2018; 9:1949. [PMID: 30210501 PMCID: PMC6120996 DOI: 10.3389/fimmu.2018.01949] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/07/2018] [Indexed: 12/30/2022] Open
Abstract
To present antigens to cognate T cells, dendritic cells (DCs) exploit the chemokine receptor CCR7 to travel from peripheral tissue via afferent lymphatic vessels to directly enter draining lymph nodes through the floor of the subcapsular sinus. Here, we combined unlimited proliferative capacity of conditionally Hoxb8-immortalized hematopoietic progenitor cells with CRISPR/Cas9 technology to create a powerful experimental system to investigate DC migration and function. Hematopoietic progenitor cells from the bone marrow of Cas9-transgenic mice were conditionally immortalized by lentiviral transduction introducing a doxycycline-regulated form of the transcription factor Hoxb8 (Cas9-Hoxb8 cells). These cells could be stably cultured for weeks in the presence of doxycycline and puromycin, allowing us to introduce additional genetic modifications applying CRISPR/Cas9 technology. Importantly, modified Cas9-Hoxb8 cells retained their potential to differentiate in vitro into myeloid cells, and GM-CSF-differentiated Cas9-Hoxb8 cells showed the classical phenotype of GM-CSF-differentiated bone marrow-derived dendritic cells. Following intralymphatic delivery Cas9-Hoxb8 DCs entered the lymph node in a CCR7-dependent manner. Finally, we used two-photon microscopy and imaged Cas9-Hoxb8 DCs that expressed the genetic Ca2+ sensor GCaMP6S to visualize in real-time chemokine-induced Ca2+ signaling of lymph-derived DCs entering the LN parenchyma. Altogether, our study not only allows mechanistic insights in DC migration in vivo, but also provides a platform for the immunoengineering of DCs that, in combination with two-photon imaging, can be exploited to further dissect DC dynamics in vivo.
Collapse
Affiliation(s)
| | - Kathrin Werth
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Michael Rothe
- Institute of Experimental Hematology, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Melanie Galla
- Institute of Experimental Hematology, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Marc Permanyer
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Anja Bubke
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - David N. Frenk
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Anton Selich
- Institute of Experimental Hematology, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Lucas Lange
- Institute of Experimental Hematology, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Berislav Bošnjak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
126
|
Hu X, Luo J. Heterogeneity of tumor lymphangiogenesis: Progress and prospects. Cancer Sci 2018; 109:3005-3012. [PMID: 30007095 PMCID: PMC6172057 DOI: 10.1111/cas.13738] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/10/2018] [Indexed: 12/26/2022] Open
Abstract
Lymphangiogenesis and increased expression of lymphangiogenic growth factors are associated with high rates of lymph node (LN) metastasis and with poor prognosis in some, but not all, solid tumors. In addition to its involvement in metastasis, lymphangiogenesis has been shown to have other roles in tumor pathogenesis, such as the niche function of tumor stem cells and regulatory functions of antitumor immune responses. In contrast, evidence has accumulated that tumor-induced lymphangiogenesis displays the heterogeneity in gene signature, structure, cellular origins and functional plasticity. This review summarizes the advances in the research on the heterogeneity of tumor lymphangiogenesis and discusses how it may contribute to functional complexity and multiplicity of lymphangiogenesis in tumor progression.
Collapse
Affiliation(s)
- Xueting Hu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Jincai Luo
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| |
Collapse
|
127
|
Lim HY, Lim SY, Tan CK, Thiam CH, Goh CC, Carbajo D, Chew SHS, See P, Chakarov S, Wang XN, Lim LH, Johnson LA, Lum J, Fong CY, Bongso A, Biswas A, Goh C, Evrard M, Yeo KP, Basu R, Wang JK, Tan Y, Jain R, Tikoo S, Choong C, Weninger W, Poidinger M, Stanley RE, Collin M, Tan NS, Ng LG, Jackson DG, Ginhoux F, Angeli V. Hyaluronan Receptor LYVE-1-Expressing Macrophages Maintain Arterial Tone through Hyaluronan-Mediated Regulation of Smooth Muscle Cell Collagen. Immunity 2018; 49:326-341.e7. [PMID: 30054204 DOI: 10.1016/j.immuni.2018.06.008] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 04/01/2018] [Accepted: 06/15/2018] [Indexed: 02/06/2023]
Abstract
The maintenance of appropriate arterial tone is critically important for normal physiological arterial function. However, the cellular and molecular mechanisms remain poorly defined. Here, we have shown that in the mouse aorta, resident macrophages prevented arterial stiffness and collagen deposition in the steady state. Using phenotyping, transcriptional profiling, and targeted deletion of Csf1r, we have demonstrated that these macrophages-which are a feature of blood vessels invested with smooth muscle cells (SMCs) in both mouse and human tissues-expressed the hyaluronan (HA) receptor LYVE-l. Furthermore, we have shown they possessed the unique ability to modulate collagen expression in SMCs by matrix metalloproteinase MMP-9-dependent proteolysis through engagement of LYVE-1 with the HA pericellular matrix of SMCs. Our study has unveiled a hitherto unknown homeostatic contribution of arterial LYVE-1+ macrophages through the control of collagen production by SMCs and has identified a function of LYVE-1 in leukocytes.
Collapse
Affiliation(s)
- Hwee Ying Lim
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Sheau Yng Lim
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Chek Kun Tan
- School of Biological Sciences, Nanyang Technological University, Nanyang, Singapore 637551, Singapore
| | - Chung Hwee Thiam
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Chi Ching Goh
- Singapore Immunology Network, A(∗)STAR, Singapore 138648, Singapore
| | - Daniel Carbajo
- Singapore Immunology Network, A(∗)STAR, Singapore 138648, Singapore
| | - Samantha Hui Shang Chew
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Peter See
- Singapore Immunology Network, A(∗)STAR, Singapore 138648, Singapore
| | | | - Xiao Nong Wang
- Institute of Cellular Medicine, Newcastle University, Newcastle NE2 4HH, UK
| | - Li Hui Lim
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Louise A Johnson
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliff Hospital, Oxford OX3 9DS, UK
| | - Josephine Lum
- Singapore Immunology Network, A(∗)STAR, Singapore 138648, Singapore
| | - Chui Yee Fong
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 119074, Singapore
| | - Ariff Bongso
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 119074, Singapore
| | - Arijit Biswas
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 119074, Singapore
| | - Chern Goh
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | | | - Kim Pin Yeo
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Ranu Basu
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Jun Kit Wang
- School of Material Science and Engineering, Nanyang Technological University, Singapore 639977, Singapore
| | - Yingrou Tan
- Singapore Immunology Network, A(∗)STAR, Singapore 138648, Singapore
| | - Rohit Jain
- The Centenary Institute, Newtown, NSW 2050, Australia
| | - Shweta Tikoo
- The Centenary Institute, Newtown, NSW 2050, Australia
| | - Cleo Choong
- School of Material Science and Engineering, Nanyang Technological University, Singapore 639977, Singapore
| | | | | | - Richard E Stanley
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Matthew Collin
- Institute of Cellular Medicine, Newcastle University, Newcastle NE2 4HH, UK
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University, Nanyang, Singapore 637551, Singapore; Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore; KK Women's and Children Hospital, Singapore 229899, Singapore
| | - Lai Guan Ng
- Singapore Immunology Network, A(∗)STAR, Singapore 138648, Singapore
| | - David G Jackson
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliff Hospital, Oxford OX3 9DS, UK
| | - Florent Ginhoux
- Singapore Immunology Network, A(∗)STAR, Singapore 138648, Singapore
| | - Véronique Angeli
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
128
|
Vieira JM, Norman S, Villa Del Campo C, Cahill TJ, Barnette DN, Gunadasa-Rohling M, Johnson LA, Greaves DR, Carr CA, Jackson DG, Riley PR. The cardiac lymphatic system stimulates resolution of inflammation following myocardial infarction. J Clin Invest 2018; 128:3402-3412. [PMID: 29985167 PMCID: PMC6063482 DOI: 10.1172/jci97192] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 05/09/2018] [Indexed: 02/02/2023] Open
Abstract
Myocardial infarction (MI) arising from obstruction of the coronary circulation engenders massive cardiomyocyte loss and replacement by non-contractile scar tissue, leading to pathological remodeling, dysfunction, and ultimately heart failure. This is presently a global health problem for which there is no effective cure. Following MI, the innate immune system directs the phagocytosis of dead cell debris in an effort to stimulate cell repopulation and tissue renewal. In the mammalian adult heart, however, the persistent influx of immune cells, coupled with the lack of an inherent regenerative capacity, results in cardiac fibrosis. Here, we reveal that stimulation of cardiac lymphangiogenesis with VEGF-C improves clearance of the acute inflammatory response after MI by trafficking immune cells to draining mediastinal lymph nodes (MLNs) in a process dependent on lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1). Deletion of Lyve1 in mice, preventing docking and transit of leukocytes through the lymphatic endothelium, results in exacerbation of chronic inflammation and long-term deterioration of cardiac function. Our findings support targeting of the lymphatic/immune cell axis as a therapeutic paradigm to promote immune modulation and heart repair.
Collapse
Affiliation(s)
- Joaquim Miguel Vieira
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics
| | - Sophie Norman
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics
| | | | - Thomas J Cahill
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics
| | - Damien N Barnette
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics
| | - Mala Gunadasa-Rohling
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics
| | - Louise A Johnson
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital
| | - David R Greaves
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Carolyn A Carr
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics
| | - David G Jackson
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital
| | - Paul R Riley
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics
| |
Collapse
|
129
|
Kilarski WW. Physiological Perspective on Therapies of Lymphatic Vessels. Adv Wound Care (New Rochelle) 2018; 7:189-208. [PMID: 29984111 PMCID: PMC6032671 DOI: 10.1089/wound.2017.0768] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/26/2018] [Indexed: 12/16/2022] Open
Abstract
Significance: Growth of distinctive blood vessels of granulation tissue is a central step in the post-developmental tissue remodeling. Even though lymphangiogenesis is a part of the regeneration process, the significance of the controlled restoration of lymphatic vessels has only recently been recognized. Recent Advances: Identification of lymphatic markers and growth factors paved the way for the exploration of the roles of lymphatic vessels in health and disease. Emerging pro-lymphangiogenic therapies use vascular endothelial growth factor (VEGF)-C to combat fluid retention disorders such as lymphedema and to enhance the local healing process. Critical Issues: The relevance of recently identified lymphatic functions awaits verification by their association with pathologic conditions. Further, despite a century of research, the complete etiology of secondary lymphedema, a fluid retention disorder directly linked to the lymphatic function, is not understood. Finally, the specificity of pro-lymphangiogenic therapy depends on VEGF-C transfection efficiency, dose exposure, and the age of the subject, factors that are difficult to standardize in a heterogeneous human population. Future Directions: Further research should reveal the role of lymphatic circulation in internal organs and connect its impairment with human diseases. Pro-lymphangiogenic therapies that aim at the acceleration of tissue healing should focus on the controlled administration of VEGF-C to increase their capillary specificity, whereas regeneration of collecting vessels might benefit from balanced maturation and differentiation of pre-existing lymphatics. Unique features of pre-nodal lymphatics, fault tolerance and functional hyperplasia of capillaries, may find applications outreaching traditional pro-lymphangiogenic therapies, such as immunomodulation or enhancement of subcutaneous grafting.
Collapse
Affiliation(s)
- Witold W. Kilarski
- Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois
| |
Collapse
|
130
|
Rinaldi E, Baggi F. LYVE-1 is 'on stage' now: an emerging player in dendritic cell docking to lymphatic endothelial cells. Cell Mol Immunol 2018; 15:663-665. [PMID: 29176746 PMCID: PMC6123476 DOI: 10.1038/cmi.2017.126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 10/08/2017] [Indexed: 12/13/2022] Open
Affiliation(s)
- Elena Rinaldi
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Neurological Institute 'Carlo Besta', Milan, Italy
| | - Fulvio Baggi
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Neurological Institute 'Carlo Besta', Milan, Italy.
| |
Collapse
|
131
|
Permanyer M, Bošnjak B, Förster R. Dendritic cells, T cells and lymphatics: dialogues in migration and beyond. Curr Opin Immunol 2018; 53:173-179. [PMID: 29857205 DOI: 10.1016/j.coi.2018.05.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/08/2018] [Accepted: 05/08/2018] [Indexed: 01/01/2023]
Abstract
Immune cells continuously recirculate through lymph vessels en route from peripheral tissues to the blood. Leuyte trafficking into and within lymph vessels is mediated by an interply with lymphatic endothelial cells (LECs). However, lymphatic vessels are much more than mere conduits for fluid and immune cell transport. Data accumulating during past several years indicate that LECs support T cell survival, induce tolerance to self-antigens, inhibit exaggerated T cell proliferation during immune response and maintain T cell memory. Reciprocally, leukocytes impact LEC biology: lymphatic vessel permeability depends on DCs while lymphocytes regulate LEC proliferation during inflammation. Altogether, these novel results provide important insights on intimate connections between LECs and leukocytes that contribute to the understanding of immune responses.
Collapse
Affiliation(s)
- Marc Permanyer
- Institute of Immunology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Berislav Bošnjak
- Institute of Immunology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| |
Collapse
|
132
|
Wong BW, Zecchin A, García-Caballero M, Carmeliet P. Emerging Concepts in Organ-Specific Lymphatic Vessels and Metabolic Regulation of Lymphatic Development. Dev Cell 2018; 45:289-301. [PMID: 29738709 DOI: 10.1016/j.devcel.2018.03.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/12/2017] [Accepted: 03/26/2018] [Indexed: 02/08/2023]
Abstract
The lymphatic system has been less well characterized than the blood vascular system; however, work in recent years has uncovered novel regulators and non-venous lineages that contribute to lymphatic formation in various organs. Further, the identification of organ-specific lymphatic beds underscores their potential interaction with organ development and function, and highlights the possibility of targeting these organ-specific lymphatics beds in disease. This review focuses on newly described metabolic and epigenetic regulators of lymphangiogenesis and the interplay between lymphatic development and function in a number of major organ systems.
Collapse
Affiliation(s)
- Brian W Wong
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute, KU Leuven, Herestraat 49 - B912, Leuven 3000, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Annalisa Zecchin
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute, KU Leuven, Herestraat 49 - B912, Leuven 3000, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Melissa García-Caballero
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute, KU Leuven, Herestraat 49 - B912, Leuven 3000, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute, KU Leuven, Herestraat 49 - B912, Leuven 3000, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven 3000, Belgium.
| |
Collapse
|
133
|
Jha SK, Rauniyar K, Jeltsch M. Key molecules in lymphatic development, function, and identification. Ann Anat 2018; 219:25-34. [PMID: 29842991 DOI: 10.1016/j.aanat.2018.05.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 12/18/2022]
Abstract
While both blood and lymphatic vessels transport fluids and thus share many similarities, they also show functional and structural differences, which can be used to differentiate them. Specific visualization of lymphatic vessels has historically been and still is a pivot point in lymphatic research. Many of the proteins that are investigated by molecular biologists in lymphatic research have been defined as marker molecules, i.e. to visualize and distinguish lymphatic endothelial cells (LECs) from other cell types, most notably from blood vascular endothelial cells (BECs) and cells of the hematopoietic lineage. Among the factors that drive the developmental differentiation of lymphatic structures from venous endothelium, Prospero homeobox protein 1 (PROX1) is the master transcriptional regulator. PROX1 maintains lymphatic identity also in the adult organism and thus is a universal LEC marker. Vascular endothelial growth factor receptor-3 (VEGFR-3) is the major tyrosine kinase receptor that drives LEC proliferation and migration. The major activator for VEGFR-3 is vascular endothelial growth factor-C (VEGF-C). However, before VEGF-C can signal, it needs to be proteolytically activated by an extracellular protein complex comprised of Collagen and calcium binding EGF domains 1 (CCBE1) protein and the protease A disintegrin and metallopeptidase with thrombospondin type 1 motif 3 (ADAMTS3). This minireview attempts to give an overview of these and a few other central proteins that scientific inquiry has linked specifically to the lymphatic vasculature. It is limited in scope to a brief description of their main functions, properties and developmental roles.
Collapse
Affiliation(s)
- Sawan Kumar Jha
- Translational Cancer Biology Research Program, University of Helsinki, Finland
| | - Khushbu Rauniyar
- Translational Cancer Biology Research Program, University of Helsinki, Finland
| | - Michael Jeltsch
- Translational Cancer Biology Research Program, University of Helsinki, Finland; Wihuri Research Institute, Biomedicum Helsinki, Finland.
| |
Collapse
|
134
|
Rios de la Rosa JM, Tirella A, Tirelli N. Receptor-Targeted Drug Delivery and the (Many) Problems We Know of: The Case of CD44 and Hyaluronic Acid. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Julio M. Rios de la Rosa
- NorthWest Centre for Advanced Drug Delivery (NoWCADD); School of Health Sciences; University of Manchester; Oxford Road Manchester M13 9PT UK
| | - Annalisa Tirella
- NorthWest Centre for Advanced Drug Delivery (NoWCADD); School of Health Sciences; University of Manchester; Oxford Road Manchester M13 9PT UK
| | - Nicola Tirelli
- NorthWest Centre for Advanced Drug Delivery (NoWCADD); School of Health Sciences; University of Manchester; Oxford Road Manchester M13 9PT UK
- Laboratory of Polymers and Biomaterials; Fondazione Istituto Italiano di Tecnologia; Genova 16163 Italy
| |
Collapse
|
135
|
Brown M, Johnson LA, Leone DA, Majek P, Vaahtomeri K, Senfter D, Bukosza N, Schachner H, Asfour G, Langer B, Hauschild R, Parapatics K, Hong YK, Bennett KL, Kain R, Detmar M, Sixt M, Jackson DG, Kerjaschki D. Lymphatic exosomes promote dendritic cell migration along guidance cues. J Cell Biol 2018; 217:2205-2221. [PMID: 29650776 PMCID: PMC5987709 DOI: 10.1083/jcb.201612051] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 01/16/2018] [Accepted: 03/20/2018] [Indexed: 01/08/2023] Open
Abstract
Inflammation stimulates lymphatic endothelial cells to release exosomes, which accumulate in the perivascular stroma. Brown et al. show that these exosomes promote the directional migration of dendritic cells along guidance cues in complex environments by enhancing dynamic cellular protrusions in a CX3CL1-dependent manner. Lymphatic endothelial cells (LECs) release extracellular chemokines to guide the migration of dendritic cells. In this study, we report that LECs also release basolateral exosome-rich endothelial vesicles (EEVs) that are secreted in greater numbers in the presence of inflammatory cytokines and accumulate in the perivascular stroma of small lymphatic vessels in human chronic inflammatory diseases. Proteomic analyses of EEV fractions identified >1,700 cargo proteins and revealed a dominant motility-promoting protein signature. In vitro and ex vivo EEV fractions augmented cellular protrusion formation in a CX3CL1/fractalkine-dependent fashion and enhanced the directional migratory response of human dendritic cells along guidance cues. We conclude that perilymphatic LEC exosomes enhance exploratory behavior and thus promote directional migration of CX3CR1-expressing cells in complex tissue environments.
Collapse
Affiliation(s)
- Markus Brown
- Clinical Department of Pathology, Medical University of Vienna, Vienna, Austria.,Institute of Science and Technology, Klosterneuburg, Austria
| | - Louise A Johnson
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, England, UK
| | - Dario A Leone
- Clinical Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Peter Majek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Kari Vaahtomeri
- Institute of Science and Technology, Klosterneuburg, Austria
| | - Daniel Senfter
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Nora Bukosza
- Clinical Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Helga Schachner
- Clinical Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Gabriele Asfour
- Clinical Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Brigitte Langer
- Clinical Department of Pathology, Medical University of Vienna, Vienna, Austria
| | | | - Katja Parapatics
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Young-Kwon Hong
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA
| | - Keiryn L Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Renate Kain
- Clinical Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Michael Sixt
- Institute of Science and Technology, Klosterneuburg, Austria
| | - David G Jackson
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, England, UK
| | - Dontscho Kerjaschki
- Clinical Department of Pathology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
136
|
Nagy N, Kuipers HF, Marshall PL, Wang E, Kaber G, Bollyky PL. Hyaluronan in immune dysregulation and autoimmune diseases. Matrix Biol 2018; 78-79:292-313. [PMID: 29625181 DOI: 10.1016/j.matbio.2018.03.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/10/2018] [Accepted: 03/30/2018] [Indexed: 02/06/2023]
Abstract
The tissue microenvironment contributes to local immunity and to the pathogenesis of autoimmune diseases - a diverse set of conditions characterized by sterile inflammation, immunity against self-antigens, and destruction of tissues. However, the specific factors within the tissue microenvironment that contribute to local immune dysregulation in autoimmunity are poorly understood. One particular tissue component implicated in multiple autoimmune diseases is hyaluronan (HA), an extracellular matrix (ECM) polymer. HA is abundant in settings of chronic inflammation and contributes to lymphocyte activation, polarization, and migration. Here, we first describe what is known about the size, amount, and distribution of HA at sites of autoimmunity and in associated lymphoid structures in type 1 diabetes, multiple sclerosis, and rheumatoid arthritis. Next, we examine the recent literature on HA and its impact on adaptive immunity, particularly in regards to the biology of lymphocytes and Foxp3+ regulatory T-cells (Treg), a T-cell subset that maintains immune tolerance in healthy individuals. We propose that HA accumulation at sites of chronic inflammation creates a permissive environment for autoimmunity, characterized by CD44-mediated inhibition of Treg expansion. Finally, we address potential tools and strategies for targeting HA and its receptor CD44 in chronic inflammation and autoimmunity.
Collapse
Affiliation(s)
- Nadine Nagy
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Hedwich F Kuipers
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Payton L Marshall
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Esther Wang
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Gernot Kaber
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
137
|
Huang SS, Li YW, Wu JL, Johnson FE, Huang JS. Development of the LYVE-1 gene with an acidic-amino-acid-rich (AAAR) domain in evolution is associated with acquisition of lymph nodes and efficient adaptive immunity. J Cell Physiol 2018; 233:2681-2692. [PMID: 28833090 PMCID: PMC6123220 DOI: 10.1002/jcp.26159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022]
Abstract
CRSBP-1 (mammalian LYVE-1) is a membrane glycoprotein highly expressed in lymphatic endothelial cells (LECs). It has multiple ligands, including hyaluronic acid (HA) and growth factors/cytokines (e.g., PDGF-BB and VEGF-A) containing CRS motifs (clusters of basic amino-acid residues). The ligand binding activities are mediated by Link module and acidic-amino-acid-rich (AAAR) domains, respectively. These CRSBP-1/LYVE-1 ligands have been shown to induce opening of lymphatic intercellular junctions in LEC monolayers and in lymphatic vessels in wild-type mice. We hypothesize that CRSBP-1/LYVE-1 ligands, particularly CRS-containing growth factors/cytokines, are secreted by immune and cancer cells for lymphatic entry during adaptive immune responses and lymphatic metastasis. We have looked into the origin of the Link module and AAAR domain of LYVE-1 in evolution and its association with the development of lymph nodes and efficient adaptive immunity. Lymph nodes represent the only major recent innovation of the adaptive immune systems in evolution particularly to mammals and bird. Here we demonstrate that the development of the LYVE-1 gene with the AAAR domain in evolution is associated with acquisition of lymph nodes and adaptive immunity. LYVE-1 from other species, which have no lymph nodes, lack the AAAR domain and efficient adaptive immunity. Synthetic CRSBP-1 ligands PDGF and VEGF peptides, which contain the CRS motifs of PDGF-BB and VEGF-A, respectively, specifically bind to CRSBP-1 but do not interact with either PDGFβR or VEGFR2. These peptides function as adjuvants by enhancing adaptive immunity of pseudorabies virus (PRV) vaccine in pigs. These results support the notion that LYVE-1 is involved in adaptive immunity in mammals.
Collapse
Affiliation(s)
| | - Ya-Wen Li
- Graduate Institute of Life Sciences, National Defense Medical Center and Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jen-Leih Wu
- Graduate Institute of Life Sciences, National Defense Medical Center and Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Frank E Johnson
- Department of Surgery, Saint Louis University Medical Center, St. Louis, Missouri
| | - Jung San Huang
- Department of Biochemistry and Molecular Biology, Doisy Research Center, Saint Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
138
|
Jackson DG. Hyaluronan in the lymphatics: The key role of the hyaluronan receptor LYVE-1 in leucocyte trafficking. Matrix Biol 2018; 78-79:219-235. [PMID: 29425695 DOI: 10.1016/j.matbio.2018.02.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 12/25/2022]
Abstract
LYVE-1, a close relative of the leucocyte receptor, CD44, is the main receptor for hyaluronan (HA) in lymphatic vessel endothelium and a widely used marker for distinguishing between blood and lymphatic vessels. Enigmatic for many years because of its anomalous HA-binding characteristics, the function of LYVE-1 has just recently been identified as that of a lymphatic docking receptor for dendritic cells, selectively engaging with their surface HA glycocalyx to regulate entry to peripheral lymphatics and migration to downstream lymph nodes for immune activation. Furthermore, LYVE-1 mediates the trafficking of macrophages, and is also exploited by HA-encapsulated Group A streptococci for lymphatic invasion and host dissemination. Consistent with a role in lymphatic trafficking, the interaction of LYVE-1 with HA and its degradation products can also activate intracellular signalling pathways for endothelial junctional retraction and lymphatic endothelial proliferation. Here we outline the latest findings on the receptor in the context of its peculiar biochemical properties and speculate on how the interaction of LYVE-1 with different HA sizes and conformations might variably influence cell function as a consequence of avidity and receptor crosslinking. Finally, we evaluate evidence that LYVE-1 can also bind growth factors and associate with kinase-linked growth factor receptors and conclude on how the LYVE-1·HA axis may be exploited as a target to either block inflammation or tissue allograft rejection, or potentiate vaccine and drug delivery.
Collapse
Affiliation(s)
- David G Jackson
- University of Oxford, MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK.
| |
Collapse
|
139
|
Richter RP, Baranova NS, Day AJ, Kwok JC. Glycosaminoglycans in extracellular matrix organisation: are concepts from soft matter physics key to understanding the formation of perineuronal nets? Curr Opin Struct Biol 2017; 50:65-74. [PMID: 29275227 DOI: 10.1016/j.sbi.2017.12.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 01/19/2023]
Abstract
Conventional wisdom has it that proteins fold and assemble into definite structures, and that this defines their function. Glycosaminoglycans (GAGs) are different. In most cases the structures they form have a low degree of order, even when interacting with proteins. Here, we discuss how physical features common to all GAGs-hydrophilicity, charge, linearity and semi-flexibility-underpin the overall properties of GAG-rich matrices. By integrating soft matter physics concepts (e.g. polymer brushes and phase separation) with our molecular understanding of GAG-protein interactions, we can better comprehend how GAG-rich matrices assemble, what their properties are, and how they function. Taking perineuronal nets (PNNs)-a GAG-rich matrix enveloping neurons-as a relevant example, we propose that microphase separation determines the holey PNN anatomy that is pivotal to PNN functions.
Collapse
Affiliation(s)
- Ralf P Richter
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom; School of Physics and Astronomy, Faculty of Mathematics and Physical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom; Astbury Centre for Strucural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom; Biosurfaces Lab, CIC biomaGUNE, Paseo Miramon 182, 20014 San Sebastian, Spain.
| | - Natalia S Baranova
- Biosurfaces Lab, CIC biomaGUNE, Paseo Miramon 182, 20014 San Sebastian, Spain
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Jessica Cf Kwok
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom; Centre for Reconstructive Neuroscience, Institute of Experimental Medicine, Videnska 1083, 14220 Prague 4, Czech Republic.
| |
Collapse
|
140
|
Petrova TV, Koh GY. Organ-specific lymphatic vasculature: From development to pathophysiology. J Exp Med 2017; 215:35-49. [PMID: 29242199 PMCID: PMC5748863 DOI: 10.1084/jem.20171868] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 12/11/2022] Open
Abstract
Recent discoveries of novel functions and diverse origins of lymphatic vessels have drastically changed our view of lymphatic vasculature. Traditionally regarded as passive conduits for fluid and immune cells, lymphatic vessels now emerge as active, tissue-specific players in major physiological and pathophysiological processes. Lymphatic vessels show remarkable plasticity and heterogeneity, reflecting their functional specialization to control the tissue microenvironment. Moreover, alternative developmental origins of lymphatic endothelial cells in some organs may contribute to the diversity of their functions in adult tissues. This review aims to summarize the most recent findings of organotypic differentiation of lymphatic endothelial cells in terms of their distinct (patho)physiological functions in skin, lymph nodes, small intestine, brain, and eye. We discuss recent advances in our understanding of the heterogeneity of lymphatic vessels with respect to the organ-specific functional and molecular specialization of lymphatic endothelium, such as the hybrid blood-lymphatic identity of Schlemm's canal, functions of intestinal lymphatics in dietary fat uptake, and discovery of meningeal lymphatic vasculature and perivascular brain lymphatic endothelial cells.
Collapse
Affiliation(s)
- Tatiana V Petrova
- Department of Fundamental Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland .,Division of Experimental Pathology, Vaud University Hospital Center, University of Lausanne, Lausanne, Switzerland
| | - Gou Young Koh
- Center for Vascular Research, Institute for Basic Science, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea .,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
141
|
Antila S, Karaman S, Nurmi H, Airavaara M, Voutilainen MH, Mathivet T, Chilov D, Li Z, Koppinen T, Park JH, Fang S, Aspelund A, Saarma M, Eichmann A, Thomas JL, Alitalo K. Development and plasticity of meningeal lymphatic vessels. J Exp Med 2017; 214:3645-3667. [PMID: 29141865 PMCID: PMC5716035 DOI: 10.1084/jem.20170391] [Citation(s) in RCA: 318] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 09/22/2017] [Accepted: 10/12/2017] [Indexed: 12/25/2022] Open
Abstract
The recent discovery of meningeal lymphatic vessels (LVs) has raised interest in their possible involvement in neuropathological processes, yet little is known about their development or maintenance. We show here that meningeal LVs develop postnatally, appearing first around the foramina in the basal parts of the skull and spinal canal, sprouting along the blood vessels and cranial and spinal nerves to various parts of the meninges surrounding the central nervous system (CNS). VEGF-C, expressed mainly in vascular smooth muscle cells, and VEGFR3 in lymphatic endothelial cells were essential for their development, whereas VEGF-D deletion had no effect. Surprisingly, in adult mice, the LVs showed regression after VEGF-C or VEGFR3 deletion, administration of the tyrosine kinase inhibitor sunitinib, or expression of VEGF-C/D trap, which also compromised the lymphatic drainage function. Conversely, an excess of VEGF-C induced meningeal lymphangiogenesis. The plasticity and regenerative potential of meningeal LVs should allow manipulation of cerebrospinal fluid drainage and neuropathological processes in the CNS.
Collapse
Affiliation(s)
- Salli Antila
- Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Sinem Karaman
- Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Harri Nurmi
- Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Mikko Airavaara
- Program in Developmental Biology, Institute of Biotechnology, HiLIFE Unit, University of Helsinki, Helsinki, Finland
| | - Merja H Voutilainen
- Program in Developmental Biology, Institute of Biotechnology, HiLIFE Unit, University of Helsinki, Helsinki, Finland
| | - Thomas Mathivet
- Institut National de la Santé et de la Recherche Médicale U970, Paris Cardiovascular Research Center, Paris, France
| | - Dmitri Chilov
- Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Zhilin Li
- Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Tapani Koppinen
- Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Jun-Hee Park
- Department of Neurology, Yale University School of Medicine, New Haven, CT
| | - Shentong Fang
- Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Aleksanteri Aspelund
- Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Mart Saarma
- Program in Developmental Biology, Institute of Biotechnology, HiLIFE Unit, University of Helsinki, Helsinki, Finland
| | - Anne Eichmann
- Institut National de la Santé et de la Recherche Médicale U970, Paris Cardiovascular Research Center, Paris, France
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT
| | - Jean-Léon Thomas
- Department of Neurology, Yale University School of Medicine, New Haven, CT
- Sorbonne Universités, UPMC Université Paris 06, Institut National de la Santé et de la Recherche Médicale U1127, Centre National de la Recherche Scientifique, AP-HP, Institut du Cerveau et de la Moelle Epinière, Hôpital Pitié-Salpêtrière, Paris, France
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| |
Collapse
|