101
|
Hwang E, Portillo B, Grose K, Fujikawa T, Williams KW. Exercise-induced hypothalamic neuroplasticity: Implications for energy and glucose metabolism. Mol Metab 2023; 73:101745. [PMID: 37268247 PMCID: PMC10326746 DOI: 10.1016/j.molmet.2023.101745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/15/2023] [Accepted: 05/29/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Neuroplasticity refers to the brain's ability to undergo functional and structural changes in response to diverse challenges. Converging evidence supports the notion that exercise serves as a metabolic challenge, triggering the release of multiple factors both in the periphery and within the brain. These factors actively contribute to plasticity in the brain, and in turn, regulate energy and glucose metabolism. SCOPE OF REVIEW The primary focus of this review is to explore the impact of exercise-induced plasticity in the brain on metabolic homeostasis, with an emphasis on the role of the hypothalamus in this process. Additionally, the review provides an overview of various factors induced by exercise that contribute to energy balance and glucose metabolism. Notably, these factors exert their effects, at least in part, through actions within the hypothalamus and more broadly in the central nervous system. MAJOR CONCLUSIONS Exercise elicits both transient and sustained changes in metabolism, accompanied by changes in neural activity within specific brain regions. Importantly, the contribution of exercise-induced plasticity and the underlying mechanisms by which neuroplasticity influences the effects of exercise are not well understood. Recent work has begun to overcome this gap in knowledge by examining the complex interactions of exercise-induced factors which alter neural circuit properties to influence metabolism.
Collapse
Affiliation(s)
- Eunsang Hwang
- Center for Hypothalamic Research, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Bryan Portillo
- Center for Hypothalamic Research, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Kyle Grose
- Center for Hypothalamic Research, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Teppei Fujikawa
- Center for Hypothalamic Research, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Kevin W Williams
- Center for Hypothalamic Research, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA.
| |
Collapse
|
102
|
Abbotts KSS, Ewell TR, Bomar MC, Butterklee HM, Bell C. Caffeine Augments the Lactate and Interleukin-6 Response to Moderate-Intensity Exercise. Med Sci Sports Exerc 2023; 55:982-990. [PMID: 36719416 DOI: 10.1249/mss.0000000000003121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
INTRODUCTION The release of interleukin (IL)-6 from contracting skeletal muscle is thought to contribute to some of the health benefits bestowed by exercise. This IL-6 response seems proportional to exercise volume and to lactate production. Unfortunately, high volumes of exercise are not feasible for all people. Caffeine augments the magnitude of increase in circulating IL-6 in response to high-intensity and long-duration exercise. Caffeine also increases circulating concentrations of lactate during exercise. We hypothesized that caffeine, ingested before short-duration, moderate-intensity exercise, would lead to greater circulating concentrations of lactate and IL-6 in a study population comprising both male and female individuals. METHODS Twenty healthy adults (10 men and 10 women age 25 ± 7 yr (mean ± SD)) completed 30 min of moderate-intensity cycle ergometer exercise, at an intensity corresponding to 60% peak oxygen uptake, after ingesting either caffeine (6 mg·kg -1 ) or placebo. Arterialized-venous blood was collected throughout each of the exercise sessions. RESULTS Compared with placebo, caffeine increased circulating concentrations of lactate at the end of exercise (5.12 ± 3.67 vs 6.45 ± 4.40 mmol·L -1 , P < 0.001) and after 30 min of inactive recovery (1.83 ± 1.59 vs 2.32 ± 2.09 mmol·L -1 , P = 0.006). Circulating IL-6 concentrations were greatest after 30 min of inactive recovery ( P < 0.001) and higher with caffeine (2.88 ± 2.05 vs 4.18 ± 2.97, pg·mL -1 , P < 0.001). Secondary analysis indicated sex differences; caffeine increased the IL-6 response to exercise in men ( P = 0.035) but not in women ( P = 0.358). CONCLUSIONS In response to moderate-intensity exercise, caffeine evoked greater circulating lactate concentrations in men and women but only increased the IL-6 response to exercise in men. These novel findings suggest that for men unwilling or unable to perform high-intensity and/or long-duration exercise, caffeine may augment the health benefits of relatively short, moderate-intensity exercise.
Collapse
|
103
|
Fadzeyeva E, Locatelli CA, Trzaskalski NA, Nguyen MA, Capozzi ME, Vulesevic B, Morrow NM, Ghorbani P, Hanson AA, Lorenzen-Schmidt I, Doyle MA, Seymour R, Varin EM, Fullerton MD, Campbell JE, Mulvihill EE. Pancreas-derived DPP4 is not essential for glucose homeostasis under metabolic stress. iScience 2023; 26:106748. [PMID: 37216093 PMCID: PMC10192926 DOI: 10.1016/j.isci.2023.106748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/09/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Mice systemically lacking dipeptidyl peptidase-4 (DPP4) have improved islet health, glucoregulation, and reduced obesity with high-fat diet (HFD) feeding compared to wild-type mice. Some, but not all, of this improvement can be linked to the loss of DPP4 in endothelial cells (ECs), pointing to the contribution of non-EC types. The importance of intra-islet signaling mediated by α to β cell communication is becoming increasingly clear; thus, our objective was to determine if β cell DPP4 regulates insulin secretion and glucose tolerance in HFD-fed mice by regulating the local concentrations of insulinotropic peptides. Using β cell double incretin receptor knockout mice, β cell- and pancreas-specific Dpp4-/- mice, we reveal that β cell incretin receptors are necessary for DPP4 inhibitor effects. However, although β cell DPP4 modestly contributes to high glucose (16.7 mM)-stimulated insulin secretion in isolated islets, it does not regulate whole-body glucose homeostasis.
Collapse
Affiliation(s)
- Evgenia Fadzeyeva
- The University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON K1H 8M5, Canada
- The University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Cassandra A.A. Locatelli
- The University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON K1H 8M5, Canada
- The University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Natasha A. Trzaskalski
- The University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON K1H 8M5, Canada
- The University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - My-Anh Nguyen
- The University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON K1H 8M5, Canada
- The University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Megan E. Capozzi
- Duke Molecular Physiology Institute, 300 North Duke Street, Durham, NC 27701, USA
| | - Branka Vulesevic
- The University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON K1H 8M5, Canada
- The University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Nadya M. Morrow
- The University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON K1H 8M5, Canada
- The University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Peyman Ghorbani
- The University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON K1H 8M5, Canada
| | - Antonio A. Hanson
- The University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON K1H 8M5, Canada
- The University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Ilka Lorenzen-Schmidt
- The University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Mary-Anne Doyle
- Division of Endocrinology & Metabolism, Department of Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Richard Seymour
- The University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Elodie M. Varin
- Lunenfeld Tanenbaum Research Institute, Toronto, ON M5G 1X5, Canada
| | - Morgan D. Fullerton
- The University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, Ottawa, ON K1H 8M5, Canada
| | - Jonathan E. Campbell
- Duke Molecular Physiology Institute, 300 North Duke Street, Durham, NC 27701, USA
| | - Erin E. Mulvihill
- The University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON K1H 8M5, Canada
- The University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
- Centre for Infection, Immunity and Inflammation, Ottawa, ON K1H 8M5, Canada
- Montreal Diabetes Research Group, Montreal, QC H2X 0A9, Canada
| |
Collapse
|
104
|
Liang S, Liu D, Xiao Z, Greenbaum J, Shen H, Xiao H, Deng H. Repurposing Approved Drugs for Sarcopenia Based on Transcriptomics Data in Humans. Pharmaceuticals (Basel) 2023; 16:ph16040607. [PMID: 37111364 PMCID: PMC10145476 DOI: 10.3390/ph16040607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Sarcopenia, characterized by age-related loss of muscle mass, strength, and decreased physical performance, is a growing public health challenge amid the rapidly ageing population. As there are no approved drugs that target sarcopenia, it has become increasingly urgent to identify promising pharmacological interventions. In this study, we conducted an integrative drug repurposing analysis utilizing three distinct approaches. Firstly, we analyzed skeletal muscle transcriptomic sequencing data in humans and mice using gene differential expression analysis, weighted gene co-expression analysis, and gene set enrichment analysis. Subsequently, we employed gene expression profile similarity assessment, hub gene expression reversal, and disease-related pathway enrichment to identify and repurpose candidate drugs, followed by the integration of findings with rank aggregation algorithms. Vorinostat, the top-ranking drug, was also validated in an in vitro study, which demonstrated its efficacy in promoting muscle fiber formation. Although still requiring further validation in animal models and human clinical trials, these results suggest a promising drug repurposing prospect in the treatment and prevention of sarcopenia.
Collapse
Affiliation(s)
- Shuang Liang
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Danyang Liu
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha 410013, China
| | - Zhengwu Xiao
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Jonathan Greenbaum
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 999039, USA
| | - Hui Shen
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 999039, USA
| | - Hongmei Xiao
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Hongwen Deng
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 999039, USA
| |
Collapse
|
105
|
Kawamori D, Sasaki S. Newly discovered knowledge pertaining to glucagon and its clinical applications. J Diabetes Investig 2023. [PMID: 37052948 DOI: 10.1111/jdi.14009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 04/14/2023] Open
Abstract
Glucagon has been defined as an 'insulin counteracting hormone', which raises blood glucose levels. Recent progress in basic research has shown that glucagon is closely involved in glucose and amino acid metabolism. Additionally, its secretion is intricately, but precisely, regulated by various mechanisms involving molecules in addition to glucose, thus showing its critical role in systemic nutrient metabolism. An innovative dual-antibody-linked immunosorbent assay for glucagon that improves measurement accuracy has been developed, and substantial clinical findings have been obtained using this new system. This discovery expanded the pathophysiological significance of glucagon and accelerated the development of its clinical applications in diabetes.
Collapse
Grants
- 21K08576 Ministry of Education, Culture, Sports, Science, and Technology in Japan
- 21K20902 Ministry of Education, Culture, Sports, Science, and Technology in Japan
- 22K16395 Ministry of Education, Culture, Sports, Science, and Technology in Japan
Collapse
Affiliation(s)
- Dan Kawamori
- Medical Education Center, Faculty of Medicine, Osaka University, Osaka, Japan
- Postgraduate Medical Training Center, Osaka University Hospital, Osaka University, Osaka, Japan
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shugo Sasaki
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
106
|
Arosio B, Calvani R, Ferri E, Coelho-Junior HJ, Carandina A, Campanelli F, Ghiglieri V, Marzetti E, Picca A. Sarcopenia and Cognitive Decline in Older Adults: Targeting the Muscle-Brain Axis. Nutrients 2023; 15:nu15081853. [PMID: 37111070 PMCID: PMC10142447 DOI: 10.3390/nu15081853] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Declines in physical performance and cognition are commonly observed in older adults. The geroscience paradigm posits that a set of processes and pathways shared among age-associated conditions may also serve as a molecular explanation for the complex pathophysiology of physical frailty, sarcopenia, and cognitive decline. Mitochondrial dysfunction, inflammation, metabolic alterations, declines in cellular stemness, and altered intracellular signaling have been observed in muscle aging. Neurological factors have also been included among the determinants of sarcopenia. Neuromuscular junctions (NMJs) are synapses bridging nervous and skeletal muscle systems with a relevant role in age-related musculoskeletal derangement. Patterns of circulating metabolic and neurotrophic factors have been associated with physical frailty and sarcopenia. These factors are mostly related to disarrangements in protein-to-energy conversion as well as reduced calorie and protein intake to sustain muscle mass. A link between sarcopenia and cognitive decline in older adults has also been described with a possible role for muscle-derived mediators (i.e., myokines) in mediating muscle-brain crosstalk. Herein, we discuss the main molecular mechanisms and factors involved in the muscle-brain axis and their possible implication in cognitive decline in older adults. An overview of current behavioral strategies that allegedly act on the muscle-brain axis is also provided.
Collapse
Affiliation(s)
- Beatrice Arosio
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Evelyn Ferri
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Hélio José Coelho-Junior
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Angelica Carandina
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Federica Campanelli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Veronica Ghiglieri
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- San Raffaele University, 00168 Rome, Italy
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Anna Picca
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Medicine and Surgery, LUM University, 70100 Casamassima, Italy
| |
Collapse
|
107
|
Hall LG, Thyfault JP, Johnson JD. Exercise and inactivity as modifiers of β cell function and type 2 diabetes risk. J Appl Physiol (1985) 2023; 134:823-839. [PMID: 36759159 PMCID: PMC10042613 DOI: 10.1152/japplphysiol.00472.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Exercise and regular physical activity are beneficial for the prevention and management of metabolic diseases such as obesity and type 2 diabetes, whereas exercise cessation, defined as deconditioning from regular exercise or physical activity that has lasted for a period of months to years, can lead to metabolic derangements that drive disease. Adaptations to the insulin-secreting pancreatic β-cells are an important benefit of exercise, whereas less is known about how exercise cessation affects these cells. Our aim is to review the impact that exercise and exercise cessation have on β-cell function, with a focus on the evidence from studies examining glucose-stimulated insulin secretion (GSIS) using gold-standard techniques. Potential mechanisms by which the β-cell adapts to exercise, including exerkine and incretin signaling, autonomic nervous system signaling, and changes in insulin clearance, will also be explored. We will highlight areas for future research.
Collapse
Affiliation(s)
- Liam G Hall
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - John P Thyfault
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
- KU Diabetes Institute, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - James D Johnson
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
108
|
Hammoud R, Drucker DJ. Beyond the pancreas: contrasting cardiometabolic actions of GIP and GLP1. Nat Rev Endocrinol 2023; 19:201-216. [PMID: 36509857 DOI: 10.1038/s41574-022-00783-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/17/2022] [Indexed: 12/14/2022]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP1) exhibit incretin activity, meaning that they potentiate glucose-dependent insulin secretion. The emergence of GIP receptor (GIPR)-GLP1 receptor (GLP1R) co-agonists has fostered growing interest in the actions of GIP and GLP1 in metabolically relevant tissues. Here, we update concepts of how these hormones act beyond the pancreas. The actions of GIP and GLP1 on liver, muscle and adipose tissue, in the control of glucose and lipid homeostasis, are discussed in the context of plausible mechanisms of action. Both the GIPR and GLP1R are expressed in the central nervous system, wherein receptor activation produces anorectic effects enabling weight loss. In preclinical studies, GIP and GLP1 reduce atherosclerosis. Furthermore, GIPR and GLP1R are expressed within the heart and immune system, and GLP1R within the kidney, revealing putative mechanisms linking GIP and GLP1R agonism to cardiorenal protection. We interpret the clinical and mechanistic data obtained for different agents that enable weight loss and glucose control for the treatment of obesity and type 2 diabetes mellitus, respectively, by activating or blocking GIPR signalling, including the GIPR-GLP1R co-agonist tirzepatide, as well as the GIPR antagonist-GLP1R agonist AMG-133. Collectively, we update translational concepts of GIP and GLP1 action, while highlighting gaps, areas of uncertainty and controversies meriting ongoing investigation.
Collapse
Affiliation(s)
- Rola Hammoud
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
109
|
Segers A, de Vos WM. Mode of action of Akkermansia muciniphila in the intestinal dialogue: role of extracellular proteins, metabolites and cell envelope components. MICROBIOME RESEARCH REPORTS 2023; 2:6. [PMID: 38045608 PMCID: PMC10688800 DOI: 10.20517/mrr.2023.05] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 12/05/2023]
Abstract
Akkermansia muciniphila is a promising next-generation beneficial microbe due to its natural presence in the mucus layer of the gut, its symbiotic ability to degrade mucus, and its capacity to improve the intestinal barrier function. A. muciniphila is able to counteract weight gain and immuno-metabolic disturbances in several animal models. Many of these disorders, including obesity and auto-immune diseases, have been associated with decreased gut barrier function and consequent increased inflammation. Since A. muciniphila was found to normalize these changes and strengthen the gut barrier function, it is hypothesized that other beneficial effects of A. muciniphila might be caused by this restoration. In search for A. muciniphila's mode of action in enhancing the gut barrier function and promoting health, we reasoned that secreted components or cell envelope components of A. muciniphila are interesting candidates as they can potentially reach and interact with the epithelial barrier. In this review, we focus on the potential mechanisms through which A. muciniphila can exert its beneficial effects on the host by the production of extracellular and secreted proteins, metabolites and cell envelope components. These products have been studied in isolation for their structure, signaling capacity, and in some cases, also for their effects in preclinical models. This includes the protein known as Amuc_1100, which we here rename as pilus-associated signaling (PAS) protein , the P9 protein encoded by Amuc_1631, the short-chain fatty acids acetate and propionate, and cell envelope components, such as phosphatidylethanolamine and peptidoglycan.
Collapse
Affiliation(s)
- Anneleen Segers
- Laboratory of Microbiology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
110
|
Tang P, Xu Y, Zhang J, Nan J, Zhong R, Luo J, Xu D, Shi S, Zhang L. miR-223-3p mediates the diabetic kidney disease progression by targeting IL6ST/STAT3 pathway. Biochem Biophys Res Commun 2023; 648:50-58. [PMID: 36731227 DOI: 10.1016/j.bbrc.2023.01.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/06/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023]
Abstract
Diabetic kidney disease (DKD), the most pervasive complication in diabetic patients, has become a major health threat to the aging population. Our previous miRNA profiling identified hsa-miR-223-3p as a dysregulated miRNA in the DKD samples, which may serve as a biomarker for DKD diagnosis. However, the specific mechanism of miR-223-3p in the pathogenesis of DKD remains to be elucidated. In this study, we first verified that miR-223-3p level was significantly decreased in the in vitro cell model and in vivo db/db DKD model, accompanied with endothelial cell damage. Importantly, inhibiting the expression of miR-223-3p exacerbated high-glucose induced damages in Human Umbilical Vein Endothelial Cells (HUVECs) and Human Renal Glomerular Endothelial Cells (HRGECs), while miR-223-3p overexpression showed the opposite effect. We further demonstrated that miR-223-3p associated with IL6T mRNA and attenuated the progression of DKD by suppressing the downstream STAT3 activation, indicative of the implication of miR-223-3p/IL6T/STAT3 axis in the pathogenesis of DKD.
Collapse
Affiliation(s)
- Ping Tang
- Department of Geriatric Endocrinology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650031, China
| | - Yushan Xu
- Department of Endocrinology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650031, China
| | - Jingrong Zhang
- Department of Geriatric Endocrinology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650031, China
| | - Juanli Nan
- Department of Geriatric Endocrinology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650031, China
| | - Ruxian Zhong
- Department of Geriatric Endocrinology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650031, China
| | - Jingmei Luo
- Department of Geriatric Endocrinology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650031, China
| | - Dazhi Xu
- Department of Geriatric Endocrinology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650031, China
| | - Shaoqing Shi
- Scientific Research Laboratory Center, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650031, China.
| | - Lihua Zhang
- Department of Geriatric Endocrinology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650031, China.
| |
Collapse
|
111
|
Inflammation and Nutrition: Friend or Foe? Nutrients 2023; 15:nu15051159. [PMID: 36904164 PMCID: PMC10005147 DOI: 10.3390/nu15051159] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
The importance of the interplay between inflammation and nutrition has generated much interest in recent times. Inflammation has been identified as a key driver for disease-related malnutrition, leading to anorexia, reduced food intake, muscle catabolism, and insulin resistance, which are stimulating a catabolic state. Interesting recent data suggest that inflammation also modulates the response to nutritional treatment. Studies have demonstrated that patients with high inflammation show no response to nutritional interventions, while patients with lower levels of inflammation do. This may explain the contradictory results of nutritional trials to date. Several studies of heterogeneous patient populations, or in the critically ill or advanced cancer patients, have not found significant benefits on clinical outcome. Vice versa, several dietary patterns and nutrients with pro- or anti-inflammatory properties have been identified, demonstrating that nutrition influences inflammation. Within this review, we summarize and discuss recent advances in both the role of inflammation in malnutrition and the effect of nutrition on inflammation.
Collapse
|
112
|
Kirwan JP, Heintz EC, Rebello CJ, Axelrod CL. Exercise in the Prevention and Treatment of Type 2 Diabetes. Compr Physiol 2023; 13:4559-4585. [PMID: 36815623 DOI: 10.1002/cphy.c220009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Type 2 diabetes is a systemic, multifactorial disease that is a leading cause of morbidity and mortality globally. Despite a rise in the number of available medications and treatments available for management, exercise remains a first-line prevention and intervention strategy due to established safety, efficacy, and tolerability in the general population. Herein we review the predisposing risk factors for, prevention, pathophysiology, and treatment of type 2 diabetes. We emphasize key cellular and molecular adaptive processes that provide insight into our evolving understanding of how, when, and what types of exercise may improve glycemic control. © 2023 American Physiological Society. Compr Physiol 13:1-27, 2023.
Collapse
Affiliation(s)
- John P Kirwan
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Elizabeth C Heintz
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Candida J Rebello
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Christopher L Axelrod
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| |
Collapse
|
113
|
Ordille AJ, Phadtare S. Intensity-specific considerations for exercise for patients with inflammatory bowel disease. Gastroenterol Rep (Oxf) 2023; 11:goad004. [PMID: 36814502 PMCID: PMC9940700 DOI: 10.1093/gastro/goad004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/02/2022] [Accepted: 12/22/2022] [Indexed: 02/22/2023] Open
Abstract
The rising prevalence of inflammatory bowel disease (IBD) necessitates that patients be given increased access to cost-effective interventions to manage the disease. Exercise is a non-pharmacologic intervention that advantageously affects clinical aspects of IBD, including disease activity, immune competency, inflammation, quality of life, fatigue, and psychological factors. It is well established that exercise performed at low-to-moderate intensity across different modalities manifests many of these diseased-related benefits while also ensuring patient safety. Much less is known about higher-intensity exercise. The aim of this review is to summarize findings on the relationship between strenuous exercise and IBD-related outcomes. In healthy adults, prolonged strenuous exercise may unfavorably alter a variety of gastrointestinal (GI) parameters including permeability, blood flow, motility, and neuro-endocrine changes. These intensity- and gut-specific changes are hypothesized to worsen IBD-related clinical presentations such as diarrhea, GI bleeding, and colonic inflammation. Despite this, there also exists the evidence that higher-intensity exercise may positively influence microbiome as well as alter the inflammatory and immunomodulatory changes seen with IBD. Our findings recognize that safety for IBD patients doing prolonged strenuous exercise is no more compromised than those doing lower-intensity work. Safety with prolonged, strenuous exercise may be achieved with adjustments including adequate hydration, nutrition, drug avoidance, and careful attention to patient history and symptomatology. Future work is needed to better understand this intensity-dependent relationship so that guidelines can be created for IBD patients wishing to participate in high-intensity exercise or sport.
Collapse
Affiliation(s)
- Andrew J Ordille
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Sangita Phadtare
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| |
Collapse
|
114
|
Bacos K, Perfilyev A, Karagiannopoulos A, Cowan E, Ofori JK, Bertonnier-Brouty L, Rönn T, Lindqvist A, Luan C, Ruhrmann S, Ngara M, Nilsson Å, Gheibi S, Lyons CL, Lagerstedt JO, Barghouth M, Esguerra JL, Volkov P, Fex M, Mulder H, Wierup N, Krus U, Artner I, Eliasson L, Prasad RB, Cataldo LR, Ling C. Type 2 diabetes candidate genes, including PAX5, cause impaired insulin secretion in human pancreatic islets. J Clin Invest 2023; 133:163612. [PMID: 36656641 PMCID: PMC9927941 DOI: 10.1172/jci163612] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
Type 2 diabetes (T2D) is caused by insufficient insulin secretion from pancreatic β cells. To identify candidate genes contributing to T2D pathophysiology, we studied human pancreatic islets from approximately 300 individuals. We found 395 differentially expressed genes (DEGs) in islets from individuals with T2D, including, to our knowledge, novel (OPRD1, PAX5, TET1) and previously identified (CHL1, GLRA1, IAPP) candidates. A third of the identified expression changes in islets may predispose to diabetes, as expression of these genes associated with HbA1c in individuals not previously diagnosed with T2D. Most DEGs were expressed in human β cells, based on single-cell RNA-Seq data. Additionally, DEGs displayed alterations in open chromatin and associated with T2D SNPs. Mouse KO strains demonstrated that the identified T2D-associated candidate genes regulate glucose homeostasis and body composition in vivo. Functional validation showed that mimicking T2D-associated changes for OPRD1, PAX5, and SLC2A2 impaired insulin secretion. Impairments in Pax5-overexpressing β cells were due to severe mitochondrial dysfunction. Finally, we discovered PAX5 as a potential transcriptional regulator of many T2D-associated DEGs in human islets. Overall, we have identified molecular alterations in human pancreatic islets that contribute to β cell dysfunction in T2D pathophysiology.
Collapse
Affiliation(s)
- Karl Bacos
- Epigenetics and Diabetes Unit, Department of Clinical Sciences and
| | | | - Alexandros Karagiannopoulos
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Malmö, Scania, Sweden
| | - Elaine Cowan
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Malmö, Scania, Sweden
| | - Jones K. Ofori
- Epigenetics and Diabetes Unit, Department of Clinical Sciences and
| | - Ludivine Bertonnier-Brouty
- Endocrine Cell Differentiation, Department of Laboratory Medicine, Lund Stem Cell Center, Malmö, Scania, Sweden
| | - Tina Rönn
- Epigenetics and Diabetes Unit, Department of Clinical Sciences and
| | - Andreas Lindqvist
- Neuroendocrine Cell Biology, Department of Experimental Medical Science
| | - Cheng Luan
- Unit of Islet Pathophysiology, Department of Clinical Sciences
| | - Sabrina Ruhrmann
- Epigenetics and Diabetes Unit, Department of Clinical Sciences and
| | - Mtakai Ngara
- Neuroendocrine Cell Biology, Department of Experimental Medical Science
| | - Åsa Nilsson
- Human Tissue Lab, Department of Clinical Sciences
| | - Sevda Gheibi
- Molecular Metabolism Unit, Department of Clinical Sciences, and
| | - Claire L. Lyons
- Molecular Metabolism Unit, Department of Clinical Sciences, and
| | - Jens O. Lagerstedt
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Malmö, Scania, Sweden
| | | | - Jonathan L.S. Esguerra
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Malmö, Scania, Sweden
| | - Petr Volkov
- Epigenetics and Diabetes Unit, Department of Clinical Sciences and
| | - Malin Fex
- Molecular Metabolism Unit, Department of Clinical Sciences, and
| | - Hindrik Mulder
- Molecular Metabolism Unit, Department of Clinical Sciences, and
| | - Nils Wierup
- Neuroendocrine Cell Biology, Department of Experimental Medical Science
| | - Ulrika Krus
- Human Tissue Lab, Department of Clinical Sciences
| | - Isabella Artner
- Endocrine Cell Differentiation, Department of Laboratory Medicine, Lund Stem Cell Center, Malmö, Scania, Sweden
| | - Lena Eliasson
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Malmö, Scania, Sweden
| | - Rashmi B. Prasad
- Genomics, Diabetes and Endocrinology, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Malmö, Scania, Sweden.,Institute of Molecular Medicine (FIMM), Helsinki University, Helsinki, Finland
| | - Luis Rodrigo Cataldo
- Molecular Metabolism Unit, Department of Clinical Sciences, and,The Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences and
| |
Collapse
|
115
|
Fan X, He Y, Wu G, Chen H, Cheng X, Zhan Y, An C, Chen T, Wang X. Sirt3 activates autophagy to prevent DOX-induced senescence by inactivating PI3K/AKT/mTOR pathway in A549 cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1869:119300. [PMID: 36521686 DOI: 10.1016/j.bbamcr.2022.119300] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 05/25/2023]
Abstract
Sirtuin 3 (Sirt3), a mitochondrial deacetylase, regulates mitochondrial redox homeostasis and autophagy and is involved in physiological and pathological processes such as aging, cellular metabolism, and tumorigenesis. We here investigate how Sirt3 regulates doxorubicin (DOX)-induced senescence in lung cancer A549 cells. Sirt3 greatly reduced DOX-induced upregulation of senescence marker proteins p53, p16, p21 and SA-β-Gal activity as well as ROS levels. Notably, Sirt3 reversed DOX-induced autophagic flux blockage, as shown by increased p62 degradation and LC3II/LC3I ratio. Importantly, the autophagy inhibitors 3-methyladenine (3-MA) and chloroquine (CQ) partially abolished the antioxidant stress and antiaging effects of Sirt3, while the autophagy activator rapamycin (Rap) potentiated these effects of Sirt3, demonstrating that autophagy mediates the anti-aging effects of Sirt3. Additionally, Sirt3 inhibited the DOX-induced activation of the phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway, which in turn activated autophagy. The PI3K inhibitor LY294002 promoted the antioxidant stress and antiaging effects of Sirt3, while the AKT activator SC-79 reversed these effects of Sirt3. Taken together, Sirt3 counteracts DOX-induced senescence by improving autophagic flux.
Collapse
Affiliation(s)
- Xuhong Fan
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yuting He
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Guihao Wu
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Hongce Chen
- MOE Key Laboratory of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xuecheng Cheng
- MOE Key Laboratory of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yongtong Zhan
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Chunchun An
- MOE Key Laboratory of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Tongsheng Chen
- MOE Key Laboratory of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xiaoping Wang
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| |
Collapse
|
116
|
Joo SK, Kim W. Interaction between sarcopenia and nonalcoholic fatty liver disease. Clin Mol Hepatol 2023; 29:S68-S78. [PMID: 36472051 PMCID: PMC10029947 DOI: 10.3350/cmh.2022.0358] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Sarcopenia and nonalcoholic fatty liver disease (NAFLD) are common health problems related to aging. Despite the differences in their diagnostic methods, several cross-sectional and longitudinal studies have revealed the close link between sarcopenia and NAFLD. Sarcopenia and NAFLD are linked by several shared pathogenetic mechanisms, including insulin resistance, hormonal imbalance, systemic inflammation, myostatin and adiponectin dysregulation, nutritional deficiencies, and physical inactivity, thus implicating a bidirectional relationship between sarcopenia and NAFLD. However, there is not sufficient data to support a direct causal relationship between sarcopenia and NAFLD. Moreover, it is currently difficult to conclude whether sarcopenia is a risk factor for nonalcoholic steatohepatitis (NASH) or is a consequence of NASH. Therefore, this review intends to touch on the shared common mechanisms and the bidirectional relationship between sarcopenia and NAFLD.
Collapse
Affiliation(s)
- Sae Kyung Joo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Won Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
117
|
Baković P, Kesić M, Kolarić D, Štefulj J, Čičin-Šain L. Metabolic and Molecular Response to High-Fat Diet Differs between Rats with Constitutionally High and Low Serotonin Tone. Int J Mol Sci 2023; 24:ijms24032169. [PMID: 36768493 PMCID: PMC9916796 DOI: 10.3390/ijms24032169] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Maintaining energy balance is a complex physiological function whose dysregulation can lead to obesity and associated metabolic disorders. The bioamine serotonin (5HT) is an important regulator of energy homeostasis, with its central and peripheral pools influencing energy status in opposing ways. Using sublines of rats with constitutionally increased (high-5HT) or decreased (low-5HT) whole-body 5HT tone, we have previously shown that under standard diet constitutionally higher 5HT activity is associated with increased body weight, adiposity, and impaired glucose homeostasis. Here, we investigated the response of 5HT sublines to an obesogenic diet. Consistent with previous findings, high-5HT animals fed a standard diet had poorer metabolic health. However, in response to a high-fat diet, only low-5HT animals increased body weight and insulin resistance. They also showed more pronounced changes in blood metabolic parameters and the expression of various metabolic genes in hypothalamus and adipose tissue. On the other hand, high-5HT animals appeared to be protected from major metabolic disturbances of the obesogenic diet. The results suggest that constitutionally low 5HT activity is associated with higher susceptibility to harmful effects of a high-energy diet. High-5HT subline, which developed less adverse metabolic outcomes on hypercaloric diets, may prove useful in understanding metabolically healthy obesity in humans.
Collapse
Affiliation(s)
- Petra Baković
- Department of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Maja Kesić
- Department of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Darko Kolarić
- Centre for Informatics and Computing, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Jasminka Štefulj
- Department of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Lipa Čičin-Šain
- Department of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
118
|
Circulating Inflammatory Cytokine Associated with Poor Prognosis in Moyamoya Disease: A Prospective Cohort Study. J Clin Med 2023; 12:jcm12030823. [PMID: 36769472 PMCID: PMC9917516 DOI: 10.3390/jcm12030823] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/07/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Inflammation is a key factor in the development of moyamoya disease. However, the cytokine distribution in moyamoya disease and its impact on prognosis remain unclear. A total of 204 patients with moyamoya disease were enrolled in this study. The peripheral blood was analyzed for baseline data and cytokines, which included IL-6, IL-1β, IL-2R, IL-8, and TNF-α. Patients with the RNF213 mutation and those without the mutation were compared in terms of their differences in cytokines. A mRS score ≥2 was defined as a poor prognosis, and a mRS score <2 was described as a good prognosis, and differences in cytokines were compared between the two groups. Regression analysis was performed to identify markers affecting prognosis. TNF-α and IL-6 levels were higher in the group without the RNF213 mutation compared to the mutation group. Multivariate stepwise regression analysis indicated that the G3 subgroup of IL-6 and the G4 subgroup of TNF-α were the independent risk factors for adverse prognosis in adults with moyamoya disease (OR 3.678, 95% CI [1.491, 9.074], p = 0.005; OR 2.996, 95% CI [1.180, 7.610], p = 0.021). IL-6 and TNF-α were associated with poor prognosis in adult patients with moyamoya disease.
Collapse
|
119
|
Yabut JM, Drucker DJ. Glucagon-like Peptide-1 Receptor-based Therapeutics for Metabolic Liver Disease. Endocr Rev 2023; 44:14-32. [PMID: 35907261 DOI: 10.1210/endrev/bnac018] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Indexed: 01/14/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) controls islet hormone secretion, gut motility, and body weight, supporting development of GLP-1 receptor agonists (GLP-1RA) for the treatment of type 2 diabetes (T2D) and obesity. GLP-1RA exhibit a favorable safety profile and reduce the incidence of major adverse cardiovascular events in people with T2D. Considerable preclinical data, supported by the results of clinical trials, link therapy with GLP-RA to reduction of hepatic inflammation, steatosis, and fibrosis. Mechanistically, the actions of GLP-1 on the liver are primarily indirect, as hepatocytes, Kupffer cells, and stellate cells do not express the canonical GLP-1R. GLP-1RA reduce appetite and body weight, decrease postprandial lipoprotein secretion, and attenuate systemic and tissue inflammation, actions that may contribute to attenuation of metabolic-associated fatty liver disease (MAFLD). Here we discuss evolving concepts of GLP-1 action that improve liver health and highlight evidence that links sustained GLP-1R activation in distinct cell types to control of hepatic glucose and lipid metabolism, and reduction of experimental and clinical nonalcoholic steatohepatitis (NASH). The therapeutic potential of GLP-1RA alone, or in combination with peptide agonists, or new small molecule therapeutics is discussed in the context of potential efficacy and safety. Ongoing trials in people with obesity will further clarify the safety of GLP-1RA, and pivotal studies underway in people with NASH will define whether GLP-1-based medicines represent effective and safe therapies for people with MAFLD.
Collapse
Affiliation(s)
- Julian M Yabut
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
120
|
Mo R, Zhang M, Wang H, Liu T, Zhang G, Wu Y. Short-term changes in dietary fat levels and starch sources affect weight management, glucose and lipid metabolism, and gut microbiota in adult cats. J Anim Sci 2023; 101:skad276. [PMID: 37602405 PMCID: PMC10465269 DOI: 10.1093/jas/skad276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023] Open
Abstract
A 2 × 2 factorial randomized design was utilized to investigate the effects of fat level (8% or 16% fat on a fed basis) and starch source (pea starch or corn starch) on body weight, glycolipid metabolism, hematology, and fecal microbiota in cats. The study lasted for 28 d and included a low fat and pea starch diet (LFPS), a high fat and pea starch diet, a low fat and corn starch diet, and a high fat and corn starch diet. In this study, hematological analysis showed that all cats were healthy. The apparent total tract digestibility of gross energy, crude protein, and crude fat was above 85% in the four diets. After 28 d, cats fed the high fat diets (HF) gained an average of 50 g more than those fed the low fat diets (LF). The hematological results showed that the HF diets increased the body inflammation in cats, while the LFPS group improved the glucolipid metabolism. The levels of glucose and insulin were lower in cats fed the LF diets than those in cats fed the HF diets (P < 0.05). Meanwhile, compared with the LF, the concentrations of total cholesterol, triglyceride, and high-density lipoprotein cholesterol in serum were greater in the cats fed the HF diets (P < 0.05). Additionally, both fat level and starch source influenced the fecal microbiota, with the relative abundance of beneficial bacteria, such as Blautia being significantly greater in the LFPS group than in the other three groups (P < 0.05). Reducing energy density and using pea starch in foods are both valuable design additions to aid in the management of weight control and improve gut health in cats. This study highlights the importance of fat level and starch in weight management in cats.
Collapse
Affiliation(s)
- Ruixia Mo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Mingrui Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Haotian Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Tianyi Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Gang Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yi Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
121
|
Protective Effect of High-Intensity Interval Training (HIIT) and Moderate-Intensity Continuous Training (MICT) against Vascular Dysfunction in Hyperglycemic Rats. J Nutr Metab 2022; 2022:5631488. [PMID: 36510592 PMCID: PMC9741543 DOI: 10.1155/2022/5631488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 12/04/2022] Open
Abstract
Background Hyperglycemia is a major risk factor for endothelial dysfunction. Endothelial dysfunction is associated with the inability of endothelial cells to maintain homeostasis of the cardiovascular system. Regular exercise may be considered as an effective and low-cost nonpharmacological tool for improving vascular function, though there is no agreement on the best type of exercise. Objectives To determine how high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) may prevent endothelial dysfunction under hyperglycemic conditions, and to compare these two interventions. Method Twenty-four eight-week-old male Wistar rats were randomly assigned into four groups: healthy nonexercising control (C), hyperglycemic control (HG-C), hyperglycemic + HIIT (HG-IT), and hyperglycemic + MICT (HG-CT). Hyperglycemia was induced by a single injection of streptozotocin. Hyperglycemic animals were subjected to HIIT or MICT protocols six days a week for six weeks. Decapitation was performed the day after the exercise protocols were completed. The ascending aorta (until the abdominal artery) was examined. An enzyme-linked immunosorbent assay (ELISA) was used to measure the glucagon-likepeptide-1 (GLP-1), endothelial nitric oxide synthase (eNOS), and tumor necrosis factor-alpha (TNFα) levels. A colorimetric assay was used to measure superoxide dismutase (SOD) activity and malondialdehyde (MDA) levels. Quantitative real-time polymerase chain reaction (PCR) was used to measure the expression of the receptor for advanced glycation end-products (RAGE) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Hematoxylin and eosin (H&E) staining was used to histologically analyze the aortas. Results There was a significantly higher level of GLP-1 and lower expression of RAGE, NF-κB, and TNFα in the HG-IT and HG-CT group compared to the HG-C group. Microscopic examination of aortic tissue showed a better tissue arrangement in both treatment groups than in the HG-C group. Except for the MDA level, there were no significant differences in any of the measured parameters between the HG-IT and HG-CT groups. Conclusion Under hyperglycemic conditions, both HIIT and MICT have a protective role against endothelial dysfunction.
Collapse
|
122
|
Barros D, Marques EA, Magalhães J, Carvalho J. Energy metabolism and frailty: The potential role of exercise-induced myokines - A narrative review. Ageing Res Rev 2022; 82:101780. [PMID: 36334911 DOI: 10.1016/j.arr.2022.101780] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Frailty is a complex condition that emerges from dysregulation in multiple physiological systems. Increasing evidence suggests the potential role of age-related energy dysregulation as a key driver of frailty. Exercise is considered the most efficacious intervention to prevent and even ameliorate frailty as it up-tunes and improves the function of several related systems. However, the mechanisms and molecules responsible for these intersystem benefits are not fully understood. The skeletal muscle is considered a secretory organ with endocrine functions that can produce and secrete exercise-related molecules such as myokines. These molecules are cytokines and other peptides released by muscle fibers in response to acute and/or chronic exercise. The available evidence supports that several myokines can elicit autocrine, paracrine, or endocrine effects, partly mediating inter-organ crosstalk and also having a critical role in improving cardiovascular, metabolic, immune, and neurological health. This review describes the current evidence about the potential link between energy metabolism dysregulation and frailty and provides a theoretical framework for the potential role of myokines (via exercise) in counteracting frailty. It also summarizes the physiological role of selected myokines and their response to different acute and chronic exercise protocols in older adults.
Collapse
Affiliation(s)
- Duarte Barros
- The Research Centre in Physical Activity, Health and Leisure, CIAFEL, University of Porto, Portugal; ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal.
| | - Elisa A Marques
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University of Maia (ISMAI), Portugal; School of Sport and Exercise Sciences, Loughborough University, Loughborough, UK
| | - José Magalhães
- The Research Centre in Physical Activity, Health and Leisure, CIAFEL, University of Porto, Portugal; ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Joana Carvalho
- The Research Centre in Physical Activity, Health and Leisure, CIAFEL, University of Porto, Portugal; ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| |
Collapse
|
123
|
Liu QX, Tang DY, Xiang X, He JQ. Associations between nutritional and immune status and clinicopathologic factors in patients with tuberculosis: A comprehensive analysis. Front Cell Infect Microbiol 2022; 12:1013751. [PMID: 36506012 PMCID: PMC9731357 DOI: 10.3389/fcimb.2022.1013751] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Objective This study was designed to assess and analyze nutritional status (NS) and immune status in patients with tuberculosis. Methods A retrospective analysis was conducted on 93 TB patients hospitalized in the tuberculosis ward of the West China Hospital of Sichuan University. Subgroup comparisons were made according to age (<65 years and ≥65 years), nutritional risk score 2002 (NRS 2002 <3 and ≥3), tuberculosis location [pulmonary tuberculosis and extrapulmonary tuberculosis (including pulmonary tuberculosis complicated with extrapulmonary tuberculosis)], and prognostic nutrition index (PNI) (<45 vs ≥45). Results Significantly increased weight loss was associated with extrapulmonary tuberculosis (P =0.0010). Serum albumin (P =0.0214), total lymphocyte count (P = 0.0009) and PNI (P = 0.0033) were significantly decreased in older patients. Neutrophils/lymphocytes (NLR) (P =0.0002), monocytes/lymphocytes (MLR) (P < 0.0001), and platelets/lymphocytes (PLR) (P =0.0107) were higher. According to NRS 2002, higher nutritional risk was associated with lower body weight and body mass index (BMI) (P < 0.0001), higher weight loss (P = 0.0012), longer duration of hospitalization (P =0.0100), lower serum albumin level and hemoglobin concentration (P <0.01), lower creatinine level, and lower PNI (P < 0.01). 0.0001), lower total lymphocyte count (P = 0.0004), higher neutrophil and monocyte counts (P <0.05), and higher NLR (P = 0.0002), MLR (P = 0.0006), and PLR (P = 0.0156). Lower PNI was associated with lower body weight (P = 0.0001) and BMI (P =0.0074), lower total protein, albumin, and hemoglobin concentrations (P < 0.0001), and lower total lymphocyte count (P < 0.0001) and creatinine levels (P = 0.0336), higher age (P =0.0002) and NRS 2002 score, P < 0.0001), longer hos-pital stay (P = 0.0003), higher neutrophil count (P = 0.0042), and NLR, MLR, and PLR (P <0.0001) were significantly correlated. In multivariate logistic regression analysis, weight loss (OR: 0.209, 95% CI: 0.060-0.722; p =0.013) was significantly associated with higher nutritional risk (NRS 2002≥3). In multiple linear regression analysis, the NRS 2002 score was higher (B=2.018; p =0.023), and extrapulmonary tuberculosis (B=-6.205; p =0.007) was linked with a longer duration of hos-pitalization. Conclusions Older tuberculosis patients are at nutritional risk, and older patients (≥65 years old) need to pay attention to nutritional monitoring and intervention. Older TB patients and those at risk of malnutrition have increased immune ratio and impaired immune function. Management of TB patients using basic diagnostic tools to assess nutritional and immune status and calculate PNI and immunological indexes (NLR, MLR, PLR) to improve treatment outcomes.
Collapse
Affiliation(s)
- Quan-Xian Liu
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
- Department of Tuberculosis, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dao-Yan Tang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Xi Xiang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Jian-Qing He
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
124
|
Andraini T, Mardatillah J, Kartinah N, Paramita N, Santoso D, Yolanda S, Puspasari B, Rusli H. Physical exercise promotes memory function in diabetes mellitus rats: a look at glucagon like peptide-1 and glucagon like peptide-1 receptor. COMPARATIVE EXERCISE PHYSIOLOGY 2022. [DOI: 10.3920/cep220020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Diabetes mellitus (DM) is a metabolic disorder associated with declining of memory function. Glucagon like peptide-1 (GLP-1) has a role on memory function; binding of GLP-1 and GLP-1 receptor (GLP-1R) can enhance synaptic plasticity. Physical exercise has effect in increasing GLP-1 levels mediated by interleukin (IL)-6 in plasma. However, the effect of physical exercise on GLP-1 and GLP-1R in hippocampus is still unclear. Therefore, we investigated the effect of continuous and interval training on memory function through GLP-1/GLP-1R and its relation to hippocampal IL-6 of DM rats. This was an experimental study using 8-week-old Wistar rats, divided into four groups: normal control (Con); DM control (ConDM); DM with continuous training (DM-CT); and DM with interval training (DM-IT). DM-CT and DM-IT rats were trained six times a week for six weeks. All rats performed the forced alteration Y-maze test to verify spatial memory function. We analysed GLP-1 and IL-6 level by ELISA and GLP-1R by RT-PCR. We found decreased spatial memory function in DM rats accompanied by decreased hippocampal GLP-1 and GLP-1R. Physical exercise promote memory function in DM rats associated with restoration of hippocampal GLP-1 or GLP-1R level. The GLP-1 level is associated with hippocampal IL-6 level. Continuous training slightly increases GLP-1 level while interval training can maintain expression of hippocampal GLP-1R in DM rats. Our findings suggest that physical exercise may promote memory function by slightly increase the level of hippocampal GLP-1 and maintaining expression hippocampal GLP-1R.
Collapse
Affiliation(s)
- T. Andraini
- Department of Medical Physiology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia. Jalan Salemba Raya No. 6 Jakarta Pusat, Daerah Khusus Ibukota Jakarta 10430, Indonesia
| | - J. Mardatillah
- Master’s Programme in Biomedical Sciences, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia. Jalan Salemba Raya No. 6 Jakarta Pusat, 10430, Indonesia
| | - N.T. Kartinah
- Department of Medical Physiology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia. Jalan Salemba Raya No. 6 Jakarta Pusat, Daerah Khusus Ibukota Jakarta 10430, Indonesia
| | - N. Paramita
- Department of Medical Physiology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia. Jalan Salemba Raya No. 6 Jakarta Pusat, Daerah Khusus Ibukota Jakarta 10430, Indonesia
| | - D.I.S. Santoso
- Department of Medical Physiology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia. Jalan Salemba Raya No. 6 Jakarta Pusat, Daerah Khusus Ibukota Jakarta 10430, Indonesia
| | - S. Yolanda
- Department of Medical Physiology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia. Jalan Salemba Raya No. 6 Jakarta Pusat, Daerah Khusus Ibukota Jakarta 10430, Indonesia
| | - B.C. Puspasari
- Master’s Programme in Biomedical Sciences, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia. Jalan Salemba Raya No. 6 Jakarta Pusat, 10430, Indonesia
| | - H. Rusli
- Master’s Programme in Biomedical Sciences, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia. Jalan Salemba Raya No. 6 Jakarta Pusat, 10430, Indonesia
| |
Collapse
|
125
|
Sheinboim D, Parikh S, Manich P, Markus I, Dahan S, Parikh R, Stubbs E, Cohen G, Zemser-Werner V, Bell RE, Ruiz SA, Percik R, Brenner R, Leibou S, Vaknine H, Arad G, Gerber Y, Keinan-Boker L, Shimony T, Bikovski L, Goldstein N, Constantini K, Labes S, Mordechai S, Doron H, Lonescu A, Ziv T, Nizri E, Choshen G, Eldar-Finkelman H, Tabach Y, Helman A, Ben-Eliyahu S, Erez N, Perlson E, Geiger T, Ben-Zvi D, Khaled M, Gepner Y, Levy C. An Exercise-Induced Metabolic Shield in Distant Organs Blocks Cancer Progression and Metastatic Dissemination. Cancer Res 2022; 82:4164-4178. [PMID: 36084256 PMCID: PMC9762351 DOI: 10.1158/0008-5472.can-22-0237] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/16/2022] [Accepted: 08/31/2022] [Indexed: 01/07/2023]
Abstract
Exercise prevents cancer incidence and recurrence, yet the underlying mechanism behind this relationship remains mostly unknown. Here we report that exercise induces the metabolic reprogramming of internal organs that increases nutrient demand and protects against metastatic colonization by limiting nutrient availability to the tumor, generating an exercise-induced metabolic shield. Proteomic and ex vivo metabolic capacity analyses of murine internal organs revealed that exercise induces catabolic processes, glucose uptake, mitochondrial activity, and GLUT expression. Proteomic analysis of routinely active human subject plasma demonstrated increased carbohydrate utilization following exercise. Epidemiologic data from a 20-year prospective study of a large human cohort of initially cancer-free participants revealed that exercise prior to cancer initiation had a modest impact on cancer incidence in low metastatic stages but significantly reduced the likelihood of highly metastatic cancer. In three models of melanoma in mice, exercise prior to cancer injection significantly protected against metastases in distant organs. The protective effects of exercise were dependent on mTOR activity, and inhibition of the mTOR pathway with rapamycin treatment ex vivo reversed the exercise-induced metabolic shield. Under limited glucose conditions, active stroma consumed significantly more glucose at the expense of the tumor. Collectively, these data suggest a clash between the metabolic plasticity of cancer and exercise-induced metabolic reprogramming of the stroma, raising an opportunity to block metastasis by challenging the metabolic needs of the tumor. SIGNIFICANCE Exercise protects against cancer progression and metastasis by inducing a high nutrient demand in internal organs, indicating that reducing nutrient availability to tumor cells represents a potential strategy to prevent metastasis. See related commentary by Zerhouni and Piskounova, p. 4124.
Collapse
Affiliation(s)
- Danna Sheinboim
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shivang Parikh
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Paulee Manich
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Irit Markus
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, and Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv, Israel
| | - Sapir Dahan
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Roma Parikh
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Elisa Stubbs
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, and Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv, Israel
| | - Gali Cohen
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, and Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv, Israel.,Stanley Steyer Institute for Cancer Epidemiology and Research, Tel Aviv University, Tel Aviv, Israel
| | | | - Rachel E. Bell
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sara Arciniegas Ruiz
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ruth Percik
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Institute of Endocrinology, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Ronen Brenner
- Institute of Oncology, E. Wolfson Medical Center, Holon, Israel
| | - Stav Leibou
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hananya Vaknine
- Institute of Pathology, E. Wolfson Medical Center, Holon, Israel
| | - Gali Arad
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yariv Gerber
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, and Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv, Israel.,Stanley Steyer Institute for Cancer Epidemiology and Research, Tel Aviv University, Tel Aviv, Israel
| | - Lital Keinan-Boker
- School of Public Health, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel.,Israel Center for Disease Control, Israel Ministry of Health, Ramat Gan, Israel
| | - Tal Shimony
- Israel Center for Disease Control, Israel Ministry of Health, Ramat Gan, Israel
| | - Lior Bikovski
- The Myers Neuro-Behavioral Core Facility, Tel Aviv University, Tel Aviv, Israel.,School of Behavioral Sciences, Netanya Academic College, Netanya, Israel
| | - Nir Goldstein
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, and Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv, Israel
| | - Keren Constantini
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, and Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv, Israel
| | - Sapir Labes
- Department of Developmental Biology and Cancer Research, Institute of Medical Research-Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shimonov Mordechai
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Surgery, E. Wolfson Medical Center, Holon, Israel
| | - Hila Doron
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Lonescu
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Ziv
- The Smoler Proteomics Center, Technion, Haifa, Israel
| | - Eran Nizri
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Dermatology, Tel Aviv Sourasky (Ichilov) Medical Center, Tel Aviv, Israel
| | - Guy Choshen
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Internal Medicine, Tel Aviv Sourasky (Ichilov) Medical Center, Tel Aviv, Israel
| | - Hagit Eldar-Finkelman
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yuval Tabach
- Department of Developmental Biology and Cancer Research, Institute of Medical Research-Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aharon Helman
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel
| | - Shamgar Ben-Eliyahu
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Neta Erez
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eran Perlson
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Geiger
- The Weizmann Institute of Science, Rehovot, Israel
| | - Danny Ben-Zvi
- Department of Developmental Biology and Cancer Research, Institute of Medical Research Israel–Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mehdi Khaled
- INSERM 1186, Gustave Roussy, Université Paris-Saclay, Villejuif, France.,Corresponding Authors: Carmit Levy, Human Molecular Genetics and Biochemistry, Tel Aviv University, Tel Aviv, 69978, Israel. E-mail: ; Yftach Gepner, E-mail: ; and Mehdi Khaled, E-mail:
| | - Yftach Gepner
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, and Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv, Israel.,Corresponding Authors: Carmit Levy, Human Molecular Genetics and Biochemistry, Tel Aviv University, Tel Aviv, 69978, Israel. E-mail: ; Yftach Gepner, E-mail: ; and Mehdi Khaled, E-mail:
| | - Carmit Levy
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Corresponding Authors: Carmit Levy, Human Molecular Genetics and Biochemistry, Tel Aviv University, Tel Aviv, 69978, Israel. E-mail: ; Yftach Gepner, E-mail: ; and Mehdi Khaled, E-mail:
| |
Collapse
|
126
|
Gutierrez AD, Gao Z, Hamidi V, Zhu L, Saint Andre KB, Riggs K, Ruscheinsky M, Wang H, Yu Y, Miller C, Vasquez H, Taegtmeyer H, Kolonin MG. Anti-diabetic effects of GLP1 analogs are mediated by thermogenic interleukin-6 signaling in adipocytes. Cell Rep Med 2022; 3:100813. [PMID: 36384099 PMCID: PMC9729831 DOI: 10.1016/j.xcrm.2022.100813] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 09/06/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022]
Abstract
Mechanisms underlying anti-diabetic effects of GLP1 analogs remain incompletely understood. We observed that in prediabetic humans exenatide treatment acutely induces interleukin-6 (IL-6) secretion by monocytes and IL-6 in systemic circulation. We hypothesized that GLP1 analogs signal through IL-6 in adipose tissue (AT) and used the mouse model to test if IL-6 receptor (IL-6R) signaling underlies the effects of the GLP1-IL-6 axis. We show that liraglutide transiently increases IL-6 in mouse circulation and IL-6R signaling in AT. Metronomic liraglutide treatment resulted in AT browning and thermogenesis linked with STAT3 activation. IL-6-blocking antibody treatment inhibited STAT3 activation in AT and suppressed liraglutide-induced increase in thermogenesis and glucose utilization. We show that adipose IL-6R knockout mice still display liraglutide-induced weight loss but lack thermogenic adipocyte browning and metabolism activation. We conclude that the anti-diabetic effects of GLP1 analogs are mediated by transient upregulation of IL-6, which activates canonical IL-6R signaling and thermogenesis.
Collapse
Affiliation(s)
- Absalon D Gutierrez
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, The University of Texas Health Science Center, Houston, TX 77030, USA.
| | - Zhanguo Gao
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Vala Hamidi
- Department of Medicine, Division of Endocrinology, University of California San Diego, La Jolla, CA 92093, USA
| | - Liang Zhu
- Department of Internal Medicine, Division of Clinical and Translational Sciences, The University of Texas Health Science Center, Houston, TX 77030, USA
| | | | - Kayla Riggs
- Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern, Dallas, TX 75225, USA
| | - Monika Ruscheinsky
- Department of Pathology, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Hongyu Wang
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Yongmei Yu
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Charles Miller
- Department of Cardiothoracic and Vascular Surgery, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Hernan Vasquez
- Department of Internal Medicine, Division of Cardiovascular Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Heinrich Taegtmeyer
- Department of Internal Medicine, Division of Cardiovascular Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Mikhail G Kolonin
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA.
| |
Collapse
|
127
|
de Oliveira Micheletti T, Cassia dos Santos A, Rocha GZ, Silva VRR, Quaresma PGF, Assalin HB, Junqueira FS, Ropelle ER, Oliveira AG, Saad MJA, Prada PDO. Acute exercise reduces feeding by activating IL-6/Tubby axis in the mouse hypothalamus. Front Physiol 2022; 13:956116. [PMID: 36452038 PMCID: PMC9702993 DOI: 10.3389/fphys.2022.956116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/23/2022] [Indexed: 01/05/2025] Open
Abstract
Background: Acute exercise contributes to decreased feeding through leptin and interleukin/Janus kinase 2/signal transducers and activators of transcription 3 (IL-6/JAK2/STAT3) signaling. Considering the pleiotropic use of substrates by JAK2 and that JAK2 can phosphorylate the Tubby protein (TUB) in CHO-IR cells, we speculated that acute exercise can activate the IL-6/JAK2/TUB pathway to decrease food intake. Aims: We investigated whether acute exercise induced tyrosine phosphorylation and the association of TUB and JAK2 in the hypothalamus and if IL-6 is involved in this response, whether acute exercise increases the IL-6/TUB axis to regulate feeding, and if leptin has an additive effect over this mechanism. Methods: We applied a combination of genetic, pharmacological, and molecular approaches. Key findings: The in vivo experiments showed that acute exercise increased the tyrosine phosphorylation and association of JAK2/TUB in the hypothalamus, which reduced feeding. This response was dependent on IL-6. Leptin had no additive effect on this mechanism. Significance: The results of this study suggest a novel hypothalamic pathway by which IL-6 released by exercise regulates feeding and reinforces the beneficial effects of exercise.
Collapse
Affiliation(s)
- Thayana de Oliveira Micheletti
- School of Applied Sciences, State University of Campinas (UNICAMP), Limeira, Brazil
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Andressa Cassia dos Santos
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Guilherme Zweig Rocha
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | - Heloisa Balan Assalin
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Felipe Silva Junqueira
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Eduardo Rochete Ropelle
- School of Applied Sciences, State University of Campinas (UNICAMP), Limeira, Brazil
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Alexandre Gabarra Oliveira
- Department of Physical Education, Biosciences Institute, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Mario Jose Abdalla Saad
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Patricia de Oliveira Prada
- School of Applied Sciences, State University of Campinas (UNICAMP), Limeira, Brazil
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
128
|
“Ferrocrinology”—Iron Is an Important Factor Involved in Gluco- and Lipocrinology. Nutrients 2022; 14:nu14214693. [DOI: 10.3390/nu14214693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
“Ferrocrinology” is the term used to describe the study of iron effects on the functioning of adipose tissue, which together with muscle tissue makes the largest endocrine organ in the human body. By impairing exercise capacity, reducing AMP-activated kinase activity, and enhancing insulin resistance, iron deficiency can lead to the development of obesity and type 2 diabetes mellitus. Due to impaired browning of white adipose tissue and reduced mitochondrial iron content in adipocytes, iron deficiency (ID) can cause dysfunction of brown adipose tissue. By reducing ketogenesis, aconitase activity, and total mitochondrial capacity, ID impairs muscle performance. Another important aspect is the effect of ID on the impairment of thermogenesis due to reduced binding of thyroid hormones to their nuclear receptors, with subsequently impaired utilization of norepinephrine in tissues, and impaired synthesis and distribution of cortisol, which all make the body’s reactivity to stress in ID more pronounced. Iron deficiency can lead to the development of the most common endocrinopathy, autoimmune thyroid disease. In this paper, we have discussed the role of iron in the cross-talk between glucocrinology, lipocrinology and myocrinology, with thyroid hormones acting as an active bystander.
Collapse
|
129
|
Wang Y, Zhang Z, Jiao W, Wang Y, Wang X, Zhao Y, Fan X, Tian L, Li X, Mi J. Ferroptosis and its role in skeletal muscle diseases. Front Mol Biosci 2022; 9:1051866. [PMID: 36406272 PMCID: PMC9669482 DOI: 10.3389/fmolb.2022.1051866] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Ferroptosis is characterized by the accumulation of iron and lipid peroxidation products, which regulates physiological and pathological processes in numerous organs and tissues. A growing body of research suggests that ferroptosis is a key causative factor in a variety of skeletal muscle diseases, including sarcopenia, rhabdomyolysis, rhabdomyosarcoma, and exhaustive exercise-induced fatigue. However, the relationship between ferroptosis and various skeletal muscle diseases has not been investigated systematically. This review’s objective is to provide a comprehensive summary of the mechanisms and signaling factors that regulate ferroptosis, including lipid peroxidation, iron/heme, amino acid metabolism, and autophagy. In addition, we tease out the role of ferroptosis in the progression of different skeletal muscle diseases and ferroptosis as a potential target for the treatment of multiple skeletal muscle diseases. This review can provide valuable reference for the research on the pathogenesis of skeletal muscle diseases, as well as for clinical prevention and treatment.
Collapse
Affiliation(s)
- Ying Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zepeng Zhang
- Research Center of Traditional Chinese Medicine, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Weikai Jiao
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yanyan Wang
- Department of Endocrinology, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Xiuge Wang
- Department of Endocrinology, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Yunyun Zhao
- Department of Endocrinology, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Xuechun Fan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Lulu Tian
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Xiangyan Li, ; Jia Mi,
| | - Jia Mi
- Department of Endocrinology, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Xiangyan Li, ; Jia Mi,
| |
Collapse
|
130
|
Espes D, Magnusson L, Caballero-Corbalan J, Schwarcz E, Casas R, Carlsson PO. Pregnancy induces pancreatic insulin secretion in women with long-standing type 1 diabetes. BMJ Open Diabetes Res Care 2022; 10:10/6/e002948. [PMID: 36351678 PMCID: PMC9644305 DOI: 10.1136/bmjdrc-2022-002948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/01/2022] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Pregnancy entails both pancreatic adaptations with increasing β-cell mass and immunological alterations in healthy women. In this study, we have examined the effects of pregnancy on β-cell function and immunological processes in long-standing type 1 diabetes (L-T1D). RESEARCH DESIGN AND METHODS Fasting and stimulated C-peptide were measured after an oral glucose tolerance test in pregnant women with L-T1D (n=17) during the first trimester, third trimester, and 5-8 weeks post partum. Two 92-plex Olink panels were used to measure proteins in plasma. Non-pregnant women with L-T1D (n=30) were included for comparison. RESULTS Fasting C-peptide was detected to a higher degree in women with L-T1D during gestation and after parturition (first trimester: 64.7%, third trimester: 76.5%, and post partum: 64.7% vs 26.7% in non-pregnant women). Also, total insulin secretion and peak C-peptide increased during pregnancy. The plasma protein levels in pregnant women with L-T1D was dynamic, but few analytes were functionally related. Specifically, peripheral levels of prolactin (PRL), prokineticin (PROK)-1, and glucagon (GCG) were elevated during gestation whereas levels of proteins related to leukocyte migration (CCL11), T cell activation (CD28), and antigen presentation (such as CD83) were reduced. CONCLUSIONS In summary, we have found that some C-peptide secretion, that is, an indirect measurement of endogenous insulin production, is regained in women with L-T1D during pregnancy, which might be attributed to elevated peripheral levels of PRL, PROK-1, or GCG.
Collapse
Affiliation(s)
- Daniel Espes
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Louise Magnusson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linkoping, Sweden
| | | | - Erik Schwarcz
- Department of Internal Medicine, Örebro University Hospital, Orebro, Sweden
| | - Rosaura Casas
- Department of Biomedical and Clinical Sciences, Linköping University, Linkoping, Sweden
| | - Per-Ola Carlsson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
131
|
Kim HK, Radak Z, Takahashi M, Inami T, Shibata S. Chrono-exercise: Time-of-day-dependent physiological responses to exercise. SPORTS MEDICINE AND HEALTH SCIENCE 2022; 5:50-58. [PMID: 36994180 PMCID: PMC10040331 DOI: 10.1016/j.smhs.2022.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/10/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
Exercise is an effective strategy to prevent and improve obesity and related metabolic diseases. Exercise increases the metabolic demand in the body. Although many of the metabolic health benefits of exercise depend on skeletal muscle adaptations, exercise exerts many of its metabolic effects through the liver, adipose tissue, and pancreas. Therefore, exercise is the physiological state in which inter-organ signaling is most important. By contrast, circadian rhythms in mammals are associated with the regulation of several physiological and biological functions, including body temperature, sleep-wake cycle, physical activity, hormone secretion, and metabolism, which are controlled by clock genes. Glucose and lipid tolerance reportedly exhibit diurnal variations, being lower in the evening than in the morning. Therefore, the effects of exercise on substrate metabolism at different times of the day may differ. In this review, the importance of exercise timing considerations will be outlined, incorporating a chrono-exercise perspective.
Collapse
|
132
|
Wu L, Zhou M, Xie Y, Lang H, Li T, Yi L, Zhang Q, Mi M. Dihydromyricetin Enhances Exercise-Induced GLP-1 Elevation through Stimulating cAMP and Inhibiting DPP-4. Nutrients 2022; 14:4583. [PMID: 36364846 PMCID: PMC9656859 DOI: 10.3390/nu14214583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 08/05/2023] Open
Abstract
The purpose of this study was to examine whether endogenous GLP-1 (glucagon-like peptide-1) could respond to exercise training in mice, as well as whether dihydromyricetin (DHM) supplementation could enhance GLP-1 levels in response to exercise training. After 2 weeks of exercise intervention, we found that GLP-1 levels were significantly elevated. A reshaped gut microbiota was identified following exercise, as evidenced by the increased abundance of Bifidobacterium, Lactococcus, and Alistipes genus, which are involved in the production of short-chain fatty acids (SCFAs). Antibiotic treatment negated exercise-induced GLP-1 secretion, which could be reversed with gut microbiota transplantation. Additionally, the combined intervention (DHM and exercise) was modeled in mice. Surprisingly, the combined intervention resulted in higher GLP-1 levels than the exercise intervention alone. In exercised mice supplemented with DHM, the gut microbiota composition changed as well, while the amount of SCFAs was unchanged in the stools. Additionally, DHM treatment induced intracellular cAMP in vitro and down-regulated the gene and protein expression of dipeptidyl peptidase-4 (DPP-4) both in vivo and in vitro. Collectively, the auxo-action of exercise on GLP-1 secretion is associated with the gut-microbiota-SCFAs axis. Moreover, our findings suggest that DHM interacts synergistically with exercise to enhance GLP-1 levels by stimulating cAMP and inhibiting DPP-4.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qianyong Zhang
- Correspondence: (Q.Z.); (M.M.); Fax: +86-2368771689 (Q.Z.); +86-2368771549 (M.M.)
| | - Mantian Mi
- Correspondence: (Q.Z.); (M.M.); Fax: +86-2368771689 (Q.Z.); +86-2368771549 (M.M.)
| |
Collapse
|
133
|
Abdalqadir N, Adeli K. GLP-1 and GLP-2 Orchestrate Intestine Integrity, Gut Microbiota, and Immune System Crosstalk. Microorganisms 2022; 10:2061. [PMID: 36296337 PMCID: PMC9610230 DOI: 10.3390/microorganisms10102061] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 12/15/2022] Open
Abstract
The intestine represents the body's largest interface between internal organs and external environments except for its nutrient and fluid absorption functions. It has the ability to sense numerous endogenous and exogenous signals from both apical and basolateral surfaces and respond through endocrine and neuronal signaling to maintain metabolic homeostasis and energy expenditure. The intestine also harbours the largest population of microbes that interact with the host to maintain human health and diseases. Furthermore, the gut is known as the largest endocrine gland, secreting over 100 peptides and other molecules that act as signaling molecules to regulate human nutrition and physiology. Among these gut-derived hormones, glucagon-like peptide 1 (GLP-1) and -2 have received the most attention due to their critical role in intestinal function and food absorption as well as their application as key drug targets. In this review, we highlight the current state of the literature that has brought into light the importance of GLP-1 and GLP-2 in orchestrating intestine-microbiota-immune system crosstalk to maintain intestinal barrier integrity, inflammation, and metabolic homeostasis.
Collapse
Affiliation(s)
- Nyan Abdalqadir
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1H3, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Biology, College of Science, University of Sulaimani, Sulaymaniyah 46001, Iraq
| | - Khosrow Adeli
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1H3, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
134
|
Lavi G, Horwitz A, Einstein O, Zipori R, Gross O, Birk R. Fndc5/irisin is regulated by myogenesis stage, irisin, muscle type and training. Am J Transl Res 2022; 14:7063-7079. [PMID: 36398256 PMCID: PMC9641476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/20/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVES Irisin, a novel myokine that responds to exercise, was initially identified as a regulator of fat tissue metabolism. We aimed to investigate fibronectin type III domain-containing protein 5 (Fndc5)/irisin, auto/para-crine role in different muscle fibers, different activities, and muscle cell differentiation. METHODS Using in-vitro, ex-vivo, and in-vivo muscle models, Fndc5 was studied at the physiological and molecular levels. RESULTS Following training, C57BL/6 mice (n=10) were subject to fast and slow-twitch muscles dissection and molecular analysis. Isolated mice (C57BL/6, n=14) slow and fast-twitch muscles were subject to electrical aerobic and anaerobic pulses stimulation (EPS). L6 muscle cells differentiation was characterized by Fndc5 differentiation-depended expression pattern parallel with significant hypertrophy, Myogenin elevation, and overlapping Peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (Pgc-1α) expression pattern. Exogenous irisin significantly altered Fndc5 expression; augmented at early differentiation (3-4-fold, P<0.05) and decreased (2-fold, P<0.05) at late differentiation. Training induced a significant elevation in Fndc5/irisin and Pgc-1α expression levels in all muscle types compared to the sedentary state, where soleus muscle (slow) Fndc5 expression levels were significantly higher compared to levels in all other fast muscles (3-140-fold, P<0.001). Similarly, following EPS, Fndc5 expression levels were significantly augmented in the soleus slow muscle following both aerobic and anaerobic activity (3-3.5-fold, P<0.05) compared to extensor digitorum longus (fast) muscle. CONCLUSIONS Muscle cell's Fndc5 expression has a differentiation-depended pattern paralleling Pgc-1α expression and hypertrophy. Irisin autocrinally and significantly regulate Fndc5 and Pgc-1α in a differentiation-depended manner. Muscle Fndc5 expression levels are dependent on fiber type and activity type.
Collapse
Affiliation(s)
- Gal Lavi
- Department of Nutrition, Faculty of Health Sciences, Ariel UniversityIsrael
| | - Avital Horwitz
- Department of Nutrition, Faculty of Health Sciences, Ariel UniversityIsrael
| | - Ofira Einstein
- Department of Physical Therapy, Faculty of Health Sciences, Ariel UniversityIsrael
| | - Reut Zipori
- Department of Nutrition, Faculty of Health Sciences, Ariel UniversityIsrael
| | - Ofri Gross
- Department of Nutrition, Faculty of Health Sciences, Ariel UniversityIsrael
| | - Ruth Birk
- Department of Nutrition, Faculty of Health Sciences, Ariel UniversityIsrael
| |
Collapse
|
135
|
Brubaker PL. The Molecular Determinants of Glucagon-like Peptide Secretion by the Intestinal L cell. Endocrinology 2022; 163:6717959. [PMID: 36156130 DOI: 10.1210/endocr/bqac159] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 11/19/2022]
Abstract
The intestinal L cell secretes a diversity of biologically active hormones, most notably the glucagon-like peptides, GLP-1 and GLP-2. The highly successful introduction of GLP-1-based drugs into the clinic for the treatment of patients with type 2 diabetes and obesity, and of a GLP-2 analog for patients with short bowel syndrome, has led to the suggestion that stimulation of the endogenous secretion of these peptides may serve as a novel therapeutic approach in these conditions. Situated in the intestinal epithelium, the L cell demonstrates complex relationships with not only circulating, paracrine, and neural regulators, but also ingested nutrients and other factors in the lumen, most notably the microbiota. The integrated input from these numerous secretagogues results in a variety of temporal patterns in L cell secretion, ranging from minutes to 24 hours. This review combines the findings of traditional, physiological studies with those using newer molecular approaches to describe what is known and what remains to be elucidated after 5 decades of research on the intestinal L cell and its secreted peptides, GLP-1 and GLP-2.
Collapse
Affiliation(s)
- Patricia L Brubaker
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
136
|
Yin Y, Guo Q, Zhou X, Duan Y, Yang Y, Gong S, Han M, Liu Y, Yang Z, Chen Q, Li F. Role of brain-gut-muscle axis in human health and energy homeostasis. Front Nutr 2022; 9:947033. [PMID: 36276808 PMCID: PMC9582522 DOI: 10.3389/fnut.2022.947033] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/02/2022] [Indexed: 11/26/2022] Open
Abstract
The interrelationship between brain, gut and skeletal muscle plays a key role in energy homeostasis of the body, and is becoming a hot topic of research. Intestinal microbial metabolites, such as short-chain fatty acids (SCFAs), bile acids (BAs) and tryptophan metabolites, communicate with the central nervous system (CNS) by binding to their receptors. In fact, there is a cross-talk between the CNS and the gut. The CNS, under the stimulation of pressure, will also affect the stability of the intestinal system, including the local intestinal transport, secretion and permeability of the intestinal system. After the gastrointestinal tract collects information about food absorption, it sends signals to the central system through vagus nerve and other channels to stimulate the secretion of brain-gut peptide and produce feeding behavior, which is also an important part of maintaining energy homeostasis. Skeletal muscle has receptors for SCFAs and BAs. Therefore, intestinal microbiota can participate in skeletal muscle energy metabolism and muscle fiber conversion through their metabolites. Skeletal muscles can also communicate with the gut system during exercise. Under the stimulation of exercise, myokines secreted by skeletal muscle causes the secretion of intestinal hormones, and these hormones can act on the central system and affect food intake. The idea of the brain-gut-muscle axis is gradually being confirmed, and at present it is important for regulating energy homeostasis, which also seems to be relevant to human health. This article focuses on the interaction of intestinal microbiota, central nervous, skeletal muscle energy metabolism, and feeding behavior regulation, which will provide new insight into the diagnostic and treatment strategies for obesity, diabetes, and other metabolic diseases.
Collapse
Affiliation(s)
- Yunju Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Qiuping Guo
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Xihong Zhou
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Yehui Duan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Yuhuan Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Saiming Gong
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Mengmeng Han
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yating Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zhikang Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Qinghua Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Fengna Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
137
|
Brodersen K, Mose M, Ramer Mikkelsen U, Jørgensen JOL, Festersen Nielsen M, Møller N, Wegeberg A, Brock C, Hartmann B, Holst JJ, Rittig N. Prolonged lipopolysaccharide-induced illness elevates glucagon-like peptide-1 and suppresses peptide YY: A human-randomized cross-over trial. Physiol Rep 2022; 10:e15462. [PMID: 36117310 PMCID: PMC9483438 DOI: 10.14814/phy2.15462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/15/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023] Open
Abstract
Severe systemic inflammation is associated with nausea, loss of appetite, and delayed gastric emptying, which increases hospitalization admission length and mortality rate. There is a lack of human controlled studies exploring gastric emptying rates and underlying mechanisms during inflammatory conditions. We aimed to investigate if systemic inflammation in young men delays gastro-intestinal transit times, lowers motility, and affects gastrointestinal hormone secretion. This substudy of a randomized crossover trial investigated eight healthy young men on two separate occasions; (I) following an overnight fast (healthy conditions/HC) and (II) fasting and bedrest combined with two lipopolysaccharide (LPS) injections of 1 ng kg-1 following an overnight fast and 0.5 ng kg-1 following another 24 h (systemic inflammation/SI). A standardized protein beverage and a SmartPill capsule (a wireless gastrointestinal monitoring system) were swallowed during each occasion. Whole gut transit time was comparable between HC and SI. SI decreased gastric mean pressure peak amplitude (p = 0.04) and increased pH rise across the pylorus and small bowel pH (p = 0.02) compared with HC. Glucagon-like peptide-1 was elevated during SI compared with HC (p = 0.04). Peptide YY was lower during SI compared with HC (p = 0.007). Prolonged LPS exposure combined with fasting and bedrest elevated glucagon-like peptide 1 concentrations, which may play a role for the nausea and loss of appetite typically associated with SI.
Collapse
Affiliation(s)
- Katrine Brodersen
- Department of SurgeryViborg Regional HospitalViborgDenmark
- Medical/Steno Aarhus Research LaboratoryAarhus University Hospital, Aarhus UniversityAarhusDenmark
- Steno Diabetes Center AarhusAarhus University HospitalAarhusDenmark
| | - Maike Mose
- Medical/Steno Aarhus Research LaboratoryAarhus University Hospital, Aarhus UniversityAarhusDenmark
| | | | - Jens Otto Lunde Jørgensen
- Medical/Steno Aarhus Research LaboratoryAarhus University Hospital, Aarhus UniversityAarhusDenmark
- Department of Endocrinology and Internal MedicineAarhus University HospitalAarhusDenmark
| | | | - Niels Møller
- Medical/Steno Aarhus Research LaboratoryAarhus University Hospital, Aarhus UniversityAarhusDenmark
| | - Anne‐Marie Wegeberg
- Mech‐Sense, Department of Gastroenterology and HepatologyAalborg University HospitalAalborgDenmark
| | - Christina Brock
- Mech‐Sense, Department of Gastroenterology and HepatologyAalborg University HospitalAalborgDenmark
- Steno Diabetes Center North DenmarkAalborg University HospitalAalborgDenmark
| | - Bolette Hartmann
- Department of Biomedical Sciences and Novo Nordisk Foundation Center for Basic Metabolic ResearchUniversity of CopenhagenKøbenhavnDenmark
| | - Jens Juul Holst
- Department of Biomedical Sciences and Novo Nordisk Foundation Center for Basic Metabolic ResearchUniversity of CopenhagenKøbenhavnDenmark
| | - Nikolaj Rittig
- Medical/Steno Aarhus Research LaboratoryAarhus University Hospital, Aarhus UniversityAarhusDenmark
- Steno Diabetes Center AarhusAarhus University HospitalAarhusDenmark
| |
Collapse
|
138
|
Qi C, Song X, Wang H, Yan Y, Liu B. The role of exercise-induced myokines in promoting angiogenesis. Front Physiol 2022; 13:981577. [PMID: 36091401 PMCID: PMC9459110 DOI: 10.3389/fphys.2022.981577] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/05/2022] [Indexed: 12/01/2022] Open
Abstract
Ischemic diseases are a major cause of mortality or disability in the clinic. Surgical or medical treatment often has poor effect on patients with tissue and organ ischemia caused by diffuse stenoses. Promoting angiogenesis is undoubtedly an effective method to improve perfusion in ischemic tissues and organs. Although many animal or clinical studies tried to use stem cell transplantation, gene therapy, or cytokines to promote angiogenesis, these methods could not be widely applied in the clinic due to their inconsistent experimental results. However, exercise rehabilitation has been written into many authoritative guidelines in the treatment of ischemic diseases. The function of exercise in promoting angiogenesis relies on the regulation of blood glucose and lipids, as well as cytokines that secreted by skeletal muscle, which are termed as myokines, during exercise. Myokines, such as interleukin-6 (IL-6), chemokine ligand (CXCL) family proteins, irisin, follistatin-like protein 1 (FSTL1), and insulin-like growth factor-1 (IGF-1), have been found to be closely related to the expression and function of angiogenesis-related factors and angiogenesis in both animal and clinical experiments, suggesting that myokines may become a new molecular target to promote angiogenesis and treat ischemic diseases. The aim of this review is to show current research progress regarding the mechanism how exercise and exercise-induced myokines promote angiogenesis. In addition, the limitation and prospect of researches on the roles of exercise-induced myokines in angiogenesis are also discussed. We hope this review could provide theoretical basis for the future mechanism studies and the development of new strategies for treating ischemic diseases.
Collapse
|
139
|
Scheithauer TP, Herrema H, Yu H, Bakker GJ, Winkelmeijer M, Soukhatcheva G, Dai D, Ma C, Havik SR, Balvers M, Davids M, Meijnikman AS, Aydin Ö, van den Born BJH, Besselink MG, Busch OR, de Brauw M, van de Laar A, Belzer C, Stahl M, de Vos WM, Vallance BA, Nieuwdorp M, Verchere CB, van Raalte DH. Gut-derived bacterial flagellin induces beta-cell inflammation and dysfunction. Gut Microbes 2022; 14:2111951. [PMID: 35984746 PMCID: PMC9397137 DOI: 10.1080/19490976.2022.2111951] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Hyperglycemia and type 2 diabetes (T2D) are caused by failure of pancreatic beta cells. The role of the gut microbiota in T2D has been studied, but causal links remain enigmatic. Obese individuals with or without T2D were included from two independent Dutch cohorts. Human data were translated in vitro and in vivo by using pancreatic islets from C57BL6/J mice and by injecting flagellin into obese mice. Flagellin is part of the bacterial locomotor appendage flagellum, present in gut bacteria including Enterobacteriaceae, which we show to be more abundant in the gut of individuals with T2D. Subsequently, flagellin induces a pro-inflammatory response in pancreatic islets mediated by the Toll-like receptor (TLR)-5 expressed on resident islet macrophages. This inflammatory response is associated with beta-cell dysfunction, characterized by reduced insulin gene expression, impaired proinsulin processing and stress-induced insulin hypersecretion in vitro and in vivo in mice. We postulate that increased systemically disseminated flagellin in T2D is a contributing factor to beta-cell failure in time and represents a novel therapeutic target.
Collapse
Affiliation(s)
- Torsten P.M. Scheithauer
- Department of (Experimental) Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands,Diabetes Center, Department of Internal Medicine, Amsterdam, The Netherlands,CONTACT Torsten P.M. Scheithauer Department of (Experimental) Vascular Medicine, Amsterdam UMC, Amsterdam, AZ1105The Netherlands
| | - Hilde Herrema
- Department of (Experimental) Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Hongbing Yu
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, and BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Guido J. Bakker
- Department of (Experimental) Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Maaike Winkelmeijer
- Department of (Experimental) Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Galina Soukhatcheva
- Departments of Surgery and Pathology and Laboratory Medicine Pathology and Laboratory Medicine, BC Children’s Hospital Research Institute, Centre for Molecular Medicine & Therapeutics, Vancouver, British Columbia, Canada
| | - Derek Dai
- Departments of Surgery and Pathology and Laboratory Medicine Pathology and Laboratory Medicine, BC Children’s Hospital Research Institute, Centre for Molecular Medicine & Therapeutics, Vancouver, British Columbia, Canada
| | - Caixia Ma
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, and BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Stefan R. Havik
- Department of (Experimental) Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Manon Balvers
- Department of (Experimental) Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mark Davids
- Department of (Experimental) Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Abraham S. Meijnikman
- Department of (Experimental) Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ömrüm Aydin
- Department of (Experimental) Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Bert-Jan H. van den Born
- Department of (Experimental) Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands,Department of Public and Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marc G. Besselink
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, the Netherlands
| | - Olivier R. Busch
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, the Netherlands
| | - Maurits de Brauw
- Department of Surgery, Spaarne Gasthuis, Hoofddorp, The Netherlands
| | | | - Clara Belzer
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Martin Stahl
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, and BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands,Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Bruce A. Vallance
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, and BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Max Nieuwdorp
- Department of (Experimental) Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands,Diabetes Center, Department of Internal Medicine, Amsterdam, The Netherlands
| | - C. Bruce Verchere
- Departments of Surgery and Pathology and Laboratory Medicine Pathology and Laboratory Medicine, BC Children’s Hospital Research Institute, Centre for Molecular Medicine & Therapeutics, Vancouver, British Columbia, Canada
| | - Daniël H. van Raalte
- Department of (Experimental) Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands,Diabetes Center, Department of Internal Medicine, Amsterdam, The Netherlands
| |
Collapse
|
140
|
Ganesh N, van der Vorst EPC, Spiesshöfer J, He S, Burgmaier M, Findeisen H, Lehrke M, Swirski FK, Marx N, Kahles F. Gut immune cells—A novel therapeutical target for cardiovascular disease? Front Cardiovasc Med 2022; 9:943214. [PMID: 36046186 PMCID: PMC9421162 DOI: 10.3389/fcvm.2022.943214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Despite scientific and clinical advances during the last 50 years cardiovascular disease continues to be the main cause of death worldwide. Especially patients with diabetes display a massive increased cardiovascular risk compared to patients without diabetes. Over the last two decades we have learned that cardiometabolic and cardiovascular diseases are driven by inflammation. Despite the fact that the gastrointestinal tract is one of the largest leukocyte reservoirs of our bodies, the relevance of gut immune cells for cardiovascular disease is largely unknown. First experimental evidence suggests an important relevance of immune cells in the intestinal tract for the development of metabolic and cardiovascular disease in mice. Mice specifically lacking gut immune cells are protected against obesity, diabetes, hypertension and atherosclerosis. Importantly antibody mediated inhibition of leukocyte homing into the gut showed similar protective metabolic and cardiovascular effects. Targeting gut immune cells might open novel therapeutic approaches for the treatment of cardiometabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- Naresh Ganesh
- Department of Cardiology, Angiology and Intensive Care Medicine, University Hospital Aachen, Aachen, Germany
| | - Emiel P. C. van der Vorst
- Interdisciplinary Center for Clinical Research (IZKF) and Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jens Spiesshöfer
- Department of Pneumology and Intensive Care Medicine, University Hospital Aachen, Aachen, Germany
| | - Shun He
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Mathias Burgmaier
- Department of Cardiology, Angiology and Intensive Care Medicine, University Hospital Aachen, Aachen, Germany
| | - Hannes Findeisen
- Department of Cardiology I—Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, Münster, Germany
| | - Michael Lehrke
- Department of Cardiology, Angiology and Intensive Care Medicine, University Hospital Aachen, Aachen, Germany
| | - Filip K. Swirski
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, New York, NY, United States
| | - Nikolaus Marx
- Department of Cardiology, Angiology and Intensive Care Medicine, University Hospital Aachen, Aachen, Germany
| | - Florian Kahles
- Department of Cardiology, Angiology and Intensive Care Medicine, University Hospital Aachen, Aachen, Germany
- *Correspondence: Florian Kahles
| |
Collapse
|
141
|
Lv C, Sun Y, Zhang ZY, Aboelela Z, Qiu X, Meng ZX. β-cell dynamics in type 2 diabetes and in dietary and exercise interventions. J Mol Cell Biol 2022; 14:6656373. [PMID: 35929791 PMCID: PMC9710517 DOI: 10.1093/jmcb/mjac046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/07/2022] [Accepted: 08/03/2022] [Indexed: 01/14/2023] Open
Abstract
Pancreatic β-cell dysfunction and insulin resistance are two of the major causes of type 2 diabetes (T2D). Recent clinical and experimental studies have suggested that the functional capacity of β-cells, particularly in the first phase of insulin secretion, is a primary contributor to the progression of T2D and its associated complications. Pancreatic β-cells undergo dynamic compensation and decompensation processes during the development of T2D, in which metabolic stresses such as endoplasmic reticulum stress, oxidative stress, and inflammatory signals are key regulators of β-cell dynamics. Dietary and exercise interventions have been shown to be effective approaches for the treatment of obesity and T2D, especially in the early stages. Whilst the targeted tissues and underlying mechanisms of dietary and exercise interventions remain somewhat vague, accumulating evidence has implicated the improvement of β-cell functional capacity. In this review, we summarize recent advances in the understanding of the dynamic adaptations of β-cell function in T2D progression and clarify the effects and mechanisms of dietary and exercise interventions on β-cell dysfunction in T2D. This review provides molecular insights into the therapeutic effects of dietary and exercise interventions on T2D, and more importantly, it paves the way for future research on the related underlying mechanisms for developing precision prevention and treatment of T2D.
Collapse
Affiliation(s)
- Chengan Lv
- Department of Pathology and Pathophysiology and Metabolic Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yuchen Sun
- Department of Pathology and Pathophysiology and Metabolic Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China,Zhejiang University–University of Edinburgh Institute (ZJE), Zhejiang University, Haining 314400, China
| | - Zhe Yu Zhang
- Department of Pathology and Pathophysiology and Metabolic Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zeyad Aboelela
- Department of Pathology and Pathophysiology and Metabolic Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China,Bachelors of Surgery, Bachelors of Medicine (MBBS), Zhejiang University School of Medicine, Hangzhou 310003, China
| | | | | |
Collapse
|
142
|
Kou X, Liu J, Wang D, Yu M, Li C, Lu L, Chen C, Liu D, Yu W, Yu T, Liu Y, Mao X, Naji A, Cai T, Sun L, Shi S. Exocrine pancreas regeneration modifies original pancreas to alleviate diabetes in mouse models. Sci Transl Med 2022; 14:eabg9170. [PMID: 35921475 DOI: 10.1126/scitranslmed.abg9170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Diabetes is a major public health issue because of its widely epidemic nature and lack of cure. Here, we show that pancreas-derived mesenchymal stem cells (PMSCs) are capable of regenerating exocrine pancreas when implanted into the kidney capsule of mice with streptozotocin (STZ)-induced diabetes. Mechanistically, we found that the regenerated exocrine pancreas elevated interleukin-6 (IL-6) in PMSC implants, which transiently activated tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) to inhibit IL-17, thereby rescuing damaged exocrine pancreas and islet β cells. In addition, we used knockout mouse models to show that global lack of IL-6, TNF-α, or IFN-γ resulted in increased severity of STZ-induced diabetes and resistance to PMSC implantation therapy, confirming the roles of these factors in safeguarding pancreatic β cells. Furthermore, removal of the kidney capsule PMSC implants at 28 days after implantation did not affect the PMSC-initiated therapeutic effect on diabetic mice. This study reveals a previously unknown role of exocrine pancreas regeneration in safeguarding β cells and demonstrates a "soil-rescues-seed" strategy for type 1 diabetes therapy.
Collapse
Affiliation(s)
- Xiaoxing Kou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.,Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA.,Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Jin Liu
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA.,Laboratory for Aging Research, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dandan Wang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Ming Yu
- Division of Transplantation, Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Can Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Lu Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Chider Chen
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA
| | - Dawei Liu
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA.,Department of Orthodontics, Peking University School & Hospital of Stomatology, #22 Zhongguancun South Avenue, Beijing 100081, China
| | - Wenjing Yu
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA
| | - Tingting Yu
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA.,Department of Orthodontics, Peking University School & Hospital of Stomatology, #22 Zhongguancun South Avenue, Beijing 100081, China
| | - Yao Liu
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA.,Department of Pediatric Dentistry, School of Stomatology, China Medical University, Shenyang 110002, China
| | - Xueli Mao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Ali Naji
- Division of Transplantation, Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tao Cai
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.,Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Songtao Shi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.,Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA.,Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| |
Collapse
|
143
|
Kitilya B, Peck R, Changalucha J, Jeremiah K, Kavishe BB, Friis H, Filteau S, Krogh-Madsen R, Brage S, Faurholt-Jepsen D, Olsen MF, PrayGod G. The association of physical activity and cardiorespiratory fitness with β-cell dysfunction, insulin resistance, and diabetes among adults in north-western Tanzania: A cross-sectional study. Front Endocrinol (Lausanne) 2022; 13:885988. [PMID: 35992098 PMCID: PMC9381963 DOI: 10.3389/fendo.2022.885988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/05/2022] [Indexed: 02/02/2023] Open
Abstract
Introduction Research on the associations of physical activity and cardiorespiratory fitness with β-cell dysfunction and insulin resistance among adults in Sub-Saharan Africa (SSA) is limited. We assessed the association of physical activity and cardiorespiratory fitness with β-cell function, insulin resistance and diabetes among people living with HIV (PLWH) ART-naïve and HIV-uninfected Tanzanian adults. Method In a cross-sectional study, we collected data on socio-demography, anthropometry, fat mass and fat free mass and C-reactive protein. Data on glucose and insulin collected during an oral glucose tolerance test were used to assess β-cell dysfunction (defined as insulinogenic index <0.71 (mU/L)/(mmol/L), HOMA-β index <38.3 (mU/L)/(mmol/L), and overall insulin release index <33.3 (mU/L)/(mmol/L)), oral disposition index <0.16 (mU/L)/(mg/dL)(mU/L)-1, insulin resistance (HOMA-IR index >1.9 (mU/L)/(mmol/L) and Matsuda index <7.2 (mU/L)/(mmol/L), prediabetes and diabetes which were the dependent variables. Physical activity energy expenditure (PAEE), sleeping heart rate (SHR), and maximum uptake of oxygen during exercise (VO2 max) were the independent variables and were assessed using a combined heart rate and accelerometer monitor. Logistic regressions were used to assess the associations. Results Of 391 participants, 272 were PLWH and 119 HIV-uninfected. The mean age was 39 ( ± 10.5) years and 60% (n=235) were females. Compared to lower tertile, middle tertile of PAEE was associated with lower odds of abnormal insulinogenic index (OR=0.48, 95%CI: 0.27, 0.82). A 5 kj/kg/day increment of PAEE was associated with lower odds of abnormal HOMA-IR (OR=0.91, 95%CI: 0.84, 0.98), and reduced risk of pre-diabetes (RRR=0.98, 95%CI: 0.96, 0.99) and diabetes (RRR=0.92, 95%CI: 0.88, 0.96). An increment of 5 beats per min of SHR was associated with higher risk of diabetes (RRR=1.06, 95%CI: 1.01, 1.11). An increase of 5 mLO2/kg/min of VO2 max was associated with lower risk of pre-diabetes (RRR=0.91, 95%CI: 0.86, 0.97), but not diabetes. HIV status did not modify any of these associations (interaction, p>0.05). Conclusion Among Tanzanian adults PLWH and HIV-uninfected individuals, low physical activity was associated with β-cell dysfunction, insulin resistance and diabetes. Research is needed to assess if physical activity interventions can improve β-cell function and insulin sensitivity to reduce risk of diabetes and delay progression of diabetes in SSA.
Collapse
Affiliation(s)
- Brenda Kitilya
- Mwanza Research Centre, National Institute for Medical Research, Mwanza, Tanzania
| | - Robert Peck
- Mwanza Research Centre, National Institute for Medical Research, Mwanza, Tanzania
- Department of Internal Medicine and Pediatrics, Weill Bugando School of Medicine, Mwanza, Tanzania
- Department of Global Health, Weill Cornell Medicine, New York, NY, United States
| | - John Changalucha
- Mwanza Research Centre, National Institute for Medical Research, Mwanza, Tanzania
| | - Kidola Jeremiah
- Mwanza Research Centre, National Institute for Medical Research, Mwanza, Tanzania
| | - Bazil B. Kavishe
- Mwanza Research Centre, National Institute for Medical Research, Mwanza, Tanzania
| | - Henrik Friis
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Suzanne Filteau
- Department of Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Rikke Krogh-Madsen
- Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Soren Brage
- Medical Research Council (MRC) Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
| | | | - Mette F. Olsen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - George PrayGod
- Mwanza Research Centre, National Institute for Medical Research, Mwanza, Tanzania
| |
Collapse
|
144
|
Emerging evidence of the relationship between fat-free mass and ghrelin, glucagon-like peptide-1, and peptide-YY. Nutrition 2022; 103-104:111815. [DOI: 10.1016/j.nut.2022.111815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/28/2022] [Accepted: 08/03/2022] [Indexed: 11/24/2022]
|
145
|
Exercise Improves Spatial Learning and Memory Performance through the Central GLP-1 Receptors. Behav Neurol 2022; 2022:2900628. [PMID: 35774081 PMCID: PMC9239811 DOI: 10.1155/2022/2900628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/05/2022] [Indexed: 11/27/2022] Open
Abstract
The glucagon-like peptide 1 (GLP-1) is a hormone which is produced in the enteroendocrine L-cells in the ileum and the neurons of nucleus tractus solitarius (NTS) in the brain which has numerous metabolic effects. The central GLP-1R's role in cognitive functioning is well known. On the contrary, it has been shown that exercise has positive effects on brain function. So, we decided to elucidate whether the central GLP-1 has a role in memory and learning. Thirty-two rats were used in this experiment in 4 groups. After anesthetizing the rats, the right lateral ventricle was detected, and a cannula was directed to the ventricle. Ten micrograms of exendin-3 or sterile saline, according to the group, was injected via ICV once daily for seven days. The rats in the exercise group considered an exercise period of one hour each day (17 meters per minute) for seven consecutive days. To evaluate the performance of memory and learning, a standard Morris water maze (MWM) tank was utilized. According to the results, the TE-exendin group showed a statistically significant difference from the TE-SAL group in both parameters of latency and time in the zone. In summary, memory and learning were improved by GLP-1R in the exercise group, but not in the sedentary group, which we can hypothesize that exercise can affect memory and learning through this pathway.
Collapse
|
146
|
Chen S, Zhang J, Li Q, Xiao L, Feng X, Niu Q, Zhao L, Ma W, Ye H. A Novel Secreted Protein-Related Gene Signature Predicts Overall Survival and Is Associated With Tumor Immunity in Patients With Lung Adenocarcinoma. Front Oncol 2022; 12:870328. [PMID: 35719915 PMCID: PMC9204015 DOI: 10.3389/fonc.2022.870328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/09/2022] [Indexed: 12/01/2022] Open
Abstract
Secreted proteins are important proteins in the human proteome, accounting for approximately one-tenth of the proteome. However, the prognostic value of secreted protein-related genes has not been comprehensively explored in lung adenocarcinoma (LUAD). In this study, we screened 379 differentially expressed secretory protein genes (DESPRGs) by analyzing the expression profile in patients with LUAD from The Cancer Genome Atlas database. Following univariate Cox regression and least absolute shrinkage and selection operator method regression analysis, 9 prognostic SPRGs were selected to develop secreted protein-related risk score (SPRrisk), including CLEC3B, C1QTNF6, TCN1, F2, FETUB, IGFBP1, ANGPTL4, IFNE, and CCL20. The prediction accuracy of the prognostic models was determined by Kaplan–Meier survival curve analysis and receiver operating characteristic curve analysis. Moreover, a nomogram with improved accuracy for predicting overall survival was established based on independent prognostic factors (SPRrisk and clinical stage). The DESPRGs were validated by quantitative real-time PCR and enzyme-linked immunosorbent assay by using our clinical samples and datasets. Our results demonstrated that SPRrisk can accurately predict the prognosis of patients with LUAD. Patients with a higher risk had lower immune, stromal, and ESTIMATE scores and higher tumor purity. A higher SPRrisk was also negatively associated with the abundance of CD8+ T cells and M1 macrophages. In addition, several genes of the human leukocyte antigen family and immune checkpoints were expressed in low levels in the high-SPRrisk group. Our results provided some insights into assessing individual prognosis and choosing personalized treatment modalities.
Collapse
Affiliation(s)
- Shuaijun Chen
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingyan Xiao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Feng
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Niu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liqin Zhao
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wanli Ma
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, China
| | - Hong Ye
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, China
| |
Collapse
|
147
|
Blackwood SJ, Horwath O, Moberg M, Pontén M, Apró W, Ekblom MM, Larsen FJ, Katz A. Extreme Variations in Muscle Fiber Composition Enable Detection of Insulin Resistance and Excessive Insulin Secretion. J Clin Endocrinol Metab 2022; 107:e2729-e2737. [PMID: 35405014 DOI: 10.1210/clinem/dgac221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 12/16/2022]
Abstract
CONTEXT Muscle fiber composition is associated with peripheral insulin action. OBJECTIVE We investigated whether extreme differences in muscle fiber composition are associated with alterations in peripheral insulin action and secretion in young, healthy subjects who exhibit normal fasting glycemia and insulinemia. METHODS Relaxation time following a tetanic contraction was used to identify subjects with a high or low expression of type I muscle fibers: group 1 (n = 11), area occupied by type I muscle fibers = 61.0 ± 11.8%, and group 2 (n = 8), type I area = 36.0 ± 4.9% (P < 0.001). Biopsies were obtained from the vastus lateralis muscle and analyzed for mitochondrial respiration on permeabilized fibers, muscle fiber composition, and capillary density. An intravenous glucose tolerance test was performed and indices of glucose tolerance, insulin sensitivity, and secretion were determined. RESULTS Glucose tolerance was similar between groups, whereas whole-body insulin sensitivity was decreased by ~50% in group 2 vs group 1 (P = 0.019). First-phase insulin release (area under the insulin curve during 10 minutes after glucose infusion) was increased by almost 4-fold in group 2 vs group 1 (P = 0.01). Whole-body insulin sensitivity was correlated with percentage area occupied by type I fibers (r = 0.54; P = 0.018) and capillary density in muscle (r = 0.61; P = 0.005) but not with mitochondrial respiration. Insulin release was strongly related to percentage area occupied by type II fibers (r = 0.93; P < 0.001). CONCLUSIONS Assessment of muscle contractile function in young healthy subjects may prove useful in identifying individuals with insulin resistance and enhanced glucose-stimulated insulin secretion prior to onset of clinical manifestations.
Collapse
Affiliation(s)
- Sarah J Blackwood
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Oscar Horwath
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Marcus Moberg
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Marjan Pontén
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - William Apró
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Maria M Ekblom
- Department of Physical Activity and Health, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Filip J Larsen
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Abram Katz
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| |
Collapse
|
148
|
Martellet MC, Majolo F, Ducati RG, de Souza CFV, Goettert MI. Probiotic applications associated with Psyllium fiber as prebiotics geared to a healthy intestinal microbiota: A review. Nutrition 2022; 103-104:111772. [DOI: 10.1016/j.nut.2022.111772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 11/26/2022]
|
149
|
Pang J, Feng JN, Ling W, Jin T. The anti-inflammatory feature of glucagon-like peptide-1 and its based diabetes drugs—Therapeutic potential exploration in lung injury. Acta Pharm Sin B 2022; 12:4040-4055. [PMID: 36386481 PMCID: PMC9643154 DOI: 10.1016/j.apsb.2022.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 12/02/2022] Open
Abstract
Since 2005, GLP-1 receptor (GLP-1R) agonists (GLP-1RAs) have been developed as therapeutic agents for type 2 diabetes (T2D). GLP-1R is not only expressed in pancreatic islets but also other organs, especially the lung. However, controversy on extra-pancreatic GLP-1R expression still needs to be further resolved, utilizing different tools including the use of more reliable GLP-1R antibodies in immune-staining and co-immune-staining. Extra-pancreatic expression of GLP-1R has triggered extensive investigations on extra-pancreatic functions of GLP-1RAs, aiming to repurpose them into therapeutic agents for other disorders. Extensive studies have demonstrated promising anti-inflammatory features of GLP-1RAs. Whether those features are directly mediated by GLP-1R expressed in immune cells also remains controversial. Following a brief review on GLP-1 as an incretin hormone and the development of GLP-1RAs as therapeutic agents for T2D, we have summarized our current understanding of the anti-inflammatory features of GLP-1RAs and commented on the controversy on extra-pancreatic GLP-1R expression. The main part of this review is a literature discussion on GLP-1RA utilization in animal models with chronic airway diseases and acute lung injuries, including studies on the combined use of mesenchymal stem cell (MSC) based therapy. This is followed by a brief summary.
Collapse
|
150
|
Zhang X, Luo S, Wang M, Huang Q, Fang W, Li J, Liu T, Zhang Y, Deng Z, Liu CL, Guan S, Ayala JE, Flavell RA, Kulkarni RN, Libby P, Guo J, Liu Z, Shi GP. IL18 signaling causes islet β cell development and insulin secretion via different receptors on acinar and β cells. Dev Cell 2022; 57:1496-1511.e6. [DOI: 10.1016/j.devcel.2022.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/31/2021] [Accepted: 05/16/2022] [Indexed: 12/13/2022]
|