101
|
Wu YY, Chiu FL, Yeh CS, Kuo HC. Opportunities and challenges for the use of induced pluripotent stem cells in modelling neurodegenerative disease. Open Biol 2020; 9:180177. [PMID: 30958120 PMCID: PMC6367134 DOI: 10.1098/rsob.180177] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adult-onset neurodegenerative diseases are among the most difficult human health conditions to model for drug development. Most genetic or toxin-induced cell and animal models cannot faithfully recapitulate pathology in disease-relevant cells, making it excessively challenging to explore the potential mechanisms underlying sporadic disease. Patient-derived induced pluripotent stem cells (iPSCs) can be differentiated into disease-relevant neurons, providing an unparalleled platform for in vitro modelling and development of therapeutic strategies. Here, we review recent progress in generating Alzheimer's, Parkinson's and Huntington's disease models from patient-derived iPSCs. We also describe novel discoveries of pathological mechanisms and drug evaluations that have used these patient iPSC-derived neuronal models. Additionally, current human iPSC technology allows researchers to model diseases with 3D brain organoids, which are more representative of tissue architecture than traditional neuronal cultures. We discuss remaining challenges and emerging opportunities for the use of three-dimensional brain organoids in modelling brain development and neurodegeneration.
Collapse
Affiliation(s)
- Yi-Ying Wu
- 1 Institute of Cellular and Organismic Biology, Academia Sinica , Taipei 11529 , Taiwan, Republic of China
| | - Feng-Lan Chiu
- 1 Institute of Cellular and Organismic Biology, Academia Sinica , Taipei 11529 , Taiwan, Republic of China
| | - Chan-Shien Yeh
- 1 Institute of Cellular and Organismic Biology, Academia Sinica , Taipei 11529 , Taiwan, Republic of China
| | - Hung-Chih Kuo
- 1 Institute of Cellular and Organismic Biology, Academia Sinica , Taipei 11529 , Taiwan, Republic of China.,2 Genomics Research Center, Academia Sinica , Taipei 11529 , Taiwan, Republic of China.,3 Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University , Taipei , Taiwan, Republic of China
| |
Collapse
|
102
|
Kwak SS, Washicosky KJ, Brand E, von Maydell D, Aronson J, Kim S, Capen DE, Cetinbas M, Sadreyev R, Ning S, Bylykbashi E, Xia W, Wagner SL, Choi SH, Tanzi RE, Kim DY. Amyloid-β42/40 ratio drives tau pathology in 3D human neural cell culture models of Alzheimer's disease. Nat Commun 2020; 11:1377. [PMID: 32170138 PMCID: PMC7070004 DOI: 10.1038/s41467-020-15120-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 02/20/2020] [Indexed: 02/08/2023] Open
Abstract
The relationship between amyloid-β (Aβ) species and tau pathology in Alzheimer’s disease (AD) is not fully understood. Here, we provide direct evidence that Aβ42/40 ratio, not total Aβ level, plays a critical role in inducing neurofibrillary tangles (NTFs) in human neurons. Using 3D-differentiated clonal human neural progenitor cells (hNPCs) expressing varying levels of amyloid β precursor protein (APP) and presenilin 1 (PS1) with AD mutations, we show that pathogenic tau accumulation and aggregation are tightly correlated with Aβ42/40 ratio. Roles of Aβ42/40 ratio on tau pathology are also confirmed with APP transmembrane domain (TMD) mutant hNPCs, which display differential Aβ42/40 ratios without mutant PS1. Moreover, naïve hNPCs co-cultured with APP TMD I45F (high Aβ42/40) cells, not with I47F cells (low Aβ42/40), develop robust tau pathology in a 3D non-cell autonomous cell culture system. These results emphasize the importance of reducing the Aβ42/40 ratio in AD therapy. The relationship between amyloid-β species and tau pathology in Alzheimer’s disease is not fully understood. Here, the authors show that it is the increased ratio of amyloid-β42 and 40 isoforms drives tau pathology in 3D human neural cell culture models of the disease.
Collapse
Affiliation(s)
- Sang Su Kwak
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, McCance Center for Brain Health, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Kevin J Washicosky
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, McCance Center for Brain Health, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Emma Brand
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, McCance Center for Brain Health, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Djuna von Maydell
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, McCance Center for Brain Health, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Jenna Aronson
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, McCance Center for Brain Health, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Susan Kim
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, McCance Center for Brain Health, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Diane E Capen
- Center for Systems Biology and Program in Membrane Biology, Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Murat Cetinbas
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Ruslan Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Shen Ning
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, McCance Center for Brain Health, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.,Graduate Program for Neuroscience, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Enjana Bylykbashi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, McCance Center for Brain Health, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Weiming Xia
- Geriatric Research Education and Clinical Center, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, 01730, USA.,Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Steven L Wagner
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Se Hoon Choi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, McCance Center for Brain Health, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, McCance Center for Brain Health, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| | - Doo Yeon Kim
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, McCance Center for Brain Health, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
103
|
Offeddu GS, Shin Y, Kamm RD. Microphysiological models of neurological disorders for drug development. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020. [DOI: 10.1016/j.cobme.2019.12.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
104
|
Srivastava AK, Roy Choudhury S, Karmakar S. Melatonin/polydopamine nanostructures for collective neuroprotection-based Parkinson's disease therapy. Biomater Sci 2020; 8:1345-1363. [PMID: 31912833 DOI: 10.1039/c9bm01602c] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra and localized deposition of cytoplasmic fibrillary inclusions as Lewy bodies in the brain. The aberrant phosphorylation of α-synuclein at serine 129 is the key process on its early onset, which alters the cellular conformation to oligomers and insoluble aggregates, underpinning cellular oxidative stress and mitochondrial dysfunction, leading to devastating PD synucleinopathy. The multiple neuroprotective roles of dopamine and melatonin are often demonstrated separately; however, this approach suffers from low and short bioavailability and is associated with side-effects upon overdosing. Herein, highly pleiotropic melatonin-enriched polydopamine nanostructures were fabricated, which showed efficient brain tissue retention, sustainable and prolonged melatonin release, and prevented neuroblastoma cell death elicited by Parkinson's disease-associated and mitochondrial damaging stimuli. The synergistic neuroprotection re-established the mitochondrial membrane potential, reduced the generation of cellular reactive oxygen species (ROS), inhibited the activation of both the caspase-dependent and independent apoptotic pathways, and exhibited an anti-inflammatory effect. At the molecular level, it suppressed α-synuclein phosphorylation at Ser 129 and reduced the cellular deposition of high molecular weight oligomers. The therapeutic assessment on ex vivo organotypic brain slice culture, and in vivo experimental PD model confirmed the superior brain targeting, collective neuroprotection on dopaminergic neurons with reduced alpha-synuclein phosphorylation and deposition in the hippocampal and substantia nigra region of the brain. Thus, nature-inspired melatonin-enriched polydopamine nanostructures conferring collective neuroprotective effects attributes activation of anti-oxidative, anti-inflammatory, and anti-apoptotic pathways may be superior for application in a nanomedicine-based PD therapy.
Collapse
Affiliation(s)
- Anup K Srivastava
- Institute of Nano Science and Technology, Habitat Centre, Sector-64, Mohali, Punjab-160062, India.
| | | | | |
Collapse
|
105
|
Murphy AR, Haynes JM, Laslett AL, Cameron NR, O'Brien CM. Three-dimensional differentiation of human pluripotent stem cell-derived neural precursor cells using tailored porous polymer scaffolds. Acta Biomater 2020; 101:102-116. [PMID: 31610339 DOI: 10.1016/j.actbio.2019.10.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/30/2019] [Accepted: 10/07/2019] [Indexed: 02/07/2023]
Abstract
This study investigates the utility of a tailored poly(ethylene glycol) diacrylate-crosslinked porous polymeric tissue engineering scaffold, with mechanical properties specifically optimised to be comparable to that of mammalian brain tissue for 3D human neural cell culture. Results obtained here demonstrate the attachment, proliferation and terminal differentiation of both human induced pluripotent stem cell- and embryonic stem cell-derived neural precursor cells (hPSC-NPCs) throughout the interconnected porous network within laminin-coated scaffolds. Phenotypic data and functional analyses are presented demonstrating that this material supports terminal in vitro neural differentiation of hPSC-NPCs to a mixed population of viable neuronal and glial cells for periods of up to 49 days. This is evidenced by the upregulation of TUBB3, MAP2, SYP and GFAP gene expression, as well as the presence of the proteins βIII-TUBULIN, NEUN, MAP2 and GFAP. Functional maturity of neural cells following 49 days 3D differentiation culture was tested via measurement of intracellular calcium. These analyses revealed spontaneously active, synchronous and rhythmic calcium flux, as well as response to the neurotransmitter glutamate. This tailored construct has potential application as an improved in vitro human neurogenesis model with utility in platform drug discovery programs. STATEMENT OF SIGNIFICANCE: The interconnected porosity of polyHIPE scaffolds exhibits the ability to support three-dimensional neural cell network formation due to limited resistance to cellular migration and re-organisation. The previously developed scaffold material displays mechanical properties similar to that of the mammalian brain. This research also employs the utility of pluripotent stem cell-derived neural cells which are of greater clinical relevance than primary neural cell lines. This scaffold material has future potential in better mimicking three-dimensional neural networks found in the human brain and may result in improved in vitro models for disease modelling and drug screening applications.
Collapse
|
106
|
Penney J, Ralvenius WT, Tsai LH. Modeling Alzheimer's disease with iPSC-derived brain cells. Mol Psychiatry 2020; 25:148-167. [PMID: 31391546 PMCID: PMC6906186 DOI: 10.1038/s41380-019-0468-3] [Citation(s) in RCA: 288] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 04/10/2019] [Accepted: 05/13/2019] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease is a devastating neurodegenerative disorder with no cure. Countless promising therapeutics have shown efficacy in rodent Alzheimer's disease models yet failed to benefit human patients. While hope remains that earlier intervention with existing therapeutics will improve outcomes, it is becoming increasingly clear that new approaches to understand and combat the pathophysiology of Alzheimer's disease are needed. Human induced pluripotent stem cell (iPSC) technologies have changed the face of preclinical research and iPSC-derived cell types are being utilized to study an array of human conditions, including neurodegenerative disease. All major brain cell types can now be differentiated from iPSCs, while increasingly complex co-culture systems are being developed to facilitate neuroscience research. Many cellular functions perturbed in Alzheimer's disease can be recapitulated using iPSC-derived cells in vitro, and co-culture platforms are beginning to yield insights into the complex interactions that occur between brain cell types during neurodegeneration. Further, iPSC-based systems and genome editing tools will be critical in understanding the roles of the numerous new genes and mutations found to modify Alzheimer's disease risk in the past decade. While still in their relative infancy, these developing iPSC-based technologies hold considerable promise to push forward efforts to combat Alzheimer's disease and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Jay Penney
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - William T Ralvenius
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Li-Huei Tsai
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
107
|
Wu PC, Fann MJ, Tran TT, Chen SC, Devina T, Cheng IHJ, Lien CC, Kao LS, Wang SJ, Fuh JL, Tzeng TT, Huang CY, Shiao YJ, Wong YH. Assessing the therapeutic potential of Graptopetalum paraguayense on Alzheimer's disease using patient iPSC-derived neurons. Sci Rep 2019; 9:19301. [PMID: 31848379 PMCID: PMC6917798 DOI: 10.1038/s41598-019-55614-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/13/2019] [Indexed: 12/26/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common type of dementia and also one of the leading causes of death worldwide. However, the underlying mechanisms remain unclear, and currently there is no drug treatment that can prevent or cure AD. Here, we have applied the advantages of using induced pluripotent stem cell (iPSC)-derived neurons (iNs) from AD patients, which are able to offer human-specific drug responsiveness, in order to evaluate therapeutic candidates for AD. Using approach involving an inducible neurogenin-2 transgene, we have established a robust and reproducible protocol for differentiating human iPSCs into glutamatergic neurons. The AD-iN cultures that result have mature phenotypic and physiological properties, together with AD-like biochemical features that include extracellular β-amyloid (Aβ) accumulation and Tau protein phosphorylation. By screening using a gene set enrichment analysis (GSEA) approach, Graptopetalum paraguayense (GP) has been identified as a potential therapeutic agent for AD from among a range of Chinese herbal medicines. We found that administration of a GP extract caused a significantly reduction in the AD-associated phenotypes of the iNs, including decreased levels of extracellular Aβ40 and Aβ42, as well as reduced Tau protein phosphorylation at positions Ser214 and Ser396. Additionally, the effect of GP was more prominent in AD-iNs compared to non-diseased controls. These findings provide valuable information that suggests moving extracts of GP toward drug development, either for treating AD or as a health supplement to prevent AD. Furthermore, our human iN-based platform promises to be a useful strategy when it is used for AD drug discovery.
Collapse
Affiliation(s)
- Pei-Chun Wu
- Brain Research Center, National Yang-Ming University, Taipei, 11221, Taiwan (ROC)
| | - Ming-Ji Fann
- Brain Research Center, National Yang-Ming University, Taipei, 11221, Taiwan (ROC).,Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, 11221, Taiwan (ROC)
| | - Tu Thanh Tran
- Brain Research Center, National Yang-Ming University, Taipei, 11221, Taiwan (ROC)
| | - Shu-Cian Chen
- Brain Research Center, National Yang-Ming University, Taipei, 11221, Taiwan (ROC)
| | - Tania Devina
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan (ROC)
| | - Irene Han-Juo Cheng
- Brain Research Center, National Yang-Ming University, Taipei, 11221, Taiwan (ROC).,Institute of Brain Science, National Yang Ming University, Taipei, 11221, Taiwan (ROC)
| | - Cheng-Chang Lien
- Brain Research Center, National Yang-Ming University, Taipei, 11221, Taiwan (ROC).,Institute of Neuroscience, National Yang Ming University, Taipei, 11221, Taiwan (ROC)
| | - Lung-Sen Kao
- Brain Research Center, National Yang-Ming University, Taipei, 11221, Taiwan (ROC).,Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, 11221, Taiwan (ROC)
| | - Shuu-Jiun Wang
- Brain Research Center, National Yang-Ming University, Taipei, 11221, Taiwan (ROC).,Division of General Neurology, Neurological Institute, Taipei Veterans Hospital, Taipei, 11217, Taiwan (ROC)
| | - Jong-Ling Fuh
- Brain Research Center, National Yang-Ming University, Taipei, 11221, Taiwan (ROC).,Division of General Neurology, Neurological Institute, Taipei Veterans Hospital, Taipei, 11217, Taiwan (ROC)
| | - Tsai-Teng Tzeng
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, 11221, Taiwan (ROC)
| | - Chi-Ying Huang
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, 11221, Taiwan (ROC)
| | - Young-Ji Shiao
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, 11221, Taiwan (ROC). .,National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, 11221, Taiwan (ROC).
| | - Yu-Hui Wong
- Brain Research Center, National Yang-Ming University, Taipei, 11221, Taiwan (ROC).
| |
Collapse
|
108
|
Functional maturation of human neural stem cells in a 3D bioengineered brain model enriched with fetal brain-derived matrix. Sci Rep 2019; 9:17874. [PMID: 31784595 PMCID: PMC6884597 DOI: 10.1038/s41598-019-54248-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/31/2019] [Indexed: 12/22/2022] Open
Abstract
Brain extracellular matrix (ECM) is often overlooked in vitro brain tissue models, despite its instructive roles during development. Using developmental stage-sourced brain ECM in reproducible 3D bioengineered culture systems, we demonstrate enhanced functional differentiation of human induced neural stem cells (hiNSCs) into healthy neurons and astrocytes. Particularly, fetal brain tissue-derived ECM supported long-term maintenance of differentiated neurons, demonstrated by morphology, gene expression and secretome profiling. Astrocytes were evident within the second month of differentiation, and reactive astrogliosis was inhibited in brain ECM-enriched cultures when compared to unsupplemented cultures. Functional maturation of the differentiated hiNSCs within fetal ECM-enriched cultures was confirmed by calcium signaling and spectral/cluster analysis. Additionally, the study identified native biochemical cues in decellularized ECM with notable comparisons between fetal and adult brain-derived ECMs. The development of novel brain-specific biomaterials for generating mature in vitro brain models provides an important path forward for interrogation of neuron-glia interactions.
Collapse
|
109
|
Ko KR, Tam NW, Teixeira AG, Frampton JP. SH-SY5Y and LUHMES cells display differential sensitivity to MPP+, tunicamycin, and epoxomicin in 2D and 3D cell culture. Biotechnol Prog 2019; 36:e2942. [PMID: 31756288 DOI: 10.1002/btpr.2942] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/25/2019] [Accepted: 11/15/2019] [Indexed: 02/03/2023]
Abstract
SH-SY5Y and LUHMES cell lines are widely used as model systems for studying neurotoxicity. Most of the existing data regarding the sensitivity of these cell lines to neurotoxicants have been recorded from cells growing as two-dimensional (2D) cultures on the surface of glass or plastic. With the emergence of 3D culture platforms designed to better represent native tissue, there is a growing need to compare the toxicology of neurons grown in 3D environments to those grown in 2D to better understand the impact that culture environment has on toxicant sensitivity. Here, a simple 3D culture method was used to assess the impact of growth environment on the sensitivity of SH-SY5Y cells and LUHMES cells to MPP+, tunicamycin, and epoxomicin, three neurotoxicants that have been previously used to generate experimental models for studying Parkinson's disease pathogenesis. SH-SY5Y cell viability following treatment with these three toxicants was significantly lower in 2D cultures as compared to 3D cultures. On the contrary, LUHMES cells did not show significant differences between growth conditions for any of the toxicants examined. However, LUHMES cells were more sensitive to MPP+, tunicamycin, and epoxomicin than SH-SY5Y cells. Thus, both the choice of cell line and the choice of growth environment must be considered when interpreting in vitro neurotoxicity data.
Collapse
Affiliation(s)
- Kristin Robin Ko
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Nicky W Tam
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Alyne G Teixeira
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - John P Frampton
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
110
|
Wang X, Williams D, Müller I, Lemieux M, Dukart R, Maia IBL, Wang H, Woerman AL, Schmitt-Ulms G. Tau interactome analyses in CRISPR-Cas9 engineered neuronal cells reveal ATPase-dependent binding of wild-type but not P301L Tau to non-muscle myosins. Sci Rep 2019; 9:16238. [PMID: 31700063 PMCID: PMC6838314 DOI: 10.1038/s41598-019-52543-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 10/03/2019] [Indexed: 11/09/2022] Open
Abstract
Protein interactions of Tau are of interest in efforts to decipher pathogenesis in Alzheimer's disease, a subset of frontotemporal dementias, and other tauopathies. We CRISPR-Cas9 edited two human cell lines to generate broadly adaptable models for neurodegeneration research. We applied the system to inducibly express balanced levels of 3-repeat and 4-repeat wild-type or P301L mutant Tau. Following 12-h induction, quantitative mass spectrometry revealed the Parkinson's disease-causing protein DJ-1 and non-muscle myosins as Tau interactors whose binding to Tau was profoundly influenced by the presence or absence of the P301L mutation. The presence of wild-type Tau stabilized non-muscle myosins at higher steady-state levels. Strikingly, in human differentiated co-cultures of neuronal and glial cells, the preferential interaction of non-muscle myosins to wild-type Tau depended on myosin ATPase activity. Consistently, transgenic P301L Tau mice exhibited reduced phosphorylation of regulatory myosin light chains known to activate this ATPase. The direct link of Tau to non-muscle myosins corroborates independently proposed roles of Tau in maintaining dendritic spines and mitochondrial fission biology, two subcellular niches affected early in tauopathies.
Collapse
Affiliation(s)
- Xinzhu Wang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, M5T 2S8, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Ontario, M5S 1A8, Canada
| | - Declan Williams
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, M5T 2S8, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Ontario, M5S 1A8, Canada
| | - Iris Müller
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, M5T 2S8, Canada
| | - Mackenzie Lemieux
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, M5T 2S8, Canada
| | - Ramona Dukart
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Ontario, M5S 1A8, Canada
| | - Isabella B L Maia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, M5T 2S8, Canada
| | - Hansen Wang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, M5T 2S8, Canada
| | - Amanda L Woerman
- Department of Neurology, University of California San Francisco, California, 94158, USA
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, M5T 2S8, Canada. .,Department of Laboratory Medicine & Pathobiology, University of Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
111
|
Dal Prà I, Armato U, Chiarini A. Family C G-Protein-Coupled Receptors in Alzheimer's Disease and Therapeutic Implications. Front Pharmacol 2019; 10:1282. [PMID: 31719824 PMCID: PMC6826475 DOI: 10.3389/fphar.2019.01282] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD), particularly its sporadic or late-onset form (SAD/LOAD), is the most prevalent (96–98% of cases) neurodegenerative dementia in aged people. AD’s neuropathology hallmarks are intrabrain accumulation of amyloid-β peptides (Aβs) and of hyperphosphorylated Tau (p-Tau) proteins, diffuse neuroinflammation, and progressive death of neurons and oligodendrocytes. Mounting evidences suggest that family C G-protein-coupled receptors (GPCRs), which include γ-aminobutyric acid B receptors (GABABRs), metabotropic glutamate receptors (mGluR1-8), and the calcium-sensing receptor (CaSR), are involved in many neurotransmitter systems that dysfunction in AD. This review updates the available knowledge about the roles of GPCRs, particularly but not exclusively those expressed by brain astrocytes, in SAD/LOAD onset and progression, taking stock of their respective mechanisms of action and of their potential as anti-AD therapeutic targets. In particular, GABABRs prevent Aβs synthesis and neuronal hyperexcitability and group I mGluRs play important pathogenetic roles in transgenic AD-model animals. Moreover, the specific binding of Aβs to the CaSRs of human cortical astrocytes and neurons cultured in vitro engenders a pathological signaling that crucially promotes the surplus synthesis and release of Aβs and hyperphosphorylated Tau proteins, and also of nitric oxide, vascular endothelial growth factor-A, and proinflammatory agents. Concurrently, Aβs•CaSR signaling hinders the release of soluble (s)APP-α peptide, a neurotrophic agent and GABABR1a agonist. Altogether these effects progressively kill human cortical neurons in vitro and likely also in vivo. Several CaSR’s negative allosteric modulators suppress all the noxious effects elicited by Aβs•CaSR signaling in human cortical astrocytes and neurons thus safeguarding neurons’ viability in vitro and raising hopes about their potential therapeutic benefits in AD patients. Further basic and clinical investigations on these hot topics are needed taking always heed that activation of the several brain family C GPCRs may elicit divergent upshots according to the models studied.
Collapse
Affiliation(s)
- Ilaria Dal Prà
- Human Histology and Embryology Unit, University of Verona Medical School, Verona, Italy
| | - Ubaldo Armato
- Human Histology and Embryology Unit, University of Verona Medical School, Verona, Italy
| | - Anna Chiarini
- Human Histology and Embryology Unit, University of Verona Medical School, Verona, Italy
| |
Collapse
|
112
|
Shin Y, Choi SH, Kim E, Bylykbashi E, Kim JA, Chung S, Kim DY, Kamm RD, Tanzi RE. Blood-Brain Barrier Dysfunction in a 3D In Vitro Model of Alzheimer's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900962. [PMID: 31637161 PMCID: PMC6794630 DOI: 10.1002/advs.201900962] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/20/2019] [Indexed: 05/21/2023]
Abstract
Harmful materials in the blood are prevented from entering the healthy brain by a highly selective blood-brain barrier (BBB), and impairment of barrier function has been associated with a variety of neurological diseases. In Alzheimer's disease (AD), BBB breakdown has been shown to occur even before cognitive decline and brain pathology. To investigate the role of the cerebral vasculature in AD, a physiologically relevant 3D human neural cell culture microfluidic model is developed having a brain endothelial cell monolayer with a BBB-like phenotype. This model is shown to recapitulate several key aspects of BBB dysfunction observed in AD patients: increased BBB permeability, decreased expression of claudin-1, claudin-5, and VE-cadherin, increased expression of matrix-metalloproteinase-2 and reactive oxygen species, and deposition of β-amyloid (Aβ) peptides at the vascular endothelium. Thus, it provides a well-controlled platform for investigating BBB function as well as for screening of new drugs that need to pass the BBB to gain access to neural tissues.
Collapse
Affiliation(s)
- Yoojin Shin
- Department of Mechanical EngineeringMassachusetts Institute of Technology500 Technology Square, MIT Building, Room NE47‐321CambridgeMA02139USA
| | - Se Hoon Choi
- Genetics and Aging Research UnitMcCance Center for Brain HealthMass General Institute for Neurodegenerative DiseaseDepartment of NeurologyMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02129USA
| | - Eunhee Kim
- Genetics and Aging Research UnitMcCance Center for Brain HealthMass General Institute for Neurodegenerative DiseaseDepartment of NeurologyMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02129USA
| | - Enjana Bylykbashi
- Genetics and Aging Research UnitMcCance Center for Brain HealthMass General Institute for Neurodegenerative DiseaseDepartment of NeurologyMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02129USA
| | - Jeong Ah Kim
- Biomedical Omics GroupKorea Basic Science InstituteCheongju28119Republic of Korea
- Department of Bio‐Analytical ScienceUniversity of Science and TechnologyDaejeon34113Republic of Korea
| | - Seok Chung
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
- School of Mechanical EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Doo Yeon Kim
- Genetics and Aging Research UnitMcCance Center for Brain HealthMass General Institute for Neurodegenerative DiseaseDepartment of NeurologyMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02129USA
| | - Roger D. Kamm
- Department of Mechanical EngineeringMassachusetts Institute of Technology500 Technology Square, MIT Building, Room NE47‐321CambridgeMA02139USA
- Department of Biological EngineeringMassachusetts Institute of Technology500 Technology Square, MIT Building, Room NE47‐321CambridgeMA02139USA
- Singapore‐MIT Alliance for Research & Technology (SMART)BioSystems and Micromechanics (BioSyM)Singapore138602Singapore
| | - Rudolph E. Tanzi
- Genetics and Aging Research UnitMcCance Center for Brain HealthMass General Institute for Neurodegenerative DiseaseDepartment of NeurologyMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02129USA
| |
Collapse
|
113
|
Tezel G, Timur SS, Bozkurt İ, Türkoğlu ÖF, Eroğlu İ, Nemutlu E, Öner L, Eroğlu H. A Snapshot on the Current Status of Alzheimer’s Disease, Treatment Perspectives, in-Vitro and in-Vivo Research Studies and Future Opportunities. Chem Pharm Bull (Tokyo) 2019; 67:1030-1041. [DOI: 10.1248/cpb.c19-00511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Gizem Tezel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University
| | - Selin Seda Timur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University
| | | | - Ö. Faruk Türkoğlu
- Department of Neurosurgery, Ankara Atatürk Research and Education Hospital
| | - İpek Eroğlu
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University
| | - Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University
| | - Levent Öner
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University
| | - Hakan Eroğlu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University
| |
Collapse
|
114
|
Ubina T, Magallanes M, Srivastava S, Warden CD, Yee JK, Salvaterra PM. A Human Embryonic Stem Cell Model of Aβ-Dependent Chronic Progressive Neurodegeneration. Front Neurosci 2019; 13:1007. [PMID: 31616241 PMCID: PMC6763609 DOI: 10.3389/fnins.2019.01007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/05/2019] [Indexed: 11/13/2022] Open
Abstract
We describe the construction and phenotypic analysis of a human embryonic stem cell model of progressive Aβ-dependent neurodegeneration (ND) with potential relevance to Alzheimer’s disease (AD). We modified one allele of the normal APP locus to directly express a secretory form of Aβ40 or Aβ42, enabling expression from this edited allele to bypass the normal amyloidogenic APP processing pathway. Following neuronal differentiation, edited cell lines specifically accumulate intracellular aggregated/oligomeric Aβ, exhibit a synaptic deficit, and have an abnormal accumulation of endolysosomal vesicles. Edited cultures progress to a stage of overt ND. All phenotypes appear at earlier culture times for Aβ42 relative to Aβ40. Whole transcriptome RNA-Seq analysis identified 23 up and 70 down regulated genes (differentially expressed genes) with similar directional fold change but larger absolute values in the Aβ42 samples suggesting common underlying pathogenic mechanisms. Pathway/annotation analysis suggested that down regulation of extracellular matrix and cilia functions is significantly overrepresented. This cellular model could be useful for uncovering mechanisms directly linking Aβ to neuronal death and as a tool to screen for new therapeutic agents that slow or prevent human ND.
Collapse
Affiliation(s)
- Teresa Ubina
- Department of Developmental and Stem Cell Biology, Beckman Research Institute - City of Hope, Duarte, CA, United States.,Department of Biology, California State University, San Bernardino, San Bernardino, CA, United States
| | - Martha Magallanes
- Department of Developmental and Stem Cell Biology, Beckman Research Institute - City of Hope, Duarte, CA, United States
| | - Saumya Srivastava
- Department of Developmental and Stem Cell Biology, Beckman Research Institute - City of Hope, Duarte, CA, United States
| | - Charles D Warden
- Integrative Genomics Core, Beckman Research Institute - City of Hope, Duarte, CA, United States
| | - Jiing-Kuan Yee
- Department of Diabetes, Beckman Research Institute - City of Hope, Duarte, CA, United States.,Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute - City of Hope, Duarte, CA, United States
| | - Paul M Salvaterra
- Department of Developmental and Stem Cell Biology, Beckman Research Institute - City of Hope, Duarte, CA, United States.,Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute - City of Hope, Duarte, CA, United States
| |
Collapse
|
115
|
Khaspekov LG. Modeling of Alzheimer’s Disease and Outlooks for its Therapy Using Induced Pluripotent Stem Cells. NEUROCHEM J+ 2019. [DOI: 10.1134/s181971241902003x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
116
|
Chen CY, Liu YT, Lu CH, Lee PY, Tsai YC, Wu JS, Chen P, Chen BC. The Applications of Lattice Light-sheet Microscopy for Functional Volumetric Imaging of Hippocampal Neurons in a Three-Dimensional Culture System. MICROMACHINES 2019; 10:E599. [PMID: 31514427 PMCID: PMC6780203 DOI: 10.3390/mi10090599] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 11/16/2022]
Abstract
The characterization of individual cells in three-dimensions (3D) with very high spatiotemporal resolution is crucial for the development of organs-on-chips, in which 3D cell cultures are integrated with microfluidic systems. In this study, we report the applications of lattice light-sheet microscopy (LLSM) for monitoring neuronal activity in three-dimensional cell culture. We first established a 3D environment for culturing primary hippocampal neurons by applying a scaffold-based 3D tissue engineering technique. Fully differentiated and mature hippocampal neurons were observed in our system. With LLSM, we were able to monitor the behavior of individual cells in a 3D cell culture, which was very difficult under a conventional microscope due to strong light scattering from thick samples. We demonstrated that our system could study the membrane voltage and intracellular calcium dynamics at subcellular resolution in 3D under both chemical and electrical stimulation. From the volumetric images, it was found that the voltage indicators mainly resided in the cytosol instead of the membrane, which cannot be distinguished using conventional microscopy. Neuronal volumetric images were sheet scanned along the axial direction and recorded at a laser exposure of 6 ms, which covered an area up to 4800 μm2, with an image pixel size of 0.102 μm. When we analyzed the time-lapse volumetric images, we could quantify the voltage responses in different neurites in 3D extensions.
Collapse
Affiliation(s)
- Chin-Yi Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Yen-Ting Liu
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chieh-Han Lu
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Po-Yi Lee
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Yun-Chi Tsai
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Jyun-Sian Wu
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Peilin Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
117
|
Single-cell multimodal transcriptomics to study neuronal diversity in human stem cell-derived brain tissue and organoid models. J Neurosci Methods 2019; 325:108350. [DOI: 10.1016/j.jneumeth.2019.108350] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/24/2019] [Accepted: 07/05/2019] [Indexed: 12/16/2022]
|
118
|
Zhang S, Xiao T, Yu Y, Qiao Y, Xu Z, Geng J, Liang Y, Mei Y, Dong Q, Wang B, Wei J, Suo G. The extracellular matrix enriched with membrane metalloendopeptidase and insulin‐degrading enzyme suppresses the deposition of amyloid‐beta peptide in Alzheimer's disease cell models. J Tissue Eng Regen Med 2019; 13:1759-1769. [DOI: 10.1002/term.2906] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/15/2018] [Accepted: 02/13/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Shumang Zhang
- CAS Key Laboratory of Nano‐Bio InterfaceSuzhou Institute of Nano‐Tech and Nano‐Bionics, Chinese Academy of Sciences Jiangsu China
- School of Life SciencesShanghai University Shanghai China
| | - Tongqian Xiao
- CAS Key Laboratory of Nano‐Bio InterfaceSuzhou Institute of Nano‐Tech and Nano‐Bionics, Chinese Academy of Sciences Jiangsu China
- University of Chinese Academy of Sciences Beijing China
| | - Yanzhen Yu
- CAS Key Laboratory of Nano‐Bio InterfaceSuzhou Institute of Nano‐Tech and Nano‐Bionics, Chinese Academy of Sciences Jiangsu China
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of China Hefei China
| | - Yong Qiao
- CAS Key Laboratory of Nano‐Bio InterfaceSuzhou Institute of Nano‐Tech and Nano‐Bionics, Chinese Academy of Sciences Jiangsu China
| | - Zhongjuan Xu
- CAS Key Laboratory of Nano‐Bio InterfaceSuzhou Institute of Nano‐Tech and Nano‐Bionics, Chinese Academy of Sciences Jiangsu China
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of China Hefei China
| | - Junsa Geng
- CAS Key Laboratory of Nano‐Bio InterfaceSuzhou Institute of Nano‐Tech and Nano‐Bionics, Chinese Academy of Sciences Jiangsu China
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of China Hefei China
| | - Yu Liang
- CAS Key Laboratory of Nano‐Bio InterfaceSuzhou Institute of Nano‐Tech and Nano‐Bionics, Chinese Academy of Sciences Jiangsu China
- School of Life SciencesShanghai University Shanghai China
| | - Yan Mei
- Greepharma Inc. Nanjing China
| | - Qun Dong
- Department of PathologyTaikang Xianlin Drum Tower Hospital Nanjing China
| | - Bin Wang
- Center for Clinic Stem Cell ResearchThe Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing China
| | - Jiali Wei
- School of Life SciencesShanghai University Shanghai China
| | - Guangli Suo
- CAS Key Laboratory of Nano‐Bio InterfaceSuzhou Institute of Nano‐Tech and Nano‐Bionics, Chinese Academy of Sciences Jiangsu China
| |
Collapse
|
119
|
Omerzu M, Fenderico N, de Barbanson B, Sprangers J, de Ridder J, Maurice MM. Three-dimensional analysis of single molecule FISH in human colon organoids. Biol Open 2019; 8:bio.042812. [PMID: 31362950 PMCID: PMC6737975 DOI: 10.1242/bio.042812] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The culturing of mini-organs (organoids) in three-dimensions (3D) presents a simple and powerful tool to investigate the principles underlying human organ development and tissue self-organization in both healthy and diseased states. Applications of single molecule analysis are highly informative for a comprehensive understanding of the complexity underlying tissue and organ physiology. To fully exploit the potential of single molecule technologies, the adjustment of protocols and tools to 3D tissue culture is required. Single molecule RNA fluorescence in situ hybridization (smFISH) is a robust technique for visualizing and quantifying individual transcripts. In addition, smFISH can be employed to study splice variants, fusion transcripts as well as transcripts of multiple genes at the same time. Here, we develop a 3-day protocol and validation method to perform smFISH in 3D in whole human organoids. We provide a number of applications to exemplify the diverse possibilities for the simultaneous detection of distinct mRNA transcripts, evaluation of their spatial distribution and the identification of divergent cell lineages in 3D in organoids.
Collapse
Affiliation(s)
- Manja Omerzu
- Oncode Institute and Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands
| | - Nicola Fenderico
- Oncode Institute and Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands
| | - Buys de Barbanson
- Oncode Institute and Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG, Utrecht, The Netherlands.,Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Joep Sprangers
- Oncode Institute and Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jeroen de Ridder
- Oncode Institute and Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG, Utrecht, The Netherlands
| | - Madelon M Maurice
- Oncode Institute and Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
120
|
Naseri NN, Wang H, Guo J, Sharma M, Luo W. The complexity of tau in Alzheimer's disease. Neurosci Lett 2019; 705:183-194. [PMID: 31028844 PMCID: PMC7060758 DOI: 10.1016/j.neulet.2019.04.022] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/14/2019] [Accepted: 04/08/2019] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is characterized by two major pathological lesions in the brain, amyloid plaques and neurofibrillary tangles (NFTs) composed mainly of amyloid-β (Aβ) peptides and hyperphosphorylated tau, respectively. Although accumulation of toxic Aβ species in the brain has been proposed as one of the important early events in AD, continued lack of success of clinical trials based on Aβ-targeting drugs has triggered the field to seek out alternative disease mechanisms and related therapeutic strategies. One of the new approaches is to uncover novel roles of pathological tau during disease progression. This review will primarily focus on recent advances in understanding the contributions of tau to AD.
Collapse
Affiliation(s)
- Nima N Naseri
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, USA.
| | - Hong Wang
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, USA
| | - Jennifer Guo
- The University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Manu Sharma
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, USA
| | - Wenjie Luo
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, USA.
| |
Collapse
|
121
|
Chukwurah E, Osmundsen A, Davis SW, Lizarraga SB. All Together Now: Modeling the Interaction of Neural With Non-neural Systems Using Organoid Models. Front Neurosci 2019; 13:582. [PMID: 31293366 PMCID: PMC6598414 DOI: 10.3389/fnins.2019.00582] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/22/2019] [Indexed: 12/27/2022] Open
Abstract
The complex development of the human nervous system has been traditionally studied using a combination of animal models, human post-mortem brain tissue, and human genetics studies. However, there has been a lack of experimental human cellular models that would allow for a more precise elucidation of the intricate dynamics of early human brain development. The development of stem cell technologies, both embryonic and induced pluripotent stem cells (iPSCs), has given neuroscientists access to the previously inaccessible early stages of human brain development. In particular, the recent development of three-dimensional culturing methodologies provides a platform to study the differentiation of stem cells in both normal development and disease states in a more in vivo like context. Three-dimensional neural models or cerebral organoids possess an innate advantage over two-dimensional neural cultures as they can recapitulate tissue organization and cell type diversity that resemble the developing brain. Brain organoids also provide the exciting opportunity to model the integration of different brain regions in vitro. Furthermore, recent advances in the differentiation of non-neuronal tissue from stem cells provides the opportunity to study the interaction between the developing nervous system and other non-neuronal systems that impact neuronal function. In this review, we discuss the potential and limitations of the organoid system to study in vitro neurological diseases that arise in the neuroendocrine and the enteric nervous system or from interactions with the immune system.
Collapse
Affiliation(s)
- Evelyn Chukwurah
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, United States
| | - Allison Osmundsen
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, United States
| | - Shannon W. Davis
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, United States
| | - Sofia B. Lizarraga
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
122
|
Cline EN, Bicca MA, Viola KL, Klein WL. The Amyloid-β Oligomer Hypothesis: Beginning of the Third Decade. J Alzheimers Dis 2019; 64:S567-S610. [PMID: 29843241 PMCID: PMC6004937 DOI: 10.3233/jad-179941] [Citation(s) in RCA: 598] [Impact Index Per Article: 99.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The amyloid-β oligomer (AβO) hypothesis was introduced in 1998. It proposed that the brain damage leading to Alzheimer’s disease (AD) was instigated by soluble, ligand-like AβOs. This hypothesis was based on the discovery that fibril-free synthetic preparations of AβOs were potent CNS neurotoxins that rapidly inhibited long-term potentiation and, with time, caused selective nerve cell death (Lambert et al., 1998). The mechanism was attributed to disrupted signaling involving the tyrosine-protein kinase Fyn, mediated by an unknown toxin receptor. Over 4,000 articles concerning AβOs have been published since then, including more than 400 reviews. AβOs have been shown to accumulate in an AD-dependent manner in human and animal model brain tissue and, experimentally, to impair learning and memory and instigate major facets of AD neuropathology, including tau pathology, synapse deterioration and loss, inflammation, and oxidative damage. As reviewed by Hayden and Teplow in 2013, the AβO hypothesis “has all but supplanted the amyloid cascade.” Despite the emerging understanding of the role played by AβOs in AD pathogenesis, AβOs have not yet received the clinical attention given to amyloid plaques, which have been at the core of major attempts at therapeutics and diagnostics but are no longer regarded as the most pathogenic form of Aβ. However, if the momentum of AβO research continues, particularly efforts to elucidate key aspects of structure, a clear path to a successful disease modifying therapy can be envisioned. Ensuring that lessons learned from recent, late-stage clinical failures are applied appropriately throughout therapeutic development will further enable the likelihood of a successful therapy in the near-term.
Collapse
Affiliation(s)
- Erika N Cline
- Department of Neurobiology, Cognitive Neurology and Alzheimer's Disease Center, International Institute for Nanotechnology, and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Maíra Assunção Bicca
- Department of Neurobiology, Cognitive Neurology and Alzheimer's Disease Center, International Institute for Nanotechnology, and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Kirsten L Viola
- Department of Neurobiology, Cognitive Neurology and Alzheimer's Disease Center, International Institute for Nanotechnology, and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - William L Klein
- Department of Neurobiology, Cognitive Neurology and Alzheimer's Disease Center, International Institute for Nanotechnology, and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| |
Collapse
|
123
|
Velagapudi R, Lepiarz I, El-Bakoush A, Katola FO, Bhatia H, Fiebich BL, Olajide OA. Induction of Autophagy and Activation of SIRT-1 Deacetylation Mechanisms Mediate Neuroprotection by the Pomegranate Metabolite Urolithin A in BV2 Microglia and Differentiated 3D Human Neural Progenitor Cells. Mol Nutr Food Res 2019; 63:e1801237. [PMID: 30811877 DOI: 10.1002/mnfr.201801237] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/12/2019] [Indexed: 12/19/2022]
Abstract
SCOPE Urolithin A is an anti-inflammatory and neuroprotective gut-derived metabolite from ellagitannins and ellagic acid in pomegranate, berries, and nuts. The roles of SIRT-1 and autophagy in the neuroprotective activity of urolithin A are investigated. METHODS AND RESULTS Analyses of culture supernatants from lipopolysaccharide-stimulated BV2 microglia show that urolithin A (2.5-10 µm) produced significant reduction in the production of nitrite, tumor necrosis factor (TNF)-α and IL-6. The anti-inflammatory effect of the compound is reversed in the presence of sirtuin (SIRT)-1 and the autophagy inhibitors EX527 and chloroquine, respectively. Protein analyses reveal reduction in p65 and acetyl-p65 protein. Treatment of BV2 microglia with urolithin A results in increased SIRT-1 activity and nuclear protein, while induction of autophagy by the compound is demonstrated using autophagy fluorescent and autophagy LC3 HiBiT reporter assays. Viability assays reveal that urolithin A produces a neuroprotective effect in APPSwe-transfected ReNcell VM human neural cells, which is reversed in the presence of EX527 and chloroquine. Increase in both SIRT-1 and autophagic activities are also detected in these cells following treatment with urolithin A. CONCLUSIONS It has been proposed that SIRT-1 activation and induction of autophagy are involved in the neuroprotective activity of urolithin A in brain cells.
Collapse
Affiliation(s)
- Ravikanth Velagapudi
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, United Kingdom
| | - Izabela Lepiarz
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, United Kingdom
| | - Abdelmeneim El-Bakoush
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, United Kingdom
| | - Folashade O Katola
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, United Kingdom
| | - Harsharan Bhatia
- Neurochemistry and Neuroimmunology Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Hauptstrasse 5, 79104, Freiburg, Germany
| | - Bernd L Fiebich
- Neurochemistry and Neuroimmunology Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Hauptstrasse 5, 79104, Freiburg, Germany
| | - Olumayokun A Olajide
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, United Kingdom
| |
Collapse
|
124
|
Dubey SK, Ram MS, Krishna KV, Saha RN, Singhvi G, Agrawal M, Ajazuddin, Saraf S, Saraf S, Alexander A. Recent Expansions on Cellular Models to Uncover the Scientific Barriers Towards Drug Development for Alzheimer's Disease. Cell Mol Neurobiol 2019; 39:181-209. [PMID: 30671696 PMCID: PMC11469828 DOI: 10.1007/s10571-019-00653-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/12/2019] [Indexed: 12/17/2022]
Abstract
Globally, the central nervous system (CNS) disorders appear as the most critical pathological threat with no proper cure. Alzheimer's disease (AD) is one such condition frequently observed with the aged population and sometimes in youth too. Most of the research utilizes different animal models for in vivo study of AD pathophysiology and to investigate the potency of the newly developed therapy. These in vivo models undoubtably provide a powerful investigation tool to study human brain. Although, it sometime fails to mimic the exact environment and responses as the human brain owing to the distinctive genetic and anatomical features of human and rodent brain. In such condition, the in vitro cell model derived from patient specific cell or human cell lines can recapitulate the human brain environment. In addition, the frequent use of animals in research increases the cost of study and creates various ethical issues. Instead, the use of in vitro cellular models along with animal models can enhance the translational values of in vivo models and represent a better and effective mean to investigate the potency of therapeutics. This strategy also limits the excessive use of laboratory animal during the drug development process. Generally, the in vitro cell lines are cultured from AD rat brain endothelial cells, the rodent models, human astrocytes, human brain capillary endothelial cells, patient derived iPSCs (induced pluripotent stem cells) and also from the non-neuronal cells. During the literature review process, we observed that there are very few reviews available which describe the significance and characteristics of in vitro cell lines, for AD investigation. Thus, in the present review article, we have compiled the various in vitro cell lines used in AD investigation including HBMEC, BCECs, SHSY-5Y, hCMEC/D3, PC-2 cell line, bEND3 cells, HEK293, hNPCs, RBE4 cells, SK-N-MC, BMVECs, CALU-3, 7W CHO, iPSCs and cerebral organoids cell lines and different types of culture media such as SCM, EMEM, DMEM/F12, RPMI, EBM and 3D-cell culture.
Collapse
Affiliation(s)
- Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India.
| | - Munnangi Siva Ram
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Kowthavarapu Venkata Krishna
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Ranendra Narayan Saha
- Department of Biotechnology, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Dubai Campus, Dubai, United Arab Emirates
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Mukta Agrawal
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Kohka, Kurud Road, Bhilai, Chhattisgarh, 490024, India
| | - Ajazuddin
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Kohka, Kurud Road, Bhilai, Chhattisgarh, 490024, India
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, 492 010, Chhattisgarh, India
| | - Shailendra Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, 492 010, Chhattisgarh, India
- Hemchand Yadav University, Durg, Chhattisgarh, 491 001, India
| | - Amit Alexander
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Kohka, Kurud Road, Bhilai, Chhattisgarh, 490024, India.
| |
Collapse
|
125
|
Little D, Ketteler R, Gissen P, Devine MJ. Using stem cell-derived neurons in drug screening for neurological diseases. Neurobiol Aging 2019; 78:130-141. [PMID: 30925301 DOI: 10.1016/j.neurobiolaging.2019.02.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 02/07/2019] [Accepted: 02/09/2019] [Indexed: 12/22/2022]
Abstract
Induced pluripotent stem cells and their derivatives have become an important tool for researching disease mechanisms. It is hoped that they could be used to discover new therapies by providing the most reliable and relevant human in vitro disease models for drug discovery. This review will summarize recent efforts to use stem cell-derived neurons for drug screening. We also explain the current hurdles to using these cells for high-throughput pharmaceutical screening and developments that may help overcome these hurdles. Finally, we critically discuss whether induced pluripotent stem cell-derived neurons will come to fruition as a model that is regularly used to screen for drugs to treat neurological diseases.
Collapse
Affiliation(s)
- Daniel Little
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK.
| | - Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Paul Gissen
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Michael J Devine
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK; Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
126
|
A dynamic view of the proteomic landscape during differentiation of ReNcell VM cells, an immortalized human neural progenitor line. Sci Data 2019; 6:190016. [PMID: 30778261 PMCID: PMC6380223 DOI: 10.1038/sdata.2019.16] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 12/21/2018] [Indexed: 01/25/2023] Open
Abstract
The immortalized human ReNcell VM cell line represents a reproducible and easy-to-propagate cell culture system for studying the differentiation of neural progenitors. To better characterize the starting line and its subsequent differentiation, we assessed protein and phospho-protein levels and cell morphology over a 15-day period during which ReNcell progenitors differentiated into neurons, astrocytes and oligodendrocytes. Five of the resulting datasets measured protein levels or states of phosphorylation based on tandem-mass-tag (TMT) mass spectrometry and four datasets characterized cellular phenotypes using high-content microscopy. Proteomic analysis revealed reproducible changes in pathways responsible for cytoskeletal rearrangement, cell phase transitions, neuronal migration, glial differentiation, neurotrophic signalling and extracellular matrix regulation. Proteomic and imaging data revealed accelerated differentiation in cells treated with the poly-selective CDK and GSK3 inhibitor kenpaullone or the HMG-CoA reductase inhibitor mevastatin, both of which have previously been reported to promote neural differentiation. These data provide in-depth information on the ReNcell progenitor state and on neural differentiation in the presence and absence of drugs, setting the stage for functional studies.
Collapse
|
127
|
Jiang L, Chen D, Wang Z, Zhang Z, Xia Y, Xue H, Liu Y. Preparation of an Electrically Conductive Graphene Oxide/Chitosan Scaffold for Cardiac Tissue Engineering. Appl Biochem Biotechnol 2019; 188:952-964. [DOI: 10.1007/s12010-019-02967-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/30/2019] [Indexed: 11/28/2022]
|
128
|
Karagiannis P, Takahashi K, Saito M, Yoshida Y, Okita K, Watanabe A, Inoue H, Yamashita JK, Todani M, Nakagawa M, Osawa M, Yashiro Y, Yamanaka S, Osafune K. Induced Pluripotent Stem Cells and Their Use in Human Models of Disease and Development. Physiol Rev 2019; 99:79-114. [PMID: 30328784 DOI: 10.1152/physrev.00039.2017] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The discovery of somatic cell nuclear transfer proved that somatic cells can carry the same genetic code as the zygote, and that activating parts of this code are sufficient to reprogram the cell to an early developmental state. The discovery of induced pluripotent stem cells (iPSCs) nearly half a century later provided a molecular mechanism for the reprogramming. The initial creation of iPSCs was accomplished by the ectopic expression of four specific genes (OCT4, KLF4, SOX2, and c-Myc; OSKM). iPSCs have since been acquired from a wide range of cell types and a wide range of species, suggesting a universal molecular mechanism. Furthermore, cells have been reprogrammed to iPSCs using a myriad of methods, although OSKM remains the gold standard. The sources for iPSCs are abundant compared with those for other pluripotent stem cells; thus the use of iPSCs to model the development of tissues, organs, and other systems of the body is increasing. iPSCs also, through the reprogramming of patient samples, are being used to model diseases. Moreover, in the 10 years since the first report, human iPSCs are already the basis for new cell therapies and drug discovery that have reached clinical application. In this review, we examine the generation of iPSCs and their application to disease and development.
Collapse
Affiliation(s)
- Peter Karagiannis
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Kazutoshi Takahashi
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Megumu Saito
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Yoshinori Yoshida
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Keisuke Okita
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Akira Watanabe
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Haruhisa Inoue
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Jun K Yamashita
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Masaya Todani
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Masato Nakagawa
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Mitsujiro Osawa
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Yoshimi Yashiro
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| |
Collapse
|
129
|
P Rothenbücher TS, Martínez-Serrano A. Human cerebral organoids and neural 3D tissues in basic research, and their application to study neurological diseases. FUTURE NEUROLOGY 2019. [DOI: 10.2217/fnl-2018-0043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Theresa S P Rothenbücher
- Department of Molecular Biology, Univ. Autónoma de Madrid; & Department of Molecular Neuropathology, Center of Molecular Biology Severo Ochoa (CBMSO, UAM-CSIC), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Alberto Martínez-Serrano
- Department of Molecular Biology, Univ. Autónoma de Madrid; & Department of Molecular Neuropathology, Center of Molecular Biology Severo Ochoa (CBMSO, UAM-CSIC), Nicolás Cabrera 1, 28049 Madrid, Spain
| |
Collapse
|
130
|
van Gorsel M, Elia I, Fendt SM. 13C Tracer Analysis and Metabolomics in 3D Cultured Cancer Cells. Methods Mol Biol 2019; 1862:53-66. [PMID: 30315459 DOI: 10.1007/978-1-4939-8769-6_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metabolomics and 13C tracer analysis are state-of-the-art techniques that allow determining the concentration of metabolites and the activity of metabolic pathways, respectively. Three dimensional (3D) cultures of cancer cells constitute an enriched in vitro environment that can be used to assay anchorage-independent growth, spheroid formation, and extracellular matrix production by (cancer) cells. Here, we describe how to perform metabolomics and 13C tracer analysis in 3D cultures of cancer cells.
Collapse
Affiliation(s)
- Marit van Gorsel
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Ilaria Elia
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium.
| |
Collapse
|
131
|
Li H, Liu CC, Zheng H, Huang TY. Amyloid, tau, pathogen infection and antimicrobial protection in Alzheimer's disease -conformist, nonconformist, and realistic prospects for AD pathogenesis. Transl Neurodegener 2018; 7:34. [PMID: 30603085 PMCID: PMC6306008 DOI: 10.1186/s40035-018-0139-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/02/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a fatal disease that threatens the quality of life of an aging population at a global scale. Various hypotheses on the etiology of AD have been developed over the years to guide efforts in search of therapeutic strategies. MAIN BODY In this review, we focus on four AD hypotheses currently relevant to AD onset: the prevailing amyloid cascade hypothesis, the well-recognized tau hypothesis, the increasingly popular pathogen (viral infection) hypothesis, and the infection-related antimicrobial protection hypothesis. In briefly reviewing the main evidence supporting each hypothesis and discussing the questions that need to be addressed, we hope to gain a better understanding of the complicated multi-layered interactions in potential causal and/or risk factors in AD pathogenesis. As a defining feature of AD, the existence of amyloid deposits is likely fundamental to AD onset but is insufficient to wholly reproduce many complexities of the disorder. A similar belief is currently also applied to hyperphosphorylated tau aggregates within neurons, where tau has been postulated to drive neurodegeneration in the presence of pre-existing Aβ plaques in the brain. Although infection of the central nerve system by pathogens such as viruses may increase AD risk, it is yet to be determined whether this phenomenon is applicable to all cases of sporadic AD and whether it is a primary trigger for AD onset. Lastly, the antimicrobial protection hypothesis provides insight into a potential physiological role for Aβ peptides, but how Aβ/microbial interactions affect AD pathogenesis during aging awaits further validation. Nevertheless, this hypothesis cautions potential adverse effects in Aβ-targeting therapies by hindering potential roles for Aβ in anti-viral protection. CONCLUSION AD is a multi-factor complex disorder, which likely requires a combinatorial therapeutic approach to successfully slow or reduce symptomatic memory decline. A better understanding of how various causal and/or risk factors affecting disease onset and progression will enhance the likelihood of conceiving effective treatment paradigms, which may involve personalized treatment strategies for individual patients at varying stages of disease progression.
Collapse
Affiliation(s)
- Hongmei Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL USA
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX USA
| | - Timothy Y. Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA USA
| |
Collapse
|
132
|
Duru LN, Quan Z, Qazi TJ, Qing H. Stem cells technology: a powerful tool behind new brain treatments. Drug Deliv Transl Res 2018; 8:1564-1591. [PMID: 29916013 DOI: 10.1007/s13346-018-0548-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Stem cell research has recently become a hot research topic in biomedical research due to the foreseen unlimited potential of stem cells in tissue engineering and regenerative medicine. For many years, medicine has been facing intense challenges, such as an insufficient number of organ donations that is preventing clinicians to fulfill the increasing needs. To try and overcome this regrettable matter, research has been aiming at developing strategies to facilitate the in vitro culture and study of stem cells as a tool for tissue regeneration. Meanwhile, new developments in the microfluidics technology brought forward emerging cell culture applications that are currently allowing for a better chemical and physical control of cellular microenvironment. This review presents the latest developments in stem cell research that brought new therapies to the clinics and how the convergence of the microfluidics technology with stem cell research can have positive outcomes on the fields of regenerative medicine and high-throughput screening. These advances will bring new translational solutions for drug discovery and will upgrade in vitro cell culture to a new level of accuracy and performance. We hope this review will provide new insights into the understanding of new brain treatments from the perspective of stem cell technology especially regarding regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Lucienne N Duru
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhenzhen Quan
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Talal Jamil Qazi
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Hong Qing
- School of Life Science, Beijing Institute of Technology, Beijing, China. .,Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China.
| |
Collapse
|
133
|
Rowland HA, Hooper NM, Kellett KAB. Modelling Sporadic Alzheimer's Disease Using Induced Pluripotent Stem Cells. Neurochem Res 2018; 43:2179-2198. [PMID: 30387070 PMCID: PMC6267251 DOI: 10.1007/s11064-018-2663-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/11/2018] [Accepted: 10/15/2018] [Indexed: 12/24/2022]
Abstract
Developing cellular models of sporadic Alzheimer's disease (sAD) is challenging due to the unknown initiator of disease onset and the slow disease progression that takes many years to develop in vivo. The use of human induced pluripotent stem cells (iPSCs) has revolutionised the opportunities to model AD pathology, investigate disease mechanisms and screen potential drugs. The majority of this work has, however, used cells derived from patients with familial AD (fAD) where specific genetic mutations drive disease onset. While these provide excellent models to investigate the downstream pathways involved in neuronal toxicity and ultimately neuronal death that leads to AD, they provide little insight into the causes and mechanisms driving the development of sAD. In this review we compare the data obtained from fAD and sAD iPSC-derived cell lines, identify the inconsistencies that exist in sAD models and highlight the potential role of Aβ clearance mechanisms, a relatively under-investigated area in iPSC-derived models, in the study of AD. We discuss the development of more physiologically relevant models using co-culture and three-dimensional culture of iPSC-derived neurons with glial cells. Finally, we evaluate whether we can develop better, more consistent models for sAD research using genetic stratification of iPSCs and identification of genetic and environmental risk factors that could be used to initiate disease onset for modelling sAD. These considerations provide exciting opportunities to develop more relevant iPSC models of sAD which can help drive our understanding of disease mechanisms and identify new therapeutic targets.
Collapse
Affiliation(s)
- Helen A Rowland
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Nigel M Hooper
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Katherine A B Kellett
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
134
|
Ko KR, Tsai MC, Frampton JP. Fabrication of thin-layer matrigel-based constructs for three-dimensional cell culture. Biotechnol Prog 2018; 35:e2733. [PMID: 30315732 DOI: 10.1002/btpr.2733] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/28/2018] [Indexed: 12/14/2022]
Abstract
Extracellular matrix-based hydrogels such as Matrigel are easy-to-use, commercially available, and offer environments for three-dimensional (3-D) cell culture that mimic native tissue. However, manipulating small volumes of these materials to produce thin-layer 3-D culture systems suitable for analysis is difficult because of air-liquid-substrate interfacial tension effects and evaporation. Here, we demonstrate two simple techniques that use standard liquid-handling tools and nontreated 96-well plates to produce uniform, thin-layer constructs for 3-D culture of cells in Matrigel. The first technique, the floating 3-D cell culture method, uses phase-separating polymers to form a barrier between the dispensed Matrigel, air, and cultureware surface to generate consistently thin hydrogels from volumes as low as 5 μL. These unanchored gels provide a useful assay for investigating airway smooth muscle cell contraction and may have future applications in studying asthma pathophysiology. The second technique, the fixed 3-D cell culture method, provides an anchored gel system for culturing noncontractile cells (e.g., neurons) where 20 μL of Matrigel is dispensed into the bottom of a well filled with culture medium to form a thin gel containing embedded cells. This technique has potential widespread applications as an accessible 3-D culture platform for high-throughput production of disease models for evaluation of novel drug therapies. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2733, 2019.
Collapse
Affiliation(s)
- Kristin Robin Ko
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Meng-Chiao Tsai
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - John P Frampton
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
135
|
Yu YJ, Kim YH, Na K, Min SY, Hwang OK, Park DK, Kim DY, Choi SH, Kamm RD, Chung S, Kim JA. Hydrogel-incorporating unit in a well: 3D cell culture for high-throughput analysis. LAB ON A CHIP 2018; 18:2604-2613. [PMID: 30043033 DOI: 10.1039/c8lc00525g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The microfluidic 3D cell culture system has been an attractive model because it mimics the tissue and disease model, thereby expanding our ability to control the local cellular microenvironment. However, these systems still have limited value as quantitative assay tools due to the difficulties associated with the manipulation and maintenance of microfluidic cells, and their lack of compatibility with the high-throughput screening (HTS) analysis system. In this study, we suggest a microchannel-free, 3D cell culture system that has a hydrogel-incorporating unit integrated with a multi-well plate (24- to 96-well plate), which can provide better reproducibility in biological experiments. This plate was devised considering the design constraints imposed by various cell biology applications as well as by high-throughput analysis where the physical dimensions of the micro-features in the hydrogel-incorporating units were altered. We also demonstrated that the developed plate is potentially applicable to a variety of quantitative biochemical assays for qRT-PCR, Western blotting, and microplate-reader-based assays, such as ELISA, viability assay, and high content-screening (HCS) as well as the co-culture for biological studies. Human neural progenitor cells (hNPCs) that produce pathogenic Aβ species for modeling Alzheimer's disease (AD) were three-dimensionally cultured, and the efficacy of the inhibitors of Aβ production was assessed by ELISA in order to demonstrate the performance of this plate.
Collapse
Affiliation(s)
- Yeong Jun Yu
- Biomedical Omics Group, Korea Basic Science Institute, Chungbuk 28119, Republic of Korea.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Ranjan VD, Qiu L, Tan EK, Zeng L, Zhang Y. Modelling Alzheimer's disease: Insights from in vivo to in vitro three-dimensional culture platforms. J Tissue Eng Regen Med 2018; 12:1944-1958. [PMID: 30011422 DOI: 10.1002/term.2728] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/21/2018] [Accepted: 07/04/2018] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and is characterized by progressive memory loss, impairment of other cognitive functions, and inability to perform activities of daily life. The key to understanding AD aetiology lies in the development of effective disease models, which should ideally recapitulate all aspects pertaining to the disease. A plethora of techniques including in vivo, in vitro, and in silico platforms have been utilized in developing disease models of AD over the years. Each of these approaches has revealed certain essential characteristics of AD; however, none have managed to fully mimic the pathological hallmarks observed in the AD human brain. In this review, we will provide details into the genesis, evolution, and significance of the principal methods currently employed in modelling AD, the advantages and limitations faced in their application, including the headways made by each approach. This review will focus primarily on two-dimensional and three-dimensional in vitro modelling of AD, which during the last few years has made significant breakthroughs in the areas of AD pathology and therapeutic screening. In addition, a glimpse into state-of-the-art neural tissue engineering techniques incorporating biomaterials and microfluidics technologies is provided, which could pave the way for the development of more accurate and comprehensive AD models in the future.
Collapse
Affiliation(s)
- Vivek Damodar Ranjan
- NTU Institute for Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, Singapore.,School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore.,Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore
| | - Lifeng Qiu
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore
| | - Eng King Tan
- Department of Neurology, National Neuroscience Institute, Singapore.,Neuroscience and Behavioral Disorders Program, DUKE-NUS Graduate Medical School, Singapore
| | - Li Zeng
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore.,Neuroscience and Behavioral Disorders Program, DUKE-NUS Graduate Medical School, Singapore
| | - Yilei Zhang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
137
|
Yesil-Celiktas O, Hassan S, Miri AK, Maharjan S, Al-kharboosh R, Quiñones-Hinojosa A, Zhang YS. Mimicking Human Pathophysiology in Organ-on-Chip Devices. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800109] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ozlem Yesil-Celiktas
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
- Department of Bioengineering; Faculty of Engineering; Ege University; Bornova-Izmir 35100 Turkey
| | - Shabir Hassan
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
| | - Amir K. Miri
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
- Department of Mechanical Engineering Rowan University; 401 North Campus Drive Glassboro NJ 08028 USA
| | - Sushila Maharjan
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
- Research Institute for Bioscience and Biotechnology; Nakkhu-4 Lalitpur 44600 Nepal
| | - Rawan Al-kharboosh
- Mayo Clinic College of Medicine; Mayo Clinic Graduate School; Neuroscience, NBD Track Rochester MN 55905 USA
- Department of Neurosurgery, Oncology, Neuroscience; Mayo Clinic; Jacksonville FL 32224 USA
| | | | - Yu Shrike Zhang
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
| |
Collapse
|
138
|
3D-cultured neural stem cell microarrays on a micropillar chip for high-throughput developmental neurotoxicology. Exp Cell Res 2018; 370:680-691. [PMID: 30048616 DOI: 10.1016/j.yexcr.2018.07.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/20/2018] [Accepted: 07/21/2018] [Indexed: 02/08/2023]
Abstract
Numerous chemicals including environmental toxicants and drugs have not been fully evaluated for developmental neurotoxicity. A key gap exists in the ability to predict accurately and robustly in vivo outcomes based on in vitro assays. This is particularly the case for predicting the toxicity of chemicals on the developing human brain. A critical need for such in vitro assays is choice of a suitable model cell type. To that end, we have performed high-throughput in vitro assessment of proliferation and differentiation of human neural stem cells (hNSCs). Conventional in vitro assays typically use immunofluorescence staining to quantify changes in cell morphology and expression of neural cell-specific biomarkers, which is often time-consuming and subject to variable specificities of available antibodies. To alleviate these limitations, we developed a miniaturized, three-dimensional (3D) hNSC culture with ReNcell VM on microarray chip platforms and established a high-throughput promoter-reporter assay system using recombinant lentiviruses on hNSC spheroids to assess cell viability, self-renewal, and differentiation. Optimum cell viability and spheroid formation of 3D ReNcell VM culture were observed on a micropillar chip over a period of 9 days in a mixture of 0.75% (w/v) alginate and 1 mg/mL growth factor reduced (GFR) Matrigel with 25 mM CaCl2 as a crosslinker for alginate. In addition, 3D ReNcell VM culture exhibited self-renewal and differentiation on the microarray chip platform, which was efficiently monitored by enhanced green fluorescent protein (EGFP) expression of four NSC-specific biomarkers including sex determining region Y-box 2 (SOX2), glial fibrillary acidic protein (GFAP), synapsin1, and myelin basic protein (MBP) with the promoter-reporter assay system.
Collapse
|
139
|
De Simone U, Roccio M, Gribaldo L, Spinillo A, Caloni F, Coccini T. Human 3D Cultures as Models for Evaluating Magnetic Nanoparticle CNS Cytotoxicity after Short- and Repeated Long-Term Exposure. Int J Mol Sci 2018; 19:ijms19071993. [PMID: 29986546 PMCID: PMC6073335 DOI: 10.3390/ijms19071993] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 11/20/2022] Open
Abstract
Since nanoparticles (NPs) can translocate to the brain and impact the highly vulnerable central nervous system (CNS), novel in vitro tools for the assessment of NP-induced neurotoxicity are advocated. In this study, two types of CNS spheroids have been developed from human D384 astrocyte- and SH-SY5Y neuronal-like cells, and optimized in combination with standard assays (viability readout and cell morphology) to test neurotoxic effects caused by Fe3O4NPs, as NP-model, after short- (24–48 h; 1–100µg/ml) and long-term repeated exposure (30days; 0.1–25µg/ml). Short-term exposure of 3D-spheroids to Fe3O4NP induced cytotoxicity at 10 µg/mL in astrocytes and 25 µg/mL neurons. After long-term repeated dose regimen, spheroids showed concentration- and time-dependent cell mortality at 10 µg/mL for D384 and 0.5 µg/mL for SH-SY5Y, indicating a higher susceptibility of neurons than astrocytes. Both spheroid types displayed cell disaggregation after the first week of treatment at ≥0.1 µg/mL and becoming considerably evident at higher concentrations and over time. Recreating the 3D-spatial environment of the CNS allows cells to behave in vitro more closely to the in vivo situations, therefore providing a model that can be used as a stand-alone test or as a part of integrated testing strategies. These models could drive an improvement in the species-relevant predictivity of toxicity testing.
Collapse
Affiliation(s)
- Uliana De Simone
- Laboratory of Clinical and Experimental Toxicology, Toxicology Unit, ICS Maugeri SpA-BC, IRCCS Pavia, 27100 Pavia, Italy.
| | - Marianna Roccio
- Department of Obstetrics and Gynecology, IRCCS Foundation Policlinico San Matteo and University of Pavia, 27100 Pavia, Italy.
| | - Laura Gribaldo
- European Commission, Directorate General Joint Research Centre, Directorate F-Health, Consumers and Reference Materials, Chemicals Safety and Alternative Methods Unit, 21027 Ispra, Italy.
| | - Arsenio Spinillo
- Department of Obstetrics and Gynecology, IRCCS Foundation Policlinico San Matteo and University of Pavia, 27100 Pavia, Italy.
| | - Francesca Caloni
- Università degli Studi di Milano, Dipartimento di Medicina Veterinaria (DIMEVET), 20133 Milano, Italy.
| | - Teresa Coccini
- Laboratory of Clinical and Experimental Toxicology, Toxicology Unit, ICS Maugeri SpA-BC, IRCCS Pavia, 27100 Pavia, Italy.
| |
Collapse
|
140
|
Juneau J, Duret G, Robinson J, Kemere C. Enhanced Image Sensor Module for Head-Mounted Microscopes<sup/>. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:826-829. [PMID: 30440519 DOI: 10.1109/embc.2018.8512387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Several research groups have developed head-mounted fluorescence microscopes as a modality for recording neural activity in freely behaving mice. The current designs have shown exciting results from in vivo imaging of the bright dynamics of genetically encoded calcium indicators (GECI). However, despite their potential, head-mounted microscopes are not in use with genetically encoded voltage indicators (GEVI) or bioluminescence indicators. Due to its ability to match the temporal resolution of neuron spiking, GEVIs offer great benefits to experiments designed to provide feedback after real-time detection of specific neural activity such as the less than 250ms replay events that can occur in the hippocampus. Orthogonally, the emerging bioluminescence activity reporters have the potential to eliminate autofluorescence and photobleaching that can occur in fluorescence imaging. There are two important properties of the head-mounted microscope's image sensor affecting the ability to image GEVIs and bioluminescence indicators. First, the low signal to noise ratio (SNR) characteristics of GEVIs and bioluminescent indicators make signal detection difficult. Second, in order to take advantage of the GEVIs faster fluorescence kinetics, the image sensor must be capable of matching frame rates. Here, we present the design of a new imaging module for head-mounted microscopes incorporating the latest CMOS sensor technology aimed at increasing image sensor sensitivity and frame rates for use in real-time detection experiments. The design builds off an existing open-source project and can integrate into the existing data acquisition hardware and microscope housing.
Collapse
|
141
|
Park J, Wetzel I, Marriott I, Dréau D, D'Avanzo C, Kim DY, Tanzi RE, Cho H. A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer's disease. Nat Neurosci 2018; 21:941-951. [PMID: 29950669 PMCID: PMC6800152 DOI: 10.1038/s41593-018-0175-4] [Citation(s) in RCA: 435] [Impact Index Per Article: 62.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/25/2018] [Indexed: 01/26/2023]
Abstract
Alzheimer's disease (AD) is characterized by beta-amyloid accumulation, phosphorylated tau formation, hyperactivation of glial cells, and neuronal loss. The mechanisms of AD pathogenesis, however, remain poorly understood, partially due to the lack of relevant models that can comprehensively recapitulate multistage intercellular interactions in human AD brains. Here we present a new three-dimensional (3D) human AD triculture model using neurons, astrocytes, and microglia in a 3D microfluidic platform. Our model provided key representative AD features: beta-amyloid aggregation, phosphorylated tau accumulation, and neuroinflammatory activity. In particular, the model mirrored microglial recruitment, neurotoxic activities such as axonal cleavage, and NO release damaging AD neurons and astrocytes. Our model will serve to facilitate the development of more precise human brain models for basic mechanistic studies in neural-glial interactions and drug discovery.
Collapse
Affiliation(s)
- Joseph Park
- Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, NC, USA.,Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, NC, USA.,Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA.,The Nanoscale Science Program, University of North Carolina at Charlotte, Charlotte, NC, USA.,Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Isaac Wetzel
- Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, NC, USA.,Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, NC, USA.,Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA.,The Nanoscale Science Program, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Ian Marriott
- Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, NC, USA.,Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Didier Dréau
- Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, NC, USA.,Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Carla D'Avanzo
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Doo Yeon Kim
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Hansang Cho
- Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, NC, USA. .,Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, NC, USA. .,Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA. .,The Nanoscale Science Program, University of North Carolina at Charlotte, Charlotte, NC, USA.
| |
Collapse
|
142
|
Chalard A, Vaysse L, Joseph P, Malaquin L, Souleille S, Lonetti B, Sol JC, Loubinoux I, Fitremann J. Simple Synthetic Molecular Hydrogels from Self-Assembling Alkylgalactonamides as Scaffold for 3D Neuronal Cell Growth. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17004-17017. [PMID: 29757611 DOI: 10.1021/acsami.8b01365] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work, we demonstrated that the hydrogel obtained from a very simple and single synthetic molecule, N-heptyl-galactonamide was a suitable scaffold for the growth of neuronal cells in 3D. We evidenced by confocal microscopy the presence of the cells into the gel up to a depth of around 200 μm, demonstrating that the latter was permissive to cell growth and enabled a true 3D colonization and organization. It also supported successfully the differentiation of adult human neuronal stem cells (hNSCs) into both glial and neuronal cells and the development of a really dense neurofilament network. So the gel appears to be a good candidate for neural tissue regeneration. In contrast with other molecular gels described for cell culture, the molecule can be obtained at the gram scale by a one-step reaction. The resulting gel is very soft, a quality in accordance with the aim of growing neuronal cells, that requires low modulus substrates similar to the brain. But because of its fragility, specific procedures had to be implemented for its preparation and for cell labeling and confocal microscopy observations. Notably, the implementation of a controlled slow cooling of the gel solution was needed to get a very soft but nevertheless cohesive gel. In these conditions, very wide straight and long micrometric fibers were formed, held together by a second network of flexible narrower nanometric fibers. The two kinds of fibers guided the neurite and glial cell growth in a different way. We also underlined the importance of a tiny difference in the molecular structure on the gel performances: parent molecules, differing by a one-carbon increment in the alkyl chain length, N-hexyl-galactonamide and N-octyl-galactonamide, were not as good as N-heptyl-galactonamide. Their differences were analyzed in terms of gel fibers morphology, mechanical properties, solubility, chain parity, and cell growth.
Collapse
Affiliation(s)
- Anaïs Chalard
- IMRCP, Université de Toulouse, CNRS, Bat 2R1 , 118 Route de Narbonne , 31062 Toulouse Cedex 9, France
- TONIC, Toulouse NeuroImaging Center , Université de Toulouse , Inserm , UPS , France
- LAAS-CNRS, Université de Toulouse, CNRS, UPS , Toulouse , France
| | - Laurence Vaysse
- TONIC, Toulouse NeuroImaging Center , Université de Toulouse , Inserm , UPS , France
| | - Pierre Joseph
- LAAS-CNRS, Université de Toulouse, CNRS, UPS , Toulouse , France
| | - Laurent Malaquin
- LAAS-CNRS, Université de Toulouse, CNRS, UPS , Toulouse , France
| | | | - Barbara Lonetti
- IMRCP, Université de Toulouse, CNRS, Bat 2R1 , 118 Route de Narbonne , 31062 Toulouse Cedex 9, France
| | - Jean-Christophe Sol
- TONIC, Toulouse NeuroImaging Center , Université de Toulouse , Inserm , UPS , France
- Centre Hospitalier Universitaire de Toulouse , Pôle Neurosciences , CHU Toulouse , France
| | - Isabelle Loubinoux
- TONIC, Toulouse NeuroImaging Center , Université de Toulouse , Inserm , UPS , France
| | - Juliette Fitremann
- IMRCP, Université de Toulouse, CNRS, Bat 2R1 , 118 Route de Narbonne , 31062 Toulouse Cedex 9, France
| |
Collapse
|
143
|
Centeno EGZ, Cimarosti H, Bithell A. 2D versus 3D human induced pluripotent stem cell-derived cultures for neurodegenerative disease modelling. Mol Neurodegener 2018; 13:27. [PMID: 29788997 PMCID: PMC5964712 DOI: 10.1186/s13024-018-0258-4] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/08/2018] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS), affect millions of people every year and so far, there are no therapeutic cures available. Even though animal and histological models have been of great aid in understanding disease mechanisms and identifying possible therapeutic strategies, in order to find disease-modifying solutions there is still a critical need for systems that can provide more predictive and physiologically relevant results. One possible avenue is the development of patient-derived models, e.g. by reprogramming patient somatic cells into human induced pluripotent stem cells (hiPSCs), which can then be differentiated into any cell type for modelling. These systems contain key genetic information from the donors, and therefore have enormous potential as tools in the investigation of pathological mechanisms underlying disease phenotype, and progression, as well as in drug testing platforms. hiPSCs have been widely cultured in 2D systems, but in order to mimic human brain complexity, 3D models have been proposed as a more advanced alternative. This review will focus on the use of patient-derived hiPSCs to model AD, PD, HD and ALS. In brief, we will cover the available stem cells, types of 2D and 3D culture systems, existing models for neurodegenerative diseases, obstacles to model these diseases in vitro, and current perspectives in the field.
Collapse
Affiliation(s)
- Eduarda G Z Centeno
- Department of Biotechnology, Federal University of Pelotas, Campus Capão do Leão, Pelotas, RS, 96160-000, Brazil.,Department of Pharmacology, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Helena Cimarosti
- Department of Pharmacology, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil.
| | - Angela Bithell
- School of Pharmacy, University of Reading, Whiteknights Campus, Reading, RG6 6UB, UK.
| |
Collapse
|
144
|
A simplified protocol for differentiation of electrophysiologically mature neuronal networks from human induced pluripotent stem cells. Mol Psychiatry 2018; 23:1336-1344. [PMID: 28416807 PMCID: PMC5984104 DOI: 10.1038/mp.2017.56] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/24/2016] [Accepted: 02/10/2017] [Indexed: 02/07/2023]
Abstract
Progress in elucidating the molecular and cellular pathophysiology of neuropsychiatric disorders has been hindered by the limited availability of living human brain tissue. The emergence of induced pluripotent stem cells (iPSCs) has offered a unique alternative strategy using patient-derived functional neuronal networks. However, methods for reliably generating iPSC-derived neurons with mature electrophysiological characteristics have been difficult to develop. Here, we report a simplified differentiation protocol that yields electrophysiologically mature iPSC-derived cortical lineage neuronal networks without the need for astrocyte co-culture or specialized media. This protocol generates a consistent 60:40 ratio of neurons and astrocytes that arise from a common forebrain neural progenitor. Whole-cell patch-clamp recordings of 114 neurons derived from three independent iPSC lines confirmed their electrophysiological maturity, including resting membrane potential (-58.2±1.0 mV), capacitance (49.1±2.9 pF), action potential (AP) threshold (-50.9±0.5 mV) and AP amplitude (66.5±1.3 mV). Nearly 100% of neurons were capable of firing APs, of which 79% had sustained trains of mature APs with minimal accommodation (peak AP frequency: 11.9±0.5 Hz) and 74% exhibited spontaneous synaptic activity (amplitude, 16.03±0.82 pA; frequency, 1.09±0.17 Hz). We expect this protocol to be of broad applicability for implementing iPSC-based neuronal network models of neuropsychiatric disorders.
Collapse
|
145
|
Guo L, Kim HJ, Wang H, Monaghan J, Freyermuth F, Sung JC, O'Donovan K, Fare CM, Diaz Z, Singh N, Zhang ZC, Coughlin M, Sweeny EA, DeSantis ME, Jackrel ME, Rodell CB, Burdick JA, King OD, Gitler AD, Lagier-Tourenne C, Pandey UB, Chook YM, Taylor JP, Shorter J. Nuclear-Import Receptors Reverse Aberrant Phase Transitions of RNA-Binding Proteins with Prion-like Domains. Cell 2018; 173:677-692.e20. [PMID: 29677512 PMCID: PMC5911940 DOI: 10.1016/j.cell.2018.03.002] [Citation(s) in RCA: 348] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 11/22/2017] [Accepted: 02/28/2018] [Indexed: 12/21/2022]
Abstract
RNA-binding proteins (RBPs) with prion-like domains (PrLDs) phase transition to functional liquids, which can mature into aberrant hydrogels composed of pathological fibrils that underpin fatal neurodegenerative disorders. Several nuclear RBPs with PrLDs, including TDP-43, FUS, hnRNPA1, and hnRNPA2, mislocalize to cytoplasmic inclusions in neurodegenerative disorders, and mutations in their PrLDs can accelerate fibrillization and cause disease. Here, we establish that nuclear-import receptors (NIRs) specifically chaperone and potently disaggregate wild-type and disease-linked RBPs bearing a NLS. Karyopherin-β2 (also called Transportin-1) engages PY-NLSs to inhibit and reverse FUS, TAF15, EWSR1, hnRNPA1, and hnRNPA2 fibrillization, whereas Importin-α plus Karyopherin-β1 prevent and reverse TDP-43 fibrillization. Remarkably, Karyopherin-β2 dissolves phase-separated liquids and aberrant fibrillar hydrogels formed by FUS and hnRNPA1. In vivo, Karyopherin-β2 prevents RBPs with PY-NLSs accumulating in stress granules, restores nuclear RBP localization and function, and rescues degeneration caused by disease-linked FUS and hnRNPA2. Thus, NIRs therapeutically restore RBP homeostasis and mitigate neurodegeneration.
Collapse
Affiliation(s)
- Lin Guo
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hong Joo Kim
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38120, USA
| | - Hejia Wang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John Monaghan
- Department of Pediatrics, Child Neurology and Neurobiology, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Fernande Freyermuth
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Broad Institute of Harvard University and MIT, Cambridge, MA 02142, USA
| | - Julie C Sung
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kevin O'Donovan
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38120, USA
| | - Charlotte M Fare
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zamia Diaz
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nikita Singh
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zi Chao Zhang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Institute of Life Sciences, Southeast University, Nanjing, 210096 Jiangsu, China
| | - Maura Coughlin
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38120, USA
| | - Elizabeth A Sweeny
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Morgan E DeSantis
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Meredith E Jackrel
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher B Rodell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Oliver D King
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Clotilde Lagier-Tourenne
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Broad Institute of Harvard University and MIT, Cambridge, MA 02142, USA
| | - Udai Bhan Pandey
- Department of Pediatrics, Child Neurology and Neurobiology, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38120, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
146
|
Liu Z, Tang M, Zhao J, Chai R, Kang J. Looking into the Future: Toward Advanced 3D Biomaterials for Stem-Cell-Based Regenerative Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705388. [PMID: 29450919 DOI: 10.1002/adma.201705388] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/26/2017] [Indexed: 05/23/2023]
Abstract
Stem-cell-based therapies have the potential to provide novel solutions for the treatment of a variety of diseases, but the main obstacles to such therapies lie in the uncontrolled differentiation and functional engraftment of implanted tissues. The physicochemical microenvironment controls the self-renewal and differentiation of stem cells, and the key step in mimicking the stem cell microenvironment is to construct a more physiologically relevant 3D culture system. Material-based 3D assemblies of stem cells facilitate the cellular interactions that promote morphogenesis and tissue organization in a similar manner to that which occurs during embryogenesis. Both natural and artificial materials can be used to create 3D scaffolds, and synthetic organic and inorganic porous materials are the two main kinds of artificial materials. Nanotechnology provides new opportunities to design novel advanced materials with special physicochemical properties for 3D stem cell culture and transplantation. Herein, the advances and advantages of 3D scaffold materials, especially with respect to stem-cell-based therapies, are first outlined. Second, the stem cell biology in 3D scaffold materials is reviewed. Third, the progress and basic principles of developing 3D scaffold materials for clinical applications in tissue engineering and regenerative medicine are reviewed.
Collapse
Affiliation(s)
- Zhongmin Liu
- Department of Cardiovascular and Thoracic Surgery, Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Mingliang Tang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
- Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 211189, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Jinping Zhao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
- Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 211189, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| |
Collapse
|
147
|
Gong L, Cao L, Shen Z, Shao L, Gao S, Zhang C, Lu J, Li W. Materials for Neural Differentiation, Trans-Differentiation, and Modeling of Neurological Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705684. [PMID: 29573284 DOI: 10.1002/adma.201705684] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/04/2017] [Indexed: 05/02/2023]
Abstract
Neuron regeneration from pluripotent stem cells (PSCs) differentiation or somatic cells trans-differentiation is a promising approach for cell replacement in neurodegenerative diseases and provides a powerful tool for investigating neural development, modeling neurological diseases, and uncovering the mechanisms that underlie diseases. Advancing the materials that are applied in neural differentiation and trans-differentiation promotes the safety, efficiency, and efficacy of neuron regeneration. In the neural differentiation process, matrix materials, either natural or synthetic, not only provide a structural and biochemical support for the monolayer or three-dimensional (3D) cultured cells but also assist in cell adhesion and cell-to-cell communication. They play important roles in directing the differentiation of PSCs into neural cells and modeling neurological diseases. For the trans-differentiation of neural cells, several materials have been used to make the conversion feasible for future therapy. Here, the most current applications of materials for neural differentiation for PSCs, neuronal trans-differentiation, and neurological disease modeling is summarized and discussed.
Collapse
Affiliation(s)
- Lulu Gong
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Lining Cao
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Zhenmin Shen
- The VIP Department, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Li Shao
- The VIP Department, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Shaorong Gao
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Chao Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jianfeng Lu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Weida Li
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| |
Collapse
|
148
|
Ikezu T, Chen C, DeLeo AM, Zeldich E, Fallin MD, Kanaan NM, Lunetta KL, Abraham CR, Logue MW, Farrer LA. Tau Phosphorylation is Impacted by Rare AKAP9 Mutations Associated with Alzheimer Disease in African Americans. J Neuroimmune Pharmacol 2018. [PMID: 29516269 PMCID: PMC5928172 DOI: 10.1007/s11481-018-9781-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We studied the effect of two rare mutations (rs144662445 and rs149979685) in the A-kinase anchoring protein 9 (AKAP9) gene, previously associated with Alzheimer disease (AD) in African Americans (AA), on post-translational modifications of AD-related pathogenic molecules, amyloid precursor protein (APP) and microtubule-associated protein Tau using lymphoblastoid cell lines (LCLs) from 11 AA subjects with at least one AKAP9 mutation and 17 AA subjects lacking these mutations. LCLs were transduced by viral vectors expressing causative AD mutations in APP or human full-length wild type Tau. Cell lysates were analyzed for total APP, Aβ40, and total and T181 phospho-Tau (pTau). AKAP9 mutations had no effect on Aβ40/APP, but significantly increased pTau/Tau ratio in LCLs treated with phosphodiesterase-4 inhibitor rolipram, which activates protein kinase A. Proteomic analysis of Tau interactome revealed enrichment of RNA binding proteins and decrease of proteasomal molecules in rolipram-treated cells with AKAP9 mutations. This study shows the impact of rare functional AKAP9 mutations on Tau, a central mechanism of AD pathogenesis, in LCLs derived from AD and control subjects.
Collapse
Affiliation(s)
- Tsuneya Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA.,Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Cidi Chen
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Annina M DeLeo
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Ella Zeldich
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - M Daniele Fallin
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Nicholas M Kanaan
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Carmela R Abraham
- Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA.,Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Mark W Logue
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, E200, 72 East Concord St., Boston, MA, 02118, USA.,Department of Psychiatry, Boston University School of Medicine, Boston, MA, 02118, USA.,The National Center for PTSD, Behavioral Science Division, VA Boston Healthcare System, Boston, MA, 02130, USA
| | - Lindsay A Farrer
- Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA. .,Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA. .,Department of Medicine (Biomedical Genetics), Boston University School of Medicine, E200, 72 East Concord St., Boston, MA, 02118, USA. .,Department of Ophthalmology, Boston University School of Medicine, Boston, MA, 02118, USA. .,Department of Epidemiology, Boston University School of Public Health, Boston, MA, 02118, USA.
| |
Collapse
|
149
|
Aebersold MJ, Thompson-Steckel G, Joutang A, Schneider M, Burchert C, Forró C, Weydert S, Han H, Vörös J. Simple and Inexpensive Paper-Based Astrocyte Co-culture to Improve Survival of Low-Density Neuronal Networks. Front Neurosci 2018. [PMID: 29535595 PMCID: PMC5835045 DOI: 10.3389/fnins.2018.00094] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bottom-up neuroscience aims to engineer well-defined networks of neurons to investigate the functions of the brain. By reducing the complexity of the brain to achievable target questions, such in vitro bioassays better control experimental variables and can serve as a versatile tool for fundamental and pharmacological research. Astrocytes are a cell type critical to neuronal function, and the addition of astrocytes to neuron cultures can improve the quality of in vitro assays. Here, we present cellulose as an astrocyte culture substrate. Astrocytes cultured on the cellulose fiber matrix thrived and formed a dense 3D network. We devised a novel co-culture platform by suspending the easy-to-handle astrocytic paper cultures above neuronal networks of low densities typically needed for bottom-up neuroscience. There was significant improvement in neuronal viability after 5 days in vitro at densities ranging from 50,000 cells/cm2 down to isolated cells at 1,000 cells/cm2. Cultures exhibited spontaneous spiking even at the very low densities, with a significantly greater spike frequency per cell compared to control mono-cultures. Applying the co-culture platform to an engineered network of neurons on a patterned substrate resulted in significantly improved viability and almost doubled the density of live cells. Lastly, the shape of the cellulose substrate can easily be customized to a wide range of culture vessels, making the platform versatile for different applications that will further enable research in bottom-up neuroscience and drug development.
Collapse
Affiliation(s)
- Mathias J Aebersold
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zurich, Switzerland
| | - Greta Thompson-Steckel
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zurich, Switzerland
| | - Adriane Joutang
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zurich, Switzerland
| | - Moritz Schneider
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zurich, Switzerland
| | - Conrad Burchert
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zurich, Switzerland
| | - Csaba Forró
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zurich, Switzerland
| | - Serge Weydert
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zurich, Switzerland
| | - Hana Han
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zurich, Switzerland
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
150
|
Ghaffari LT, Starr A, Nelson AT, Sattler R. Representing Diversity in the Dish: Using Patient-Derived in Vitro Models to Recreate the Heterogeneity of Neurological Disease. Front Neurosci 2018; 12:56. [PMID: 29479303 PMCID: PMC5812426 DOI: 10.3389/fnins.2018.00056] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/23/2018] [Indexed: 12/14/2022] Open
Abstract
Neurological diseases, including dementias such as Alzheimer's disease (AD) and fronto-temporal dementia (FTD) and degenerative motor neuron diseases such as amyotrophic lateral sclerosis (ALS), are responsible for an increasing fraction of worldwide fatalities. Researching these heterogeneous diseases requires models that endogenously express the full array of genetic and epigenetic factors which may influence disease development in both familial and sporadic patients. Here, we discuss the two primary methods of developing patient-derived neurons and glia to model neurodegenerative disease: reprogramming somatic cells into induced pluripotent stem cells (iPSCs), which are differentiated into neurons or glial cells, or directly converting (DC) somatic cells into neurons (iNeurons) or glial cells. Distinct differentiation techniques for both models result in a variety of neuronal and glial cell types, which have been successful in displaying unique hallmarks of a variety of neurological diseases. Yield, length of differentiation, ease of genetic manipulation, expression of cell-specific markers, and recapitulation of disease pathogenesis are presented as determining factors in how these methods may be used separately or together to ascertain mechanisms of disease and identify therapeutics for distinct patient populations or for specific individuals in personalized medicine projects.
Collapse
Affiliation(s)
- Layla T Ghaffari
- Department of Neurobiology, Barrow Neurological Institute, Dignity Health-St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Alexander Starr
- Department of Neurobiology, Barrow Neurological Institute, Dignity Health-St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Andrew T Nelson
- Department of Neurobiology, Barrow Neurological Institute, Dignity Health-St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Rita Sattler
- Department of Neurobiology, Barrow Neurological Institute, Dignity Health-St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| |
Collapse
|