101
|
Scofield RH, Lewis VM, Cavitt J, Kurien BT, Assassi S, Martin J, Gorlova O, Gregersen P, Lee A, Rider LG, O'Hanlon T, Rothwell S, Lilleker J, Kochi Y, Terao C, Igoe A, Stevens W, Sahhar J, Roddy J, Rischmueller M, Lester S, Proudman S, Chen S, Brown MA, Mayes MD, Lamb JA, Miller FW. 47XXY and 47XXX in Scleroderma and Myositis. ACR Open Rheumatol 2022; 4:528-533. [PMID: 35352506 PMCID: PMC9190224 DOI: 10.1002/acr2.11413] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE We undertook this study to examine the X chromosome complement in participants with systemic sclerosis (SSc) as well as idiopathic inflammatory myopathies. METHODS The participants met classification criteria for the diseases. All participants underwent single-nucleotide polymorphism typing. We examined X and Y single-nucleotide polymorphism heterogeneity to determine the number of X chromosomes. For statistical comparisons, we used χ2 analyses with calculation of 95% confidence intervals. RESULTS Three of seventy men with SSc had 47,XXY (P = 0.0001 compared with control men). Among the 435 women with SSc, none had 47,XXX. Among 709 men with polymyositis or dermatomyositis (PM/DM), seven had 47,XXY (P = 0.0016), whereas among the 1783 women with PM/DM, two had 47,XXX. Of 147 men with inclusion body myositis (IBM), six had 47,XXY, and 1 of the 114 women with IBM had 47,XXX. For each of these myositis disease groups, the excess 47,XXY and/or 47,XXX was significantly higher compared with in controls as well as the known birth rate of Klinefelter syndrome or 47,XXX. CONCLUSION Klinefelter syndrome (47,XXY) is associated with SSc and idiopathic inflammatory myopathies, similar to other autoimmune diseases with type 1 interferon pathogenesis, namely, systemic lupus erythematosus and Sjögren syndrome.
Collapse
Affiliation(s)
- R. Hal Scofield
- Oklahoma Medical Research Foundation, College of MedicineUniversity of Oklahoma Health Sciences Center, and Oklahoma City US Department of Veterans Affairs Medical CenterOklahoma City
| | - Valerie M. Lewis
- Oklahoma Medical Research Foundation, College of MedicineUniversity of Oklahoma Health Sciences Center, and Oklahoma City US Department of Veterans Affairs Medical CenterOklahoma City
| | - Joshua Cavitt
- Oklahoma Medical Research Foundation, College of MedicineUniversity of Oklahoma Health Sciences Center, and Oklahoma City US Department of Veterans Affairs Medical CenterOklahoma City
| | - Biji T. Kurien
- Oklahoma Medical Research Foundation, College of MedicineUniversity of Oklahoma Health Sciences Center, and Oklahoma City US Department of Veterans Affairs Medical CenterOklahoma City
| | - Shervin Assassi
- University of Texas Health Science Center at Houston McGovern Medical SchoolHoustonTexasUSA
| | - Javier Martin
- Instituto de Parasitología y Biomedicina López‐Neyra, Consejo Superior de Investigaciones CientíficasPTS, GranadaSpain
| | - Olga Gorlova
- Geisel School of MedicineDartmouth College and Dartmouth‐Hitchcock Medical CenterLebanonNew HampshireUSA
| | - Peter Gregersen
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical ResearchManhassetNew YorkUSA
| | - Annette Lee
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical ResearchManhassetNew YorkUSA
| | - Lisa G. Rider
- National Institute of Environmental Health Science, National Institutes of HealthBethesdaMarylandUSA
| | - Terrance O'Hanlon
- National Institute of Environmental Health Science, National Institutes of HealthBethesdaMarylandUSA
| | | | - James Lilleker
- School of Biological SciencesThe University of Manchester, Manchester, UK, and Salford Royal National Health Service Foundation TrustSalfordUK
| | | | - Yuta Kochi
- Tokyo, Japan, and RIKEN Center for Integrative Medical SciencesTokyo Medical and Dental UniversityYokohamaJapan
| | - Chikacshi Terao
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan, and Shizuoka General Hospital and School of Pharmaceutical SciencesUniversity of ShizuokaShizuokaJapan
| | - Ann Igoe
- Oklahoma Medical Research FoundationOklahoma City
| | | | | | - Janet Roddy
- Fiona Stanley HospitalMurdochWestern AustraliaAustralia
| | - Maureen Rischmueller
- The Queen Elizabeth Hospital and University of AdelaideWoodvilleSouth AustraliaAustralia
| | - Sue Lester
- The Queen Elizabeth Hospital and University of AdelaideWoodvilleSouth AustraliaAustralia
| | | | - Sixia Chen
- College of Public HealthUniversity of Oklahoma Health Sciences CenterOklahoma City
| | - Matthew A. Brown
- Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Maureen D. Mayes
- University of Texas Health Science Center at Houston McGovern Medical SchoolHoustonTexasUSA
| | | | - Frederick W. Miller
- National Institute of Environmental Health Science, National Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
102
|
Myasoedova E, Athreya AP, Crowson CS, Davis JM, Warrington KJ, Walchak RC, Carlson E, Kalari KR, Bongartz T, Tak PP, van Vollenhoven RF, Padyukov L, Emery P, Morgan A, Wang L, Weinshilboum RM, Matteson EL. Toward Individualized Prediction of Response to Methotrexate in Early Rheumatoid Arthritis: A Pharmacogenomics-Driven Machine Learning Approach. Arthritis Care Res (Hoboken) 2022; 74:879-888. [PMID: 34902228 DOI: 10.1002/acr.24834] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 11/23/2021] [Accepted: 12/07/2021] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To test the ability of machine learning (ML) approaches with clinical and genomic biomarkers to predict methotrexate treatment response in patients with early rheumatoid arthritis (RA). METHODS Demographic, clinical, and genomic data from 643 patients of European ancestry with early RA (mean age 54 years; 70% female) subdivided into a training (n = 336) and validation cohort (n = 307) were used. The genomic data comprised 160 single-nucleotide polymorphisms (SNPs) previously associated with RA or methotrexate metabolism. Response to methotrexate monotherapy was defined as good or moderate by the European Alliance of Associations for Rheumatology (EULAR) response criteria at the 3-month follow-up. Supervised ML methods were trained with 5 repeats and 10-fold cross-validation using the training cohort. Prediction performance was validated in the independent validation cohort. RESULTS Supervised ML methods combining age, sex, smoking, rheumatoid factor, baseline Disease Activity Score in 28 joints (DAS28) scores and 160 SNPs predicted EULAR response at 3 months with the area under the receiver operating curve of 0.84 (P = 0.05) in the training cohort and achieved a prediction accuracy of 76% (P = 0.05) in the validation cohort (sensitivity 72%, specificity 77%). Intergenic SNPs rs12446816, rs13385025, rs113798271, and ATIC (rs2372536) had variable importance above 60.0 and along with baseline DAS28 scores were among the top predictors of methotrexate response. CONCLUSION Pharmacogenomic biomarkers combined with baseline DAS28 scores can be useful in predicting response to methotrexate in patients with early RA. Applying ML to predict treatment response holds promise for guiding effective RA treatment choices, including timely escalation of RA therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Paul P Tak
- Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands, and Candel Therapeutics, Needham, Massachusetts
| | | | - Leonid Padyukov
- Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Paul Emery
- University of Leeds and NIHR Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Ann Morgan
- University of Leeds and NIHR Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | | | | | | |
Collapse
|
103
|
Nln I, Fernandez-Ruiz R, Muskardin TLW, Paredes JL, Blazer AD, Tuminello S, Attur M, Iturrate E, Petrilli CM, Abramson SB, Chakravarti A, Niewold TB. Interferon pathway lupus risk alleles modulate risk of death from acute COVID-19. Transl Res 2022; 244:47-55. [PMID: 35114420 PMCID: PMC8802623 DOI: 10.1016/j.trsl.2022.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/15/2022]
Abstract
Type I interferon (IFN) is critical in our defense against viral infections. Increased type I IFN pathway activation is a genetic risk factor for systemic lupus erythematosus (SLE), and a number of common risk alleles contribute to the high IFN trait. We hypothesized that these common gain-of-function IFN pathway alleles may be associated with protection from mortality in acute COVID-19. We studied patients admitted with acute COVID-19 (756 European-American and 398 African-American ancestry). Ancestral backgrounds were analyzed separately, and mortality after acute COVID-19 was the primary outcome. In European-American ancestry, we found that a haplotype of interferon regulatory factor 5 (IRF5) and alleles of protein kinase cGMP-dependent 1 (PRKG1) were associated with mortality from COVID-19. Interestingly, these were much stronger risk factors in younger patients (OR = 29.2 for PRKG1 in ages 45-54). Variants in the IRF7 and IRF8 genes were associated with mortality from COVID-19 in African-American subjects, and these genetic effects were more pronounced in older subjects. Combining genetic information with blood biomarker data such as C-reactive protein, troponin, and D-dimer resulted in significantly improved predictive capacity, and in both ancestral backgrounds the risk genotypes were most relevant in those with positive biomarkers (OR for death between 14 and 111 in high risk genetic/biomarker groups). This study confirms the critical role of the IFN pathway in defense against COVID-19 and viral infections, and supports the idea that some common SLE risk alleles exert protective effects in antiviral immunity.
Collapse
Affiliation(s)
- Ilona Nln
- Colton Center for Autoimmunity, NYU Grossman School of Medicine, New York, New York
| | - Ruth Fernandez-Ruiz
- Colton Center for Autoimmunity, NYU Grossman School of Medicine, New York, New York
| | | | - Jacqueline L Paredes
- Colton Center for Autoimmunity, NYU Grossman School of Medicine, New York, New York
| | - Ashira D Blazer
- Colton Center for Autoimmunity, NYU Grossman School of Medicine, New York, New York
| | - Stephanie Tuminello
- Center for Human Genetics and Genomics, NYU Grossman School of Medicine, New York, New York
| | - Mukundan Attur
- Divison of Rheumatology, Department of Medicine, NYU Grossman School of Medicine, New York, New York
| | - Eduardo Iturrate
- Department of Medicine, NYU Grossman School of Medicine, New York, New York
| | | | - Steven B Abramson
- Department of Medicine, NYU Grossman School of Medicine, New York, New York
| | - Aravinda Chakravarti
- Center for Human Genetics and Genomics, NYU Grossman School of Medicine, New York, New York
| | - Timothy B Niewold
- Colton Center for Autoimmunity, NYU Grossman School of Medicine, New York, New York.
| |
Collapse
|
104
|
Anti-Inflammatory Effects of Red Rice Bran Extract Ameliorate Type I Interferon Production via STING Pathway. Foods 2022; 11:foods11111622. [PMID: 35681372 PMCID: PMC9180078 DOI: 10.3390/foods11111622] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/14/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023] Open
Abstract
Type I interferons (IFNs-I) are inflammatory cytokines that play an essential role in the pathogenesis of inflammation and autoimmune diseases. Signaling through nucleic acid sensors causes the production of IFNs-I. A stimulator of interferon genes (STING) is a DNA sensor that signals transduction, leading to the production of IFNs-I after their activation. This study aims to determine the anti-inflammatory effects of red rice bran extract (RRBE) on macrophages through the activation of STING signaling. RAW264.7 macrophage cells were stimulated with STING agonist (DMXAA) with and without RRBE. Cells and supernatant were collected. The level of mRNA expression was determined by qPCR, and inflammatory cytokine production was investigated by ELISA. The results indicate that RRBE significantly lowers the transcription of STING and interferon-stimulated genes (ISGs). Moreover, RRBE suppresses the phosphorylation of STING, leading to a decrease in the expression of Irf3, a transcription factor that initiates IFN-I signaling. Our results provide evidence that red rice bran extract may be a protective compound for inflammatory diseases by targeting STING signaling.
Collapse
|
105
|
Rosa Dos Santos AP, de Oliveira Vaz C, Hounkpe BW, Jacintho BC, Oliveira JD, Tripiquia Vechiatto Mesquita GL, Pereira Dos Santos I, Annichino-Bizzacchi J, Appenzeller S, de Moraes Mazetto Fonseca B, Orsi FA. Association between interferon-I producing plasmacytoid dendritic cells and thrombotic antiphospholipid syndrome. Lupus 2022; 31:1067-1077. [PMID: 35612283 DOI: 10.1177/09612033221101731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Thrombotic risk in antiphospholipid syndrome (APS) is conferred by the association of antiphospholipid (aPL) antibodies (first hit) with additional pro-coagulant stimulus (second hit), such as inflammation. Among inflammatory responses, the production of large amounts of interferon (IFN)-I by plasmacytoid dendritic cells (pDCs) is at the basis of the pathophysiology of systemic autoimmune disorders, which raises the hypothesis that this mechanism could also be associated with vascular manifestations of APS. Purpose: Here, we determined the association of pDCs and IFN-I production with thrombotic APS. Research design: Patients with thrombotic primary (t-PAPS) and secondary APS (t-SAPS), asymptomatic aPL carriers and individuals without thrombosis (controls) were included. Data collection and analysis: Circulating pDCs and IFN-α intracellular expression (in the presence or not of oligodeoxynucleotides (CP) stimulus) were quantified by flow cytometry. The expression of five IFN-I inducing genes: ISG15, OASL, Ly6E, MX1, and OAS1 in mononuclear cells was determined by qPCR. Between-group differences were evaluated using chi-square or Kruskal-Wallis tests. Results: A total of 50 patients with t-PAPS, 50 patients with t-SAPS, 20 aPL carriers, and 50 individuals without thrombosis (controls) were included. Intracellular expression of IFN-α was increased after CPG stimulation in both t-SAPS (1.56%; IQR 1.07-2.02) and t-PAPS (0.96%; IQR 0.55-1.24), when compared to aPL carriers (0.71%; IQR 0.42-0.93) and controls (0.48%; IQR 0.24-0.78; p < .0001). ISG15, OASL, Ly6E, MX1, and OAS1 mRNA expressions were higher in t-SAPS (but not in t-PAPS) than in aPL carriers and controls. The expression of proteins and mRNA related to IFN-I response was similar between the triple aPL-positive profile and other aPL profiles. Conclusion: Our results indicate an association of IFN-I response and t-APS. Since IFN-I expression was not increased in aPL carriers or associated with a higher-risk aPL profile, this mechanism does not appear to be related to the presence of aPL alone. IFN-I response could possibly constitute a complementary mechanism for triggering clinical manifestations in APS.
Collapse
Affiliation(s)
- Ana Paula Rosa Dos Santos
- Department of Medical Sciences, School of Medical Sciences, 28132University of Campinas-Unicamp, Campinas, Brazil
| | - Camila de Oliveira Vaz
- Department of Clinical Medicine, School of Medical Sciences, University of Campinas-Unicamp, Campinas, Brazil
| | | | - Bruna Cardoso Jacintho
- Department of Clinical Medicine, School of Medical Sciences, University of Campinas-Unicamp, Campinas, Brazil
| | - José Diogo Oliveira
- Department of Clinical Medicine, School of Medical Sciences, University of Campinas-Unicamp, Campinas, Brazil
| | | | | | - Joyce Annichino-Bizzacchi
- School of Medical Sciences, Hematology and Hemotherapy Center, 28132University of Campinas-Unicamp, Campinas, Brazil
| | - Simone Appenzeller
- Department of Clinical Medicine, School of Medical Sciences, Rheumatology Unit, 28132University of Campinas-Unicamp, Campinas, Brazil
| | | | - Fernanda Andrade Orsi
- School of Medical Sciences, Hematology and Hemotherapy Center, Department of Clinical Pathology,28132University of Campinas-Unicamp, Campinas, Brazil
| |
Collapse
|
106
|
Revealing the Immune Heterogeneity between Systemic Lupus Erythematosus and Rheumatoid Arthritis Based on Multi-Omics Data Analysis. Int J Mol Sci 2022; 23:ijms23095166. [PMID: 35563556 PMCID: PMC9101622 DOI: 10.3390/ijms23095166] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 02/01/2023] Open
Abstract
The pathogenesis of systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) are greatly influenced by different immune cells. Nowadays both T-cell receptor (TCR) and B-cell receptor (BCR) sequencing technology have emerged with the maturity of NGS technology. However, both SLE and RA peripheral blood TCR or BCR repertoire sequencing remains lacking because repertoire sequencing is an expensive assay and consumes valuable tissue samples. This study used computational methods TRUST4 to construct TCR repertoire and BCR repertoire from bulk RNA-seq data of both SLE and RA patients’ peripheral blood and analyzed the clonality and diversity of the immune repertoire between the two diseases. Although the functions of immune cells have been studied, the mechanism is still complicated. Differentially expressed genes in each immune cell type and cell–cell interactions between immune cell clusters have not been covered. In this work, we clustered eight immune cell subsets from original scRNA-seq data and disentangled the characteristic alterations of cell subset proportion under both SLE and RA conditions. The cell–cell communication analysis tool CellChat was also utilized to analyze the influence of MIF family and GALECTIN family cytokines, which were reported to regulate SLE and RA, respectively. Our findings correspond to previous findings that MIF increases in the serum of SLE patients. This work proved that the presence of LGALS9, PTPRC and CD44 in platelets could serve as a clinical indicator of rheumatoid arthritis. Our findings comprehensively illustrate dynamic alterations in immune cells during pathogenesis of SLE and RA. This work identified specific V genes and J genes in TCR and BCR that could be used to expand our understanding of SLE and RA. These findings provide a new insight inti the diagnosis and treatment of the two autoimmune diseases.
Collapse
|
107
|
Autoimmune post-COVID vaccine syndromes: does the spectrum of autoimmune/inflammatory syndrome expand? Clin Rheumatol 2022. [PMID: 35378658 DOI: 10.1007/s10067-022-06149-4/tables/1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
To date, around 60% of the world population has been protected by vaccines against SARS-CoV-2, significantly reducing the devastating effect of the pandemic and restoring social economic activity through mass vaccination. Multiple studies have demonstrated the effectiveness and safety of vaccines against COVID-19 in healthy populations, in people with risk factors, in people with or without SARS-CoV-2 infection, and in immunocompromised people. According to the criteria for post-vaccine adverse events established by the World Health Organization, a minority of individuals may develop adverse events, including autoimmune syndromes. The exact mechanisms for the development of these autoimmune syndromes are under study, and to date, a cause-effect relationship has not been established. Many of these autoimmune syndromes meet sufficient criteria for the diagnosis of Adjuvant-Induced Autoimmune Syndrome (ASIA syndrome). The descriptions of these autoimmune syndromes open new perspectives to the knowledge of the complex relationship between the host, its immune system, with the new vaccines and the development of new-onset autoimmune syndromes. Fortunately, most of these autoimmune syndromes are easily controlled with steroids and other immunomodulatory medications and are short-lived. Rheumatologists must be alert to the development of these autoimmune syndromes, and investigate the relationship between autoimmune/inflammatory symptoms and vaccination time, and assess their therapeutic response.
Collapse
|
108
|
Lanis A, Volochayev R, Kleiner DE, Vittal A, Heller T, Rider LG, Shenoi S. Nodular Regenerative Hyperplasia of the liver in Juvenile Dermatomyositis. Pediatr Rheumatol Online J 2022; 20:30. [PMID: 35443665 PMCID: PMC9022230 DOI: 10.1186/s12969-022-00690-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/09/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND We present two cases of Nodular Regenerative Hyperplasia (NRH) associated with Juvenile Dermatomyositis (JDM). CASE PRESENTATION Case 1: A nine-year-old Caucasian male with refractory JDM and anti-NXP2 autoantibodies was diagnosed at age two. Over seven years, he developed arthritis, dysphagia, dysphonia, severe calcinosis, and colitis. Complications included recurrent cellulitis, infections, and hepatosplenomegaly. Multiple medications were chronically used, including prednisone, methotrexate, azathioprine, cyclophosphamide, mycophenolate mofetil, rituximab, tacrolimus, etanercept, abatacept, infliximab, and tocilizumab. Case 2: A 19-year-old Asian female with chronically active JDM and anti-MDA5 autoantibodies was diagnosed at age 15. Symptomatology included ulcerative skin lesions, Raynaud's phenomenon with digital ulcers, arthritis, interstitial lung disease with pulmonary hypertension, and calcinosis. Medications included chronic use of prednisone, methotrexate, abatacept, cyclophosphamide, mycophenolate mofetil, rituximab, tofacitinib, and sildenafil. In both patients, clinical symptomatology was not suggestive of liver disease or portal hypertension, but laboratory studies revealed elevated serum transaminases with progressive thrombocytopenia and no active liver-associated infections. The first patient's liver ultrasound showed coarse hepatic texture with mild echogenicity, splenomegaly, and portal hypertension. The second patient's liver ultrasound was normal, but elastography indicated increased stiffness. Liver biopsy confirmed NRH in both patients. CONCLUSIONS It is difficult to recognize NRH in JDM, as it often presents with elevated transaminases which may be mistaken for JDM muscle flare, corticosteroid-related fatty liver, or medication-related transaminitis. NRH has been associated with several medications used to treat JDM, including methotrexate, azathioprine, and cyclophosphamide, which should be discontinued if NRH develops. Providers should consider NRH in JDM patients with severe, refractory disease who have persistently elevated transaminases and persistent thrombocytopenia.
Collapse
Affiliation(s)
- Aviya Lanis
- Seattle Children's Hospital and Research Center, 4800 Sand Point Way NE, PO Box 5371, Seattle, WA, 98105, USA.
| | - Rita Volochayev
- grid.280664.e0000 0001 2110 5790Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, MD USA
| | - David E. Kleiner
- grid.48336.3a0000 0004 1936 8075Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Anusha Vittal
- grid.94365.3d0000 0001 2297 5165Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD USA
| | - Theo Heller
- grid.94365.3d0000 0001 2297 5165Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD USA
| | - Lisa G. Rider
- grid.280664.e0000 0001 2110 5790Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, MD USA
| | - Susan Shenoi
- grid.240741.40000 0000 9026 4165Seattle Children’s Hospital and Research Center, 4800 Sand Point Way NE, PO Box 5371, Seattle, WA 98105 USA
| |
Collapse
|
109
|
Autoimmune post-COVID vaccine syndromes: does the spectrum of autoimmune/inflammatory syndrome expand? Clin Rheumatol 2022; 41:1603-1609. [PMID: 35378658 PMCID: PMC8979721 DOI: 10.1007/s10067-022-06149-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 12/14/2022]
Abstract
To date, around 60% of the world population has been protected by vaccines against SARS-CoV-2, significantly reducing the devastating effect of the pandemic and restoring social economic activity through mass vaccination. Multiple studies have demonstrated the effectiveness and safety of vaccines against COVID-19 in healthy populations, in people with risk factors, in people with or without SARS-CoV-2 infection, and in immunocompromised people. According to the criteria for post-vaccine adverse events established by the World Health Organization, a minority of individuals may develop adverse events, including autoimmune syndromes. The exact mechanisms for the development of these autoimmune syndromes are under study, and to date, a cause-effect relationship has not been established. Many of these autoimmune syndromes meet sufficient criteria for the diagnosis of Adjuvant-Induced Autoimmune Syndrome (ASIA syndrome). The descriptions of these autoimmune syndromes open new perspectives to the knowledge of the complex relationship between the host, its immune system, with the new vaccines and the development of new-onset autoimmune syndromes. Fortunately, most of these autoimmune syndromes are easily controlled with steroids and other immunomodulatory medications and are short-lived. Rheumatologists must be alert to the development of these autoimmune syndromes, and investigate the relationship between autoimmune/inflammatory symptoms and vaccination time, and assess their therapeutic response.
Collapse
|
110
|
Saleem B, Ross RL, Bissell LA, Aslam A, Mankia K, Duquenne L, Corsadden D, Carter C, Hughes P, Nadat FA, Mulipa P, Lobb M, Clarke B, Mbara K, Morton R, Dibb S, Chowdhury R, Newton D, Pike A, Kakkar V, Savic S, DelGaldo F, Emery P. Effectiveness of SARS-CoV-2 vaccination in patients with rheumatoid arthritis (RA) on DMARDs: as determined by antibody and T cell responses. RMD Open 2022; 8:rmdopen-2021-002050. [PMID: 35365569 PMCID: PMC8977455 DOI: 10.1136/rmdopen-2021-002050] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/16/2022] [Indexed: 01/11/2023] Open
Abstract
Objectives To assess antibody and T cell responses to SARS-CoV-2 vaccination in patients with rheumatoid arthritis (RA) on disease-modifying antirheumatic drugs (DMARDs). Methods This prospective study recruited 100 patients with RA on a variety of DMARDs for antibody and T cell analysis, pre-vaccination and 4 weeks post-vaccination. Positive antibody response was defined as sera IgG binding to ≥1 antigen. Those that remained seronegative after first vaccination were retested 4 weeks after second vaccination; and if still seronegative after vaccination three. A T cell response was defined an ELISpot count of ≥7 interferon (IFN)γ-positive cells when exposed to spike antigens. Type I IFN activity was determined using the luminex multiplex assay IFN score. Results After vaccine one, in patients without prior SARS-CoV-2 exposure, 37/83 (45%) developed vaccine-specific antibody responses, 44/83 (53%) vaccine-specific T cell responses and 64/83 (77%) developed either antibody or T cell responses. Reduced seroconversion was seen with abatacept, rituximab (RTX) and those on concomitant methotrexate (MTX) compared to 100% for healthy controls (p<0.001). Better seroconversion occurred with anti-tumour necrosis factor (TNF) versus RTX (p=0.012) and with age ≤50 (p=0.012). Pre-vaccine SARS-CoV-2 exposure was associated with higher quantitative seroconversion (≥3 antibodies) (p<0.001). In the subgroup of non-seroconverters, a second vaccination produced seroconversion in 54% (19/35), and after a third in 20% (2/10). IFN score analysis showed no change post-vaccine. Conclusion Patients with RA on DMARDs have reduced vaccine responses, particularly on certain DMARDs, with improvement on subsequent vaccinations but with approximately 10% still seronegative after three doses.
Collapse
Affiliation(s)
- Benazir Saleem
- Rheumatology, Leeds Teaching Hospitals NHS Trust, Chapel Allerton Hospital, Leeds, UK
| | - Rebecca L Ross
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK.,Rheumatology, Leeds Biomedical Research Centre, Leeds, UK
| | - Lesley-Anne Bissell
- Rheumatology, Leeds Teaching Hospitals NHS Trust, Chapel Allerton Hospital, Leeds, UK
| | - Aamir Aslam
- Rheumatology, Leeds Teaching Hospitals NHS Trust, Chapel Allerton Hospital, Leeds, UK
| | - Kulveer Mankia
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK.,Rheumatology, Leeds Biomedical Research Centre, Leeds, UK
| | - Laurence Duquenne
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK.,Rheumatology, Leeds Biomedical Research Centre, Leeds, UK
| | - Diane Corsadden
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Clive Carter
- Transplant and Cellular Immunology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Pam Hughes
- Transplant and Cellular Immunology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Fatima A Nadat
- Transplant and Cellular Immunology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Panji Mulipa
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Mark Lobb
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Brendan Clarke
- Transplant and Cellular Immunology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Katie Mbara
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Ruth Morton
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Sophie Dibb
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Rahaymin Chowdhury
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Darren Newton
- Institute of Medical Research at St James's University Hospital, University of Leeds, Leeds, UK
| | - Alexandra Pike
- Institute of Medical Research at St James's University Hospital, University of Leeds, Leeds, UK
| | - Vishal Kakkar
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Sinisia Savic
- Transplant and Cellular Immunology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Francesco DelGaldo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK.,Rheumatology, Leeds Biomedical Research Centre, Leeds, UK
| | - Paul Emery
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK.,Rheumatology, Leeds Biomedical Research Centre, Leeds, UK
| |
Collapse
|
111
|
Bai W, Wang R, Shen M, Li M, Zeng X. A 16-year-old Boy with Arthritis, Rash, and Hemoptysis: Beyond "Undifferentiated Connective Tissue Disease"? RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2022; 3:46-50. [PMID: 36467020 PMCID: PMC9524812 DOI: 10.2478/rir-2022-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/16/2022] [Indexed: 06/17/2023]
Affiliation(s)
- Wei Bai
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Rongrong Wang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Min Shen
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|
112
|
Pharmacogenomics of Anti-TNF Treatment Response Marks a New Era of Tailored Rheumatoid Arthritis Therapy. Int J Mol Sci 2022; 23:ijms23042366. [PMID: 35216481 PMCID: PMC8879844 DOI: 10.3390/ijms23042366] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/19/2022] [Accepted: 02/19/2022] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is the most commonly occurring chronic inflammatory arthritis, the exact mechanism of which is not fully understood. Tumor Necrosis Factor (TNF)-targeting drugs has been shown to exert high effectiveness for RA, which indicates the key importance of this cytokine in this disease. Nevertheless, the response to TNF inhibitors varies, and approximately one third of RA patients are non-responders, which is explained by the influence of genetic factors. Knowledge in the field of pharmacogenomics of anti-TNF drugs is growing, but has not been applied in the clinical practice so far. Different genome-wide association studies identified a few single nucleotide polymorphisms associated with anti-TNF treatment response, which largely map genes involved in T cell function. Studies of the gene expression profile of RA patients have also indicated specific gene signatures that may be useful to develop novel prognostic tools. In this article, we discuss the significance of TNF in RA and present the current knowledge in pharmacogenomics related to anti-TNF treatment response.
Collapse
|
113
|
Ohto T, Tayeh AA, Nishikomori R, Abe H, Hashimoto K, Baba S, Arias-Loza AP, Soda N, Satoh S, Matsuda M, Iizuka Y, Kondo T, Koseki H, Yan N, Higuchi T, Fujita T, Kato H. Intracellular virus sensor MDA5 mutation develops autoimmune myocarditis and nephritis. J Autoimmun 2022; 127:102794. [PMID: 35168003 DOI: 10.1016/j.jaut.2022.102794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 11/23/2022]
Abstract
Mutations in IFIH1 gene encoding viral RNA sensor MDA5 have been reported responsible for many interferonopathies, including Aicardi-Goutières syndrome (AGS) and monogenic lupus, however, the pathological link between IFIH1 mutations and various autoimmune symptoms remains unclear. Here, we generated transgenic mice expressing human MDA5 R779H mutant (R779H Tg), reported in AGS and monogenic lupus patient. Mice spontaneously developed myocarditis and nephritis with upregulation of type I IFNs in the major organs. R779H Tg Mavs-/- and R779H Tg Ifnar-/- showed no phenotypes, indicating direct MDA5-signaling pathway involvement. Rag-2 deficiency and bone marrow cells transfer from wild type to adult mice did not prevent myocarditis development, while mice with cardiomyocyte-specific expression of hMDA5 R779H showed cardiomegaly and high expression of inflammatory cytokines. Taken together, our study clarifies that type I IFNs production and chemokines from cardiomyocytes starts in neonatal period and is critical for the development of myocarditis. Activated lymphocytes and auto-antibodies exacerbate the pathogenesis but are dispensable for the onset.
Collapse
Affiliation(s)
- Taisuke Ohto
- Laboratory of Molecular and Cellular Immunology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ahmed Abu Tayeh
- Laboratory of Molecular and Cellular Immunology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Laboratory of Molecular Genetics, Institute for Frontier Life and Medical Science, Kyoto University, Japan
| | - Ryuta Nishikomori
- Department of Pediatrics and Child Health, Kurume University School of Medicine Kurume, Japan
| | - Hiroto Abe
- Laboratory of Molecular and Cellular Immunology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Laboratory of Molecular Genetics, Institute for Frontier Life and Medical Science, Kyoto University, Japan
| | - Kyota Hashimoto
- Laboratory of Molecular and Cellular Immunology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Laboratory of Molecular Genetics, Institute for Frontier Life and Medical Science, Kyoto University, Japan
| | - Shiro Baba
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Anahi-Paula Arias-Loza
- Graduate School of Medicine, Dentistry and Parmaceutical Sciences, Okayama University, Okayama, Japan
| | - Nobumasa Soda
- Laboratory of Molecular and Cellular Immunology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Laboratory of Molecular Genetics, Institute for Frontier Life and Medical Science, Kyoto University, Japan
| | - Saya Satoh
- Institute of Cardiovascular Immunology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Masashi Matsuda
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Yusuke Iizuka
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Takashi Kondo
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Takahiro Higuchi
- Molecular Imaging of the Heart, Comprehensive Heart Failure Center (CHFC) and Department of Nuclear Medicine, University Hospital Würzburg, Germany; Graduate School of Medicine, Dentistry and Parmaceutical Sciences, Okayama University, Okayama, Japan
| | - Takashi Fujita
- Laboratory of Molecular and Cellular Immunology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Laboratory of Molecular Genetics, Institute for Frontier Life and Medical Science, Kyoto University, Japan; Institute of Cardiovascular Immunology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Hiroki Kato
- Laboratory of Molecular Genetics, Institute for Frontier Life and Medical Science, Kyoto University, Japan; Institute of Cardiovascular Immunology, University Hospital Bonn, University of Bonn, Bonn, Germany.
| |
Collapse
|
114
|
Hu H, Yang H, Liu Y, Yan B. Pathogenesis of Anti-melanoma Differentiation-Associated Gene 5 Antibody-Positive Dermatomyositis: A Concise Review With an Emphasis on Type I Interferon System. Front Med (Lausanne) 2022; 8:833114. [PMID: 35141258 PMCID: PMC8818857 DOI: 10.3389/fmed.2021.833114] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/31/2021] [Indexed: 12/29/2022] Open
Abstract
Anti-melanoma differentiation-associated gene 5 antibody-positive dermatomyositis (MDA5+ DM) is typically characterized by cutaneous manifestations, amyopathic or hypomyopathic muscle involvement, and a high incidence of rapid progressive interstitial lung disease (RP-ILD). However, the exact etiology and pathogenesis of this condition has yet to be fully elucidated. Melanoma differentiation-associated gene 5 (MDA5), as the autoantigen target, is a member of the retinoic acid-inducible gene-I (RIG-I) family. The MDA5 protein can function as a cytosolic sensor that recognizes viral double-strand RNA and then triggers the transcription of genes encoding type I interferon (IFN). Therefore, it was presumed that viruses might trigger the overproduction of type I IFN, thus contributing to the development of MDA5+ DM. Emerging evidence provides further support to this hypothesis: the increased serum IFNα level was detected in the patients with MDA5+ DM, and the type I IFN gene signature was upregulated in both the peripheral blood mononuclear cells (PBMCs) and the skin tissues from these patients. In particular, RNA sequencing revealed the over-expression of the type I IFN genes in blood vessels from MDA5+ DM patients. In addition, Janus kinase (JAK) inhibitors achieved the promising therapeutic effects in cases with interstitial lung disease (ILD) associated with MDA5+ DM. In this review, we discuss the role of the type I IFN system in the pathogenesis of MDA5+ DM.
Collapse
Affiliation(s)
| | | | | | - Bing Yan
- Department of Rheumatology and Immunology, Rare Diseases Center, Frontiers Science Center for Disease-Related Molecular Network, Institute of Immunology and Inflammation, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
115
|
Vlachogiannis NI, Tual-Chalot S, Zormpas E, Bonini F, Ntouros PA, Pappa M, Bournia VK, Tektonidou MG, Souliotis VL, Mavragani CP, Stamatelopoulos K, Gatsiou A, Sfikakis PP, Stellos K. Adenosine-to-inosine RNA editing contributes to type I interferon responses in systemic sclerosis. J Autoimmun 2021; 125:102755. [PMID: 34857436 PMCID: PMC8713031 DOI: 10.1016/j.jaut.2021.102755] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Adenosine deaminase acting on RNA-1 (ADAR1) enzyme is a type I interferon (IFN)-stimulated gene (ISG) catalyzing the deamination of adenosine-to-inosine, a process called A-to-I RNA editing. A-to-I RNA editing takes place mainly in Alu elements comprising a primate-specific level of post-transcriptional gene regulation. Whether RNA editing is involved in type I IFN responses in systemic sclerosis (SSc) patients remains unknown. METHODS ISG expression was quantified in skin biopsies and peripheral blood mononuclear cells derived from SSc patients and healthy subjects. A-to-I RNA editing was examined in the ADAR1-target cathepsin S (CTSS) by an RNA editing assay. The effect of ADAR1 on interferon-α/β-induced CTSS expression was assessed in human endothelial cells in vitro. RESULTS Increased expression levels of the RNA editor ADAR1, and specifically the long ADAR1p150 isoform, and its target CTSS are strongly associated with type I IFN signature in skin biopsies and peripheral blood derived from SSc patients. Notably, IFN-α/β-treated human endothelial cells show 8-10-fold increased ADAR1p150 and 23-35-fold increased CTSS expression, while silencing of ADAR1 reduces CTSS expression by 60-70%. In SSc patients, increased RNA editing rate of individual adenosines located in CTSS 3' UTR Alu elements is associated with higher CTSS expression (r = 0.36-0.6, P < 0.05 for all). Similar findings were obtained in subjects with activated type I IFN responses including SLE patients or healthy subjects after influenza vaccination. CONCLUSION ADAR1p150-mediated A-to-I RNA editing is critically involved in type I IFN responses highlighting the importance of post-transcriptional regulation of proinflammatory gene expression in systemic autoimmunity, including SSc.
Collapse
Affiliation(s)
- Nikolaos I Vlachogiannis
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK; First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Freeman Hospital, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Eleftherios Zormpas
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Francesca Bonini
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Heidelberg University, Mannheim, Germany
| | - Panagiotis A Ntouros
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Pappa
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasiliki-Kalliopi Bournia
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria G Tektonidou
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Vassilis L Souliotis
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Clio P Mavragani
- Department of Physiology and Joint Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Kimon Stamatelopoulos
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK; Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Aikaterini Gatsiou
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Petros P Sfikakis
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Stellos
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK; Freeman Hospital, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK; Department of Cardiovascular Research, European Center for Angioscience (ECAS), Heidelberg University, Mannheim, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany.
| |
Collapse
|
116
|
Wenzel D, Haddadi N, Afshari K, Richmond JM, Rashighi M. Upcoming treatments for morphea. Immun Inflamm Dis 2021; 9:1101-1145. [PMID: 34272836 PMCID: PMC8589364 DOI: 10.1002/iid3.475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 05/29/2021] [Indexed: 11/25/2022] Open
Abstract
Morphea (localized scleroderma) is a rare autoimmune connective tissue disease with variable clinical presentations, with an annual incidence of 0.4-2.7 cases per 100,000. Morphea occurs most frequently in children aged 2-14 years, and the disease exhibits a female predominance. Insights into morphea pathogenesis are often extrapolated from studies of systemic sclerosis due to their similar skin histopathologic features; however, clinically they are two distinct diseases as evidenced by different demographics, clinical features, disease course and prognosis. An interplay between genetic factors, epigenetic modifications, immune and vascular dysfunction, along with environmental hits are considered as the main contributors to morphea pathogenesis. In this review, we describe potential new therapies for morphea based on both preclinical evidence and ongoing clinical trials. We focus on different classes of therapeutics, including antifibrotic, anti-inflammatory, cellular and gene therapy, and antisenolytic approaches, and how these target different aspects of disease pathogenesis.
Collapse
Affiliation(s)
- Dan Wenzel
- Department of DermatologyUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Nazgol‐Sadat Haddadi
- Department of DermatologyUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Khashayar Afshari
- Department of DermatologyUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Jillian M. Richmond
- Department of DermatologyUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Mehdi Rashighi
- Department of DermatologyUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| |
Collapse
|
117
|
Sachinidis A, Garyfallos A. COVID-19 vaccination can occasionally trigger autoimmune phenomena, probably via inducing age-associated B cells. Int J Rheum Dis 2021; 25:83-85. [PMID: 34766739 PMCID: PMC8652459 DOI: 10.1111/1756-185x.14238] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 10/27/2021] [Indexed: 12/28/2022]
Affiliation(s)
- Athanasios Sachinidis
- 4th Department of Internal Medicine, School of Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexandros Garyfallos
- 4th Department of Internal Medicine, School of Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
118
|
Nln I, Fernandez-Ruiz R, Wampler Muskardin TL, Paredes JL, Blazer AD, Tuminello S, Attur M, Iturrate E, Petrilli CM, Abramson SB, Chakravarti A, Niewold TB. Interferon pathway lupus risk alleles modulate risk of death from acute COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.11.01.21265766. [PMID: 34751274 PMCID: PMC8575145 DOI: 10.1101/2021.11.01.21265766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Type I interferon (IFN) is critical in our defense against viral infections. Increased type I IFN pathway activation is a genetic risk factor for systemic lupus erythematosus (SLE), and a number of common risk alleles contribute to the high IFN trait. We hypothesized that these common gain-of-function IFN pathway alleles may be associated with protection from mortality in acute COVID-19. We studied patients admitted with acute COVID-19 (756 European-American and 398 African-American ancestry). Ancestral backgrounds were analyzed separately, and mortality after acute COVID-19 was the primary outcome. In European-American ancestry, we found that a haplotype of interferon regulatory factor 5 (IRF5) and alleles of protein kinase cGMP-dependent 1 (PRKG1) were associated with mortality from COVID-19. Interestingly, these were much stronger risk factors in younger patients (OR=29.2 for PRKG1 in ages 45-54). Variants in the IRF7 and IRF8 genes were associated with mortality from COVID-19 in African-American subjects, and these genetic effects were more pronounced in older subjects. Combining genetic information with blood biomarker data such as C-reactive protein, troponin, and D-dimer resulted in significantly improved predictive capacity, and in both ancestral backgrounds the risk genotypes were most relevant in those with positive biomarkers (OR for death between 14 and 111 in high risk genetic/biomarker groups). This study confirms the critical role of the IFN pathway in defense against COVID-19 and viral infections, and supports the idea that some common SLE risk alleles exert protective effects in anti-viral immunity. BACKGROUND We find that a number of IFN pathway lupus risk alleles significantly impact mortality following COVID-19 infection. These data support the idea that type I IFN pathway risk alleles for autoimmune disease may persist in high frequency in modern human populations due to a benefit in our defense against viral infections. TRANSLATIONAL SIGNIFICANCE We develop multivariate prediction models which combine genetics and known biomarkers of severity to result in greatly improved prediction of mortality in acute COVID-19. The specific associated alleles provide some clues about key points in our defense against COVID-19.
Collapse
Affiliation(s)
- Ilona Nln
- Colton Center for Autoimmunity, NYU Grossman School of Medicine, New York, NY
| | - Ruth Fernandez-Ruiz
- Colton Center for Autoimmunity, NYU Grossman School of Medicine, New York, NY
| | | | | | - Ashira D Blazer
- Colton Center for Autoimmunity, NYU Grossman School of Medicine, New York, NY
| | - Stephanie Tuminello
- Center for Human Genetics and Genomics, NYU Grossman School of Medicine, New York, NY
| | - Mukundan Attur
- Divison of Rheumatology, Department of Medicine, NYU Grossman School of Medicine, New York, NY
| | - Eduardo Iturrate
- Department of Medicine, NYU Grossman School of Medicine, New York, NY
| | | | - Steven B Abramson
- Department of Medicine, NYU Grossman School of Medicine, New York, NY
| | - Aravinda Chakravarti
- Center for Human Genetics and Genomics, NYU Grossman School of Medicine, New York, NY
| | - Timothy B Niewold
- Colton Center for Autoimmunity, NYU Grossman School of Medicine, New York, NY
| |
Collapse
|
119
|
Davies K, Dures E, Ng WF. Fatigue in inflammatory rheumatic diseases: current knowledge and areas for future research. Nat Rev Rheumatol 2021; 17:651-664. [PMID: 34599320 DOI: 10.1038/s41584-021-00692-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 02/08/2023]
Abstract
Fatigue is a complex phenomenon and an important health concern for many people with chronic inflammatory rheumatic diseases, such as rheumatoid arthritis, psoriatic arthritis, primary Sjögren syndrome and systemic lupus erythematosus. Although some clinical trials have shown the benefits of cognitive behavioural therapy in fatigue management, the effect of this approach is relatively modest, and no curative treatment has been identified. The pathogenesis of fatigue remains unclear. Despite many challenges and limitations, a growing body of research points to roles for the immune system, the central and autonomic nervous systems and the neuroendocrine system in the induction and maintenance of fatigue in chronic diseases. New insights indicate that sleep, genetic susceptibility, metabolic disturbances and other biological and physiological mechanisms contribute to fatigue. Furthermore, understanding of the relationships between psychosocial factors and fatigue is increasing. However, the interrelationships between these diverse mechanisms and fatigue remain poorly defined. In this Review, we outline various biological, physiological and psychosocial determinants of fatigue in inflammatory rheumatic diseases, and propose mechanistic and conceptual models of fatigue to summarize current understanding, stimulate debate and develop further research ideas.
Collapse
Affiliation(s)
- Kristen Davies
- Translational and Clinical Research Institute, Newcastle University and NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne, UK.,Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Emma Dures
- Academic Rheumatology, Bristol Royal Infirmary, Bristol, UK.,Faculty of Health and Applied Sciences, University of the West of England, Bristol, UK
| | - Wan-Fai Ng
- Translational and Clinical Research Institute, Newcastle University and NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne, UK. .,Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK.
| |
Collapse
|
120
|
Lepelley A, Della Mina E, Van Nieuwenhove E, Waumans L, Fraitag S, Rice GI, Dhir A, Frémond ML, Rodero MP, Seabra L, Carter E, Bodemer C, Buhas D, Callewaert B, de Lonlay P, De Somer L, Dyment DA, Faes F, Grove L, Holden S, Hully M, Kurian MA, McMillan HJ, Suetens K, Tyynismaa H, Chhun S, Wai T, Wouters C, Bader-Meunier B, Crow YJ. Enhanced cGAS-STING-dependent interferon signaling associated with mutations in ATAD3A. J Exp Med 2021; 218:e20201560. [PMID: 34387651 PMCID: PMC8374862 DOI: 10.1084/jem.20201560] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/14/2020] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial DNA (mtDNA) has been suggested to drive immune system activation, but the induction of interferon signaling by mtDNA has not been demonstrated in a Mendelian mitochondrial disease. We initially ascertained two patients, one with a purely neurological phenotype and one with features suggestive of systemic sclerosis in a syndromic context, and found them both to demonstrate enhanced interferon-stimulated gene (ISG) expression in blood. We determined each to harbor a previously described de novo dominant-negative heterozygous mutation in ATAD3A, encoding ATPase family AAA domain-containing protein 3A (ATAD3A). We identified five further patients with mutations in ATAD3A and recorded up-regulated ISG expression and interferon α protein in four of them. Knockdown of ATAD3A in THP-1 cells resulted in increased interferon signaling, mediated by cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING). Enhanced interferon signaling was abrogated in THP-1 cells and patient fibroblasts depleted of mtDNA. Thus, mutations in the mitochondrial membrane protein ATAD3A define a novel type I interferonopathy.
Collapse
Affiliation(s)
- Alice Lepelley
- Université de Paris, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, Institut National de la Santé et de la Recherche Médicale, Unité mixte de recherche 1163, Paris, France
| | - Erika Della Mina
- Université de Paris, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, Institut National de la Santé et de la Recherche Médicale, Unité mixte de recherche 1163, Paris, France
| | - Erika Van Nieuwenhove
- Universitair Ziekenhuis Leuven, Department of Pediatrics, Leuven, Belgium
- Department of Microbiology and Immunology, Laboratory of Adaptive Immunity, Katholieke Universiteit Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Lise Waumans
- Department of Pathology, Universitair Ziekenhuis Leuven, Campus Gasthuisberg, Leuven, Belgium
| | - Sylvie Fraitag
- Service d’Anatomo-Pathologie, Hôpital Necker-Enfants-Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Gillian I. Rice
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Ashish Dhir
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Marie-Louise Frémond
- Université de Paris, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, Institut National de la Santé et de la Recherche Médicale, Unité mixte de recherche 1163, Paris, France
| | - Mathieu P. Rodero
- Université de Paris, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, Institut National de la Santé et de la Recherche Médicale, Unité mixte de recherche 1163, Paris, France
| | - Luis Seabra
- Université de Paris, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, Institut National de la Santé et de la Recherche Médicale, Unité mixte de recherche 1163, Paris, France
| | - Edwin Carter
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Christine Bodemer
- Department of Dermatology and Reference Centre for Genodermatoses and Rare Skin Diseases, Imagine Institute, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris, Université Paris-Centre, Paris, France
| | - Daniela Buhas
- Medical Genetics Division, Department of Specialized Medicine, McGill University Health Centre, Montreal, Canada
- Human Genetics Department, McGill University, Montreal, Quebec, Canada
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Pascale de Lonlay
- Reference Center for Inherited Metabolic Diseases, Necker Hospital, Assistance Publique - Hôpitaux de Paris, Institut National de la Santé et de la Recherche Médicale U1151, Institut Necker Enfants Malades, Université de Paris, Filière G2M, MetabERN, Paris, France
- Institut Imagine, Institut National de la Santé et de la Recherche Médicale Unité mixte de recherche 1163, Paris, France
| | - Lien De Somer
- Pediatric Rheumatology, Universitair Ziekenhuis Leuven, Leuven, Belgium
- Laboratory of Immunobiology, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
- European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases at University Hospital Leuven, Leuven, Belgium
| | - David A. Dyment
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Fran Faes
- Department of Pediatric Neurology, Ghent University Hospital, Ghent, Belgium
| | - Lucy Grove
- Community Paediatric Department, West Suffolk Hospital Foundation Trust, Bury St Edmunds, UK
| | - Simon Holden
- Department of Clinical Genetics, Addenbrooke's Hospital, Cambridge, UK
| | - Marie Hully
- Pediatric Neurology Department, Hôpital Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Manju A. Kurian
- Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Hugh J. McMillan
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
| | - Kristin Suetens
- Department of Radiology, University Hospitals Leuven, Radiology, Leuven, Belgium
- Department of Radiology, Regional Hospital Heilig Hart Leuven, Leuven, Belgium
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of Medicine and Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Stéphanie Chhun
- Paris Descartes University, Université de Paris, Sorbonne-Paris-Cité, Paris, France
- Laboratory of Immunology, Hôpital Necker-Enfants Malades, Assistance Publique–Hôpitaux de Paris, Centre-Université de Paris, Paris, France
- Institut Necker-Enfants Malades, Centre National de la Recherche Scientifique Unité mixte de recherche 8253, Institut National de la Santé et de la Recherche Médicale Unité mixte de recherche 1151, Team Immunoregulation and Immunopathology, Paris, France
| | - Timothy Wai
- Mitochondrial Biology Group, Institut Pasteur, Centre National de la Recherche Scientifique, Unité mixte de recherche 3691, Paris, France
| | - Carine Wouters
- Pediatric Rheumatology, Universitair Ziekenhuis Leuven, Leuven, Belgium
- Laboratory of Immunobiology, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
- European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases at University Hospital Leuven, Leuven, Belgium
| | - Brigitte Bader-Meunier
- Pediatric Immunology-Hematology and Rheumatology Unit, Hôpital Necker-Enfants Malades, Laboratory of Immunogenetics of Pediatric Autoimmunity, Institut National de la Santé et de la Recherche Médicale Unité mixte de recherche 1163, Assistance Publique - Hôpitaux de Paris, Institut Imagine, Paris, France
| | - Yanick J. Crow
- Université de Paris, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, Institut National de la Santé et de la Recherche Médicale, Unité mixte de recherche 1163, Paris, France
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
121
|
Ll Wilkinson MG, Deakin CT, Papadopoulou C, Eleftheriou D, Wedderburn LR. JAK inhibitors: a potential treatment for JDM in the context of the role of interferon-driven pathology. Pediatr Rheumatol Online J 2021; 19:146. [PMID: 34563217 PMCID: PMC8466894 DOI: 10.1186/s12969-021-00637-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/28/2021] [Indexed: 12/29/2022] Open
Abstract
Juvenile Idiopathic Inflammatory Myopathies (IIM) are a group of rare diseases that are heterogeneous in terms of pathology that can include proximal muscle weakness, associated skin changes and systemic involvement. Despite options for treatment, many patients continue to suffer resistant disease and lasting side-effects. Advances in the understanding of the immunopathology and genetics underlying IIM may specify new therapeutic targets, particularly where conventional treatment has not achieved a clinical response. An upregulated type I interferon signature is strongly associated with disease and could be a prime target for developing more specific therapeutics. There are multiple components of the IFN pathway that could be targeted for blockade therapy.Downstream of the cytokine receptor complexes are the Janus kinase-signal transducers and activators of transcription (JAK-STAT) pathway, which consists of JAK1-3, TYK2, and STAT1-6. Therapeutic inhibitors have been developed to target components of this pathway. Promising results have been observed in case studies reporting the use of the JAK inhibitors, Baricitinib, Tofacitinib and Ruxolitinib in the treatment of refractory Juvenile Dermatomyositis (JDM). There is still the question of safety and efficacy for the use of JAK inhibitors in JDM that need to be addressed by clinical trials. Here we review the future for the use of JAK inhibitors as a treatment for JDM.
Collapse
Affiliation(s)
- Meredyth G Ll Wilkinson
- Infection, Immunity and Inflammation Programme Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK.
- Centre for Adolescent Rheumatology Versus Arthritis at UCL UCLH and GOSH, University College London, London, UK.
- NIHR Biomedical Research Centre at GOSH, London, UK.
| | - Claire T Deakin
- Infection, Immunity and Inflammation Programme Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
- Centre for Adolescent Rheumatology Versus Arthritis at UCL UCLH and GOSH, University College London, London, UK
- NIHR Biomedical Research Centre at GOSH, London, UK
| | - Charalampia Papadopoulou
- Infection, Immunity and Inflammation Programme Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
- Rheumatology, Great Ormond Street Hospital, Great Ormond Street, London, UK
| | - Despina Eleftheriou
- Infection, Immunity and Inflammation Programme Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
- Rheumatology, Great Ormond Street Hospital, Great Ormond Street, London, UK
| | - Lucy R Wedderburn
- Infection, Immunity and Inflammation Programme Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
- Centre for Adolescent Rheumatology Versus Arthritis at UCL UCLH and GOSH, University College London, London, UK
- NIHR Biomedical Research Centre at GOSH, London, UK
- Rheumatology, Great Ormond Street Hospital, Great Ormond Street, London, UK
| |
Collapse
|
122
|
Karsulovic C, Hojman LP, Seelmann DL, Wurmann PA. Diffuse Lymphadenopathy Syndrome as a Flare-Up Manifestation in Lupus and Mixed Connective Tissue Disease Following Mild COVID-19. AMERICAN JOURNAL OF CASE REPORTS 2021; 22:e932751. [PMID: 34504052 PMCID: PMC8445385 DOI: 10.12659/ajcr.932751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Manifestations of Coronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, are highly variable among healthy populations. In connective tissue disease patients, the spectrum of clinical manifestations is even broader. In mild COVID-19 patients, diffuse lymphadenopathy (DL) has not been described as a late manifestation, and only severe COVID-19 has been associated with lupus flare-ups. Herein, we report 3 cases of connective tissue disease patients that presented with DL after diagnosis and complete resolution of mild COVID-19 disease. CASE REPORT Case 1. A 28-year-old man with inactive lupus, mixed connective tissue disease (MCTD), and a history of lung and cutaneous involvement. He presented with fever, polyarthralgia, and multiple lymphadenopathies 3 weeks after COVID-19 disease resolution. After evaluation, immunosuppressive treatment was initiated, with rapid response. Case 2. A 25-year-old woman with inactive lupus with a history of articular, hematologic, and cutaneous involvement. Four weeks after resolution of COVID-19 disease, she presented with malaise and cervical lymphadenopathies. After laboratory testing and imaging, she was treated for lupus flare-up, with rapid response. Case 3. A 68-year-old woman with inactive lupus with a history of articular and cutaneous involvement. Four weeks after COVID-19 resolution, she presented with malaise and cervical and axillary lymphadenopathies. After extensive evaluation, immunosuppressive treatment resulted in a rapid response. CONCLUSIONS After 3 to 4 weeks of mild, outpatient-treated COVID-19 and complete resolution of symptoms, 3 patients with connective tissue disease presented diffuse lymphadenopathy associated with inflammatory and constitutional symptoms. Infectious and neoplastic causes were thoroughly ruled out. All patients responded to reintroduction of or an increase in immunosuppressive therapy. We recommend considering the diffuse lymphadenopathy as a possible post-acute COVID-19 syndrome (PACS) manifestation in these patients, mainly when they are in the inactive phase.
Collapse
Affiliation(s)
- Claudio Karsulovic
- Rheumatology Section, Clinical Hospital of the University of Chile, Santiago, Chile
- Neuroendocrine Immunomodulation Laboratory, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
- Corresponding Author: Claudio Karsulovic, e-mail:
| | - Lia P. Hojman
- Department of Dermatology, Alemana Clinic of Santiago, Santiago, Chile
| | - Daniela L. Seelmann
- Rheumatology Section, Clinical Hospital of the University of Chile, Santiago, Chile
| | - Pamela A. Wurmann
- Rheumatology Section, Clinical Hospital of the University of Chile, Santiago, Chile
| |
Collapse
|
123
|
Deakin CT, Cornish GH, Ng KW, Faulkner N, Bolland W, Hope J, Rosa A, Harvey R, Hussain S, Earl C, Jebson BR, Wilkinson MGLL, Marshall LR, O'Brien K, Rosser EC, Radziszewska A, Peckham H, Patel H, Heaney J, Rickman H, Paraskevopoulou S, Houlihan CF, Spyer MJ, Gamblin SJ, McCauley J, Nastouli E, Levin M, Cherepanov P, Ciurtin C, Wedderburn LR, Kassiotis G. Favorable antibody responses to human coronaviruses in children and adolescents with autoimmune rheumatic diseases. MED 2021; 2:1093-1109.e6. [PMID: 34414384 PMCID: PMC8363467 DOI: 10.1016/j.medj.2021.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/06/2021] [Accepted: 08/06/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Differences in humoral immunity to coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), between children and adults remain unexplained, and the effect of underlying immune dysfunction or suppression is unknown. Here, we sought to examine the antibody immune competence of children and adolescents with prevalent inflammatory rheumatic diseases, juvenile idiopathic arthritis (JIA), juvenile dermatomyositis (JDM), and juvenile systemic lupus erythematosus (JSLE) against the seasonal human coronavirus (HCoV)-OC43 that frequently infects this age group. METHODS Sera were collected from JIA (n = 118), JDM (n = 49), and JSLE (n = 30) patients and from healthy control (n = 54) children and adolescents prior to the coronavirus disease 19 (COVID-19) pandemic. We used sensitive flow-cytometry-based assays to determine titers of antibodies that reacted with the spike and nucleoprotein of HCoV-OC43 and cross-reacted with the spike and nucleoprotein of SARS-CoV-2, and we compared them with respective titers in sera from patients with multisystem inflammatory syndrome in children and adolescents (MIS-C). FINDINGS Despite immune dysfunction and immunosuppressive treatment, JIA, JDM, and JSLE patients maintained comparable or stronger humoral responses than healthier peers, which was dominated by immunoglobulin G (IgG) antibodies to HCoV-OC43 spike, and harbored IgG antibodies that cross-reacted with SARS-CoV-2 spike. In contrast, responses to HCoV-OC43 and SARS-CoV-2 nucleoproteins exhibited delayed age-dependent class-switching and were not elevated in JIA, JDM, and JSLE patients, which argues against increased exposure. CONCLUSIONS Consequently, autoimmune rheumatic diseases and their treatment were associated with a favorable ratio of spike to nucleoprotein antibodies. FUNDING This work was supported by a Centre of Excellence Centre for Adolescent Rheumatology Versus Arthritis grant, 21593, UKRI funding reference MR/R013926/1, the Great Ormond Street Children's Charity, Cure JM Foundation, Myositis UK, Lupus UK, and the NIHR Biomedical Research Centres at GOSH and UCLH. This work was supported by the Francis Crick Institute, which receives its core funding from Cancer Research UK, the UK Medical Research Council, and the Wellcome Trust.
Collapse
Affiliation(s)
- Claire T Deakin
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospitals (UCLH), Great Ormond Street Hospital (GOSH), London, UK
- UCL Great Ormond Street Institute for Child Health (ICH), UCL, London, UK
- National Institute for Health Research (NIHR) Biomedical Research Centre at GOSH, London, UK
- OPAL Rheumatology Ltd, Sydney, NSW, Australia
| | - Georgina H Cornish
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Kevin W Ng
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Nikhil Faulkner
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - William Bolland
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Joshua Hope
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Annachiara Rosa
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ruth Harvey
- Worldwide Influenza Centre, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Saira Hussain
- Worldwide Influenza Centre, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Christopher Earl
- Signalling and Structural Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Bethany R Jebson
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospitals (UCLH), Great Ormond Street Hospital (GOSH), London, UK
- UCL Great Ormond Street Institute for Child Health (ICH), UCL, London, UK
- National Institute for Health Research (NIHR) Biomedical Research Centre at GOSH, London, UK
| | - Meredyth G L L Wilkinson
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospitals (UCLH), Great Ormond Street Hospital (GOSH), London, UK
- UCL Great Ormond Street Institute for Child Health (ICH), UCL, London, UK
- National Institute for Health Research (NIHR) Biomedical Research Centre at GOSH, London, UK
| | - Lucy R Marshall
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospitals (UCLH), Great Ormond Street Hospital (GOSH), London, UK
- UCL Great Ormond Street Institute for Child Health (ICH), UCL, London, UK
- National Institute for Health Research (NIHR) Biomedical Research Centre at GOSH, London, UK
| | - Kathryn O'Brien
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospitals (UCLH), Great Ormond Street Hospital (GOSH), London, UK
- UCL Great Ormond Street Institute for Child Health (ICH), UCL, London, UK
- National Institute for Health Research (NIHR) Biomedical Research Centre at GOSH, London, UK
| | - Elizabeth C Rosser
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospitals (UCLH), Great Ormond Street Hospital (GOSH), London, UK
- Centre for Rheumatology Research, Division of Medicine, UCL, London, UK
| | - Anna Radziszewska
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospitals (UCLH), Great Ormond Street Hospital (GOSH), London, UK
- Centre for Rheumatology Research, Division of Medicine, UCL, London, UK
| | - Hannah Peckham
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospitals (UCLH), Great Ormond Street Hospital (GOSH), London, UK
- Centre for Rheumatology Research, Division of Medicine, UCL, London, UK
| | - Harsita Patel
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK
| | | | | | | | - Catherine F Houlihan
- UCLH NHS Trust, London NW1 2BU, UK
- Division of Infection and Immunity, UCL, London WC1E 6BT, UK
| | - Moira J Spyer
- UCLH NHS Trust, London NW1 2BU, UK
- Department of Population, Policy and Practice, Great Ormond Street ICH, UCL, London WC1N 1EH, UK
| | - Steve J Gamblin
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - John McCauley
- Worldwide Influenza Centre, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Eleni Nastouli
- UCLH NHS Trust, London NW1 2BU, UK
- Department of Population, Policy and Practice, Great Ormond Street ICH, UCL, London WC1N 1EH, UK
| | - Michael Levin
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK
| | - Peter Cherepanov
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Infectious Disease, St Mary's Hospital, Imperial College London, London W2 1NY, UK
| | - Coziana Ciurtin
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospitals (UCLH), Great Ormond Street Hospital (GOSH), London, UK
- Centre for Rheumatology Research, Division of Medicine, UCL, London, UK
| | - Lucy R Wedderburn
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospitals (UCLH), Great Ormond Street Hospital (GOSH), London, UK
- UCL Great Ormond Street Institute for Child Health (ICH), UCL, London, UK
- National Institute for Health Research (NIHR) Biomedical Research Centre at GOSH, London, UK
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Infectious Disease, St Mary's Hospital, Imperial College London, London W2 1NY, UK
| |
Collapse
|
124
|
Grochowska J, Czerwinska J, Borowski LS, Szczesny RJ. Mitochondrial RNA, a new trigger of the innate immune system. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1690. [PMID: 34498404 DOI: 10.1002/wrna.1690] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023]
Abstract
Mitochondria play a pivotal role in numerous cellular processes. One of them is regulation of the innate immune pathway. In this instance, mitochondria function in two different aspects of regulatory mechanisms. First, mitochondria are part of the antiviral signaling cascade that is triggered in the cytoplasm and transmitted to effector proteins through mitochondria-localized proteins. Second, mitochondria can become an endogenous source of innate immune stimuli. Under some pathophysiological conditions, mitochondria release to the cytoplasm immunogenic factors, such as mitochondrial nucleic acids. Here, we focus on immunogenic mitochondrial double-stranded RNA (mt-dsRNA) and its origin and metabolism. We discuss factors that are responsible for regulating mt-dsRNA and its escape from mitochondria, emphasizing the contribution of polynucleotide phosphorylase (PNPase, PNPT1). Finally, we review current knowledge of the role of PNPase in human health and disease. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Joanna Grochowska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Jolanta Czerwinska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Lukasz S Borowski
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Roman J Szczesny
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
125
|
Papadopoulos VE, Skarlis C, Evangelopoulos ME, Mavragani CP. Type I interferon detection in autoimmune diseases: challenges and clinical applications. Expert Rev Clin Immunol 2021; 17:883-903. [PMID: 34096436 DOI: 10.1080/1744666x.2021.1939686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Accumulating data highlights that the dysregulation of type I interferon (IFN) pathways plays a central role in the pathogenesis of several systemic and organ-specific autoimmune diseases. Advances in understanding the role of type I IFNs in these disorders can lead to targeted drug development as well as establishing potential disease biomarkers. AREAS COVERED Here, we summarize current knowledge regarding the role of type I IFNs in the major systemic, as well as organ-specific, autoimmune disorders, including prominent inflammatory CNS disorders like multiple sclerosis. EXPERT OPINION Type I IFN involvement and its clinical associations in a wide spectrum of autoimmune diseases represents a promising area for research aiming to unveil common pathogenetic pathways in systemic and organ-specific autoimmunity.
Collapse
Affiliation(s)
- Vassilis E Papadopoulos
- Demyelinating Diseases Unit, First Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Charalampos Skarlis
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria-Eleftheria Evangelopoulos
- Demyelinating Diseases Unit, First Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Clio P Mavragani
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Joint Academic Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
126
|
Han L, Tu S, Shen P, Yan J, Huang Y, Ba X, Li T, Lin W, Li H, Yu K, Guo J, Huang Y, Qin K, Wang Y, Chen Z. A comprehensive transcriptomic analysis of alternate interferon signaling pathways in peripheral blood mononuclear cells in rheumatoid arthritis. Aging (Albany NY) 2021; 13:20511-20533. [PMID: 34432649 PMCID: PMC8436925 DOI: 10.18632/aging.203432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/03/2021] [Indexed: 01/13/2023]
Abstract
Interferon (IFN) signaling pathways play crucial roles in the pathogenesis of rheumatoid arthritis (RA). Prior studies have mainly studied mixed alterations in the IFN signaling pathway in RA, but these studies have not been sufficient to elucidate how imbalanced IFN signaling subtly influences immune cells. Single-cell RNA (scRNA) sequencing makes it possible to better understand the alternations in the interferon signaling pathways in RA. In the present study, we found that IFN signaling pathways were activated in natural killer (NK) cells, monocytes, T cells, B cells, and most immune cell subclasses in RA. We then explored and analyzed the connections between abnormal IFN signaling pathways and cellular functional changes in RA. Single-Cell rEgulatory Network Inference and Clustering (SCENIC) analysis and gene regulatory network (GRN) construction were also performed to identify key transcription factors in RA. Finally, we also investigated altered IFN signaling pathways in multiple RA peripheral blood samples, which indicated that abnormal IFN signaling pathways were universally observed in RA. Our study contributes to a better understanding of the delicate and precise regulation of IFN signaling in the immune system in RA. Furthermore, common alternations in IFN signaling pathway-related transcription factors could help to identify novel therapeutic targets for RA treatment.
Collapse
Affiliation(s)
- Liang Han
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shenghao Tu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pan Shen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiahui Yan
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yao Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xin Ba
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tingting Li
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weiji Lin
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huihui Li
- Department of Cardiology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kun Yu
- Department of Cardiology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Guo
- Wuhan Institute of Biotechnology, Wuhan Biobank, Wuhan 430000, China
| | - Ying Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kai Qin
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhe Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
127
|
Lopes AP, Bekker CPJ, Hillen MR, Blokland SLM, Hinrichs AC, Pandit A, Kruize AA, Radstake TRDJ, van Roon JAG. The Transcriptomic Profile of Monocytes from Patients With Sjögren's Syndrome Is Associated With Inflammatory Parameters and Is Mimicked by Circulating Mediators. Front Immunol 2021; 12:701656. [PMID: 34413853 PMCID: PMC8368727 DOI: 10.3389/fimmu.2021.701656] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/12/2021] [Indexed: 12/24/2022] Open
Abstract
Primary Sjögren's syndrome (pSS) is a systemic autoimmune disease characterized by infiltration of the exocrine glands and prominent B cell hyperactivity. Considering the key role of monocytes in promoting B cell hyperactivity, we performed RNA-sequencing analysis of CD14+ monocytes from patients with pSS, non-Sjögren's sicca (nSS), and healthy controls (HC). We demonstrated that the transcriptomic profile of pSS patients is enriched in intermediate and non-classical monocyte profiles, and confirmed the increased frequency of non-classical monocytes in pSS patients by flow-cytometry analysis. Weighted gene co-expression network analysis identified four molecular signatures in monocytes from pSS patients, functionally annotated for processes related with translation, IFN-signaling, and toll-like receptor signaling. Systemic and local inflammatory features significantly correlated with the expression of these signatures. Furthermore, genes highly associated with clinical features in pSS were identified as hub-genes for each signature. Unsupervised hierarchical cluster analysis of the hub-genes identified four clusters of nSS and pSS patients, each with distinct inflammatory and transcriptomic profiles. One cluster showed a significantly higher percentage of pSS patients with higher prevalence of anti-SSA autoantibodies, interferon-score, and erythrocyte sedimentation rate compared to the other clusters. Finally, we showed that the identified transcriptomic differences in pSS monocytes were induced in monocytes of healthy controls by exposure to serum of pSS patients. Representative hub-genes of all four signatures were partially inhibited by interferon-α/β receptor blockade, indicating that the circulating inflammatory mediators, including type I interferons have a significant contribution to the altered transcriptional profile of pSS-monocytes. Our study suggests that targeting key circulating inflammatory mediators, such as type I interferons, could offer new insights into the important pathways and mechanisms driving pSS, and holds promise for halting immunopathology in Sjögren's Syndrome.
Collapse
Affiliation(s)
- Ana P Lopes
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Cornelis P J Bekker
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Maarten R Hillen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Sofie L M Blokland
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Anneline C Hinrichs
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Aridaman Pandit
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Aike A Kruize
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Timothy R D J Radstake
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Joel A G van Roon
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
128
|
Chi M, Ma K, Li Y, Quan M, Han Z, Ding Z, Liang X, Zhang Q, Song L, Liu C. Immunological Involvement of MicroRNAs in the Key Events of Systemic Lupus Erythematosus. Front Immunol 2021; 12:699684. [PMID: 34408748 PMCID: PMC8365877 DOI: 10.3389/fimmu.2021.699684] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an archetype autoimmune disease characterized by a myriad of immunoregulatory abnormalities that drives injury to multiple tissues and organs. Due to the involvement of various immune cells, inflammatory cytokines, and related signaling pathways, researchers have spent a great deal of effort to clarify the complex etiology and pathogenesis of SLE. Nevertheless, current understanding of the pathogenesis of SLE is still in the early stages, and available nonspecific treatment options for SLE patients remain unsatisfactory. First discovered in 1993, microRNAs (miRNAs) are small RNA molecules that control the expression of 1/3 of human genes at the post-transcriptional level and play various roles in gene regulation. The aberrant expression of miRNAs in SLE patients has been intensively studied, and further studies have suggested that these miRNAs may be potentially relevant to abnormal immune responses and disease progression in SLE. The aim of this review was to summarize the specific miRNAs that have been observed aberrantly expressed in several important pathogenetic processes in SLE, such as DCs abnormalities, overactivation and autoantibody production of B cells, aberrant activation of CD4+ T cells, breakdown of immune tolerance, and abnormally increased production of inflammatory cytokines. Our summary highlights a novel perspective on the intricate regulatory network of SLE, which helps to enrich our understanding of this disorder and ignite future interest in evaluating the molecular regulation of miRNAs in autoimmunity SLE.
Collapse
Affiliation(s)
- Mingxuan Chi
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kuai Ma
- Department of Nephrology, Osaka University, Suita, Japan
| | - Yunlong Li
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Min Quan
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhongyu Han
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhaolun Ding
- Department of Emergency Surgery, Shannxi Provincial People's Hospital, Xi'an, China
| | - Xin Liang
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qinxiu Zhang
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Linjiang Song
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chi Liu
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Nephrology, Sichuan Clinical Research Center for Kidney Disease, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, China
| |
Collapse
|
129
|
Qiao JW, Dan Y, Wolf ME, Zoccoli CM, Demetriou TJ, Lennon RP. Post-vaccination COVID Toes (Chilblains) Exacerbated by Rituximab Infusion Suggests Interferon Activation as Mechanism. Mil Med 2021; 187:e1480-e1482. [PMID: 34570195 PMCID: PMC8500133 DOI: 10.1093/milmed/usab314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/29/2021] [Accepted: 07/14/2021] [Indexed: 01/07/2023] Open
Abstract
Coronavirus disease (COVID) toes are pernio-like skin lesions associated with severe acute respiratory syndrome coronavirus 2. We observed pernio-like skin findings presenting after a Pfizer BioNTech vaccine, which significantly worsened after an infusion of rituximab. This suggests that the mechanism for COVID toes is interferon activation. Military providers may avoid unnecessary referrals for this self-limiting condition by anticipating this adverse effect.
Collapse
Affiliation(s)
- Jana W Qiao
- Department of Family and Community Medicine, Penn State Health Milton S. Hershey, Hershey, PA, USA
| | - Yongwook Dan
- Penn State College of Medicine, Hershey, PA 17033, USA
| | - Michael E Wolf
- Division of Preventive, Occupational, and Aerospace Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Christina M Zoccoli
- Department of Family and Community Medicine, Penn State Health Milton S. Hershey, Hershey, PA, USA
| | - Theodore J Demetriou
- Department of Family and Community Medicine, Penn State Health Milton S. Hershey, Hershey, PA, USA
| | - Robert P Lennon
- Department of Family and Community Medicine, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
130
|
De Ceuninck F, Duguet F, Aussy A, Laigle L, Moingeon P. IFN-α: A key therapeutic target for multiple autoimmune rheumatic diseases. Drug Discov Today 2021; 26:2465-2473. [PMID: 34224903 DOI: 10.1016/j.drudis.2021.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/06/2021] [Accepted: 06/25/2021] [Indexed: 02/08/2023]
Abstract
Interferon (IFN)-α has emerged as a major therapeutic target for several autoimmune rheumatic diseases. In this review, we focus on clinical and preclinical advances in anti-IFN-α treatments in systemic lupus erythematosus (SLE), primary Sjögren syndrome (pSS), systemic sclerosis (SSc), and dermatomyositis (DM), for which a high medical need persists. Promising achievements were obtained following direct IFN-α neutralization, targeting its production through the cytosolic nucleic acid sensor pathways or by blocking its downstream effects through the type I IFN receptor. We further focus on molecular profiling and data integration approaches as crucial steps to select patients most likely to benefit from anti-IFN-α therapies within a precision medicine approach.
Collapse
Affiliation(s)
- Frédéric De Ceuninck
- Immuno-inflammatory Disease Department, Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy sur Seine, France.
| | - Fanny Duguet
- Immuno-inflammatory Disease Department, Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy sur Seine, France
| | - Audrey Aussy
- Immuno-inflammatory Disease Department, Institut de Recherches Servier, 50 rue Carnot, 92150 Suresnes, France
| | - Laurence Laigle
- Immuno-inflammatory Disease Department, Institut de Recherches Servier, 50 rue Carnot, 92150 Suresnes, France
| | - Philippe Moingeon
- Immuno-inflammatory Disease Department, Institut de Recherches Servier, 50 rue Carnot, 92150 Suresnes, France; Immuno-inflammatory Disease Department, Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy sur Seine, France
| |
Collapse
|
131
|
Clinical Trials in Myositis: Where Do We Stand? CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2021. [DOI: 10.1007/s40674-021-00180-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
132
|
Adelaja A, Taylor B, Sheu KM, Liu Y, Luecke S, Hoffmann A. Six distinct NFκB signaling codons convey discrete information to distinguish stimuli and enable appropriate macrophage responses. Immunity 2021; 54:916-930.e7. [PMID: 33979588 PMCID: PMC8184127 DOI: 10.1016/j.immuni.2021.04.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 12/21/2020] [Accepted: 04/13/2021] [Indexed: 12/12/2022]
Abstract
Macrophages initiate inflammatory responses via the transcription factor NFκB. The temporal pattern of NFκB activity determines which genes are expressed and thus, the type of response that ensues. Here, we examined how information about the stimulus is encoded in the dynamics of NFκB activity. We generated an mVenus-RelA reporter mouse line to enable high-throughput live-cell analysis of primary macrophages responding to host- and pathogen-derived stimuli. An information-theoretic workflow identified six dynamical features-termed signaling codons-that convey stimulus information to the nucleus. In particular, oscillatory trajectories were a hallmark of responses to cytokine but not pathogen-derived stimuli. Single-cell imaging and RNA sequencing of macrophages from a mouse model of Sjögren's syndrome revealed inappropriate responses to stimuli, suggestive of confusion of two NFκB signaling codons. Thus, the dynamics of NFκB signaling classify immune threats through six signaling codons, and signal confusion based on defective codon deployment may underlie the etiology of some inflammatory diseases.
Collapse
Affiliation(s)
- Adewunmi Adelaja
- Institute for Quantitative and Computational Biosciences (QCBio), Molecular Biology Institute (MBI), and Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University of California, Los Angeles (UCLA), 611 Charles E. Young Dr S, Los Angeles, CA 90093
| | - Brooks Taylor
- Institute for Quantitative and Computational Biosciences (QCBio), Molecular Biology Institute (MBI), and Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University of California, Los Angeles (UCLA), 611 Charles E. Young Dr S, Los Angeles, CA 90093
| | - Katherine M Sheu
- Institute for Quantitative and Computational Biosciences (QCBio), Molecular Biology Institute (MBI), and Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University of California, Los Angeles (UCLA), 611 Charles E. Young Dr S, Los Angeles, CA 90093
| | - Yi Liu
- Institute for Quantitative and Computational Biosciences (QCBio), Molecular Biology Institute (MBI), and Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University of California, Los Angeles (UCLA), 611 Charles E. Young Dr S, Los Angeles, CA 90093
| | - Stefanie Luecke
- Institute for Quantitative and Computational Biosciences (QCBio), Molecular Biology Institute (MBI), and Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University of California, Los Angeles (UCLA), 611 Charles E. Young Dr S, Los Angeles, CA 90093
| | - Alexander Hoffmann
- Institute for Quantitative and Computational Biosciences (QCBio), Molecular Biology Institute (MBI), and Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University of California, Los Angeles (UCLA), 611 Charles E. Young Dr S, Los Angeles, CA 90093.
| |
Collapse
|
133
|
Bolko L, Jiang W, Tawara N, Landon‐Cardinal O, Anquetil C, Benveniste O, Allenbach Y. The role of interferons type I, II and III in myositis: A review. Brain Pathol 2021; 31:e12955. [PMID: 34043262 PMCID: PMC8412069 DOI: 10.1111/bpa.12955] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/19/2021] [Indexed: 12/27/2022] Open
Abstract
The classification of idiopathic inflammatory myopathies (IIM) is based on clinical, serological and histological criteria. The identification of myositis-specific antibodies has helped to define more homogeneous groups of myositis into four dominant subsets: dermatomyositis (DM), antisynthetase syndrome (ASyS), sporadic inclusion body myositis (sIBM) and immune-mediated necrotising myopathy (IMNM). sIBM and IMNM patients present predominantly with muscle involvement, whereas DM and ASyS patients present additionally with other extramuscular features, such as skin, lung and joints manifestations. Moreover, the pathophysiological mechanisms are distinct between each myositis subsets. Recently, interferon (IFN) pathways have been identified as key players implicated in the pathophysiology of myositis. In DM, the key role of IFN, especially type I IFN, has been supported by the identification of an IFN signature in muscle, blood and skin of DM patients. In addition, DM-specific antibodies are targeting antigens involved in the IFN signalling pathways. The pathogenicity of type I IFN has been demonstrated by the identification of mutations in the IFN pathways leading to genetic diseases, the monogenic interferonopathies. This constitutive activation of IFN signalling pathways induces systemic manifestations such as interstitial lung disease, myositis and skin rashes. Since DM patients share similar features in the context of an acquired activation of the IFN signalling pathways, we may extend underlying concepts of monogenic diseases to acquired interferonopathy such as DM. Conversely, in ASyS, available data suggest a role of type II IFN in blood, muscle and lung. Indeed, transcriptomic analyses highlighted a type II IFN gene expression in ASyS muscle tissue. In sIBM, type II IFN appears to be an important cytokine involved in muscle inflammation mechanisms and potentially linked to myodegenerative features. For IMNM, currently published data are scarce, suggesting a minor implication of type II IFN. This review highlights the involvement of different IFN subtypes and their specific molecular mechanisms in each myositis subset.
Collapse
Affiliation(s)
- Loïs Bolko
- Division of RheumatologyHopital Maison BlancheReimsFrance
| | - Wei Jiang
- Department of Internal Medicine and Clinical ImmunlogySorbonne UniversitéPitié‐Salpêtrière University HospitalParisFrance
- Centre de Recherche en MyologieUMRS974Institut National de la Santé et de la Recherche MédicaleAssociation Institut de MyologieSorbonne UniversitéParisFrance
| | - Nozomu Tawara
- Department of Internal Medicine and Clinical ImmunlogySorbonne UniversitéPitié‐Salpêtrière University HospitalParisFrance
- Centre de Recherche en MyologieUMRS974Institut National de la Santé et de la Recherche MédicaleAssociation Institut de MyologieSorbonne UniversitéParisFrance
| | - Océane Landon‐Cardinal
- Division of RheumatologyCentre hospitalier de l'Université de Montréal (CHUM)CHUM Research CenterMontréalQCCanada
- Department of MedicineUniversité de MontréalMontréalQCCanada
| | - Céline Anquetil
- Department of Internal Medicine and Clinical ImmunlogySorbonne UniversitéPitié‐Salpêtrière University HospitalParisFrance
- Centre de Recherche en MyologieUMRS974Institut National de la Santé et de la Recherche MédicaleAssociation Institut de MyologieSorbonne UniversitéParisFrance
| | - Olivier Benveniste
- Department of Internal Medicine and Clinical ImmunlogySorbonne UniversitéPitié‐Salpêtrière University HospitalParisFrance
- Centre de Recherche en MyologieUMRS974Institut National de la Santé et de la Recherche MédicaleAssociation Institut de MyologieSorbonne UniversitéParisFrance
| | - Yves Allenbach
- Department of Internal Medicine and Clinical ImmunlogySorbonne UniversitéPitié‐Salpêtrière University HospitalParisFrance
- Centre de Recherche en MyologieUMRS974Institut National de la Santé et de la Recherche MédicaleAssociation Institut de MyologieSorbonne UniversitéParisFrance
| |
Collapse
|
134
|
Chasset F, Dayer JM, Chizzolini C. Type I Interferons in Systemic Autoimmune Diseases: Distinguishing Between Afferent and Efferent Functions for Precision Medicine and Individualized Treatment. Front Pharmacol 2021; 12:633821. [PMID: 33986670 PMCID: PMC8112244 DOI: 10.3389/fphar.2021.633821] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
A sustained increase in type I interferon (IFN-I) may accompany clinical manifestations and disease activity in systemic autoimmune diseases (SADs). Despite the very frequent presence of IFN-I in SADs, clinical manifestations are extremely varied between and within SADs. The present short review will address the following key questions associated with high IFN-I in SADs in the perspective of precision medicine. 1) What are the mechanisms leading to high IFN-I? 2) What are the predisposing conditions favoring high IFN-I production? 3) What is the role of IFN-I in the development of distinct clinical manifestations within SADs? 4) Would therapeutic strategies targeting IFN-I be helpful in controlling or even preventing SADs? In answering these questions, we will underlie areas of incertitude and the intertwined role of autoantibodies, immune complexes, and neutrophils.
Collapse
Affiliation(s)
- François Chasset
- Department of Dermatology and Allergology, Faculty of Medicine, AP-HP, Tenon Hospital, Sorbonne University, Paris, France
| | - Jean-Michel Dayer
- Emeritus Professor of Medicine, School of Medicine, Geneva University, Geneva, Switzerland
| | - Carlo Chizzolini
- Department of Pathology and Immunology, School of Medicine, Geneva University, Geneva, Switzerland
| |
Collapse
|
135
|
Thomson DW, Bergamini G. Recent progress in small molecule TBK1 inhibitors: a patent review (2015- 2020). Expert Opin Ther Pat 2021; 31:785-794. [PMID: 33724136 DOI: 10.1080/13543776.2021.1904893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: TANK-binding kinase 1 (TBK1) is a key mediator of innate immunity processes and studies have reported on its role in inflammatory and autoimmune diseases. Moreover, several studies have also described the important role of TBK1 in cancer and metabolic disorders. Therefore, there is increasing interest in this noncanonical IKK serine/threonine kinase family member as a drug target in both the scientific community and the pharmaceutical industry as indicated by the growing number of patents reporting on these efforts.Areas covered: This review covers the patent literature from 2015 to 2020 issued by the World, US and European patent offices on novel TBK1 small molecule inhibitors as well as patents claiming new applications of TBK1 inhibitors.Expert opinion: The high complexity TBK1 biology greatly increases the challenge of pursuing it as a drug target. The recent discovery of several small molecule inhibitors, particularly those with high selectivity, will enable further exploration of TBK1s biological role and its validation as a drug target.
Collapse
Affiliation(s)
- Douglas W Thomson
- Functional Genomics, Cellzome GmbH, GlaxoSmithKline, Heidelberg, Germany
| | - Giovanna Bergamini
- Functional Genomics, Cellzome GmbH, GlaxoSmithKline, Heidelberg, Germany
| |
Collapse
|
136
|
Cecchi I, Radin M, Rodríguez-Carrio J, Tambralli A, Knight JS, Sciascia S. Utilizing type I interferon expression in the identification of antiphospholipid syndrome subsets. Expert Rev Clin Immunol 2021; 17:395-406. [PMID: 33686921 PMCID: PMC10183148 DOI: 10.1080/1744666x.2021.1901581] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Antiphospholipid Syndrome (APS) is a systemic autoimmune disease with a complex multifactorial pathogenesis, combining genetic background, traditional cardiovascular risk factors, disease-specific features such as the presence of antiphospholipid antibodies (aPL), and an imbalance of various immune system functions. Recent data support the role of interferons (IFNs), especially type IIFN (IFN-I), in the onset and development of APS clinical manifestations, including thrombotic events and obstetric complications. AREAS COVERED In this review, the authors aimed to discuss the growing body of evidence on the relevance of IFN-I pathways in APS, both from a basic mechanistic perspective, focusing on its possible use in disease/patients stratification. The IFN-I signature has shown promising, although preliminary, results in segregating aPL-positive subjects by aPL profile, association with other autoimmune conditions, such as lupus, age at onset, and current treatment, among others. EXPERT OPINION To date, the scarce available data as well as methodological and technical heterogeneity among studies limit the comparability of the results, thus requiring further validation to translate these findings to routine clinical practice. Therefore, further research is required in pursuit of more nuanced patient profiling and the development of new immunomodulatory therapeutic strategies for APS beyond anti-coagulant and antiplatelet agents.
Collapse
Affiliation(s)
- Irene Cecchi
- Center of Research of Immunopathology and Rare Diseases - Nephrology and Dialysis Coordinating Center of Piemonte and Aosta Valley Network for Rare Diseases, S. Giovanni Bosco Hospital, Department of Clinical and Biological Sciences, University of Turin, Turin Italy
| | - Massimo Radin
- Center of Research of Immunopathology and Rare Diseases - Nephrology and Dialysis Coordinating Center of Piemonte and Aosta Valley Network for Rare Diseases, S. Giovanni Bosco Hospital, Department of Clinical and Biological Sciences, University of Turin, Turin Italy
| | - Javier Rodríguez-Carrio
- Department of Functional Biology, Immunology Area, Faculty of Medicine, University of Oviedo, Oviedo, Spain.,Group of Basic and Translational Research in Inflammatory Diseases, Instituto De Investigación Sanitaria Del Principado De Asturias (ISPA), Oviedo, Spain
| | - Ajay Tambralli
- Division of Rheumatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason S Knight
- Division of Rheumatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Savino Sciascia
- Center of Research of Immunopathology and Rare Diseases - Nephrology and Dialysis Coordinating Center of Piemonte and Aosta Valley Network for Rare Diseases, S. Giovanni Bosco Hospital, Department of Clinical and Biological Sciences, University of Turin, Turin Italy
| |
Collapse
|
137
|
Analysis of human total antibody repertoires in TIF1γ autoantibody positive dermatomyositis. Commun Biol 2021; 4:419. [PMID: 33772100 PMCID: PMC7997983 DOI: 10.1038/s42003-021-01932-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
We investigate the accumulated microbial and autoantigen antibody repertoire in adult-onset dermatomyositis patients sero-positive for TIF1γ (TRIM33) autoantibodies. We use an untargeted high-throughput approach which combines immunoglobulin disease-specific epitope-enrichment and identification of microbial and human antigens. We observe antibodies recognizing a wider repertoire of microbial antigens in dermatomyositis. Antibodies recognizing viruses and Poxviridae family species are significantly enriched. The identified autoantibodies recognise a large portion of the human proteome, including interferon regulated proteins; these proteins cluster in specific biological processes. In addition to TRIM33, we identify autoantibodies against eleven further TRIM proteins, including TRIM21. Some of these TRIM proteins share epitope homology with specific viral species including poxviruses. Our data suggest antibody accumulation in dermatomyositis against an expanded diversity of microbial and human proteins and evidence of non-random targeting of specific signalling pathways. Our findings indicate that molecular mimicry and epitope spreading events may play a role in dermatomyositis pathogenesis. Megremis, Walker at al. identify immunogenic epitopes in dermatomyositis patients. They identify antibodies recognizing a wider diversity of microbial antigens including poxviruses, and autoantibodies recognizing a large portion of the human proteome. Shared epitope homology between viral and human proteins suggests that molecular mimicry and epitope spreading events may play a role in dermatomyositis pathogenesis.
Collapse
|
138
|
Wu L, Jiang X, Qi C, Zhang C, Qu B, Shen N. EZH2 Inhibition Interferes With the Activation of Type I Interferon Signaling Pathway and Ameliorates Lupus Nephritis in NZB/NZW F1 Mice. Front Immunol 2021; 12:653989. [PMID: 33868295 PMCID: PMC8044841 DOI: 10.3389/fimmu.2021.653989] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/08/2021] [Indexed: 12/29/2022] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is a histone-lysine N-methyltransferase mediating trimethylation of H3K27, which represses gene expression and is critical to immune regulation. Inhibition of EZH2 is proved to have the potential of treating many diseases. However, whether inhibition of EZH2 affects type I interferon (IFN-I) signaling pathway, the abnormality of which is an important pathogenic mechanism for SLE, is still elusive. Here, we report, unexpectedly, a positive regulatory function of EZH2 in IFN-I signaling pathway, which contributes to the overactivation of IFN-I signaling pathway in SLE. We show that the expression of EZH2 was upregulated and positively correlated with the overexpression of interferon stimulated genes (ISGs) in both peripheral blood mononuclear cells and renal tissues of SLE patients. In vitro inhibition of EZH2 by either siRNAs or chemical inhibitors reduced the phosphorylation of STAT1 and the induction of ISGs stimulated by IFN-I. Additionally, inhibition of EZH2 interfered with the in vivo and ex vivo activation of IFN-I signaling pathway elicited by intravenous injection of adenovirus vector expressing mouse IFN-α5 and exogeneous stimulation with IFN-α, respectively. We evaluated the therapeutic effects of EZH2 inhibitor in NZB/NZW F1 mice which depend on IFN-I signaling pathway for the lupus-like disease development. Administration of EZH2 inhibitor prolonged the survival, reduced the levels of anti-dsDNA autoantibodies, and improved lupus nephritis of the mice. What’s more, EZH2 inhibitor attenuated the expression of ISGs in the kidneys of these mice. In summary, we show that excessive EZH2 contributes to the overactivation of IFN-I signaling pathway in SLE. EZH2 inhibitor has the potential to inhibit IFN-I signaling pathway and alleviate lupus nephritis. Additionally, diverse disease driving pathways exist among systemic lupus erythematosus (SLE) patient, and even in the same patients. Common regulators of different pathogenic pathways can be multivalent therapeutic targets. Together with previous studies showing EZH2 is involved in T-cell and B-cell mediated immune responses, EZH2 could be a potent multivalent therapeutic target for SLE.
Collapse
Affiliation(s)
- Lingling Wu
- Department of Rheumatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyue Jiang
- Department of Rheumatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chaojun Qi
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chunyan Zhang
- Department of Rheumatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Qu
- Department of Rheumatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Shen
- Department of Rheumatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
139
|
Winchester N, Calabrese C, Calabrese L. The Intersection of COVID-19 and Autoimmunity: What is Our Current Understanding? Pathog Immun 2021; 6:31-54. [PMID: 33969248 PMCID: PMC8097827 DOI: 10.20411/pai.v6i1.417] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/16/2021] [Indexed: 12/16/2022] Open
Abstract
Viral infections have historically had a complex relationship with autoimmune diseases. For patients with preexisting autoimmune disorders, often complicated by immunosuppressive therapies, there are numerous potential effects of COVID-19, a disease of complex immunobiology, including the potential for an altered natural history of COVID-19 when infected. In addition, individuals without recognized autoimmune disease may be vulnerable to virally induced autoimmunity in the forms of autoantibody formation, as well as the development of clinical immune-mediated inflammatory diseases. Until quite recently in the pandemic, this relationship between COVID-19 and autoimmune diseases has been relatively underexplored; yet such investigation offers potential insights into immunopathogenesis as well as for the development of new immune-based therapeutics. Our review examines this relationship through exploration of a series of questions with relevance to both immunopathogenic mechanisms as well as some clinical implications.
Collapse
Affiliation(s)
- N. Winchester
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH
| | - C. Calabrese
- Department of Rheumatic and Immunologic Diseases, Cleveland Clinic, Cleveland, OH
| | - L.H. Calabrese
- Department of Rheumatic and Immunologic Diseases, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
140
|
Del Papa N, Minniti A, Lorini M, Carbonelli V, Maglione W, Pignataro F, Montano N, Caporali R, Vitali C. The Role of Interferons in the Pathogenesis of Sjögren's Syndrome and Future Therapeutic Perspectives. Biomolecules 2021; 11:biom11020251. [PMID: 33572487 PMCID: PMC7916411 DOI: 10.3390/biom11020251] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/16/2022] Open
Abstract
There is a great deal of evidence pointing to interferons (IFNs) as being key cytokines in the pathogenesis of different systemic autoimmune diseases, including primary Sjögren’s syndrome (pSS). In this disease, a large number of studies have shown that an overexpression of type I IFN, the ‘so-called’ type I IFN signature, is present in peripheral blood mononuclear cells, and that this finding is associated with the development of systemic extra-glandular manifestations, and a substantial production of autoantibodies and inflammatory cytokines. In contrast, the absence or a milder expression of type I IFN signature and low level of inflammatory cytokines characterizes patients with a different clinical phenotype, where the disease is limited to glandular involvement and often marked by the presence of widespread pain and depression. The role of type II (IFNγ) in this subset of pSS patients, together with the potentially related activation of completely different immunological and metabolic pathways, are emerging issues. Expression of both types of IFNs has also been shown in target tissues, namely in minor salivary glands where a predominance of type II IFN signature appeared to have a certain association with the development of lymphoma. In view of the role played by IFN overexpression in the development and progression of pSS, inhibition or modulation of IFN signaling has been regarded as a potential target for the therapeutic approach. A number of therapeutic compounds with variable mechanisms of action have been tested or are under consideration for the treatment of patients with pSS.
Collapse
Affiliation(s)
- Nicoletta Del Papa
- Department of Rheumatology, ASST G. Pini-CTO, 20122 Milano, Italy; (A.M.); (W.M.); (F.P.); (R.C.)
- Correspondence:
| | - Antonina Minniti
- Department of Rheumatology, ASST G. Pini-CTO, 20122 Milano, Italy; (A.M.); (W.M.); (F.P.); (R.C.)
| | - Maurizio Lorini
- Department of Clinical Sciences and Community Health, Ca’ Granda IRCCS Foundation, Ospedale Maggiore Policlinico, Università degli Studi di Milano, 20122 Milano, Italy; (M.L.); (V.C.); (N.M.)
| | - Vincenzo Carbonelli
- Department of Clinical Sciences and Community Health, Ca’ Granda IRCCS Foundation, Ospedale Maggiore Policlinico, Università degli Studi di Milano, 20122 Milano, Italy; (M.L.); (V.C.); (N.M.)
| | - Wanda Maglione
- Department of Rheumatology, ASST G. Pini-CTO, 20122 Milano, Italy; (A.M.); (W.M.); (F.P.); (R.C.)
| | - Francesca Pignataro
- Department of Rheumatology, ASST G. Pini-CTO, 20122 Milano, Italy; (A.M.); (W.M.); (F.P.); (R.C.)
| | - Nicola Montano
- Department of Clinical Sciences and Community Health, Ca’ Granda IRCCS Foundation, Ospedale Maggiore Policlinico, Università degli Studi di Milano, 20122 Milano, Italy; (M.L.); (V.C.); (N.M.)
| | - Roberto Caporali
- Department of Rheumatology, ASST G. Pini-CTO, 20122 Milano, Italy; (A.M.); (W.M.); (F.P.); (R.C.)
- Research Center for Adult and Pediatric Rheumatic Diseases, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milano, Italy
| | - Claudio Vitali
- Mater Domini Humanitas Hospital, Rheumatology Outpatient Clinics, 21053 Castellanza, Italy;
| |
Collapse
|
141
|
Huijser E, Versnel MA. Making Sense of Intracellular Nucleic Acid Sensing in Type I Interferon Activation in Sjögren's Syndrome. J Clin Med 2021; 10:532. [PMID: 33540529 PMCID: PMC7867173 DOI: 10.3390/jcm10030532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
Primary Sjögren's syndrome (pSS) is a systemic autoimmune rheumatic disease characterized by dryness of the eyes and mucous membranes, which can be accompanied by various extraglandular autoimmune manifestations. The majority of patients exhibit persistent systemic activation of the type I interferon (IFN) system, a feature that is shared with other systemic autoimmune diseases. Type I IFNs are integral to anti-viral immunity and are produced in response to stimulation of pattern recognition receptors, among which nucleic acid (NA) receptors. Dysregulated detection of endogenous NAs has been widely implicated in the pathogenesis of systemic autoimmune diseases. Stimulation of endosomal Toll-like receptors by NA-containing immune complexes are considered to contribute to the systemic type I IFN activation. Accumulating evidence suggest additional roles for cytosolic NA-sensing pathways in the pathogenesis of systemic autoimmune rheumatic diseases. In this review, we will provide an overview of the functions and signaling of intracellular RNA- and DNA-sensing receptors and summarize the evidence for a potential role of these receptors in the pathogenesis of pSS and the sustained systemic type I IFN activation.
Collapse
Affiliation(s)
| | - Marjan A. Versnel
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
| |
Collapse
|
142
|
Avdeeva AS, Tchetina EV, Cherkasova MV, Markova GA, Artyuhov AS, Dashinimaev EB, Nasonov EL. The expression of interferon-stimulated genes (interferon “signature”) in patients with rheumatoid arthritis (Preliminary results). ACTA ACUST UNITED AC 2021. [DOI: 10.47360/1995-4484-2020-673-677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | | | | | | | - A. S. Artyuhov
- Research Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University
| | - E. B. Dashinimaev
- Research Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University; Koltzov Institute of Developmental Biology of Russian Academy of Sciences
| | - E. L. Nasonov
- V.A. Nasonova Research Institute of Rheumatology; I.M. Sechenov First Moscow State Medical University (Sechenovskiy University)
| |
Collapse
|
143
|
TRIM Proteins in Inflammation: from Expression to Emerging Regulatory Mechanisms. Inflammation 2021; 44:811-820. [PMID: 33415537 DOI: 10.1007/s10753-020-01394-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/07/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
Inflammation is an immune response to exogenous or endogenous insults that helps to maintain the tissue homeostasis under stressful conditions. Depending on the differential types of insults, inflammation is classified into microbial, autoimmune, metabolic, allergic, and physical inflammation. With regard to its involvement in the pathogenesis of most of human diseases, dissecting the key molecules in the regulation of inflammatory process is vital for the prevention and therapeutics of human diseases. Tripartite motif (TRIM) proteins are a versatile family of E3 ligases, which are composed of > 80 distinct members in humans recognized for their roles in antiviral responses. Recently, a large number of studies have shown the regulatory roles of TRIM proteins in mediating the inflammation. Herein in this review, we discuss the aberrations of TRIM proteins in autoimmune and autoinflammatory diseases, with a focus on the regulation of different components of inflammatory process, including inflammasome, NF-κB signaling, type I IFN (interferon) production, and Th1/Th17 cell differentiation. Importantly, elucidation of the mechanism underlying the regulation of inflammation by TRIMs provides insights into the use of TRIMs as therapeutic targets for disease treatment.
Collapse
|
144
|
Tariq S, Van Eeden C, Tervaert JWC, Osman MS. COVID-19, rheumatic diseases and immune dysregulation-a perspective. Clin Rheumatol 2021; 40:433-442. [PMID: 33411143 PMCID: PMC7788381 DOI: 10.1007/s10067-020-05529-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/30/2020] [Accepted: 11/26/2020] [Indexed: 12/26/2022]
Abstract
The COVID-19 pandemic has resulted in widespread hospitalisations and deaths around the world. As patients with rheumatic diseases generally have increased risk of infections and complications, understandably, there is significant concern of the impact of SARS-CoV-2 on these patients. However, there is a paucity of data in rheumatic patients. We review mechanisms through which SARS-CoV-2 results in infection, including ACE2 receptor, and complications (including immune dysregulation, thrombosis and complement activation). We assess these pathways in patients with rheumatic disease and those on immune modulating therapy. Although data thus far does not appear to show worse outcomes in rheumatic patients as a whole, given alterations in the underlying immune pathways in certain diseases (such as systemic lupus erythematosus), we posit that the risk is not equal in all rheumatic patients. We also discuss the benefit of underlying disease control with respect to COVID-19 risk reduction and potential increased risk of disease flares following viral infection from an immune standpoint.
Collapse
Affiliation(s)
- Shahna Tariq
- Division of Rheumatology, Department of Medicine, University of Alberta, 8-130 Clinical Sciences Building, Edmonton, Alberta, T6G 2B7, Canada
| | - Charmaine Van Eeden
- Division of Rheumatology, Department of Medicine, University of Alberta, 8-130 Clinical Sciences Building, Edmonton, Alberta, T6G 2B7, Canada
| | - Jan Willem Cohen Tervaert
- Division of Rheumatology, Department of Medicine, University of Alberta, 8-130 Clinical Sciences Building, Edmonton, Alberta, T6G 2B7, Canada
| | - Mohammed S Osman
- Division of Rheumatology, Department of Medicine, University of Alberta, 8-130 Clinical Sciences Building, Edmonton, Alberta, T6G 2B7, Canada.
| |
Collapse
|
145
|
Lodi L, Melki I, Bondet V, Seabra L, Rice GI, Carter E, Lepelley A, Martin-Niclós MJ, Al Adba B, Bader-Meunier B, Barth M, Blauwblomme T, Bodemer C, Boespflug-Tanguy O, Dale RC, Desguerre I, Ducrocq C, Dulieu F, Dumaine C, Ellul P, Hadchouel A, Hentgen V, Hié M, Hully M, Jeziorski E, Lévy R, Mochel F, Orcesi S, Passemard S, Pouletty M, Quartier P, Renaldo F, Seidl R, Shetty J, Neven B, Blanche S, Duffy D, Crow YJ, Frémond ML. Differential Expression of Interferon-Alpha Protein Provides Clues to Tissue Specificity Across Type I Interferonopathies. J Clin Immunol 2021; 41:603-609. [PMID: 33411153 DOI: 10.1007/s10875-020-00952-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/22/2020] [Indexed: 12/19/2022]
Abstract
Whilst upregulation of type I interferon (IFN) signaling is common across the type I interferonopathies (T1Is), central nervous system (CNS) involvement varies between these disorders, the basis of which remains unclear. We collected cerebrospinal fluid (CSF) and serum from patients with Aicardi-Goutières syndrome (AGS), STING-associated vasculopathy with onset in infancy (SAVI), presumed monogenic T1Is (pT1I), childhood systemic lupus erythematosus with neuropsychiatric features (nSLE), non-IFN-related autoinflammation (AI) and non-inflammatory hydrocephalus (as controls). We measured IFN-alpha protein using digital ELISA. Eighty-two and 63 measurements were recorded respectively in CSF and serum of 42 patients and 6 controls. In an intergroup comparison (taking one sample per individual), median CSF IFN-alpha levels were elevated in AGS, SAVI, pT1I, and nSLE compared to AI and controls, with levels highest in AGS compared to all other groups. In AGS, CSF IFN-alpha concentrations were higher than in paired serum samples. In contrast, serum IFN was consistently higher compared to CSF levels in SAVI, pT1I, and nSLE. Whilst IFN-alpha is present in the CSF and serum of all IFN-related diseases studied here, our data suggest the primary sites of IFN production in the monogenic T1I AGS and SAVI are, respectively, the CNS and the periphery. These results inform the diagnosis of, and future therapeutic approaches to, monogenic and multifactorial T1Is.
Collapse
Affiliation(s)
- Lorenzo Lodi
- Université de Paris, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, 24 boulevard du Montparnasse, 75015, Paris, France.,Department of Health Sciences, University of Florence - Meyer Children's University Hospital, Florence, Italy
| | - Isabelle Melki
- Université de Paris, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, 24 boulevard du Montparnasse, 75015, Paris, France.,General Paediatrics- Infectious Diseases and Internal Medicine Department, Robert-Debré Hospital, AP-HP, Nord - Université de Paris, Paris, France.,Paediatric Haematology-Immunology and Rheumatology Unit, Necker Hospital, AP-HP, Centre - Université de Paris, Paris, France
| | - Vincent Bondet
- Translational Immunology Lab, Institut Pasteur, Paris, France
| | - Luis Seabra
- Université de Paris, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, 24 boulevard du Montparnasse, 75015, Paris, France
| | - Gillian I Rice
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Division of Evolution and Genomic Sciences, University of Manchester, Manchester, UK
| | - Edwin Carter
- Centre for Genomic and Experimental Medicine, Medical Research Council Institute of Genetics and Molecular Medicine, The University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Alice Lepelley
- Université de Paris, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, 24 boulevard du Montparnasse, 75015, Paris, France
| | - Maria José Martin-Niclós
- Université de Paris, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, 24 boulevard du Montparnasse, 75015, Paris, France
| | - Buthaina Al Adba
- Department of Paediatric Rheumatology, Sidra Medicine, Doha, Qatar
| | - Brigitte Bader-Meunier
- Paediatric Haematology-Immunology and Rheumatology Unit, Necker Hospital, AP-HP, Centre - Université de Paris, Paris, France
| | - Magalie Barth
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, University of Angers, Angers, France
| | - Thomas Blauwblomme
- Paediatric Neurosurgery Unit, Necker Hospital, AP-HP, Centre Université de Paris, Paris, France
| | - Christine Bodemer
- Paediatric Dermatology Department, Necker Hospital, AP-HP, Centre Université de Paris, Paris, France
| | - Odile Boespflug-Tanguy
- Paediatric Neurology Department, Robert-Debré Hospital, AP-HP, Nord - Université de Paris, Paris, France
| | - Russel C Dale
- Kids Neuroscience Centre, The Children's Hospital at Westmead, University of Sydney, Westmead, NSW, Australia
| | - Isabelle Desguerre
- Paediatric Neurology Department, Necker Hospital, AP-HP, Centre Université de Paris, Paris, France
| | - Camille Ducrocq
- General Paediatrics- Infectious Diseases and Internal Medicine Department, Robert-Debré Hospital, AP-HP, Nord - Université de Paris, Paris, France
| | - Fabienne Dulieu
- Paediatrics Department, Nice Hospitals, CHU LENVAL, Nice, France
| | - Cécile Dumaine
- General Paediatrics- Infectious Diseases and Internal Medicine Department, Robert-Debré Hospital, AP-HP, Nord - Université de Paris, Paris, France
| | - Pierre Ellul
- Department of Child and Adolescent Psychiatry, Robert-Debré Hospital, AP-HP, Nord - Université de Paris, Paris, France.,INSERM, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
| | - Alice Hadchouel
- Paediatric Pulmonology Department, Necker Hospital, AP-HP, Centre Université de Paris, Paris, France
| | | | - Miguel Hié
- French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne Université, Paris, France
| | - Marie Hully
- Paediatric Neurology Department, Necker Hospital, AP-HP, Centre Université de Paris, Paris, France
| | - Eric Jeziorski
- Paediatrics Department, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Romain Lévy
- Paediatric Haematology-Immunology and Rheumatology Unit, Necker Hospital, AP-HP, Centre - Université de Paris, Paris, France
| | - Fanny Mochel
- National Reference Center for Neurometabolic Diseases, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne Université, Paris, France.,Institut du Cerveau et de la Moelle épinière, INSERM U 1127, Sorbonne Université, Paris, France
| | - Simona Orcesi
- Child Neurology and Psychiatry Unit IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Sandrine Passemard
- Paediatric Neurology Department, Robert-Debré Hospital, AP-HP, Nord - Université de Paris, Paris, France
| | - Marie Pouletty
- General Paediatrics- Infectious Diseases and Internal Medicine Department, Robert-Debré Hospital, AP-HP, Nord - Université de Paris, Paris, France
| | - Pierre Quartier
- Paediatric Haematology-Immunology and Rheumatology Unit, Necker Hospital, AP-HP, Centre - Université de Paris, Paris, France
| | - Florence Renaldo
- Paediatric Neurology Department, Trousseau Hospital, AP-HP, Sorbonne Université, Paris, France
| | - Rainer Seidl
- Department of Paediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Jay Shetty
- Department of Paediatric Neurosciences, Royal Hospital for Sick Children, Sciennes Road, Edinburgh, UK
| | - Bénédicte Neven
- Paediatric Haematology-Immunology and Rheumatology Unit, Necker Hospital, AP-HP, Centre - Université de Paris, Paris, France
| | - Stéphane Blanche
- Paediatric Haematology-Immunology and Rheumatology Unit, Necker Hospital, AP-HP, Centre - Université de Paris, Paris, France
| | - Darragh Duffy
- Translational Immunology Lab, Institut Pasteur, Paris, France
| | - Yanick J Crow
- Université de Paris, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, 24 boulevard du Montparnasse, 75015, Paris, France. .,Centre for Genomic and Experimental Medicine, Medical Research Council Institute of Genetics and Molecular Medicine, The University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK.
| | - Marie-Louise Frémond
- Université de Paris, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, 24 boulevard du Montparnasse, 75015, Paris, France. .,Paediatric Haematology-Immunology and Rheumatology Unit, Necker Hospital, AP-HP, Centre - Université de Paris, Paris, France.
| |
Collapse
|
146
|
Szymczak F, Colli ML, Mamula MJ, Evans-Molina C, Eizirik DL. Gene expression signatures of target tissues in type 1 diabetes, lupus erythematosus, multiple sclerosis, and rheumatoid arthritis. SCIENCE ADVANCES 2021; 7:7/2/eabd7600. [PMID: 33523973 PMCID: PMC7787485 DOI: 10.1126/sciadv.abd7600] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/16/2020] [Indexed: 05/05/2023]
Abstract
Autoimmune diseases are typically studied with a focus on the immune system, and less attention is paid to responses of target tissues exposed to the immune assault. We presently evaluated, based on available RNA sequencing data, whether inflammation induces similar molecular signatures at the target tissues in type 1 diabetes, systemic lupus erythematosus, multiple sclerosis, and rheumatoid arthritis. We identified confluent signatures, many related to interferon signaling, indicating pathways that may be targeted for therapy, and observed a high (>80%) expression of candidate genes for the different diseases at the target tissue level. These observations suggest that future research on autoimmune diseases should focus on both the immune system and the target tissues, and on their dialog. Discovering similar disease-specific signatures may allow the identification of key pathways that could be targeted for therapy, including the repurposing of drugs already in clinical use for other diseases.
Collapse
Affiliation(s)
- F Szymczak
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium
| | - M L Colli
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | - M J Mamula
- Section of Rheumatology, Yale University School of Medicine, New Haven, CT, USA
| | - C Evans-Molina
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - D L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium.
- Indiana Biosciences Research Institute (IBRI), Indianapolis, IN, USA
| |
Collapse
|
147
|
Fox LE, Locke MC, Lenschow DJ. Context Is Key: Delineating the Unique Functions of IFNα and IFNβ in Disease. Front Immunol 2020; 11:606874. [PMID: 33408718 PMCID: PMC7779635 DOI: 10.3389/fimmu.2020.606874] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022] Open
Abstract
Type I interferons (IFNs) are critical effector cytokines of the immune system and were originally known for their important role in protecting against viral infections; however, they have more recently been shown to play protective or detrimental roles in many disease states. Type I IFNs consist of IFNα, IFNβ, IFNϵ, IFNκ, IFNω, and a few others, and they all signal through a shared receptor to exert a wide range of biological activities, including antiviral, antiproliferative, proapoptotic, and immunomodulatory effects. Though the individual type I IFN subtypes possess overlapping functions, there is growing appreciation that they also have unique properties. In this review, we summarize some of the mechanisms underlying differential expression of and signaling by type I IFNs, and we discuss examples of differential functions of IFNα and IFNβ in models of infectious disease, cancer, and autoimmunity.
Collapse
Affiliation(s)
- Lindsey E. Fox
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Marissa C. Locke
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Deborah J. Lenschow
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
148
|
Melki I, Allaeys I, Tessandier N, Mailhot B, Cloutier N, Campbell RA, Rowley JW, Salem D, Zufferey A, Laroche A, Lévesque T, Patey N, Rauch J, Lood C, Droit A, McKenzie SE, Machlus KR, Rondina MT, Lacroix S, Fortin PR, Boilard E. FcγRIIA expression accelerates nephritis and increases platelet activation in systemic lupus erythematosus. Blood 2020; 136:2933-2945. [PMID: 33331924 PMCID: PMC7751357 DOI: 10.1182/blood.2020004974] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/11/2020] [Indexed: 02/06/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune inflammatory disease characterized by deposits of immune complexes (ICs) in organs and tissues. The expression of FcγRIIA by human platelets, which is their unique receptor for immunoglobulin G antibodies, positions them to ideally respond to circulating ICs. Whereas chronic platelet activation and thrombosis are well-recognized features of human SLE, the exact mechanisms underlying platelet activation in SLE remain unknown. Here, we evaluated the involvement of FcγRIIA in the course of SLE and platelet activation. In patients with SLE, levels of ICs are associated with platelet activation. Because FcγRIIA is absent in mice, and murine platelets do not respond to ICs in any existing mouse model of SLE, we introduced the FcγRIIA (FCGR2A) transgene into the NZB/NZWF1 mouse model of SLE. In mice, FcγRIIA expression by bone marrow cells severely aggravated lupus nephritis and accelerated death. Lupus onset initiated major changes to the platelet transcriptome, both in FcγRIIA-expressing and nonexpressing mice, but enrichment for type I interferon response gene changes was specifically observed in the FcγRIIA mice. Moreover, circulating platelets were degranulated and were found to interact with neutrophils in FcγRIIA-expressing lupus mice. FcγRIIA expression in lupus mice also led to thrombosis in lungs and kidneys. The model recapitulates hallmarks of human SLE and can be used to identify contributions of different cellular lineages in the manifestations of SLE. The study further reveals a role for FcγRIIA in nephritis and in platelet activation in SLE.
Collapse
Affiliation(s)
- Imene Melki
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche Arthrite, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Isabelle Allaeys
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche Arthrite, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Nicolas Tessandier
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche Arthrite, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Benoit Mailhot
- Département de Médecine Moléculaire, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
- Axe Neurosciences, Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
| | - Nathalie Cloutier
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche Arthrite, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Robert A Campbell
- Department of Internal Medicine and Pathology, University of Utah, Salt Lake City, UT
- University of Utah Molecular Medicine Program, Eccles Institute of Human Genetics, Salt Lake City, UT
| | - Jesse W Rowley
- Department of Internal Medicine and Pathology, University of Utah, Salt Lake City, UT
- University of Utah Molecular Medicine Program, Eccles Institute of Human Genetics, Salt Lake City, UT
| | - David Salem
- Division of Rheumatology, Department of Medicine, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Anne Zufferey
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche Arthrite, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Audrée Laroche
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche Arthrite, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Tania Lévesque
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche Arthrite, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Natalie Patey
- Centre Hospitalier Universitaire de Sainte-Justine, Département de Pathologie et Biologie Cellulaire, Faculté de Médecine, Université de Montreal, Montreal, QC, Canada
| | - Joyce Rauch
- Division of Rheumatology, Department of Medicine, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Christian Lood
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA
| | - Arnaud Droit
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Département de Médecine Moléculaire, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Steven E McKenzie
- Cardeza Foundation for Hematological Research, Thomas Jefferson University, Philadelphia, PA
| | - Kellie R Machlus
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; and
| | - Matthew T Rondina
- Axe Neurosciences, Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- University of Utah Molecular Medicine Program, Eccles Institute of Human Genetics, Salt Lake City, UT
- Department of Internal Medicine-Geriatric Research Education and Clinical Center (GRECC), George E. Wahlen Veterans Affairs Medical Center (VAMC), Salt Lake City, UT
| | - Steve Lacroix
- Centre de Recherche Arthrite, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
- Département de Médecine Moléculaire, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Paul R Fortin
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche Arthrite, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Eric Boilard
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche Arthrite, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| |
Collapse
|
149
|
Postal M, Vivaldo JF, Fernandez-Ruiz R, Paredes JL, Appenzeller S, Niewold TB. Type I interferon in the pathogenesis of systemic lupus erythematosus. Curr Opin Immunol 2020; 67:87-94. [PMID: 33246136 PMCID: PMC8054829 DOI: 10.1016/j.coi.2020.10.014] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 02/08/2023]
Abstract
Type I interferon (IFN) is a primary pathogenic factor in systemic lupus erythematosus (SLE). Gain-of-function genetic variants in the type I IFN pathway have been associated with risk of disease. Common polygenic as well as rare monogenic influences on type I IFN have been demonstrated, supporting a complex genetic basis for high IFN in many SLE patients. Both SLE-associated autoantibodies and high type I IFN can be observed in the pre-disease state. Patients with SLE and evidence of high type I IFN have more active disease and a greater propensity to nephritis and other severe manifestations. Despite the well-established association between type I IFN and SLE, the specific triggers of type I IFN production, the mechanisms by which IFNs help perpetuate the cycle of autoreactive cells and autoantibody production are not completely clear. This review provides an updated overview of type I IFN in SLE pathogenesis, clinical manifestations, and current therapeutic strategies targeting this pathway.
Collapse
Affiliation(s)
- Mariana Postal
- Autoimmunity Lab, School of Medical Science, State University of Campinas, Campinas, SP, Brazil
| | - Jessica F Vivaldo
- Autoimmunity Lab, School of Medical Science, State University of Campinas, Campinas, SP, Brazil; Graduate Program of Child and Adolescent Health, School of Medical Science, State University of Campinas, Campinas, SP, Brazil
| | - Ruth Fernandez-Ruiz
- Colton Center for Autoimmunity, New York University School of Medicine, New York, NY, USA
| | - Jacqueline L Paredes
- Colton Center for Autoimmunity, New York University School of Medicine, New York, NY, USA
| | - Simone Appenzeller
- Autoimmunity Lab, School of Medical Science, State University of Campinas, Campinas, SP, Brazil; Rheumatology Unit, Department of Medicine, School of Medical Science, State University of Campinas, Campinas, SP, Brazil
| | - Timothy B Niewold
- Colton Center for Autoimmunity, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
150
|
Mazewski C, Perez RE, Fish EN, Platanias LC. Type I Interferon (IFN)-Regulated Activation of Canonical and Non-Canonical Signaling Pathways. Front Immunol 2020; 11:606456. [PMID: 33329603 PMCID: PMC7719805 DOI: 10.3389/fimmu.2020.606456] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
For several decades there has been accumulating evidence implicating type I interferons (IFNs) as key elements of the immune response. Therapeutic approaches incorporating different recombinant type I IFN proteins have been successfully employed to treat a diverse group of diseases with significant and positive outcomes. The biological activities of type I IFNs are consequences of signaling events occurring in the cytoplasm and nucleus of cells. Biochemical events involving JAK/STAT proteins that control transcriptional activation of IFN-stimulated genes (ISGs) were the first to be identified and are referred to as "canonical" signaling. Subsequent identification of JAK/STAT-independent signaling pathways, critical for ISG transcription and/or mRNA translation, are denoted as "non-canonical" or "non-classical" pathways. In this review, we summarize these signaling cascades and discuss recent developments in the field, specifically as they relate to the biological and clinical implications of engagement of both canonical and non-canonical pathways.
Collapse
Affiliation(s)
- Candice Mazewski
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States
- Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Ricardo E. Perez
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States
- Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Eleanor N. Fish
- Toronto General Hospital Research Institute, University Health Network and Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Leonidas C. Platanias
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States
- Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| |
Collapse
|