101
|
Wang Y, Peng J, Mi X, Yang M. p53-GSDME Elevation: A Path for CDK7 Inhibition to Suppress Breast Cancer Cell Survival. Front Mol Biosci 2021; 8:697457. [PMID: 34490348 PMCID: PMC8417410 DOI: 10.3389/fmolb.2021.697457] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/21/2021] [Indexed: 11/30/2022] Open
Abstract
Higher cyclin-dependent kinase (CDK7) expression is a character of breast cancer and indicates poor prognosis. Inhibiting CDK7 exhibited effective cancer cell suppression which implies the potential of CDK7 inhibition to be a method for anti-cancer treatment. Our study aimed to explore a novel mechanism of CDK7 inhibition for suppressing breast cancer cell survival. Here, we proved inhibiting CDK7 repressed breast cancer cell proliferation and colony formation and increased the apoptotic cell rate, with p53 and GSDME protein level elevation. When p53 was suppressed in MCF-7 cells, the decline of GSDME expression and associated stronger proliferation and colony formation could be observed. Since downregulation of GSDME was of benefit to breast cancer cells, p53 inhibition blocked the elevation of GSDME induced by CDK7 inhibition and retrieved cells from the tumor suppressive effect of CDK7 inhibition. Therefore, CDK7 inhibition exerted a negative effect on breast cancer cell proliferation and colony formation in a p53–GSDME dependent manner. These results revealed the CDK7–p53–GSDME axis could be a pathway affecting breast cancer cell survival.
Collapse
Affiliation(s)
- Yueyuan Wang
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jingyu Peng
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Xuguang Mi
- Tumor Biotherapy Center, Jilin Province People's Hospital, Changchun, China
| | - Ming Yang
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
102
|
Kim W, LeBlanc B, Matthews WL, Zhang ZY, Zhang Y. Advancements in chemical biology targeting the kinases and phosphatases of RNA polymerase II-mediated transcription. Curr Opin Chem Biol 2021; 63:68-77. [PMID: 33714893 PMCID: PMC8384638 DOI: 10.1016/j.cbpa.2021.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/21/2021] [Accepted: 02/01/2021] [Indexed: 11/30/2022]
Abstract
Phosphorylation of RNA polymerase II (RNAP II) coordinates the temporal progression of eukaryotic transcription. The development and application of chemical genetic methods have enhanced our ability to investigate the intricate and intertwined pathways regulated by the kinases and phosphatases targeting RNAP II to ensure transcription accuracy and efficiency. Although identifying small molecules that modulate these enzymes has been challenging due to their highly conserved structures, powerful new chemical biology strategies such as targeted covalent inhibitors and small molecule degraders have significantly improved chemical probe specificity. The recent success in discovering phosphatase holoenzyme activators and inhibitors, which demonstrates the feasibility of selective targeting of individual phosphatase complexes, opens up new avenues into the study of transcription. Herein, we summarize how chemical biology is used to delineate kinases' identities involved in RNAP II regulation and new concepts in inhibitor/activator design implemented for kinases/phosphatases involved in modulating RNAP II-mediated transcription.
Collapse
Affiliation(s)
- Wantae Kim
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Blase LeBlanc
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Wendy L Matthews
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, and Institute for Drug Discovery, Purdue University, West Lafayette, IN, 47907, USA
| | - Yan Zhang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA; The Institute for Cellular and Molecular Biology. University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
103
|
Yang Y, Jiang D, Zhou Z, Xiong H, Yang X, Peng G, Xia W, Wang S, Lei H, Zhao J, Qian Z, Wu S, Pang J. CDK7 blockade suppresses super-enhancer-associated oncogenes in bladder cancer. Cell Oncol (Dordr) 2021; 44:871-887. [PMID: 33905040 DOI: 10.1007/s13402-021-00608-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/08/2021] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Transcriptional addiction plays a pivotal role in maintaining the hallmarks of cancer cells. Thus, targeting super-enhancers (SEs), which modulate the transcriptional activity of oncogenes, has become an attractive strategy for cancer therapy. As yet, however, the molecular mechanisms of this process in bladder cancer (BC) remain to be elucidated. Here, we aimed to provide detailed information regarding the SE landscape in BC and to investigate new potential pharmaceutical targets for BC therapy. METHODS We employed THZ1 as a potent and specific CDK7 inhibitor. In vitro and in vivo studies were carried out to investigate the anticancer and apoptosis-inducing effects of THZ1 on BC cells. Whole-transcriptome sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) were performed to investigate the mechanism and function of SE-linked oncogenic transcription in BC cells. RESULTS We found that THZ1 serves as an effective and potent inhibitor with suppressive activity against BC cells. An integrative analysis of THZ1-sensitive and SE-associated oncogenes yielded potential new pharmaceutical targets, including DDIT4, B4GALT5, PSRC1 and MED22. Combination treatment with THZ1 and the DDIT4 inhibitor rapamycin effectively suppressed BC cell growth. In addition, we found that THZ1 and rapamycin sensitized BC cells to conventional chemotherapy. CONCLUSIONS Our data indicate that exploring BC gene regulatory mechanisms associated with SEs through integrating RNA-seq and ChIP-seq data improves our understanding of BC biology and provides a basis for innovative therapies.
Collapse
Affiliation(s)
- Yafei Yang
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Donggen Jiang
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Ziyu Zhou
- Urology Institute of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, 518000, China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 518000, China
| | - Haiyun Xiong
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xiangwei Yang
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Guoyu Peng
- Urology Institute of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, 518000, China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 518000, China
| | - Wuchao Xia
- Urology Institute of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, 518000, China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 518000, China
| | - Shang Wang
- Urology Institute of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, 518000, China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 518000, China
| | - Hanqi Lei
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Jing Zhao
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Zhirong Qian
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Song Wu
- Urology Institute of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, 518000, China.
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 518000, China.
| | - Jun Pang
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
104
|
Heisey DAR, Jacob S, Lochmann TL, Kurupi R, Ghotra MS, Calbert ML, Shende M, Maves YK, Koblinski JE, Dozmorov MG, Boikos SA, Benes CH, Faber AC. Pharmaceutical Interference of the EWS-FLI1-driven Transcriptome By Cotargeting H3K27ac and RNA Polymerase Activity in Ewing Sarcoma. Mol Cancer Ther 2021; 20:1868-1879. [PMID: 34315769 DOI: 10.1158/1535-7163.mct-20-0489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 12/23/2020] [Accepted: 07/19/2021] [Indexed: 11/16/2022]
Abstract
The EWSR1-FLI1 t(11;22)(q24;q12) translocation is the hallmark genomic alteration of Ewing sarcoma, a malignancy of the bone and surrounding tissue, predominantly affecting children and adolescents. Although significant progress has been made for the treatment of localized disease, patients with metastasis or who relapse after chemotherapy have less than a 30% five-year survival rate. EWS-FLI1 is currently not clinically druggable, driving the need for more effective targeted therapies. Treatment with the H3K27 demethylase inhibitor, GSK-J4, leads to an increase in H3K27me and a decrease in H3K27ac, a significant event in Ewing sarcoma because H3K27ac associates strongly with EWS-FLI1 binding at enhancers and promoters and subsequent activity of EWS-FLI1 target genes. We were able to identify targets of EWS-FLI1 tumorigenesis directly inhibited by GSK-J4. GSK-J4 disruption of EWS-FLI1-driven transcription was toxic to Ewing sarcoma cells and slowed tumor growth in patient-derived xenografts (PDX) of Ewing sarcoma. Responses were markedly exacerbated by cotreatment with a disruptor of RNA polymerase II activity, the CDK7 inhibitor THZ1. This combination together suppressed EWS-FLI1 target genes and viability of ex vivo PDX Ewing sarcoma cells in a synergistic manner. In PDX models of Ewing Sarcoma, the combination shrank tumors. We present a new therapeutic strategy to treat Ewing sarcoma by decreasing H3K27ac at EWS-FLI1-driven transcripts, exacerbated by blocking phosphorylation of the C-terminal domain of RNA polymerase II to further hinder the EWS-FLI1-driven transcriptome.
Collapse
Affiliation(s)
- Daniel A R Heisey
- VCU Philips Institute, School of Dentistry and Massey Cancer Center; Richmond, Virginia
| | - Sheeba Jacob
- VCU Philips Institute, School of Dentistry and Massey Cancer Center; Richmond, Virginia
| | - Timothy L Lochmann
- VCU Philips Institute, School of Dentistry and Massey Cancer Center; Richmond, Virginia
| | - Richard Kurupi
- VCU Philips Institute, School of Dentistry and Massey Cancer Center; Richmond, Virginia
| | - Maninderjit S Ghotra
- VCU Philips Institute, School of Dentistry and Massey Cancer Center; Richmond, Virginia
| | - Marissa L Calbert
- VCU Philips Institute, School of Dentistry and Massey Cancer Center; Richmond, Virginia
| | - Mayuri Shende
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia
| | | | | | - Mikhail G Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia
| | - Sosipatros A Boikos
- Hematology, Oncology and Palliative Care, School of Medicine and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia.
| | - Cyril H Benes
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Anthony C Faber
- VCU Philips Institute, School of Dentistry and Massey Cancer Center; Richmond, Virginia.
| |
Collapse
|
105
|
Tomko EJ, Luyties O, Rimel JK, Tsai CL, Fuss JO, Fishburn J, Hahn S, Tsutakawa SE, Taatjes DJ, Galburt EA. The Role of XPB/Ssl2 dsDNA Translocase Processivity in Transcription Start-site Scanning. J Mol Biol 2021; 433:166813. [PMID: 33453189 PMCID: PMC8327364 DOI: 10.1016/j.jmb.2021.166813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
The general transcription factor TFIIH contains three ATP-dependent catalytic activities. TFIIH functions in nucleotide excision repair primarily as a DNA helicase and in Pol II transcription initiation as a dsDNA translocase and protein kinase. During initiation, the XPB/Ssl2 subunit of TFIIH couples ATP hydrolysis to dsDNA translocation facilitating promoter opening and the kinase module phosphorylates Pol II to facilitate the transition to elongation. These functions are conserved between metazoans and yeast; however, yeast TFIIH also drives transcription start-site scanning in which Pol II scans downstream DNA to locate productive start-sites. The ten-subunit holo-TFIIH from S. cerevisiae has a processive dsDNA translocase activity required for scanning and a structural role in scanning has been ascribed to the three-subunit TFIIH kinase module. Here, we assess the dsDNA translocase activity of ten-subunit holo- and core-TFIIH complexes (i.e. seven subunits, lacking the kinase module) from both S. cerevisiae and H. sapiens. We find that neither holo nor core human TFIIH exhibit processive translocation, consistent with the lack of start-site scanning in humans. Furthermore, in contrast to holo-TFIIH, the S. cerevisiae core-TFIIH also lacks processive translocation and its dsDNA-stimulated ATPase activity was reduced ~5-fold to a level comparable to the human complexes, potentially explaining the reported upstream shift in start-site observed in vitro in the absence of the S. cerevisiae kinase module. These results suggest that neither human nor S. cerevisiae core-TFIIH can translocate efficiently, and that the S. cerevisiae kinase module functions as a processivity factor to allow for robust transcription start-site scanning.
Collapse
Affiliation(s)
- Eric J Tomko
- Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Olivia Luyties
- Dept. of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Jenna K Rimel
- Dept. of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Chi-Lin Tsai
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jill O Fuss
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - James Fishburn
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Steven Hahn
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Susan E Tsutakawa
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Dylan J Taatjes
- Dept. of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Eric A Galburt
- Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
106
|
Lee HT, Lee IH, Kim JH, Lee S, Kwak S, Suh MY, Hwang IY, Kang BG, Cha SS, Lee BI, Lee SE, Choi J, Roe JS, Cho EJ, Youn HD. Phosphorylation of OGFOD1 by Cell Cycle-Dependent Kinase 7/9 Enhances the Transcriptional Activity of RNA Polymerase II in Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13143418. [PMID: 34298635 PMCID: PMC8304009 DOI: 10.3390/cancers13143418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Among the causes of accelerating cancer properties, dysregulated transcription is considerably prominent in many cancers. However, it is difficult to target transcriptional machineries due to their fundamental importance. Compared to breast cancer cell lines, we found that OGFOD1 aggravates cancers by enhancing RNA polymerase II transcriptional activity and it is improved by cell cycle-dependent kinases. Overall, we uncovered the novel mechanism for how OGFOD1 maliciously functions in breast cancers, suggesting it as a rational cancer treatment target protein. Abstract 2-oxoglutarate and iron-dependent oxygenase domain-containing protein 1 (OGFOD1) expression is upregulated in a variety of cancers and has been related to poor prognosis. However, despite this significance to cancer progression, the precise oncogenic mechanism of OGFOD1 is not understood. We demonstrated that OGFOD1 plays a role in enhancing the transcriptional activity of RNA polymerase II in breast cancer cells. OGFOD1 directly binds to the C-terminal domain of RNA polymerase II to alter phosphorylation status. The elimination of OGFOD1 resulted in decreased tumor development. Additionally, cell cycle-dependent kinase 7 and cell cycle-dependent kinase 9, critical enzymes for activating RNA polymerase II, phosphorylated serine 256 of OGFOD1, whereas a non-phosphorylated mutant OGFOD1 failed to enhance transcriptional activation and tumor growth. Consequently, OGFOD1 helps promote tumor growth by enhancing RNA polymerase II, whereas simultaneous phosphorylation of OGFOD1 by CDK enzymes is essential in stimulating RNA polymerase II-mediated transcription both in vitro and in vivo, and expression of target genes.
Collapse
Affiliation(s)
- Han-Teo Lee
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-T.L.); (I.-H.L.); (J.-H.K.); (S.L.); (S.K.); (M.-Y.S.); (I.-Y.H.); (J.C.)
- Department of Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Korea
| | - Il-Hwan Lee
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-T.L.); (I.-H.L.); (J.-H.K.); (S.L.); (S.K.); (M.-Y.S.); (I.-Y.H.); (J.C.)
| | - Jae-Hwan Kim
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-T.L.); (I.-H.L.); (J.-H.K.); (S.L.); (S.K.); (M.-Y.S.); (I.-Y.H.); (J.C.)
| | - Sangho Lee
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-T.L.); (I.-H.L.); (J.-H.K.); (S.L.); (S.K.); (M.-Y.S.); (I.-Y.H.); (J.C.)
- Department of Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Korea
| | - Sojung Kwak
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-T.L.); (I.-H.L.); (J.-H.K.); (S.L.); (S.K.); (M.-Y.S.); (I.-Y.H.); (J.C.)
| | - Min-Young Suh
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-T.L.); (I.-H.L.); (J.-H.K.); (S.L.); (S.K.); (M.-Y.S.); (I.-Y.H.); (J.C.)
| | - In-Young Hwang
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-T.L.); (I.-H.L.); (J.-H.K.); (S.L.); (S.K.); (M.-Y.S.); (I.-Y.H.); (J.C.)
| | - Bu-Gyeong Kang
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul 03760, Korea; (B.-G.K.); (S.-S.C.)
| | - Sun-Shin Cha
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul 03760, Korea; (B.-G.K.); (S.-S.C.)
| | - Byung-Il Lee
- Research Institute, National Cancer Center, Goyang-si 10408, Korea;
| | - Sang-Eun Lee
- Cardiology Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Jinmi Choi
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-T.L.); (I.-H.L.); (J.-H.K.); (S.L.); (S.K.); (M.-Y.S.); (I.-Y.H.); (J.C.)
- College of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
| | - Jae-Seok Roe
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea;
| | - Eun-Jung Cho
- College of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
| | - Hong-Duk Youn
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-T.L.); (I.-H.L.); (J.-H.K.); (S.L.); (S.K.); (M.-Y.S.); (I.-Y.H.); (J.C.)
- Correspondence: ; Tel.: +82-2-740-8250; Fax: +82-2-3668-7622
| |
Collapse
|
107
|
Vorobyeva NE, Mazina MY. The Elongation Regulators and Architectural Proteins as New Participants of Eukaryotic Gene Transcription. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421060144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
108
|
González-Jiménez A, Campos A, Navarro F, Clemente-Blanco A, Calvo O. Regulation of Eukaryotic RNAPs Activities by Phosphorylation. Front Mol Biosci 2021; 8:681865. [PMID: 34250017 PMCID: PMC8268151 DOI: 10.3389/fmolb.2021.681865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/07/2021] [Indexed: 01/11/2023] Open
Abstract
Evolutionarily conserved kinases and phosphatases regulate RNA polymerase II (RNAPII) transcript synthesis by modifying the phosphorylation status of the carboxyl-terminal domain (CTD) of Rpb1, the largest subunit of RNAPII. Proper levels of Rpb1-CTD phosphorylation are required for RNA co-transcriptional processing and to coordinate transcription with other nuclear processes, such as chromatin remodeling and histone modification. Whether other RNAPII subunits are phosphorylated and influences their role in gene expression is still an unanswered question. Much less is known about RNAPI and RNAPIII phosphorylation, whose subunits do not contain functional CTDs. However, diverse studies have reported that several RNAPI and RNAPIII subunits are susceptible to phosphorylation. Some of these phosphorylation sites are distributed within subunits common to all three RNAPs whereas others are only shared between RNAPI and RNAPIII. This suggests that the activities of all RNAPs might be finely modulated by phosphorylation events and raises the idea of a tight coordination between the three RNAPs. Supporting this view, the transcription by all RNAPs is regulated by signaling pathways that sense different environmental cues to adapt a global RNA transcriptional response. This review focuses on how the phosphorylation of RNAPs might regulate their function and we comment on the regulation by phosphorylation of some key transcription factors in the case of RNAPI and RNAPIII. Finally, we discuss the existence of possible common mechanisms that could coordinate their activities.
Collapse
Affiliation(s)
- Araceli González-Jiménez
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, Salamanca, Spain
| | - Adrián Campos
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, Salamanca, Spain
| | - Francisco Navarro
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Jaén, Spain.,Centro de Estudios Avanzados en Aceite de Oliva y Olivar, Universidad de Jaén, Jaén, Spain
| | - Andrés Clemente-Blanco
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, Salamanca, Spain
| | - Olga Calvo
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
109
|
CDK9 keeps RNA polymerase II on track. Cell Mol Life Sci 2021; 78:5543-5567. [PMID: 34146121 PMCID: PMC8257543 DOI: 10.1007/s00018-021-03878-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/26/2021] [Accepted: 06/08/2021] [Indexed: 12/30/2022]
Abstract
Cyclin-dependent kinase 9 (CDK9), the kinase component of positive transcription elongation factor b (P-TEFb), is essential for transcription of most protein-coding genes by RNA polymerase II (RNAPII). By releasing promoter-proximally paused RNAPII into gene bodies, CDK9 controls the entry of RNAPII into productive elongation and is, therefore, critical for efficient synthesis of full-length messenger (m)RNAs. In recent years, new players involved in P-TEFb-dependent processes have been identified and an important function of CDK9 in coordinating elongation with transcription initiation and termination has been unveiled. As the regulatory functions of CDK9 in gene expression continue to expand, a number of human pathologies, including cancers, have been associated with aberrant CDK9 activity, underscoring the need to properly regulate CDK9. Here, I provide an overview of CDK9 function and regulation, with an emphasis on CDK9 dysregulation in human diseases.
Collapse
|
110
|
You KS, Yi YW, Cho J, Park JS, Seong YS. Potentiating Therapeutic Effects of Epidermal Growth Factor Receptor Inhibition in Triple-Negative Breast Cancer. Pharmaceuticals (Basel) 2021; 14:589. [PMID: 34207383 PMCID: PMC8233743 DOI: 10.3390/ph14060589] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a subset of breast cancer with aggressive characteristics and few therapeutic options. The lack of an appropriate therapeutic target is a challenging issue in treating TNBC. Although a high level expression of epidermal growth factor receptor (EGFR) has been associated with a poor prognosis among patients with TNBC, targeted anti-EGFR therapies have demonstrated limited efficacy for TNBC treatment in both clinical and preclinical settings. However, with the advantage of a number of clinically approved EGFR inhibitors (EGFRis), combination strategies have been explored as a promising approach to overcome the intrinsic resistance of TNBC to EGFRis. In this review, we analyzed the literature on the combination of EGFRis with other molecularly targeted therapeutics or conventional chemotherapeutics to understand the current knowledge and to provide potential therapeutic options for TNBC treatment.
Collapse
Affiliation(s)
- Kyu Sic You
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 3116, Chungcheongnam-do, Korea
| | - Yong Weon Yi
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| | - Jeonghee Cho
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| | - Jeong-Soo Park
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
| | - Yeon-Sun Seong
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 3116, Chungcheongnam-do, Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| |
Collapse
|
111
|
Pinto D, Pagé V, Fisher RP, Tanny JC. New connections between ubiquitylation and methylation in the co-transcriptional histone modification network. Curr Genet 2021; 67:695-705. [PMID: 34089069 DOI: 10.1007/s00294-021-01196-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 01/01/2023]
Abstract
Co-transcriptional histone modifications are a ubiquitous feature of RNA polymerase II (RNAPII) transcription, with profound but incompletely understood effects on gene expression. Unlike the covalent marks found at promoters, which are thought to be instructive for transcriptional activation, these modifications occur in gene bodies as a result of transcription, which has made elucidation of their functions challenging. Here we review recent insights into the regulation and roles of two such modifications: monoubiquitylation of histone H2B at lysine 120 (H2Bub1) and methylation of histone H3 at lysine 36 (H3K36me). Both H2Bub1 and H3K36me are enriched in the coding regions of transcribed genes, with highly overlapping distributions, but they were thought to work largely independently. We highlight our recent demonstration that, as was previously shown for H3K36me, H2Bub1 signals to the histone deacetylase (HDAC) complex Rpd3S/Clr6-CII, and that Rpd3S/Clr6-CII and H2Bub1 function in the same pathway to repress aberrant antisense transcription initiating within gene coding regions. Moreover, both of these histone modification pathways are influenced by protein phosphorylation catalyzed by the cyclin-dependent kinases (CDKs) that regulate RNAPII elongation, chiefly Cdk9. Therefore, H2Bub1 and H3K36me are more tightly linked than previously thought, sharing both upstream regulatory inputs and downstream effectors. Moreover, these newfound connections suggest extensive, bidirectional signaling between RNAPII elongation complexes and chromatin-modifying enzymes, which helps to determine transcriptional outputs and should be a focus for future investigation.
Collapse
Affiliation(s)
- Daniel Pinto
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Vivane Pagé
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Robert P Fisher
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Jason C Tanny
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada.
| |
Collapse
|
112
|
Vodnala M, Choi EB, Fong YW. Low complexity domains, condensates, and stem cell pluripotency. World J Stem Cells 2021; 13:416-438. [PMID: 34136073 PMCID: PMC8176841 DOI: 10.4252/wjsc.v13.i5.416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Biological reactions require self-assembly of factors in the complex cellular milieu. Recent evidence indicates that intrinsically disordered, low-complexity sequence domains (LCDs) found in regulatory factors mediate diverse cellular processes from gene expression to DNA repair to signal transduction, by enriching specific biomolecules in membraneless compartments or hubs that may undergo liquid-liquid phase separation (LLPS). In this review, we discuss how embryonic stem cells take advantage of LCD-driven interactions to promote cell-specific transcription, DNA damage response, and DNA repair. We propose that LCD-mediated interactions play key roles in stem cell maintenance and safeguarding genome integrity.
Collapse
Affiliation(s)
- Munender Vodnala
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Eun-Bee Choi
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Yick W Fong
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
- Harvard Stem Cell Institute, Cambridge, MA 02138, United States.
| |
Collapse
|
113
|
Zhang M, Zhang L, Hei R, Li X, Cai H, Wu X, Zheng Q, Cai C. CDK inhibitors in cancer therapy, an overview of recent development. Am J Cancer Res 2021; 11:1913-1935. [PMID: 34094661 PMCID: PMC8167670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023] Open
Abstract
Dysregulated cell division, which leads to aberrant cell proliferation, is one of the key hallmarks of cancer. Therefore, therapeutic targets that block cell division would be effective for cancer treatment. Cell division is mainly controlled by a complex composed of cyclin and cyclin dependent kinases (CDKs). To date, the CDK inhibitors (CDKIs), specifically the ones that block the enzyme activity of CDK4 and CDK6 (CDK4/6), have been approved by FDA for the treatment of metastatic hormone receptor positive breast cancer. However, due to the non-selectivity and significant toxicity, most of the first generation CDK inhibitors (so called pan-CDK inhibitors that target several CDKs), have not been approved for clinical application. Despite this, great efforts and progress have been made to enable pan-CDK inhibitors application in the clinical setting. Notably, the development of combination therapy strategies in recent years has made it possible to reduce the toxicity and side effects of pan-CDK inhibitors. Thus, as a combination therapy approach, pan-CDK inhibitors regain great potential in clinical application. In this review, we introduced the CDK family members and discussed their major functions in cell cycle controlling. Then, we summarized the research progress regarding CDK inhibitors, especially those other than CDK4/6 inhibitors. We reviewed first-generation pan-CDKIs Flavopiridol and Roscovitine, and second-generation CDKIs Dinaciclib, P276-00, AT7519, TG02, Roniciclib, RGB-286638 by focusing on their developing stages, clinical trials and targeting cancers. The specific CDKIs, which targets to increase specificity and decrease the side effects, were also discussed. These CDKIs include CDK4/6, CDK7, CDK9, and CDK12/13 inhibitors. Finally, the efficacy and discrepancy of combination therapy with CDK inhibitors and PD1/PDL1 antibodies were analyzed, which might give insights into the development of promising strategy for cancer treatment.
Collapse
Affiliation(s)
- Mengna Zhang
- Department of Orthopaedics, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan UniversityWuhan 430071, China
| | - Lingxian Zhang
- Department of Orthopaedics, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan UniversityWuhan 430071, China
| | - Ruoxuan Hei
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, China
| | - Xiao Li
- Department of Orthopaedics, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan UniversityWuhan 430071, China
| | | | - Xuan Wu
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, China
| | - Qiping Zheng
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, China
- Shenzhen Academy of Peptide Targeting Technology at Pingshan, and Shenzhen Tyercan Bio-pharm Co., Ltd.Shenzhen 518118, China
| | - Cheguo Cai
- Department of Orthopaedics, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan UniversityWuhan 430071, China
| |
Collapse
|
114
|
Anshabo AT, Milne R, Wang S, Albrecht H. CDK9: A Comprehensive Review of Its Biology, and Its Role as a Potential Target for Anti-Cancer Agents. Front Oncol 2021; 11:678559. [PMID: 34041038 PMCID: PMC8143439 DOI: 10.3389/fonc.2021.678559] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/16/2021] [Indexed: 12/25/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) are proteins pivotal to a wide range of cellular functions, most importantly cell division and transcription, and their dysregulations have been implicated as prominent drivers of tumorigenesis. Besides the well-established role of cell cycle CDKs in cancer, the involvement of transcriptional CDKs has been confirmed more recently. Most cancers overtly employ CDKs that serve as key regulators of transcription (e.g., CDK9) for a continuous production of short-lived gene products that maintain their survival. As such, dysregulation of the CDK9 pathway has been observed in various hematological and solid malignancies, making it a valuable anticancer target. This therapeutic potential has been utilized for the discovery of CDK9 inhibitors, some of which have entered human clinical trials. This review provides a comprehensive discussion on the structure and biology of CDK9, its role in solid and hematological cancers, and an updated review of the available inhibitors currently being investigated in preclinical and clinical settings.
Collapse
Affiliation(s)
- Abel Tesfaye Anshabo
- Drug Discovery and Development, Centre for Cancer Diagnostics and Therapeutics, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Robert Milne
- Drug Discovery and Development, Centre for Cancer Diagnostics and Therapeutics, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Shudong Wang
- Drug Discovery and Development, Centre for Cancer Diagnostics and Therapeutics, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Hugo Albrecht
- Drug Discovery and Development, Centre for Cancer Diagnostics and Therapeutics, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
115
|
Goel B, Tripathi N, Bhardwaj N, Jain SK. Small Molecule CDK Inhibitors for the Therapeutic Management of Cancer. Curr Top Med Chem 2021; 20:1535-1563. [PMID: 32416692 DOI: 10.2174/1568026620666200516152756] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 01/03/2023]
Abstract
Cyclin-dependent kinases (CDKs) are a group of multifunctional enzymes consisting of catalytic and regulatory subunits. The regulatory subunit, cyclin, remains dissociated under normal circumstances, and complexation of cyclin with the catalytic subunit of CDK leads to its activation for phosphorylation of protein substrates. The primary role of CDKs is in the regulation of the cell cycle. Retinoblastoma protein (Rb) is one of the widely investigated tumor suppressor protein substrates of CDK, which prevents cells from entering into cell-cycle under normal conditions. Phosphorylation of Rb by CDKs causes its inactivation and ultimately allows cells to enter a new cell cycle. Many cancers are associated with hyperactivation of CDKs as a result of mutation of the CDK genes or CDK inhibitor genes. Therefore, CDK modulators are of great interest to explore as novel therapeutic agents against cancer and led to the discovery of several CDK inhibitors to clinics. This review focuses on the current progress and development of anti-cancer CDK inhibitors from preclinical to clinical and synthetic to natural small molecules.
Collapse
Affiliation(s)
- Bharat Goel
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| | - Nancy Tripathi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| | - Nivedita Bhardwaj
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| | - Shreyans K Jain
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| |
Collapse
|
116
|
Enhancer rewiring in tumors: an opportunity for therapeutic intervention. Oncogene 2021; 40:3475-3491. [PMID: 33934105 DOI: 10.1038/s41388-021-01793-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/30/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Enhancers are cis-regulatory sequences that fine-tune expression of their target genes in a spatiotemporal manner. They are recognized by sequence-specific transcription factors, which in turn recruit transcriptional coactivators that facilitate transcription by promoting assembly and activation of the basal transcriptional machinery. Their functional importance is underscored by the fact that they are often the target of genetic and nongenetic events in human disease that disrupt their sequence, interactome, activation potential, and/or chromatin environment. Dysregulation of transcription and addiction to transcriptional effectors that interact with and modulate enhancer activity are common features of cancer cells and are amenable to therapeutic intervention. Here, we discuss the current knowledge on enhancer biology, the broad spectrum of mechanisms that lead to their malfunction in tumor cells, and recent progress in developing drugs that efficaciously target their dependencies.
Collapse
|
117
|
Fursova NA, Turberfield AH, Blackledge NP, Findlater EL, Lastuvkova A, Huseyin MK, Dobrinić P, Klose RJ. BAP1 constrains pervasive H2AK119ub1 to control the transcriptional potential of the genome. Genes Dev 2021; 35:749-770. [PMID: 33888563 PMCID: PMC8091973 DOI: 10.1101/gad.347005.120] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/02/2021] [Indexed: 12/21/2022]
Abstract
Histone-modifying systems play fundamental roles in gene regulation and the development of multicellular organisms. Histone modifications that are enriched at gene regulatory elements have been heavily studied, but the function of modifications found more broadly throughout the genome remains poorly understood. This is exemplified by histone H2A monoubiquitylation (H2AK119ub1), which is enriched at Polycomb-repressed gene promoters but also covers the genome at lower levels. Here, using inducible genetic perturbations and quantitative genomics, we found that the BAP1 deubiquitylase plays an essential role in constraining H2AK119ub1 throughout the genome. Removal of BAP1 leads to pervasive genome-wide accumulation of H2AK119ub1, which causes widespread reductions in gene expression. We show that elevated H2AK119ub1 preferentially counteracts Ser5 phosphorylation on the C-terminal domain of RNA polymerase II at gene regulatory elements and causes reductions in transcription and transcription-associated histone modifications. Furthermore, failure to constrain pervasive H2AK119ub1 compromises Polycomb complex occupancy at a subset of Polycomb target genes, which leads to their derepression, providing a potential molecular rationale for why the BAP1 ortholog in Drosophila has been characterized as a Polycomb group gene. Together, these observations reveal that the transcriptional potential of the genome can be modulated by regulating the levels of a pervasive histone modification.
Collapse
Affiliation(s)
- Nadezda A Fursova
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Anne H Turberfield
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Neil P Blackledge
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Emma L Findlater
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Anna Lastuvkova
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Miles K Huseyin
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Paula Dobrinić
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Robert J Klose
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
118
|
Mandal R, Becker S, Strebhardt K. Targeting CDK9 for Anti-Cancer Therapeutics. Cancers (Basel) 2021; 13:2181. [PMID: 34062779 PMCID: PMC8124690 DOI: 10.3390/cancers13092181] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/23/2022] Open
Abstract
Cyclin Dependent Kinase 9 (CDK9) is one of the most important transcription regulatory members of the CDK family. In conjunction with its main cyclin partner-Cyclin T1, it forms the Positive Transcription Elongation Factor b (P-TEFb) whose primary function in eukaryotic cells is to mediate the positive transcription elongation of nascent mRNA strands, by phosphorylating the S2 residues of the YSPTSPS tandem repeats at the C-terminus domain (CTD) of RNA Polymerase II (RNAP II). To aid in this process, P-TEFb also simultaneously phosphorylates and inactivates a number of negative transcription regulators like 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole (DRB) Sensitivity-Inducing Factor (DSIF) and Negative Elongation Factor (NELF). Significantly enhanced activity of CDK9 is observed in multiple cancer types, which is universally associated with significantly shortened Overall Survival (OS) of the patients. In these cancer types, CDK9 regulates a plethora of cellular functions including proliferation, survival, cell cycle regulation, DNA damage repair and metastasis. Due to the extremely critical role of CDK9 in cancer cells, inhibiting its functions has been the subject of intense research, resulting the development of multiple, increasingly specific small-molecule inhibitors, some of which are presently in clinical trials. The search for newer generation CDK9 inhibitors with higher specificity and lower potential toxicities and suitable combination therapies continues. In fact, the Phase I clinical trials of the latest, highly specific CDK9 inhibitor BAY1251152, against different solid tumors have shown good anti-tumor and on-target activities and pharmacokinetics, combined with manageable safety profile while the phase I and II clinical trials of another inhibitor AT-7519 have been undertaken or are undergoing. To enhance the effectiveness and target diversity and reduce potential drug-resistance, the future of CDK9 inhibition would likely involve combining CDK9 inhibitors with inhibitors like those against BRD4, SEC, MYC, MCL-1 and HSP90.
Collapse
Affiliation(s)
- Ranadip Mandal
- Department of Gynecology and Obstetrics, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (R.M.); (S.B.)
| | - Sven Becker
- Department of Gynecology and Obstetrics, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (R.M.); (S.B.)
| | - Klaus Strebhardt
- Department of Gynecology and Obstetrics, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (R.M.); (S.B.)
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| |
Collapse
|
119
|
Veo B, Danis E, Pierce A, Wang D, Fosmire S, Sullivan KD, Joshi M, Khanal S, Dahl N, Karam S, Serkova N, Venkataraman S, Vibhakar R. Transcriptional control of DNA repair networks by CDK7 regulates sensitivity to radiation in MYC-driven medulloblastoma. Cell Rep 2021; 35:109013. [PMID: 33910002 PMCID: PMC12023313 DOI: 10.1016/j.celrep.2021.109013] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/22/2021] [Accepted: 03/29/2021] [Indexed: 12/23/2022] Open
Abstract
MYC-driven medulloblastoma is a major therapeutic challenge due to frequent metastasis and a poor 5-year survival rate. MYC gene amplification results in transcriptional dysregulation, proliferation, and survival of malignant cells. To identify therapeutic targets in MYC-amplified medulloblastoma, we employ a CRISPR-Cas9 essentiality screen targeting 1,140 genes. We identify CDK7 as a mediator of medulloblastoma tumorigenesis. Using chemical inhibitors and genetic depletion, we observe cessation of tumor growth in xenograft mouse models and increases in apoptosis. The results are attributed to repression of a core set of MYC-driven transcriptional programs mediating DNA repair. CDK7 inhibition alters RNA polymerase II (RNA Pol II) and MYC association at DNA repair genes. Blocking CDK7 activity sensitizes cells to ionizing radiation leading to accrual of DNA damage, extending survival and tumor latency in xenograft mouse models. Our studies establish the selective inhibition of MYC-driven medulloblastoma by CDK7 inhibition combined with radiation as a viable therapeutic strategy.
Collapse
Affiliation(s)
- Bethany Veo
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Etienne Danis
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Angela Pierce
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's, Hospital Colorado, Aurora, CO, USA
| | - Dong Wang
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Susan Fosmire
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | | | | | - Nathan Dahl
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's, Hospital Colorado, Aurora, CO, USA
| | - Sana Karam
- Department of Radiation Oncology, University of Colorado Denver, Aurora, CO, USA
| | - Natalie Serkova
- Department of Radiology, University of Colorado Denver, Aurora, CO, USA
| | - Sujatha Venkataraman
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's, Hospital Colorado, Aurora, CO, USA
| | - Rajeev Vibhakar
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's, Hospital Colorado, Aurora, CO, USA; Department of Neurosurgery, University of Colorado Denver, Aurora, CO, USA.
| |
Collapse
|
120
|
Cossa G, Parua PK, Eilers M, Fisher RP. Protein phosphatases in the RNAPII transcription cycle: erasers, sculptors, gatekeepers, and potential drug targets. Genes Dev 2021; 35:658-676. [PMID: 33888562 PMCID: PMC8091971 DOI: 10.1101/gad.348315.121] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this review, Cossa et al. discuss the current knowledge and outstanding questions about phosphatases in the context of the RNAPII transcription cycle. The transcription cycle of RNA polymerase II (RNAPII) is governed at multiple points by opposing actions of cyclin-dependent kinases (CDKs) and protein phosphatases, in a process with similarities to the cell division cycle. While important roles of the kinases have been established, phosphatases have emerged more slowly as key players in transcription, and large gaps remain in understanding of their precise functions and targets. Much of the earlier work focused on the roles and regulation of sui generis and often atypical phosphatases—FCP1, Rtr1/RPAP2, and SSU72—with seemingly dedicated functions in RNAPII transcription. Decisive roles in the transcription cycle have now been uncovered for members of the major phosphoprotein phosphatase (PPP) family, including PP1, PP2A, and PP4—abundant enzymes with pleiotropic roles in cellular signaling pathways. These phosphatases appear to act principally at the transitions between transcription cycle phases, ensuring fine control of elongation and termination. Much is still unknown, however, about the division of labor among the PPP family members, and their possible regulation by or of the transcriptional kinases. CDKs active in transcription have recently drawn attention as potential therapeutic targets in cancer and other diseases, raising the prospect that the phosphatases might also present opportunities for new drug development. Here we review the current knowledge and outstanding questions about phosphatases in the context of the RNAPII transcription cycle.
Collapse
Affiliation(s)
- Giacomo Cossa
- Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Pabitra K Parua
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Martin Eilers
- Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Robert P Fisher
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
121
|
Amani J, Gorjizadeh N, Younesi S, Najafi M, Ashrafi AM, Irian S, Gorjizadeh N, Azizian K. Cyclin-dependent kinase inhibitors (CDKIs) and the DNA damage response: The link between signaling pathways and cancer. DNA Repair (Amst) 2021; 102:103103. [PMID: 33812232 DOI: 10.1016/j.dnarep.2021.103103] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/16/2021] [Indexed: 02/08/2023]
Abstract
At the cellular level, DNA repair mechanisms are crucial in maintaining both genomic integrity and stability. DNA damage appears to be a central culprit in tumor onset and progression. Cyclin-dependent kinases (CDKs) and their regulatory partners coordinate the cell cycle progression. Aberrant CDK activity has been linked to a variety of cancers through deregulation of cell-cycle control. Besides DNA damaging agents and chromosome instability (CIN), disruptions in the levels of cell cycle regulators including cyclin-dependent kinase inhibitors (CDKIs) would result in unscheduled proliferation and cell division. The INK4 and Cip/Kip (CDK interacting protein/kinase inhibitor protein) family of CDKI proteins are involved in cell cycle regulation, transcription regulation, apoptosis, and cell migration. A thorough understanding of how these CDKIs regulate the DNA damage response through multiple signaling pathways may provide an opportunity to design efficient treatment strategies to inhibit carcinogenesis.
Collapse
Affiliation(s)
- Jafar Amani
- Applied Microbiology Research Center, System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Nassim Gorjizadeh
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Simin Younesi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., Australia
| | - Mojtaba Najafi
- Department of Genetics, Faculty of Animal Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Golestan, Iran
| | - Arash M Ashrafi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Saeed Irian
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Negar Gorjizadeh
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Khalil Azizian
- Department of Clinical Microbiology, Sirjan School of Medical Sciences, Sirjan, Iran.
| |
Collapse
|
122
|
Cryo-EM catalyzes the exploration of drug selectivity: The CDK7 inhibitor example. Biophys J 2021; 120:1304-1305. [PMID: 33662259 DOI: 10.1016/j.bpj.2021.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/05/2021] [Accepted: 02/11/2021] [Indexed: 11/23/2022] Open
|
123
|
Jones MJK, Gelot C, Munk S, Koren A, Kawasoe Y, George KA, Santos RE, Olsen JV, McCarroll SA, Frattini MG, Takahashi TS, Jallepalli PV. Human DDK rescues stalled forks and counteracts checkpoint inhibition at unfired origins to complete DNA replication. Mol Cell 2021; 81:426-441.e8. [PMID: 33545059 PMCID: PMC8211091 DOI: 10.1016/j.molcel.2021.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 09/25/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022]
Abstract
Eukaryotic genomes replicate via spatially and temporally regulated origin firing. Cyclin-dependent kinase (CDK) and Dbf4-dependent kinase (DDK) promote origin firing, whereas the S phase checkpoint limits firing to prevent nucleotide and RPA exhaustion. We used chemical genetics to interrogate human DDK with maximum precision, dissect its relationship with the S phase checkpoint, and identify DDK substrates. We show that DDK inhibition (DDKi) leads to graded suppression of origin firing and fork arrest. S phase checkpoint inhibition rescued origin firing in DDKi cells and DDK-depleted Xenopus egg extracts. DDKi also impairs RPA loading, nascent-strand protection, and fork restart. Via quantitative phosphoproteomics, we identify the BRCA1-associated (BRCA1-A) complex subunit MERIT40 and the cohesin accessory subunit PDS5B as DDK effectors in fork protection and restart. Phosphorylation neutralizes autoinhibition mediated by intrinsically disordered regions in both substrates. Our results reveal mechanisms through which DDK controls the duplication of large vertebrate genomes.
Collapse
Affiliation(s)
- Mathew J K Jones
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia.
| | - Camille Gelot
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Stephanie Munk
- University of Copenhagen and Novo Nordisk Foundation Center for Protein Research, Copenhagen 2200, Denmark
| | - Amnon Koren
- Cornell University, Department of Molecular Biology and Genetics, Ithaca, NY 14853, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Yoshitaka Kawasoe
- Graduate School of Science, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kelly A George
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ruth E Santos
- Division of Hematology/Oncology, Columbia University Medical Center, New York, NY 10032, USA
| | - Jesper V Olsen
- University of Copenhagen and Novo Nordisk Foundation Center for Protein Research, Copenhagen 2200, Denmark
| | | | - Mark G Frattini
- Division of Hematology/Oncology, Columbia University Medical Center, New York, NY 10032, USA
| | - Tatsuro S Takahashi
- Graduate School of Science, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Prasad V Jallepalli
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
124
|
Liu R, Shi P, Wang Z, Yuan C, Cui H. Molecular Mechanisms of MYCN Dysregulation in Cancers. Front Oncol 2021; 10:625332. [PMID: 33614505 PMCID: PMC7886978 DOI: 10.3389/fonc.2020.625332] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/18/2020] [Indexed: 12/17/2022] Open
Abstract
MYCN, a member of MYC proto-oncogene family, encodes a basic helix-loop-helix transcription factor N-MYC. Abnormal expression of N-MYC is correlated with high-risk cancers and poor prognosis. Initially identified as an amplified oncogene in neuroblastoma in 1983, the oncogenic effect of N-MYC is expanded to multiple neuronal and nonneuronal tumors. Direct targeting N-MYC remains challenge due to its "undruggable" features. Therefore, alternative therapeutic approaches for targeting MYCN-driven tumors have been focused on the disruption of transcription, translation, protein stability as well as synthetic lethality of MYCN. In this review, we summarize the latest advances in understanding the molecular mechanisms of MYCN dysregulation in cancers.
Collapse
Affiliation(s)
- Ruochen Liu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
- NHC Key Laboratory of Birth Defects and Reproductive Health (Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute), Chongqing, China
| | - Pengfei Shi
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
- NHC Key Laboratory of Birth Defects and Reproductive Health (Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute), Chongqing, China
| | - Zhongze Wang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Chaoyu Yuan
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
- NHC Key Laboratory of Birth Defects and Reproductive Health (Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute), Chongqing, China
| |
Collapse
|
125
|
Abstract
Cyclin-dependent kinase 7 (CDK7), along with cyclin H and MAT1, forms the CDK-activating complex (CAK), which directs progression through the cell cycle via T-loop phosphorylation of cell cycle CDKs. CAK is also a component of the general transcription factor, TFIIH. CDK7-mediated phosphorylation of RNA polymerase II (Pol II) at active gene promoters permits transcription. Cell cycle dysregulation is an established hallmark of cancer, and aberrant control of transcriptional processes, through diverse mechanisms, is also common in many cancers. Furthermore, CDK7 levels are elevated in a number of cancer types and are associated with clinical outcomes, suggestive of greater dependence on CDK7 activity, compared with normal tissues. These findings identify CDK7 as a cancer therapeutic target, and several recent publications report selective CDK7 inhibitors (CDK7i) with activity against diverse cancer types. Preclinical studies have shown that CDK7i cause cell cycle arrest, apoptosis and repression of transcription, particularly of super-enhancer-associated genes in cancer, and have demonstrated their potential for overcoming resistance to cancer treatments. Moreover, combinations of CDK7i with other targeted cancer therapies, including BET inhibitors, BCL2 inhibitors and hormone therapies, have shown efficacy in model systems. Four CDK7i, ICEC0942 (CT7001), SY-1365, SY-5609 and LY3405105, have now progressed to Phase I/II clinical trials. Here we describe the work that has led to the development of selective CDK7i, the current status of the most advanced clinical candidates, and discuss their potential importance as cancer therapeutics, both as monotherapies and in combination settings. ClinicalTrials.gov Identifiers: NCT03363893; NCT03134638; NCT04247126; NCT03770494.
Collapse
|
126
|
Zhang Y, Hou J, Shi S, Du J, Liu Y, Huang P, Li Q, Liu L, Hu H, Ji Y, Guo L, Shi Y, Liu Y, Cui H. CSN6 promotes melanoma proliferation and metastasis by controlling the UBR5-mediated ubiquitination and degradation of CDK9. Cell Death Dis 2021; 12:118. [PMID: 33483464 PMCID: PMC7822921 DOI: 10.1038/s41419-021-03398-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/17/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022]
Abstract
As a critical subunit of the constitutive photomorphogenesis 9 (COP9) signalosome (CSN), CSN6 is upregulated in some human cancers and plays critical roles in tumorigenesis and progression, but its biological functions and molecular mechanisms in melanoma remain unknown. Our study showed that CSN6 expression was upregulated in melanoma patients and cells, and correlated with poor survival in melanoma patients. In melanoma cells, CSN6 knockdown remarkably inhibited cell proliferation, tumorigenicity, migration, and invasion, whereas CSN6 recovery rescued the proliferative and metastatic abilities. Notably, we identified that CSN6 stabilized CDK9 expression by reducing CDK9 ubiquitination levels, thereby activating CDK9-mediated signaling pathways. In addition, our study described a novel CSN6-interacting E3 ligase UBR5, which was negatively regulated by CSN6 and could regulate the ubiquitination and degradation of CDK9 in melanoma cells. Furthermore, in CSN6-knockdown melanoma cells, UBR5 knockdown abrogated the effects caused by CSN6 silencing, suggesting that CSN6 activates the UBR5/CDK9 pathway to promote melanoma cell proliferation and metastasis. Thus, this study illustrates the mechanism by which the CSN6-UBR5-CDK9 axis promotes melanoma development, and demonstrate that CSN6 may be a potential biomarker and anticancer target in melanoma.
Collapse
Affiliation(s)
- Yanli Zhang
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, Hebei, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, 400715, Chongqing, China
| | - Jianbing Hou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400715, Chongqing, China.,Cancer center, Medical Research Institute, Southwest University, 400716, Chongqing, China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, 400716, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, 400716, Chongqing, China
| | - Shaomin Shi
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, Hebei, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, 400715, Chongqing, China
| | - Juan Du
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, Hebei, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, 400715, Chongqing, China
| | - Yudong Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400715, Chongqing, China.,Cancer center, Medical Research Institute, Southwest University, 400716, Chongqing, China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, 400716, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, 400716, Chongqing, China
| | - Pan Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400715, Chongqing, China.,Cancer center, Medical Research Institute, Southwest University, 400716, Chongqing, China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, 400716, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, 400716, Chongqing, China
| | - Qian Li
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, Hebei, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, 400715, Chongqing, China
| | - Lichao Liu
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, Hebei, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, 400715, Chongqing, China
| | - Huanrong Hu
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, Hebei, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, 400715, Chongqing, China
| | - Yacong Ji
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, Hebei, China
| | - Leiyang Guo
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, Hebei, China
| | - Yaqiong Shi
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, Hebei, China
| | - Yaling Liu
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, Hebei, China.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400715, Chongqing, China. .,Cancer center, Medical Research Institute, Southwest University, 400716, Chongqing, China. .,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, 400716, Chongqing, China. .,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, 400716, Chongqing, China.
| |
Collapse
|
127
|
Gao L, Xia S, Zhang K, Lin C, He X, Zhang Y. Gene expression profile of THZ1-treated nasopharyngeal carcinoma cell lines indicates its involvement in the inhibition of the cell cycle. Transl Cancer Res 2021; 10:445-460. [PMID: 35116274 PMCID: PMC8799269 DOI: 10.21037/tcr-19-2888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 09/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The aim of this study was to identify downstream target genes and pathways regulated by THZ1 in nasopharyngeal carcinoma (NPC). METHODS The gene expression profile of GSE95750 in two NPC cell lines, untreated group and treated with THZ1 group, was analyzed. Differentially expressed genes (DEGs) were compared using the R-software. Then Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathways (KEGG) was analyzed using Database for Annotation, Visualization, and Integrated Discovery (DAVID). Cytoscape was used for protein-protein interaction (PPI) analysis. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to verified the gene expression. RESULTS We identified 25 genes with increased expression and 567 genes with decreased expression in THZ1-treated NPC cells. The top 10 significantly DEGs between untreated group and THZ1 treated group were identified by qRT-PCR and the results were in agreement with RNA-seq. The total 592 DEGs were found enriched in 1,148 GO terms and 38 KEGG pathways. The most important enriched pathways identified were cell cycle related, and several related node genes were identified, such as CDC6, CDC34, CDK7, CDK9, CCNA2, CCNB1, CDT1, KIF11, LIN9, PLK1, and POLR family, which consistent with RNA-seq. CONCLUSIONS Our results emphasize the differential genes and pathways occurring in THZ1-treated NPC cells, which increases our understanding of the anti-tumor mechanisms of THZ1.
Collapse
Affiliation(s)
- Lijuan Gao
- Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Radiation Oncology, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Shuang Xia
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Kunyi Zhang
- Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Radiation Oncology, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Chengguang Lin
- Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Radiation Oncology, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Xuyu He
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ying Zhang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
128
|
Selective inhibition of CDK7 reveals high-confidence targets and new models for TFIIH function in transcription. Genes Dev 2020; 34:1452-1473. [PMID: 33060135 PMCID: PMC7608751 DOI: 10.1101/gad.341545.120] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/18/2020] [Indexed: 12/27/2022]
Abstract
In this study, Rimel et al. set out to investigate the roles of CDK7 in transcription. Using SILAC-based phosphoproteomics with transcriptomics and biochemical assays, the authors identified high-confidence CDK7 substrates, a surprisingly widespread requirement for CDK7 activity in splicing, and unexpected aspects of CDK7 kinase regulation that involve its association with TFIIH. CDK7 associates with the 10-subunit TFIIH complex and regulates transcription by phosphorylating the C-terminal domain (CTD) of RNA polymerase II (RNAPII). Few additional CDK7 substrates are known. Here, using the covalent inhibitor SY-351 and quantitative phosphoproteomics, we identified CDK7 kinase substrates in human cells. Among hundreds of high-confidence targets, the vast majority are unique to CDK7 (i.e., distinct from other transcription-associated kinases), with a subset that suggest novel cellular functions. Transcription-associated factors were predominant CDK7 substrates, including SF3B1, U2AF2, and other splicing components. Accordingly, widespread and diverse splicing defects, such as alternative exon inclusion and intron retention, were characterized in CDK7-inhibited cells. Combined with biochemical assays, we establish that CDK7 directly activates other transcription-associated kinases CDK9, CDK12, and CDK13, invoking a “master regulator” role in transcription. We further demonstrate that TFIIH restricts CDK7 kinase function to the RNAPII CTD, whereas other substrates (e.g., SPT5 and SF3B1) are phosphorylated by the three-subunit CDK-activating kinase (CAK; CCNH, MAT1, and CDK7). These results suggest new models for CDK7 function in transcription and implicate CAK dissociation from TFIIH as essential for kinase activation. This straightforward regulatory strategy ensures CDK7 activation is spatially and temporally linked to transcription, and may apply toward other transcription-associated kinases.
Collapse
|
129
|
Lv X, Tian Y, Li S, Cheng K, Huang X, Kong H, Liao C, Xie Z. Discovery and Development of Cyclin-Dependent Kinase 8 Inhibitors. Curr Med Chem 2020; 27:5429-5443. [DOI: 10.2174/0929867326666190402110528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/20/2019] [Accepted: 03/20/2019] [Indexed: 12/13/2022]
Abstract
Cyclin-dependent Kinase 8 (CDK8), a member of the CDKs family, has been widely
focused owing to investigations of its critical roles in transcription and oncogenesis in recent years.
Selective inhibition of CDK8 and its paralog CDK19 offers a novel therapeutic strategy for the
treatment of some cancers. Up to now, though many small molecules against CDK8 have been discovered,
most of them are discontinued in the preclinical trials due to the low selectivity and poor
physicochemical properties. This review mainly summarizes the design strategies of selective CDK8
inhibitors having different chemical scaffolds with the aim to improve the inhibitory activity, selectivity,
metabolic stability and solubility. Their corresponding Structure-activity Relationships (SAR)
are also reviewed. On the basis of the discussion in this review, we hope more effective, selective
and drug-like CDK8 inhibitors will be developed and demonstrate therapeutic values in the near
future.
Collapse
Affiliation(s)
- Xiao Lv
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yongbing Tian
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Shiyu Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Kai Cheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Xufeng Huang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Haiyan Kong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Chenzhong Liao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Zhouling Xie
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| |
Collapse
|
130
|
Štětková M, Growková K, Fojtík P, Valčíková B, Palušová V, Verlande A, Jorda R, Kryštof V, Hejret V, Alexiou P, Rotrekl V, Uldrijan S. CDK9 activity is critical for maintaining MDM4 overexpression in tumor cells. Cell Death Dis 2020; 11:754. [PMID: 32934219 PMCID: PMC7494941 DOI: 10.1038/s41419-020-02971-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 08/19/2020] [Accepted: 08/27/2020] [Indexed: 12/31/2022]
Abstract
The identification of the essential role of cyclin-dependent kinases (CDKs) in the control of cell division has prompted the development of small-molecule CDK inhibitors as anticancer drugs. For many of these compounds, the precise mechanism of action in individual tumor types remains unclear as they simultaneously target different classes of CDKs - enzymes controlling the cell cycle progression as well as CDKs involved in the regulation of transcription. CDK inhibitors are also capable of activating p53 tumor suppressor in tumor cells retaining wild-type p53 gene by modulating MDM2 levels and activity. In the current study, we link, for the first time, CDK activity to the overexpression of the MDM4 (MDMX) oncogene in cancer cells. Small-molecule drugs targeting the CDK9 kinase, dinaciclib, flavopiridol, roscovitine, AT-7519, SNS-032, and DRB, diminished MDM4 levels and activated p53 in A375 melanoma and MCF7 breast carcinoma cells with only a limited effect on MDM2. These results suggest that MDM4, rather than MDM2, could be the primary transcriptional target of pharmacological CDK inhibitors in the p53 pathway. CDK9 inhibitor atuveciclib downregulated MDM4 and enhanced p53 activity induced by nutlin-3a, an inhibitor of p53-MDM2 interaction, and synergized with nutlin-3a in killing A375 melanoma cells. Furthermore, we found that human pluripotent stem cell lines express significant levels of MDM4, which are also maintained by CDK9 activity. In summary, we show that CDK9 activity is essential for the maintenance of high levels of MDM4 in human cells, and drugs targeting CDK9 might restore p53 tumor suppressor function in malignancies overexpressing MDM4.
Collapse
Affiliation(s)
- Monika Štětková
- Faculty of Medicine, Department of Biology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Kateřina Growková
- Faculty of Medicine, Department of Biology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Fojtík
- Faculty of Medicine, Department of Biology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 53, 656 91, Brno, Czech Republic
| | - Barbora Valčíková
- Faculty of Medicine, Department of Biology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 53, 656 91, Brno, Czech Republic
| | - Veronika Palušová
- Faculty of Medicine, Department of Biology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 53, 656 91, Brno, Czech Republic
| | - Amandine Verlande
- Faculty of Medicine, Department of Biology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 53, 656 91, Brno, Czech Republic
| | - Radek Jorda
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacký University, Hněvotínská 5, 779 00, Olomouc, Czech Republic
| | - Vladimír Kryštof
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacký University, Hněvotínská 5, 779 00, Olomouc, Czech Republic
| | - Václav Hejret
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Panagiotis Alexiou
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Vladimír Rotrekl
- Faculty of Medicine, Department of Biology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 53, 656 91, Brno, Czech Republic
| | - Stjepan Uldrijan
- Faculty of Medicine, Department of Biology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 53, 656 91, Brno, Czech Republic.
| |
Collapse
|
131
|
Wu T, Qin Z, Tian Y, Wang J, Xu C, Li Z, Bian J. Recent Developments in the Biology and Medicinal Chemistry of CDK9 Inhibitors: An Update. J Med Chem 2020; 63:13228-13257. [DOI: 10.1021/acs.jmedchem.0c00744] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Tizhi Wu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Zhen Qin
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Yucheng Tian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Jubo Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Chenxi Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Zhiyu Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Jinlei Bian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| |
Collapse
|
132
|
Parua PK, Kalan S, Benjamin B, Sansó M, Fisher RP. Distinct Cdk9-phosphatase switches act at the beginning and end of elongation by RNA polymerase II. Nat Commun 2020; 11:4338. [PMID: 32859893 PMCID: PMC7455706 DOI: 10.1038/s41467-020-18173-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/10/2020] [Indexed: 12/21/2022] Open
Abstract
Reversible phosphorylation of Pol II and accessory factors helps order the transcription cycle. Here, we define two kinase-phosphatase switches that operate at different points in human transcription. Cdk9/cyclin T1 (P-TEFb) catalyzes inhibitory phosphorylation of PP1 and PP4 complexes that localize to 3′ and 5′ ends of genes, respectively, and have overlapping but distinct specificities for Cdk9-dependent phosphorylations of Spt5, a factor instrumental in promoter-proximal pausing and elongation-rate control. PP1 dephosphorylates an Spt5 carboxy-terminal repeat (CTR), but not Spt5-Ser666, a site between Kyrpides-Ouzounis-Woese (KOW) motifs 4 and 5, whereas PP4 can target both sites. In vivo, Spt5-CTR phosphorylation decreases as transcription complexes pass the cleavage and polyadenylation signal (CPS) and increases upon PP1 depletion, consistent with a PP1 function in termination first uncovered in yeast. Depletion of PP4-complex subunits increases phosphorylation of both Ser666 and the CTR, and promotes redistribution of promoter-proximally paused Pol II into gene bodies. These results suggest that switches comprising Cdk9 and either PP4 or PP1 govern pause release and the elongation-termination transition, respectively. Cdk9 (P-TEFb) and its substrate Spt5 influence events throughout the transcription cycle. Here, the authors define two switches with the potential to regulate promoter-proximal pause release and termination, respectively containing phosphatases PP4 and PP1, which are both inhibited by Cdk9, but have different specificities for sites on Spt5 and occupy opposite ends of genes.
Collapse
Affiliation(s)
- Pabitra K Parua
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, USA
| | - Sampada Kalan
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, USA
| | - Bradley Benjamin
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, USA
| | - Miriam Sansó
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, USA
| | - Robert P Fisher
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, USA.
| |
Collapse
|
133
|
Shao X, Joergensen AM, Howlett NG, Lisby M, Oestergaard VH. A distinct role for recombination repair factors in an early cellular response to transcription-replication conflicts. Nucleic Acids Res 2020; 48:5467-5484. [PMID: 32329774 PMCID: PMC7261159 DOI: 10.1093/nar/gkaa268] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/20/2020] [Accepted: 04/07/2020] [Indexed: 12/21/2022] Open
Abstract
Transcription-replication (T-R) conflicts are profound threats to genome integrity. However, whilst much is known about the existence of T-R conflicts, our understanding of the genetic and temporal nature of how cells respond to them is poorly established. Here, we address this by characterizing the early cellular response to transient T-R conflicts (TRe). This response specifically requires the DNA recombination repair proteins BLM and BRCA2 as well as a non-canonical monoubiquitylation-independent function of FANCD2. A hallmark of the TRe response is the rapid co-localization of these three DNA repair factors at sites of T-R collisions. We find that the TRe response relies on basal activity of the ATR kinase, yet it does not lead to hyperactivation of this key checkpoint protein. Furthermore, specific abrogation of the TRe response leads to DNA damage in mitosis, and promotes chromosome instability and cell death. Collectively our findings identify a new role for these well-established tumor suppressor proteins at an early stage of the cellular response to conflicts between DNA transcription and replication.
Collapse
Affiliation(s)
- Xin Shao
- Department of Biology, University of Copenhagen, Copenhagen N 2200, Denmark
| | | | - Niall G Howlett
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, USA
| | - Michael Lisby
- Department of Biology, University of Copenhagen, Copenhagen N 2200, Denmark
| | - Vibe H Oestergaard
- Department of Biology, University of Copenhagen, Copenhagen N 2200, Denmark
| |
Collapse
|
134
|
Cassandri M, Fioravanti R, Pomella S, Valente S, Rotili D, Del Baldo G, De Angelis B, Rota R, Mai A. CDK9 as a Valuable Target in Cancer: From Natural Compounds Inhibitors to Current Treatment in Pediatric Soft Tissue Sarcomas. Front Pharmacol 2020; 11:1230. [PMID: 32903585 PMCID: PMC7438590 DOI: 10.3389/fphar.2020.01230] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
Cyclin-Dependent Kinases (CDKs) are well-known reliable targets for cancer treatment being often deregulated. Among them, since the transcription-associated CDK9 represents the sentry of cell transcriptional homeostasis, it can be a valuable target for managing cancers in which the transcriptional machinery is dysregulated by tumor-driver oncogenes. Here we give an overview of some natural compounds identified as CDK inhibitors with reported activity also against CDK9, that were taken as a model for the development of highly active synthetic anti-CDK9 agents. After, we summarize the data on CDK9 inhibition in a group of rare pediatric solid tumors such as rhabdomyosarcoma, Ewing’s sarcoma, synovial sarcoma and malignant rhabdoid tumors (soft tissue sarcomas), highlighting the more recent results in this field. Finally, we discuss the perspective and challenge of CDK9 modulation in cancer.
Collapse
Affiliation(s)
- Matteo Cassandri
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Silvia Pomella
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Giada Del Baldo
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Biagio De Angelis
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rossella Rota
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
135
|
Qu J, Ouyang Z, Wu W, Li G, Wang J, Lu Q, Li Z. Functions and Clinical Significance of Super-Enhancers in Bone-Related Diseases. Front Cell Dev Biol 2020; 8:534. [PMID: 32714929 PMCID: PMC7344144 DOI: 10.3389/fcell.2020.00534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
Super-enhancers (SEs) are a large cluster of cis-regulatory DNA elements that contain many binding motifs, which master transcription factors and cofactors bind to with high density. SEs usually regulate the expression of genes that can control the cell identity and fate, and SEs can be used to explain the patterns of the expression of cell-specific genes. Hence, it shows great potential for application in the treatment of diseases like cancer. At present, the clinical treatments for osteosarcoma, Ewing sarcoma, and other bone-related diseases remain challenging. The poor prognosis and difficult treatment of these diseases imposes heavy economic burden on patients and society. In recent years, research on SEs with respect to bone-related diseases has attracted increasing attention. In this paper, we first review the identification and functional mechanisms of SEs. Then, we integrate the findings of the emerging studies on SEs in bone-related diseases. Finally, we summarize recent strategies for targeting SEs for the treatment of bone-related diseases. This review aims to provide comprehensive insights into the roles of SEs in bone-related diseases.
Collapse
Affiliation(s)
- Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhanbo Ouyang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wenqiang Wu
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guohua Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiaojiao Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiong Lu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhihong Li
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
136
|
CDK7 inhibitor THZ1 enhances antiPD-1 therapy efficacy via the p38α/MYC/PD-L1 signaling in non-small cell lung cancer. J Hematol Oncol 2020; 13:99. [PMID: 32690037 PMCID: PMC7370470 DOI: 10.1186/s13045-020-00926-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 06/24/2020] [Indexed: 12/24/2022] Open
Abstract
Background The cyclin-dependent kinase 7 (CDK7) subunit of TFIIH regulates RNA polymerase-II-based transcription and promotes tumor progression. However, the mechanisms involved in CDK7-mediated immune evasion are unclear in non-small cell lung cancer (NSCLC). Methods RNA silencing and pharmacologic inhibitors were used to evaluate the functions of CDK7/p38α/MYC/PD-L1 axis in cancer cell proliferation and antiPD-1 therapy resistance. Flow cytometry was performed to detect the status of the immune microenvironment after CDK7 inhibition and antiPD-1 therapy in vivo. CD8 depletion antibodies were used to assess the role of CD8+ T cells in combined CDK7 and PD-1 blockade. The associations among CDK7, p38α, MYC, PD-L1, infiltrating T cells, and survival outcomes were validated in two tissue microarrays and public transcriptomic data of NSCLC. Results High CDK7 mRNA and protein levels were identified to be associated with poor prognosis in NSCLC. CDK7 silencing and CDK7 inhibitor THZ1 elicited apoptosis and suppressed tumor growth. Moreover, CDK7 ablation specifically suppressed p38α/MYC-associated genes, and THZ1 inhibited MYC transcriptional activity through downregulating p38α. CDK7 inhibition sensitized NSCLC to p38α inhibitor. Further, THZ1 suppressed PD-L1 expression by inhibiting MYC activity. THZ1 boosted antitumor immunity by recruiting infiltrating CD8+ T cells and synergized with antiPD-1 therapy. The CDK7/MYC/PD-L1 signature and infiltrating T cell status collectively stratified NSCLC patients into different risk groups. Conclusion These data suggest that the combined CDK7 inhibitor THZ1 and antiPD-1 therapy can be an effective treatment in NSCLC.
Collapse
|
137
|
Dissecting the Pol II transcription cycle and derailing cancer with CDK inhibitors. Nat Chem Biol 2020; 16:716-724. [PMID: 32572259 DOI: 10.1038/s41589-020-0563-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 05/07/2020] [Indexed: 12/16/2022]
Abstract
Largely non-overlapping sets of cyclin-dependent kinases (CDKs) regulate cell division and RNA polymerase II (Pol II)-dependent transcription. Here we review the molecular mechanisms by which specific CDKs are thought to act at discrete steps in the transcription cycle and describe the recent emergence of transcriptional CDKs as promising drug targets in cancer. We emphasize recent advances in understanding the transcriptional CDK network that were facilitated by development and deployment of small-molecule inhibitors with increased selectivity for individual CDKs. Unexpectedly, several of these compounds have also shown selectivity in killing cancer cells, despite the seemingly universal involvement of their target CDKs during transcription in all cells. Finally, we describe remaining and emerging challenges in defining functions of individual CDKs in transcription and co-transcriptional processes and in leveraging CDK inhibition for therapeutic purposes.
Collapse
|
138
|
Loyer P, Trembley JH. Roles of CDK/Cyclin complexes in transcription and pre-mRNA splicing: Cyclins L and CDK11 at the cross-roads of cell cycle and regulation of gene expression. Semin Cell Dev Biol 2020; 107:36-45. [PMID: 32446654 DOI: 10.1016/j.semcdb.2020.04.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/18/2022]
Abstract
Cyclin Dependent Kinases (CDKs) represent a large family of serine/threonine protein kinases that become active upon binding to a Cyclin regulatory partner. CDK/cyclin complexes recently identified, as well as "canonical" CDK/Cyclin complexes regulating cell cycle, are implicated in the regulation of gene expression via the phosphorylation of key components of the transcription and pre-mRNA processing machineries. In this review, we summarize the role of CDK/cyclin-dependent phosphorylation in the regulation of transcription and RNA splicing and highlight recent findings that indicate the involvement of CDK11/cyclin L complexes at the cross-roads of cell cycle, transcription and RNA splicing. Finally, we discuss the potential of CDK11 and Cyclins L as therapeutic targets in cancer.
Collapse
Affiliation(s)
- Pascal Loyer
- INSERM, INRAE, Univ Rennes, NuMeCan, Nutrition Metabolisms and Cancer, Rennes, France.
| | - Janeen H Trembley
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN 55417, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
139
|
Mori L, Valente ST. Key Players in HIV-1 Transcriptional Regulation: Targets for a Functional Cure. Viruses 2020; 12:E529. [PMID: 32403278 PMCID: PMC7291152 DOI: 10.3390/v12050529] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022] Open
Abstract
HIV-1 establishes a life-long infection when proviral DNA integrates into the host genome. The provirus can then either actively transcribe RNA or enter a latent state, without viral production. The switch between these two states is governed in great part by the viral protein, Tat, which promotes RNA transcript elongation. Latency is also influenced by the availability of host transcription factors, integration site, and the surrounding chromatin environment. The latent reservoir is established in the first few days of infection and serves as the source of viral rebound upon treatment interruption. Despite effective suppression of HIV-1 replication by antiretroviral therapy (ART), to below the detection limit, ART is ineffective at reducing the latent reservoir size. Elimination of this reservoir has become a major goal of the HIV-1 cure field. However, aside from the ideal total HIV-1 eradication from the host genome, an HIV-1 remission or functional cure is probably more realistic. The "block-and-lock" approach aims at the transcriptional silencing of the viral reservoir, to render suppressed HIV-1 promoters extremely difficult to reactivate from latency. There are unfortunately no clinically available HIV-1 specific transcriptional inhibitors. Understanding the mechanisms that regulate latency is expected to provide novel targets to be explored in cure approaches.
Collapse
Affiliation(s)
| | - Susana T. Valente
- Department of Immunology and Microbiology, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA;
| |
Collapse
|
140
|
Therapeutic Targeting of the General RNA Polymerase II Transcription Machinery. Int J Mol Sci 2020; 21:ijms21093354. [PMID: 32397434 PMCID: PMC7246882 DOI: 10.3390/ijms21093354] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/27/2022] Open
Abstract
Inhibitors targeting the general RNA polymerase II (RNAPII) transcription machinery are candidate therapeutics in cancer and other complex diseases. Here, we review the molecular targets and mechanisms of action of these compounds, framing them within the steps of RNAPII transcription. We discuss the effects of transcription inhibitors in vitro and in cellular models (with an emphasis on cancer), as well as their efficacy in preclinical and clinical studies. We also discuss the rationale for inhibiting broadly acting transcriptional regulators or RNAPII itself in complex diseases.
Collapse
|
141
|
Gajdušková P, Ruiz de Los Mozos I, Rájecký M, Hluchý M, Ule J, Blazek D. CDK11 is required for transcription of replication-dependent histone genes. Nat Struct Mol Biol 2020; 27:500-510. [PMID: 32367068 PMCID: PMC7116321 DOI: 10.1038/s41594-020-0406-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 03/05/2020] [Indexed: 01/13/2023]
Abstract
Replication-dependent histones (RDH) are required for packaging of newly synthetized DNA into nucleosomes during S-phase when their expression is highly upregulated. However, the mechanisms of this upregulation in metazoan cells remain poorly understood. Using iCLIP and ChIP-seq, we found that human cyclin-dependent kinase 11 (CDK11) associates with RNA and chromatin of RDH genes primarily in the S-phase. Moreover, its N-terminal region binds FLASH, RDH-specific 3´end processing factor, which keeps the kinase on the chromatin. CDK11 phosphorylates serine 2 (Ser2) of the C-terminal domain (CTD) of RNA polymerase II (RNAPII), which is initiated at the middle of RDH genes and is required for further RNAPII elongation and 3´end processing. CDK11 depletion leads to decreased number of cells in S-phase, likely due to the function of CDK11 in RDH gene expression. Thus, the reliance of RDH expression on CDK11 could explain why CDK11 is essential for growth of many cancers.
Collapse
Affiliation(s)
- Pavla Gajdušková
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Igor Ruiz de Los Mozos
- The Francis Crick Institute, London, UK.,Department of Neuromuscular Disease, Institute of Neurology, University College London, London, UK
| | - Michal Rájecký
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Milan Hluchý
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Jernej Ule
- The Francis Crick Institute, London, UK.,Department of Neuromuscular Disease, Institute of Neurology, University College London, London, UK
| | - Dalibor Blazek
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic.
| |
Collapse
|
142
|
Abstract
Cyclin-dependent kinase 7 (CDK7) plays crucial roles in the regulation of cell cycle and transcription that are tightly associated with cancer development and metastasis. The recent identification of the first covalent inhibitor which possesses high specificity against CDK7 prompts intense studies on designing highly selective CDK7 inhibitors and exploring their applications in cancer treatments. This review summarizes the latest biological studies on CDK7 and reviews the development of CDK7 inhibitors in preclinical and clinical evaluations, along with the prospects and potential challenges in this research area. CDK7 is an attractive anticancer target, and the discovery and development of CDK7 inhibitors has received much attention.
Collapse
|
143
|
Kloetgen A, Thandapani P, Ntziachristos P, Ghebrechristos Y, Nomikou S, Lazaris C, Chen X, Hu H, Bakogianni S, Wang J, Fu Y, Boccalatte F, Zhong H, Paietta E, Trimarchi T, Zhu Y, Van Vlierberghe P, Inghirami GG, Lionnet T, Aifantis I, Tsirigos A. Three-dimensional chromatin landscapes in T cell acute lymphoblastic leukemia. Nat Genet 2020; 52:388-400. [PMID: 32203470 PMCID: PMC7138649 DOI: 10.1038/s41588-020-0602-9] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 02/25/2020] [Indexed: 01/04/2023]
Abstract
Differences in three-dimensional (3D) chromatin architecture can influence the integrity of topologically associating domains (TADs) and rewire specific enhancer-promoter interactions, impacting gene expression and leading to human disease. Here we investigate the 3D chromatin architecture in T cell acute lymphoblastic leukemia (T-ALL) by using primary human leukemia specimens and examine the dynamic responses of this architecture to pharmacological agents. Systematic integration of matched in situ Hi-C, RNA-seq and CTCF ChIP-seq datasets revealed widespread differences in intra-TAD chromatin interactions and TAD boundary insulation in T-ALL. Our studies identify and focus on a TAD 'fusion' event associated with absence of CTCF-mediated insulation, enabling direct interactions between the MYC promoter and a distal super-enhancer. Moreover, our data also demonstrate that small-molecule inhibitors targeting either oncogenic signal transduction or epigenetic regulation can alter specific 3D interactions found in leukemia. Overall, our study highlights the impact, complexity and dynamic nature of 3D chromatin architecture in human acute leukemia.
Collapse
Affiliation(s)
- Andreas Kloetgen
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Palaniraja Thandapani
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Panagiotis Ntziachristos
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA.,Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Yohana Ghebrechristos
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Sofia Nomikou
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Charalampos Lazaris
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Xufeng Chen
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Hai Hu
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Sofia Bakogianni
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Sciences, New York, NY, USA
| | - Jingjing Wang
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Yi Fu
- Department of Cell Biology, Institute for Systems Genetics, New York University, New York, NY, USA
| | - Francesco Boccalatte
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Hua Zhong
- Division of Biostatistics, Department of Population Health, New York University School of Medicine, New York, NY, USA
| | | | - Thomas Trimarchi
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA.,BridgeBio Pharma, Palo Alto, CA, USA
| | - Yixing Zhu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Giorgio G Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Timothee Lionnet
- Department of Cell Biology, Institute for Systems Genetics, New York University, New York, NY, USA
| | - Iannis Aifantis
- Department of Pathology, New York University School of Medicine, New York, NY, USA. .,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA.
| | - Aristotelis Tsirigos
- Department of Pathology, New York University School of Medicine, New York, NY, USA. .,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA. .,Applied Bioinformatics Laboratories, Office of Science and Research, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
144
|
Ding L, Cao J, Lin W, Chen H, Xiong X, Ao H, Yu M, Lin J, Cui Q. The Roles of Cyclin-Dependent Kinases in Cell-Cycle Progression and Therapeutic Strategies in Human Breast Cancer. Int J Mol Sci 2020; 21:ijms21061960. [PMID: 32183020 PMCID: PMC7139603 DOI: 10.3390/ijms21061960] [Citation(s) in RCA: 365] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) are serine/threonine kinases whose catalytic activities are regulated by interactions with cyclins and CDK inhibitors (CKIs). CDKs are key regulatory enzymes involved in cell proliferation through regulating cell-cycle checkpoints and transcriptional events in response to extracellular and intracellular signals. Not surprisingly, the dysregulation of CDKs is a hallmark of cancers, and inhibition of specific members is considered an attractive target in cancer therapy. In breast cancer (BC), dual CDK4/6 inhibitors, palbociclib, ribociclib, and abemaciclib, combined with other agents, were approved by the Food and Drug Administration (FDA) recently for the treatment of hormone receptor positive (HR+) advanced or metastatic breast cancer (A/MBC), as well as other sub-types of breast cancer. Furthermore, ongoing studies identified more selective CDK inhibitors as promising clinical targets. In this review, we focus on the roles of CDKs in driving cell-cycle progression, cell-cycle checkpoints, and transcriptional regulation, a highlight of dysregulated CDK activation in BC. We also discuss the most relevant CDK inhibitors currently in clinical BC trials, with special emphasis on CDK4/6 inhibitors used for the treatment of estrogen receptor-positive (ER+)/human epidermal growth factor 2-negative (HER2−) M/ABC patients, as well as more emerging precise therapeutic strategies, such as combination therapies and microRNA (miRNA) therapy.
Collapse
Affiliation(s)
- Lei Ding
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Jiaqi Cao
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Wen Lin
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Hongjian Chen
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Xianhui Xiong
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Hongshun Ao
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Min Yu
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Jie Lin
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Qinghua Cui
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
- Correspondence:
| |
Collapse
|
145
|
Diab S, Yu M, Wang S. CDK7 Inhibitors in Cancer Therapy: The Sweet Smell of Success? J Med Chem 2020; 63:7458-7474. [DOI: 10.1021/acs.jmedchem.9b01985] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sarah Diab
- School of Pharmacy, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| | - Mingfeng Yu
- Drug Discovery and Development, University of South Australia Cancer Research Institute, Adelaide, SA 5000, Australia
| | - Shudong Wang
- Drug Discovery and Development, University of South Australia Cancer Research Institute, Adelaide, SA 5000, Australia
| |
Collapse
|
146
|
CDK7 Inhibition is Effective in all the Subtypes of Breast Cancer: Determinants of Response and Synergy with EGFR Inhibition. Cells 2020; 9:cells9030638. [PMID: 32155786 PMCID: PMC7140476 DOI: 10.3390/cells9030638] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/25/2020] [Accepted: 03/01/2020] [Indexed: 02/07/2023] Open
Abstract
CDK7, a transcriptional cyclin-dependent kinase, is emerging as a novel cancer target. Triple-negative breast cancers (TNBC) but not estrogen receptor-positive (ER+) breast cancers have been reported to be uniquely sensitive to the CDK7 inhibitor THZ1 due to the inhibition of a cluster of TNBC-specific genes. However, bioinformatic analysis indicates that CDK7 RNA expression is associated with negative prognosis in all the major subtypes of breast cancer. To further elucidate the effects of CDK7 inhibition in breast cancer, we profiled a panel of cell lines representing different breast cancer subtypes. THZ1 inhibited cell growth in all subtypes (TNBC, HER2+, ER+, and HER2+/ER+) with no apparent subtype selectivity. THZ1 inhibited CDK7 activity and induced G1 arrest and apoptosis in all the tested cell lines, but THZ1 sensitivity did not correlate with CDK7 inhibition or CDK7 expression levels. THZ1 sensitivity across the cell line panel did not correlate with TNBC-specific gene expression but it was found to correlate with the differential inhibition of three genes: CDKN1B, MYC and transcriptional coregulator CITED2. Response to THZ1 also correlated with basal CITED2 protein expression, a potential marker of CDK7 inhibitor sensitivity. Furthermore, all of the THZ1-inhibited genes examined were inducible by EGF but THZ1 prevented this induction. THZ1 had synergistic or additive effects when combined with the EGFR inhibitor erlotinib, with no outward selectivity for a particular subtype of breast cancer. These results suggest a potential broad utility for CDK7 inhibitors in breast cancer therapy and the potential for combining CDK7 and EGFR inhibitors.
Collapse
|
147
|
Chou J, Quigley DA, Robinson TM, Feng FY, Ashworth A. Transcription-Associated Cyclin-Dependent Kinases as Targets and Biomarkers for Cancer Therapy. Cancer Discov 2020; 10:351-370. [DOI: 10.1158/2159-8290.cd-19-0528] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/29/2019] [Accepted: 11/04/2019] [Indexed: 11/16/2022]
|
148
|
Chen HD, Huang CS, Xu QC, Li F, Huang XT, Wang JQ, Li SJ, Zhao W, Yin XY. Therapeutic Targeting of CDK7 Suppresses Tumor Progression in Intrahepatic Cholangiocarcinoma. Int J Biol Sci 2020; 16:1207-1217. [PMID: 32174795 PMCID: PMC7053328 DOI: 10.7150/ijbs.39779] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/22/2019] [Indexed: 12/25/2022] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a lethal malignancy with high mortality and lack of effective therapeutic targets. Here, we found that expression of cyclin-dependent kinase 7 (CDK7) was significantly associated with higher tumor grade and worse prognosis in 96 ICC specimens. Depletion of CDK7 significantly inhibited cell growth, induced a G2/M cell cycle arrest, and reduced the migratory and invasive potential in ICC cells. Subsequent experiments demonstrated that ICC cells were highly sensitive to the CDK7 inhibitor THZ1. A low concentration of THZ1 markedly inhibited cell growth, cell cycle, migration, and invasion in ICC cell lines. RNA-sequencing (RNA-seq) analysis revealed that THZ1 treatment decreased the levels of massive oncogene transcripts, particularly those associated with cell cycle and cell migration. Quantitative reverse transcriptase PCR (qRT-PCR) analysis confirmed that transcription of oncogenes involved in cell cycle regulation (AURKA, AURKB, CDC25B, CDK1, CCNA2, and MKI67) and the c-Met pathway (c-Met, AKT1, PTK2, CRK, PDPK1, and ARF6) was selectively repressed by THZ1. In addition, THZ1 exhibited significant anti-tumor activity in a patient-derived xenograft (PDX) model of ICC, without causing detectable side effects.
Collapse
Affiliation(s)
- Hua-Dong Chen
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.,Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Chen-Song Huang
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Qiong-Cong Xu
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Fuxi Li
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.,Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China
| | - Xi-Tai Huang
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jie-Qin Wang
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Shi-Jin Li
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Wei Zhao
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.,Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China
| | - Xiao-Yu Yin
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
149
|
Zhang J, Liu W, Zou C, Zhao Z, Lai Y, Shi Z, Xie X, Huang G, Wang Y, Zhang X, Fan Z, Su Q, Yin J, Shen J. Targeting Super-Enhancer-Associated Oncogenes in Osteosarcoma with THZ2, a Covalent CDK7 Inhibitor. Clin Cancer Res 2020; 26:2681-2692. [PMID: 31937612 DOI: 10.1158/1078-0432.ccr-19-1418] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/24/2019] [Accepted: 01/10/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Malignancy of cancer cells depends on the active transcription of tumor-associated genes. Recently, unique clusters of transcriptional enhancers, termed super-enhancers, have been reported to drive the expression of genes that define cell identity. In this study, we characterized specific super-enhancer-associated genes of osteosarcoma, and explored their potential therapeutic value. EXPERIMENTAL DESIGN Super-enhancer regions were characterized through chromatin immunoprecipitation sequencing (ChIP-seq). RT-qPCR was used to detect the mRNA level of CDK7 in patient specimens and confirm the regulation of sensitive oncogenes by THZ2. The phosphorylation of the initiation-associated sites of RNA polymerase II (RNAPII) C-terminal repeat domain (CTD) was measured using Western blotting. Microarray expression analysis was conducted to explore transcriptional changes after THZ2 treatment. A variety of in vitro and in vivo assays were performed to assess the effects of CDK7 knockdown and THZ2 treatment in osteosarcoma. RESULTS Super-enhancers were associated with oncogenic transcripts and key genes encoding cell-type-specific transcription factors in osteosarcoma. Knockdown of transcription factor CDK7 reduced phosphorylation of the RNAPII CTD, and suppressed the growth and metastasis of osteosarcoma. A new specific CDK7 inhibitor, THZ2, suppressed cancer biology by inhibition of transcriptional activity. Compared with typical enhancers, osteosarcoma super-enhancer-associated oncogenes were particular vulnerable to this transcriptional disruption. THZ2 exhibited a powerful anti-osteosarcoma effect in vitro and in vivo. CONCLUSIONS Super-enhancer-associated genes contribute to the malignant potential of osteosarcoma, and selectively targeting super-enhancer-associated oncogenes with the specific CDK7 inhibitor THZ2 might be a promising therapeutic strategy for patients with osteosarcoma.
Collapse
Affiliation(s)
- Jiajun Zhang
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Weihai Liu
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Changye Zou
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhiqiang Zhao
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuanying Lai
- Department of Pharmacology, Medical College, Jinan University, Guangzhou, China
| | - Zhi Shi
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xianbiao Xie
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Gang Huang
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yongqian Wang
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xuelin Zhang
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zepei Fan
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiao Su
- Department of Animal Experiment Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Junqiang Yin
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jingnan Shen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
150
|
Zhang H, Christensen CL, Dries R, Oser MG, Deng J, Diskin B, Li F, Pan Y, Zhang X, Yin Y, Papadopoulos E, Pyon V, Thakurdin C, Kwiatkowski N, Jani K, Rabin AR, Castro DM, Chen T, Silver H, Huang Q, Bulatovic M, Dowling CM, Sundberg B, Leggett A, Ranieri M, Han H, Li S, Yang A, Labbe KE, Almonte C, Sviderskiy VO, Quinn M, Donaghue J, Wang ES, Zhang T, He Z, Velcheti V, Hammerman PS, Freeman GJ, Bonneau R, Kaelin WG, Sutherland KD, Kersbergen A, Aguirre AJ, Yuan GC, Rothenberg E, Miller G, Gray NS, Wong KK. CDK7 Inhibition Potentiates Genome Instability Triggering Anti-tumor Immunity in Small Cell Lung Cancer. Cancer Cell 2020; 37:37-54.e9. [PMID: 31883968 PMCID: PMC7277075 DOI: 10.1016/j.ccell.2019.11.003] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/23/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022]
Abstract
Cyclin-dependent kinase 7 (CDK7) is a central regulator of the cell cycle and gene transcription. However, little is known about its impact on genomic instability and cancer immunity. Using a selective CDK7 inhibitor, YKL-5-124, we demonstrated that CDK7 inhibition predominately disrupts cell-cycle progression and induces DNA replication stress and genome instability in small cell lung cancer (SCLC) while simultaneously triggering immune-response signaling. These tumor-intrinsic events provoke a robust immune surveillance program elicited by T cells, which is further enhanced by the addition of immune-checkpoint blockade. Combining YKL-5-124 with anti-PD-1 offers significant survival benefit in multiple highly aggressive murine models of SCLC, providing a rationale for new combination regimens consisting of CDK7 inhibitors and immunotherapies.
Collapse
Affiliation(s)
- Hua Zhang
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA.
| | | | - Ruben Dries
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Matthew G Oser
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jiehui Deng
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Brian Diskin
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016, USA
| | - Fei Li
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Yuanwang Pan
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Xuzhu Zhang
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Yandong Yin
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Eleni Papadopoulos
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Val Pyon
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Cassandra Thakurdin
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Nicholas Kwiatkowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kandarp Jani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Alexandra R Rabin
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Dayanne M Castro
- Departments of Biology and Computer Science, Center for Genomics and Systems Biology, New York University, New York, NY 10010, USA
| | - Ting Chen
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Heather Silver
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Qingyuan Huang
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Mirna Bulatovic
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Catríona M Dowling
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Belen Sundberg
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016, USA
| | - Alan Leggett
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Michela Ranieri
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Han Han
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Shuai Li
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Annan Yang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kristen E Labbe
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Christina Almonte
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Vladislav O Sviderskiy
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Max Quinn
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Jack Donaghue
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Eric S Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Tinghu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Zhixiang He
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Vamsidhar Velcheti
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Peter S Hammerman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Gordon J Freeman
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Richard Bonneau
- Departments of Biology and Computer Science, Center for Genomics and Systems Biology, New York University, New York, NY 10010, USA
| | - William G Kaelin
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Kate D Sutherland
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Ariena Kersbergen
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Andrew J Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Guo-Cheng Yuan
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - George Miller
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016, USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA.
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|