101
|
Li Y, Yang Y, Li L, Tang K, Hao X, Kai G. Advanced metabolic engineering strategies for increasing artemisinin yield in Artemisia annua L. HORTICULTURE RESEARCH 2024; 11:uhad292. [PMID: 38414837 PMCID: PMC10898619 DOI: 10.1093/hr/uhad292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/20/2023] [Indexed: 02/29/2024]
Abstract
Artemisinin, also known as 'Qinghaosu', is a chemically sesquiterpene lactone containing an endoperoxide bridge. Due to the high activity to kill Plasmodium parasites, artemisinin and its derivatives have continuously served as the foundation for antimalarial therapies. Natural artemisinin is unique to the traditional Chinese medicinal plant Artemisia annua L., and its content in this plant is low. This has motivated the synthesis of this bioactive compound using yeast, tobacco, and Physcomitrium patens systems. However, the artemisinin production in these heterologous hosts is low and cannot fulfil its increasing clinical demand. Therefore, A. annua plants remain the major source of this bioactive component. Recently, the transcriptional regulatory networks related to artemisinin biosynthesis and glandular trichome formation have been extensively studied in A. annua. Various strategies including (i) enhancing the metabolic flux in artemisinin biosynthetic pathway; (ii) blocking competition branch pathways; (iii) using transcription factors (TFs); (iv) increasing peltate glandular secretory trichome (GST) density; (v) applying exogenous factors; and (vi) phytohormones have been used to improve artemisinin yields. Here we summarize recent scientific advances and achievements in artemisinin metabolic engineering, and discuss prospects in the development of high-artemisinin yielding A. annua varieties. This review provides new insights into revealing the transcriptional regulatory networks of other high-value plant-derived natural compounds (e.g., taxol, vinblastine, and camptothecin), as well as glandular trichome formation. It is also helpful for the researchers who intend to promote natural compounds production in other plants species.
Collapse
Affiliation(s)
- Yongpeng Li
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yinkai Yang
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ling Li
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kexuan Tang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolong Hao
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Guoyin Kai
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
102
|
Zhang YY, Han Y, Li WN, Xu RH, Ju HQ. Tumor iron homeostasis and immune regulation. Trends Pharmacol Sci 2024; 45:145-156. [PMID: 38212195 DOI: 10.1016/j.tips.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/13/2024]
Abstract
Abnormal iron metabolism has long been regarded as a key metabolic hallmark of cancer. As a critical cofactor, iron contributes to tumor progression by participating in various processes such as mitochondrial electron transport, gene regulation, and DNA synthesis or repair. Although the role of iron in tumor cells has been widely studied, recent studies have uncovered the interplay of iron metabolism between tumor cells and immune cells, which may affect both innate and adaptive immune responses. In this review, we discuss the current understanding of the regulatory networks of iron metabolism between cancer cells and immune cells and how they contribute to antitumor immunity, and we analyze potential therapeutics targeting iron metabolism. Also, we highlight several key challenges and describe potential therapeutic approaches for future investigations.
Collapse
Affiliation(s)
- Yan-Yu Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Yi Han
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Wen-Ning Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Rui-Hua Xu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510060, P. R. China.
| | - Huai-Qiang Ju
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510060, P. R. China.
| |
Collapse
|
103
|
Chen Q, Liu Y, Bi L, Jin L, Peng R. Understanding the mechanistic roles of microplastics combined with heavy metals in regulating ferroptosis: Adding new paradigms regarding the links with diseases. ENVIRONMENTAL RESEARCH 2024; 242:117732. [PMID: 37996004 DOI: 10.1016/j.envres.2023.117732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
As a new type of pollutant, microplastics (MPs) commonly exist in today's ecosystems, causing damage to the ecological environment and the health of biological organisms, including human beings. MPs can function as carriers of heavy metals (HMs) to aggravate the enrichment of HMs in important organs of organisms, posing a great threat to health. Ferroptosis, a novel process for the regulation of nonapoptotic cell death, has been shown to be closely related to the occurrence and processes of MPs and HMs in diseases. In recent years, some HMs, such as cadmium (Cd), iron (Fe), arsenic (As) and copper (Cu), have been proven to induce ferroptosis. MPs can function as carriers of HMs to aggravate damage to the body. This damage involves oxidative stress, mitochondrial dysfunction, lipid peroxidation (LPO), inflammation, endoplasmic reticulum stress (ERS) and so on. Therefore, ferroptosis has great potential as a therapeutic target for diseases induced by MPs combined with HMs. This paper systematically reviews the potential effects and regulatory mechanisms of MPs and HMs in the process of ferroptosis, focusing on the mitochondrial damage, Fe accumulation, LPO, ERS and inflammation caused by MPs and HMs that affect the regulatory mechanism of ferroptosis, providing new insights for research on regulating drugs and for the development of ferroptosis-targeting therapy for Alzheimer's disease, Parkinson's disease, cancer and cardiovascular disease.
Collapse
Affiliation(s)
- Qianqian Chen
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yinai Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Liuliu Bi
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Libo Jin
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
104
|
Jiang X, Peng Q, Peng M, Oyang L, Wang H, Liu Q, Xu X, Wu N, Tan S, Yang W, Han Y, Lin J, Xia L, Tang Y, Luo X, Dai J, Zhou Y, Liao Q. Cellular metabolism: A key player in cancer ferroptosis. Cancer Commun (Lond) 2024; 44:185-204. [PMID: 38217522 PMCID: PMC10876208 DOI: 10.1002/cac2.12519] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/25/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024] Open
Abstract
Cellular metabolism is the fundamental process by which cells maintain growth and self-renewal. It produces energy, furnishes raw materials, and intermediates for biomolecule synthesis, and modulates enzyme activity to sustain normal cellular functions. Cellular metabolism is the foundation of cellular life processes and plays a regulatory role in various biological functions, including programmed cell death. Ferroptosis is a recently discovered form of iron-dependent programmed cell death. The inhibition of ferroptosis plays a crucial role in tumorigenesis and tumor progression. However, the role of cellular metabolism, particularly glucose and amino acid metabolism, in cancer ferroptosis is not well understood. Here, we reviewed glucose, lipid, amino acid, iron and selenium metabolism involvement in cancer cell ferroptosis to elucidate the impact of different metabolic pathways on this process. Additionally, we provided a detailed overview of agents used to induce cancer ferroptosis. We explained that the metabolism of tumor cells plays a crucial role in maintaining intracellular redox homeostasis and that disrupting the normal metabolic processes in these cells renders them more susceptible to iron-induced cell death, resulting in enhanced tumor cell killing. The combination of ferroptosis inducers and cellular metabolism inhibitors may be a novel approach to future cancer therapy and an important strategy to advance the development of treatments.
Collapse
Affiliation(s)
- Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, P. R. China
| | - Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, P. R. China
| | - Mingjing Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, P. R. China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, P. R. China
| | - Honghan Wang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Department of Head and Neck Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - Qiang Liu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, P. R. China
| | - Xuemeng Xu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Hengyang Medical School, University of South China, Hengyang, Hunan, P. R. China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, P. R. China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - Wenjuan Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - Yaqian Han
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, P. R. China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, P. R. China
| | - Xia Luo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, P. R. China
| | - Jie Dai
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Department of Head and Neck Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, P. R. China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, P. R. China
| |
Collapse
|
105
|
Sun H, Fu B, Qian X, Xu P, Qin W. Nuclear and cytoplasmic specific RNA binding proteome enrichment and its changes upon ferroptosis induction. Nat Commun 2024; 15:852. [PMID: 38286993 PMCID: PMC10825125 DOI: 10.1038/s41467-024-44987-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/11/2024] [Indexed: 01/31/2024] Open
Abstract
The key role of RNA-binding proteins (RBPs) in posttranscriptional regulation of gene expression is intimately tied to their subcellular localization. Here, we show a subcellular-specific RNA labeling method for efficient enrichment and deep profiling of nuclear and cytoplasmic RBPs. A total of 1221 nuclear RBPs and 1333 cytoplasmic RBPs were enriched and identified using nuclear/cytoplasm targeting enrichment probes, representing an increase of 54.4% and 85.7% compared with previous reports. The probes were further applied in the omics-level investigation of subcellular-specific RBP-RNA interactions upon ferroptosis induction. Interestingly, large-scale RBPs display enhanced interaction with RNAs in nucleus but reduced association with RNAs in cytoplasm during ferroptosis process. Furthermore, we discovered dozens of nucleoplasmic translocation candidate RBPs upon ferroptosis induction and validated representative ones by immunofluorescence imaging. The enrichment of Tricarboxylic acid cycle in the translocation candidate RBPs may provide insights for investigating their possible roles in ferroptosis induced metabolism dysregulation.
Collapse
Affiliation(s)
- Haofan Sun
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Bin Fu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Xiaohong Qian
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Ping Xu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Weijie Qin
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
- College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China.
| |
Collapse
|
106
|
Wang Y, Li Y, Qiu Y, Shen M, Wang L, Shao J, Zhang F, Xu X, Zhang Z, Guo M, Zheng S. Artesunate Induces Ferroptosis in Hepatic Stellate Cells and Alleviates Liver Fibrosis via the ROCK1/ATF3 Axis. J Clin Transl Hepatol 2024; 12:36-51. [PMID: 38250467 PMCID: PMC10794272 DOI: 10.14218/jcth.2023.00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/07/2023] [Accepted: 07/19/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND AND AIMS Development of fibrosis in chronic liver disease requires activation of hepatic stellate cells (HSCs) and leads to a poor outcome. Artesunate (Art) is an ester derivative of artemisinin that can induce ferroptosis in HSCs, and activated transcriptional factor 3 (ATF3) is an ATF/CREB transcription factor that is induced in response to stress. In this study, we examined the role of the Rho-associated protein kinase 1 (ROCK1)/ATF3 axis in Art-induced ferroptosis in HSCs. METHODS HSC activation and ferroptosis were studied in vitro by western blotting, polymerase chain reaction, immunofluorescence, and other assays. ATF3 electrophoretic mobility and ROCK1 protein stability were assayed by western blotting. Immunoprecipitation was used to detect the interaction of ROCK1 and ATF3, as well as ATF3 phosphorylation. A ubiquitination assay was used to verify ROCK1 degradation. Atf3-interfering and Rock1-overexpressing mice were constructed to validate the anti-hepatic fibrosis activity of Art in vivo. RESULTS Art induced ferroptosis in HSCs following glutathione-dependent antioxidant system inactivation resulting from nuclear accumulation of unphosphorylated ATF3 mediated by ROCK1-ubiquitination in vitro. Art also decreased carbon tetrachloride-induced liver fibrosis in mice, which was reversed by interfering with Atf3 or overexpressing Rock1. CONCLUSIONS The ROCK1/ATF3 axis was involved in liver fibrosis and regulation of ferroptosis, which provides an experimental basis for further study of Art for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Yingqian Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yujia Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yangling Qiu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Min Shen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ling Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jiangjuan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu China
| | - Xuefen Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu China
| | - Mei Guo
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu China
| |
Collapse
|
107
|
Yang J, Gu Z. Ferroptosis in head and neck squamous cell carcinoma: from pathogenesis to treatment. Front Pharmacol 2024; 15:1283465. [PMID: 38313306 PMCID: PMC10834699 DOI: 10.3389/fphar.2024.1283465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignant tumor worldwide, with high morbidity and mortality. Surgery and postoperative chemoradiotherapy have largely reduced the recurrence and fatality rates for most HNSCCs. Nonetheless, these therapeutic approaches result in poor prognoses owing to severe adverse reactions and the development of drug resistance. Ferroptosis is a kind of programmed cell death which is non-apoptotic. Ferroptosis of tumor cells can inhibit tumor development. Ferroptosis involves various biomolecules and signaling pathways, whose expressions can be adjusted to modulate the sensitivity of cells to ferroptosis. As a tool in the fight against cancer, the activation of ferroptosis is a treatment that has received much attention in recent years. Therefore, understanding the molecular mechanism of ferroptosis in HNSCC is an essential strategy with therapeutic potential. The most important thing to treat HNSCC is to choose the appropriate treatment method. In this review, we discuss the molecular and defense mechanisms of ferroptosis, analyze the role and mechanism of ferroptosis in the inhibition and immunity against HNSCC, and explore the therapeutic strategy for inducing ferroptosis in HNSCC including drug therapy, radiation therapy, immunotherapy, nanotherapy and comprehensive treatment. We find ferroptosis provides a new target for HNSCC treatment.
Collapse
Affiliation(s)
- Jing Yang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhaowei Gu
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
108
|
Zhao X, Li X, Xu Y. Ferroptosis: a dual-edged sword in tumour growth. Front Pharmacol 2024; 14:1330910. [PMID: 38273826 PMCID: PMC10808349 DOI: 10.3389/fphar.2023.1330910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Ferroptosis, a recently identified form of non-apoptotic cell death, is distinguished by its dependence on iron-triggered lipid peroxidation and accumulation of iron. It has been linked to various disorders, including the development of tumours. Interestingly, ferroptosis appears to exhibit a dual role in the context of tumour growth. This article provides a thorough exploration of the inherent ambivalence within ferroptosis, encompassing both its facilitation and inhibition of tumorous proliferation. It examines potential therapeutic targets associated with ferroptosis, the susceptibility of cancerous cells to ferroptosis, strategies to enhance the efficacy of existing cancer treatments, the interaction between ferroptosis and the immune response to tumours, and the fundamental mechanisms governing ferroptosis-induced tumour progression. A comprehensive understanding of how ferroptosis contributes to tumour biology and the strategic management of its dual nature are crucial for maximizing its therapeutic potential.
Collapse
Affiliation(s)
| | | | - Yinghui Xu
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
109
|
Le J, Pan G, Zhang C, Chen Y, Tiwari AK, Qin JJ. Targeting ferroptosis in gastric cancer: Strategies and opportunities. Immunol Rev 2024; 321:228-245. [PMID: 37903748 DOI: 10.1111/imr.13280] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 11/01/2023]
Abstract
Ferroptosis is a novel form of programmed cell death morphologically, genetically, and biochemically distinct from other cell death pathways and characterized by the accumulation of iron-dependent lipid peroxides and oxidative damage. It is now understood that ferroptosis plays an essential role in various biological processes, especially in the metabolism of iron, lipids, and amino acids. Gastric cancer (GC) is a prevalent malignant tumor worldwide with low early diagnosis rates and high metastasis rates, accounting for its relatively poor prognosis. Although chemotherapy is commonly used to treat GC, drug resistance often leads to poor therapeutic outcomes. In the last several years, extensive research on ferroptosis has highlighted its significant potential in GC therapy, providing a promising strategy to address drug resistance associated with standard cancer therapies. In this review, we offer an extensive summary of the key regulatory factors related to the mechanisms underlying ferroptosis. Various inducers and inhibitors specifically targeting ferroptosis are uncovered. Additionally, we explore the prospective applications and outcomes of these agents in the field of GC therapy, emphasizing their capacity to improve the outcomes of this patient population.
Collapse
Affiliation(s)
- Jiahan Le
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Guangzhao Pan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Che Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
| | - Yitao Chen
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Amit K Tiwari
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jiang-Jiang Qin
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
| |
Collapse
|
110
|
Ge A, He Q, Zhao D, Li Y, Chen J, Deng Y, Xiang W, Fan H, Wu S, Li Y, Liu L, Wang Y. Mechanism of ferroptosis in breast cancer and research progress of natural compounds regulating ferroptosis. J Cell Mol Med 2024; 28:e18044. [PMID: 38140764 PMCID: PMC10805512 DOI: 10.1111/jcmm.18044] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/15/2023] [Accepted: 10/18/2023] [Indexed: 12/24/2023] Open
Abstract
Breast cancer is the most prevalent cancer worldwide and its incidence increases with age, posing a significant threat to women's health globally. Due to the clinical heterogeneity of breast cancer, the majority of patients develop drug resistance and metastasis following treatment. Ferroptosis, a form of programmed cell death dependent on iron, is characterized by the accumulation of lipid peroxides, elevated levels of iron ions and lipid peroxidation. The underlying mechanisms and signalling pathways associated with ferroptosis are intricate and interconnected, involving various proteins and enzymes such as the cystine/glutamate antiporter, glutathione peroxidase 4, ferroptosis inhibitor 1 and dihydroorotate dehydrogenase. Consequently, emerging research suggests that ferroptosis may offer a novel target for breast cancer treatment; however, the mechanisms of ferroptosis in breast cancer urgently require resolution. Additionally, certain natural compounds have been reported to induce ferroptosis, thereby interfering with breast cancer. Therefore, this review not only discusses the molecular mechanisms of multiple signalling pathways that mediate ferroptosis in breast cancer (including metastasis, invasion and proliferation) but also elaborates on the mechanisms by which natural compounds induce ferroptosis in breast cancer. Furthermore, this review summarizes potential compound types that may serve as ferroptosis inducers in future tumour cells, providing lead compounds for the development of ferroptosis-inducing agents. Last, this review proposes the potential synergy of combining natural compounds with traditional breast cancer drugs in the treatment of breast cancer, thereby suggesting future directions and offering new insights.
Collapse
Affiliation(s)
- Anqi Ge
- The First Hospital of Hunan University of Chinese MedicineChangshaChina
| | - Qi He
- People's Hospital of Ningxiang CityNingxiangChina
| | - Da Zhao
- The First Hospital of Hunan University of Chinese MedicineChangshaChina
- Hunan University of Chinese MedicineChangshaChina
| | - Yuwei Li
- Hunan University of Science and TechnologyXiangtanChina
| | - Junpeng Chen
- Hunan University of Science and TechnologyXiangtanChina
| | - Ying Deng
- People's Hospital of Ningxiang CityNingxiangChina
| | - Wang Xiang
- The First People's Hospital Changde CityChangdeChina
| | - Hongqiao Fan
- The First Hospital of Hunan University of Chinese MedicineChangshaChina
| | - Shiting Wu
- The First Hospital of Hunan University of Chinese MedicineChangshaChina
| | - Yan Li
- People's Hospital of Ningxiang CityNingxiangChina
| | - Lifang Liu
- The First Hospital of Hunan University of Chinese MedicineChangshaChina
| | - Yue Wang
- The First Hospital of Hunan University of Chinese MedicineChangshaChina
| |
Collapse
|
111
|
Wang F, Deng G, Liang N, Hu P, Liu K, Liu T, Li Y, Yuan M, Liu L, Xie J, Qiao L, Liu F, Zhang J. Serum ferritin level is an effective prognostic factor for lung cancer immunotherapy. Cancer Biol Ther 2023; 24:2285367. [PMID: 38031846 PMCID: PMC10783829 DOI: 10.1080/15384047.2023.2285367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023] Open
Abstract
Immunotherapy of lung cancer has achieved promising clinical results. However, it is urgent to develop predictive biomarkers for effective immunotherapy. While ferroptosis plays a critical role in immunotherapy efficacy, ferritin is an important regulatory factor. We, therefore, hypothesize that basal serum ferritin levels before immunotherapy and their corresponding changes during immunotherapy can be useful predictors of immunotherapy response in patients with lung cancer. We measured serum ferritin levels in 107 patients with lung cancer before and during immune checkpoint blockade treatments and studied the correlation between ferritin levels, response rate, and survival. Moreover, the correlation between basal ferritin and PD-L1 expression, tumor stages and pathological types was also analyzed. Patients with lower basal serum ferritin levels before immunotherapy had longer progression-free survival (PFS) (median 7 vs 4 months, P = .023) and higher disease control rate (DCR) (X2 = 4.837, P = .028), those with downregulated serum ferritin levels during immunotherapy correlated with longer PFS (median 9.5 vs 4 months, P < .001) and higher DCR (X2 = 6.475, P = .011). However, the "integrated factor", which was calculated as the combination of lower basal serum ferritin levels before immunotherapy and downregulated serum ferritin levels during immunotherapy, correlated with prolonged PFS (P < .001). Multivariate analyses revealed that the basal serum ferritin levels before immunotherapy and the corresponding changes during immunotherapy were both strong independent prognostic factors (hazard ratio (HR) = 1.60, P = .041; HR = 2.65, P = .001). These findings suggest that serum ferritin levels can be used as a prognostic biomarker for lung cancer in predicting immunotherapy efficacy.
Collapse
Affiliation(s)
- Fei Wang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Oncology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Department of Oncology, Zaozhuang Shizhong District People’s Hospital, Zaozhuang, China
| | - Guodong Deng
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Ning Liang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Pingping Hu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Kuo Liu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Tong Liu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Oncology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Yang Li
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Oncology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Meng Yuan
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Oncology, Shandong Provincial Qianfoshan Hospital, Weifang Medical University, Jinan, China
| | - Li Liu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Oncology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Jian Xie
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Lili Qiao
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Fengjun Liu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jiandong Zhang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Oncology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Department of Oncology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
112
|
Zhang Z, Xiang J, Guan L, Chen P, Li C, Guo C, Hu Y, Huang S, Cai L, Gong P. Inducing tumor ferroptosis via a pH-responsive NIR-II photothermal agent initiating lysosomal dysfunction. NANOSCALE 2023; 15:19074-19078. [PMID: 38009184 DOI: 10.1039/d3nr04124g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Ferroptosis is a unique programmed cell death process that was discovered a few years ago and plays an important role in tumor biology and treatment. However, it still remains a challenge to modulate tumor ferroptosis by spatiotemporally controlled cell-intrinsic Fenton chemistry. Herein, a pH activated photothermal sensitizer IR-PE has been designed and synthesized on the basis of cyanine bearing a diamine moiety, which is capable of triggering the lysosomal dysfunction-mediated Fenton pathway under the irradiation of near-infrared light to evoke ferroptosis, thereby improving antitumor efficacy and mitigating systemic side effects.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Northwest University, Xi'an 710069, China.
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, CAS Key Lab for Health Informatics, Sino-Euro Center of Biomedicine and Health, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingjing Xiang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, CAS Key Lab for Health Informatics, Sino-Euro Center of Biomedicine and Health, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Pu Chen
- Baoji University of Arts and Sciences, Baoji 721013, China
| | - Changzhong Li
- Peking University Shenzhen Hospital, No. 1120, Lianhua Road, Shenzhen 518036, China.
| | - Chunlei Guo
- Peking University Shenzhen Hospital, No. 1120, Lianhua Road, Shenzhen 518036, China.
| | - Yan Hu
- Peking University Shenzhen Hospital, No. 1120, Lianhua Road, Shenzhen 518036, China.
| | | | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, CAS Key Lab for Health Informatics, Sino-Euro Center of Biomedicine and Health, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Gong
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, CAS Key Lab for Health Informatics, Sino-Euro Center of Biomedicine and Health, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
113
|
Huang R, Wu J, Ma Y, Kang K. Molecular Mechanisms of Ferroptosis and Its Role in Viral Pathogenesis. Viruses 2023; 15:2373. [PMID: 38140616 PMCID: PMC10747891 DOI: 10.3390/v15122373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Ferroptosis is a novelty form of regulated cell death, and it is mainly characterized by iron accumulation and lipid peroxidation in the cells. Its underlying mechanism is related to the amino acid, iron, and lipid metabolisms. During viral infection, pathogenic microorganisms have evolved to interfere with ferroptosis, and ferroptosis is often manipulated by viruses to regulate host cell servicing for viral reproduction. Therefore, this review provides a comprehensive overview of the mechanisms underlying ferroptosis, elucidates the intricate signaling pathways involved, and explores the pivotal role of ferroptosis in the pathogenesis of viral infections. By enhancing our understanding of ferroptosis, novel therapeutic strategies can be devised to effectively prevent and treat diseases associated with this process. Furthermore, unraveling the developmental mechanisms through which viral infections exploit ferroptosis will facilitate development of innovative antiviral agents.
Collapse
Affiliation(s)
- Riwei Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.H.); (J.W.); (Y.M.)
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jiang Wu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.H.); (J.W.); (Y.M.)
| | - Yaodan Ma
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.H.); (J.W.); (Y.M.)
| | - Kai Kang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.H.); (J.W.); (Y.M.)
| |
Collapse
|
114
|
Zhang J, Zhou K, Lin J, Yao X, Ju D, Zeng X, Pang Z, Yang W. Ferroptosis-enhanced chemotherapy for triple-negative breast cancer with magnetic composite nanoparticles. Biomaterials 2023; 303:122395. [PMID: 37988899 DOI: 10.1016/j.biomaterials.2023.122395] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
Triple-negative breast cancer (TNBC) causes great suffering to patients because of its heterogeneity, poor prognosis, and chemotherapy resistance. Ferroptosis is characterized by iron-dependent oxidative damage by accumulating intracellular lipid peroxides to lethal levels, and plays a vital role in the treatment of TNBC based on its intrinsic characteristics. To identify the relationship between chemotherapy resistance and ferroptosis in TNBC, we analyzed the single cell RNA-sequencing public dataset of GSE205551. It was found that the expression of Gpx4 in DOX-resistant TNBC cells was significantly higher than that in DOX-sensitive TNBC cells. Based on this finding, we hypothesize that inducing ferroptosis by inhibiting the expression of Gpx4 can reduce the resistance of TNBC to DOX and enhance the therapeutic effect of chemotherapy on TNBC. Herein, dihydroartemisinin (DHA)-loaded polyglutamic acid-stabilized Fe3O4 magnetic nanoparticles (Fe3O4-PGA-DHA) was combined with DOX-loaded polyaspartic acid-stabilized Fe3O4 magnetic nanoparticles (Fe3O4-PASP-DOX) for ferroptosis-enhanced chemotherapy of TNBC. Compared with Fe3O4-PASP-DOX, Fe3O4-PGA-DHA + Fe3O4-PASP-DOX demonstrated significantly stronger cytotoxicity against different TNBC cell lines and achieved significantly more intracellular accumulation of reactive oxygen species and lipid peroxides. Furthermore, transcriptomic analyses demonstrated that Fe3O4-PASP-DOX-induced apoptosis could be enhanced by Fe3O4-PGA-DHA-induced ferroptosis and Fe3O4-PGA-DHA + Fe3O4-PASP-DOX might trigger ferroptosis in MDA-MB-231 cells by inhibiting the PI3K/AKT/mTOR/GPX4 pathway. Fe3O4-PGA-DHA + Fe3O4-PASP-DOX showed superior anti-tumor efficacy on MDA-MB-231 tumor-bearing mice, providing great potential for improving the therapeutic effect of TNBC.
Collapse
Affiliation(s)
- Jiaxin Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Kaicheng Zhou
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jingbo Lin
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Xianxian Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Dianwen Ju
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Xian Zeng
- School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Zhiqing Pang
- School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Wuli Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
115
|
Yu W, Hu Y, Liu Z, Guo K, Ma D, Peng M, Wang Y, Zhang J, Zhang X, Wang P, Zhang J, Liu P, Lu J. Sorting nexin 3 exacerbates doxorubicin-induced cardiomyopathy via regulation of TFRC-dependent ferroptosis. Acta Pharm Sin B 2023; 13:4875-4892. [PMID: 38045054 PMCID: PMC10692393 DOI: 10.1016/j.apsb.2023.08.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 12/05/2023] Open
Abstract
The clinical utilization of doxorubicin (Dox) in various malignancies is restrained by its major adverse effect: irreversible cardiomyopathy. Extensive studies have been done to explore the prevention of Dox cardiomyopathy. Currently, ferroptosis has been shown to participate in the incidence and development of Dox cardiomyopathy. Sorting Nexin 3 (SNX3), the retromer-associated cargo binding protein with important physiological functions, was identified as a potent therapeutic target for cardiac hypertrophy in our previous study. However, few study has shown whether SNX3 plays a critical role in Dox-induced cardiomyopathy. In this study, a decreased level of SNX3 in Dox-induced cardiomyopathy was observed. Cardiac-specific Snx3 knockout (Snx3-cKO) significantly alleviated cardiomyopathy by downregulating Dox-induced ferroptosis significantly. SNX3 was further demonstrated to exacerbate Dox-induced cardiomyopathy via induction of ferroptosis in vivo and in vitro, and cardiac-specific Snx3 transgenic (Snx3-cTg) mice were more susceptible to Dox-induced ferroptosis and cardiomyopathy. Mechanistically, SNX3 facilitated the recycling of transferrin 1 receptor (TFRC) via direct interaction, disrupting iron homeostasis, increasing the accumulation of iron, triggering ferroptosis, and eventually exacerbating Dox-induced cardiomyopathy. Overall, these findings established a direct SNX3-TFRC-ferroptosis positive regulatory axis in Dox-induced cardiomyopathy and suggested that targeting SNX3 provided a new effective therapeutic strategy for Dox-induced cardiomyopathy through TFRC-dependent ferroptosis.
Collapse
Affiliation(s)
- Wenjing Yu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuehuai Hu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhiping Liu
- School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Kaiteng Guo
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Dinghu Ma
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Mingxia Peng
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuemei Wang
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jing Zhang
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaolei Zhang
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Panxia Wang
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiguo Zhang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shangdong Academy of Medical Sciences, Taian 271016, China
| | - Peiqing Liu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- School of Pharmaceutical Sciences, Shandong First Medical University & Shangdong Academy of Medical Sciences, Taian 271016, China
| | - Jing Lu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
116
|
Zhang D, Jia X, Lin D, Ma J. Melatonin and ferroptosis: Mechanisms and therapeutic implications. Biochem Pharmacol 2023; 218:115909. [PMID: 37931663 DOI: 10.1016/j.bcp.2023.115909] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Ferroptosis, a regulated form of cell death, is characterized by iron-dependent lipid peroxidation leading to oxidative damage to cell membranes. Cell sensitivity to ferroptosis is influenced by factors such as iron overload, lipid metabolism, and the regulation of the antioxidant system. Melatonin, with its demonstrated capacity to chelate iron, modulate iron metabolism proteins, regulate lipid peroxidation, and regulate antioxidant systems, has promise as a potential therapeutic agent in mediating ferroptosis. The availability of approved drugs targeting ferroptosis is limited; therefore, melatonin is a candidate for broad application due to its safety and efficacy in attenuating ferroptosis in noncancerous diseases. Melatonin has been demonstrated to attenuate ferroptosis in cellular and animal models of noncancerous diseases, showcasing effectiveness in organs such as the heart, brain, lung, liver, kidney, and bone. This review outlines the molecular mechanisms of ferroptosis, investigates melatonin's potential effects on ferroptosis, and discusses melatonin's therapeutic potential as a promising intervention against diseases associated with ferroptosis. Through this discourse, we aim to lay a strong foundation for developing melatonin as a therapeutic strategy to modulate ferroptosis in a variety of disease contexts.
Collapse
Affiliation(s)
- Dongni Zhang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Xiaotong Jia
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Duomao Lin
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| |
Collapse
|
117
|
Yuan C, Fan R, Zhu K, Wang Y, Xie W, Liang Y. Curcumin induces ferroptosis and apoptosis in osteosarcoma cells by regulating Nrf2/GPX4 signaling pathway. Exp Biol Med (Maywood) 2023; 248:2183-2197. [PMID: 38166505 PMCID: PMC10903231 DOI: 10.1177/15353702231220670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/26/2023] [Indexed: 01/04/2024] Open
Abstract
Curcumin, an antitumor agent, has been shown to inhibit cell growth and metastasis in osteosarcoma. However, there is no evidence of curcumin and its regulation of cell ferroptosis and nuclear factor E2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPX4) signaling pathways in osteosarcoma. This study aimed to investigate the effects of curcumin on osteosarcoma both in vitro and in vivo. To explore the effects and mechanisms of curcumin on osteosarcoma, cells (MNNG/HOS and MG-63) and xenograft mice models were established. Cell viability, cell apoptosis rate, cycle distribution, cell migration, cell invasion, reactive oxygen species, malonaldehyde and glutathione abilities, and protein levels were detected by cell counting kit-8, flow cytometry, wound healing, transwell assay, respectively. Nrf2 and GPX4 expressions were detected using an immunofluorescence assay. Nrf2/GPX4-related protein levels were detected using western blotting. The results showed that curcumin effectively decreased cell viability and increased apoptosis rate. Meanwhile, curcumin inhibited tumor volume in the xenograft model, and Nrf2/GPX4-related protein levels were also altered. Interestingly, the effects of curcumin were reversed by liproxstatin-1 (an effective inhibitor of ferroptosis) and bardoxolone-methyl (an effective activator of Nrf2). Our results indicate that curcumin has therapeutic effects on osteosarcoma cells and a xenograft model by regulating the expression of the Nrf2/GPX4 signaling pathway.
Collapse
Affiliation(s)
- Chuanjian Yuan
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Rong Fan
- Yantai Raphael Biotechnology Co., Ltd, Yantai 264000, China
| | - Kai Zhu
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
- Department of Orthopedics, Gaoqing Traditional Chinese Medicine Hospital Co., Ltd, Zibo 256300, China
| | - Yutong Wang
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Wenpeng Xie
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yanchen Liang
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| |
Collapse
|
118
|
Wang L, Xie Y, Myrzagali S, Pu W, Liu E. Metal ions as effectual tools for cancer with traditional Chinese medicine. ACUPUNCTURE AND HERBAL MEDICINE 2023; 3:296-308. [DOI: 10.1097/hm9.0000000000000083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Malignant tumor has become a major threat affecting human health, and is one of the main causes of human death. Recent studies have shown that many traditional Chinese medicines (TCM) have good anti-tumor activity, which may improve the therapeutic effect of routine treatment and quality of life with lower toxicity. However, the efficacy of TCM alone for the treatment of tumors is limited. Metal ions are essential substances for maintaining normal physiological activities. This article summarized the multiple mechanisms in which metal ions are involved in the prevention and treatment of tumors in TCM.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingqiu Xie
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Sandugash Myrzagali
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Weiling Pu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Erwei Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
119
|
Gonciarz RL, Jiang H, Tram L, Hugelshofer CL, Ekpenyong O, Knemeyer I, Aron AT, Chang CJ, Flygare JA, Collisson EA, Renslo AR. In vivo bioluminescence imaging of labile iron in xenograft models and liver using FeAL-1, an iron-activatable form of D-luciferin. Cell Chem Biol 2023; 30:1468-1477.e6. [PMID: 37820725 PMCID: PMC10841594 DOI: 10.1016/j.chembiol.2023.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 07/21/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023]
Abstract
Dysregulated iron homeostasis underlies diverse pathologies, from ischemia-reperfusion injury to epithelial-mesenchymal transition and drug-tolerant "persister" cancer cell states. Here, we introduce ferrous iron-activatable luciferin-1 (FeAL-1), a small-molecule probe for bioluminescent imaging of the labile iron pool (LIP) in luciferase-expressing cells and animals. We find that FeAL-1 detects LIP fluctuations in cells after iron supplementation, depletion, or treatment with hepcidin, the master regulator of systemic iron in mammalian physiology. Utilizing FeAL-1 and a dual-luciferase reporter system, we quantify LIP in mouse liver and three different orthotopic pancreatic ductal adenocarcinoma tumors. We observed up to a 10-fold increase in FeAL-1 bioluminescent signal in xenograft tumors as compared to healthy liver, the major organ of iron storage in mammals. Treating mice with hepcidin further elevated hepatic LIP, as predicted. These studies reveal a therapeutic index between tumoral and hepatic LIP and suggest an approach to sensitize tumors toward LIP-activated therapeutics.
Collapse
Affiliation(s)
- Ryan L Gonciarz
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Honglin Jiang
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Linh Tram
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Cedric L Hugelshofer
- Department of Discovery Chemistry, Merck & Co, Inc., South San Francisco, CA 94080, USA
| | - Oscar Ekpenyong
- ADME & Discovery Toxicology, Merck & Co, Inc., South San Francisco, CA 94080, USA
| | - Ian Knemeyer
- ADME & Discovery Toxicology, Merck & Co, Inc., South San Francisco, CA 94080, USA
| | - Allegra T Aron
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, USA
| | - Christopher J Chang
- Departments of Chemistry and Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - John A Flygare
- Department of Discovery Chemistry, Merck & Co, Inc., South San Francisco, CA 94080, USA
| | - Eric A Collisson
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Adam R Renslo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
120
|
Du L, Yang H, Ren Y, Ding Y, Xu Y, Zi X, Liu H, He P. Inhibition of LSD1 induces ferroptosis through the ATF4-xCT pathway and shows enhanced anti-tumor effects with ferroptosis inducers in NSCLC. Cell Death Dis 2023; 14:716. [PMID: 37923740 PMCID: PMC10624898 DOI: 10.1038/s41419-023-06238-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/06/2023]
Abstract
Lysine-specific demethylase 1 (LSD1) has been identified as an important epigenetic target, and recent advances in lung cancer therapy have highlighted the importance of targeting ferroptosis. However, the precise mechanisms by which LSD1 regulates ferroptosis remain elusive. In this study, we report that the inhibition of LSD1 induces ferroptosis by enhancing lipid peroxidation and reactive oxygen species (ROS) accumulation. Mechanistically, LSD1 inhibition downregulates the expression of activating transcription factor 4 (ATF4) through epigenetic modification of histone H3 lysine 9 dimethyl (H3K9me2), which sequentially inhibits the expression of the cystine-glutamate antiporter (xCT) and decreases glutathione (GSH) production. Furthermore, LSD1 inhibition transcriptionally upregulates the expression of transferrin receptor (TFRC) and acyl-CoA synthetase long chain family member 4 (ACSL4) by enhancing the binding of histone H3 lysine 4 dimethyl (H3K4me2) to their promoter sequences. Importantly, the combination of an LSD1 inhibitor and a ferroptosis inducer demonstrates an enhanced anti-tumor effect in a xenograft model of non-small cell lung cancer (NSCLC), surpassing the efficacy of either agent alone. These findings reveal new insights into the mechanisms by which LSD1 inhibition induces ferroptosis, offering potential guidance for the development of new strategies in the treatment of NSCLC.
Collapse
Affiliation(s)
- Linna Du
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Han Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yufei Ren
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yanli Ding
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yichao Xu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaolin Zi
- Departments of Urology and Pharmaceutical Sciences and Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, 92697, USA
| | - Hongmin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Pengxing He
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
121
|
Shan Y, Guan C, Wang J, Qi W, Chen A, Liu S. Impact of ferroptosis on preeclampsia: A review. Biomed Pharmacother 2023; 167:115466. [PMID: 37729725 DOI: 10.1016/j.biopha.2023.115466] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023] Open
Abstract
Preeclampsia (PE) is usually associated with the accumulation of reactive oxygen species (ROS) resulting from heightened oxidative stress (OS). Ferroptosis is a unique type of lipid peroxidation-induced iron-dependent cell death distinct from traditional apoptosis, necroptosis, and pyroptosis and most likely contributes considerable to PE pathogenesis. At approximately 10-12 weeks of gestation, trophoblasts create an environment rich in oxygen and iron. In patients with PE, ferroptosis-related genes such as HIF1 and MAPK8 are downregulated, whereas PLIN2 is upregulated. Furthermore, miR-30b-5p overexpression inhibits solute carrier family 11 member 2, resulting in a decrease in glutathione levels and an increase in the labile iron pool. At the maternal-fetal interface, physiological hypoxia/reperfusion and excessive iron result in lipid peroxidation and ROS production. Owing to the high expression of Fpn and polyunsaturated fatty acid-containing phospholipid-related enzymes, including acyl-CoA synthetase long-chain family member 4, lysophosphatidylcholine acyl-transferase 3, and spermidine/spermine N1-acetyltransferase 1, trophoblasts become more susceptible to OS and ROS damage. In stage 1, the injured trophoblasts exhibit poor invasion and incomplete uterine spiral artery remodeling caused by ferroptosis, leading to placental ischemia and hypoxia. Subsequently, ferroptosis marked by OS occurs in stage 2, eventually causing PE. We aimed to explore the new therapeutic target of PE through OS in ferroptosis.
Collapse
Affiliation(s)
- Yuping Shan
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chengcheng Guan
- Laboratory Department, Qingdao Haici Hospital, Qingdao, China
| | - Jingli Wang
- Department of Medical Genetics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Weihong Qi
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Aiping Chen
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Shiguo Liu
- Department of Medical Genetics, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
122
|
Li LG, Yang XX, Xu HZ, Yu TT, Li QR, Hu J, Peng XC, Han N, Xu X, Chen NN, Chen X, Tang JM, Li TF. A Dihydroartemisinin-Loaded Nanoreactor Motivates Anti-Cancer Immunotherapy by Synergy-Induced Ferroptosis to Activate Cgas/STING for Reprogramming of Macrophage. Adv Healthc Mater 2023; 12:e2301561. [PMID: 37567571 DOI: 10.1002/adhm.202301561] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/28/2023] [Indexed: 08/13/2023]
Abstract
Infiltration of tumor-associated macrophages (TAM) characterized by an M2 phenotype is an overriding feature in malignant tumors. Reprogramming TAM is the most cutting-edge strategy for cancer therapy. In the present study, an iron-based metal-organic framework (MOF) nanoreactor loaded with dihydroartemisinin (DHA) is developed, which provides high uptake by TAM and retains their viability, thus effectively addressing the inefficiency of the DHA at low concentrations. Impressively, DHA@MIL-101 can selectively accumulate in tumor tissues and remodel TAM to the M1 phenotype. The results of RNA sequencing further suggest that this nanoreactor may regulate ferroptosis, a DNA damage signaling pathway in TAM. Indeed, the outcomes confirm that DHA@MIL-101 triggers ferroptosis in TAM. In addition, the findings reveal that DNA damage induced by DHA nanoreactors activates the intracellular cGAS sensor, resulting in the binding of STING to IRF3 and thereby up-regulating the immunogenicity. In contrast, blocking ferroptosis impairs DHA@MIL-101-induced activation of STING signaling and phenotypic remodeling. Finally, it is shown that DHA nanoreactors deploy anti-tumor immunotherapy through ferroptosis-mediated TAM reprogramming. Taken together, immune efficacy is achieved through TAM's remodeling by delivering DHA and iron ions into TAM using nanoreactors, providing a novel approach for combining phytopharmaceuticals with nanocarriers to regulate the immune microenvironment.
Collapse
Affiliation(s)
- Liu-Gen Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Shiyan, Hubei, 442000, China
| | - Xiao-Xin Yang
- School Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Hua-Zhen Xu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China
| | - Ting-Ting Yu
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Shiyan, Hubei, 442000, China
| | - Qi-Rui Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Shiyan, Hubei, 442000, China
| | - Jun Hu
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Shiyan, Hubei, 442000, China
| | - Xing-Chun Peng
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Shiyan, Hubei, 442000, China
- Department of Pathology, Sinopharm DongFeng General Hospital, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Ning Han
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Shiyan, Hubei, 442000, China
| | - Xiang Xu
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Shiyan, Hubei, 442000, China
| | - Nan-Nan Chen
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Shiyan, Hubei, 442000, China
| | - Xiao Chen
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China
| | - Jun-Ming Tang
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Shiyan, Hubei, 442000, China
| | - Tong-Fei Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Shiyan, Hubei, 442000, China
| |
Collapse
|
123
|
Zhu X, Huang N, Ji Y, Sheng X, Huo J, Zhu Y, Huang M, He W, Ma J. Brusatol induces ferroptosis in oesophageal squamous cell carcinoma by repressing GSH synthesis and increasing the labile iron pool via inhibition of the NRF2 pathway. Biomed Pharmacother 2023; 167:115567. [PMID: 37742602 DOI: 10.1016/j.biopha.2023.115567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023] Open
Abstract
Brusatol (Bru), a bioactive compound found in Brucea sumatrana, exerts antitumour effects on several malignancies. However, the role and molecular mechanism of Bru in squamous cell carcinoma of the oesophagus (ESCC) remain unclear. Here, we found that Bru decreased the survival of ESCC cells. Subsequently, the ferroptosis inhibitors, deferoxamine and liproxstatin-1, rescued Bru-induced cell death, indicating that ferroptosis plays a major role in Bru-induced cell death. Furthermore, Bru promoted lipid peroxidation, glutathione (GSH) depletion, and ferrous iron overload in vitro. Consistent with these in vitro results, Bru significantly inhibited tumour growth in KYSE150 xenograft nude mice by triggering ferroptosis. Mechanistically, nuclear factor E2-related factor 2 (NRF2) inactivation via increased ubiquitin-proteasome degradation was found to be a vital determinant of ferroptosis induced by Bru. Notably, Bru significantly decreases GSH synthesis, iron storage, and efflux by downregulating the expression of NRF2 target genes (glutamate-cysteine ligase catalytic subunit (GCLC), solute carrier family 7 member 11 (SLC7A11), ferritin heavy chain 1 (FTH1), and solute carrier family 40 member 1 (SLC40A1)), resulting in the accumulation of lethal lipid-based reactive oxygen species (ROS) and intracellular enrichment of chelated iron. Taken together, our findings indicate that ferroptosis is a novel mechanism underlying Bru-induced antitumour activity and will hopefully provide a valuable compound for ESCC treatment.
Collapse
Affiliation(s)
- Xu Zhu
- Department of Immunology, School of Basic Medical Science, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Nannan Huang
- Department of Immunology, School of Basic Medical Science, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Yao Ji
- Department of Pharmacology, School of Basic Medical Science, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Xinling Sheng
- Department of Immunology, School of Basic Medical Science, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Juanjuan Huo
- Department of Immunology, School of Basic Medical Science, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Yuan Zhu
- Department of Pharmacology, School of Basic Medical Science, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Menghuan Huang
- Department of Pharmacology, School of Basic Medical Science, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Wei He
- Department of Immunology, School of Basic Medical Science, Anhui Medical University, Hefei, Anhui 230032, PR China.
| | - Junting Ma
- Department of Pharmacology, School of Basic Medical Science, Anhui Medical University, Hefei, Anhui 230032, PR China.
| |
Collapse
|
124
|
Van de Walle A, Figuerola A, Espinosa A, Abou-Hassan A, Estrader M, Wilhelm C. Emergence of magnetic nanoparticles in photothermal and ferroptotic therapies. MATERIALS HORIZONS 2023; 10:4757-4775. [PMID: 37740347 DOI: 10.1039/d3mh00831b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
With their distinctive physicochemical features, nanoparticles have gained recognition as effective multifunctional tools for biomedical applications, with designs and compositions tailored for specific uses. Notably, magnetic nanoparticles stand out as first-in-class examples of multiple modalities provided by the iron-based composition. They have long been exploited as contrast agents for magnetic resonance imaging (MRI) or as anti-cancer agents generating therapeutic hyperthermia through high-frequency magnetic field application, known as magnetic hyperthermia (MHT). This review focuses on two more recent applications in oncology using iron-based nanomaterials: photothermal therapy (PTT) and ferroptosis. In PTT, the iron oxide core responds to a near-infrared (NIR) excitation and generates heat in its surrounding area, rivaling the efficiency of plasmonic gold-standard nanoparticles. This opens up the possibility of a dual MHT + PTT approach using a single nanomaterial. Moreover, the iron composition of magnetic nanoparticles can be harnessed as a chemotherapeutic asset. Degradation in the intracellular environment triggers the release of iron ions, which can stimulate the production of reactive oxygen species (ROS) and induce cancer cell death through ferroptosis. Consequently, this review emphasizes these emerging physical and chemical approaches for anti-cancer therapy facilitated by magnetic nanoparticles, combining all-in-one functionalities.
Collapse
Affiliation(s)
- Aurore Van de Walle
- Laboratory Physical Chemistry Curie (PCC), UMR168, Curie Institute and CNRS, 75005 Paris, France.
| | - Albert Figuerola
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franqués 1, E-08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB), Martí i Franques 1, E-08028 Barcelona, Spain
| | - Ana Espinosa
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, calle Sor Juana Inés de la Cruz 3, 28049-Madrid, Spain
| | - Ali Abou-Hassan
- Sorbonne Université, UMR CNRS 8234, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), F-75005, Paris, France
- Institut Universitaire de France (IUF), 75231 Cedex 05, Paris, France
| | - Marta Estrader
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franqués 1, E-08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB), Martí i Franques 1, E-08028 Barcelona, Spain
| | - Claire Wilhelm
- Laboratory Physical Chemistry Curie (PCC), UMR168, Curie Institute and CNRS, 75005 Paris, France.
| |
Collapse
|
125
|
Li J, He D, Li S, Xiao J, Zhu Z. Ferroptosis: the emerging player in remodeling triple-negative breast cancer. Front Immunol 2023; 14:1284057. [PMID: 37928550 PMCID: PMC10623117 DOI: 10.3389/fimmu.2023.1284057] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly heterogeneous breast tumor type that is highly malignant, invasive, and highly recurrent. Ferroptosis is a unique mode of programmed cell death (PCD) at the morphological, physiological, and molecular levels, mainly characterized by cell death induced by iron-dependent accumulation of lipid peroxides, which plays a substantial role in a variety of diseases, including tumors and inflammatory diseases. TNBC cells have been reported to display a peculiar equilibrium metabolic profile of iron and glutathione, which may increase the sensitivity of TNBC to ferroptosis. TNBC possesses a higher sensitivity to ferroptosis than other breast cancer types. Ferroptosis also occurred between immune cells and tumor cells, suggesting that regulating ferroptosis may remodel TNBC by modulating the immune response. Many ferroptosis-related genes or molecules have characteristic expression patterns and are expected to be diagnostic targets for TNBC. Besides, therapeutic strategies based on ferroptosis, including the isolation and extraction of natural drugs and the use of ferroptosis inducers, are urgent for TNBC personalized treatment. Thus, this review will explore the contribution of ferroptosis in TNBC progression, diagnosis, and treatment, to provide novel perspectives and therapeutic strategies for TNBC management.
Collapse
Affiliation(s)
- Jie Li
- Department of Thyroid and Breast Surgery, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Dejiao He
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Sicheng Li
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jun Xiao
- Department of Breast Surgery, Yueyang Central Hospital, Yueyang, Hunan, China
| | - Zhanyong Zhu
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
126
|
Xu C, Chen Y, Yu Q, Song J, Jin Y, Gao X. Compounds targeting ferroptosis in breast cancer: progress and their therapeutic potential. Front Pharmacol 2023; 14:1243286. [PMID: 37920209 PMCID: PMC10619677 DOI: 10.3389/fphar.2023.1243286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
In recent years, there has been a significant increase in the incidence of Breast cancer (BC), making it the most common cancer among women and a major threat to women's health. Consequently, there is an urgent need to discover new and effective strategies for treating BC. Ferroptosis, a novel form of cell death characterized by the accumulation of iron-dependent lipid reactive oxygen species, has emerged as a distinct regulatory pathway separate from necrosis, apoptosis, and autophagy. It is widely recognized as a crucial factor in the development and progression of cancer, offering a promising avenue for BC treatment. While significant progress has been made in understanding the mechanisms of ferroptosis in BC, drug development is still in its early stages. Numerous compounds, including phytochemicals derived from dietary sources and medicinal plants, as well as synthetic drugs (both clinically approved medications and laboratory reagents), have shown the ability to induce ferroptosis in BC cells, effectively inhibiting tumor growth. This comprehensive review aims to examine in detail the compounds that target ferroptosis in BC and elucidate their potential mechanisms of action. Additionally, the challenges associated with the clinical application of ferroptosis-inducing drugs are discussed, offering valuable insights for the development of novel treatment strategies for BC.
Collapse
Affiliation(s)
- Chuchu Xu
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Yian Chen
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Qinghong Yu
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Jiaqing Song
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Ying Jin
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Xiufei Gao
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
127
|
Xu X, Wang SS, Zhang L, Lu AX, Lin Y, Liu JX, Yan CH. Methylmercury induced ferroptosis by interference of iron homeostasis and glutathione metabolism in CTX cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122278. [PMID: 37517642 DOI: 10.1016/j.envpol.2023.122278] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023]
Abstract
Environmental methylmercury (MeHg) exposure has gained global attention owing to its serious health hazards, especially neurotoxicity. Ferroptosis is a novel form of programmed cell death characterized by lipid peroxidation and iron overload. However, the occurrence of ferroptosis and its underlying mechanisms have not been fully elucidated in the methylmercury-induced neurotoxicity and the role of Nrf2 in MeHg-induced ferroptosis remains unexplored. In this study, we verified that MeHg decreased cell viability in a dose- and time-dependent manner in the Rat Brain Astrocytes cells (CTX cells). MeHg (3.5 μmol/L) exposure induced CTX cells to undergo ferroptosis, as evidenced by glutathione (GSH) depletion, lipid peroxidation, and iron overload, which was significantly rescued by the ferroptosis-specific inhibitors Ferrostatin-1 and Deferoxamine. MeHg directly disrupted the process of GSH metabolism by downregulating of SLC7A11 and GPX4 and interfered with intracellular iron homeostasis through inhibition of iron storage and export. Simultaneously, the expression of Nrf2 was upregulated by MeHg in CTX cells. Hence, the inhibition of Nrf2 activity further downregulated the levels of GPX4, SLC7A11, FTH1, and SLC40A1, which aggravated MeHg-induced ferroptosis to a greater extent. Overall, our findings provided evidence that ferroptosis played a critical role in MeHg-induced neurotoxicity, and suppressing Nrf2 activity further exacerbated MeHg-induced ferroptosis in CTX cells.
Collapse
Affiliation(s)
- Xi Xu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Su-Su Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - An-Xin Lu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yin Lin
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun-Xia Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chong-Huai Yan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
128
|
Zhang Y, Yang Y, Chen W, Mi C, Xu X, Shen Y, Zheng Z, Xu Z, Zhao J, Wan S, Wang X, Zhang H. BaP/BPDE suppressed endothelial cell angiogenesis to induce miscarriage by promoting MARCHF1/GPX4-mediated ferroptosis. ENVIRONMENT INTERNATIONAL 2023; 180:108237. [PMID: 37802009 DOI: 10.1016/j.envint.2023.108237] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/06/2023] [Accepted: 09/26/2023] [Indexed: 10/08/2023]
Abstract
Environmental benzo(a)pyrene (BaP) and its ultimate metabolite BPDE (benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide) are universal and inevitable persistent organic pollutants and endocrine disrupting chemicals. Angiogenesis in placental decidua plays a pivotal role in healthy pregnancy. Ferroptosis is a newly identified and iron-dependent cell death mode. However, till now, BaP/BPDE exposure, ferroptosis, defective angiogenesis, and miscarriage have never been correlated; and their regulatory mechanisms have been rarely explored. In this study, we used assays with BPDE-exposed HUVECs (human umbilical vein endothelial cells), decidual tissues and serum samples collected from unexplained recurrent miscarriage and their matched healthy control groups, and placental tissues of BaP-exposed mouse miscarriage model. We found that BaP/BPDE exposure caused ferroptosis and then directly suppressed angiogenesis and eventually induced miscarriage. In mechanism, BaP/BPDE exposure up-regulated free Fe2+ level and promoted lipid peroxidation and also up-regulated MARCHF1 (a novel E3 ligase of GPX4) level to promote the ubiquitination degradation of GPX4, both of which resulted in HUVEC ferroptosis. Furthermore, we also found that GPX4 protein down-regulated the protein levels of VEGFA and ANG-1, two key proteins function for angiogenesis, and thus suppressed HUVEC angiogenesis. In turn, supplement with GPX4 could suppress ferroptosis, recover angiogenesis, and alleviate miscarriage. Moreover, the levels of free Fe2+ and VEGFA in serum might predict the risk of miscarriage. Overall, this study uncovered the crosstalk among BaP/BPDE exposure, ferroptosis, angiogenesis, and miscarriage, discovering novel toxicological effects of BaP/BPDE on human reproductive health. This study also warned the public to avoid exposure to polycyclic aromatic hydrocarbons during pregnancy to effectively prevent adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Ying Zhang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Yang Yang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Weina Chen
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Chenyang Mi
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Xiaole Xu
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Yanqiu Shen
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Zhaodian Zheng
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Zhongyan Xu
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Jingsong Zhao
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Shukun Wan
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Xiaoqing Wang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Huidong Zhang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China.
| |
Collapse
|
129
|
Hu S, Chu Y, Zhou X, Wang X. Recent advances of ferroptosis in tumor: From biological function to clinical application. Biomed Pharmacother 2023; 166:115419. [PMID: 37666176 DOI: 10.1016/j.biopha.2023.115419] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023] Open
Abstract
Ferroptosis is a recently recognized form of cell death with distinct features in terms of morphology, biochemistry, and molecular mechanisms. Unlike other types of cell death, ferroptosis is characterized by iron dependence, reactive oxygen species accumulation and lipid peroxidation. Recent studies have demonstrated that selective autophagy plays a vital role in the induction of ferroptosis, including ferritinophagy, lipophagy, clockophagy, and chaperone-mediated autophagy. Emerging evidence has indicated the involvement of ferroptosis in tumorigenesis through regulating various biological processes, including tumor growth, metastasis, stemness, drug resistance, and recurrence. Clinical and preclinical studies have found that novel therapies targeting ferroptosis exert great potential in the treatment of tumors. This review provides a comprehensive overview of the molecular mechanisms in ferroptosis, especially in autophagy-driven ferroptosis, discusses the recent advances in the biological roles of ferroptosis in tumorigenesis, and highlights the application of novel ferroptosis-targeted therapies in the clinical treatment of tumors.
Collapse
Affiliation(s)
- Shunfeng Hu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China; Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Yurou Chu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Taishan Scholars Program of Shandong Province, Jinan, Shandong 250021, China; Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong 250021, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China; Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Taishan Scholars Program of Shandong Province, Jinan, Shandong 250021, China; Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong 250021, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 251006, China.
| |
Collapse
|
130
|
Gu J, Xu Y, Hua D, Chen Z. Role of artesunate in autoimmune diseases and signaling pathways. Immunotherapy 2023; 15:1183-1193. [PMID: 37431601 DOI: 10.2217/imt-2023-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023] Open
Abstract
Artesunate (ART) is a derivative of artemisinin. Compared with artemisinin, ART has excellent water solubility, high stability and oral bioavailability. In this review, the application of ART in classic autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus and ulcerative colitis is summarized. ART exhibited similar or even better efficacy than other highly effective immunosuppressive agents, such as methotrexate and cyclophosphamide. In addition, ART exerts its pharmacological effects mainly by inhibiting the production of inflammatory factors, reactive oxygen species, autoantibodies and the migration of cells to reduce damage to tissues or organs. Moreover, ART widely affected the NF-κB, PI3K/Akt, JAK/STAT and MAPK pathways to exert pharmacological effects.
Collapse
Affiliation(s)
- Jingsai Gu
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, 430000, China
| | - Yishuang Xu
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, 430000, China
| | - Dihao Hua
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, 430000, China
| | - Zhen Chen
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, 430000, China
| |
Collapse
|
131
|
Xu W, Zou X, Zha Y, Zhang J, Bian H, Shen Z. Novel Bis-Artemisinin-Phloroglucinol hybrid molecules with dual anticancer and immunomodulatory Activities: Synthesis and evaluation. Bioorg Chem 2023; 139:106705. [PMID: 37406517 DOI: 10.1016/j.bioorg.2023.106705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
Bis-(10-deoxydihydroartemisinin)-phloroglucinol (9), has been synthesized in a one-step reaction and has demonstrated strong inhibition to cancer cell proliferation and immunosuppressive activity. The structure modification of the compound reduced its cytotoxicity, and among the analogs, bis-(10-deoxydihydroartemisinin)-phloroglucinol phenyl decanoate (16) showed significant reduction of ear swelling in a mouse model for DNFB-induced delayed-type hypersensitivity without observable toxicity in a dose-dependent manner.
Collapse
Affiliation(s)
- Wei Xu
- School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing Road, Shanghai 200025, China
| | - Xiaosu Zou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai 201203, China
| | - Yufeng Zha
- Yunnan Baiyao Group Co. Ltd., 3686 Yunnan Baiyao Street, Kunming 650200, China
| | - Jinghua Zhang
- School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing Road, Shanghai 200025, China
| | - Hongzhu Bian
- Yunnan Baiyao Group Co. Ltd., 3686 Yunnan Baiyao Street, Kunming 650200, China
| | - Zhengwu Shen
- School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing Road, Shanghai 200025, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai 201203, China.
| |
Collapse
|
132
|
Aleksandrova Y, Neganova M. Deciphering the Mysterious Relationship between the Cross-Pathogenetic Mechanisms of Neurodegenerative and Oncological Diseases. Int J Mol Sci 2023; 24:14766. [PMID: 37834214 PMCID: PMC10573395 DOI: 10.3390/ijms241914766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The relationship between oncological pathologies and neurodegenerative disorders is extremely complex and is a topic of concern among a growing number of researchers around the world. In recent years, convincing scientific evidence has accumulated that indicates the contribution of a number of etiological factors and pathophysiological processes to the pathogenesis of these two fundamentally different diseases, thus demonstrating an intriguing relationship between oncology and neurodegeneration. In this review, we establish the general links between three intersecting aspects of oncological pathologies and neurodegenerative disorders, i.e., oxidative stress, epigenetic dysregulation, and metabolic dysfunction, examining each process in detail to establish an unusual epidemiological relationship. We also focus on reviewing the current trends in the research and the clinical application of the most promising chemical structures and therapeutic platforms that have a modulating effect on the above processes. Thus, our comprehensive analysis of the set of molecular determinants that have obvious cross-functional pathways in the pathogenesis of oncological and neurodegenerative diseases can help in the creation of advanced diagnostic tools and in the development of innovative pharmacological strategies.
Collapse
Affiliation(s)
- Yulia Aleksandrova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Margarita Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia
| |
Collapse
|
133
|
Xi Y, Gao L, Li S, Sun K, Chen P, Cai Z, Ren W, Zhi K. The role of novel programmed cell death in head and neck squamous cell carcinoma: from mechanisms to potential therapies. Front Pharmacol 2023; 14:1228985. [PMID: 37818196 PMCID: PMC10560744 DOI: 10.3389/fphar.2023.1228985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/05/2023] [Indexed: 10/12/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a common oral cancer with poor prognosis and for which no targeted therapeutic strategies are currently available. Accumulating evidence has demonstrated that programmed cell death (PCD) is essential in the development of HNSCC as a second messenger. PCD can be categorized into numerous different subroutines: in addition to the two well-known types of apoptosis and autophagy, novel forms of programmed cell death (e.g., necroptosis, pyroptosis, ferroptosis, and NETosis) also serve as key alternatives in tumorigenesis. Cancer cells are not able to avoid all types of cell death simultaneously, since different cell death subroutines follow different regulatory pathways. Herein, we summarize the roles of novel programmed cell death in tumorigenesis and present our interpretations of the molecular mechanisms with a view to the development of further potential therapies.
Collapse
Affiliation(s)
- Yujie Xi
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, Qingdao, China
- Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
- Experimental Research Centre, China Academy of Chinese Medical Science, Beijing, China
| | - Ling Gao
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, Qingdao, China
- Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology of Qingdao University, Qingdao, China
| | - Shaming Li
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology of Qingdao University, Qingdao, China
| | - Kai Sun
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology of Qingdao University, Qingdao, China
| | - Peishen Chen
- Department of Stomatology, People’s Hospital of Juxian, Rizhao, China
| | - Zhen Cai
- Department of Stomatology, Linyi People’s Hospital, Linyi, Shandong, China
| | - Wenhao Ren
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, Qingdao, China
- Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Keqian Zhi
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, Qingdao, China
- Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology of Qingdao University, Qingdao, China
| |
Collapse
|
134
|
Sun WC, Wang NN, Li R, Sun XC, Liao JW, Yang G, Liu S. Ferritinophagy activation and sideroflexin1-dependent mitochondrial iron overload contribute to patulin-induced cardiac inflammation and fibrosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 892:164472. [PMID: 37257617 DOI: 10.1016/j.scitotenv.2023.164472] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Patulin (PAT) is a mycotoxin that is commonly present throughout the ecosystem where fungi grow and mainly contaminates food, soil, and water. PAT was found to be cardiotoxic in previous studies. However, the detailed mechanism has not been fully elucidated. The present study aimed to explore the role and underlying mechanism of ferroptosis in PAT-induced cardiac injury. Here, we confirmed in vivo and in vitro that ferroptosis is involved in PAT-induced myocardial inflammation and fibrosis. Mice exposed to PAT (1 and 2 mg/kg body weight/day for 14 days) exhibited myocardial inflammation and fibrosis along with disrupted iron homeostasis, elevated lipid peroxidation, depletion of glutathione peroxidase 4, and abnormal mitochondrial morphology. When primary neonatal rat cardiomyocytes (NRCMs) and H9c2 cells were exposed to PAT, ferroptosis was initiated in a dose-dependent manner, and this process could be significantly attenuated by ferrostatin-1. Mechanistically, we found that nuclear receptor coactivator (NCOA) 4, a master regulator of ferritinophagy, bound to and degraded ferritin in response to PAT treatment, thereby releasing large amounts of ferrous iron and further leading to sideroflexin (SFXN) 1-dependent mitochondrial iron overload. Conversely, knockdown of NCOA4 or SFXN1 with small interfering RNAs could effectively ameliorate ferroptotic cell death, cellular or mitochondrial iron overload and lipid peroxides accumulation. Furthermore, myocardial inflammation and fibrosis in PAT-exposed mice was alleviated by the mitochondrial iron chelator deferiprone. Overall, our findings underscore that ferritinophagy activation and SFXN1-dependent mitochondrial iron overload play critical roles in PAT-induced myocardial ferroptosis and consequent cardiotoxicity.
Collapse
Affiliation(s)
- Wen-Chang Sun
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Ning-Ning Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Ru Li
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Xian-Ce Sun
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Jia-Wei Liao
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Guang Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Shuang Liu
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
135
|
Zhang JB, Jia X, Cao Q, Chen YT, Tong J, Lu GD, Li DJ, Han T, Zhuang CL, Wang P. Ferroptosis-Regulated Cell Death as a Therapeutic Strategy for Neurodegenerative Diseases: Current Status and Future Prospects. ACS Chem Neurosci 2023; 14:2995-3012. [PMID: 37579022 DOI: 10.1021/acschemneuro.3c00406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023] Open
Abstract
Ferroptosis is increasingly being recognized as a key element in the pathogenesis of diverse diseases. Recent studies have highlighted the intricate links between iron metabolism and neurodegenerative disorders. Emerging evidence suggests that iron homeostasis, oxidative stress, and neuroinflammation all contribute to the regulation of both ferroptosis and neuronal health. However, the precise molecular mechanisms underlying the involvement of ferroptosis in the pathological processes of neurodegeneration and its impact on neuronal dysfunction remain incompletely understood. In our Review, we provide a comprehensive analysis and summary of the potential molecular mechanisms underlying ferroptosis in neurodegenerative diseases, aiming to elucidate the disease progression of neurodegeneration. Additionally, we discuss potential therapeutic agents that modulate ferroptosis with the goal of identifying novel drug molecules for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Jia-Bao Zhang
- Department of Pharmacology, College of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
- National Experimental Teaching Demonstration Center of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - Xiuqin Jia
- Department of Radiology, Beijing Chao Yang Hospital, Capital Medical University, Chaoyang District, Beijing 100020, China
| | - Qi Cao
- Department of Pharmacology, College of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
- National Experimental Teaching Demonstration Center of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - Yi-Ting Chen
- Department of Pharmacology, College of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - Jie Tong
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Guo-Dong Lu
- Department of Pharmacology, College of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - Dong-Jie Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ting Han
- Department of Pharmacology, College of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - Chun-Lin Zhuang
- Department of Pharmacology, College of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - Pei Wang
- Department of Pharmacology, College of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
- National Experimental Teaching Demonstration Center of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
136
|
Zhang J, Luo Z, Zheng Y, Cai Q, Jiang J, Zhang H, Duan M, Chen Y, Xia J, Qiu Z, Zeng J, Huang C. A bibliometric study and visualization analysis of ferroptosis-inducing cancer therapy. Heliyon 2023; 9:e19801. [PMID: 37809417 PMCID: PMC10559163 DOI: 10.1016/j.heliyon.2023.e19801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Ferroptosis is a form of regulated cell death that was first formally proposed a decade ago. While its role in cancer cell death was initially understudied, it has recently gained considerable interest from researchers. In recent years, a growing number of studies have focused on the role of ferroptosis in cancer progression, with the goal of developing novel ferroptosis-inducing cancer therapies. This study aims to present the developmental trend and hotspots of research on ferroptosis-inducing cancer therapy using bibliometric analysis. A literature search was conducted using the Web of Science Core Collection on October 1st, 2022, to retrieve articles and reviews pertaining to ferroptosis and cancer published from 2012 to 2022. Microsoft Excel 2016, VOSviewer 1.6.18 and CiteSpace (version 6.1. R6) were utilized to conduct the bibliometric analysis of publication trends, authorship, and citation networks, with a focus on identifying countries, institutions, journals, and authors contributing to the field. These analyses were used to predict future trends in this area. A total of 2839 articles were identified and extracted for analysis. The number of publications has increased almost every year, with a sharp increase after 2018. China produced the most publications in this area, followed by the United States. Central South University was the institution that published the most papers. Frontiers in Oncology was the journal with the highest number of publications, while Cell had the greatest impact factor. Daolin Tang was the most productive author and Dixon SJ was the most influential author. Co-occurrence and burst analyses of keywords and references were conducted to identify the developmental trends and hotspots in ferroptosis-inducing cancer therapy research. Main research directions have shifted from investigating the mechanism of ferroptosis to developing novel ferroptosis-targeting cancer therapies. Emerging topicsfocus on the role of ferroptosis in solid tumor therapy. Based on our bibliometric analysis, we predict that research on ferroptosis in cancer therapy will continue to be a hot topic in the future, with a growing number of treatment modalities related to ferroptosis being developed. Our study provides valuable insights into the current state and future trends of research in this field, serving as a useful guide for researchers seeking to make important contributions in this area.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zai Luo
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yang Zheng
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Qianqian Cai
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jie Jiang
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Haoliang Zhang
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Mingyu Duan
- Department of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yanmin Chen
- Department of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jiayang Xia
- Department of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zhengjun Qiu
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jvdan Zeng
- Department of Obstetrics and Gynecology, The International Peace Maternity & Child Health Hospital of China Welfare Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Chen Huang
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- The Affiliated Chuzhou Hospital of Anhui Medical University, Anhui, 239000, China
| |
Collapse
|
137
|
Ren Y, Mao X, Xu H, Dang Q, Weng S, Zhang Y, Chen S, Liu S, Ba Y, Zhou Z, Han X, Liu Z, Zhang G. Ferroptosis and EMT: key targets for combating cancer progression and therapy resistance. Cell Mol Life Sci 2023; 80:263. [PMID: 37598126 PMCID: PMC10439860 DOI: 10.1007/s00018-023-04907-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/21/2023]
Abstract
Iron-dependent lipid peroxidation causes ferroptosis, a form of regulated cell death. Crucial steps in the formation of ferroptosis include the accumulation of ferrous ions (Fe2+) and lipid peroxidation, of which are controlled by glutathione peroxidase 4 (GPX4). Its crucial role in stopping the spread of cancer has been shown by numerous studies undertaken in the last ten years. Epithelial-mesenchymal transition (EMT) is the process by which epithelial cells acquire mesenchymal characteristics. EMT is connected to carcinogenesis, invasiveness, metastasis, and therapeutic resistance in cancer. It is controlled by a range of internal and external signals and changes the phenotype from epithelial to mesenchymal like. Studies have shown that mesenchymal cancer cells tend to be more ferroptotic than their epithelial counterparts. Drug-resistant cancer cells are more easily killed by inducers of ferroptosis when they undergo EMT. Therefore, understanding the interaction between ferroptosis and EMT will help identify novel cancer treatment targets. In-depth discussion is given to the regulation of ferroptosis, the potential application of EMT in the treatment of cancer, and the relationships between ferroptosis, EMT, and signaling pathways associated with tumors. Invasion, metastasis, and inflammation in cancer all include ferroptosis and EMT. The goal of this review is to provide suggestions for future research and practical guidance for applying ferroptosis and EMT in clinical practice.
Collapse
Affiliation(s)
- Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiangrong Mao
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Qin Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shuang Chen
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shutong Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhaokai Zhou
- Department of Pediatric Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Guojun Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
138
|
Wang X, Tan X, Zhang J, Wu J, Shi H. The emerging roles of MAPK-AMPK in ferroptosis regulatory network. Cell Commun Signal 2023; 21:200. [PMID: 37580745 PMCID: PMC10424420 DOI: 10.1186/s12964-023-01170-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/20/2023] [Indexed: 08/16/2023] Open
Abstract
Ferroptosis, a newform of programmed cell death, driven by peroxidative damages of polyunsaturated-fatty-acid-containing phospholipids in cellular membranes and is extremely dependent on iron ions, which is differs characteristics from traditional cell death has attracted greater attention. Based on the curiosity of this new form of regulated cell death, there has a tremendous progress in the field of mechanistic understanding of ferroptosis recent years. Ferroptosis is closely associated with the development of many diseases and involved in many diseases related signaling pathways. Not only a variety of oncoproteins and tumor suppressors can regulate ferroptosis, but multiple oncogenic signaling pathways can also have a regulatory effect on ferroptosis. Ferroptosis results in the accumulation of large amounts of lipid peroxides thus involving the onset of oxidative stress and energy stress responses. The MAPK pathway plays a critical role in oxidative stress and AMPK acts as a sensor of cellular energy and is involved in the regulation of the energy stress response. Moreover, activation of AMPK can induce the occurrence of autophagy-dependent ferroptosis and p53-activated ferroptosis. In recent years, there have been new advances in the study of molecular mechanisms related to the regulation of ferroptosis by both pathways. In this review, we will summarize the molecular mechanisms by which the MAPK-AMPK signaling pathway regulates ferroptosis. Meanwhile, we sorted out the mysterious relationship between MAPK and AMPK, described the crosstalk among ferroptosis and MAPK-AMPK signaling pathways, and summarized the relevant ferroptosis inducers targeting this regulatory network. This will provide a new field for future research on ferroptosis mechanisms and provide a new vision for cancer treatment strategies. Video Abstract.
Collapse
Affiliation(s)
- Xinyue Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Xiao Tan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China.
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| | - Jinping Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Jiaping Wu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Hongjuan Shi
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| |
Collapse
|
139
|
Xiao Y, Yu TJ, Xu Y, Ding R, Wang YP, Jiang YZ, Shao ZM. Emerging therapies in cancer metabolism. Cell Metab 2023; 35:1283-1303. [PMID: 37557070 DOI: 10.1016/j.cmet.2023.07.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/20/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023]
Abstract
Metabolic reprogramming in cancer is not only a biological hallmark but also reveals treatment vulnerabilities. Numerous metabolic molecules have shown promise as treatment targets to impede tumor progression in preclinical studies, with some advancing to clinical trials. However, the intricacy and adaptability of metabolic networks hinder the effectiveness of metabolic therapies. This review summarizes the metabolic targets for cancer treatment and provides an overview of the current status of clinical trials targeting cancer metabolism. Additionally, we decipher crucial factors that limit the efficacy of metabolism-based therapies and propose future directions. With advances in integrating multi-omics, single-cell, and spatial technologies, as well as the ability to track metabolic adaptation more precisely and dynamically, clinicians can personalize metabolic therapies for improved cancer treatment.
Collapse
Affiliation(s)
- Yi Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Tian-Jian Yu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ying Xu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Rui Ding
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yi-Ping Wang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
140
|
Bozgeyik E, Bozgeyik I. Unveiling the therapeutic potential of natural-based anticancer compounds inducing non-canonical cell death mechanisms. Pathol Res Pract 2023; 248:154693. [PMID: 37516001 DOI: 10.1016/j.prp.2023.154693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/31/2023]
Abstract
In the Mid-19th century, Rudolf Virchow considered necrosis to be a prominent form of cell death; since then, pathologists have recognized necrosis as both a cause and a consequence of disease. About a century later, the mechanism of apoptosis, another form of cell death, was discovered, and we now know that this process is regulated by several molecular mechanisms that "programme" the cell to die. However, discoveries on cell death mechanisms are not limited to these, and recent studies have allowed the identification of novel cell death pathways that can be molecularly distinguished from necrotic and apoptotic cell death mechanisms. Moreover, the main goal of current cancer therapy is to discover and develop drugs that target apoptosis. However, resistance to chemotherapeutic agents targeting apoptosis is mainly responsible for the failure of clinical therapy and adverse side effects of the chemotherapeutic agents currently in use pose a major threat to the well-being and lives of patients. Therefore, the development of natural-based anticancer drugs with low cellular and organismal side effects is of great interest. In this comprehensive review, we thoroughly examine and discuss natural anticancer compounds that specifically target non-canonical cell death mechanisms.
Collapse
Affiliation(s)
- Esra Bozgeyik
- Department of Medical Services and Techniques, Vocational School of Health Services, Adiyaman University, Adiyaman, Turkey
| | - Ibrahim Bozgeyik
- Department of Medical Biology, Faculty of Medicine, Adiyaman University, Adiyaman, Turkey.
| |
Collapse
|
141
|
Li L, Xu Y, Yang W, Zhang K, Zhang Z, Zhou J, Gong Y, Gong K. Construction of a two-gene prognostic model related to ferroptosis in renal cell carcinoma. Transl Androl Urol 2023; 12:1167-1183. [PMID: 37554538 PMCID: PMC10406542 DOI: 10.21037/tau-23-346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Renal cell carcinoma (RCC) is a common and aggressive tumor. A newly discovered form of programmed cell death, ferroptosis, plays an important role in tumor development and progression. However, a clear prognostic correlation between Ferroptosis-related genes (FRGs) and RCC has not yet been established. In this study, prognostic markers associated with FRGs were investigated to improve the therapeutic, diagnostic, and preventive strategies available to patients with renal cancer. METHODS The present study analyzed the predictive value of 23 FRGs in RCC through bioinformatics techniques, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) tools, Kaplan-Meier survival analysis, Cox regression modeling, tumor mutational burden (TMB), CIBERSORT, and half maximal inhibitory concentration (IC50) difference analysis. RESULTS We screened FRGs by differentially expressed genes (DEGs) and overall survival (OS). Four candidate genes were obtained by hybridization. Then, we constructed a two-gene prognostic signature (NCOA4 and CDKN1A) via univariate Cox regression and multivariate stepwise Cox regression, which classified RCC patients into high- and low-risk groups, and patients in the high-risk group were found to have worse OS and progression-free survival (PFS). We also found that patients with higher TNM stage, T stage, and M stage had higher risk scores than those with lower TNM stage, T stage, and M stage (P<0.05). Males had higher risk scores than females. This signature was identified as an independent prognostic indicator for RCC. These results were validated in both the test cohort and the entire cohort. In addition, we also constructed a nomogram that predicted the OS in RCC patients, the consistency index (C-index) of the nomogram was 0.731 [95% confidence interval (CI): 0.672-0.790], the areas under the receiver operating characteristic (ROC) curves (AUCs) were 0.728, 0.704, and 0.898 at 1-, 3-, and 5-year, respectively, which shows that nomogram has good prediction ability. and we also analyzed the immune status and drug sensitivity between the high- and low-risk groups. CONCLUSIONS We constructed a prognostic model associated with ferroptosis, which may provide clinicians with a reliable predictive assessment tool and offer new perspectives for the future clinical management of RCC.
Collapse
Affiliation(s)
- Lei Li
- Department of Urology, Peking University First Hospital, Beijing, China
- Institution of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Yawei Xu
- Department of Urology, Peking University First Hospital, Beijing, China
- Institution of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Wuping Yang
- Department of Urology, Peking University First Hospital, Beijing, China
- Institution of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Kenan Zhang
- Department of Urology, Peking University First Hospital, Beijing, China
- Institution of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Zedan Zhang
- Department of Urology, Peking University First Hospital, Beijing, China
- Institution of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Jingcheng Zhou
- Department of Urology, Peking University First Hospital, Beijing, China
- Institution of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Yanqing Gong
- Department of Urology, Peking University First Hospital, Beijing, China
- Institution of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Kan Gong
- Department of Urology, Peking University First Hospital, Beijing, China
- Institution of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, China
- National Urological Cancer Center, Beijing, China
| |
Collapse
|
142
|
Shaikh K, Iqbal Y, Abdel-Maksoud MA, Murad A, Badar N, Alarjani KM, Siddiqui K, Chandio K, Almanaa TN, Jamil M, Ali M, Jabeen N, Hussein AM. Characterization of ferroptosis driver gene signature in head and neck squamous cell carcinoma (HNSC). Am J Transl Res 2023; 15:4829-4850. [PMID: 37560204 PMCID: PMC10408515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/29/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSC), a prevalent malignant tumor with a low survival rate, is often accompanied by ferroptosis, which is a recently-described type ofprogrammed cell death. Investigating the significance of ferroptosis driver genes in HNSC, this study aimed to assess their diagnostic and prognostic values, as well as their impact on treatment and tumor immune function. The results of this investigation provide novel insight into using ferroptosis-related genes as molecular biomarkers as well as precise chemotherapeutic targets for the therapy of HNSC. METHODOLOGY A detailed in silico and in vitro experiment-based methodology was adopted to achieve the goals. RESULTS A total of 233 ferroptosis driver genes were downloaded from the FerrDB database. After comprehensively analyzing these 233 ferroptosis driver genes by various TCGA databases, RNA-sequencing (RNA-seq), and Reverse Transcription Quantitative Real-Time Polymerase Chain Reaction (RT-qPCR) techniques, TP53 (tumor protein 53), PTEN (Phosphatase and TENsin homolog deleted on chromosome 10), KRAS (Ki-ras2 Kirsten rat sarcoma viral oncogene homolog), and HRAS (Harvey Rat sarcoma virus) were identified as differentially expressed hub genes. Interestingly, these hub genes were found to have significant (P < 0.05) variations in their mRNA and protein expressions and effects on overall survival of the HNSC patients. Moreover, targeted bisulfite-sequencing (bisulfite-seq) analysis revealed that promoter hypomethylation pattern was associated with up-regulation of hub genes (TP53, PTEN, KRAS, and HRAS). In addition to this, hub genes were involved in diverse oncogenic pathways. CONCLUSION Since HNSC pathogenesis is a complex process, using ferroptosis driver hub genes (TP53, PTEN, KRAS, and HRAS) as a diagnostic and prognostic tool, and therapeutically targeting those genes through appropriate drugs could bring a milestone change in the drug discovery and management and survival in HNSC.
Collapse
Affiliation(s)
- Khalida Shaikh
- Liaquat University of Medical and Health SciencesJamshoro, Pakistan
| | - Yusra Iqbal
- Continental Medical College LahoreLahore 54660, Pakistan
| | - Mostafa A Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud UniversityRiyadh 11451, Saudi Arabia
| | - Amina Murad
- Department of Bioscience, Comsats UniversityIslamabad, Pakistan
| | - Nadia Badar
- Department of Medical Oncology Allied HospitalFaisalabad, Pakistan
| | - Khaloud Mohammed Alarjani
- Botany and Microbiology Department, College of Science, King Saud UniversityRiyadh 11451, Saudi Arabia
| | - Komal Siddiqui
- Institute of Biotechnology and Genetic Engineering University of SindhJamshoro, Pakistan
| | | | | | - Muhammad Jamil
- PARC Arid Zone Research CentreDera Ismail Khan 29050, Pakistan
| | - Mubarik Ali
- Animal Science Institute, National Agricultural Research CenterIslamabad 54000, Pakistan
| | - Norina Jabeen
- Department of Rural Sociology, University of AgricultureFaisalabad 38000, Pakistan
| | - Ahmed M Hussein
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna1090 Vienna, Austria
- Programme for Proteomics, Paracelsus Medical UniversitySalzburg, Austria
| |
Collapse
|
143
|
Yu D, Wang Q, Zhang Q, Cai M, Liu S, Zhang W. Molecular mechanisms of ferroptosis and its antitumor applications in natural products. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1337-1347. [PMID: 37408372 PMCID: PMC10520475 DOI: 10.3724/abbs.2023120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/18/2023] [Indexed: 07/07/2023] Open
Abstract
Ferroptosis, an iron-dependent form of regulated cell death, results in lipid peroxidation of polyunsaturated fatty acids in the cell membrane, which is catalyzed by iron ions and accumulated to lethal levels. It is mechanistically distinct from other forms of cell death, such as apoptosis, pyroptosis, and necroptosis, so it may address the problem of cancer resistance to apoptosis and provide new therapeutic strategies for cancer treatment, which has been intensively studied over the past few years. Notably, considerable advances have been made in the antitumor research of natural products due to their multitargets and few side effects. According to research, natural products can also induce ferroptosis in cancer therapies. In this review we summarize the molecular mechanisms of ferroptosis, introduce the key regulatory genes of ferroptosis, and discuss the progress of natural product research in the field of ferroptosis to provide theoretical guidance for research on natural product-induced ferroptosis in tumors.
Collapse
Affiliation(s)
- Dianping Yu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Qun Wang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Qing Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Minchen Cai
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Sanhong Liu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Weidong Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
- Department of PhytochemistrySchool of PharmacySecond Military Medical UniversityShanghai200433China
- The Research Center for Traditional Chinese MedicineShanghai Institute of Infectious Diseases and BiosecurityShanghai University of Traditional Chinese MedicineShanghai201203China
| |
Collapse
|
144
|
Posadino AM, Giordo R, Pintus G, Mohammed SA, Orhan IE, Fokou PVT, Sharopov F, Adetunji CO, Gulsunoglu-Konuskan Z, Ydyrys A, Armstrong L, Sytar O, Martorell M, Razis AFA, Modu B, Calina D, Habtemariam S, Sharifi-Rad J, Cho WC. Medicinal and mechanistic overview of artemisinin in the treatment of human diseases. Biomed Pharmacother 2023; 163:114866. [PMID: 37182516 DOI: 10.1016/j.biopha.2023.114866] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023] Open
Abstract
Artemisinin (ART) is a bioactive compound isolated from the plant Artemisia annua and has been traditionally used to treat conditions such as malaria, cancer, viral infections, bacterial infections, and some cardiovascular diseases, especially in Asia, North America, Europe and other parts of the world. This comprehensive review aims to update the biomedical potential of ART and its derivatives for treating human diseases highlighting its pharmacokinetic and pharmacological properties based on the results of experimental pharmacological studies in vitro and in vivo. Cellular and molecular mechanisms of action, tested doses and toxic effects of artemisinin were also described. The analysis of data based on an up-to-date literature search showed that ART and its derivatives display anticancer effects along with a wide range of pharmacological activities such as antibacterial, antiviral, antimalarial, antioxidant and cardioprotective effects. These compounds have great potential for discovering new drugs used as adjunctive therapies in cancer and various other diseases. Detailed translational and experimental studies are however needed to fully understand the pharmacological effects of these compounds.
Collapse
Affiliation(s)
- Anna Maria Posadino
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro, 07100 Sassari, Italy
| | - Roberta Giordo
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro, 07100 Sassari, Italy
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro, 07100 Sassari, Italy; Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah 27272, United Arab Emirates
| | - Soheb Anwar Mohammed
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh, PA 15213, USA
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey; Turkish Academy of Sciences (TÜBA), Vedat Dalokay Cad., No. 112, 06670 Ankara, Turkey
| | | | - Farukh Sharopov
- V.I. Nikitin Chemistry Institute of the National Academy of Sciences of Tajikistan, Ayni 299/2, 734063 Dushanbe, Tajikistan
| | - Charles Oluwaseun Adetunji
- Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Department of Microbiology, Edo State University Uzairue, Iyamho, PMB 04 Auchi, Edo State, Nigeria
| | - Zehra Gulsunoglu-Konuskan
- Faculty of Health Science, Nutrition and Dietetics Department, Istanbul Aydin University, Istanbul 34295, Turkey
| | - Alibek Ydyrys
- Biomedical Research Centre, Al-Farabi Kazakh National University, Al-Farabi ave. 71, 050040 Almaty, Kazakhstan
| | - Lorene Armstrong
- State University of Ponta Grossa, Departament of Pharmaceutical Sciences, 84030900 Ponta Grossa, Paraná, Brazil; Federal University of Paraná, Department of Pharmacy, 80210170 Curitiba, Paraná, Brazil
| | - Oksana Sytar
- Institute of Plant and Environmental Sciences, Slovak Agricultural University in Nitra, 94976 Nitra, Slovakia
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile; Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, 4070386 Concepción, Chile.
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Babagana Modu
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Science, University of Maiduguri, 1069 Maiduguri, Borno State, Nigeria
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK
| | | | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
145
|
Cardona CJ, Montgomery MR. Iron regulatory proteins: players or pawns in ferroptosis and cancer? Front Mol Biosci 2023; 10:1229710. [PMID: 37457833 PMCID: PMC10340119 DOI: 10.3389/fmolb.2023.1229710] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
Cells require iron for essential functions like energy production and signaling. However, iron can also engage in free radical formation and promote cell proliferation thereby contributing to both tumor initiation and growth. Thus, the amount of iron within the body and in individual cells is tightly regulated. At the cellular level, iron homeostasis is maintained post-transcriptionally by iron regulatory proteins (IRPs). Ferroptosis is an iron-dependent form of programmed cell death with vast chemotherapeutic potential, yet while IRP-dependent targets have established roles in ferroptosis, our understanding of the contributions of IRPs themselves is still in its infancy. In this review, we present the growing circumstantial evidence suggesting that IRPs play critical roles in the adaptive response to ferroptosis and ferroptotic cell death and describe how this knowledge can be leveraged to target neoplastic iron dysregulation more effectively.
Collapse
|
146
|
Xie D, Li K, Feng R, Xiao M, Sheng Z, Xie Y. Ferroptosis and Traditional Chinese Medicine for Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2023; 16:1915-1930. [PMID: 37398945 PMCID: PMC10312342 DOI: 10.2147/dmso.s412747] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/03/2023] [Indexed: 07/04/2023] Open
Abstract
Ferroptosis, an emerging form of regulated programmed cell death, has garnered significant attention in the past decade. It is characterized by the accumulation of lipid peroxides and subsequent damage to cellular membranes, which is dependent on iron. Ferroptosis has been implicated in the pathogenesis of various diseases, including tumors and diabetes mellitus. Traditional Chinese medicine (TCM) has unique advantages in preventing and treating type 2 diabetes mellitus (T2DM) due to its anti-inflammatory, antioxidant, immunomodulatory, and intestinal flora-regulating functions. Recent studies have determined that TCM may exert therapeutic effects on T2DM and its complications by modulating the ferroptosis-related pathways. Therefore, a comprehensive and systematic understanding of the role of ferroptosis in the pathogenesis and TCM treatment of T2DM is of great significance for developing therapeutic drugs for T2DM and enriching the spectrum of effective T2DM treatment with TCM. In this review, we review the concept, mechanism, and regulatory pathways of ferroptosis and the ferroptosis mechanism of action involved in the development of T2DM. Also, we develop a search strategy, establish strict inclusion and exclusion criteria, and summarize and analyze the application of the ferroptosis mechanism in TCM studies related to T2DM and its complications. Finally, we discuss the shortcomings of current studies and propose a future research focus.
Collapse
Affiliation(s)
- Dandan Xie
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, People’s Republic of China
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, Health Management Center, the Second Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
- Department of Clinical Nutrition, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, People’s Republic of China
| | - Kai Li
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, People’s Republic of China
| | - Ruxue Feng
- Department of Stomatology, Geriatric Hospital of Hainan, Haikou, Hainan, People’s Republic of China
| | - Man Xiao
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, Hainan, People’s Republic of China
| | - Zhifeng Sheng
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, Health Management Center, the Second Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
| | - Yiqiang Xie
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, People’s Republic of China
| |
Collapse
|
147
|
Zhou H, Liu Z, Zhang Z, Pandey NK, Amador E, Nguyen W, Chudal L, Xiong L, Chen W, Wen Y. Copper-cysteamine nanoparticle-mediated microwave dynamic therapy improves cancer treatment with induction of ferroptosis. Bioact Mater 2023; 24:322-330. [PMID: 36632507 PMCID: PMC9807746 DOI: 10.1016/j.bioactmat.2022.12.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Photodynamic Therapy (PDT) holds a great promise for cancer patients, however, due to the hypoxic characteristics of most solid tumors and the limited penetration depth of light in tissues, the extensive clinical application of PDT is limited. Herein, we report microwave induced copper-cysteamine (Cu-Cy) nanoparticles-based PDT as a promising cancer treatment to overcome cancer resistance in combination with ferroptosis. The treatment efficiency of Cu-Cy-mediated microwave dynamic therapy (MWDT) tested on HCT15 colorectal cancer (CRC) cells via cell titer-blue cell viability assay and live/dead assay reveal that Cu-Cy upon MW irradiation can effectively destroy HCT15 CRC cells with average IC-50 values of 20 μg/mL. The cytotoxicity of Cu-Cy to tumor cells after MW stimulation can be alleviated by ferroptosis inhibitor. Furthermore, Cu-Cy mediated MWDT could deplete glutathione peroxide 4 (GPX4) and enhance lipid peroxides (LPO) and malondialdehyde (MDA). Our findings demonstrate that MW-activated Cu-Cy killed CRC cells by inducing ferroptosis. The superior in vivo antitumor efficacy of the Cu-Cy was corroborated by a HCT15 tumor-bearing mice model. Immunohistochemical experiments showed that the GPX4 expression level in Cu-Cy + MW group was significantly lower than that in other groups. Overall, these findings demonstrate that Cu-Cy nanoparticles have a safe and promising clinical application prospect in MWDT for deep-seated tumors and effectively inhibit tumor cell proliferation by inducing ferroptosis, which provides a potential solution for cancer resistance.
Collapse
Affiliation(s)
- Hui Zhou
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zhongtao Liu
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zijian Zhang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Nil Kanatha Pandey
- Department of Physics, The University of Texas at Arlington, Arlington, TX, 76019-0059, USA
| | - Eric Amador
- Department of Physics, The University of Texas at Arlington, Arlington, TX, 76019-0059, USA
| | - William Nguyen
- Department of Physics, The University of Texas at Arlington, Arlington, TX, 76019-0059, USA
| | - Lalit Chudal
- Department of Physics, The University of Texas at Arlington, Arlington, TX, 76019-0059, USA
| | - Li Xiong
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Wei Chen
- Department of Physics, The University of Texas at Arlington, Arlington, TX, 76019-0059, USA
| | - Yu Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| |
Collapse
|
148
|
Snyder J, Wu Z. Origins of nervous tissue susceptibility to ferroptosis. CELL INSIGHT 2023; 2:100091. [PMID: 37398634 PMCID: PMC10308196 DOI: 10.1016/j.cellin.2023.100091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/03/2023] [Accepted: 03/11/2023] [Indexed: 07/04/2023]
Abstract
Ferroptosis is a newly defined form of programmed cell death. It possesses unique processes of cell demise, cytopathological changes, and independent signal regulation pathways. Ferroptosis is considered to be deeply involved in the development of many diseases, including cancer, cardiovascular diseases, and neurodegeneration. Intriguingly, why cells in certain tissues and organs (such as the central nervous system, CNS) are more sensitive to changes in ferroptosis remains a question that has not been carefully discussed. In this Holmesian review, we discuss lipid composition as a potential but often overlooked determining factor in ferroptosis sensitivity and the role of polyunsaturated fatty acids (PUFAs) in the pathogenesis of several common human neurodegenerative diseases. In subsequent studies of ferroptosis, lipid composition needs to be given special attention, as it may significantly affect the susceptibility of the cell model used (or the tissue studied).
Collapse
Affiliation(s)
- Jessica Snyder
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Zhihao Wu
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| |
Collapse
|
149
|
Hu C, Zhao JF, Wang YM, Wu XL, Ye L. Tiliroside induces ferroptosis to repress the development of triple-negative breast cancer cells. Tissue Cell 2023; 83:102116. [PMID: 37301139 DOI: 10.1016/j.tice.2023.102116] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 06/12/2023]
Abstract
Ferroptosis is a newly found form of non-apoptotic regulated cell death that is essential for the advancement of cancer. Tiliroside (Til), an effective natural flavonoid glycoside of oriental paperbush flower, has been explored as a potential anticancer agent in a few cancer types. However, it is unclear whether and how Til could promote the death of triple-negative breast cancer (TNBC) cells by inducing ferroptosis. Our study determined that Til induced cell death and attenuated cell proliferation in TNBC cells in vitro and in vivo with less toxicity for the first time. Functional assays showed that ferroptosis was the predominant form that contributed to Til-induced cell death of TNBC. Mechanistically, Til induces ferroptosis of TNBC cells via independent PUFA-PLS pathways but is closely involved in the Nrf2/HO-1 pathway. Silencing of HO-1 substantially abrogated the tumor-inhibiting effects of Til. In conclusion, our findings suggest that the natural product Til exerted its antitumor activity on TNBC by promoting ferroptosis, and the HO-1/SLC7A11 pathway plays an indispensable role in Til-induced ferroptotic cell death.
Collapse
Affiliation(s)
- Chuang Hu
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jian-Fu Zhao
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Yi-Ming Wang
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Xian-Lin Wu
- Cancer center, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518000, China.
| | - Ling Ye
- Department of Radiation Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China.
| |
Collapse
|
150
|
Zlibut E, May JC, Wei Y, Gessmann D, Wood CS, Bernat BA, Pugh TE, Palmer-Jones L, Cosquer RP, Dybeck E, McLean JA. Noncovalent Host-Guest Complexes of Artemisinin with α-, β-, and γ- Cyclodextrin Examined by Structural Mass Spectrometry Strategies. Anal Chem 2023; 95:8180-8188. [PMID: 37184072 DOI: 10.1021/acs.analchem.2c05076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Cyclodextrins (CDs) are a family of macrocyclic oligosaccharides with amphiphilic properties, which can improve the stability, solubility, and bioavailability of therapeutic compounds. There has been growing interest in the advancement of efficient and reliable analytical methods that assist with elucidating CD host-guest drug complexation. In this study, we investigate the noncovalent ion complexes formed between naturally occurring dextrins (αCD, βCD, γCD, and maltohexaose) with the poorly water-soluble antimalarial drug, artemisinin, using a combination of ion mobility-mass spectrometry (IM-MS), tandem MS/MS, and theoretical modeling approaches. This study aims to determine if the drug can complex within the core dextrin cavity forming an inclusion complex or nonspecifically bind to the periphery of the dextrins. We explore the use of group I alkali earth metal additives to promote the formation of various noncovalent gas-phase ion complexes with different drug/dextrin stoichiometries (1:1, 1:2, 1:3, 1:4, and 2:1). Broad IM-MS collision cross section (CCS) mapping (n > 300) and power-law regression analysis were used to confirm the stoichiometric assignments. The 1:1 drug:αCD and drug:βCD complexes exhibited strong preferences for Li+ and Na+ charge carriers, whereas drug:γCD complexes preferred forming adducts with the larger alkali metals, K+, Rb+, and Cs+. Although the ion-measured CCS increased with cation size for the unbound artemisinin and CDs, the 1:1 drug:dextrin complexes exhibit near-identical CCS values regardless of the cation, suggesting these are inclusion complexes. Tandem MS/MS survival yield curves of the [artemisinin:βCD + X]+ ion (X = H, Li, Na, K) showed a decreased stability of the ion complex with increasing cation size. Empirical CCS measurements of the [artemisinin:βCD + Li]+ ion correlated with predicted CCS values from the low-energy theoretical structures of the drug incorporated within the βCD cavity, providing further evidence that gas-phase inclusion complexes are formed in these experiments. Taken together, this work demonstrates the utility of combining analytical information from IM-MS, MS/MS, and computational approaches in interpreting the presence of gas-phase inclusion phenomena.
Collapse
Affiliation(s)
- Emanuel Zlibut
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235-1822, United States
| | - Jody C May
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235-1822, United States
| | - Yansheng Wei
- Worldwide Research, Development & Medical, Pfizer, Inc., Lake Forest, Illinois 60045, United States
| | - Dennis Gessmann
- Worldwide Research, Development & Medical, Pfizer, Inc., Lake Forest, Illinois 60045, United States
| | - Constance S Wood
- Worldwide Research, Development & Medical, Pfizer, Inc., Lake Forest, Illinois 60045, United States
| | - Bryan A Bernat
- Worldwide Research, Development & Medical, Pfizer, Inc., Lake Forest, Illinois 60045, United States
| | - Teresa E Pugh
- Pfizer, R&D UK Ltd, PSSM ARD, Sandwich CT13 9NJ, U.K
| | | | | | - Eric Dybeck
- Worldwide Research, Development & Medical, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| | - John A McLean
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235-1822, United States
| |
Collapse
|