101
|
Jeong YK, Song B, Bae S. Current Status and Challenges of DNA Base Editing Tools. Mol Ther 2020; 28:1938-1952. [PMID: 32763143 PMCID: PMC7474268 DOI: 10.1016/j.ymthe.2020.07.021] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/01/2020] [Accepted: 07/18/2020] [Indexed: 12/26/2022] Open
Abstract
CRISPR-mediated DNA base editors, which include cytosine base editors (CBEs) and adenine base editors (ABEs), are promising tools that can induce point mutations at desired sites in a targeted manner to correct or disrupt gene expression. Their high editing efficiency, coupled with their ability to generate a targeted mutation without generating a DNA double-strand break (DSB) or requiring a donor DNA template, suggests that DNA base editors will be useful for treating genetic diseases, among other applications. However, this hope has recently been challenged by the discovery of DNA base editor shortcomings, including off-target DNA editing, the generation of bystander mutations, and promiscuous deamination effects in both DNA and RNA, which arise from the main DNA base editor constituents, a Cas nuclease variant and a deaminase. In this review, we summarize information about the DNA base editors that have been developed to date, introduce their associated potential challenges, and describe current efforts to minimize or mitigate those issues of DNA base editors.
Collapse
Affiliation(s)
- You Kyeong Jeong
- Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, South Korea
| | - Beomjong Song
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sangsu Bae
- Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, South Korea.
| |
Collapse
|
102
|
Niggemann P, György B, Chen ZY. Genome and base editing for genetic hearing loss. Hear Res 2020; 394:107958. [PMID: 32334889 PMCID: PMC7415640 DOI: 10.1016/j.heares.2020.107958] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/18/2020] [Accepted: 03/31/2020] [Indexed: 12/26/2022]
Abstract
Genome editing opens up a new frontier in developing personalized therapeutic solutions. With the unprecedented advance in the discovery and engineering of gene editing nucleases, it has now become potentially feasible to therapeutically influence up to 90% of all human genetic mutations. Hearing loss is one of the most well studied fields from the genetics perspective, with more than one hundred identified deafness genes. Novel viral and non-viral vectors have been established as safe and efficient modalities to deliver transgenes into cells of the cochlea and to the vestibular system in animal models. Recent studies demonstrated proof-of-concept for therapeutic genome and base editing in the mammalian inner ear and preclinical development is ongoing. This review summarizes important advances and future challenges for this transformative therapeutic modality for genetic and non-genetic hearing loss.
Collapse
Affiliation(s)
- Philipp Niggemann
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Bence György
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland.
| | - Zheng-Yi Chen
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA; Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA, 02114, USA.
| |
Collapse
|
103
|
The Development and Application of a Base Editor in Biomedicine. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2907623. [PMID: 32855962 PMCID: PMC7443245 DOI: 10.1155/2020/2907623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/15/2020] [Indexed: 12/26/2022]
Abstract
Using a base editor to generate monogenic disease models and correct pathogenic point mutations is a breakthrough technology for exploration and treatment of human diseases. As a burgeoning approach for genomic modification, the fused CRISPR/Cas9 with various deaminase separately has significantly increased the efficiency of producing a precise point mutation with minimal insertions or deletions (indels). Along with the flexibility and efficiency, a base editor has been widely used in many fields. This review discusses the recent development of a base editor, including evolution and advance, and highlights the applications and challenges in the field of gene therapy. Depending on rapid improvement and optimization of gene editing technology, the prospect of base editor is immeasurable.
Collapse
|
104
|
Kantor A, McClements ME, MacLaren RE. CRISPR-Cas9 DNA Base-Editing and Prime-Editing. Int J Mol Sci 2020; 21:E6240. [PMID: 32872311 PMCID: PMC7503568 DOI: 10.3390/ijms21176240] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/18/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022] Open
Abstract
Many genetic diseases and undesirable traits are due to base-pair alterations in genomic DNA. Base-editing, the newest evolution of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas-based technologies, can directly install point-mutations in cellular DNA without inducing a double-strand DNA break (DSB). Two classes of DNA base-editors have been described thus far, cytosine base-editors (CBEs) and adenine base-editors (ABEs). Recently, prime-editing (PE) has further expanded the CRISPR-base-edit toolkit to all twelve possible transition and transversion mutations, as well as small insertion or deletion mutations. Safe and efficient delivery of editing systems to target cells is one of the most paramount and challenging components for the therapeutic success of BEs. Due to its broad tropism, well-studied serotypes, and reduced immunogenicity, adeno-associated vector (AAV) has emerged as the leading platform for viral delivery of genome editing agents, including DNA-base-editors. In this review, we describe the development of various base-editors, assess their technical advantages and limitations, and discuss their therapeutic potential to treat debilitating human diseases.
Collapse
Affiliation(s)
- Ariel Kantor
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK; (M.E.M.); (R.E.M.)
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Michelle E. McClements
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK; (M.E.M.); (R.E.M.)
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK; (M.E.M.); (R.E.M.)
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| |
Collapse
|
105
|
Reddy P, Vilella F, Izpisua Belmonte JC, Simón C. Use of Customizable Nucleases for Gene Editing and Other Novel Applications. Genes (Basel) 2020; 11:E976. [PMID: 32842577 PMCID: PMC7565838 DOI: 10.3390/genes11090976] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 12/21/2022] Open
Abstract
The development of novel genome editing tools has unlocked new opportunities that were not previously possible in basic and biomedical research. During the last two decades, several new genome editing methods have been developed that can be customized to modify specific regions of the genome. However, in the past couple of years, many newer and more exciting genome editing techniques have been developed that are more efficient, precise, and easier to use. These genome editing tools have helped to improve our understanding of genetic disorders by modeling them in cells and animal models, in addition to correcting the disease-causing mutations. Among the genome editing tools, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system has proven to be the most popular one due to its versatility and has been successfully used in a wide variety of laboratory animal models and plants. In this review, we summarize the customizable nucleases currently used for genome editing and their uses beyond the modification of genome. We also discuss the potential future applications of gene editing tools for both basic research and clinical purposes.
Collapse
Affiliation(s)
- Pradeep Reddy
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA;
| | - Felipe Vilella
- Igenomix Foundation, Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), 46010 Valencia, Spain; (F.V.); (C.S.)
- Department of Obstetrics and Gynecology, BIDMC, Harvard University, Boston, MA 02215, USA
| | | | - Carlos Simón
- Igenomix Foundation, Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), 46010 Valencia, Spain; (F.V.); (C.S.)
- Department of Obstetrics and Gynecology, BIDMC, Harvard University, Boston, MA 02215, USA
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, 46010 Valencia, Spain
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
106
|
Kim D, Lim K, Kim DE, Kim JS. Genome-wide specificity of dCpf1 cytidine base editors. Nat Commun 2020; 11:4072. [PMID: 32792663 PMCID: PMC7426837 DOI: 10.1038/s41467-020-17889-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/03/2020] [Indexed: 11/17/2022] Open
Abstract
Cpf1-linked base editors broaden the targeting scope of programmable cytidine deaminases by recognizing thymidine-rich protospacer-adjacent motifs (PAM) without inducing DNA double-strand breaks (DSBs). Here we present an unbiased in vitro method for identifying genome-wide off-target sites of Cpf1 base editors via whole genome sequencing. First, we treat human genomic DNA with dLbCpf1-BE ribonucleoprotein (RNP) complexes, which convert C-to-U at on-target and off-target sites and, then, with a mixture of E. coli uracil DNA glycosylase (UDG) and DNA glycosylase-lyase Endonuclease VIII, which removes uracil and produces single-strand breaks (SSBs) in vitro. Whole-genome sequencing of the resulting digested genome (Digenome-seq) reveals that, on average, dLbCpf1-BE induces 12 SSBs in vitro per crRNA in the human genome. Off-target sites with an editing frequency as low as 0.1% are successfully identified by this modified Digenome-seq method, demonstrating its high sensitivity. dLbCpf1-BEs and LbCpf1 nucleases often recognize different off-target sites, calling for independent analysis of each tool.
Collapse
Affiliation(s)
- Daesik Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
- Center for Genome Engineering, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea.
| | - Kayeong Lim
- Center for Genome Engineering, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Da-Eun Kim
- Center for Genome Engineering, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin-Soo Kim
- Center for Genome Engineering, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea.
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
107
|
Rittiner JE, Moncalvo M, Chiba-Falek O, Kantor B. Gene-Editing Technologies Paired With Viral Vectors for Translational Research Into Neurodegenerative Diseases. Front Mol Neurosci 2020; 13:148. [PMID: 32903507 PMCID: PMC7437156 DOI: 10.3389/fnmol.2020.00148] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/16/2020] [Indexed: 12/20/2022] Open
Abstract
Diseases of the central nervous system (CNS) have historically been among the most difficult to treat using conventional pharmacological approaches. This is due to a confluence of factors, including the limited regenerative capacity and overall complexity of the brain, problems associated with repeated drug administration, and difficulties delivering drugs across the blood-brain barrier (BBB). Viral-mediated gene transfer represents an attractive alternative for the delivery of therapeutic cargo to the nervous system. Crucially, it usually requires only a single injection, whether that be a gene replacement strategy for an inherited disorder or the delivery of a genome- or epigenome-modifying construct for treatment of CNS diseases and disorders. It is thus understandable that considerable effort has been put towards the development of improved vector systems for gene transfer into the CNS. Different viral vectors are of course tailored to their specific applications, but they generally should share several key properties. The ideal viral vector incorporates a high-packaging capacity, efficient gene transfer paired with robust and sustained expression, lack of oncogenicity, toxicity and pathogenicity, and scalable manufacturing for clinical applications. In this review, we will devote attention to viral vectors derived from human immunodeficiency virus type 1 (lentiviral vectors; LVs) and adeno-associated virus (AAVs). The high interest in these viral delivery systems vectors is due to: (i) robust delivery and long-lasting expression; (ii) efficient transduction into postmitotic cells, including the brain; (iii) low immunogenicity and toxicity; and (iv) compatibility with advanced manufacturing techniques. Here, we will outline basic aspects of LV and AAV biology, particularly focusing on approaches and techniques aiming to enhance viral safety. We will also allocate a significant portion of this review to the development and use of LVs and AAVs for delivery into the CNS, with a focus on the genome and epigenome-editing tools based on clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas 9) and the development of novel strategies for the treatment of neurodegenerative diseases (NDDs).
Collapse
Affiliation(s)
- Joseph Edward Rittiner
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
- Viral Vector Core, Duke University Medical Center, Durham, NC, United States
- Duke Center for Advanced Genomic Technologies, Durham, NC, United States
| | - Malik Moncalvo
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
- Viral Vector Core, Duke University Medical Center, Durham, NC, United States
- Duke Center for Advanced Genomic Technologies, Durham, NC, United States
| | - Ornit Chiba-Falek
- Department of Neurology, Division of Translational Brain Sciences, Duke University Medical Center, Durham, NC, United States
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, United States
| | - Boris Kantor
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
- Viral Vector Core, Duke University Medical Center, Durham, NC, United States
- Duke Center for Advanced Genomic Technologies, Durham, NC, United States
| |
Collapse
|
108
|
French LS, Mellough CB, Chen FK, Carvalho LS. A Review of Gene, Drug and Cell-Based Therapies for Usher Syndrome. Front Cell Neurosci 2020; 14:183. [PMID: 32733204 PMCID: PMC7363968 DOI: 10.3389/fncel.2020.00183] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
Usher syndrome is a genetic disorder causing neurosensory hearing loss and blindness from retinitis pigmentosa (RP). Adaptive techniques such as braille, digital and optical magnifiers, mobility training, cochlear implants, or other assistive listening devices are indispensable for reducing disability. However, there is currently no treatment to reduce or arrest sensory cell degeneration. There are several classes of treatments for Usher syndrome being investigated. The present article reviews the progress this research has made towards delivering commercial options for patients with Usher syndrome.
Collapse
Affiliation(s)
- Lucy S French
- Centre for Ophthalmology and Visual Sciences (incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia
| | - Carla B Mellough
- Centre for Ophthalmology and Visual Sciences (incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia
| | - Fred K Chen
- Centre for Ophthalmology and Visual Sciences (incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia.,Department of Ophthalmology, Royal Perth Hospital, Perth, WA, Australia.,Department of Ophthalmology, Perth Children's Hospital, Nedlands, WA, Australia
| | - Livia S Carvalho
- Centre for Ophthalmology and Visual Sciences (incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
109
|
Gaudelli NM, Lam DK, Rees HA, Solá-Esteves NM, Barrera LA, Born DA, Edwards A, Gehrke JM, Lee SJ, Liquori AJ, Murray R, Packer MS, Rinaldi C, Slaymaker IM, Yen J, Young LE, Ciaramella G. Directed evolution of adenine base editors with increased activity and therapeutic application. Nat Biotechnol 2020; 38:892-900. [PMID: 32284586 DOI: 10.1038/s41587-020-0491-6] [Citation(s) in RCA: 324] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/12/2020] [Indexed: 12/19/2022]
Abstract
The foundational adenine base editors (for example, ABE7.10) enable programmable A•T to G•C point mutations but editing efficiencies can be low at challenging loci in primary human cells. Here we further evolve ABE7.10 using a library of adenosine deaminase variants to create ABE8s. At NGG protospacer adjacent motif (PAM) sites, ABE8s result in ~1.5× higher editing at protospacer positions A5-A7 and ~3.2× higher editing at positions A3-A4 and A8-A10 compared with ABE7.10. Non-NGG PAM variants have a ~4.2-fold overall higher on-target editing efficiency than ABE7.10. In human CD34+ cells, ABE8 can recreate a natural allele at the promoter of the γ-globin genes HBG1 and HBG2 with up to 60% efficiency, causing persistence of fetal hemoglobin. In primary human T cells, ABE8s achieve 98-99% target modification, which is maintained when multiplexed across three loci. Delivered as messenger RNA, ABE8s induce no significant levels of single guide RNA (sgRNA)-independent off-target adenine deamination in genomic DNA and very low levels of adenine deamination in cellular mRNA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jonathan Yen
- Beam Therapeutics, Cambridge, MA, USA
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | |
Collapse
|
110
|
Richter MF, Zhao KT, Eton E, Lapinaite A, Newby GA, Thuronyi BW, Wilson C, Koblan LW, Zeng J, Bauer DE, Doudna JA, Liu DR. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat Biotechnol 2020; 38:883-891. [PMID: 32433547 PMCID: PMC7357821 DOI: 10.1038/s41587-020-0453-z] [Citation(s) in RCA: 583] [Impact Index Per Article: 116.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/02/2020] [Accepted: 02/07/2020] [Indexed: 12/19/2022]
Abstract
Applications of adenine base editors (ABEs) have been constrained by the limited compatibility of the deoxyadenosine deaminase component with Cas homologs other than SpCas9. We evolved the deaminase component of ABE7.10 using phage-assisted non-continuous and continuous evolution (PANCE and PACE), which resulted in ABE8e. ABE8e contains eight additional mutations that increase activity (kapp) 590-fold compared with that of ABE7.10. ABE8e offers substantially improved editing efficiencies when paired with a variety of Cas9 or Cas12 homologs. ABE8e is more processive than ABE7.10, which could benefit screening, disruption of regulatory regions and multiplex base editing applications. A modest increase in Cas9-dependent and -independent DNA off-target editing, and in transcriptome-wide RNA off-target editing can be ameliorated by the introduction of an additional mutation in the TadA-8e domain. Finally, we show that ABE8e can efficiently install natural mutations that upregulate fetal hemoglobin expression in the BCL11A enhancer or in the the HBG promoter in human cells, targets that were poorly edited with ABE7.10. ABE8e augments the effectiveness and applicability of adenine base editing.
Collapse
Affiliation(s)
- Michelle F Richter
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Kevin T Zhao
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Elliot Eton
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Audrone Lapinaite
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - B W Thuronyi
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry, Williams College, Williamstown, MA, USA
| | - Christopher Wilson
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Luke W Koblan
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Jing Zeng
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
111
|
Proof-of-concept for CRISPR/Cas9 gene editing in human preadipocytes: Deletion of FKBP5 and PPARG and effects on adipocyte differentiation and metabolism. Sci Rep 2020; 10:10565. [PMID: 32601291 PMCID: PMC7324390 DOI: 10.1038/s41598-020-67293-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/21/2020] [Indexed: 01/04/2023] Open
Abstract
CRISPR/Cas9 has revolutionized the genome-editing field. So far, successful application in human adipose tissue has not been convincingly shown. We present a method for gene knockout using electroporation in preadipocytes from human adipose tissue that achieved at least 90% efficiency without any need for selection of edited cells or clonal isolation. We knocked out the FKBP5 and PPARG genes in preadipocytes and studied the resulting phenotypes. PPARG knockout prevented differentiation into adipocytes. Conversely, deletion of FKBP51, the protein coded by the FKBP5 gene, did not affect adipogenesis. Instead, it markedly modulated glucocorticoid effects on adipocyte glucose metabolism and, furthermore, we show some evidence of altered transcriptional activity of glucocorticoid receptors. This has potential implications for the development of insulin resistance and type 2 diabetes. The reported method is simple, easy to adapt, and enables the use of human primary preadipocytes instead of animal adipose cell models to assess the role of key genes and their products in adipose tissue development, metabolism and pathobiology.
Collapse
|
112
|
van Haasteren J, Li J, Scheideler OJ, Murthy N, Schaffer DV. The delivery challenge: fulfilling the promise of therapeutic genome editing. Nat Biotechnol 2020; 38:845-855. [PMID: 32601435 DOI: 10.1038/s41587-020-0565-5] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/19/2020] [Indexed: 12/15/2022]
Abstract
Genome editing has the potential to treat an extensive range of incurable monogenic and complex diseases. In particular, advances in sequence-specific nuclease technologies have dramatically accelerated the development of therapeutic genome editing strategies that are based on either the knockout of disease-causing genes or the repair of endogenous mutated genes. These technologies are progressing into human clinical trials. However, challenges remain before the therapeutic potential of genome editing can be fully realized. Delivery technologies that have serendipitously been developed over the past couple decades in the protein and nucleic acid delivery fields have been crucial to genome editing success to date, including adeno-associated viral and lentiviral vectors for gene therapy and lipid nanoparticle and other non-viral vectors for nucleic acid and protein delivery. However, the efficiency and tissue targeting capabilities of these vehicles must be further improved. In addition, the genome editing enzymes themselves need to be optimized, and challenges regarding their editing efficiency, specificity and immunogenicity must be addressed. Emerging protein engineering and synthetic chemistry approaches can offer solutions and enable the development of safe and efficacious clinical genome editing.
Collapse
Affiliation(s)
- Joost van Haasteren
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
| | - Jie Li
- Department of Bioengineering, University of California, Berkeley, CA, USA.,Innovative Genomics Institute (IGI), University of California, Berkeley, CA, USA
| | | | - Niren Murthy
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA. .,Department of Bioengineering, University of California, Berkeley, CA, USA. .,Innovative Genomics Institute (IGI), University of California, Berkeley, CA, USA.
| | - David V Schaffer
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA. .,Department of Bioengineering, University of California, Berkeley, CA, USA. .,Innovative Genomics Institute (IGI), University of California, Berkeley, CA, USA. .,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA. .,Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA. .,Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
| |
Collapse
|
113
|
A review of application of base editing for the treatment of inner ear disorders. JOURNAL OF BIO-X RESEARCH 2020. [DOI: 10.1097/jbr.0000000000000040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
114
|
Mutant Allele-Specific CRISPR Disruption in DYT1 Dystonia Fibroblasts Restores Cell Function. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:1-12. [PMID: 32502938 PMCID: PMC7270506 DOI: 10.1016/j.omtn.2020.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/15/2020] [Accepted: 05/12/2020] [Indexed: 12/16/2022]
Abstract
Most individuals affected with DYT1 dystonia have a heterozygous 3-bp deletion in the TOR1A gene (c.907_909delGAG). The mutation appears to act through a dominant-negative mechanism compromising normal torsinA function, and it is proposed that reducing mutant torsinA may normalize torsinA activity. In this study, we used an engineered Cas9 variant from Streptococcus pyogenes (SpCas9-VRQR) to target the mutation in the TOR1A gene in order to disrupt mutant torsinA in DYT1 patient fibroblasts. Selective targeting of the DYT1 allele was highly efficient with most common non-homologous end joining (NHEJ) edits, leading to a predicted premature stop codon with loss of the torsinA C terminus (delta 302–332 aa). Structural analysis predicted a functionally inactive status of this truncated torsinA due to the loss of residues associated with ATPase activity and binding to LULL1. Immunoblotting showed a reduction of the torsinA protein level in Cas9-edited DYT1 fibroblasts, and a functional assay using HSV infection indicated a phenotypic recovery toward that observed in control fibroblasts. These findings suggest that the selective disruption of the mutant TOR1A allele using CRISPR-Cas9 inactivates mutant torsinA, allowing the remaining wild-type torsinA to exert normal function.
Collapse
|
115
|
Yang L, Wang L, Huo Y, Chen X, Yin S, Hu Y, Zhang X, Zheng R, Geng H, Han H, Ma X, Liu M, Li H, Yu W, Liu M, Wang J, Li D. Amelioration of an Inherited Metabolic Liver Disease through Creation of a De Novo Start Codon by Cytidine Base Editing. Mol Ther 2020; 28:1673-1683. [PMID: 32413280 DOI: 10.1016/j.ymthe.2020.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/03/2020] [Accepted: 05/01/2020] [Indexed: 12/26/2022] Open
Abstract
Base editing technology efficiently generates nucleotide conversions without inducing excessive double-strand breaks (DSBs), which makes it a promising approach for genetic disease therapy. In this study, we generated a novel hereditary tyrosinemia type 1 (HT1) mouse model, which contains a start codon mutation in the fumarylacetoacetate hydrolase (Fah) gene by using an adenine base editor (ABE7.10). To investigate the feasibility of base editing for recombinant adeno-associated virus (rAAV)-mediated gene therapy, an intein-split cytosine base editor (BE4max) was developed. BE4max efficiently induced C-to-T conversion and restored the start codon to ameliorate HT1 in mice, but an undesired bystander mutation abolished the effect of on-target editing. To solve this problem, an upstream sequence was targeted to generate a de novo in-frame start codon to initiate the translation of FAH. After treatment, almost all C-to-T conversions created a start codon and restored Fah expression, which efficiently ameliorated the disease without inducing off-target mutations. Our study demonstrated that base editing-mediated creation of de novo functional elements would be an applicable new strategy for genetic disease therapy.
Collapse
Affiliation(s)
- Lei Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Liren Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yanan Huo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xi Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Shuming Yin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yaqiang Hu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaohui Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Rui Zheng
- Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongquan Geng
- Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Xueyun Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Meizhen Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Haibo Li
- Cipher Gene, Beijing 100089, China
| | - Weishi Yu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China; Cipher Gene, Beijing 100089, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
116
|
Hirakawa M, Krishnakumar R, Timlin J, Carney J, Butler K. Gene editing and CRISPR in the clinic: current and future perspectives. Biosci Rep 2020; 40:BSR20200127. [PMID: 32207531 PMCID: PMC7146048 DOI: 10.1042/bsr20200127] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 12/26/2022] Open
Abstract
Genome editing technologies, particularly those based on zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR (clustered regularly interspaced short palindromic repeat DNA sequences)/Cas9 are rapidly progressing into clinical trials. Most clinical use of CRISPR to date has focused on ex vivo gene editing of cells followed by their re-introduction back into the patient. The ex vivo editing approach is highly effective for many disease states, including cancers and sickle cell disease, but ideally genome editing would also be applied to diseases which require cell modification in vivo. However, in vivo use of CRISPR technologies can be confounded by problems such as off-target editing, inefficient or off-target delivery, and stimulation of counterproductive immune responses. Current research addressing these issues may provide new opportunities for use of CRISPR in the clinical space. In this review, we examine the current status and scientific basis of clinical trials featuring ZFNs, TALENs, and CRISPR-based genome editing, the known limitations of CRISPR use in humans, and the rapidly developing CRISPR engineering space that should lay the groundwork for further translation to clinical application.
Collapse
Affiliation(s)
| | - Raga Krishnakumar
- Systems Biology, Sandia National Laboratories, Livermore, CA 94551, U.S.A
| | - Jerilyn A. Timlin
- Molecular and Microbiology, Sandia National Laboratories, Albuquerque, NM 87185, U.S.A
| | - James P. Carney
- Advanced Materials Laboratory, Sandia National Laboratories, Albuquerque, NM 87185, U.S.A
| | - Kimberly S. Butler
- Molecular and Microbiology, Sandia National Laboratories, Albuquerque, NM 87185, U.S.A
| |
Collapse
|
117
|
Jiang T, Henderson JM, Coote K, Cheng Y, Valley HC, Zhang XO, Wang Q, Rhym LH, Cao Y, Newby GA, Bihler H, Mense M, Weng Z, Anderson DG, McCaffrey AP, Liu DR, Xue W. Chemical modifications of adenine base editor mRNA and guide RNA expand its application scope. Nat Commun 2020; 11:1979. [PMID: 32332735 PMCID: PMC7181807 DOI: 10.1038/s41467-020-15892-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
CRISPR-Cas9-associated base editing is a promising tool to correct pathogenic single nucleotide mutations in research or therapeutic settings. Efficient base editing requires cellular exposure to levels of base editors that can be difficult to attain in hard-to-transfect cells or in vivo. Here we engineer a chemically modified mRNA-encoded adenine base editor that mediates robust editing at various cellular genomic sites together with moderately modified guide RNA, and show its therapeutic potential in correcting pathogenic single nucleotide mutations in cell and animal models of diseases. The optimized chemical modifications of adenine base editor mRNA and guide RNA expand the applicability of CRISPR-associated gene editing tools in vitro and in vivo.
Collapse
Affiliation(s)
- Tingting Jiang
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | | | - Kevin Coote
- Cystic Fibrosis Foundation, CFFT Lab, Lexington, MA, 02421, USA
| | - Yi Cheng
- Cystic Fibrosis Foundation, CFFT Lab, Lexington, MA, 02421, USA
| | | | - Xiao-Ou Zhang
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Qin Wang
- School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Luke H Rhym
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yueying Cao
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Hermann Bihler
- Cystic Fibrosis Foundation, CFFT Lab, Lexington, MA, 02421, USA
| | - Martin Mense
- Cystic Fibrosis Foundation, CFFT Lab, Lexington, MA, 02421, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Division of Health Sciences & Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Wen Xue
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA.
| |
Collapse
|
118
|
Abstract
PURPOSE OF REVIEW We review the ways in which stem cells are used in psychiatric disease research, including the related advances in gene editing and directed cell differentiation. RECENT FINDINGS The recent development of induced pluripotent stem cell (iPSC) technologies has created new possibilities for the study of psychiatric disease. iPSCs can be derived from patients or controls and differentiated to an array of neuronal and non-neuronal cell types. Their genomes can be edited as desired, and they can be assessed for a variety of phenotypes. This makes them especially interesting for studying genetic variation, which is particularly useful today now that our knowledge on the genetics of psychiatric disease is quickly expanding. The recent advances in cell engineering have led to powerful new methods for studying psychiatric illness including schizophrenia, bipolar disorder, and autism. There is a wide array of possible applications as illustrated by the many examples from the literature, most of which are cited here.
Collapse
Affiliation(s)
- Debamitra Das
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kyra Feuer
- Predoctoral Training Program in Human Genetics, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marah Wahbeh
- Predoctoral Training Program in Human Genetics, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dimitrios Avramopoulos
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
119
|
Cunningham TJ, Fisher E, Fratta P, Gilthorpe JD. DNA Editing for Amyotrophic Lateral Sclerosis: Leading Off First Base. CRISPR J 2020; 3:75-77. [PMID: 32315228 DOI: 10.1089/crispr.2020.29087.tcu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Elizabeth Fisher
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London, United Kingdom
| | - Pietro Fratta
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London, United Kingdom
| | | |
Collapse
|
120
|
Abstract
Base editing is emerging as a potent new strategy to achieve precise gene editing. By combining different nucleobase deaminases with Cas9 or Cpf1 proteins, several base editors have recently been developed to achieve targeted base conversions in different genomic contexts. Importantly, base editors have been successfully applied in animals, plants, and bacteria to induce precise substitutions at the single-base level with high efficiency. In this review, we summarize recent progress in the development and application of base editors and discuss some of the future directions of the technology.
Collapse
Affiliation(s)
- Bei Yang
- 1 Shanghai Institute for Advanced Immunochemical Studies and Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Li Yang
- 2 Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, CAS-Max Planck Gesellschaft Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.,3 School of Life Science and Technology, ShanghaiTech University, Shanghai, China; Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Jia Chen
- 3 School of Life Science and Technology, ShanghaiTech University, Shanghai, China; Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.,4 CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
121
|
Xia M, Chen Y, He Y, Li H, Li W. Activation of the RhoA-YAP-β-catenin signaling axis promotes the expansion of inner ear progenitor cells in 3D culture. Stem Cells 2020; 38:860-874. [PMID: 32159914 PMCID: PMC7383802 DOI: 10.1002/stem.3175] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/24/2020] [Accepted: 03/04/2020] [Indexed: 12/22/2022]
Abstract
Cellular mechanotransduction plays an essential role in the development and differentiation of many cell types, but if and how mechanical cues from the extracellular matrix (ECM) influence the fate determination of inner ear progenitor cells (IEPCs) remains largely unknown. In the current study, we compared the biological behavior of IEPCs in Matrigel-based suspension and encapsulated culture systems, and we found that the mechanical cues from the ECM promote the survival and expansion of IEPCs. Furthermore, we found that the mechanical cues from the ECM induced the accumulation of Ras homolog family member A (RhoA) and caused the polymerization of actin cytoskeleton in IEPCs. These changes in turn resulted in increased Yes-associated protein (YAP) nuclear localization and enhanced expansion of IEPCs, at least partially through upregulating the canonical Wnt signaling pathway. We therefore provide the first demonstration that the RhoA-YAP-β-catenin signaling axis senses and transduces mechanical cues from the ECM and plays crucial roles in promoting the expansion of IEPCs.
Collapse
Affiliation(s)
- Mingyu Xia
- ENT Institute and Otorhinolaryngology Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Yan Chen
- ENT Institute and Otorhinolaryngology Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Yingzi He
- ENT Institute and Otorhinolaryngology Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Huawei Li
- ENT Institute and Otorhinolaryngology Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, People's Republic of China.,Shanghai Engineering Research Centre of Cochlear Implant, Shanghai, People's Republic of China.,The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, People's Republic of China
| | - Wenyan Li
- ENT Institute and Otorhinolaryngology Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
122
|
Billon P, Nambiar TS, Hayward SB, Zafra MP, Schatoff EM, Oshima K, Dunbar A, Breinig M, Park YC, Ryu HS, Tschaharganeh DF, Levine RL, Baer R, Ferrando A, Dow LE, Ciccia A. Detection of Marker-Free Precision Genome Editing and Genetic Variation through the Capture of Genomic Signatures. Cell Rep 2020; 30:3280-3295.e6. [PMID: 32160537 PMCID: PMC7108696 DOI: 10.1016/j.celrep.2020.02.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 01/13/2020] [Accepted: 02/14/2020] [Indexed: 10/29/2022] Open
Abstract
Genome editing technologies have transformed our ability to engineer desired genomic changes within living systems. However, detecting precise genomic modifications often requires sophisticated, expensive, and time-consuming experimental approaches. Here, we describe DTECT (Dinucleotide signaTurE CapTure), a rapid and versatile detection method that relies on the capture of targeted dinucleotide signatures resulting from the digestion of genomic DNA amplicons by the type IIS restriction enzyme AcuI. DTECT enables the accurate quantification of marker-free precision genome editing events introduced by CRISPR-dependent homology-directed repair, base editing, or prime editing in various biological systems, such as mammalian cell lines, organoids, and tissues. Furthermore, DTECT allows the identification of oncogenic mutations in cancer mouse models, patient-derived xenografts, and human cancer patient samples. The ease, speed, and cost efficiency by which DTECT identifies genomic signatures should facilitate the generation of marker-free cellular and animal models of human disease and expedite the detection of human pathogenic variants.
Collapse
Affiliation(s)
- Pierre Billon
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Tarun S Nambiar
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Samuel B Hayward
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Maria P Zafra
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Emma M Schatoff
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
| | - Koichi Oshima
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Andrew Dunbar
- Human Oncology and Pathogenesis Program, Center for Hematological Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Marco Breinig
- Helmholtz-University Group "Cell Plasticity and Epigenetic Remodeling", German Cancer Research Center (DKFZ) and Institute of Pathology University Hospital, 69120 Heidelberg, Germany
| | - Young C Park
- Human Oncology and Pathogenesis Program, Center for Hematological Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Han S Ryu
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Darjus F Tschaharganeh
- Helmholtz-University Group "Cell Plasticity and Epigenetic Remodeling", German Cancer Research Center (DKFZ) and Institute of Pathology University Hospital, 69120 Heidelberg, Germany
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Center for Hematological Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Richard Baer
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Adolfo Ferrando
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lukas E Dow
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Alberto Ciccia
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
123
|
Manghwar H, Li B, Ding X, Hussain A, Lindsey K, Zhang X, Jin S. CRISPR/Cas Systems in Genome Editing: Methodologies and Tools for sgRNA Design, Off-Target Evaluation, and Strategies to Mitigate Off-Target Effects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902312. [PMID: 32195078 PMCID: PMC7080517 DOI: 10.1002/advs.201902312] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/07/2019] [Indexed: 05/03/2023]
Abstract
Life sciences have been revolutionized by genome editing (GE) tools, including zinc finger nucleases, transcription activator-Like effector nucleases, and CRISPR (clustered regulatory interspaced short palindromic repeats)/Cas (CRISPR-associated) systems, which make the targeted modification of genomic DNA of all organisms possible. CRISPR/Cas systems are being widely used because of their accuracy, efficiency, and cost-effectiveness. Various classes of CRISPR/Cas systems have been developed, but their extensive use may be hindered by off-target effects. Efforts are being made to reduce the off-target effects of CRISPR/Cas9 by generating various CRISPR/Cas systems with high fidelity and accuracy. Several approaches have been applied to detect and evaluate the off-target effects. Here, the current GE tools, the off-target effects generated by GE technology, types of off-target effects, mechanisms of off-target effects, major concerns, and outcomes of off-target effects in plants and animals are summarized. The methods to detect off-target effects, tools for single-guide RNA (sgRNA) design, evaluation and prediction of off-target effects, and strategies to increase the on-target efficiency and mitigate the off-target impact on intended genome-editing outcomes are summarized.
Collapse
Affiliation(s)
- Hakim Manghwar
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Bo Li
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
- Institute of Nuclear and Biological TechnologiesXinjiang Academy of Agricultural SciencesUrumqiXinjiang830091P. R. China
| | - Xiao Ding
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Amjad Hussain
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Keith Lindsey
- Department of BiosciencesDurham UniversityDurhamDH1 3LEUK
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| |
Collapse
|
124
|
|
125
|
Lentiviral and genome-editing strategies for the treatment of β-hemoglobinopathies. Blood 2020; 134:1203-1213. [PMID: 31467062 DOI: 10.1182/blood.2019000949] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023] Open
Abstract
β-Thalassemia and sickle cell disease (SCD) are the most prevalent monogenic diseases. These disorders are caused by quantitative or qualitative defects in the production of adult hemoglobin. Gene therapy is a potential treatment option for patients lacking an allogenic compatible hematopoietic stem cell (HSC) donor. New-generation lentiviral vectors (LVs) carrying a β-globin-like gene have revolutionized this field by allowing effective HSC transduction, with no evidence of genotoxicity to date. Several clinical trials with different types of vector are underway worldwide; the initial results are encouraging with regard to the sustained production of therapeutic hemoglobin, improved biological parameters, a lower transfusion requirement, and better quality of life. Long-term follow-up studies will confirm the safety of LV-based gene therapy. The optimization of patient conditioning, HSC harvesting, and HSC transduction has further improved the therapeutic potential of this approach. Novel LV-based strategies for reactivating endogenous fetal hemoglobin (HbF) are also promising, because elevated HbF levels can reduce the severity of both β-thalassemia and SCD. Lastly, genome-editing approaches designed to correct the disease-causing mutation or reactivate HbF are currently under investigation. Here, we discuss the clinical outcomes of current LV-based gene addition trials and the promising advantages of novel alternative therapeutic strategies.
Collapse
|
126
|
Dong Y, Sun F, Ping Z, Ouyang Q, Qian L. DNA storage: research landscape and future prospects. Natl Sci Rev 2020; 7:1092-1107. [PMID: 34692128 PMCID: PMC8288837 DOI: 10.1093/nsr/nwaa007] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/06/2020] [Accepted: 01/18/2020] [Indexed: 02/06/2023] Open
Abstract
Abstract
The global demand for data storage is currently outpacing the world's storage capabilities. DNA, the carrier of natural genetic information, offers a stable, resource- and energy-efficient and sustainable data storage solution. In this review, we summarize the fundamental theory, research history, and technical challenges of DNA storage. From a quantitative perspective, we evaluate the prospect of DNA, and organic polymers in general, as a novel class of data storage medium.
Collapse
Affiliation(s)
- Yiming Dong
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Fajia Sun
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zhi Ping
- Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Qi Ouyang
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Long Qian
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
127
|
Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nat Biomed Eng 2020. [PMID: 31937940 DOI: 10.1038/s41551-019-0501-5.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The success of base editors for the study and treatment of genetic diseases depends on the ability to deliver them in vivo to the relevant cell types. Delivery via adeno-associated viruses (AAVs) is limited by AAV packaging capacity, which precludes the use of full-length base editors. Here, we report the application of dual AAVs for the delivery of split cytosine and adenine base editors that are then reconstituted by trans-splicing inteins. Optimized dual AAVs enable in vivo base editing at therapeutically relevant efficiencies and dosages in the mouse brain (up to 59% of unsorted cortical tissue), liver (38%), retina (38%), heart (20%) and skeletal muscle (9%). We also show that base editing corrects, in mouse brain tissue, a mutation that causes Niemann-Pick disease type C (a neurodegenerative ataxia), slowing down neurodegeneration and increasing lifespan. The optimized delivery vectors should facilitate the efficient introduction of targeted point mutations into multiple tissues of therapeutic interest.
Collapse
|
128
|
Lim CKW, Gapinske M, Brooks AK, Woods WS, Powell JE, Zeballos C MA, Winter J, Perez-Pinera P, Gaj T. Treatment of a Mouse Model of ALS by In Vivo Base Editing. Mol Ther 2020; 28:1177-1189. [PMID: 31991108 DOI: 10.1016/j.ymthe.2020.01.005] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a debilitating and fatal disorder that can be caused by mutations in the superoxide dismutase 1 (SOD1) gene. Although ALS is currently incurable, CRISPR base editors hold the potential to treat the disease through their ability to create nonsense mutations that can permanently disable the expression of the mutant SOD1 gene. However, the restrictive carrying capacity of adeno-associated virus (AAV) vectors has limited their therapeutic application. In this study, we establish an intein-mediated trans-splicing system that enables in vivo delivery of cytidine base editors (CBEs) consisting of the widely used Cas9 protein from Streptococcus pyogenes. We show that intrathecal injection of dual AAV particles encoding a split-intein CBE engineered to trans-splice and introduce a nonsense-coding substitution into a mutant SOD1 gene prolonged survival and markedly slowed the progression of disease in the G93A-SOD1 mouse model of ALS. Adult animals treated by this split-intein CRISPR base editor had a reduced rate of muscle atrophy, decreased muscle denervation, improved neuromuscular function, and up to 40% fewer SOD1 immunoreactive inclusions at end-stage mice compared to control mice. This work expands the capabilities of single-base editors and demonstrates their potential for gene therapy.
Collapse
Affiliation(s)
- Colin K W Lim
- Department of Bioengineering, University of Illinois, Urbana, IL 61801, USA
| | - Michael Gapinske
- Department of Bioengineering, University of Illinois, Urbana, IL 61801, USA
| | - Alexandra K Brooks
- Department of Bioengineering, University of Illinois, Urbana, IL 61801, USA
| | - Wendy S Woods
- Department of Bioengineering, University of Illinois, Urbana, IL 61801, USA
| | - Jackson E Powell
- Department of Bioengineering, University of Illinois, Urbana, IL 61801, USA
| | | | - Jackson Winter
- Department of Bioengineering, University of Illinois, Urbana, IL 61801, USA
| | - Pablo Perez-Pinera
- Department of Bioengineering, University of Illinois, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA; Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois, Urbana, IL 61801, USA; Cancer Center at Illinois, University of Illinois, Urbana, IL 61801, USA.
| | - Thomas Gaj
- Department of Bioengineering, University of Illinois, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA.
| |
Collapse
|
129
|
Fox K, Rallapalli KL, Komor AC. Rewriting Human History and Empowering Indigenous Communities with Genome Editing Tools. Genes (Basel) 2020; 11:E88. [PMID: 31940934 PMCID: PMC7016644 DOI: 10.3390/genes11010088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/12/2022] Open
Abstract
Appropriate empirical-based evidence and detailed theoretical considerations should be used for evolutionary explanations of phenotypic variation observed in the field of human population genetics (especially Indigenous populations). Investigators within the population genetics community frequently overlook the importance of these criteria when associating observed phenotypic variation with evolutionary explanations. A functional investigation of population-specific variation using cutting-edge genome editing tools has the potential to empower the population genetics community by holding "just-so" evolutionary explanations accountable. Here, we detail currently available precision genome editing tools and methods, with a particular emphasis on base editing, that can be applied to functionally investigate population-specific point mutations. We use the recent identification of thrifty mutations in the CREBRF gene as an example of the current dire need for an alliance between the fields of population genetics and genome editing.
Collapse
Affiliation(s)
- Keolu Fox
- Department of Anthropology, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Global Health, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kartik Lakshmi Rallapalli
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA;
| | - Alexis C. Komor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA;
| |
Collapse
|
130
|
Lansing F, Paszkowski-Rogacz M, Schmitt LT, Schneider PM, Rojo Romanos T, Sonntag J, Buchholz F. A heterodimer of evolved designer-recombinases precisely excises a human genomic DNA locus. Nucleic Acids Res 2020; 48:472-485. [PMID: 31745551 PMCID: PMC7107906 DOI: 10.1093/nar/gkz1078] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 01/04/2023] Open
Abstract
Site-specific recombinases (SSRs) such as the Cre/loxP system are useful genome engineering tools that can be repurposed by altering their DNA-binding specificity. However, SSRs that delete a natural sequence from the human genome have not been reported thus far. Here, we describe the generation of an SSR system that precisely excises a 1.4 kb fragment from the human genome. Through a streamlined process of substrate-linked directed evolution we generated two separate recombinases that, when expressed together, act as a heterodimer to delete a human genomic sequence from chromosome 7. Our data indicates that designer-recombinases can be generated in a manageable timeframe for precision genome editing. A large-scale bioinformatics analysis suggests that around 13% of all human protein-coding genes could be targetable by dual designer-recombinase induced genomic deletion (dDRiGD). We propose that heterospecific designer-recombinases, which work independently of the host DNA repair machinery, represent an efficient and safe alternative to nuclease-based genome editing technologies.
Collapse
Affiliation(s)
- Felix Lansing
- Medical Faculty and University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, 01307 Dresden, Germany
| | - Maciej Paszkowski-Rogacz
- Medical Faculty and University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, 01307 Dresden, Germany
| | - Lukas Theo Schmitt
- Medical Faculty and University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, 01307 Dresden, Germany
| | - Paul Martin Schneider
- Medical Faculty and University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, 01307 Dresden, Germany
| | - Teresa Rojo Romanos
- Medical Faculty and University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, 01307 Dresden, Germany
| | - Jan Sonntag
- Medical Faculty and University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, 01307 Dresden, Germany
| | - Frank Buchholz
- Medical Faculty and University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, 01307 Dresden, Germany
| |
Collapse
|
131
|
Levy JM, Yeh WH, Pendse N, Davis JR, Hennessey E, Butcher R, Koblan LW, Comander J, Liu Q, Liu DR. Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nat Biomed Eng 2020; 4:97-110. [PMID: 31937940 PMCID: PMC6980783 DOI: 10.1038/s41551-019-0501-5] [Citation(s) in RCA: 321] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/04/2019] [Indexed: 12/26/2022]
Abstract
The success of base editors for the study and treatment of genetic diseases depends on the ability to deliver them in vivo to the relevant cell types. Delivery via adeno-associated viruses (AAVs) is limited by AAV packaging capacity, which precludes the use of full-length base editors. Here, we report the application of dual AAVs for the delivery of split cytosine and adenine base editors that are then reconstituted by trans-splicing inteins. Optimized dual AAVs enable in vivo base editing at therapeutically relevant efficiencies and dosages in the mouse brain (up to 59% of unsorted cortical tissue), liver (38%), retina (38%), heart (20%) and skeletal muscle (9%). We also show that base editing corrects, in mouse brain tissue, a mutation that causes Niemann-Pick disease type C (a neurodegenerative ataxia), slowing down neurodegeneration and increasing lifespan. The optimized delivery vectors should facilitate the efficient introduction of targeted point mutations into multiple tissues of therapeutic interest.
Collapse
Affiliation(s)
- Jonathan M Levy
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Wei-Hsi Yeh
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, USA
| | - Nachiket Pendse
- Ocular Genomics Institute, Massachusetts Eye and Ear Institute, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jessie R Davis
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Erin Hennessey
- Ocular Genomics Institute, Massachusetts Eye and Ear Institute, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Rossano Butcher
- Ocular Genomics Institute, Massachusetts Eye and Ear Institute, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Luke W Koblan
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Jason Comander
- Ocular Genomics Institute, Massachusetts Eye and Ear Institute, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Qin Liu
- Ocular Genomics Institute, Massachusetts Eye and Ear Institute, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
132
|
Shi X, Zhang D, Li F, Zhang Z, Wang S, Xuan Y, Ping Y, Zhang Y. Targeting glycosylation of PD-1 to enhance CAR-T cell cytotoxicity. J Hematol Oncol 2019; 12:127. [PMID: 31783892 PMCID: PMC6884797 DOI: 10.1186/s13045-019-0831-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 11/13/2019] [Indexed: 12/28/2022] Open
Abstract
Asparagine-linked (N-linked) glycosylation is ubiquitous and can stabilize immune inhibitory PD-1 protein. Reducing N-linked glycosylation of PD-1 may decrease PD-1 expression and relieve its inhibitory effects on CAR-T cells. Considering that the codon of Asparagine is aac or aat, we wondered if the adenine base editor (ABE), which induces a·t to g·c conversion at specific site, could be used to reduce PD-1 suppression by changing the glycosylated residue in CAR-T cells. Our results showed ABE editing altered the coding sequence of N74 residue of PDCD1 and downregulated PD-1 expression in CAR-T cells. Further analysis showed ABE-edited CAR-T cells had enhanced cytotoxic functions in vitro and in vivo. Our study suggested that the single base editors can be used to augment CAR-T cell therapy.
Collapse
Affiliation(s)
- Xiaojuan Shi
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Daiqun Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Feng Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Zhen Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shumin Wang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yujing Xuan
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yu Ping
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
133
|
Mao S, Liu Y, Huang S, Huang X, Chi T. Site-directed RNA editing (SDRE): Off-target effects and their countermeasures. J Genet Genomics 2019; 46:531-535. [PMID: 31889638 DOI: 10.1016/j.jgg.2019.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/08/2019] [Accepted: 11/04/2019] [Indexed: 12/20/2022]
Abstract
Site-directed RNA editing (SDRE) is invaluable to basic research and clinical applications and has emerged as a new frontier in genome editing. The past few years have witnessed a surge of interest in SDRE, with SDRE tools emerging at a breathtaking pace. However, off-target effects of SDRE remain a tough problem, which constitutes a major hurdle to their clinical applications. Here we discuss the diverse strategies for combating off-target editing, drawing lessons from the published studies as well as our ongoing research. Overall, SDRE is still at its infancy, with significant challenges and exciting opportunities ahead.
Collapse
Affiliation(s)
- Shaoshuai Mao
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, 201210, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yajing Liu
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, 201210, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shisheng Huang
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, 201210, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xingxu Huang
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Tian Chi
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, 201210, China; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
134
|
Huang KC, Wang ML, Chen SJ, Kuo JC, Wang WJ, Nhi Nguyen PN, Wahlin KJ, Lu JF, Tran AA, Shi M, Chien Y, Yarmishyn AA, Tsai PH, Yang TC, Jane WN, Chang CC, Peng CH, Schlaeger TM, Chiou SH. Morphological and Molecular Defects in Human Three-Dimensional Retinal Organoid Model of X-Linked Juvenile Retinoschisis. Stem Cell Reports 2019; 13:906-923. [PMID: 31668851 PMCID: PMC6895767 DOI: 10.1016/j.stemcr.2019.09.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/24/2022] Open
Abstract
X-linked juvenile retinoschisis (XLRS), linked to mutations in the RS1 gene, is a degenerative retinopathy with a retinal splitting phenotype. We generated human induced pluripotent stem cells (hiPSCs) from patients to study XLRS in a 3D retinal organoid in vitro differentiation system. This model recapitulates key features of XLRS including retinal splitting, defective retinoschisin production, outer-segment defects, abnormal paxillin turnover, and impaired ER-Golgi transportation. RS1 mutation also affects the development of photoreceptor sensory cilia and results in altered expression of other retinopathy-associated genes. CRISPR/Cas9 correction of the disease-associated C625T mutation normalizes the splitting phenotype, outer-segment defects, paxillin dynamics, ciliary marker expression, and transcriptome profiles. Likewise, mutating RS1 in control hiPSCs produces the disease-associated phenotypes. Finally, we show that the C625T mutation can be repaired precisely and efficiently using a base-editing approach. Taken together, our data establish 3D organoids as a valid disease model. hiPSC-derived retinal organoid model recapitulates key features of XLRS CRISPR/Cas9 correction normalizes RS1 secretion and retinal development Transcriptome analysis links XLRS to other hereditary retinopathies
Collapse
Affiliation(s)
- Kang-Chieh Huang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan; Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Mong-Lien Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan; School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei 11221, Taiwan
| | - Shih-Jen Chen
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Jean-Cheng Kuo
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan; Cancer Progression Research Center, National Yang-Ming University, Taipei 11221, Taiwan
| | - Won-Jing Wang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Phan Nguyen Nhi Nguyen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Karl J Wahlin
- Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Jyh-Feng Lu
- School of Medicine, Fu-Jen Catholic University, New Taipei City 24205, Taiwan
| | - Audrey A Tran
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Shi
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | | | - Ping-Hsing Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Tien-Chun Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Wann-Neng Jane
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chia-Ching Chang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Chi-Hsien Peng
- Department of Ophthalmology, Shin Kong Wu Ho-Su Memorial Hospital & Fu-Jen Catholic University, Taipei 11101, Taiwan
| | - Thorsten M Schlaeger
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan; School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan; Genomic Research Center, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
135
|
Abstract
In vivo gene therapy for neurodegenerative disorders has turned out to be a formidable challenge. It is a field not much older than twenty years, but we were many who would have predicted a much easier path towards the clinic using this treatment modality. For Parkinson’s disease patients, this has meant a frustrating wait, seeing many promising therapies being forgotten after a few pre-clinical proof-of-concept studies. The reasons for this are both scientific and economical. However, this is slowly but surely changing and over the next two decades we will see a very exciting development in this field. In a foreseeable future, gene therapy will be a very natural component of many clinical therapies, not least in Parkinson’s disease.
Collapse
Affiliation(s)
- Tomas Björklund
- Molecular Neuromodulation, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| |
Collapse
|
136
|
Molla KA, Yang Y. CRISPR/Cas-Mediated Base Editing: Technical Considerations and Practical Applications. Trends Biotechnol 2019; 37:1121-1142. [PMID: 30995964 DOI: 10.1016/j.tibtech.2019.03.008] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Kutubuddin A Molla
- Department of Plant Pathology and Environmental Microbiology, and Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA; ICAR-National Rice Research Institute, Cuttack 753006, India
| | - Yinong Yang
- Department of Plant Pathology and Environmental Microbiology, and Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
137
|
Grisch-Chan HM, Schwank G, Harding CO, Thöny B. State-of-the-Art 2019 on Gene Therapy for Phenylketonuria. Hum Gene Ther 2019; 30:1274-1283. [PMID: 31364419 PMCID: PMC6763965 DOI: 10.1089/hum.2019.111] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/22/2019] [Indexed: 12/21/2022] Open
Abstract
Phenylketonuria (PKU) is considered to be a paradigm for a monogenic metabolic disorder but was never thought to be a primary application for human gene therapy due to established alternative treatment. However, somewhat unanticipated improvement in neuropsychiatric outcome upon long-term treatment of adults with PKU with enzyme substitution therapy might slowly change this assumption. In parallel, PKU was for a long time considered to be an excellent test system for experimental gene therapy of a Mendelian autosomal recessive defect of the liver due to an outstanding mouse model and the easy to analyze and well-defined therapeutic end point, that is, blood l-phenylalanine concentration. Lifelong treatment by targeting the mouse liver (or skeletal muscle) was achieved using different approaches, including (1) recombinant adeno-associated viral (rAAV) or nonviral naked DNA vector-based gene addition, (2) genome editing using base editors delivered by rAAV vectors, and (3) by delivering rAAVs for promoter-less insertion of the PAH-cDNA into the Pah locus. In this article we summarize the gene therapeutic attempts of correcting a mouse model for PKU and discuss the future implications for human gene therapy.
Collapse
Affiliation(s)
- Hiu Man Grisch-Chan
- Division of Metabolism, University Children's Hospital Zurich and Children's Research Centre, Zurich, Switzerland
| | - Gerald Schwank
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Cary O. Harding
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Science and Health University, Portland, Oregon
| | - Beat Thöny
- Division of Metabolism, University Children's Hospital Zurich and Children's Research Centre, Zurich, Switzerland
| |
Collapse
|
138
|
Abstract
Base editing is a genome editing strategy that induces specific single-nucleotide changes within genomic DNA. Two major DNA base editors, cytosine base editors and adenine base editors, that consist of a Cas9 protein linked to a deaminase enzyme that catalyzes targeted base conversion directed by a single-guide RNA have been developed. This strategy has been used widely for precise genome editing because, unlike CRISPR-Cas nuclease-based genome editing systems, this strategy does not create double-strand DNA breaks that often result in high levels of undesirable indels. However, recent papers have reported that DNA base editors can cause substantial off-target editing in both genomic DNA and RNA. The off-target editing described in these studies is primarily independent of guide RNA and arises from the promiscuous reactivity of the deaminase enzymes used in DNA base editors. In this Perspective, we discuss the development of DNA base editors, the guide RNA-independent off-target activity reported in recent studies, and strategies that improve the selectivity of DNA base editors.
Collapse
Affiliation(s)
- SeHee Park
- Department of Chemistry, University of California, One Shields Ave, Davis, CA 95616, USA
| | - Peter A. Beal
- Department of Chemistry, University of California, One Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
139
|
Roccio M, Edge ASB. Inner ear organoids: new tools to understand neurosensory cell development, degeneration and regeneration. Development 2019; 146:146/17/dev177188. [PMID: 31477580 DOI: 10.1242/dev.177188] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of therapeutic interventions for hearing loss requires fundamental knowledge about the signaling pathways controlling tissue development as well as the establishment of human cell-based assays to validate therapeutic strategies ex vivo Recent advances in the field of stem cell biology and organoid culture systems allow the expansion and differentiation of tissue-specific progenitors and pluripotent stem cells in vitro into functional hair cells and otic-like neurons. We discuss how inner ear organoids have been developed and how they offer for the first time the opportunity to validate drug-based therapies, gene-targeting approaches and cell replacement strategies.
Collapse
Affiliation(s)
- Marta Roccio
- Inner Ear Research Laboratory, Department of Biomedical Research (DBMR), University of Bern, Bern 3008, Switzerland .,Department of Otorhinolaryngology, Head & Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Albert S B Edge
- Department of Otolaryngology, Harvard Medical School, Boston, MA 02115, USA.,Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, MA 02114, USA.,Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
140
|
Abstract
The evolution of genome editing technology based on CRISPR (clustered regularly interspaced short palindromic repeats) system has led to a paradigm shift in biological research. CRISPR/Cas9-guide RNA complexes enable rapid and efficient genome editing in mammalian cells. This system induces double-stranded DNA breaks (DSBs) at target sites and most DNA breakages induce mutations as small insertions or deletions (indels) by non-homologous end joining (NHEJ) repair pathway. However, for more precise correction as knock-in or replacement of DNA base pairs, using the homology-directed repair (HDR) pathway is essential. Until now, many trials have greatly enhanced knock-in or substitution efficiency by increasing HDR efficiency, or newly developed methods such as Base Editors (BEs). However, accuracy remains unsatisfactory. In this review, we summarize studies to overcome the limitations of HDR using the CRISPR system and discuss future direction.
Collapse
Affiliation(s)
- Seuk-Min Ryu
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Junseok W Hur
- Department of Neurosurgery, Korea University College of Medicine, Seoul 02841, Korea
| | - Kyoungmi Kim
- Department of Biomedical Sciences and Department of Physiology, Korea University College of Medicine, Seoul 02841, Korea
| |
Collapse
|
141
|
Base Editor Correction of COL7A1 in Recessive Dystrophic Epidermolysis Bullosa Patient-Derived Fibroblasts and iPSCs. THE JOURNAL OF INVESTIGATIVE DERMATOLOGY 2019. [PMID: 31437443 DOI: 10.1016/j.jid.2019.07.701.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Genome editing represents a promising strategy for the therapeutic correction of COL7A1 mutations that cause recessive dystrophic epidermolysis bullosa (RDEB). DNA cleavage followed by homology-directed repair (HDR) using an exogenous template has previously been used to correct COL7A1 mutations. HDR rates can be modest, and the double-strand DNA breaks that initiate HDR commonly result in accompanying undesired insertions and deletions (indels). To overcome these limitations, we applied an A•T→G•C adenine base editor (ABE) to correct two different COL7A1 mutations in primary fibroblasts derived from RDEB patients. ABE enabled higher COL7A1 correction efficiencies than previously reported HDR efforts. Moreover, ABE obviated the need for a repair template, and minimal indels or editing at off-target sites was detected. Base editing restored the endogenous type VII collagen expression and function in vitro. We also treated induced pluripotent stem cells (iPSCs) derived from RDEB fibroblasts with ABE. The edited iPSCs were differentiated into mesenchymal stromal cells, a cell population with therapeutic potential for RDEB. In a mouse teratoma model, the skin derived from ABE-treated iPSCs showed the proper deposition of C7 at the dermal-epidermal junction in vivo. These demonstrate that base editing provides an efficient and precise genome editing method for autologous cell engineering for RDEB.
Collapse
|
142
|
Base Editor Correction of COL7A1 in Recessive Dystrophic Epidermolysis Bullosa Patient-Derived Fibroblasts and iPSCs. J Invest Dermatol 2019; 140:338-347.e5. [PMID: 31437443 DOI: 10.1016/j.jid.2019.07.701] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/18/2019] [Accepted: 07/29/2019] [Indexed: 12/14/2022]
Abstract
Genome editing represents a promising strategy for the therapeutic correction of COL7A1 mutations that cause recessive dystrophic epidermolysis bullosa (RDEB). DNA cleavage followed by homology-directed repair (HDR) using an exogenous template has previously been used to correct COL7A1 mutations. HDR rates can be modest, and the double-strand DNA breaks that initiate HDR commonly result in accompanying undesired insertions and deletions (indels). To overcome these limitations, we applied an A•T→G•C adenine base editor (ABE) to correct two different COL7A1 mutations in primary fibroblasts derived from RDEB patients. ABE enabled higher COL7A1 correction efficiencies than previously reported HDR efforts. Moreover, ABE obviated the need for a repair template, and minimal indels or editing at off-target sites was detected. Base editing restored the endogenous type VII collagen expression and function in vitro. We also treated induced pluripotent stem cells (iPSCs) derived from RDEB fibroblasts with ABE. The edited iPSCs were differentiated into mesenchymal stromal cells, a cell population with therapeutic potential for RDEB. In a mouse teratoma model, the skin derived from ABE-treated iPSCs showed the proper deposition of C7 at the dermal-epidermal junction in vivo. These demonstrate that base editing provides an efficient and precise genome editing method for autologous cell engineering for RDEB.
Collapse
|
143
|
Balboa D, Prasad RB, Groop L, Otonkoski T. Genome editing of human pancreatic beta cell models: problems, possibilities and outlook. Diabetologia 2019; 62:1329-1336. [PMID: 31161346 PMCID: PMC6647170 DOI: 10.1007/s00125-019-4908-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022]
Abstract
Understanding the molecular mechanisms behind beta cell dysfunction is essential for the development of effective and specific approaches for diabetes care and prevention. Physiological human beta cell models are needed for this work. We review the possibilities and limitations of currently available human beta cell models and how they can be dramatically enhanced using genome-editing technologies. In addition to the gold standard, primary isolated islets, other models now include immortalised human beta cell lines and pluripotent stem cell-derived islet-like cells. The scarcity of human primary islet samples limits their use, but valuable gene expression and functional data from large collections of human islets have been made available to the scientific community. The possibilities for studying beta cell physiology using immortalised human beta cell lines and stem cell-derived islets are rapidly evolving. However, the functional immaturity of these cells is still a significant limitation. CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9) has enabled precise engineering of specific genetic variants, targeted transcriptional modulation and genome-wide genetic screening. These approaches can now be exploited to gain understanding of the mechanisms behind coding and non-coding diabetes-associated genetic variants, allowing more precise evaluation of their contribution to diabetes pathogenesis. Despite all the progress, genome editing in primary pancreatic islets remains difficult to achieve, an important limitation requiring further technological development.
Collapse
Affiliation(s)
- Diego Balboa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Rashmi B Prasad
- Genomics, Diabetes and Endocrinology, Lund University Diabetes Centre, CRC, Malmö, Sweden
| | - Leif Groop
- Genomics, Diabetes and Endocrinology, Lund University Diabetes Centre, CRC, Malmö, Sweden
- Institute of Molecular Medicine, Centre of Excellence in Complex Disease Genetics, University of Helsinki, Helsinki, Finland
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, PO Box 63, (Haartmaninkatu 8), FI-00014, Helsinki, Finland.
- Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
| |
Collapse
|
144
|
Schatoff EM, Zafra MP, Dow LE. Base editing the mammalian genome. Methods 2019; 164-165:100-108. [PMID: 30836137 PMCID: PMC6684841 DOI: 10.1016/j.ymeth.2019.02.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/27/2019] [Indexed: 02/03/2023] Open
Abstract
Base editing is a powerful technology that enables programmable conversion of single nucleotides in the mammalian genome. Base editors consist of a partially active Cas9 nuclease (Cas9D10A) tethered to a natural or synthetic DNA modifying enzyme. Though only recently described, BE has already shown enormous potential for basic and translational research, allowing the creation or repair of disease alleles in a variety of cell types and model organisms. In the past 2 years, a vast array of new and modified base editor variants have been described, expanding the flexibility and usefulness of the approach. Though simple in concept, effective implementation of base editing requires an understanding of the advantages and limitations of each of these tools. Here, we provide an overview of the concepts of DNA base editing, and discuss the recent progress toward the development of optimized base editing systems for mammalian cells. In addition, we highlight key technical aspects of designing and executing BE experiments, and provide detailed experimental examples of successful base editing in cell lines and organoids to help guide the effective use of these tools for genome modification.
Collapse
Affiliation(s)
- Emma M Schatoff
- Sandra and Edward Meyer Cancer Center, United States; Weill Cornell/Rockefeller/Sloan Kettering Tri-I MD-PhD Program, New York 10065, United States
| | - Maria Paz Zafra
- Sandra and Edward Meyer Cancer Center, United States; Department of Medicine, United States
| | - Lukas E Dow
- Sandra and Edward Meyer Cancer Center, United States; Department of Medicine, United States; Department of Biochemistry, Weill Cornell Medicine, New York 10021, United States.
| |
Collapse
|
145
|
Christensen CL, Ashmead RE, Choy FYM. Cell and Gene Therapies for Mucopolysaccharidoses: Base Editing and Therapeutic Delivery to the CNS. Diseases 2019; 7:E47. [PMID: 31248000 PMCID: PMC6787741 DOI: 10.3390/diseases7030047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 02/06/2023] Open
Abstract
Although individually uncommon, rare diseases collectively account for a considerable proportion of disease impact worldwide. A group of rare genetic diseases called the mucopolysaccharidoses (MPSs) are characterized by accumulation of partially degraded glycosaminoglycans cellularly. MPS results in varied systemic symptoms and in some forms of the disease, neurodegeneration. Lack of treatment options for MPS with neurological involvement necessitates new avenues of therapeutic investigation. Cell and gene therapies provide putative alternatives and when coupled with genome editing technologies may provide long term or curative treatment. Clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing technology and, more recently, advances in genome editing research, have allowed for the addition of base editors to the repertoire of CRISPR-based editing tools. The latest versions of base editors are highly efficient on-targeting deoxyribonucleic acid (DNA) editors. Here, we describe a number of putative guide ribonucleic acid (RNA) designs for precision correction of known causative mutations for 10 of the MPSs. In this review, we discuss advances in base editing technologies and current techniques for delivery of cell and gene therapies to the site of global degeneration in patients with severe neurological forms of MPS, the central nervous system, including ultrasound-mediated blood-brain barrier disruption.
Collapse
Affiliation(s)
- Chloe L Christensen
- Department of Biology, Centre for Biomedical Research, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada
| | - Rhea E Ashmead
- Department of Biology, Centre for Biomedical Research, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada
| | - Francis Y M Choy
- Department of Biology, Centre for Biomedical Research, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada.
| |
Collapse
|
146
|
Kang W, Sun Z, Zhao X, Wang X, Tao Y, Wu H. Gene editing based hearing impairment research and therapeutics. Neurosci Lett 2019; 709:134326. [PMID: 31195050 DOI: 10.1016/j.neulet.2019.134326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/06/2019] [Accepted: 06/08/2019] [Indexed: 12/26/2022]
Abstract
Hearing impairment affects 1 in 500 newborns worldwide and nearly one out of three people over the age of 65 (WHO, 2019). Hereditary hearing loss is the most common type of congenital deafness; genetic factors also affect deafness susceptibility. Gene therapies may preserve or restore natural sound perception, and have rescued deafness in multiple hereditary murine models. CRISPR-Cas9 and base editors (BEs) are newly developed gene editing technologies that can facilitate gene studies in the inner ear and provide therapeutic approaches for hearing impairment. Here, we present recent applications of gene editing in the inner ear.
Collapse
Affiliation(s)
- Wen Kang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, China; Ear Institute, Shanghai Jiaotong University School of Medicine, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, China
| | - Zhuoer Sun
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, China; Ear Institute, Shanghai Jiaotong University School of Medicine, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, China
| | - Xingle Zhao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, China; Ear Institute, Shanghai Jiaotong University School of Medicine, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, China
| | - Xueling Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, China; Ear Institute, Shanghai Jiaotong University School of Medicine, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, China.
| | - Yong Tao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, China; Ear Institute, Shanghai Jiaotong University School of Medicine, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, China.
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, China; Ear Institute, Shanghai Jiaotong University School of Medicine, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, China.
| |
Collapse
|
147
|
Newby GA. Base Editing: Efficient Installation of Point Mutations with Minimal Byproducts. Stem Cells Dev 2019; 28:712-713. [PMID: 31107171 DOI: 10.1089/scd.2019.0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Gregory A Newby
- 1 Laboratory of David Liu, Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts.,2 Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts.,3 Merkin Institute of Transformative Technologies in Health Care, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| |
Collapse
|
148
|
Tang J, Lee T, Sun T. Single-nucleotide editing: From principle, optimization to application. Hum Mutat 2019; 40:2171-2183. [PMID: 31131955 DOI: 10.1002/humu.23819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/30/2019] [Accepted: 05/23/2019] [Indexed: 12/26/2022]
Abstract
Cytosine base editors (CBEs) and adenine base editors (ABEs), which are generally composed of an engineered deaminase and a catalytically impaired CRISPR-Cas9 variant, are new favorite tools for single base substitution in cells and organisms. In this review, we summarize the principle of base-editing systems and elaborate on the evolution of different platforms of CBEs and ABEs, including their deaminase, Cas9 variants, and editing outcomes. Moreover, we highlight their applications in mouse and human cells and discuss the challenges and prospects of base editors. The ABE- and CBE systems have been used in gene silencing, pathogenic gene correction, and functional genetic screening. Single base editing is becoming a new promising genetic tool in biomedical research and gene therapy.
Collapse
Affiliation(s)
- Jinling Tang
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Trevor Lee
- Department of Cell and Developmental Biology, Weill Medical College, Cornell University, New York, New York
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| |
Collapse
|
149
|
Mention K, Santos L, Harrison PT. Gene and Base Editing as a Therapeutic Option for Cystic Fibrosis-Learning from Other Diseases. Genes (Basel) 2019; 10:E387. [PMID: 31117296 PMCID: PMC6562706 DOI: 10.3390/genes10050387] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/11/2019] [Accepted: 05/15/2019] [Indexed: 12/21/2022] Open
Abstract
Cystic fibrosis (CF) is a monogenic autosomal recessive disorder caused by mutations in the CFTR gene. There are at least 346 disease-causing variants in the CFTR gene, but effective small-molecule therapies exist for only ~10% of them. One option to treat all mutations is CFTR cDNA-based therapy, but clinical trials to date have only been able to stabilise rather than improve lung function disease in patients. While cDNA-based therapy is already a clinical reality for a number of diseases, some animal studies have clearly established that precision genome editing can be significantly more effective than cDNA addition. These observations have led to a number of gene-editing clinical trials for a small number of such genetic disorders. To date, gene-editing strategies to correct CFTR mutations have been conducted exclusively in cell models, with no in vivo gene-editing studies yet described. Here, we highlight some of the key breakthroughs in in vivo and ex vivo gene and base editing in animal models for other diseases and discuss what might be learned from these studies in the development of editing strategies that may be applied to cystic fibrosis as a potential therapeutic approach. There are many hurdles that need to be overcome, including the in vivo delivery of editing machinery or successful engraftment of ex vivo-edited cells, as well as minimising potential off-target effects. However, a successful proof-of-concept study for gene or base editing in one or more of the available CF animal models could pave the way towards a long-term therapeutic strategy for this disease.
Collapse
Affiliation(s)
- Karen Mention
- Department of Physiology, University College Cork, Cork T12 K8AF, Ireland.
| | - Lúcia Santos
- Department of Physiology, University College Cork, Cork T12 K8AF, Ireland.
- University of Lisboa Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, 1749-016 Lisboa, Portugal.
| | - Patrick T Harrison
- Department of Physiology, University College Cork, Cork T12 K8AF, Ireland.
| |
Collapse
|
150
|
Therapeutic application of the CRISPR system: current issues and new prospects. Hum Genet 2019; 138:563-590. [PMID: 31115652 DOI: 10.1007/s00439-019-02028-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 05/13/2019] [Indexed: 12/23/2022]
|