101
|
Budicini MR, Rodriguez-Irizarry VJ, Maples RW, Pfeiffer JK. Murine norovirus mutants adapted to replicate in human cells reveal a post-entry restriction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575274. [PMID: 38260699 PMCID: PMC10802625 DOI: 10.1101/2024.01.11.575274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
RNA viruses lack proofreading in their RNA polymerases and therefore exist as genetically diverse populations. By exposing these diverse viral populations to selective pressures, viruses with mutations that confer fitness advantages can be enriched. To examine factors important for viral tropism and host restriction, we passaged murine norovirus (MNV) in a human cell line, HeLa cells, to select for mutant viruses with increased fitness in non-murine cells. A major determinant of host range is expression of the MNV receptor CD300lf on mouse cells, but additional host factors may limit MNV replication in human cells. We found that viruses passaged six times in HeLa cells had enhanced replication compared with the parental virus. The passaged viruses had several mutations throughout the viral genome, which were primarily located in the viral non-structural coding regions. While viral attachment was not altered for the passaged viruses, their replication was higher than the parental virus when entry was bypassed, suggesting the mutant viruses overcame a post-entry block in human cells. Three mutations in the viral NS1 protein were sufficient for enhanced post-entry replication in human cells. We found that the human cell-adapted MNV variants had reduced fitness in mouse BV2 cells. Although the mutant viruses had increased fitness in HeLa cells, they did not have increased fitness in mice. Overall, this work suggests that MNV tropism is not only determined by the presence of the viral receptor but also post-entry factors.
Collapse
Affiliation(s)
- Melissa R. Budicini
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Robert W. Maples
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Julie K. Pfeiffer
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
102
|
Qi Z, Lu P, Long X, Cao X, Wu M, Xin K, Xue T, Gao X, Huang Y, Wang Q, Jiang C, Xu JR, Liu H. Adaptive advantages of restorative RNA editing in fungi for resolving survival-reproduction trade-offs. SCIENCE ADVANCES 2024; 10:eadk6130. [PMID: 38181075 PMCID: PMC10776026 DOI: 10.1126/sciadv.adk6130] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024]
Abstract
RNA editing in various organisms commonly restores RNA sequences to their ancestral state, but its adaptive advantages are debated. In fungi, restorative editing corrects premature stop codons in pseudogenes specifically during sexual reproduction. We characterized 71 pseudogenes and their restorative editing in Fusarium graminearum, demonstrating that restorative editing of 16 pseudogenes is crucial for germ tissue development in fruiting bodies. Our results also revealed that the emergence of premature stop codons is facilitated by restorative editing and that premature stop codons corrected by restorative editing are selectively favored over ancestral amino acid codons. Furthermore, we found that ancestral versions of pseudogenes have antagonistic effects on reproduction and survival. Restorative editing eliminates the survival costs of reproduction caused by antagonistic pleiotropy and provides a selective advantage in fungi. Our findings highlight the importance of restorative editing in the evolution of fungal complex multicellularity and provide empirical evidence that restorative editing serves as an adaptive mechanism enabling the resolution of genetic trade-offs.
Collapse
Affiliation(s)
- Zhaomei Qi
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ping Lu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinyuan Long
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinyu Cao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengchun Wu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kaiyun Xin
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tuan Xue
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinlong Gao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qinhu Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Jiang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Huiquan Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
103
|
Huang AY, Zhou Z, Talukdar M, Miller MB, Chhouk B, Enyenihi L, Rosen I, Stronge E, Zhao B, Kim D, Choi J, Khoshkhoo S, Kim J, Ganz J, Travaglini K, Gabitto M, Hodge R, Kaplan E, Lein E, De Jager PL, Bennett DA, Lee EA, Walsh CA. Somatic cancer driver mutations are enriched and associated with inflammatory states in Alzheimer's disease microglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.574078. [PMID: 38260600 PMCID: PMC10802273 DOI: 10.1101/2024.01.03.574078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Alzheimer's disease (AD) is an age-associated neurodegenerative disorder characterized by progressive neuronal loss and pathological accumulation of the misfolded proteins amyloid-β and tau1,2. Neuroinflammation mediated by microglia and brain-resident macrophages plays a crucial role in AD pathogenesis1-5, though the mechanisms by which age, genes, and other risk factors interact remain largely unknown. Somatic mutations accumulate with age and lead to clonal expansion of many cell types, contributing to cancer and many non-cancer diseases6,7. Here we studied somatic mutation in normal aged and AD brains by three orthogonal methods and in three independent AD cohorts. Analysis of bulk RNA sequencing data from 866 samples from different brain regions revealed significantly higher (~two-fold) overall burdens of somatic single-nucleotide variants (sSNVs) in AD brains compared to age-matched controls. Molecular-barcoded deep (>1000X) gene panel sequencing of 311 prefrontal cortex samples showed enrichment of sSNVs and somatic insertions and deletions (sIndels) in cancer driver genes in AD brain compared to control, with recurrent, and often multiple, mutations in genes implicated in clonal hematopoiesis (CH)8,9. Pathogenic sSNVs were enriched in CSF1R+ microglia of AD brains, and the high proportion of microglia (up to 40%) carrying some sSNVs in cancer driver genes suggests mutation-driven microglial clonal expansion (MiCE). Analysis of single-nucleus RNA sequencing (snRNAseq) from temporal neocortex of 62 additional AD cases and controls exhibited nominally increased mosaic chromosomal alterations (mCAs) associated with CH10,11. Microglia carrying mCA showed upregulated pro-inflammatory genes, resembling the transcriptomic features of disease-associated microglia (DAM) in AD. Our results suggest that somatic driver mutations in microglia are common with normal aging but further enriched in AD brain, driving MiCE with inflammatory and DAM signatures. Our findings provide the first insights into microglial clonal dynamics in AD and identify potential new approaches to AD diagnosis and therapy.
Collapse
Affiliation(s)
- August Yue Huang
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zinan Zhou
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Maya Talukdar
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard-MIT MD/PhD Program, Boston, MA, USA
| | - Michael B. Miller
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Neuropathology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Brian Chhouk
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children’s Hospital, Boston, MA, USA
| | - Liz Enyenihi
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard-MIT MD/PhD Program, Boston, MA, USA
| | - Ila Rosen
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children’s Hospital, Boston, MA, USA
| | - Edward Stronge
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard-MIT MD/PhD Program, Boston, MA, USA
| | - Boxun Zhao
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dachan Kim
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Otorhinolaryngology, Severance Hospital, Yonsei University Health System, Yonsei University College of Medicine, Seoul, South Korea
| | - Jaejoon Choi
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sattar Khoshkhoo
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Junho Kim
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Javier Ganz
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | | | - Eitan Kaplan
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Ed Lein
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Philip L. De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical College, Chicago, IL, USA
| | - Eunjung Alice Lee
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christopher A. Walsh
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston, MA USA
- Departments of Neurology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
104
|
Li J, Li C, Xu W. Liver cancer-specific mutations in functional domains of ADAR2 lead to the elevation of coding and non-coding RNA editing in multiple tumor-related genes. Mol Genet Genomics 2024; 299:1. [PMID: 38170228 DOI: 10.1007/s00438-023-02091-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/17/2023] [Indexed: 01/05/2024]
Abstract
Mutation is the major cause of phenotypic innovations. Apart from DNA mutations, the alteration on RNA such as the ADAR-mediated A-to-I RNA editing could also shape the phenotype. These two layers of variations have not been systematically combined to study their collective roles in cancers. We collected the high-quality transcriptomes of ten hepatocellular carcinoma (HCC) and the matched control samples. We systematically identified HCC-specific mutations in the exonic regions and profiled the A-to-I RNA editome in each sample. All ten HCC samples had mutations in the CDS of ADAR2 gene (dsRNA-binding domain or catalytic domain). The consequence of these mutations converged to the elevation of ADAR2 efficiency as reflected by the global increase of RNA editing levels in HCC. The up-regulated editing sites (UES) were enriched in the CDS and UTR of oncogenes and tumor suppressor genes (TSG), indicating the possible roles of these target genes in HCC oncogenesis. We present the mutation-ADAR2-UES-oncogene/TSG-HCC axis that explains how mutations at different layers would finally lead to abnormal phenotype. In the light of central dogma, our work provides novel insights into how to fully take advantage of the transcriptome data to decipher the consequence of mutations.
Collapse
Affiliation(s)
- Jian Li
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Chaowei Li
- Department of PET/CT, The Second Clinical Medical College of Qingdao University (Qingdao Center Hospital), Qingdao, 266042, China
| | - Wengui Xu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
| |
Collapse
|
105
|
Lau KEH, Nguyen NT, Kesavan JC, Langa E, Fanning K, Brennan GP, Sanz-Rodriguez A, Villegas-Salmerón J, Yan Y, Venø MT, Mills JD, Rosenow F, Bauer S, Kjems J, Henshall DC. Differential microRNA editing may drive target pathway switching in human temporal lobe epilepsy. Brain Commun 2024; 6:fcad355. [PMID: 38204971 PMCID: PMC10781512 DOI: 10.1093/braincomms/fcad355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/03/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
MicroRNAs have emerged as important regulators of the gene expression landscape in temporal lobe epilepsy. The mechanisms that control microRNA levels and influence target choice remain, however, poorly understood. RNA editing is a post-transcriptional mechanism mediated by the adenosine acting on RNA (ADAR) family of proteins that introduces base modification that diversifies the gene expression landscape. RNA editing has been studied for the mRNA landscape but the extent to which microRNA editing occurs in human temporal lobe epilepsy is unknown. Here, we used small RNA-sequencing data to characterize the identity and extent of microRNA editing in human temporal lobe epilepsy brain samples. This detected low-to-high editing in over 40 of the identified microRNAs. Among microRNA exhibiting the highest editing was miR-376a-3p, which was edited in the seed region and this was predicted to significantly change the target pool. The edited form was expressed at lower levels in human temporal lobe epilepsy samples. We modelled the shift in editing levels of miR-376a-3p in human-induced pluripotent stem cell-derived neurons. Reducing levels of the edited form of miR-376a-3p using antisense oligonucleotides resulted in extensive gene expression changes, including upregulation of mitochondrial and metabolism-associated pathways. Together, these results show that differential editing of microRNAs may re-direct targeting and result in altered functions relevant to the pathophysiology of temporal lobe epilepsy and perhaps other disorders of neuronal hyperexcitability.
Collapse
Affiliation(s)
- Kelvin E How Lau
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Ngoc T Nguyen
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Jaideep C Kesavan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Elena Langa
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Kevin Fanning
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Gary P Brennan
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Amaya Sanz-Rodriguez
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Javier Villegas-Salmerón
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- The SFI Centre for Research Training in Genomics Data Science, University of Galway, Galway H91 TK33, Ireland
| | - Yan Yan
- Omiics ApS, 8200 Aarhus N, Denmark
- Interdisciplinary Nanoscience Centre (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark
| | - Morten T Venø
- Omiics ApS, 8200 Aarhus N, Denmark
- Interdisciplinary Nanoscience Centre (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark
| | - James D Mills
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
- Chalfont Centre for Epilepsy, Chalfont St.Peter SL9 0RJ, UK
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Felix Rosenow
- Goethe-University Frankfurt, Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, University Hospital, 60590 Frankfurt, Germany
- Goethe-University Frankfurt, LOEWE Center for Personalized Translational Epilepsy Research (CePTER), 60590 Frankfurt, Germany
| | - Sebastian Bauer
- Goethe-University Frankfurt, Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, University Hospital, 60590 Frankfurt, Germany
- Goethe-University Frankfurt, LOEWE Center for Personalized Translational Epilepsy Research (CePTER), 60590 Frankfurt, Germany
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Centre (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark
| | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| |
Collapse
|
106
|
Knebel UE, Peleg S, Dai C, Cohen-Fultheim R, Jonsson S, Poznyak K, Israeli M, Zamashanski L, Glaser B, Levanon EY, Powers AC, Klochendler A, Dor Y. Disrupted RNA editing in beta cells mimics early-stage type 1 diabetes. Cell Metab 2024; 36:48-61.e6. [PMID: 38128529 PMCID: PMC10843671 DOI: 10.1016/j.cmet.2023.11.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 09/18/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
A major hypothesis for the etiology of type 1 diabetes (T1D) postulates initiation by viral infection, leading to double-stranded RNA (dsRNA)-mediated interferon response and inflammation; however, a causal virus has not been identified. Here, we use a mouse model, corroborated with human islet data, to demonstrate that endogenous dsRNA in beta cells can lead to a diabetogenic immune response, thus identifying a virus-independent mechanism for T1D initiation. We found that disruption of the RNA editing enzyme adenosine deaminases acting on RNA (ADAR) in beta cells triggers a massive interferon response, islet inflammation, and beta cell failure and destruction, with features bearing striking similarity to early-stage human T1D. Glycolysis via calcium enhances the interferon response, suggesting an actionable vicious cycle of inflammation and increased beta cell workload.
Collapse
Affiliation(s)
- Udi Ehud Knebel
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel; Department of Military Medicine and "Tzameret", Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel, and Medical Corps, Israel Defense Forces, Israel
| | - Shani Peleg
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Chunhua Dai
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Roni Cohen-Fultheim
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Sara Jonsson
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Karin Poznyak
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maya Israeli
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Liza Zamashanski
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Benjamin Glaser
- Department of Endocrinology and Metabolism, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Alvin C Powers
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; VA Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Agnes Klochendler
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
107
|
Cerneckis J, Ming GL, Song H, He C, Shi Y. The rise of epitranscriptomics: recent developments and future directions. Trends Pharmacol Sci 2024; 45:24-38. [PMID: 38103979 PMCID: PMC10843569 DOI: 10.1016/j.tips.2023.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 12/19/2023]
Abstract
The epitranscriptomics field has undergone tremendous growth since the discovery that the RNA N6-methyladenosine (m6A) modification is reversible and is distributed throughout the transcriptome. Efforts to map RNA modifications transcriptome-wide and reshape the epitranscriptome in disease settings have facilitated mechanistic understanding and drug discovery in the field. In this review we discuss recent advancements in RNA modification detection methods and consider how these developments can be applied to gain novel insights into the epitranscriptome. We also highlight drug discovery efforts aimed at developing epitranscriptomic therapeutics for cancer and other diseases. Finally, we consider engineering of the epitranscriptome as an emerging direction to investigate RNA modifications and their causal effects on RNA processing at high specificity.
Collapse
Affiliation(s)
- Jonas Cerneckis
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Department of Cell and Developmental Biology, Department of Psychiatry, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Department of Cell and Developmental Biology, the Epigenetics Institute, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, the University of Chicago, Chicago, IL 60637, USA
| | - Yanhong Shi
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
108
|
Zheng J, Lu Y, Lin Y, Si S, Guo B, Zhao X, Cui L. Epitranscriptomic modifications in mesenchymal stem cell differentiation: advances, mechanistic insights, and beyond. Cell Death Differ 2024; 31:9-27. [PMID: 37985811 PMCID: PMC10782030 DOI: 10.1038/s41418-023-01238-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
RNA modifications, known as the "epitranscriptome", represent a key layer of regulation that influences a wide array of biological processes in mesenchymal stem cells (MSCs). These modifications, catalyzed by specific enzymes, often termed "writers", "readers", and "erasers", can dynamically alter the MSCs' transcriptomic landscape, thereby modulating cell differentiation, proliferation, and responses to environmental cues. These enzymes include members of the classes METTL, IGF2BP, WTAP, YTHD, FTO, NAT, and others. Many of these RNA-modifying agents are active during MSC lineage differentiation. This review provides a comprehensive overview of the current understanding of different RNA modifications in MSCs, their roles in regulating stem cell behavior, and their implications in MSC-based therapies. It delves into how RNA modifications impact MSC biology, the functional significance of individual modifications, and the complex interplay among these modifications. We further discuss how these intricate regulatory mechanisms contribute to the functional diversity of MSCs, and how they might be harnessed for therapeutic applications. The review also highlights current challenges and potential future directions in the study of RNA modifications in MSCs, emphasizing the need for innovative tools to precisely map these modifications and decipher their context-specific effects. Collectively, this work paves the way for a deeper understanding of the role of the epitranscriptome in MSC biology, potentially advancing therapeutic strategies in regenerative medicine and MSC-based therapies.
Collapse
Affiliation(s)
- Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Shanshan Si
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Bing Guo
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, 90095, CA, USA.
| |
Collapse
|
109
|
Fonzino A, Manzari C, Spadavecchia P, Munagala U, Torrini S, Conticello S, Pesole G, Picardi E. Unraveling C-to-U RNA editing events from direct RNA sequencing. RNA Biol 2024; 21:1-14. [PMID: 38090878 PMCID: PMC10732634 DOI: 10.1080/15476286.2023.2290843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/11/2023] [Accepted: 10/29/2023] [Indexed: 12/18/2023] Open
Abstract
In mammals, RNA editing events involve the conversion of adenosine (A) in inosine (I) by ADAR enzymes or the hydrolytic deamination of cytosine (C) in uracil (U) by the APOBEC family of enzymes, mostly APOBEC1. RNA editing has a plethora of biological functions, and its deregulation has been associated with various human disorders. While the large-scale detection of A-to-I is quite straightforward using the Illumina RNAseq technology, the identification of C-to-U events is a non-trivial task. This difficulty arises from the rarity of such events in eukaryotic genomes and the challenge of distinguishing them from background noise. Direct RNA sequencing by Oxford Nanopore Technology (ONT) permits the direct detection of Us on sequenced RNA reads. Surprisingly, using ONT reads from wild-type (WT) and APOBEC1-knock-out (KO) murine cell lines as well as in vitro synthesized RNA without any modification, we identified a systematic error affecting the accuracy of the Cs call, thereby leading to incorrect identifications of C-to-U events. To overcome this issue in direct RNA reads, here we introduce a novel machine learning strategy based on the isolation Forest (iForest) algorithm in which C-to-U editing events are considered as sequencing anomalies. Using in vitro synthesized and human ONT reads, our model optimizes the signal-to-noise ratio improving the detection of C-to-U editing sites with high accuracy, over 90% in all samples tested. Our results suggest that iForest, known for its rapid implementation and minimal memory requirements, is a promising tool to denoise ONT reads and reliably identify RNA modifications.
Collapse
Affiliation(s)
- Adriano Fonzino
- Department of Biosciences, Biotechnology and Environment, University of Bari, Bari, Italy
| | - Caterina Manzari
- Department of Biosciences, Biotechnology and Environment, University of Bari, Bari, Italy
| | - Paola Spadavecchia
- Department of Biosciences, Biotechnology and Environment, University of Bari, Bari, Italy
| | | | | | - Silvestro Conticello
- Core Research Laboratory, ISPRO, Florence, Italy
- National Research Council, Institute of Clinical Physiology, Pisa, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnology and Environment, University of Bari, Bari, Italy
- National Research Council, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
- Consorzio Interuniversitario Biotecnologie, Trieste, Italy
| | - Ernesto Picardi
- Department of Biosciences, Biotechnology and Environment, University of Bari, Bari, Italy
- National Research Council, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
- National Institute of Biostructures and Biosystems (INBB), Roma, Italy
| |
Collapse
|
110
|
Liu J, Zhao T, Zheng C, Ma L, Song F, Tian L, Cai W, Li H, Duan Y. An orthology-based methodology as a complementary approach to retrieve evolutionarily conserved A-to-I RNA editing sites. RNA Biol 2024; 21:29-45. [PMID: 39256954 PMCID: PMC11404581 DOI: 10.1080/15476286.2024.2397757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/12/2024] Open
Abstract
Adar-mediated adenosine-to-inosine (A-to-I) mRNA editing is a conserved mechanism that exerts diverse regulatory functions during the development, evolution, and adaptation of metazoans. The accurate detection of RNA editing sites helps us understand their biological significance. In this work, with an improved genome assembly of honeybee (Apis mellifera), we used a new orthology-based methodology to complement the traditional pipeline of (de novo) RNA editing detection. Compared to the outcome of traditional pipeline, we retrieved many novel editing sites in CDS that are deeply conserved between honeybee and other distantly related insects. The newly retrieved sites were missed by the traditional de novo identification due to the stringent criteria for controlling false-positive rate. Caste-specific editing sites are identified, including an Ile>Met auto-recoding site in Adar. This recoding was even conserved between honeybee and bumblebee, suggesting its putative regulatory role in shaping the phenotypic plasticity of eusocial Hymenoptera. In summary, we proposed a complementary approach to the traditional pipeline and retrieved several previously unnoticed CDS editing sites. From both technical and biological aspects, our works facilitate future researches on finding the functional editing sites and advance our understanding on the connection between RNA editing and the great phenotypic diversity of organisms.
Collapse
Affiliation(s)
- Jiyao Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Tianyou Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Caiqing Zheng
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Ling Ma
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Fan Song
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Li Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yuange Duan
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
111
|
Weng S, Yang X, Yu N, Wang PC, Xiong S, Ruan H. Harnessing ADAR-Mediated Site-Specific RNA Editing in Immune-Related Disease: Prediction and Therapeutic Implications. Int J Mol Sci 2023; 25:351. [PMID: 38203521 PMCID: PMC10779106 DOI: 10.3390/ijms25010351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/15/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
ADAR (Adenosine Deaminases Acting on RNA) proteins are a group of enzymes that play a vital role in RNA editing by converting adenosine to inosine in RNAs. This process is a frequent post-transcriptional event observed in metazoan transcripts. Recent studies indicate widespread dysregulation of ADAR-mediated RNA editing across many immune-related diseases, such as human cancer. We comprehensively review ADARs' function as pattern recognizers and their capability to contribute to mediating immune-related pathways. We also highlight the potential role of site-specific RNA editing in maintaining homeostasis and its relationship to various diseases, such as human cancers. More importantly, we summarize the latest cutting-edge computational approaches and data resources for predicting and analyzing RNA editing sites. Lastly, we cover the recent advancement in site-directed ADAR editing tool development. This review presents an up-to-date overview of ADAR-mediated RNA editing, how site-specific RNA editing could potentially impact disease pathology, and how they could be harnessed for therapeutic applications.
Collapse
Affiliation(s)
- Shenghui Weng
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.W.); (P.-C.W.)
| | - Xinyi Yang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.W.); (P.-C.W.)
| | - Nannan Yu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.W.); (P.-C.W.)
| | - Peng-Cheng Wang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.W.); (P.-C.W.)
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.W.); (P.-C.W.)
| | - Hang Ruan
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.W.); (P.-C.W.)
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| |
Collapse
|
112
|
Tan Y, Sun YX, Zhu YJ, Liao ML, Dong YW. The impacts of thermal heterogeneity across microhabitats on post-settlement selection of intertidal mussels. iScience 2023; 26:108376. [PMID: 38034360 PMCID: PMC10682278 DOI: 10.1016/j.isci.2023.108376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/08/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Rapid genetic selection is critical for allowing natural populations to adapt to different thermal environments such as those that occur across intertidal microhabitats with high degrees of thermal heterogeneity. To address the question of how thermal regimes influence selection and adaptation in the intertidal black mussel Mytilisepta virgata, we continuously recorded environmental temperatures in both tidal pools and emergent rock microhabitats and then assessed genetic differentiation, gene expression patterns, RNA editing level, and cardiac performance. Our results showed that the subpopulations in the tidal pool and on emergent rocks had different genetic structures and exhibited different physiological and molecular responses to high-temperature stress. These results indicate that environmental heterogeneity across microhabitats is important for driving genetic differentiation and shed light on the importance of post-settlement selection for adaptively modifying the genetic composition and thermal responses of these intertidal mussels.
Collapse
Affiliation(s)
- Yue Tan
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, P.R. China
| | - Yong-Xu Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Ya-Jie Zhu
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, P.R. China
| | - Ming-Ling Liao
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, P.R. China
| | - Yun-Wei Dong
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, P.R. China
| |
Collapse
|
113
|
Xu Y, Liu J, Zhao T, Song F, Tian L, Cai W, Li H, Duan Y. Identification and Interpretation of A-to-I RNA Editing Events in Insect Transcriptomes. Int J Mol Sci 2023; 24:17126. [PMID: 38138955 PMCID: PMC10742984 DOI: 10.3390/ijms242417126] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is the most prevalent RNA modification in the nervous systems of metazoans. To study the biological significance of RNA editing, we first have to accurately identify these editing events from the transcriptome. The genome-wide identification of RNA editing sites remains a challenging task. In this review, we will first introduce the occurrence, regulation, and importance of A-to-I RNA editing and then describe the established bioinformatic procedures and difficulties in the accurate identification of these sit esespecially in small sized non-model insects. In brief, (1) to obtain an accurate profile of RNA editing sites, a transcriptome coupled with the DNA resequencing of a matched sample is favorable; (2) the single-cell sequencing technique is ready to be applied to RNA editing studies, but there are a few limitations to overcome; (3) during mapping and variant calling steps, various issues, like mapping and base quality, soft-clipping, and the positions of mismatches on reads, should be carefully considered; (4) Sanger sequencing of both RNA and the matched DNA is the best verification of RNA editing sites, but other auxiliary evidence, like the nonsynonymous-to-synonymous ratio or the linkage information, is also helpful for judging the reliability of editing sites. We have systematically reviewed the understanding of the biological significance of RNA editing and summarized the methodology for identifying such editing events. We also raised several promising aspects and challenges in this field. With insightful perspectives on both scientific and technical issues, our review will benefit the researchers in the broader RNA editing community.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuange Duan
- MOA Key Lab of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.X.); (J.L.); (T.Z.); (F.S.); (L.T.); (W.C.); (H.L.)
| |
Collapse
|
114
|
Voss G, Rosenthal JJC. High-level RNA editing diversifies the coleoid cephalopod brain proteome. Brief Funct Genomics 2023; 22:525-532. [PMID: 37981860 DOI: 10.1093/bfgp/elad034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 11/21/2023] Open
Abstract
Coleoid cephalopods (octopus, squid and cuttlefish) have unusually complex nervous systems. The coleoid nervous system is also the only one currently known to recode the majority of expressed proteins through A-to-I RNA editing. The deamination of adenosine by adenosine deaminase acting on RNA (ADAR) enzymes produces inosine, which is interpreted as guanosine during translation. If this occurs in an open reading frame, which is the case for tens of thousands of editing sites in coleoids, it can recode the encoded protein. Here, we describe recent findings aimed at deciphering the mechanisms underlying high-level recoding and its adaptive potential. We describe the complement of ADAR enzymes in cephalopods, including a recently discovered novel domain in sqADAR1. We further summarize current evidence supporting an adaptive role of high-level RNA recoding in coleoids, and review recent studies showing that a large proportion of recoding sites is temperature-sensitive. Despite these new findings, the mechanisms governing the high level of RNA recoding in coleoid cephalopods remain poorly understood. Recent advances using genome editing in squid may provide useful tools to further study A-to-I RNA editing in these animals.
Collapse
Affiliation(s)
- Gjendine Voss
- The Eugene Bell Center, The Marine Biological Laboratory, 7 MBL Street, Woods Hole MA 02543, United States
| | - Joshua J C Rosenthal
- The Eugene Bell Center, The Marine Biological Laboratory, 7 MBL Street, Woods Hole MA 02543, United States
| |
Collapse
|
115
|
Deng J, Liao S, Chen C, Han F, Lei S, Lai X, Ye K, Han Q, E F, Lu C, Lai M, Liu F, Zhang H. Specific intracellular retention of circSKA3 promotes colorectal cancer metastasis by attenuating ubiquitination and degradation of SLUG. Cell Death Dis 2023; 14:750. [PMID: 37973787 PMCID: PMC10654574 DOI: 10.1038/s41419-023-06279-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Our previous study demonstrated that tumor-suppressor circular RNAs (circRNAs) can be specifically secreted outside of colorectal cancer (CRC) cells within exosomes to maintain tumor cell fitness. However, whether tumor-driving circRNAs can be specifically retained in cells to facilitate tumor progression remains unknown. In this study, circRNA-seq showed that circSKA3 was significantly upregulated in CRC tissues but downregulated in serum samples from CRC patients. In addition, circSKA3 promoted CRC progression in vitro and in vivo and was retained in CRC cells via a specific cellmotif element. Interestingly, the cellmotif element was also the site of interaction of circSKA3 with SLUG, which inhibited SLUG ubiquitination degradation and promoted CRC epithelial-mesenchymal transition (EMT). Moreover, FUS was identified as a key circularization regulator of circSKA3 that bound to the key element. Finally, we designed and synthesized specific antisense oligonucleotides (ASOs) targeting circularization and cellmotif elements, which repressed circSKA3 expression, abolished the SLUG-circSKA3 interaction, and further inhibited CRC EMT and metastasis in vitro and in vivo.
Collapse
Affiliation(s)
- Jingwen Deng
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), 310058, Hangzhou, China
| | - Shaoxia Liao
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), 310058, Hangzhou, China
| | - Chaoyi Chen
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fengyan Han
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), 310058, Hangzhou, China
| | - Siqin Lei
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), 310058, Hangzhou, China
| | - Xuan Lai
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), 310058, Hangzhou, China
| | - Kehong Ye
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), 310058, Hangzhou, China
| | - Qizheng Han
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), 310058, Hangzhou, China
| | - Fang E
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), 310058, Hangzhou, China
| | - Chao Lu
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Maode Lai
- Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, 310058, Hangzhou, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Fanlong Liu
- Department of Colorectal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310058, Hangzhou, China.
| | - Honghe Zhang
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), 310058, Hangzhou, China.
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
116
|
Wales-McGrath B, Mercer H, Piontkivska H. Changes in ADAR RNA editing patterns in CMV and ZIKV congenital infections. BMC Genomics 2023; 24:685. [PMID: 37968596 PMCID: PMC10652522 DOI: 10.1186/s12864-023-09778-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 10/31/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND RNA editing is a process that increases transcriptome diversity, often through Adenosine Deaminases Acting on RNA (ADARs) that catalyze the deamination of adenosine to inosine. ADAR editing plays an important role in regulating brain function and immune activation, and is dynamically regulated during brain development. Additionally, the ADAR1 p150 isoform is induced by interferons in viral infection and plays a role in antiviral immune response. However, the question of how virus-induced ADAR expression affects host transcriptome editing remains largely unanswered. This question is particularly relevant in the context of congenital infections, given the dynamic regulation of ADAR editing during brain development, the importance of this editing for brain function, and subsequent neurological symptoms of such infections, including microcephaly, sensory issues, and other neurodevelopmental abnormalities. Here, we begin to address this question, examining ADAR expression in publicly available datasets of congenital infections of human cytomegalovirus (HCMV) microarray expression data, as well as mouse cytomegalovirus (MCMV) and mouse/ human induced pluripotent neuroprogenitor stem cell (hiNPC) Zika virus (ZIKV) RNA-seq data. RESULTS We found that in all three datasets, ADAR1 was overexpressed in infected samples compared to uninfected samples. In the RNA-seq datasets, editing rates were also analyzed. In all mouse infections cases, the number of editing sites was significantly increased in infected samples, albeit this was not the case for hiNPC ZIKV samples. Mouse ZIKV samples showed altered editing of well-established protein-recoding sites such as Gria3, Grik5, and Nova1, as well as editing sites that may impact miRNA binding. CONCLUSIONS Our findings provide evidence for changes in ADAR expression and subsequent dysregulation of ADAR editing of host transcriptomes in congenital infections. These changes in editing patterns of key neural genes have potential significance in the development of neurological symptoms, thus contributing to neurodevelopmental abnormalities. Further experiments should be performed to explore the full range of editing changes that occur in different congenital infections, and to confirm the specific functional consequences of these editing changes.
Collapse
Affiliation(s)
- Benjamin Wales-McGrath
- University of Pennsylvania, Perelman School of Medicine, Department of Genetics, Philadelphia, PA, USA
- Children's Hospital of Philadelphia, Division of Cancer Pathobiology, Philadelphia, PA, USA
| | - Heather Mercer
- Department of Biological and Environmental Sciences, University of Mount Union, Alliance, OH, USA
| | - Helen Piontkivska
- Department of Biological Sciences, Kent State University, Kent, OH, USA.
- School of Biomedical Sciences, Kent State University, Kent, OH, USA.
- Brain Health Research Institute, Kent State University, Kent, OH, USA.
- Healthy Communities Research Institute, Kent State University, Kent, OH, USA.
| |
Collapse
|
117
|
Nguyen TA, Heng JWJ, Ng YT, Sun R, Fisher S, Oguz G, Kaewsapsak P, Xue S, Reversade B, Ramasamy A, Eisenberg E, Tan MH. Deep transcriptome profiling reveals limited conservation of A-to-I RNA editing in Xenopus. BMC Biol 2023; 21:251. [PMID: 37946231 PMCID: PMC10636886 DOI: 10.1186/s12915-023-01756-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Xenopus has served as a valuable model system for biomedical research over the past decades. Notably, ADAR was first detected in frog oocytes and embryos as an activity that unwinds RNA duplexes. However, the scope of A-to-I RNA editing by the ADAR enzymes in Xenopus remains underexplored. RESULTS Here, we identify millions of editing events in Xenopus with high accuracy and systematically map the editome across developmental stages, adult organs, and species. We report diverse spatiotemporal patterns of editing with deamination activity highest in early embryogenesis before zygotic genome activation and in the ovary. Strikingly, editing events are poorly conserved across different Xenopus species. Even sites that are detected in both X. laevis and X. tropicalis show largely divergent editing levels or developmental profiles. In protein-coding regions, only a small subset of sites that are found mostly in the brain are well conserved between frogs and mammals. CONCLUSIONS Collectively, our work provides fresh insights into ADAR activity in vertebrates and suggest that species-specific editing may play a role in each animal's unique physiology or environmental adaptation.
Collapse
Affiliation(s)
- Tram Anh Nguyen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Jia Wei Joel Heng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Yan Ting Ng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Rui Sun
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Shira Fisher
- Faculty of Life Sciences, The Mina and Everard Goodman, Bar-Ilan University, Ramat Gan, Israel
| | - Gokce Oguz
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Pornchai Kaewsapsak
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Shifeng Xue
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Bruno Reversade
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Medical Genetics, School of Medicine (KUSoM), Koç University, Istanbul, Turkey
| | - Adaikalavan Ramasamy
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
| | - Meng How Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore.
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore.
- HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
118
|
Tan MH. Identification of Bona Fide RNA Editing Sites: History, Challenges, and Opportunities. Acc Chem Res 2023; 56:3033-3044. [PMID: 37827987 DOI: 10.1021/acs.accounts.3c00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing, catalyzed by the adenosine deaminase acting on the RNA (ADAR) family of enzymes of which there are three members (ADAR1, ADAR2, and ADAR3), is a major gene regulatory mechanism that diversifies the transcriptome. It is widespread in many metazoans, including humans. As inosine is interpreted by cellular machineries mainly as guanosine, A-to-I editing effectively gives A-to-G nucleotide changes. Depending on its location, an editing event can generate new protein isoforms or influence other RNA processing pathways. Researchers have found that ADAR-mediated editing performs diverse functions. For example, it enables living organisms such as cephalopods to adapt rapidly to fluctuating environmental conditions such as water temperature. In development, the loss of ADAR1 is embryonically lethal partly because endogenous double-stranded RNAs (dsRNAs) are no longer marked by inosines, which signal "self", and thus cause the melanoma differentiation-associated protein 5 (MDA5) sensor to trigger a deleterious interferon response. Hence, ADAR1 plays a key role in preventing aberrant activation of the innate immune system. Furthermore, ADAR enzymes have been implicated in myriad human diseases. Intriguingly, some cancer cells are known to exploit ADAR1 activity to dodge immune responses. However, the exact identities of immunogenic RNAs in different biological contexts have remained elusive. Consequently, there is tremendous interest in identifying inosine-containing RNAs in the cell.The identification of A-to-I RNA editing sites is dependent on the sequencing of nucleic acids. Technological and algorithmic advancements over the past decades have revolutionized the way editing events are detected. At the beginning, the discovery of editing sites relies on Sanger sequencing, a first-generation technology. Both RNA, which is reverse transcribed into complementary DNA (cDNA), and genomic DNA (gDNA) from the same source are analyzed. After sequence alignment, one would require an adenosine to be present in the genome but a guanosine to be detected in the RNA sample for a position to be declared as an editing site. However, an issue with Sanger sequencing is its low throughput. Subsequently, Illumina sequencing, a second-generation technology, was invented. By permitting the simultaneous interrogation of millions of molecules, it enables many editing sites to be identified rapidly. However, a key challenge is that the Illumina platform produces short sequencing reads that can be difficult to map accurately. To tackle the challenge, we and others developed computational workflows with a series of filters to discard sites that are likely to be false positives. When Illumina sequencing data sets are properly analyzed, A-to-G variants should emerge as the most dominant mismatch type. Moreover, the quantitative nature of the data allows us to build a comprehensive atlas of editing-level measurements across different biological contexts, providing deep insights into the spatiotemporal dynamics of RNA editing. However, difficulties remain in identifying true A-to-I editing sites in short protein-coding exons or in organisms and diseases where DNA mutations and genomic polymorphisms are prevalent and mostly unknown. Nanopore sequencing, a third-generation technology, promises to address the difficulties, as it allows native RNAs to be sequenced without conversion to cDNA, preserving base modifications that can be directly detected through machine learning. We recently demonstrated that nanopore sequencing could be used to identify A-to-I editing sites in native RNA directly. Although further work is needed to enhance the detection accuracy in single molecules from fewer cells, the nanopore technology holds the potential to revolutionize epitranscriptomic studies.
Collapse
Affiliation(s)
- Meng How Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
- HP-NTU Digital Manufacturing Corporate Laboratory, Nanyang Technological University, Singapore 637460, Singapore
| |
Collapse
|
119
|
Dorrity TJ, Chung H. A tale of two pathways: Two distinct mechanisms of ADAR1 prevent fatal autoinflammation. Mol Cell 2023; 83:3760-3762. [PMID: 37922869 PMCID: PMC11056273 DOI: 10.1016/j.molcel.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
In this issue, Hu and Heraud-Farlow et al.1 demonstrate that ADAR1 dsRNA editing and dsRNA binding activities are critical to repress MDA5 and PKR, respectively, and that PKR and MDA5 act in concert to induce fatality in ADAR1 KO mice.
Collapse
Affiliation(s)
- Tyler J Dorrity
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Hachung Chung
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
120
|
Pfeiffer LS, Stafforst T. Precision RNA base editing with engineered and endogenous effectors. Nat Biotechnol 2023; 41:1526-1542. [PMID: 37735261 DOI: 10.1038/s41587-023-01927-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/26/2023] [Indexed: 09/23/2023]
Abstract
RNA base editing refers to the rewriting of genetic information within an intact RNA molecule and serves various functions, such as evasion of the endogenous immune system and regulation of protein function. To achieve this, certain enzymes have been discovered in human cells that catalyze the conversion of one nucleobase into another. This natural process could be exploited to manipulate and recode any base in a target transcript. In contrast to DNA base editing, analogous changes introduced in RNA are not permanent or inheritable but rather allow reversible and doseable effects that appeal to various therapeutic applications. The current practice of RNA base editing involves the deamination of adenosines and cytidines, which are converted to inosines and uridines, respectively. In this Review, we summarize current site-directed RNA base-editing strategies and highlight recent achievements to improve editing efficiency, precision, codon-targeting scope and in vivo delivery into disease-relevant tissues. Besides engineered editing effectors, we focus on strategies to harness endogenous adenosine deaminases acting on RNA (ADAR) enzymes and discuss limitations and future perspectives to apply the tools in basic research and as a therapeutic modality. We expect the field to realize the first RNA base-editing drug soon, likely on a well-defined genetic disease. However, the long-term challenge will be to carve out the sweet spot of the technology where its unique ability is exploited to modulate signaling cues, metabolism or other clinically relevant processes in a safe and doseable manner.
Collapse
Affiliation(s)
- Laura S Pfeiffer
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Thorsten Stafforst
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany.
- Gene and RNA Therapy Center, Faculty of Medicine, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
121
|
Cai D, Fraunfelder M, Fujise K, Chen SY. ADAR1 exacerbates ischemic brain injury via astrocyte-mediated neuron apoptosis. Redox Biol 2023; 67:102903. [PMID: 37801857 PMCID: PMC10570147 DOI: 10.1016/j.redox.2023.102903] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/08/2023] Open
Abstract
Astrocytes affect stroke outcomes by acquiring functionally dominant phenotypes. Understanding molecular mechanisms dictating astrocyte functional status after brain ischemia/reperfusion may reveal new therapeutic strategies. Adenosine deaminase acting on RNA (ADAR1), an RNA editing enzyme, is not normally expressed in astrocytes, but highly induced in astrocytes in ischemic stroke lesions. The expression of ADAR1 steeply increased from day 1 to day 7 after middle cerebral artery occlusion (MCAO) for 1 h followed by reperfusion. ADAR1 deficiency markedly ameliorated the volume of the cerebral infarction and neurological deficits as shown by the rotarod and cylinder tests, which was due to the reduction of the numbers of activated astrocytes and microglia. Surprisingly, ADAR1 was mainly expressed in astrocytes while only marginally in microglia. In primary cultured astrocytes, ADAR1 promoted astrocyte proliferation via phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Furthermore, ADAR1 deficiency inhibited brain cell apoptosis in mice with MCAO as well as in activated astrocyte-conditioned medium-induced neurons in vitro. It appeared that ADAR1 induces neuron apoptosis by secretion of IL-1β, IL-6 and TNF-α from astrocytes through the production of reactive oxygen species. These results indicated that ADAR1 is a novel regulator promoting the proliferation of the activated astrocytes following ischemic stroke, which produce various inflammatory cytokines, leading to neuron apoptosis and worsened ischemic stroke outcome.
Collapse
Affiliation(s)
- Dunpeng Cai
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO, USA
| | - Mikayla Fraunfelder
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO, USA
| | - Ken Fujise
- Harborview Medical Center, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Shi-You Chen
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO, USA; The Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA.
| |
Collapse
|
122
|
Dorrity TJ, Shin H, Wiegand KA, Aruda J, Closser M, Jung E, Gertie JA, Leone A, Polfer R, Culbertson B, Yu L, Wu C, Ito T, Huang Y, Steckelberg AL, Wichterle H, Chung H. Long 3'UTRs predispose neurons to inflammation by promoting immunostimulatory double-stranded RNA formation. Sci Immunol 2023; 8:eadg2979. [PMID: 37862432 PMCID: PMC11056275 DOI: 10.1126/sciimmunol.adg2979] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 08/18/2023] [Indexed: 10/22/2023]
Abstract
Loss of RNA homeostasis underlies numerous neurodegenerative and neuroinflammatory diseases. However, the molecular mechanisms that trigger neuroinflammation are poorly understood. Viral double-stranded RNA (dsRNA) triggers innate immune responses when sensed by host pattern recognition receptors (PRRs) present in all cell types. Here, we report that human neurons intrinsically carry exceptionally high levels of immunostimulatory dsRNAs and identify long 3'UTRs as giving rise to neuronal dsRNA structures. We found that the neuron-enriched ELAVL family of genes (ELAVL2, ELAVL3, and ELAVL4) can increase (i) 3'UTR length, (ii) dsRNA load, and (iii) activation of dsRNA-sensing PRRs such as MDA5, PKR, and TLR3. In wild-type neurons, neuronal dsRNAs signaled through PRRs to induce tonic production of the antiviral type I interferon. Depleting ELAVL2 in WT neurons led to global shortening of 3'UTR length, reduced immunostimulatory dsRNA levels, and rendered WT neurons susceptible to herpes simplex virus and Zika virus infection. Neurons deficient in ADAR1, a dsRNA-editing enzyme mutated in the neuroinflammatory disorder Aicardi-Goutières syndrome, exhibited intolerably high levels of dsRNA that triggered PRR-mediated toxic inflammation and neuronal death. Depleting ELAVL2 in ADAR1 knockout neurons led to prolonged neuron survival by reducing immunostimulatory dsRNA levels. In summary, neurons are specialized cells where PRRs constantly sense "self" dsRNAs to preemptively induce protective antiviral immunity, but maintaining RNA homeostasis is paramount to prevent pathological neuroinflammation.
Collapse
Affiliation(s)
- Tyler J. Dorrity
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Heegwon Shin
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kenenni A. Wiegand
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Justin Aruda
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael Closser
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Neuroscience and Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY, USA
| | - Emily Jung
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jake A. Gertie
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Medical Scientist Training Program, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Amanda Leone
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Rachel Polfer
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Bruce Culbertson
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Medical Scientist Training Program, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Lisa Yu
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Christine Wu
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Takamasa Ito
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yuefeng Huang
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna-Lena Steckelberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Hynek Wichterle
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Neuroscience and Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY, USA
| | - Hachung Chung
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
123
|
Yi Z, Zhao Y, Yi Z, Zhang Y, Tang G, Zhang X, Tang H, Zhang W, Zhao Y, Xu H, Nie Y, Sun X, Xing L, Dai L, Yuan P, Wei W. Utilizing AAV-mediated LEAPER 2.0 for programmable RNA editing in non-human primates and nonsense mutation correction in humanized Hurler syndrome mice. Genome Biol 2023; 24:243. [PMID: 37872590 PMCID: PMC10591355 DOI: 10.1186/s13059-023-03086-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND The endogenous adenosine deaminases acting on RNA (ADAR) have been harnessed to facilitate precise adenosine-to-inosine editing on RNAs. However, the practicability of this approach for therapeutic purposes is still ambiguous due to the variable expression of intrinsic ADAR across various tissues and species, as well as the absence of all-encompassing confirmation for delivery methods. RESULTS In this study, we demonstrate that AAV-mediated delivery of circular ADAR-recruiting RNAs (arRNAs) achieves effective RNA editing in non-human primates at dosages suitable for therapy. Within a time frame of 4 to 13 weeks following infection, the editing efficiency in AAV-infected cells can reach approximately 80%, with no discernible toxicity, even at elevated dosages. In addition, when AAV-delivered circular arRNAs are systematically administered to a humanized mouse model of Hurler syndrome, it rectifies the premature stop codon precisely and restores the functionality of IDUA enzyme encoded by the Hurler causative gene in multiple organs. CONCLUSIONS These discoveries considerably bolster the prospects of employing AAV-borne circular arRNAs for therapeutic applications and exploratory translational research.
Collapse
Affiliation(s)
- Zongyi Yi
- Biomedical Pioneering Innovation Center, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, People's Republic of China
| | - Yanxia Zhao
- EdiGene Inc., Life Science Park, Changping District, Beijing, 102206, People's Republic of China
| | - Zexuan Yi
- EdiGene Inc., Life Science Park, Changping District, Beijing, 102206, People's Republic of China
| | - Yongjian Zhang
- EdiGene Inc., Life Science Park, Changping District, Beijing, 102206, People's Republic of China
| | - Gangbin Tang
- EdiGene Inc., Life Science Park, Changping District, Beijing, 102206, People's Republic of China
| | - Xiaoxue Zhang
- Biomedical Pioneering Innovation Center, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, People's Republic of China
| | - Huixian Tang
- Biomedical Pioneering Innovation Center, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, People's Republic of China
| | - Wei Zhang
- EdiGene Inc., Life Science Park, Changping District, Beijing, 102206, People's Republic of China
| | - Ying Zhao
- EdiGene Inc., Life Science Park, Changping District, Beijing, 102206, People's Republic of China
| | - Huayuan Xu
- EdiGene Inc., Life Science Park, Changping District, Beijing, 102206, People's Republic of China
| | - Yuyang Nie
- EdiGene Inc., Life Science Park, Changping District, Beijing, 102206, People's Republic of China
| | - Xueqing Sun
- EdiGene Inc., Life Science Park, Changping District, Beijing, 102206, People's Republic of China
| | - Lijun Xing
- EdiGene Inc., Life Science Park, Changping District, Beijing, 102206, People's Republic of China
| | - Lian Dai
- EdiGene Inc., Life Science Park, Changping District, Beijing, 102206, People's Republic of China
| | - Pengfei Yuan
- EdiGene Inc., Life Science Park, Changping District, Beijing, 102206, People's Republic of China.
| | - Wensheng Wei
- Biomedical Pioneering Innovation Center, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, People's Republic of China.
- Changping Laboratory, Beijing, 102206, People's Republic of China.
| |
Collapse
|
124
|
Shen S, Zhang LS. The regulation of antiviral innate immunity through non-m 6A RNA modifications. Front Immunol 2023; 14:1286820. [PMID: 37915585 PMCID: PMC10616867 DOI: 10.3389/fimmu.2023.1286820] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023] Open
Abstract
The post-transcriptional RNA modifications impact the dynamic regulation of gene expression in diverse biological and physiological processes. Host RNA modifications play an indispensable role in regulating innate immune responses against virus infection in mammals. Meanwhile, the viral RNAs can be deposited with RNA modifications to interfere with the host immune responses. The N6-methyladenosine (m6A) has boosted the recent emergence of RNA epigenetics, due to its high abundance and a transcriptome-wide widespread distribution in mammalian cells, proven to impact antiviral innate immunity. However, the other types of RNA modifications are also involved in regulating antiviral responses, and the functional roles of these non-m6A RNA modifications have not been comprehensively summarized. In this Review, we conclude the regulatory roles of 2'-O-methylation (Nm), 5-methylcytidine (m5C), adenosine-inosine editing (A-to-I editing), pseudouridine (Ψ), N1-methyladenosine (m1A), N7-methylguanosine (m7G), N6,2'-O-dimethyladenosine (m6Am), and N4-acetylcytidine (ac4C) in antiviral innate immunity. We provide a systematic introduction to the biogenesis and functions of these non-m6A RNA modifications in viral RNA, host RNA, and during virus-host interactions, emphasizing the biological functions of RNA modification regulators in antiviral responses. Furthermore, we discussed the recent research progress in the development of antiviral drugs through non-m6A RNA modifications. Collectively, this Review conveys knowledge and inspiration to researchers in multiple disciplines, highlighting the challenges and future directions in RNA epitranscriptome, immunology, and virology.
Collapse
Affiliation(s)
- Shenghai Shen
- Division of Life Science, The Hong Kong University of Science and Technology (HKUST), Kowloon, Hong Kong SAR, China
| | - Li-Sheng Zhang
- Division of Life Science, The Hong Kong University of Science and Technology (HKUST), Kowloon, Hong Kong SAR, China
- Department of Chemistry, The Hong Kong University of Science and Technology (HKUST), Kowloon, Hong Kong SAR, China
| |
Collapse
|
125
|
Zhang Y, Duan Y. Genome-Wide Analysis on Driver and Passenger RNA Editing Sites Suggests an Underestimation of Adaptive Signals in Insects. Genes (Basel) 2023; 14:1951. [PMID: 37895300 PMCID: PMC10606203 DOI: 10.3390/genes14101951] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Adenosine-to-inosine (A-to-I) RNA editing leads to a similar effect to A-to-G mutations. RNA editing provides a temporo-spatial flexibility for organisms. Nonsynonymous (Nonsyn) RNA editing in insects is over-represented compared with synonymous (Syn) editing, suggesting adaptive signals of positive selection on Nonsyn editing during evolution. We utilized the brain RNA editome of Drosophila melanogaster to systematically study the LD (r2) between editing sites and infer its impact on the adaptive signals of RNA editing. Pairs of editing sites (PESs) were identified from the transcriptome. For CDS PESs of two consecutive editing sites, their occurrence was significantly biased to type-3 PES (Syn-Nonsyn). The haplotype frequency of type-3 PES exhibited a significantly higher abundance of AG than GA, indicating that the rear Nonsyn site is the driver that promotes the editing of the front Syn site (passenger). The exclusion of passenger Syn sites dramatically amplifies the adaptive signal of Nonsyn RNA editing. Our study for the first time quantitatively demonstrates that the linkage between RNA editing events comes from hitchhiking effects and leads to the underestimation of adaptive signals for Nonsyn editing. Our work provides novel insights for studying the evolutionary significance of RNA editing events.
Collapse
Affiliation(s)
| | - Yuange Duan
- MOA Key Lab of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
126
|
Sun H, Li K, Liu C, Yi C. Regulation and functions of non-m 6A mRNA modifications. Nat Rev Mol Cell Biol 2023; 24:714-731. [PMID: 37369853 DOI: 10.1038/s41580-023-00622-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2023] [Indexed: 06/29/2023]
Abstract
Nucleobase modifications are prevalent in eukaryotic mRNA and their discovery has resulted in the emergence of epitranscriptomics as a research field. The most abundant internal (non-cap) mRNA modification is N6-methyladenosine (m6A), the study of which has revolutionized our understanding of post-transcriptional gene regulation. In addition, numerous other mRNA modifications are gaining great attention because of their major roles in RNA metabolism, immunity, development and disease. In this Review, we focus on the regulation and function of non-m6A modifications in eukaryotic mRNA, including pseudouridine (Ψ), N6,2'-O-dimethyladenosine (m6Am), N1-methyladenosine (m1A), inosine, 5-methylcytidine (m5C), N4-acetylcytidine (ac4C), 2'-O-methylated nucleotide (Nm) and internal N7-methylguanosine (m7G). We highlight their regulation, distribution, stoichiometry and known roles in mRNA metabolism, such as mRNA stability, translation, splicing and export. We also discuss their biological consequences in physiological and pathological processes. In addition, we cover research techniques to further study the non-m6A mRNA modifications and discuss their potential future applications.
Collapse
Affiliation(s)
- Hanxiao Sun
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Kai Li
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Cong Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| |
Collapse
|
127
|
Duan Y, Ma L, Song F, Tian L, Cai W, Li H. Autorecoding A-to-I RNA editing sites in the Adar gene underwent compensatory gains and losses in major insect clades. RNA (NEW YORK, N.Y.) 2023; 29:1509-1519. [PMID: 37451866 PMCID: PMC10578469 DOI: 10.1261/rna.079682.123] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023]
Abstract
As one of the most prevalent RNA modifications in animals, adenosine-to-inosine (A-to-I) RNA editing facilitates the environmental adaptation of organisms by diversifying the proteome in a temporal-spatial manner. In flies and bees, the editing enzyme Adar has independently gained two different autorecoding sites that form an autofeedback loop, stabilizing the overall editing efficiency. This ensures cellular homeostasis by keeping the normal function of target genes. However, in a broader range of insects, the evolutionary dynamics and significance of this Adar autoregulatory mechanism are unclear. We retrieved the genomes of 377 arthropod species covering the five major insect orders (Hemiptera, Hymenoptera, Coleoptera, Diptera, and Lepidoptera) and aligned the Adar autorecoding sites across all genomes. We found that the two autorecoding sites underwent compensatory gains and losses during the evolution of two orders with the most sequenced species (Diptera and Hymenoptera), and that the two editing sites were mutually exclusive among them: One editable site is significantly linked to another uneditable site. This autorecoding mechanism of Adar could flexibly diversify the proteome and stabilize global editing activity. Many insects independently selected different autorecoding sites to achieve a feedback loop and regulate the global RNA editome, revealing an interesting phenomenon during evolution. Our study reveals the evolutionary force acting on accurate regulation of RNA editing activity in insects and thus deepens our understanding of the functional importance of RNA editing in environmental adaptation and evolution.
Collapse
Affiliation(s)
- Yuange Duan
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Ling Ma
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Fan Song
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Li Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
128
|
Mendoza HG, Beal PA. Chemical Modifications in RNA: Elucidating the Chemistry of dsRNA-Specific Adenosine Deaminases (ADARs). Acc Chem Res 2023; 56:2489-2499. [PMID: 37665999 PMCID: PMC10826463 DOI: 10.1021/acs.accounts.3c00390] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
The term RNA editing refers to any structural change in an RNA molecule (e.g. insertion, deletion, or base modification) that changes its coding properties and is not a result of splicing. An important class of enzymes involved in RNA editing is the ADAR family (adenosine deaminases acting on RNA), which facilitate the deamination of adenosine (A) to inosine (I) in double-stranded RNA (dsRNA). Inosines are decoded as guanosines (G) in most cellular processes; hence, A-to-I editing can be considered an A-to-G substitution. Among the RNA editing enzymes, ADARs are of particular interest because a large portion of RNA editing events are due to A-to-I editing by the two catalytically active human ADARs (ADAR1 and ADAR2). ADARs have diverse roles in RNA processing, gene expression regulation, and innate immunity; and mutations in the ADAR genes and dysregulated ADAR activity have been associated with cancer, autoimmune diseases, and neurological disorders. A-to-I editing is also currently being explored for correcting disease-causing mutations in the RNA, where therapeutic guide oligonucleotides complementary to the target transcript are used to form a dsRNA substrate and site-specifically direct ADAR editing. Knowledge of the mechanism of ADAR-catalyzed reaction and the origin of its substrate selectivity will allow understanding of ADAR’s role in disease biology and expedite the process of developing ADAR-targeted therapeutics. Chemically modified oligonucleotides provide a versatile platform for modulating the activity and interrogating the structure, function, and selectivity of nucleic acid binding or modifying proteins. In this account, we provide an overview of oligonucleotide modifications that have allowed us to gain deeper understanding of ADAR’s molecular mechanisms, which we utilize in the rational design and optimization of ADAR activity modulators. First, we describe the use of the nucleoside analog 8-azanebularine (8-azaN) to generate high-affinity ADAR-RNA complexes for biochemical and biophysical studies with ADARs, with particular emphasis on X-ray crystallography. We then discuss key observations derived from the crystal structures of ADAR bound to 8-azaN-modified RNA duplexes and describe how these findings provided insight into ADAR editing optimization by introducing nucleoside modifications at various positions in synthetic guide strands. We also present the informed design of 8-azaN-modified RNA duplexes that selectively bind and inhibit ADAR1 but not the closely-related ADAR2 enzyme. Finally, we conclude with some open questions on ADAR structure and substrate recognition and share our current endeavors in the development of ADAR guide oligonucleotides and inhibitors.
Collapse
Affiliation(s)
- Herra G. Mendoza
- Department of Chemistry, University of California, Davis, CA 95616 USA
| | - Peter A. Beal
- Department of Chemistry, University of California, Davis, CA 95616 USA
| |
Collapse
|
129
|
Datta R, Adamska JZ, Bhate A, Li JB. A-to-I RNA editing by ADAR and its therapeutic applications: From viral infections to cancer immunotherapy. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1817. [PMID: 37718249 PMCID: PMC10947335 DOI: 10.1002/wrna.1817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023]
Abstract
ADAR deaminases catalyze adenosine-to-inosine (A-to-I) editing on double-stranded RNA (dsRNA) substrates that regulate an umbrella of biological processes. One of the two catalytically active ADAR enzymes, ADAR1, plays a major role in innate immune responses by suppression of RNA sensing pathways which are orchestrated through the ADAR1-dsRNA-MDA5 axis. Unedited immunogenic dsRNA substrates are potent ligands for the cellular sensor MDA5. Upon activation, MDA5 leads to the induction of interferons and expression of hundreds of interferon-stimulated genes with potent antiviral activity. In this way, ADAR1 acts as a gatekeeper of the RNA sensing pathway by striking a fine balance between innate antiviral responses and prevention of autoimmunity. Reduced editing of immunogenic dsRNA by ADAR1 is strongly linked to the development of common autoimmune and inflammatory diseases. In viral infections, ADAR1 exhibits both antiviral and proviral effects. This is modulated by both editing-dependent and editing-independent functions, such as PKR antagonism. Several A-to-I RNA editing events have been identified in viruses, including in the insidious viral pathogen, SARS-CoV-2 which regulates viral fitness and infectivity, and could play a role in shaping viral evolution. Furthermore, ADAR1 is an attractive target for immuno-oncology therapy. Overexpression of ADAR1 and increased dsRNA editing have been observed in several human cancers. Silencing ADAR1, especially in cancers that are refractory to immune checkpoint inhibitors, is a promising therapeutic strategy for cancer immunotherapy in conjunction with epigenetic therapy. The mechanistic understanding of dsRNA editing by ADAR1 and dsRNA sensing by MDA5 and PKR holds great potential for therapeutic applications. This article is categorized under: RNA Processing > RNA Editing and Modification RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Rohini Datta
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Julia Z Adamska
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Amruta Bhate
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
130
|
Basu P, Maier C, Averitt DL, Basu A. NLR family pyrin domain containing 3 (NLRP3) inflammasomes and peripheral neuropathic pain - Emphasis on microRNAs (miRNAs) as important regulators. Eur J Pharmacol 2023; 955:175901. [PMID: 37451423 DOI: 10.1016/j.ejphar.2023.175901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Neuropathic pain is caused by the lesion or disease of the somatosensory system and can be initiated and/or maintained by both central and peripheral mechanisms. Nerve injury leads to neuronal damage and apoptosis associated with the release of an array of pathogen- or damage-associated molecular patterns to activate inflammasomes. The activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome contributes to neuropathic pain and may represent a novel target for pain therapeutic development. In the current review, we provide an up-to-date summary of the recent findings on the involvement of NLRP3 inflammasome in modulating neuropathic pain development and maintenance, focusing on peripheral neuropathic conditions. Here we provide a detailed review of the mechanisms whereby NLRP3 inflammasomes contribute to neuropathic pain via (1) neuroinflammation, (2) apoptosis, (3) pyroptosis, (4) proinflammatory cytokine release, (5) mitochondrial dysfunction, and (6) oxidative stress. We then present the current research literature reporting on the antinociceptive effects of several natural products and pharmacological interventions that target activation, expression, and/or regulation of NLRP3 inflammasome. Furthermore, we emphasize the effects of microRNAs as another regulator of NLRP3 inflammasome. In conclusion, we summarize the possible caveats and future perspectives that might provide successful therapeutic approaches against NLRP3 inflammasome for treating or preventing neuropathic pain conditions.
Collapse
Affiliation(s)
- Paramita Basu
- Pittsburgh Center for Pain Research, The Pittsburgh Project to End Opioid Misuse, Department of Anesthesiology & Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| | - Camelia Maier
- Division of Biology, School of the Sciences, Texas Woman's University, Denton, TX, 76204-5799, USA.
| | - Dayna L Averitt
- Division of Biology, School of the Sciences, Texas Woman's University, Denton, TX, 76204-5799, USA.
| | - Arpita Basu
- Department of Kinesiology and Nutrition Sciences, School of Integrated Health Sciences, University of Nevada, Las Vegas, NV, 89154, USA.
| |
Collapse
|
131
|
Xie Y, Chan PL, Kwan HS, Chang J. The Genome-Wide Characterization of Alternative Splicing and RNA Editing in the Development of Coprinopsis cinerea. J Fungi (Basel) 2023; 9:915. [PMID: 37755023 PMCID: PMC10532568 DOI: 10.3390/jof9090915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Coprinopsis cinerea is one of the model species used in fungal developmental studies. This mushroom-forming Basidiomycetes fungus has several developmental destinies in response to changing environments, with dynamic developmental regulations of the organism. Although the gene expression in C. cinerea development has already been profiled broadly, previous studies have only focused on a specific stage or process of fungal development. A comprehensive perspective across different developmental paths is lacking, and a global view on the dynamic transcriptional regulations in the life cycle and the developmental paths is far from complete. In addition, knowledge on co- and post-transcriptional modifications in this fungus remains rare. In this study, we investigated the transcriptional changes and modifications in C. cinerea during the processes of spore germination, vegetative growth, oidiation, sclerotia formation, and fruiting body formation by inducing different developmental paths of the organism and profiling the transcriptomes using the high-throughput sequencing method. Transition in the identity and abundance of expressed genes drive the physiological and morphological alterations of the organism, including metabolism and multicellularity construction. Moreover, stage- and tissue-specific alternative splicing and RNA editing took place and functioned in C. cinerea. These modifications were negatively correlated to the conservation features of genes and could provide extra plasticity to the transcriptome during fungal development. We suggest that C. cinerea applies different molecular strategies in its developmental regulation, including shifts in expressed gene sets, diversifications of genetic information, and reversible diversifications of RNA molecules. Such features would increase the fungal adaptability in the rapidly changing environment, especially in the transition of developmental programs and the maintenance and balance of genetic and transcriptomic divergence. The multi-layer regulatory network of gene expression serves as the molecular basis of the functioning of developmental regulation.
Collapse
Affiliation(s)
- Yichun Xie
- State Key Laboratory of Agrobiotechnology, Food Research Center, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China;
| | - Po-Lam Chan
- Food Research Center, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Hoi-Shan Kwan
- Food Research Center, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Jinhui Chang
- Department of Food Science and Nutrition, and Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
132
|
Wei Q, Han S, Yuan K, He Z, Chen Y, Xi X, Han J, Yan S, Chen Y, Yuan B, Weng X, Zhou X. Transcriptome-wide profiling of A-to-I RNA editing by Slic-seq. Nucleic Acids Res 2023; 51:e87. [PMID: 37470992 PMCID: PMC10484733 DOI: 10.1093/nar/gkad604] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/23/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023] Open
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is a post-transcriptional processing event involved in diversifying the transcriptome and is responsible for various biological processes. In this context, we developed a new method based on the highly selective cleavage activity of Endonuclease V against Inosine and the universal activity of sodium periodate against all RNAs to enrich the inosine-containing RNA and accurately identify the editing sites. We validated the reliability of our method in human brain in both Alu and non-Alu elements. The conserved sites of A-to-I editing in human cells (HEK293T, HeLa, HepG2, K562 and MCF-7) primarily occurs in the 3'UTR of the RNA, which are highly correlated with RNA binding and protein binding. Analysis of the editing sites between the human brain and mouse brain revealed that the editing of exons is more conserved than that in other regions. This method was applied to three neurological diseases (Alzheimer's, epilepsy and ageing) of mouse brain, reflecting that A-to-I editing sites significantly decreased in neuronal activity genes.
Collapse
Affiliation(s)
- Qi Wei
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Shaoqing Han
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Kexin Yuan
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Zhiyong He
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Yuqi Chen
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Xin Xi
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Jingyu Han
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Shen Yan
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Yingying Chen
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Bifeng Yuan
- School of Public Health, Wuhan University, Wuhan, HuBei 430071, PR China
| | - Xiaocheng Weng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan, Hubei 430072, PR China
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, PR China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430072, PR China
| |
Collapse
|
133
|
Liang Z, Goradia A, Walkley CR, Heraud-Farlow JE. Generation of a new Adar1p150 -/- mouse demonstrates isoform-specific roles in embryonic development and adult homeostasis. RNA (NEW YORK, N.Y.) 2023; 29:1325-1338. [PMID: 37290963 PMCID: PMC10573302 DOI: 10.1261/rna.079509.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/09/2023] [Indexed: 06/10/2023]
Abstract
The RNA editing enzyme adenosine deaminase acting on RNA 1 (ADAR1) is an essential regulator of the innate immune response to both cellular and viral double-stranded RNA (dsRNA). Adenosine-to-inosine (A-to-I) editing by ADAR1 modifies the sequence and structure of endogenous dsRNA and masks it from the cytoplasmic dsRNA sensor melanoma differentiation-associated protein 5 (MDA5), preventing innate immune activation. Loss-of-function mutations in ADAR are associated with rare autoinflammatory disorders including Aicardi-Goutières syndrome (AGS), defined by a constitutive systemic up-regulation of type I interferon (IFN). The murine Adar gene encodes two protein isoforms with distinct functions: ADAR1p110 is constitutively expressed and localizes to the nucleus, whereas ADAR1p150 is primarily cytoplasmic and is inducible by IFN. Recent studies have demonstrated the critical requirement for ADAR1p150 to suppress innate immune activation by self dsRNAs. However, detailed in vivo characterization of the role of ADAR1p150 during development and in adult mice is lacking. We identified a new ADAR1p150-specific knockout mouse mutant based on a single nucleotide deletion that resulted in the loss of the ADAR1p150 protein without affecting ADAR1p110 expression. The Adar1p150 -/- died embryonically at E11.5-E12.5 accompanied by cell death in the fetal liver and an activated IFN response. Somatic loss of ADAR1p150 in adults was lethal and caused rapid hematopoietic failure, demonstrating an ongoing requirement for ADAR1p150 in vivo. The generation and characterization of this mouse model demonstrates the essential role of ADAR1p150 in vivo and provides a new tool for dissecting the functional differences between ADAR1 isoforms and their physiological contributions.
Collapse
Affiliation(s)
- Zhen Liang
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
- Department of Medicine, Eastern Hill Precinct, Melbourne Medical School, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Ankita Goradia
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Carl R Walkley
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
- Department of Medicine, Eastern Hill Precinct, Melbourne Medical School, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Jacki E Heraud-Farlow
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
- Department of Medicine, Eastern Hill Precinct, Melbourne Medical School, University of Melbourne, Fitzroy, Victoria 3065, Australia
| |
Collapse
|
134
|
Ge F, Cao X, Jiang Y. A-to-I RNA editing shows dramatic up-regulation in osteosarcoma and broadly regulates tumor-related genes by altering microRNA target regions. J Appl Genet 2023; 64:493-505. [PMID: 37542613 DOI: 10.1007/s13353-023-00777-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
A-to-I RNA editing is a prevalent type of RNA modification in animals. The dysregulation of RNA editing has led to multiple human cancers. However, the role of RNA editing has never been studied in osteosarcoma, a complex bone cancer with unknown molecular basis. We retrieved the RNA-sequencing data from 24 primary osteosarcoma patients and 3 healthy controls. We systematically profiled the RNA editomes in these samples and quantitatively identified reliable differential editing sites (DES) between osteosarcoma and normal samples. RNA editing efficiency is dramatically increased in osteosarcoma, presumably due to the significant up-regulation of editing enzymes ADAR1 and ADAR2. Up-regulated DES in osteosarcoma are enriched in 3'UTRs. Strikingly, such 3'UTR sites are further enriched in microRNA binding regions of gene EMP2 and other oncogenes, abolishing the microRNA suppression on target genes. Accordingly, the expression of these tumor-promoting genes is elevated in osteosarcoma. There might be an RNA editing-dependent pathway leading to osteosarcoma. We expanded our knowledge on the potential roles of RNA editing in oncogenesis. Based on these molecular features, our work is valuable for future prognosis and diagnosis of osteosarcoma.
Collapse
Affiliation(s)
- Fuqun Ge
- Department of Joint Surgery, The Second Hospital of Shandong University, Jinan, 250033, Shandong, China
| | - Xinyue Cao
- School of Clinical Medicine, Qilu Medical University, Zibo, 255300, Shandong, China
| | - Yankai Jiang
- Department of Joint Surgery, The Second Hospital of Shandong University, Jinan, 250033, Shandong, China.
| |
Collapse
|
135
|
Garland KM, Kwiatkowski AJ, Tossberg JT, Crooke PS, Aune TM, Wilson JT. Nanoparticle Delivery of Immunostimulatory Alu RNA for Cancer Immunotherapy. CANCER RESEARCH COMMUNICATIONS 2023; 3:1800-1809. [PMID: 37691856 PMCID: PMC10487107 DOI: 10.1158/2767-9764.crc-22-0354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 06/28/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023]
Abstract
It was recently found that patients with relapsing remitting multiple sclerosis exhibit widespread loss of adenosine-to-inosine (A-to-I) RNA editing, which contributes to the accumulation of immunostimulatory double-stranded Alu RNA in circulating leukocytes and an attendant increase in levels of proinflammatory cytokines (e.g., type I IFNs). A specific Alu RNA (i.e., AluJb RNA) was implicated in activating multiple RNA-sensing pathways and found to be a potent innate immune agonist. Here, we have performed a bioinformatic analysis of A-to-I RNA editing in human melanoma samples and determined that pre-therapy levels of A-to-I RNA editing negatively correlate with survival times, suggesting that an accumulation of endogenous double-stranded Alu RNA might contribute to cancer patient survival. Furthermore, we demonstrated that immunostimulatory Alu RNA can be leveraged pharmacologically for cancer immunotherapy. AluJb RNA was in vitro transcribed and then formulated with endosome-destabilizing polymer nanoparticles to improve intracellular delivery of the RNA and enable activation of RNA-sensing pathways. AluJb RNA/polymer complexes (i.e., Alu-NPs) were engineered to form colloidally stable nanoparticles that exhibited immunostimulatory activity in vitro and in vivo. Finally, the therapeutic potential of Alu-NPs for the treatment of cancer was demonstrated by attenuated tumor growth and prolonged survival in the B16.F10 murine melanoma tumor model. Thus, these data collectively implicate intratumoral Alu RNA as a potentiator of antitumor innate immunity and identify AluJb RNA as a novel nucleic acid immunotherapeutic for cancer. Significance Loss of A-to-I editing leads to accumulation of unedited Alu RNAs that activate innate immunity via RNA-sensing pattern recognition receptors. When packaged into endosome-releasing polymer nanoparticles, AluJB RNA becomes highly immunostimulatory and can be used pharmacologically to inhibit tumor growth in mouse melanoma models. These findings identify Alu RNAs as a new class of nucleic acid innate immune agonists for cancer immunotherapy.
Collapse
Affiliation(s)
- Kyle M. Garland
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee
| | - Alexander J. Kwiatkowski
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee
| | - John T. Tossberg
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Philip S. Crooke
- Department of Mathematics, Vanderbilt University, Nashville, Tennessee
| | - Thomas M. Aune
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - John T. Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
136
|
Mahapatra A, Dhakal A, Noguchi A, Vadlamani P, Hundley HA. ADAR-mediated regulation of PQM-1 expression in neurons impacts gene expression throughout C. elegans and regulates survival from hypoxia. PLoS Biol 2023; 21:e3002150. [PMID: 37747897 PMCID: PMC10553819 DOI: 10.1371/journal.pbio.3002150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/05/2023] [Accepted: 08/23/2023] [Indexed: 09/27/2023] Open
Abstract
The ability to alter gene expression programs in response to changes in environmental conditions is central to the ability of an organism to thrive. For most organisms, the nervous system serves as the master regulator in communicating information about the animal's surroundings to other tissues. The information relay centers on signaling pathways that cue transcription factors in a given cell type to execute a specific gene expression program, but also provide a means to signal between tissues. The transcription factor PQM-1 is an important mediator of the insulin signaling pathway contributing to longevity and the stress response as well as impacting survival from hypoxia. Herein, we reveal a novel mechanism for regulating PQM-1 expression specifically in neural cells of larval animals. Our studies reveal that the RNA-binding protein (RBP), ADR-1, binds to pqm-1 mRNA in neural cells. This binding is regulated by the presence of a second RBP, ADR-2, which when absent leads to reduced expression of both pqm-1 and downstream PQM-1 activated genes. Interestingly, we find that neural pqm-1 expression is sufficient to impact gene expression throughout the animal and affect survival from hypoxia, phenotypes that we also observe in adr mutant animals. Together, these studies reveal an important posttranscriptional gene regulatory mechanism in Caenorhabditis elegans that allows the nervous system to sense and respond to environmental conditions to promote organismal survival from hypoxia.
Collapse
Affiliation(s)
- Ananya Mahapatra
- Genome, Cell and Developmental Biology Graduate Program, Indiana University, Bloomington, Indiana, United States of America
| | - Alfa Dhakal
- Cell, Molecular and Cancer Biology Graduate Program, Indiana University School of Medicine–Bloomington, Bloomington, Indiana, United States of America
| | - Aika Noguchi
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Pranathi Vadlamani
- Medical Sciences Program, Indiana University School of Medicine–Bloomington, Bloomington, Indiana, United States of America
| | - Heather A. Hundley
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
137
|
Xi B, Zeng X, Chen Z, Zeng J, Huang L, Du H. SARS-CoV-2 within-host diversity of human hosts and its implications for viral immune evasion. mBio 2023; 14:e0067923. [PMID: 37273216 PMCID: PMC10470530 DOI: 10.1128/mbio.00679-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 04/17/2023] [Indexed: 06/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is continuously evolving, bringing great challenges to the control of the virus. In the present study, we investigated the characteristics of SARS-CoV-2 within-host diversity of human hosts and its implications for immune evasion using about 2,00,000 high-depth next-generation genome sequencing data of SARS-CoV-2. A total of 44% of the samples showed within-host variations (iSNVs), and the average number of iSNVs in the samples with iSNV was 1.90. C-to-U is the dominant substitution pattern for iSNVs. C-to-U/G-to-A and A-to-G/U-to-C preferentially occur in 5'-CG-3' and 5'-AU-3' motifs, respectively. In addition, we found that SARS-CoV-2 within-host variations are under negative selection. About 15.6% iSNVs had an impact on the content of the CpG dinucleotide (CpG) in SARS-CoV-2 genomes. We detected signatures of faster loss of CpG-gaining iSNVs, possibly resulting from zinc-finger antiviral protein-mediated antiviral activities targeting CpG, which could be the major reason for CpG depletion in SARS-CoV-2 consensus genomes. The non-synonymous iSNVs in the S gene can largely alter the S protein's antigenic features, and many of these iSNVs are distributed in the amino-terminal domain (NTD) and receptor-binding domain (RBD). These results suggest that SARS-CoV-2 interacts actively with human hosts and attempts to take different evolutionary strategies to escape human innate and adaptive immunity. These new findings further deepen and widen our understanding of the within-host evolutionary features of SARS-CoV-2. IMPORTANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative pathogen of the coronavirus disease 2019, has evolved rapidly since it was discovered. Recent studies have pointed out that some mutations in the SARS-CoV-2 S protein could confer SARS-CoV-2 the ability to evade the human adaptive immune system. In addition, it is observed that the content of the CpG dinucleotide in SARS-CoV-2 genome sequences has decreased over time, reflecting the adaptation to the human host. The significance of our research is revealing the characteristics of SARS-CoV-2 within-host diversity of human hosts, identifying the causes of CpG depletion in SARS-CoV-2 consensus genomes, and exploring the potential impacts of non-synonymous within-host variations in the S gene on immune escape, which could further deepen and widen our understanding of the evolutionary features of SARS-CoV-2.
Collapse
Affiliation(s)
- Binbin Xi
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Xi Zeng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zixi Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Jiong Zeng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Lizhen Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
138
|
Chen J, Jin J, Jiang J, Wang Y. Adenosine deaminase acting on RNA 1 (ADAR1) as crucial regulators in cardiovascular diseases: structures, pathogenesis, and potential therapeutic approach. Front Pharmacol 2023; 14:1194884. [PMID: 37663249 PMCID: PMC10469703 DOI: 10.3389/fphar.2023.1194884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/11/2023] [Indexed: 09/05/2023] Open
Abstract
Cardiovascular diseases (CVDs) are a group of diseases that have a major impact on global health and are the leading cause of death. A large number of chemical base modifications in ribonucleic acid (RNA) are associated with cardiovascular diseases. A variety of ribonucleic acid modifications exist in cells, among which adenosine deaminase-dependent modification is one of the most common ribonucleic acid modifications. Adenosine deaminase acting on ribonucleic acid 1 (Adenosine deaminase acting on RNA 1) is a widely expressed double-stranded ribonucleic acid adenosine deaminase that forms inosine (A-to-I) by catalyzing the deamination of adenosine at specific sites of the target ribonucleic acid. In this review, we provide a comprehensive overview of the structure of Adenosine deaminase acting on RNA 1 and summarize the regulatory mechanisms of ADAR1-mediated ribonucleic acid editing in cardiovascular diseases, indicating Adenosine deaminase acting on RNA 1 as a promising therapeutic target in cardiovascular diseases.
Collapse
Affiliation(s)
- Jieying Chen
- Department of Cardiology ofThe Second Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, China
| | - Junyan Jin
- Department of Cardiology ofThe Second Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Jun Jiang
- Department of Cardiology ofThe Second Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Yaping Wang
- Department of Cardiology ofThe Second Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| |
Collapse
|
139
|
Astre G, Atlan T, Goshtchevsky U, Oron-Gottesman A, Smirnov M, Shapira K, Velan A, Deelen J, Levy T, Levanon EY, Harel I. Genetic perturbation of AMP biosynthesis extends lifespan and restores metabolic health in a naturally short-lived vertebrate. Dev Cell 2023; 58:1350-1364.e10. [PMID: 37321215 DOI: 10.1016/j.devcel.2023.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/09/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023]
Abstract
During aging, the loss of metabolic homeostasis drives a myriad of pathologies. A central regulator of cellular energy, the AMP-activated protein kinase (AMPK), orchestrates organismal metabolism. However, direct genetic manipulations of the AMPK complex in mice have, so far, produced detrimental phenotypes. Here, as an alternative approach, we alter energy homeostasis by manipulating the upstream nucleotide pool. Using the turquoise killifish, we mutate APRT, a key enzyme in AMP biosynthesis, and extend the lifespan of heterozygous males. Next, we apply an integrated omics approach to show that metabolic functions are rejuvenated in old mutants, which also display a fasting-like metabolic profile and resistance to high-fat diet. At the cellular level, heterozygous cells exhibit enhanced nutrient sensitivity, reduced ATP levels, and AMPK activation. Finally, lifelong intermittent fasting abolishes the longevity benefits. Our findings suggest that perturbing AMP biosynthesis may modulate vertebrate lifespan and propose APRT as a promising target for promoting metabolic health.
Collapse
Affiliation(s)
- Gwendoline Astre
- Department of Genetics, the Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Tehila Atlan
- Department of Genetics, the Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Uri Goshtchevsky
- Department of Genetics, the Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Adi Oron-Gottesman
- Department of Genetics, the Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Margarita Smirnov
- Central Fish Health Laboratory, Department of Fisheries and Aquaculture, Ministry of Agriculture and Rural Development, Nir David 10803, Israel
| | - Kobi Shapira
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Ariel Velan
- Department of Genetics, the Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Joris Deelen
- Max Planck Institute for Biology of Ageing, Cologne 50931, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Tomer Levy
- Department of Genetics, the Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Erez Y Levanon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Itamar Harel
- Department of Genetics, the Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel.
| |
Collapse
|
140
|
Tang Q, Li L, Wang Y, Wu P, Hou X, Ouyang J, Fan C, Li Z, Wang F, Guo C, Zhou M, Liao Q, Wang H, Xiang B, Jiang W, Li G, Zeng Z, Xiong W. RNA modifications in cancer. Br J Cancer 2023; 129:204-221. [PMID: 37095185 PMCID: PMC10338518 DOI: 10.1038/s41416-023-02275-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/26/2023] Open
Abstract
Currently, more than 170 modifications have been identified on RNA. Among these RNA modifications, various methylations account for two-thirds of total cases and exist on almost all RNAs. Roles of RNA modifications in cancer are garnering increasing interest. The research on m6A RNA methylation in cancer is in full swing at present. However, there are still many other popular RNA modifications involved in the regulation of gene expression post-transcriptionally besides m6A RNA methylation. In this review, we focus on several important RNA modifications including m1A, m5C, m7G, 2'-O-Me, Ψ and A-to-I editing in cancer, which will provide a new perspective on tumourigenesis by peeking into the complex regulatory network of epigenetic RNA modifications, transcript processing, and protein translation.
Collapse
Affiliation(s)
- Qiling Tang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Lvyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Yumin Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Pan Wu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Xiangchan Hou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Jiawei Ouyang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Chunmei Fan
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Zheng Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Fuyan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Ming Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
| | - Hui Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Weihong Jiang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China.
| |
Collapse
|
141
|
Liu Z, Quinones-Valdez G, Fu T, Huang E, Choudhury M, Reese F, Mortazavi A, Xiao X. L-GIREMI uncovers RNA editing sites in long-read RNA-seq. Genome Biol 2023; 24:171. [PMID: 37474948 PMCID: PMC10360234 DOI: 10.1186/s13059-023-03012-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/12/2023] [Indexed: 07/22/2023] Open
Abstract
Although long-read RNA-seq is increasingly applied to characterize full-length transcripts it can also enable detection of nucleotide variants, such as genetic mutations or RNA editing sites, which is significantly under-explored. Here, we present an in-depth study to detect and analyze RNA editing sites in long-read RNA-seq. Our new method, L-GIREMI, effectively handles sequencing errors and read biases. Applied to PacBio RNA-seq data, L-GIREMI affords a high accuracy in RNA editing identification. Additionally, our analysis uncovered novel insights about RNA editing occurrences in single molecules and double-stranded RNA structures. L-GIREMI provides a valuable means to study nucleotide variants in long-read RNA-seq.
Collapse
Affiliation(s)
- Zhiheng Liu
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Giovanni Quinones-Valdez
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Ting Fu
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Elaine Huang
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Mudra Choudhury
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Fairlie Reese
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, CA, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, CA, USA
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA.
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, CA, USA.
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA.
| |
Collapse
|
142
|
Rao G, Peng X, Tian Y, Fu X, Zhang Y. Circular RNAs in hepatocellular carcinoma: biogenesis, function, and pathology. Front Genet 2023; 14:1106665. [PMID: 37485335 PMCID: PMC10361733 DOI: 10.3389/fgene.2023.1106665] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death worldwide. Both genetic and environmental factors through a multitude of underlying molecular mechanisms participate in the pathogenesis of HCC. Recently, numerous studies have shown that circular RNAs (circRNAs), an emerging class of non-coding RNAs characterized by the presence of covalent bonds linking 3' and 5' ends, play an important role in the initiation and progression of cancers, including HCC. In this review, we outline the current status of the field of circRNAs, with an emphasis on the functions and mechanisms of circRNAs in HCC and its microenvironment. We also summarize and discuss recent advances of circRNAs as biomarkers and therapeutic targets. These efforts are anticipated to throw new insights into future perspectives about circRNAs in basic, translational and clinical research, eventually advancing the diagnosis, prevention and treatment of HCC.
Collapse
Affiliation(s)
- Guocheng Rao
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Xi Peng
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Yan Tian
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xianghui Fu
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Yuwei Zhang
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
143
|
Pomaville MM, He C. Advances in targeting RNA modifications for anticancer therapy. Trends Cancer 2023; 9:528-542. [PMID: 37147166 PMCID: PMC10330282 DOI: 10.1016/j.trecan.2023.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 05/07/2023]
Abstract
Numerous strategies are employed by cancer cells to control gene expression and facilitate tumorigenesis. In the study of epitranscriptomics, a diverse set of modifications to RNA represent a new player of gene regulation in disease and in development. N6-methyladenosine (m6A) is the most common modification on mammalian messenger RNA and tends to be aberrantly placed in cancer. Recognized by a series of reader proteins that dictate the fate of the RNA, m6A-modified RNA could promote tumorigenesis by driving protumor gene expression signatures and altering the immunologic response to tumors. Preclinical evidence suggests m6A writer, reader, and eraser proteins are attractive therapeutic targets. First-in-human studies are currently testing small molecule inhibition against the methyltransferase-like 3 (METTL3)/methyltransferase-like 14 (METTL14) methyltransferase complex. Additional modifications to RNA are adopted by cancers to drive tumor development and are under investigation.
Collapse
Affiliation(s)
- Monica M Pomaville
- Department of Pediatrics, University of Chicago Comer Children's Hospital, Chicago, IL, USA; Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA; Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.
| | - Chuan He
- Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA; Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
| |
Collapse
|
144
|
Wang S, Liu C, Zhang C, Xue L, Sun N, He J. A-to-I RNA-Editing: An Epigenetic Hallmark Cannot Be Ignored in Silencing the Tumor Microenvironment and Is Promising in Predicting Immunotherapy Response for Esophageal Squamous Cell Carcinoma. Gastroenterology 2023; 165:275-278.e8. [PMID: 36990293 DOI: 10.1053/j.gastro.2023.03.207] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 02/20/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Affiliation(s)
- Sihui Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chengming Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chaoqi Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liyan Xue
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
145
|
Khorkova O, Stahl J, Joji A, Volmar CH, Wahlestedt C. Amplifying gene expression with RNA-targeted therapeutics. Nat Rev Drug Discov 2023; 22:539-561. [PMID: 37253858 PMCID: PMC10227815 DOI: 10.1038/s41573-023-00704-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2023] [Indexed: 06/01/2023]
Abstract
Many diseases are caused by insufficient expression of mutated genes and would benefit from increased expression of the corresponding protein. However, in drug development, it has been historically easier to develop drugs with inhibitory or antagonistic effects. Protein replacement and gene therapy can achieve the goal of increased protein expression but have limitations. Recent discoveries of the extensive regulatory networks formed by non-coding RNAs offer alternative targets and strategies to amplify the production of a specific protein. In addition to RNA-targeting small molecules, new nucleic acid-based therapeutic modalities that allow highly specific modulation of RNA-based regulatory networks are being developed. Such approaches can directly target the stability of mRNAs or modulate non-coding RNA-mediated regulation of transcription and translation. This Review highlights emerging RNA-targeted therapeutics for gene activation, focusing on opportunities and challenges for translation to the clinic.
Collapse
Affiliation(s)
- Olga Khorkova
- OPKO Health, Miami, FL, USA
- Center for Therapeutic Innovation, University of Miami, Miami, FL, USA
| | - Jack Stahl
- Center for Therapeutic Innovation, University of Miami, Miami, FL, USA
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Aswathy Joji
- Center for Therapeutic Innovation, University of Miami, Miami, FL, USA
- Department of Chemistry, University of Miami, Miami, FL, USA
| | - Claude-Henry Volmar
- Center for Therapeutic Innovation, University of Miami, Miami, FL, USA
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Claes Wahlestedt
- Center for Therapeutic Innovation, University of Miami, Miami, FL, USA.
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA.
- Department of Chemistry, University of Miami, Miami, FL, USA.
| |
Collapse
|
146
|
Segal D, Dostie J. The Talented LncRNAs: Meshing into Transcriptional Regulatory Networks in Cancer. Cancers (Basel) 2023; 15:3433. [PMID: 37444543 DOI: 10.3390/cancers15133433] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
As a group of diseases characterized by uncontrollable cell growth, cancer is highly multifaceted in how it overrides checkpoints controlling proliferation. Amongst the regulators of these checkpoints, long non-coding RNAs (lncRNAs) can have key roles in why natural biological processes go haywire. LncRNAs represent a large class of regulatory transcripts that can localize anywhere in cells. They were found to affect gene expression on many levels from transcription to mRNA translation and even protein stability. LncRNA participation in such control mechanisms can depend on cell context, with given transcripts sometimes acting as oncogenes or tumor suppressors. Importantly, the tissue-specificity and low expression levels of lncRNAs make them attractive therapeutic targets or biomarkers. Here, we review the various cellular processes affected by lncRNAs and outline molecular strategies they use to control gene expression, particularly in cancer and in relation to transcription factors.
Collapse
Affiliation(s)
- Dana Segal
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada
| | - Josée Dostie
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada
| |
Collapse
|
147
|
Pecori R, Ren W, Pirmoradian M, Wang X, Liu D, Berglund M, Li W, Tasakis RN, Di Giorgio S, Ye X, Li X, Arnold A, Wüst S, Schneider M, Selvasaravanan KD, Fuell Y, Stafforst T, Amini RM, Sonnevi K, Enblad G, Sander B, Wahlin BE, Wu K, Zhang H, Helm D, Binder M, Papavasiliou FN, Pan-Hammarström Q. ADAR1-mediated RNA editing promotes B cell lymphomagenesis. iScience 2023; 26:106864. [PMID: 37255666 PMCID: PMC10225930 DOI: 10.1016/j.isci.2023.106864] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/27/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) is one of the most common types of aggressive lymphoid malignancies. Here, we explore the contribution of RNA editing to DLBCL pathogenesis. We observed that DNA mutations and RNA editing events are often mutually exclusive, suggesting that tumors can modulate pathway outcomes by altering sequences at either the genomic or the transcriptomic level. RNA editing targets transcripts within known disease-driving pathways such as apoptosis, p53 and NF-κB signaling, as well as the RIG-I-like pathway. In this context, we show that ADAR1-mediated editing within MAVS transcript positively correlates with MAVS protein expression levels, associating with increased interferon/NF-κB signaling and T cell exhaustion. Finally, using targeted RNA base editing tools to restore editing within MAVS 3'UTR in ADAR1-deficient cells, we demonstrate that editing is likely to be causal to an increase in downstream signaling in the absence of activation by canonical nucleic acid receptor sensing.
Collapse
Affiliation(s)
- Riccardo Pecori
- Division of Immune Diversity (D150), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Helmholtz Institute for Translational Oncology (HI-TRON), Mainz, Germany
| | - Weicheng Ren
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Mohammad Pirmoradian
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Xianhuo Wang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Dongbing Liu
- BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Shenzhen, China
| | - Mattias Berglund
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Wei Li
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Rafail Nikolaos Tasakis
- Division of Immune Diversity (D150), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Graduate Program in Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Salvatore Di Giorgio
- Division of Immune Diversity (D150), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Xiaofei Ye
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xiaobo Li
- BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Shenzhen, China
| | - Annette Arnold
- Division of Immune Diversity (D150), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sandra Wüst
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Schneider
- Proteomics Core Facility (W120), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Yvonne Fuell
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Thorsten Stafforst
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Rose-Marie Amini
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Kristina Sonnevi
- Hematology Unit, Department of Medicine, Huddinge, Karolinska Institutet and Medical Unit Hematology, Karolinska University Hospital, Solna, StockholmSweden
| | - Gunilla Enblad
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Birgitta Sander
- Department of Laboratory Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Björn Engelbrekt Wahlin
- Hematology Unit, Department of Medicine, Huddinge, Karolinska Institutet and Medical Unit Hematology, Karolinska University Hospital, Solna, StockholmSweden
| | - Kui Wu
- BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Shenzhen, China
| | - Huilai Zhang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Dominic Helm
- Proteomics Core Facility (W120), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marco Binder
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - F. Nina Papavasiliou
- Division of Immune Diversity (D150), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Graduate Program in Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Qiang Pan-Hammarström
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
148
|
Rivera M, Zhang H, Pham J, Isquith J, Zhou QJ, Sasik R, Mark A, Ma W, Holm F, Fisch KM, Kuo DJ, Jamieson C, Jiang Q. Malignant A-to-I RNA editing by ADAR1 drives T-cell acute lymphoblastic leukemia relapse via attenuating dsRNA sensing. RESEARCH SQUARE 2023:rs.3.rs-2444524. [PMID: 37398458 PMCID: PMC10312963 DOI: 10.21203/rs.3.rs-2444524/v2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Leukemia initiating cells (LICs) are regarded as the origin of leukemia relapse and therapeutic resistance. Identifying direct stemness determinants that fuel LIC self-renewal is critical for developing targeted approaches to eliminate LICs and prevent relapse. Here, we show that the RNA editing enzyme ADAR1 is a crucial stemness factor that promotes LIC self-renewal by attenuating aberrant double-stranded RNA (dsRNA) sensing. Elevated adenosine-to-inosine (A-to-I) editing is a common attribute of relapsed T-ALL regardless of molecular subtypes. Consequently, knockdown of ADAR1 severely inhibits LIC self-renewal capacity and prolongs survival in T-ALL PDX models. Mechanistically, ADAR1 directs hyper-editing of immunogenic dsRNA and retains unedited nuclear dsRNA to avoid detection by the innate immune sensor MDA5. Moreover, we uncovered that the cell intrinsic level of MDA5 dictates the dependency on ADAR1-MDA5 axis in T-ALL. Collectively, our results show that ADAR1 functions as a self-renewal factor that limits the sensing of endogenous dsRNA. Thus, targeting ADAR1 presents a safe and effective therapeutic strategy for eliminating T-ALL LICs.
Collapse
Affiliation(s)
- Maria Rivera
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, La Jolla, CA 92037, USA
| | - Haoran Zhang
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, La Jolla, CA 92037, USA
| | - Jessica Pham
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jane Isquith
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Qingchen Jenny Zhou
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, La Jolla, CA 92037, USA
| | - Roman Sasik
- Center for Computational Biology & Bioinformatics (CCBB), University of California, San Diego, La Jolla, 92093-0681
| | - Adam Mark
- Center for Computational Biology & Bioinformatics (CCBB), University of California, San Diego, La Jolla, 92093-0681
| | - Wenxue Ma
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Frida Holm
- Department of Women’s and Children’s Health, Division of Pediatric Oncology and Surgery, Karolinska Institutet, Sweden
| | - Kathleen M Fisch
- Center for Computational Biology & Bioinformatics (CCBB), University of California, San Diego, La Jolla, 92093-0681
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Diego, La Jolla, CA
| | - Dennis John Kuo
- Moores Cancer Center, La Jolla, CA 92037, USA
- Division of Pediatric Hematology-Oncology, Rady Children’s Hospital San Diego, University of California, San Diego, CA
| | - Catriona Jamieson
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, La Jolla, CA 92037, USA
| | - Qingfei Jiang
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, La Jolla, CA 92037, USA
| |
Collapse
|
149
|
Birk MA, Liscovitch-Brauer N, Dominguez MJ, McNeme S, Yue Y, Hoff JD, Twersky I, Verhey KJ, Sutton RB, Eisenberg E, Rosenthal JJC. Temperature-dependent RNA editing in octopus extensively recodes the neural proteome. Cell 2023; 186:2544-2555.e13. [PMID: 37295402 PMCID: PMC10445230 DOI: 10.1016/j.cell.2023.05.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 06/12/2023]
Abstract
In poikilotherms, temperature changes challenge the integration of physiological function. Within the complex nervous systems of the behaviorally sophisticated coleoid cephalopods, these problems are substantial. RNA editing by adenosine deamination is a well-positioned mechanism for environmental acclimation. We report that the neural proteome of Octopus bimaculoides undergoes massive reconfigurations via RNA editing following a temperature challenge. Over 13,000 codons are affected, and many alter proteins that are vital for neural processes. For two highly temperature-sensitive examples, recoding tunes protein function. For synaptotagmin, a key component of Ca2+-dependent neurotransmitter release, crystal structures and supporting experiments show that editing alters Ca2+ binding. For kinesin-1, a motor protein driving axonal transport, editing regulates transport velocity down microtubules. Seasonal sampling of wild-caught specimens indicates that temperature-dependent editing occurs in the field as well. These data show that A-to-I editing tunes neurophysiological function in response to temperature in octopus and most likely other coleoids.
Collapse
Affiliation(s)
- Matthew A Birk
- Bell Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Biology, Saint Francis University, Loretto, PA 15940, USA
| | | | - Matthew J Dominguez
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79410, USA
| | - Sean McNeme
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Yang Yue
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - J Damon Hoff
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Itamar Twersky
- The Nano Center, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Kristen J Verhey
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - R Bryan Sutton
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79410, USA
| | - Eli Eisenberg
- School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel.
| | | |
Collapse
|
150
|
Wu S, Fan Z, Kim P, Huang L, Zhou X. The Integrative Studies on the Functional A-to-I RNA Editing Events in Human Cancers. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:619-631. [PMID: 36708807 PMCID: PMC10787018 DOI: 10.1016/j.gpb.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 11/04/2022] [Accepted: 12/28/2022] [Indexed: 01/26/2023]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing, constituting nearly 90% of all RNA editing events in humans, has been reported to contribute to the tumorigenesis in diverse cancers. However, the comprehensive map for functional A-to-I RNA editing events in cancers is still insufficient. To fill this gap, we systematically and intensively analyzed multiple tumorigenic mechanisms of A-to-I RNA editing events in samples across 33 cancer types from The Cancer Genome Atlas. For individual candidate among ∼ 1,500,000 quantified RNA editing events, we performed diverse types of downstream functional annotations. Finally, we identified 24,236 potentially functional A-to-I RNA editing events, including the cases in APOL1, IGFBP3, GRIA2, BLCAP, and miR-589-3p. These events might play crucial roles in the scenarios of tumorigenesis, due to their tumor-related editing frequencies or probable effects on altered expression profiles, protein functions, splicing patterns, and microRNA regulations of tumor genes. Our functional A-to-I RNA editing events (https://ccsm.uth.edu/CAeditome/) will help better understand the cancer pathology from the A-to-I RNA editing aspect.
Collapse
Affiliation(s)
- Sijia Wu
- School of Life Science and Technology, Xidian University, Xi'an 710071, China
| | - Zhiwei Fan
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610040, China; Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Pora Kim
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Liyu Huang
- School of Life Science and Technology, Xidian University, Xi'an 710071, China.
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|