101
|
Balena T, Staley K. Neuronal Death: Now You See It, Now You Don't. Neuroscientist 2024:10738584241282632. [PMID: 39316584 DOI: 10.1177/10738584241282632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Fatally injured neurons may necrose and rupture immediately, or they may initiate a programmed cell death pathway and then wait for microglial phagocytosis. Biochemical and histopathologic assays of neuronal death assess the numbers of neurons awaiting phagocytosis at a particular time point after injury. This number varies with the fraction of neurons that have necrosed vs initiated programmed cell death, the time elapsed since injury, the rate of phagocytosis, and the assay's ability to detect neurons at different stages of programmed cell death. Many of these variables can be altered by putatively neurotoxic and neuroprotective interventions independent of the effects on neuronal death. This complicates analyses of neurotoxicity and neuroprotection and has likely contributed to difficulties with clinical translation of neuroprotective strategies after brain injury. Time-resolved assays of neuronal health, such as ongoing expression of transgenic fluorescent proteins, are a useful means of avoiding these problems.
Collapse
Affiliation(s)
- Trevor Balena
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Kevin Staley
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
102
|
Wu X, Wang Z, Shern T, Zhang H. Efferocytosis assay to quantify the engulfment and acidification of apoptotic cells by macrophages using flow cytometry. STAR Protoc 2024; 5:103215. [PMID: 39068649 PMCID: PMC11338188 DOI: 10.1016/j.xpro.2024.103215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/06/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Efficient macrophage efferocytosis maintains homeostasis and resolves inflammation. Here, we provide a protocol to assess the engulfment and acidification of apoptotic cells (ACs) by macrophages. We describe steps for preparing bone marrow-derived macrophages (BMDMs) and peritoneal macrophages (PMs), fluorescent labeling of ACs using both a pH-sensitive dye, pHrodo-Red succinimidyl ester, and a pH-insensitive dye, Hoechst, and subsequent incubation with macrophages for efferocytosis. We then detail procedures for flow cytometry-based quantification of engulfment and acidification. For complete details on the use and execution of this protocol, please refer to Shi and Wu et al.1.
Collapse
Affiliation(s)
- Xun Wu
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| | - Ziyi Wang
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Tyler Shern
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Hanrui Zhang
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
103
|
Zhang P, Wang Y, Jiang J, Yang C, Liu X, Lei T, Meng X, Yang J, Ding P, Chen J, Li Q. Macrophage manufacturing and engineering with 5'-Cap1 and N1-methylpseudouridine-modified mRNA. Mol Ther Methods Clin Dev 2024; 32:101307. [PMID: 39229455 PMCID: PMC11369376 DOI: 10.1016/j.omtm.2024.101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 07/26/2024] [Indexed: 09/05/2024]
Abstract
Macrophage-based cell therapeutics is an emerging modality to treat cancer and repair tissue damage. A reproducible manufacturing and engineering process is central to fulfilling their therapeutic potential. Here, we establish a robust macrophage-manufacturing platform (Mo-Mac) and demonstrate that macrophage functionality can be enhanced by N1-methylpseudouridine (m1Ψ)-modified mRNA. Using single-cell transcriptomic analysis as an unbiased approach, we found that >90% cells in the final product were macrophages while the rest primarily comprised T cells, B cells, natural killer cells, promyelocytes, promonocytes, and hematopoietic stem cells. This analysis also guided the development of flow-cytometry strategies to assess cell compositions in the manufactured product to meet requirements by the National Medical Products Administration. To modulate macrophage functionality, as an illustrative example we examined whether the engulfment capability of macrophages could be enhanced by mRNA technology. We found that efferocytosis was increased in vitro when macrophages were electroporated with m1Ψ-modified mRNA encoding CD300LF (CD300LF-mRNA-macrophage). Consistently, in a mouse model of acute liver failure, CD300LF-mRNA-macrophages facilitated organ recovery from acetaminophen-induced hepatotoxicity. These results demonstrate a GMP-compliant macrophage-manufacturing process and indicate that macrophages can be engineered by versatile mRNA technology to achieve therapeutic goals.
Collapse
Affiliation(s)
- Peixuan Zhang
- Departments of Obstetrics & Gynecology and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yantai Wang
- Department of General Surgery, Breast Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jinfeng Jiang
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Chao Yang
- Departments of Obstetrics & Gynecology and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xianxia Liu
- Division of Cell Manufacturing, Sichuan Cunde Therapeutics, Chengdu 610093, Sichuan, China
| | - Tingjun Lei
- Division of Cell Manufacturing, Sichuan Cunde Therapeutics, Chengdu 610093, Sichuan, China
| | - Xiangjun Meng
- Division of Cell Manufacturing, Sichuan Cunde Therapeutics, Chengdu 610093, Sichuan, China
| | - Jihong Yang
- Division of Cell Manufacturing, Sichuan Cunde Therapeutics, Chengdu 610093, Sichuan, China
| | - Ping Ding
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Jie Chen
- Department of General Surgery, Breast Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qintong Li
- Departments of Obstetrics & Gynecology and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
104
|
Anderson CJ, Boeckaerts L, Chin P, Cardas JB, Xie W, Gonçalves A, Blancke G, Benson S, Rogatti S, Simpson MS, Davey A, Choi SM, Desmet S, Bushman SD, Goeminne G, Vandenabeele P, Desai MS, Vereecke L, Ravichandran KS. Metabolite-based inter-kingdom communication controls intestinal tissue recovery following chemotherapeutic injury. Cell Host Microbe 2024; 32:1469-1487.e9. [PMID: 39197455 DOI: 10.1016/j.chom.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/12/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024]
Abstract
Cytotoxic chemotherapies have devastating side effects, particularly within the gastrointestinal tract. Gastrointestinal toxicity includes the death and damage of the epithelium and an imbalance in the intestinal microbiota, otherwise known as dysbiosis. Whether dysbiosis is a direct contributor to tissue toxicity is a key area of focus. Here, from both mammalian and bacterial perspectives, we uncover an intestinal epithelial cell death-Enterobacteriaceae signaling axis that fuels dysbiosis. Specifically, our data demonstrate that chemotherapy-induced epithelial cell apoptosis and the purine-containing metabolites released from dying cells drive the inter-kingdom transcriptional re-wiring of the Enterobacteriaceae, including fundamental shifts in bacterial respiration and promotion of purine utilization-dependent expansion, which in turn delays the recovery of the intestinal tract. Inhibition of epithelial cell death or restriction of the Enterobacteriaceae to homeostatic levels reverses dysbiosis and improves intestinal recovery. These findings suggest that supportive therapies that maintain homeostatic levels of Enterobacteriaceae may be useful in resolving intestinal disease.
Collapse
Affiliation(s)
- Christopher J Anderson
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK.
| | - Laura Boeckaerts
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Priscilla Chin
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Javier Burgoa Cardas
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Wei Xie
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Amanda Gonçalves
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; VIB BioImaging Core, Ghent, Belgium
| | - Gillian Blancke
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sam Benson
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Sebastian Rogatti
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Mariska S Simpson
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Anna Davey
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Sze Men Choi
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | | | - Summer D Bushman
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | | | - Peter Vandenabeele
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Mahesh S Desai
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | - Lars Vereecke
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Kodi S Ravichandran
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
105
|
Allsup BL, Gharpure S, Bryson BD. Proximity labeling defines the phagosome lumen proteome of murine and primary human macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611277. [PMID: 39282337 PMCID: PMC11398489 DOI: 10.1101/2024.09.04.611277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Proteomic analyses of the phagosome has significantly improved our understanding of the proteins which contribute to critical phagosome functions such as apoptotic cell clearance and microbial killing. However, previous methods of isolating phagosomes for proteomic analysis have relied on cell fractionation with some intrinsic limitations. Here, we present an alternative and modular proximity-labeling based strategy for mass spectrometry proteomic analysis of the phagosome lumen, termed PhagoID. We optimize proximity labeling in the phagosome and apply PhagoID to immortalized murine macrophages as well as primary human macrophages. Analysis of proteins detected by PhagoID in murine macrophages demonstrate that PhagoID corroborates previous proteomic studies, but also nominates novel proteins with unexpected residence at the phagosome for further study. A direct comparison between the proteins detected by PhagoID between mouse and human macrophages further reveals that human macrophage phagosomes have an increased abundance of proteins involved in the oxidative burst and antigen presentation. Our study develops and benchmarks a new approach to measure the protein composition of the phagosome and validates a subset of these findings, ultimately using PhagoID to grant further insight into the core constituent proteins and species differences at the phagosome lumen.
Collapse
Affiliation(s)
- Benjamin L Allsup
- Department of Biological Engineering, MIT, Cambridge, USA
- Ragon Institute of Mass General, Harvard, and MIT, Cambridge, USA
| | - Supriya Gharpure
- Ragon Institute of Mass General, Harvard, and MIT, Cambridge, USA
| | - Bryan D Bryson
- Department of Biological Engineering, MIT, Cambridge, USA
- Ragon Institute of Mass General, Harvard, and MIT, Cambridge, USA
| |
Collapse
|
106
|
Zhu Q, Yuan C, Wang D, Tu B, Chen W, Dong X, Wu K, Tao L, Ding Y, Xiao W, Hu L, Gong W, Li Z, Lu G. The TRIM28/miR133a/CD47 axis acts as a potential therapeutic target in pancreatic necrosis by impairing efferocytosis. Mol Ther 2024; 32:3025-3041. [PMID: 38872307 PMCID: PMC11403229 DOI: 10.1016/j.ymthe.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 04/05/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024] Open
Abstract
Efferocytosis, the clearance of apoptotic cells by macrophages, plays a crucial role in inflammatory responses and effectively prevents secondary necrosis. However, the mechanisms underlying efferocytosis in acute pancreatitis (AP) remain unclear. In this study, we demonstrated the presence of efferocytosis in injured human and mouse pancreatic tissues. We also observed significant upregulation of CD47, an efferocytosis-related the "do not eat me" molecule in injured acinar cells. Subsequently, we used CRISPR-Cas9 gene editing, anti-adeno-associated virus (AAV) gene modification, and anti-CD47 antibody to investigate the potential therapeutic role of AP. CD47 expression was negatively regulated by upstream miR133a, which is controlled by the transcription factor TRIM28. To further investigate the regulation of efferocytosis and reduction of pancreatic necrosis in AP, we used miR-133a-agomir and pancreas-specific AAV-shTRIM28 to modulate CD47 expression. Our findings confirmed that CD47-mediated efferocytosis is critical for preventing pancreatic necrosis and suggest that targeting the TRIM28-miR133a-CD47 axis is clinically relevant for the treatment of AP.
Collapse
Affiliation(s)
- Qingtian Zhu
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China
| | - Chenchen Yuan
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China
| | - Dan Wang
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Bo Tu
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Weiwei Chen
- Department of Gastroenterology, Clinical Medical College, Yangzhou University, Yangzhou 225000, China
| | - Xiaowu Dong
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China
| | - Keyan Wu
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China
| | - Lide Tao
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China
| | - Yanbing Ding
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China
| | - Weiming Xiao
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China
| | - Lianghao Hu
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China.
| | - Weijuan Gong
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China.
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China.
| | - Guotao Lu
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China.
| |
Collapse
|
107
|
Zhang W, Feng J, Ni Y, Li G, Wang Y, Cao Y, Zhou M, Zhao C. The role of SLC7A11 in diabetic wound healing: novel insights and new therapeutic strategies. Front Immunol 2024; 15:1467531. [PMID: 39290692 PMCID: PMC11405230 DOI: 10.3389/fimmu.2024.1467531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Diabetic wounds are a severe complication of diabetes, characterized by persistent, non-healing ulcers due to disrupted wound-healing mechanisms in a hyperglycemic environment. Key factors in the pathogenesis of these chronic wounds include unresolved inflammation and antioxidant defense imbalances. The cystine/glutamate antiporter SLC7A11 (xCT) is crucial for cystine import, glutathione production, and antioxidant protection, positioning it as a vital regulator of diabetic wound healing. Recent studies underscore the role of SLC7A11 in modulating immune responses and oxidative stress in diabetic wounds. Moreover, SLC7A11 influences critical processes such as insulin secretion and the mTOR signaling pathway, both of which are implicated in delayed wound healing. This review explores the mechanisms regulating SLC7A11 and its impact on immune response, antioxidant defenses, insulin secretion, and mTOR pathways in diabetic wounds. Additionally, we highlight the current advancements in targeting SLC7A11 for treating related diseases and conceptualize its potential applications and value in diabetic wound treatment strategies, along with the challenges encountered in this context.
Collapse
Affiliation(s)
- Wei Zhang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiawei Feng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Ni
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gen Li
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqing Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yemin Cao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingmei Zhou
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Zhao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
108
|
Liao YS, Zhang TC, Tang YQ, Yu P, Liu YN, Yuan J, Zhao L. Electroacupuncture reduces inflammatory damage following cerebral ischemia-reperfusion by enhancing ABCA1-mediated efferocytosis in M2 microglia. Mol Brain 2024; 17:61. [PMID: 39223647 PMCID: PMC11367741 DOI: 10.1186/s13041-024-01135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Ischemic stroke (IS) is a severe cerebrovascular disease with high disability and mortality rates, where the inflammatory response is crucial to its progression and prognosis. Efferocytosis, the prompt removal of dead cells, can reduce excessive inflammation after IS injury. While electroacupuncture (EA) has been shown to decrease inflammation post-ischemia/reperfusion (I/R), its link to efferocytosis is unclear. Our research identified ATP-binding cassette transporter A1 (Abca1) as a key regulator of the engulfment process of efferocytosis after IS by analyzing public datasets and validating findings in a mouse model, revealing its close ties to IS progression. We demonstrated that EA can reduce neuronal cell death and excessive inflammation caused by I/R. Furthermore, EA treatment increased Abca1 expression, prevented microglia activation, promoted M2 microglia polarization, and enhanced their ability to phagocytose injured neurons in I/R mice. This suggests that EA's modulation of efferocytosis could be a potential mechanism for reducing cerebral I/R injury, making regulators of efferocytosis steps a promising therapeutic target for EA benefits.
Collapse
Affiliation(s)
- Yu-Sha Liao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 611137, Sichuan, China
| | - Tie-Chun Zhang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 611137, Sichuan, China
| | - Yu-Qi Tang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 611137, Sichuan, China
| | - Pei Yu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 611137, Sichuan, China
| | - Ya-Ning Liu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 611137, Sichuan, China
| | - Jing Yuan
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 611137, Sichuan, China.
- Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education, Chengdu, 611137, Sichuan, China.
| | - Ling Zhao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 611137, Sichuan, China.
- Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education, Chengdu, 611137, Sichuan, China.
- Clinical Research Center for Acupuncture and Moxibustion in Sichuan Province, Chengdu, 610075, China.
| |
Collapse
|
109
|
Stewart KS, Abdusselamoglu MD, Tierney MT, Gola A, Hur YH, Gonzales KAU, Yuan S, Bonny AR, Yang Y, Infarinato NR, Cowley CJ, Levorse JM, Pasolli HA, Ghosh S, Rothlin CV, Fuchs E. Stem cells tightly regulate dead cell clearance to maintain tissue fitness. Nature 2024; 633:407-416. [PMID: 39169186 PMCID: PMC11390485 DOI: 10.1038/s41586-024-07855-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/19/2024] [Indexed: 08/23/2024]
Abstract
Billions of cells are eliminated daily from our bodies1-4. Although macrophages and dendritic cells are dedicated to migrating and engulfing dying cells and debris, many epithelial and mesenchymal tissue cells can digest nearby apoptotic corpses1-4. How these non-motile, non-professional phagocytes sense and eliminate dying cells while maintaining their normal tissue functions is unclear. Here we explore the mechanisms that underlie their multifunctionality by exploiting the cyclical bouts of tissue regeneration and degeneration during hair cycling. We show that hair follicle stem cells transiently unleash phagocytosis at the correct time and place through local molecular triggers that depend on both lipids released by neighbouring apoptotic corpses and retinoids released by healthy counterparts. We trace the heart of this dual ligand requirement to RARγ-RXRα, whose activation enables tight regulation of apoptotic cell clearance genes and provides an effective, tunable mechanism to offset phagocytic duties against the primary stem cell function of preserving tissue integrity during homeostasis. Finally, we provide functional evidence that hair follicle stem cell-mediated phagocytosis is not simply redundant with professional phagocytes but rather has clear benefits to tissue fitness. Our findings have broad implications for other non-motile tissue stem or progenitor cells that encounter cell death in an immune-privileged niche.
Collapse
Affiliation(s)
- Katherine S Stewart
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA.
| | - Merve Deniz Abdusselamoglu
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Matthew T Tierney
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Anita Gola
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Yun Ha Hur
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Kevin A U Gonzales
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
- Department of Discovery Technology and Genomics, Novo Nordisk Research Centre Oxford, Oxford, UK
| | - Shaopeng Yuan
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
- Altos Labs, Cambridge Institute of Science, Granta Park, Cambridge, UK
| | - Alain R Bonny
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Yihao Yang
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
- Altos Labs, San Diego, CA, USA
| | - Nicole R Infarinato
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
- PrecisionScienta, Yardley, PA, USA
| | - Christopher J Cowley
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John M Levorse
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
- Cardiovascular Research Group, Temple University, Philadelphia, PA, USA
| | - Hilda Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA
| | - Sourav Ghosh
- Departments of Neurology and Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Carla V Rothlin
- Departments of Immunobiology and Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
110
|
Yang Y, Nie X, Wang Y, Sun J, Gao X, Zhang J. Evolving insights into erythrocytes in synucleinopathies. Trends Neurosci 2024; 47:693-707. [PMID: 39043489 DOI: 10.1016/j.tins.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/25/2024]
Abstract
Synucleinopathies, including Parkinson's disease (PD), multiple system atrophy (MSA), and dementia with Lewy bodies (DLB), are characterized by neuronal loss accompanied by α-synuclein (α-syn) accumulation in the brain. While research conventionally focused on brain pathology, there is growing interest in peripheral alterations. Erythrocytes, which are rich in α-syn, have emerged as a compelling site for synucleinopathies-related alterations. Erythrocyte-derived extracellular vesicles (EVs), containing pathological α-syn species, can traverse the blood-brain barrier (BBB) under certain conditions and the gastrointestinal tract, where α-syn and gut microbiota interact extensively. This review explores the accumulating evidence of erythrocyte involvement in synucleinopathies, as well as their potential in disease pathogenesis and diagnosis. Given their unique properties, erythrocytes and erythrocyte-derived EVs may also serve as an ideal therapeutic platform for treating synucleinopathies and beyond.
Collapse
Affiliation(s)
- Ying Yang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoqian Nie
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Zhejiang, China
| | - Yajie Wang
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China; Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Zhejiang, China; Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Zhejiang, China
| | - Jie Sun
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China; Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Zhejiang, China; Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Zhejiang, China
| | - Xiaofei Gao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Zhejiang, China.
| | - Jing Zhang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; National Health and Disease Human Brain Tissue Resource Center, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
111
|
Clayton SM, Shafikhani SH, Soulika AM. Macrophage and Neutrophil Dysfunction in Diabetic Wounds. Adv Wound Care (New Rochelle) 2024; 13:463-484. [PMID: 38695109 PMCID: PMC11535468 DOI: 10.1089/wound.2023.0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Significance: The incidence of diabetes continues to rise throughout the world in an alarming rate. Diabetic patients often develop diabetic foot ulcers (DFUs), many of which do not heal. Non-healing DFUs are a major cause of hospitalization, amputation, and increased morbidity. Understanding the underlying mechanisms of impaired healing in DFU is crucial for its management. Recent Advances: This review focuses on the recent advancements on macrophages and neutrophils in diabetic wounds and DFUs. In particular, we discuss diabetes-induced dysregulations and dysfunctions of macrophages and neutrophils. Critical Issues: It is well established that diabetic wounds are characterized by stalled inflammation that results in impaired healing. Recent findings in the field suggest that dysregulation of macrophages and neutrophils plays a critical role in impaired healing in DFUs. The delineation of mechanisms that restore macrophage and neutrophil function in diabetic wound healing is the focus of intense investigation. Future Directions: The breadth of recently generated knowledge on the activity of macrophages and neutrophils in diabetic wound healing is impressive. Experimental models have delineated pathways that hold promise for the treatment of diabetic wounds and DFUs. These pathways may be useful targets for further clinical investigation.
Collapse
Affiliation(s)
- Shannon M. Clayton
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, USA
| | - Sasha H. Shafikhani
- Department of Internal Medicine, Division of Hematology, Oncology and Cell Therapy, Rush University, Chicago, Illinois, USA
| | - Athena M. Soulika
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, USA
| |
Collapse
|
112
|
Romero-Ramírez L, García-Rama C, Mey J. Janus Kinase Inhibitor Brepocitinib Rescues Myelin Phagocytosis Under Inflammatory Conditions: In Vitro Evidence from Microglia and Macrophage Cell Lines. Mol Neurobiol 2024; 61:6423-6434. [PMID: 38308667 DOI: 10.1007/s12035-024-03963-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 01/16/2024] [Indexed: 02/05/2024]
Abstract
Central nervous system (CNS) injuries induce cell death and consequently the release of myelin and other cellular debris. Microglia as well as hematogenous macrophages actively collaborate to phagocyte them and undergo their degradation. However, myelin accumulation persists in the lesion site long after the injury with detrimental effects on axonal regeneration. This might be due to the presence of inhibitors of phagocytosis in the injury site. As we recently published that some proinflammatory stimuli, like interferon-γ (IFNγ) and lipopolysaccharide (LPS), inhibit myelin phagocytosis in macrophages, we have now studied the signaling pathways involved. A phagocytosis assay in Raw264.7 macrophages and N13 microglia cell lines with labeled myelin was developed with the pHrodo reagent that emits fluorescence in acidic cellular compartments (e.g.lysosomes). Pharmacological inhibition of Janus kinases (Jak) with Brepocitinib restored myelin phagocytosis and rescued the expression of genes related to phagocytosis, like triggering receptor expressed on myeloid cells 2 (TREM2), induced by IFNγ or LPS. In addition, while pharmacological inhibition of the signal transducer and activator of transcription 3 (STAT3) rescued myelin phagocytosis and the expression of phagocytosis related genes in the presence of LPS, it did not have any effect on IFNγ-treated cells. Our results show that Jak pathways participate in the inhibition of myelin phagocytosis by IFNγ and LPS. They also indicate that the resolution of inflammation is important for the clearance of cellular debris by macrophages and subsequent regenerative processes.
Collapse
Affiliation(s)
- Lorenzo Romero-Ramírez
- Laboratorio de Regeneración Neuronal, Hospital Nacional de Parapléjicos, SESCAM, Finca La Peraleda S/N, 45071, Toledo, Spain.
| | - Concepción García-Rama
- Laboratorio de Regeneración Neuronal, Hospital Nacional de Parapléjicos, SESCAM, Finca La Peraleda S/N, 45071, Toledo, Spain
| | - Jörg Mey
- Laboratorio de Regeneración Neuronal, Hospital Nacional de Parapléjicos, SESCAM, Finca La Peraleda S/N, 45071, Toledo, Spain
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
113
|
Xu XS, Liu T, Chen YJ, Wu XY, Cheng MX, Li JZ. MSR1-dependent efferocytosis improved ischemia-reperfusion injury following aged-donor liver transplantation in mice by regulating the pro-resolving polarisation of macrophages. Exp Cell Res 2024; 442:114212. [PMID: 39168433 DOI: 10.1016/j.yexcr.2024.114212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
Compared with young liver donors, aged liver donors are more susceptible to ischemia-reperfusion injury (IRI) following transplantation, which may be related to excessive inflammatory response and macrophage dysfunction, but the specific mechanism is unclear. Macrophage scavenger receptor 1 (MSR1) is a member of the scavenger receptor family, and plays an important regulatory role in inflammation response and macrophage function regulation. But its role in IRI following aged-donor liver transplantation is still unclear. This study demonstrates that MSR1 expression is decreased in macrophages from aged donor livers, inhibiting their efferocytosis and pro-resolving polarisation. Decreased MSR1 is responsible for the more severe IRI suffered by aged donor livers. Overexpression of MSR1 using F4/80-labelled AAV9 improved intrahepatic macrophage efferocytosis and promoted pro-resolving polarisation, ultimately ameliorating IRI following aged-donor liver transplantation. In vitro co-culture experiments further showed that overexpression of MSR1 promoted an increase in calcium concentration, which further activated the PI3K-AKT-GSK3β pathway, and induced the upregulation of β-catenin. Overall, MSR1-dependent efferocytosis promoted the pro-resolving polarisation of macrophages through the PI3K-AKT-GSK3β pathway-induced up-regulating of β-catenin leading to improved IRI following aged-donor liver transplantation.
Collapse
Affiliation(s)
- Xue-Song Xu
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Tao Liu
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ya-Jun Chen
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xin-Yi Wu
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ming-Xiang Cheng
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Jin-Zheng Li
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
114
|
Luo X, Gong HB, Li ZC, Li DD, Li ZX, Sun J, Yan CY, Huang RT, Feng Y, Chen SR, Cao YF, Liu M, Wang R, Huang F, Sun WY, Kurihara H, Duan WJ, Liang L, Jin W, Wu YP, He RR, Li YF. Phospholipid peroxidation in macrophage confers tumor resistance by suppressing phagocytic capability towards ferroptotic cells. Cell Death Differ 2024; 31:1184-1201. [PMID: 39103535 PMCID: PMC11369141 DOI: 10.1038/s41418-024-01351-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
Ferroptosis holds significant potential for application in cancer therapy. However, ferroptosis inducers are not cell-specific and can cause phospholipid peroxidation in both tumor and non-tumor cells. This limitation greatly restricts the use of ferroptosis therapy as a safe and effective anticancer strategy. Our previous study demonstrated that macrophages can engulf ferroptotic cells through Toll-like receptor 2 (TLR2). Despite this advancement, the precise mechanism by which phospholipid peroxidation in macrophages affects their phagocytotic capability during treatment of tumors with ferroptotic agents is still unknown. Here, we utilized flow sorting combined with redox phospholipidomics to determine that phospholipid peroxidation in tumor microenvironment (TME) macrophages impaired the macrophages ability to eliminate ferroptotic tumor cells by phagocytosis, ultimately fostering tumor resistance to ferroptosis therapy. Mechanistically, the accumulation of phospholipid peroxidation in the macrophage endoplasmic reticulum (ER) repressed TLR2 trafficking to the plasma membrane and caused its retention in the ER by disrupting the interaction between TLR2 and its chaperone CNPY3. Subsequently, this ER-retained TLR2 recruited E3 ligase MARCH6 and initiated the proteasome-dependent degradation. Using redox phospholipidomics, we identified 1-steaoryl-2-15-HpETE-sn-glycero-3-phosphatidylethanolamine (SAPE-OOH) as the crucial mediator of these effects. Conclusively, our discovery elucidates a novel molecular mechanism underlying macrophage phospholipid peroxidation-induced tumor resistance to ferroptosis therapy and highlights the TLR2-MARCH6 axis as a potential therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Xiang Luo
- Guangdong Second Provincial General Hospital/Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Hai-Biao Gong
- Guangdong Second Provincial General Hospital/Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Zi-Chun Li
- Guangdong Second Provincial General Hospital/Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Dong-Dong Li
- Guangdong Second Provincial General Hospital/Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Zi-Xuan Li
- Guangdong Second Provincial General Hospital/Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Jie Sun
- Guangdong Second Provincial General Hospital/Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Chang-Yu Yan
- Guangdong Second Provincial General Hospital/Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Rui-Ting Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Yue Feng
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 511443, China
| | - Shu-Rui Chen
- Guangdong Second Provincial General Hospital/Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Yun-Feng Cao
- Shanghai Institute for Biomedical and Pharmaceutical Technologies, National Health Commission Key Laboratory of Reproduction Regulation, Shanghai, China
| | - Mingxian Liu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 511443, China
| | - Rong Wang
- Guangdong Second Provincial General Hospital/Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Feng Huang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Wan-Yang Sun
- Guangdong Second Provincial General Hospital/Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Hiroshi Kurihara
- Guangdong Second Provincial General Hospital/Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Wen-Jun Duan
- Guangdong Second Provincial General Hospital/Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Lei Liang
- Guangdong Second Provincial General Hospital/Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Wen Jin
- Guangdong Second Provincial General Hospital/Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Yan-Ping Wu
- Guangdong Second Provincial General Hospital/Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China.
| | - Rong-Rong He
- Guangdong Second Provincial General Hospital/Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - Yi-Fang Li
- Guangdong Second Provincial General Hospital/Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
115
|
Wang J, Hashimoto Y, Hiemori-Kondo M, Nakamoto A, Sakai T, Ye W, Abe-Kanoh N. Resveratrol and piceid enhance efferocytosis by increasing the secretion of MFG-E8 in human THP-1 macrophages. Biosci Biotechnol Biochem 2024; 88:1090-1101. [PMID: 38830798 DOI: 10.1093/bbb/zbae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/26/2024] [Indexed: 06/05/2024]
Abstract
The process of apoptotic cell clearance by phagocytes, known as efferocytosis, plays an essential role in maintaining homeostasis. Defects in efferocytosis can lead to inflammatory diseases such as atherosclerosis and autoimmune disorders. Therefore, the maintenance and promotion of efferocytosis are considered crucial for preventing these diseases. In this study, we observed that resveratrol, a representative functional food ingredient, and its glycoside, piceid, promoted efferocytosis in both human THP-1 macrophages differentiated with phorbol 12-myristate 13-acetate and peritoneal macrophages from thioglycolate-elicited mice. Resveratrol and piceid significantly increased mRNA expression and protein secretion of MFG-E8 in THP-1 macrophages. Furthermore, the activation of efferocytosis and the increment in MFG-E8 protein secretion caused by resveratrol or piceid treatment were canceled by MFG-E8 knockdown in THP-1 macrophages. In conclusion, we have demonstrated for the first time that resveratrol and piceid promote efferocytosis through the upregulation of MFG-E8 excretion in human THP-1 macrophages.
Collapse
Affiliation(s)
- Jing Wang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang Key Laboratory of Grapevine Improvement and Utilization, Weifang, Shandong, China
| | - Yuki Hashimoto
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Miki Hiemori-Kondo
- Department of Nutrition, Faculty of Nutrition, University of Kochi, Kochi, Japan
| | - Akiko Nakamoto
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Tohru Sakai
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Wenxiu Ye
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang Key Laboratory of Grapevine Improvement and Utilization, Weifang, Shandong, China
| | - Naomi Abe-Kanoh
- Department of Food, Life and Environmental Science, Faculty of Agriculture, Yamagata University, Tsuruoka, Yamagata, Japan
| |
Collapse
|
116
|
Wang N, Luo L, Xu X, Zhou H, Li F. Focused ultrasound-induced cell apoptosis for the treatment of tumours. PeerJ 2024; 12:e17886. [PMID: 39184389 PMCID: PMC11344538 DOI: 10.7717/peerj.17886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/18/2024] [Indexed: 08/27/2024] Open
Abstract
Cancer is a serious public health problem worldwide. Traditional treatments, such as surgery, radiotherapy, chemotherapy, and immunotherapy, do not always yield satisfactory results; therefore, an efficient treatment for tumours is urgently needed. As a convenient and minimally invasive modality, focused ultrasound (FUS) has been used not only as a diagnostic tool but also as a therapeutic tool in an increasing number of studies. FUS can help treat malignant tumours by inducing apoptosis. This review describes the three apoptotic pathways, apoptotic cell clearance, and how FUS affects these three apoptotic pathways. This review also discusses the role of thermal and cavitation effects on apoptosis, including caspase activity, mitochondrial dysfunction, and Ca2+ elease. Finally, this article reviews various aspects of FUS combination therapy, including sensitization by radiotherapy and chemotherapy, gene expression upregulation, and the introduction of therapeutic gases, to provide new ideas for clinical tumour therapy.
Collapse
Affiliation(s)
- Na Wang
- Chongqing University, School of Medicine, Chongqing, China
- Chongqing University Cancer Hospital, Ultrasound Department, Chongqing, China
| | - Li Luo
- Chongqing University Cancer Hospital, Ultrasound Department, Chongqing, China
| | - Xinzhi Xu
- Chongqing University Cancer Hospital, Ultrasound Department, Chongqing, China
| | - Hang Zhou
- Chongqing University Cancer Hospital, Ultrasound Department, Chongqing, China
| | - Fang Li
- Chongqing University Cancer Hospital, Ultrasound Department, Chongqing, China
| |
Collapse
|
117
|
Wu X, Wang Z, Croce KR, Li F, Cui J, D’Agati VD, Soni RK, Khalid S, Saleheen D, Tabas I, Yamamoto A, Zhang H. Macrophage WDFY3, a protector against autoimmunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.17.608411. [PMID: 39229152 PMCID: PMC11370343 DOI: 10.1101/2024.08.17.608411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Efficient efferocytosis is essential for maintaining homeostasis. Excessive apoptotic cell (AC) death and impaired macrophage efferocytosis lead to autoantigen release and autoantibody production, immune activation, and organ damage. It remains unclear whether these immunogenic autoantigens are the sole cause of increased autoimmunity or if efferocytosis of ACs directly influences macrophage function, impacting their ability to activate T cells and potentially amplifying autoimmune responses. Additionally, it has not been established if enhancing macrophage efferocytosis or modulating macrophage responses to AC engulfment can be protective in autoimmune-like disorders. Our previous work showed WDFY3 is crucial for efficient macrophage efferocytosis. This study reveals that myeloid knockout of Wdfy3 exacerbates autoimmunity in young mice with increased AC burden by systemic injections of ACs and in middle-aged mice developing spontaneous autoimmunity, whereas ectopic overexpression of WDFY3 suppresses autoimmunity in these models. Macrophages, as efferocytes, can activate T cells and the inflammasome upon engulfing ACs, which are suppressed by overexpressing WDFY3. This work uncovered the role of WDFY3 as a protector against autoimmunity by promoting macrophage efferocytosis thus limiting autoantigen production, as well as mitigating T cell activation and inflammasome activation.
Collapse
Affiliation(s)
- Xun Wu
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Ziyi Wang
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Fang Li
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Jian Cui
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Vivette D. D’Agati
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
- Renal Pathology Laboratory, Columbia University Irving Medical Center, New York, NY, USA
| | - Rajesh K. Soni
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Shareef Khalid
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Danish Saleheen
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Ira Tabas
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Ai Yamamoto
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Hanrui Zhang
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
118
|
Krause W, King D, Horsley V. Transcriptional analysis of efferocytosis in mouse skin wounds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607219. [PMID: 39185146 PMCID: PMC11343138 DOI: 10.1101/2024.08.12.607219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Defects in apoptotic cell clearance, or efferocytosis, can cause inflammatory diseases and prevent tissue repair due in part to inducing a pro-repair transcriptional program in phagocytic cells like macrophages. While the cellular machinery and metabolic pathways involved in efferocytosis have been characterized, the precise efferocytic response of macrophages is dependent on the identity and macromolecular cues of apoptotic cells, and the complex tissue microenvironment in which efferocytosis occurs. Here, we find that macrophages undergoing active efferocytosis in mid-stage mouse skin wounds in vivo display a pro-repair gene program, while efferocytosis of apoptotic skin fibroblasts in vitro also induces an inflammatory transcription response. These data provide a resource for understanding how the skin wound environment influences macrophage efferocytosis and will be useful for future investigations that define the role of efferocytosis during tissue repair.
Collapse
Affiliation(s)
- Will Krause
- Dept. of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Diane King
- SunnyCrest Bioinformatics, Flemington, New Jersey, USA
| | - Valerie Horsley
- Dept. of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA
- Dept. of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
119
|
Zhang J, Liu S, Ding W, Wan J, Qin JJ, Wang M. Resolution of inflammation, an active process to restore the immune microenvironment balance: A novel drug target for treating arterial hypertension. Ageing Res Rev 2024; 99:102352. [PMID: 38857706 DOI: 10.1016/j.arr.2024.102352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 06/12/2024]
Abstract
The resolution of inflammation, the other side of the inflammatory response, is defined as an active and highly coordinated process that promotes the restoration of immune microenvironment balance and tissue repair. Inflammation resolution involves several key processes, including dampening proinflammatory signaling, specialized proresolving lipid mediator (SPM) production, nonlipid proresolving mediator production, efferocytosis and regulatory T-cell (Treg) induction. In recent years, increasing attention has been given to the effects of inflammation resolution on hypertension. Furthermore, our previous studies reported the antihypertensive effects of SPMs. Therefore, in this review, we aim to summarize and discuss the detailed association between arterial hypertension and inflammation resolution. Additional, the association between gut microbe-mediated immune and hypertension is discussed. This findings suggested that accelerating the resolution of inflammation can have beneficial effects on hypertension and its related organ damage. Exploring novel drug targets by focusing on various pathways involved in accelerating inflammation resolution will contribute to the treatment and control of hypertensive diseases in the future.
Collapse
Affiliation(s)
- Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Siqi Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wen Ding
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China; Department of Radiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China.
| | - Juan-Juan Qin
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Center for Healthy Aging, Wuhan University School of Nursing, Wuhan, China.
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China.
| |
Collapse
|
120
|
Yan L, Wang J, Cai X, Liou Y, Shen H, Hao J, Huang C, Luo G, He W. Macrophage plasticity: signaling pathways, tissue repair, and regeneration. MedComm (Beijing) 2024; 5:e658. [PMID: 39092292 PMCID: PMC11292402 DOI: 10.1002/mco2.658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Macrophages are versatile immune cells with remarkable plasticity, enabling them to adapt to diverse tissue microenvironments and perform various functions. Traditionally categorized into classically activated (M1) and alternatively activated (M2) phenotypes, recent advances have revealed a spectrum of macrophage activation states that extend beyond this dichotomy. The complex interplay of signaling pathways, transcriptional regulators, and epigenetic modifications orchestrates macrophage polarization, allowing them to respond to various stimuli dynamically. Here, we provide a comprehensive overview of the signaling cascades governing macrophage plasticity, focusing on the roles of Toll-like receptors, signal transducer and activator of transcription proteins, nuclear receptors, and microRNAs. We also discuss the emerging concepts of macrophage metabolic reprogramming and trained immunity, contributing to their functional adaptability. Macrophage plasticity plays a pivotal role in tissue repair and regeneration, with macrophages coordinating inflammation, angiogenesis, and matrix remodeling to restore tissue homeostasis. By harnessing the potential of macrophage plasticity, novel therapeutic strategies targeting macrophage polarization could be developed for various diseases, including chronic wounds, fibrotic disorders, and inflammatory conditions. Ultimately, a deeper understanding of the molecular mechanisms underpinning macrophage plasticity will pave the way for innovative regenerative medicine and tissue engineering approaches.
Collapse
Affiliation(s)
- Lingfeng Yan
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Jue Wang
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Xin Cai
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Yih‐Cherng Liou
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
- National University of Singapore (NUS) Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingaporeSingapore
| | - Han‐Ming Shen
- Faculty of Health SciencesUniversity of MacauMacauChina
| | - Jianlei Hao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University)Jinan UniversityZhuhaiGuangdongChina
- The Biomedical Translational Research InstituteFaculty of Medical ScienceJinan UniversityGuangzhouGuangdongChina
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospitaland West China School of Basic Medical Sciences and Forensic MedicineSichuan University, and Collaborative Innovation Center for BiotherapyChengduChina
| | - Gaoxing Luo
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Weifeng He
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| |
Collapse
|
121
|
Zhang J, Nie C, Zhang Y, Yang L, Du X, Liu L, Chen Y, Yang Q, Zhu X, Li Q. Analysis of mechanism, therapeutic strategies, and potential natural compounds against atherosclerosis by targeting iron overload-induced oxidative stress. Biomed Pharmacother 2024; 177:117112. [PMID: 39018869 DOI: 10.1016/j.biopha.2024.117112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/19/2024] Open
Abstract
Ferroptosis is a novel form of cell demise characterized primarily by the reduction of trivalent iron to divalent iron, leading to the release of reactive oxygen species (ROS) and consequent induction of intense oxidative stress. In atherosclerosis (AS), highly accumulated lipids are modified by ROS to promote the formation of lipid peroxides, further amplifying cellular oxidative stress damage to influence all stages of atherosclerotic development. Macrophages are regarded as pivotal executors in the progression of AS and the handling of iron, thus targeting macrophage iron metabolism holds significant guiding implications for exploring potential therapeutic strategies against AS. In this comprehensive review, we elucidate the potential interplay among iron overload, inflammation, and lipid dysregulation, summarizing the potential mechanisms underlying the suppression of AS by alleviating iron overload. Furthermore, the application of Traditional Chinese Medicine (TCM) is increasingly widespread. Based on extant research and the pharmacological foundations of active compounds of TCM, we propose alternative therapeutic agents for AS in the context of iron overload, aiming to diversify the therapeutic avenues.
Collapse
Affiliation(s)
- Jing Zhang
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Chunxia Nie
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Yang Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Lina Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Xinke Du
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Li Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Qing Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Xiaoxin Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China.
| | - Qi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China; State key laboratory for quality ensurance and sustainable use ofdao-di herbs, Beijing 100700, China.
| |
Collapse
|
122
|
Lacey KA, Pickrum AM, Gonzalez S, Bartnicki E, Castellaw AH, Rodrick TC, Jones DR, Khanna KM, Torres VJ. Dietary and water restriction leads to increased susceptibility to antimicrobial resistant pathogens. SCIENCE ADVANCES 2024; 10:eadi7438. [PMID: 39047095 PMCID: PMC11268424 DOI: 10.1126/sciadv.adi7438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
Dehydration and malnutrition are common and often underdiagnosed in hospital settings. Multidrug-resistant bacterial infections result in more than 35,000 deaths a year in nosocomial patients. The effect of temporal dietary and water restriction (DWR) on susceptibility to multidrug-resistant pathogens is unknown. We report that DWR markedly increased susceptibility to systemic infection by ESKAPE pathogens. Using a murine bloodstream model of methicillin-resistant Staphylococcus aureus infection, we show that DWR leads to significantly increased mortality and morbidity. DWR causes increased bacterial burden, severe pathology, and increased numbers of phagocytes in the kidney. DWR appears to alter the functionality of these phagocytes and is therefore unable to control infection. Mechanistically, we show that DWR impairs the ability of macrophages to phagocytose multiple bacterial pathogens and efferocytose apoptotic neutrophils. Together, this work highlights the crucial impact that diet and hydration play in protecting against infection.
Collapse
Affiliation(s)
- Keenan A. Lacey
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Adam M. Pickrum
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Sandra Gonzalez
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Eric Bartnicki
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ashley H. Castellaw
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Tori C. Rodrick
- Metabolomics Core Resource Laboratory, New York University Langone Health, New York, NY 10016, USA
| | - Drew R. Jones
- Metabolomics Core Resource Laboratory, New York University Langone Health, New York, NY 10016, USA
| | - Kamal M. Khanna
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Victor J. Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
123
|
Zhou L, Wu J, Wei Z, Zheng Y. Legumain in cardiovascular diseases. Exp Biol Med (Maywood) 2024; 249:10121. [PMID: 39104790 PMCID: PMC11298360 DOI: 10.3389/ebm.2024.10121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide, having become a global public health problem, so the pathophysiological mechanisms and therapeutic strategies of CVDs need further study. Legumain is a powerful enzyme that is widely distributed in mammals and plays an important role in a variety of biological processes. Recent research suggests that legumain is associated with the occurrence and progression of CVDs. In this review, we provide a comprehensive overview of legumain in the pathogenesis of CVDs. The role of legumain in CVDs, such as carotid atherosclerosis, pulmonary hypertension, coronary artery disease, peripheral arterial disease, aortic aneurysms and dissection, is discussed. The potential applications of legumain as a biomarker of these diseases are also explored. By understanding the role of legumain in the pathogenesis of CVDs, we aim to support new therapeutic strategies to prevent or treat these diseases.
Collapse
Affiliation(s)
- Lei Zhou
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Vascular Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianqiang Wu
- Institute of Clinical Medicine, National Science and Technology Key Infrastructure on Translational Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zairong Wei
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuehong Zheng
- Department of Vascular Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
124
|
Apostolo D, D’Onghia D, Nerviani A, Ghirardi GM, Sola D, Perazzi M, Tonello S, Colangelo D, Sainaghi PP, Bellan M. Could Gas6/TAM Axis Provide Valuable Insights into the Pathogenesis of Systemic Sclerosis? Curr Issues Mol Biol 2024; 46:7486-7504. [PMID: 39057085 PMCID: PMC11275301 DOI: 10.3390/cimb46070444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Systemic sclerosis (SSc) is a connective tissue disorder characterized by microvascular injury, extracellular matrix deposition, autoimmunity, inflammation, and fibrosis. The clinical complexity and high heterogeneity of the disease make the discovery of potential therapeutic targets difficult. However, the recent progress in the comprehension of its pathogenesis is encouraging. Growth Arrest-Specific 6 (Gas6) and Tyro3, Axl, and MerTK (TAM) receptors are involved in multiple biological processes, including modulation of the immune response, phagocytosis, apoptosis, fibrosis, inflammation, cancer development, and autoimmune disorders. In the present manuscript, we review the current evidence regarding SSc pathogenesis and the role of the Gas6/TAM system in several human diseases, suggesting its likely contribution in SSc and highlighting areas where further research is necessary to fully comprehend the role of TAM receptors in this condition. Indeed, understanding the involvement of TAM receptors in SSc, which is currently unknown, could provide valuable insights for novel potential therapeutic targets.
Collapse
Affiliation(s)
- Daria Apostolo
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (D.D.); (D.S.); (M.P.); (S.T.); (P.P.S.); (M.B.)
- Centre for Experimental Medicine and Rheumatology, Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London E1 4NS, UK;
| | - Davide D’Onghia
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (D.D.); (D.S.); (M.P.); (S.T.); (P.P.S.); (M.B.)
| | - Alessandra Nerviani
- Centre for Experimental Medicine and Rheumatology, Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London E1 4NS, UK;
| | - Giulia Maria Ghirardi
- Centre for Experimental Medicine and Rheumatology, Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London E1 4NS, UK;
| | - Daniele Sola
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (D.D.); (D.S.); (M.P.); (S.T.); (P.P.S.); (M.B.)
- IRCCS Istituto Auxologico Italiano, UO General Medicine, 28824 Oggebbio, Italy
| | - Mattia Perazzi
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (D.D.); (D.S.); (M.P.); (S.T.); (P.P.S.); (M.B.)
- Internal Medicine and Rheumatology Unit, A.O.U. Maggiore della Carità, 28100 Novara, Italy
| | - Stelvio Tonello
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (D.D.); (D.S.); (M.P.); (S.T.); (P.P.S.); (M.B.)
| | - Donato Colangelo
- Department of Health Sciences, Pharmacology, University of Piemonte Orientale (UPO), 28100 Novara, Italy;
| | - Pier Paolo Sainaghi
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (D.D.); (D.S.); (M.P.); (S.T.); (P.P.S.); (M.B.)
- Internal Medicine and Rheumatology Unit, A.O.U. Maggiore della Carità, 28100 Novara, Italy
- Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale, 28100 Novara, Italy
| | - Mattia Bellan
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (D.D.); (D.S.); (M.P.); (S.T.); (P.P.S.); (M.B.)
- Internal Medicine and Rheumatology Unit, A.O.U. Maggiore della Carità, 28100 Novara, Italy
- Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
125
|
Sahebi K, Foroozand H, Amirsoleymani M, Eslamzadeh S, Negahdaripour M, Tajbakhsh A, Rahimi Jaberi A, Savardashtaki A. Advancing stroke recovery: unlocking the potential of cellular dynamics in stroke recovery. Cell Death Discov 2024; 10:321. [PMID: 38992073 PMCID: PMC11239950 DOI: 10.1038/s41420-024-02049-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 07/13/2024] Open
Abstract
Stroke stands as a predominant cause of mortality and morbidity worldwide, and there is a pressing need for effective therapies to improve outcomes and enhance the quality of life for stroke survivors. In this line, effective efferocytosis, the clearance of apoptotic cells, plays a crucial role in neuroprotection and immunoregulation. This process involves specialized phagocytes known as "professional phagocytes" and consists of four steps: "Find-Me," "Eat-Me," engulfment/digestion, and anti-inflammatory responses. Impaired efferocytosis can lead to secondary necrosis and inflammation, resulting in adverse outcomes following brain pathologies. Enhancing efferocytosis presents a potential avenue for improving post-stroke recovery. Several therapeutic targets have been identified, including osteopontin, cysteinyl leukotriene 2 receptor, the µ opioid receptor antagonist β-funaltrexamine, and PPARγ and RXR agonists. Ferroptosis, defined as iron-dependent cell death, is now emerging as a novel target to attenuate post-stroke tissue damage and neuronal loss. Additionally, several biomarkers, most importantly CD163, may serve as potential biomarkers and therapeutic targets for acute ischemic stroke, aiding in stroke diagnosis and prognosis. Non-pharmacological approaches involve physical rehabilitation, hypoxia, and hypothermia. Mitochondrial dysfunction is now recognized as a major contributor to the poor outcomes of brain stroke, and medications targeting mitochondria may exhibit beneficial effects. These strategies aim to polarize efferocytes toward an anti-inflammatory phenotype, limit the ingestion of distressed but viable neurons, and stimulate efferocytosis in the late phase of stroke to enhance post-stroke recovery. These findings highlight promising directions for future research and development of effective stroke recovery therapies.
Collapse
Affiliation(s)
- Keivan Sahebi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Foroozand
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Saghi Eslamzadeh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Abbas Rahimi Jaberi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
126
|
Ben-Hur S, Sernik S, Afar S, Kolpakova A, Politi Y, Gal L, Florentin A, Golani O, Sivan E, Dezorella N, Morgenstern D, Pietrokovski S, Schejter E, Yacobi-Sharon K, Arama E. Egg multivesicular bodies elicit an LC3-associated phagocytosis-like pathway to degrade paternal mitochondria after fertilization. Nat Commun 2024; 15:5715. [PMID: 38977659 PMCID: PMC11231261 DOI: 10.1038/s41467-024-50041-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 06/27/2024] [Indexed: 07/10/2024] Open
Abstract
Mitochondria are maternally inherited, but the mechanisms underlying paternal mitochondrial elimination after fertilization are far less clear. Using Drosophila, we show that special egg-derived multivesicular body vesicles promote paternal mitochondrial elimination by activating an LC3-associated phagocytosis-like pathway, a cellular defense pathway commonly employed against invading microbes. Upon fertilization, these egg-derived vesicles form extended vesicular sheaths around the sperm flagellum, promoting degradation of the sperm mitochondrial derivative and plasma membrane. LC3-associated phagocytosis cascade of events, including recruitment of a Rubicon-based class III PI(3)K complex to the flagellum vesicular sheaths, its activation, and consequent recruitment of Atg8/LC3, are all required for paternal mitochondrial elimination. Finally, lysosomes fuse with strings of large vesicles derived from the flagellum vesicular sheaths and contain degrading fragments of the paternal mitochondrial derivative. Given reports showing that in some mammals, the paternal mitochondria are also decorated with Atg8/LC3 and surrounded by multivesicular bodies upon fertilization, our findings suggest that a similar pathway also mediates paternal mitochondrial elimination in other flagellated sperm-producing organisms.
Collapse
Affiliation(s)
- Sharon Ben-Hur
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Shoshana Sernik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sara Afar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Alina Kolpakova
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yoav Politi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Liron Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Anat Florentin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ofra Golani
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ehud Sivan
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Nili Dezorella
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - David Morgenstern
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalised Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Shmuel Pietrokovski
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal Schejter
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Keren Yacobi-Sharon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eli Arama
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
127
|
Lu T, Yee PP, Chih SY, Tang M, Chen H, Aregawi DG, Glantz MJ, Zacharia BE, Wang HG, Li W. LC3-associated phagocytosis of neutrophils triggers tumor ferroptotic cell death in glioblastoma. EMBO J 2024; 43:2582-2605. [PMID: 38806658 PMCID: PMC11217441 DOI: 10.1038/s44318-024-00130-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024] Open
Abstract
Necrosis in solid tumors is commonly associated with poor prognostic but how these lesions expand remains unclear. Studies have found that neutrophils associate with and contribute to necrosis development in glioblastoma by inducing tumor cell ferroptosis through transferring myeloperoxidase-containing granules. However, the mechanism of neutrophilic granule transfer remains elusive. We performed an unbiased small molecule screen and found that statins inhibit neutrophil-induced tumor cell death by blocking the neutrophilic granule transfer. Further, we identified a novel process wherein neutrophils are engulfed by tumor cells before releasing myeloperoxidase-containing contents into tumor cells. This neutrophil engulfment is initiated by integrin-mediated adhesion, and further mediated by LC3-associated phagocytosis (LAP), which can be blocked by inhibiting the Vps34-UVRAG-RUBCN-containing PI3K complex. Myeloperoxidase inhibition or Vps34 depletion resulted in reduced necrosis formation and prolonged mouse survival in an orthotopic glioblastoma mouse model. Thus, our study unveils a critical role for LAP-mediated neutrophil internalization in facilitating the transfer of neutrophilic granules, which in turn triggers tumor cell death and necrosis expansion. Targeting this process holds promise for improving glioblastoma prognosis.
Collapse
Affiliation(s)
- Tong Lu
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Patricia P Yee
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
- Medical Scientist Training Program, Penn State College of Medicine, Hershey, PA, USA
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Stephen Y Chih
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
- Medical Scientist Training Program, Penn State College of Medicine, Hershey, PA, USA
| | - Miaolu Tang
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Han Chen
- Transmission Electron Microscopy (TEM) Core, Penn State College of Medicine, Hershey, PA, USA
| | - Dawit G Aregawi
- Division of Neurooncology and Skull Base Surgery, Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
- Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA, USA
- Department of Neurology, Penn State College of Medicine, Hershey, PA, USA
| | - Michael J Glantz
- Division of Neurooncology and Skull Base Surgery, Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
- Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA, USA
- Department of Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Brad E Zacharia
- Division of Neurooncology and Skull Base Surgery, Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
- Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA, USA
- Department of Otolaryngology-Head and Neck Surgery, Penn State College of Medicine, Hershey, PA, USA
| | - Hong-Gang Wang
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
- Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Wei Li
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA.
- Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA, USA.
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA.
| |
Collapse
|
128
|
Yuan S, Chai Y, Xu J, Wang Y, Jiang L, Lu N, Jiang H, Wang J, Pan X, Deng J. Engineering Efferocytosis-Mimicking Nanovesicles to Regulate Joint Anti-Inflammation and Peripheral Immunosuppression for Rheumatoid Arthritis Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404198. [PMID: 38810118 PMCID: PMC11267389 DOI: 10.1002/advs.202404198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/16/2024] [Indexed: 05/31/2024]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disorder characterized by chronic inflammation of the synovial joints and the dysfunction of regulatory T cells (Tregs) in the peripheral blood. Therefore, an optimal treatment strategy should aim to eliminate the inflammatory response in the joints and simultaneously restore the immune tolerance of Tregs in peripheral blood. Accordingly, we developed an efferocytosis-mimicking nanovesicle that contains three functional factors for immunomodulating of efferocytosis, including "find me" and "eat me" signals for professional (macrophage) or non-professional phagocytes (T lymphocyte), and "apoptotic metabolite" for metabolite digestion. We showed that efferocytosis-mimicking nanovesicles targeted the inflamed joints and spleen of mice with collagen-induced arthritis, further recruiting and selectively binding to macrophages and T lymphocytes to induce M2 macrophage polarization and Treg differentiation and T helper cell 17 (Th17) recession. Under systemic administration, the efferocytosis-mimicking nanovesicles effectively maintained the pro-inflammatory M1/anti-inflammatory M2 macrophage balance in joints and the Treg/Th17 imbalance in peripheral blood to prevent RA progression. This study demonstrates the potential of efferocytosis-mimicking nanovesicles for RA immunotherapy.
Collapse
Affiliation(s)
- Shanshan Yuan
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
- Joint Centre of Translational MedicineWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
| | - Yingqian Chai
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
- Joint Centre of Translational MedicineWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
| | - Jianghua Xu
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
- Joint Centre of Translational MedicineWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
| | - Youchao Wang
- Chimie ParisTechPSL UniversityCNRSInstitute of Chemistry for Life and Health SciencesLaboratory for Inorganic Chemical BiologyParis75005France
| | - Lihua Jiang
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
- Joint Centre of Translational MedicineWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
| | - Ning Lu
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
- Joint Centre of Translational MedicineWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
| | - Hongyi Jiang
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Jilong Wang
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
- Joint Centre of Translational MedicineWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
| | - Xiaoyun Pan
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Junjie Deng
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
- Joint Centre of Translational MedicineWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
| |
Collapse
|
129
|
Wang S, Li J, Xu S, Wang N, Pan B, Yang B, Zheng Y, Zhang J, Peng F, Peng C, Wang Z. Baohuoside I chemosensitises breast cancer to paclitaxel by suppressing extracellular vesicle/CXCL1 signal released from apoptotic cells. J Extracell Vesicles 2024; 13:e12493. [PMID: 39051750 PMCID: PMC11270583 DOI: 10.1002/jev2.12493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 06/29/2024] [Indexed: 07/27/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype and chemotherapy is the cornerstone treatment for TNBC. Regrettably, emerging findings suggest that chemotherapy facilitates pro-metastatic changes in the tumour microenvironment. Extracellular vesicles (EVs) have been highly implicated in cancer drug resistance and metastasis. However, the effects of the EVs released from dying cancer cells on TNBC prognosis and corresponding therapeutic strategies have been poorly investigated. This study demonstrated that paclitaxel chemotherapy elicited CXCL1-enriched EVs from apoptotic TNBC cells (EV-Apo). EV-Apo promoted the chemoresistance and invasion of co-cultured TNBC cells by polarizing M2 macrophages through activating PD-L1 signalling. However, baohuoside I (BHS) remarkably sensitized the co-cultured TNBC cells to paclitaxel chemotherapy via modulating EV-Apo signalling. Mechanistically, BHS remarkably decreased C-X-C motif chemokine ligand 1 (CXCL1) cargo within EV-Apo and therefore attenuated macrophage M2 polarization by suppressing PD-L1 activation. Additionally, BHS decreased EV-Apo release by diminishing the biogenesis of intraluminal vesicles (ILVs) within multivesicular bodies (MVBs) of TNBC cells. Furthermore, BHS bound to the LEU104 residue of flotillin 2 (FLOT2) and interrupted its interaction with RAS oncogene family member 31 (RAB31), leading to the blockage of RAB31-FLOT2 complex-driven ILV biogenesis. Importantly, BHS remarkably chemosensitised paclitaxel to inhibit TNBC metastasis in vivo by suppressing EV-ApoCXCL1-induced PD-L1 activation and M2 polarization of tumour-associated macrophages (TAMs). This pioneering study sheds light on EV-ApoCXCL1 as a novel therapeutic target to chemosensitise TNBC, and presents BHS as a promising chemotherapy adjuvant to improve TNBC chemosensitivity and prognosis by disturbing EV-ApoCXCL1 biogenesis.
Collapse
Affiliation(s)
- Shengqi Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese MedicineThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- State Key Laboratory of Southwestern Chinese Medicine ResourcesChengduUniversity of Traditional Chinese MedicineChengduSichuanChina
- Breast Disease Specialist Hospital of Guangdong Provincial Hospital ofChinese MedicineGuangzhouGuangdongChina
- The Research Center of Integrative Cancer Medicine, Disciplineof Integrated Chinese and Western MedicineThe Second Clinical College ofGuangzhou University of Chinese MedicineGuangzhouChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical SciencesGuangdong Provincial Hospital of Chinese MedicineGuangzhouChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouChina
| | - Jing Li
- Breast Disease Specialist Hospital of Guangdong Provincial Hospital ofChinese MedicineGuangzhouGuangdongChina
- The Research Center of Integrative Cancer Medicine, Disciplineof Integrated Chinese and Western MedicineThe Second Clinical College ofGuangzhou University of Chinese MedicineGuangzhouChina
| | - Shang Xu
- Breast Disease Specialist Hospital of Guangdong Provincial Hospital ofChinese MedicineGuangzhouGuangdongChina
- The Research Center of Integrative Cancer Medicine, Disciplineof Integrated Chinese and Western MedicineThe Second Clinical College ofGuangzhou University of Chinese MedicineGuangzhouChina
| | - Neng Wang
- The Research Center of Integrative Cancer Medicine, Disciplineof Integrated Chinese and Western MedicineThe Second Clinical College ofGuangzhou University of Chinese MedicineGuangzhouChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouChina
- The Research Center for Integrative Medicine, School of Basic Medical SciencesGuangzhou University of Chinese MedicineGuangzhouChina
| | - Bo Pan
- Breast Disease Specialist Hospital of Guangdong Provincial Hospital ofChinese MedicineGuangzhouGuangdongChina
- The Research Center of Integrative Cancer Medicine, Disciplineof Integrated Chinese and Western MedicineThe Second Clinical College ofGuangzhou University of Chinese MedicineGuangzhouChina
| | - Bowen Yang
- Breast Disease Specialist Hospital of Guangdong Provincial Hospital ofChinese MedicineGuangzhouGuangdongChina
- The Research Center of Integrative Cancer Medicine, Disciplineof Integrated Chinese and Western MedicineThe Second Clinical College ofGuangzhou University of Chinese MedicineGuangzhouChina
| | - Yifeng Zheng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese MedicineThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Breast Disease Specialist Hospital of Guangdong Provincial Hospital ofChinese MedicineGuangzhouGuangdongChina
- The Research Center of Integrative Cancer Medicine, Disciplineof Integrated Chinese and Western MedicineThe Second Clinical College ofGuangzhou University of Chinese MedicineGuangzhouChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouChina
| | - Juping Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese MedicineThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Breast Disease Specialist Hospital of Guangdong Provincial Hospital ofChinese MedicineGuangzhouGuangdongChina
- The Research Center of Integrative Cancer Medicine, Disciplineof Integrated Chinese and Western MedicineThe Second Clinical College ofGuangzhou University of Chinese MedicineGuangzhouChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouChina
| | - Fu Peng
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan ProvinceWest China School of Pharmacy, Sichuan UniversityChengduChina
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine ResourcesChengduUniversity of Traditional Chinese MedicineChengduSichuanChina
| | - Zhiyu Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese MedicineThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Breast Disease Specialist Hospital of Guangdong Provincial Hospital ofChinese MedicineGuangzhouGuangdongChina
- The Research Center of Integrative Cancer Medicine, Disciplineof Integrated Chinese and Western MedicineThe Second Clinical College ofGuangzhou University of Chinese MedicineGuangzhouChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical SciencesGuangdong Provincial Hospital of Chinese MedicineGuangzhouChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouChina
| |
Collapse
|
130
|
Shu LX, Cao LL, Guo X, Wang ZB, Wang SZ. Mechanism of efferocytosis in atherosclerosis. J Mol Med (Berl) 2024; 102:831-840. [PMID: 38727748 DOI: 10.1007/s00109-024-02439-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 06/29/2024]
Abstract
Atherosclerosis (AS) is a chronic inflammatory vascular disease that occurs in the intima of large and medium-sized arteries with the immune system's involvement. It is a common pathological basis for high morbidity and mortality of cardiovascular diseases. Abnormal proliferation of apoptotic cells and necrotic cells leads to AS plaque expansion, necrotic core formation, and rupture. In the early stage of AS, macrophages exert an efferocytosis effect to engulf and degrade apoptotic, dead, damaged, or senescent cells by efferocytosis, thus enabling the regulation of the organism. In the early stage of AS, macrophages rely on this effect to slow down the process of AS. However, in the advanced stage of AS, the efferocytosis of macrophages within the plaque is impaired, which leads to the inability of macrophages to promptly remove the apoptotic cells (ACs) from the organism promptly, causing exacerbation of AS. Moreover, upregulation of CD47 expression in AS plaques also protects ACs from phagocytosis by macrophages, resulting in a large amount of residual ACs in the plaque, further expanding the necrotic core. In this review, we discussed the molecular mechanisms involved in the process of efferocytosis and how efferocytosis is impaired and regulated during AS, hoping to provide new insights for treating AS.
Collapse
Affiliation(s)
- Li-Xia Shu
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Liu-Li Cao
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Xin Guo
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Zong-Bao Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Shu-Zhi Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China.
| |
Collapse
|
131
|
Patterson MT, Xu Y, Hillman H, Osinski V, Schrank PR, Kennedy AE, Barrow F, Zhu A, Tollison S, Shekhar S, Stromnes IM, Tassi I, Wu D, Revelo XS, Binstadt BA, Williams JW. Trem2 Agonist Reprograms Foamy Macrophages to Promote Atherosclerotic Plaque Stability-Brief Report. Arterioscler Thromb Vasc Biol 2024; 44:1646-1657. [PMID: 38695172 PMCID: PMC11208052 DOI: 10.1161/atvbaha.124.320797] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/18/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Trem2 (triggering receptor on myeloid cells 2), a surface lipid receptor, is expressed on foamy macrophages within atherosclerotic lesions and regulates cell survival, proliferation, and anti-inflammatory responses. Studies examining the role of Trem2 in atherosclerosis have shown that deletion of Trem2 leads to impaired foamy macrophage lipid uptake, proliferation, survival, and cholesterol efflux. Thus, we tested the hypothesis that administration of a Trem2 agonist antibody (AL002a) to atherogenic mice would enhance macrophage survival and decrease necrotic core formation to improve plaque stability. METHODS To model a therapeutic intervention approach, atherosclerosis-prone mice (Ldlr [low-density lipoprotein receptor]-/-) were fed a high-fat diet for 8 weeks, then transitioned to treatment with AL002a or isotype control for an additional 8 weeks while continuing on a high-fat diet. RESULTS AL002a-treated mice had increased lesion size in both the aortic root and whole mount aorta, which correlated with an expansion of plaque macrophage area. This expansion was due to increased macrophage survival and proliferation in plaques. Importantly, plaques from AL002a-treated mice showed improved features of plaque stability, including smaller necrotic cores, increased fibrous caps, and greater collagen deposition. Single-cell RNA sequencing of whole aorta suspensions from isotype- and AL002a-treated atherosclerotic mice revealed that Trem2 agonism dramatically altered foamy macrophage transcriptome. This included upregulation of oxidative phosphorylation and increased expression of collagen genes. In vitro studies validated that Trem2 agonism with AL002a promoted foamy macrophage oxidized low-density lipoprotein uptake, survival, and cholesterol efflux. CONCLUSIONS Trem2 agonism expands atherosclerotic plaque macrophages by promoting cell survival and proliferation but improves features of plaque stability by rewiring foamy macrophage function to enhance cholesterol efflux and collagen deposition.
Collapse
MESH Headings
- Animals
- Plaque, Atherosclerotic
- Receptors, Immunologic/agonists
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/genetics
- Membrane Glycoproteins/agonists
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/genetics
- Disease Models, Animal
- Mice
- Atherosclerosis/pathology
- Atherosclerosis/metabolism
- Atherosclerosis/genetics
- Atherosclerosis/drug therapy
- Atherosclerosis/prevention & control
- Foam Cells/metabolism
- Foam Cells/pathology
- Foam Cells/drug effects
- Mice, Inbred C57BL
- Mice, Knockout
- Male
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Receptors, LDL/deficiency
- Cell Proliferation/drug effects
- Diet, High-Fat
- Cell Survival/drug effects
- Necrosis
- Aortic Diseases/pathology
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Aortic Diseases/prevention & control
Collapse
Affiliation(s)
- Michael T. Patterson
- Center for Immunology (M.T.P., Y.X., H.H., V.O., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., I.M.S., X.S.R., B.A.B., J.W.W.), University of Minnesota, Minneapolis
- Department of Integrative Biology and Physiology (M.T.P., Y.X., H.H., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., X.S.R., J.W.W.), University of Minnesota, Minneapolis
| | - Yingzheng Xu
- Center for Immunology (M.T.P., Y.X., H.H., V.O., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., I.M.S., X.S.R., B.A.B., J.W.W.), University of Minnesota, Minneapolis
- Department of Integrative Biology and Physiology (M.T.P., Y.X., H.H., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., X.S.R., J.W.W.), University of Minnesota, Minneapolis
| | - Hannah Hillman
- Center for Immunology (M.T.P., Y.X., H.H., V.O., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., I.M.S., X.S.R., B.A.B., J.W.W.), University of Minnesota, Minneapolis
- Department of Integrative Biology and Physiology (M.T.P., Y.X., H.H., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., X.S.R., J.W.W.), University of Minnesota, Minneapolis
| | - Victoria Osinski
- Center for Immunology (M.T.P., Y.X., H.H., V.O., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., I.M.S., X.S.R., B.A.B., J.W.W.), University of Minnesota, Minneapolis
- Department of Pediatrics (V.O., B.A.B.), University of Minnesota, Minneapolis
| | - Patricia R. Schrank
- Center for Immunology (M.T.P., Y.X., H.H., V.O., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., I.M.S., X.S.R., B.A.B., J.W.W.), University of Minnesota, Minneapolis
- Department of Integrative Biology and Physiology (M.T.P., Y.X., H.H., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., X.S.R., J.W.W.), University of Minnesota, Minneapolis
| | - Ainsley E. Kennedy
- Center for Immunology (M.T.P., Y.X., H.H., V.O., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., I.M.S., X.S.R., B.A.B., J.W.W.), University of Minnesota, Minneapolis
- Department of Integrative Biology and Physiology (M.T.P., Y.X., H.H., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., X.S.R., J.W.W.), University of Minnesota, Minneapolis
| | - Fanta Barrow
- Center for Immunology (M.T.P., Y.X., H.H., V.O., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., I.M.S., X.S.R., B.A.B., J.W.W.), University of Minnesota, Minneapolis
- Department of Integrative Biology and Physiology (M.T.P., Y.X., H.H., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., X.S.R., J.W.W.), University of Minnesota, Minneapolis
| | - Alisha Zhu
- Center for Immunology (M.T.P., Y.X., H.H., V.O., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., I.M.S., X.S.R., B.A.B., J.W.W.), University of Minnesota, Minneapolis
- Department of Integrative Biology and Physiology (M.T.P., Y.X., H.H., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., X.S.R., J.W.W.), University of Minnesota, Minneapolis
| | - Samuel Tollison
- Center for Immunology (M.T.P., Y.X., H.H., V.O., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., I.M.S., X.S.R., B.A.B., J.W.W.), University of Minnesota, Minneapolis
- Department of Integrative Biology and Physiology (M.T.P., Y.X., H.H., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., X.S.R., J.W.W.), University of Minnesota, Minneapolis
| | - Sia Shekhar
- Center for Immunology (M.T.P., Y.X., H.H., V.O., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., I.M.S., X.S.R., B.A.B., J.W.W.), University of Minnesota, Minneapolis
- Department of Integrative Biology and Physiology (M.T.P., Y.X., H.H., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., X.S.R., J.W.W.), University of Minnesota, Minneapolis
| | - Ingunn M. Stromnes
- Center for Immunology (M.T.P., Y.X., H.H., V.O., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., I.M.S., X.S.R., B.A.B., J.W.W.), University of Minnesota, Minneapolis
- Department of Microbiology and Immunology (I.M.S.), University of Minnesota, Minneapolis
| | - Ilaria Tassi
- Alector, Inc, South San Francisco, CA (I.T., D.W.)
- Now with Deep Apple Therapeutics, South San Francisco, CA (I.T.)
| | - Dick Wu
- Alector, Inc, South San Francisco, CA (I.T., D.W.)
| | - Xavier S. Revelo
- Center for Immunology (M.T.P., Y.X., H.H., V.O., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., I.M.S., X.S.R., B.A.B., J.W.W.), University of Minnesota, Minneapolis
- Department of Integrative Biology and Physiology (M.T.P., Y.X., H.H., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., X.S.R., J.W.W.), University of Minnesota, Minneapolis
| | - Bryce A. Binstadt
- Center for Immunology (M.T.P., Y.X., H.H., V.O., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., I.M.S., X.S.R., B.A.B., J.W.W.), University of Minnesota, Minneapolis
- Department of Pediatrics (V.O., B.A.B.), University of Minnesota, Minneapolis
| | - Jesse W. Williams
- Center for Immunology (M.T.P., Y.X., H.H., V.O., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., I.M.S., X.S.R., B.A.B., J.W.W.), University of Minnesota, Minneapolis
- Department of Integrative Biology and Physiology (M.T.P., Y.X., H.H., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., X.S.R., J.W.W.), University of Minnesota, Minneapolis
| |
Collapse
|
132
|
Han Y, Hu J, Pan J, Song X, Zhou Y, Zhang J, Yang Y, Shi X, Yang J, Sun M. LPS exposure alleviates multiple tissues damage by facilitating macrophage efferocytosis. Int Immunopharmacol 2024; 135:112283. [PMID: 38772299 DOI: 10.1016/j.intimp.2024.112283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024]
Abstract
Toll-like receptors (TLRs) play a crucial role in mediating immune responses by recognizing pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs), as well as facilitating apoptotic cell (ACs) clearance (efferocytosis), thus contributing significantly to maintaining homeostasis and promoting tissue resolution. In this study, we investigate the impact of TLR agonists on macrophage efferocytosis. Our findings demonstrate that pretreatment with the TLR agonist lipopolysaccharide (LPS) significantly enhances macrophage phagocytic ability, thereby promoting efferocytosis both in vitro and in vivo. Moreover, LPS pretreatment confers tissue protection against damage by augmenting macrophage efferocytic capacity in murine models. Further examination reveals that LPS modulates efferocytosis by upregulating the expression of Tim4.These results underscore the pivotal role of TLR agonists in regulating the efferocytosis process and suggest potential therapeutic avenues for addressing inflammatory diseases. Overall, our study highlights the intricate interplay between LPS pretreatment and efferocytosis in maintaining tissue homeostasis and resolving inflammation.
Collapse
Affiliation(s)
- Yuwen Han
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No. 88, Suzhou 215163, China
| | - Jiukun Hu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No. 88, Suzhou 215163, China
| | - Jinlin Pan
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No. 88, Suzhou 215163, China
| | - Xueyan Song
- Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No. 88, Suzhou 215163, China
| | - Yuanshuai Zhou
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No. 88, Suzhou 215163, China
| | - Jun Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No. 88, Suzhou 215163, China
| | - Yue Yang
- Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No. 88, Suzhou 215163, China; Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiaohua Shi
- Department of Gastroenterology, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 1 Lijiang Road, Suzhou 215153, China
| | - Jiao Yang
- Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Lijiang Road No. 1, Suzhou 215153, China.
| | - Minxuan Sun
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No. 88, Suzhou 215163, China.
| |
Collapse
|
133
|
Li Y, Tian M, Pires Sanches JG, Zhang Q, Hou L, Zhang J. Sorcin Inhibits Mitochondrial Apoptosis by Interacting with STAT3 via NF-κB Pathway. Int J Mol Sci 2024; 25:7206. [PMID: 39000312 PMCID: PMC11241191 DOI: 10.3390/ijms25137206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/13/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a common tumor. Our group has previously reported that sorcin (SRI) plays an important role in the progression and prognosis of HCC. This study aims to explore the mechanism of SRI inhibiting the mitochondrial apoptosis. Bioinformatics analysis, co-IP and immunofluorescence were used to analyze the relationship between SRI and STAT3. MMP and Hoechst staining were performed to detect the effect of SRI on cell apoptosis. The expression of apoptosis-related proteins and NF-κB signaling pathway were examined by Western blot and immunohistochemistry when SRI overexpression or underexpression in vivo and in vitro were found. Moreover, inhibitors were used to further explore the molecular mechanism. Overexpression of SRI inhibited cell apoptosis, which was attenuated by SRI knockdown in vitro and in vivo. Moreover, we identified that STAT3 is an SRI-interacting protein. Mechanistically, SRI interacts with STAT3 and then activates the NF-κB signaling pathway in vitro and in vivo. SRI interacting with STAT3 inhibits apoptosis by the NF-κB pathway and further contributes to the proliferation in HCC, which offers a novel clue and a new potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Yizi Li
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Manlin Tian
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Jaceline Gislaine Pires Sanches
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Qingqing Zhang
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Li Hou
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Jun Zhang
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
134
|
Xu C, Wu J, Ye J, Si Y, Zhang J, Wu B, Pan L, Fu J, Ren Q, Xie S, Tang B, Xiao Y, Hong T. Multiomics integration-based immunological characterizations of adamantinomatous craniopharyngioma in relation to keratinization. Cell Death Dis 2024; 15:439. [PMID: 38906852 PMCID: PMC11192745 DOI: 10.1038/s41419-024-06840-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Although adamantinomatous craniopharyngioma (ACP) is a tumour with low histological malignancy, there are very few therapeutic options other than surgery. ACP has high histological complexity, and the unique features of the immunological microenvironment within ACP remain elusive. Further elucidation of the tumour microenvironment is particularly important to expand our knowledge of potential therapeutic targets. Here, we performed integrative analysis of 58,081 nuclei through single-nucleus RNA sequencing and spatial transcriptomics on ACP specimens to characterize the features and intercellular network within the microenvironment. The ACP environment is highly immunosuppressive with low levels of T-cell infiltration/cytotoxicity. Moreover, tumour-associated macrophages (TAMs), which originate from distinct sources, highly infiltrate the microenvironment. Using spatial transcriptomic data, we observed one kind of non-microglial derived TAM that highly expressed GPNMB close to the terminally differentiated epithelial cell characterized by RHCG, and this colocalization was verified by asmFISH. We also found the positive correlation of infiltration between these two cell types in datasets with larger cohort. According to intercellular communication analysis, we report a regulatory network that could facilitate the keratinization of RHCG+ epithelial cells, eventually causing tumour progression. Our findings provide a comprehensive analysis of the ACP immune microenvironment and reveal a potential therapeutic strategy base on interfering with these two types of cells.
Collapse
Affiliation(s)
- Chunming Xu
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jie Wu
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jiye Ye
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yuancheng Si
- Department of Mathematics, University of Manchester, Manchester, UK
- The School of Economics, Fudan University, Shanghai, China
| | - Jinshi Zhang
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Bowen Wu
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Laisheng Pan
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jun Fu
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Quan Ren
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Shenhao Xie
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Bin Tang
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yingqun Xiao
- Department of Pathology, Affiliated Infectious Disease Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Tao Hong
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
135
|
Kurdi H, Lavalle L, Moon JCC, Hughes D. Inflammation in Fabry disease: stages, molecular pathways, and therapeutic implications. Front Cardiovasc Med 2024; 11:1420067. [PMID: 38932991 PMCID: PMC11199868 DOI: 10.3389/fcvm.2024.1420067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Fabry disease, a multisystem X-linked disorder caused by mutations in the alpha-galactosidase gene. This leads to the accumulation of globotriaosylceramide (Gb3) and globotriaosylsphingosine (Lyso-Gb3), culminating in various clinical signs and symptoms that significantly impact quality of life. Although treatments such as enzyme replacement, oral chaperone, and emerging therapies like gene therapy exist; delayed diagnosis often curtails their effectiveness. Our review highlights the importance of delineating the stages of inflammation in Fabry disease to enhance the timing and efficacy of diagnosis and interventions, particularly before the progression to fibrosis, where treatment options are less effective. Inflammation is emerging as an important aspect of the pathogenesis of Fabry disease. This is thought to be predominantly mediated by the innate immune response, with growing evidence pointing towards the potential involvement of adaptive immune mechanisms that remain poorly understood. Highlighted by the fact that Fabry disease shares immune profiles with systemic autoinflammatory diseases, blurring the distinctions between these disorders and highlighting the need for a nuanced understanding of immune dynamics. This insight is crucial for developing targeted therapies and improving the administration of current treatments like enzyme replacement. Moreover, our review discusses the complex interplay between these inflammatory processes and current treatments, such as the challenges posed by anti-drug antibodies. These antibodies can attenuate the effectiveness of therapies, necessitating more refined approaches to mitigate their impact. By advancing our understanding of the molecular changes, inflammatory mediators and causative factors that drive inflammation in Fabry disease, we aim to clarify their role in the disease's progression. This improved understanding will help us see how these processes fit into the current landscape of Fabry disease. Additionally, it will guide the development of more effective diagnostic and therapeutic approaches, ultimately improving patient care.
Collapse
Affiliation(s)
- Hibba Kurdi
- Institute of Cardiovascular Science, University College London, London, United Kingdom
- Cardiovascular Imaging Department, Barts Heart Centre, London, United Kingdom
| | - Lucia Lavalle
- Institute of Cardiovascular Science, University College London, London, United Kingdom
- Lysosomal Storage Disorders Unit, The Royal Free Hospital, London, United Kingdom
| | - James C. C. Moon
- Institute of Cardiovascular Science, University College London, London, United Kingdom
- Cardiovascular Imaging Department, Barts Heart Centre, London, United Kingdom
| | - Derralynn Hughes
- Institute of Cardiovascular Science, University College London, London, United Kingdom
- Lysosomal Storage Disorders Unit, The Royal Free Hospital, London, United Kingdom
| |
Collapse
|
136
|
Beltrán-Visiedo M, Serrano-Del Valle A, Jiménez-Aldúan N, Soler-Agesta R, Naval J, Galluzzi L, Marzo I. Cytofluorometric assessment of calreticulin exposure on CD38 + plasma cells from the human bone marrow. Methods Cell Biol 2024; 189:189-206. [PMID: 39393883 DOI: 10.1016/bs.mcb.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Exposure of the endoplasmic reticulum chaperone calreticulin (CALR) on the surface of stressed and dying cells is paramount for their effective engulfment by professional antigen-presenting cells such as dendritic cells (DCs). Importantly, this is required (but not sufficient) for DCs to initiate an adaptive immune response that culminates with an effector phase as well as with the establishment of immunological memory. Conversely, the early exposure of phosphatidylserine (PS) on the outer layer of the plasma membrane is generally associated with the rapid engulfment of stressed and dying cells by tolerogenic macrophages. Supporting the clinical relevance of the CALR exposure pathway, the spontaneous or therapy-driven translocation of CALR to the surface of malignant cells, as well as intracellular biomarkers thereof, have been associated with improved disease outcome in patients affected by a variety of neoplasms, with the notable exception of multiple myeloma (MM). Here, we describe an optimized protocol for the flow cytometry-assisted quantification of surface-exposed CALR and PS on CD38+ plasma cells from the bone marrow of patients with MM. With some variations, we expect this method to be straightforwardly adaptable to the detection of CALR and PS on the surface of cancer cells isolated from patients with neoplasms other than MM.
Collapse
Affiliation(s)
- Manuel Beltrán-Visiedo
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States
| | | | - Nelia Jiménez-Aldúan
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, Zaragoza, Spain
| | - Ruth Soler-Agesta
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States; Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, Zaragoza, Spain
| | - Javier Naval
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, Zaragoza, Spain
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States; Sandra and Edward Meyer Cancer Center, New York, NY, United States; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, United States.
| | - Isabel Marzo
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, Zaragoza, Spain.
| |
Collapse
|
137
|
Batki J, Hetzel S, Schifferl D, Bolondi A, Walther M, Wittler L, Grosswendt S, Herrmann BG, Meissner A. Extraembryonic gut endoderm cells undergo programmed cell death during development. Nat Cell Biol 2024; 26:868-877. [PMID: 38849542 PMCID: PMC11178501 DOI: 10.1038/s41556-024-01431-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/29/2024] [Indexed: 06/09/2024]
Abstract
Despite a distinct developmental origin, extraembryonic cells in mice contribute to gut endoderm and converge to transcriptionally resemble their embryonic counterparts. Notably, all extraembryonic progenitors share a non-canonical epigenome, raising several pertinent questions, including whether this landscape is reset to match the embryonic regulation and if extraembryonic cells persist into later development. Here we developed a two-colour lineage-tracing strategy to track and isolate extraembryonic cells over time. We find that extraembryonic gut cells display substantial memory of their developmental origin including retention of the original DNA methylation landscape and resulting transcriptional signatures. Furthermore, we show that extraembryonic gut cells undergo programmed cell death and neighbouring embryonic cells clear their remnants via non-professional phagocytosis. By midgestation, we no longer detect extraembryonic cells in the wild-type gut, whereas they persist and differentiate further in p53-mutant embryos. Our study provides key insights into the molecular and developmental fate of extraembryonic cells inside the embryo.
Collapse
Affiliation(s)
- Julia Batki
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Sara Hetzel
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Dennis Schifferl
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Adriano Bolondi
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Maria Walther
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lars Wittler
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Stefanie Grosswendt
- Berlin Institute of Health (BIH), Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Bernhard G Herrmann
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute for Medical Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
138
|
Galluzzi L, Guilbaud E, Schmidt D, Kroemer G, Marincola FM. Targeting immunogenic cell stress and death for cancer therapy. Nat Rev Drug Discov 2024; 23:445-460. [PMID: 38622310 PMCID: PMC11153000 DOI: 10.1038/s41573-024-00920-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 04/17/2024]
Abstract
Immunogenic cell death (ICD), which results from insufficient cellular adaptation to specific stressors, occupies a central position in the development of novel anticancer treatments. Several therapeutic strategies to elicit ICD - either as standalone approaches or as means to convert immunologically cold tumours that are insensitive to immunotherapy into hot and immunotherapy-sensitive lesions - are being actively pursued. However, the development of ICD-inducing treatments is hindered by various obstacles. Some of these relate to the intrinsic complexity of cancer cell biology, whereas others arise from the use of conventional therapeutic strategies that were developed according to immune-agnostic principles. Moreover, current discovery platforms for the development of novel ICD inducers suffer from limitations that must be addressed to improve bench-to-bedside translational efforts. An improved appreciation of the conceptual difference between key factors that discriminate distinct forms of cell death will assist the design of clinically viable ICD inducers.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| | - Emma Guilbaud
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | | | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | | |
Collapse
|
139
|
Xing J, Wang K, Xu YC, Pei ZJ, Yu QX, Liu XY, Dong YL, Li SF, Chen Y, Zhao YJ, Yao F, Ding J, Hu W, Zhou RP. Efferocytosis: Unveiling its potential in autoimmune disease and treatment strategies. Autoimmun Rev 2024; 23:103578. [PMID: 39004157 DOI: 10.1016/j.autrev.2024.103578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 07/16/2024]
Abstract
Efferocytosis is a crucial process whereby phagocytes engulf and eliminate apoptotic cells (ACs). This intricate process can be categorized into four steps: (1) ACs release "find me" signals to attract phagocytes, (2) phagocytosis is directed by "eat me" signals emitted by ACs, (3) phagocytes engulf and internalize ACs, and (4) degradation of ACs occurs. Maintaining immune homeostasis heavily relies on the efficient clearance of ACs, which eliminates self-antigens and facilitates the generation of anti-inflammatory and immunosuppressive signals that maintain immune tolerance. However, any disruptions occurring at any of the efferocytosis steps during apoptosis can lead to a diminished efficacy in removing apoptotic cells. Factors contributing to this inefficiency encompass dysregulation in the release and recognition of "find me" or "eat me" signals, defects in phagocyte surface receptors, bridging molecules, and other signaling pathways. The inadequate clearance of ACs can result in their rupture and subsequent release of self-antigens, thereby promoting immune responses and precipitating the onset of autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes, and multiple sclerosis. A comprehensive understanding of the efferocytosis process and its implications can provide valuable insights for developing novel therapeutic strategies that target this process to prevent or treat autoimmune diseases.
Collapse
Affiliation(s)
- Jing Xing
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ke Wang
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yu-Cai Xu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ze-Jun Pei
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qiu-Xia Yu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xing-Yu Liu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ya-Lu Dong
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Shu-Fang Li
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yong Chen
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Ying-Jie Zhao
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Feng Yao
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Jie Ding
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Wei Hu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China.
| | - Ren-Peng Zhou
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
140
|
Cauwelier C, de Ridder I, Bultynck G. Recent advances in canonical versus non-canonical Ca 2+-signaling-related anti-apoptotic Bcl-2 functions and prospects for cancer treatment. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119713. [PMID: 38521468 DOI: 10.1016/j.bbamcr.2024.119713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 01/11/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Cell fate is tightly controlled by a continuous balance between cell survival and cell death inducing mechanisms. B-cell lymphoma 2 (Bcl-2)-family members, composed of effectors and regulators, not only control apoptosis at the level of the mitochondria but also by impacting the intracellular Ca2+ homeostasis and dynamics. On the one hand, anti-apoptotic protein Bcl-2, prevents mitochondrial outer membrane permeabilization (MOMP) by scaffolding and neutralizing proapoptotic Bcl-2-family members via its hydrophobic cleft (region composed of BH-domain 1-3). On the other hand, Bcl-2 suppress pro-apoptotic Ca2+ signals by binding and inhibiting IP3 receptors via its BH4 domain, which is structurally exiled from the hydrophobic cleft by a flexible loop region (FLR). As such, Bcl-2 prevents excessive Ca2+ transfer from ER to mitochondria. Whereas regulation of both pathways requires different functional regions of Bcl-2, both seem to be connected in cancers that overexpress Bcl-2 in a life-promoting dependent manner. Here we discuss the anti-apoptotic canonical and non-canonical role, via calcium signaling, of Bcl-2 in health and cancer and evolving from this the proposed anti-cancer therapies with their shortcomings. We also argue how some cancers, with the major focus on diffuse large B-cell lymphoma (DLBCL) are difficult to treat, although theoretically prime marked for Bcl-2-targeting therapeutics. Further work is needed to understand the non-canonical functions of Bcl-2 also at organelles beyond the mitochondria, the interaction partners outside the Bcl-2 family as well as their ability to target or exploit these functions as therapeutic strategies in diseases.
Collapse
Affiliation(s)
- Claire Cauwelier
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Ian de Ridder
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, BE-3000 Leuven, Belgium.
| |
Collapse
|
141
|
Haczku A. Cell-Corpse Clearance after Lung Damage: The Essential Role of MerTK-mediated Alveolar Macrophage Efferocytosis. Am J Respir Cell Mol Biol 2024; 70:433-434. [PMID: 38502903 PMCID: PMC11160414 DOI: 10.1165/rcmb.2024-0108ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 03/19/2024] [Indexed: 03/21/2024] Open
Affiliation(s)
- Angela Haczku
- School of Medicine University of California Davis, California
| |
Collapse
|
142
|
Lian K, Li Y, Yang W, Ye J, Liu H, Wang T, Yang G, Cheng Y, Xu X. Hub genes, a diagnostic model, and immune infiltration based on ferroptosis-linked genes in schizophrenia. IBRO Neurosci Rep 2024; 16:317-328. [PMID: 38390236 PMCID: PMC10882140 DOI: 10.1016/j.ibneur.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Background Schizophrenia (SCZ) is a prevalent and serious mental disorder, and the exact pathophysiology of this condition is not fully understood. In previous studies, it has been proven that ferroprotein levels are high in SCZ. It has also been shown that this inflammatory response may modify fibromodulin. Accumulating evidence indicates a strong link between metabolism and ferroptosis. Therefore, the present study aims to identify ferroptosis-linked hub genes to further investigate the role that ferroptosis plays in the development of SCZ. Material and methods From the GEO database, four microarray data sets on SCZ (GSE53987, GSE38481, GSE18312, and GSE38484) and ferroptosis-linked genes were extracted. Using the prefrontal cortex expression matrix of SCZ patients and healthy individuals as the control group from GSE53987, weighted gene co-expression network analysis (WGCNA) was performed to discover SCZ-linked module genes. From the feed, genes associated with ferroptosis were retrieved. The intersection of the module and ferroptosis-linked genes was done to obtain the hub genes. Then, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, and Gene Set Enrichment Analysis (GSEA) were conducted. The SCZ diagnostic model was established using logistic regression, and the GSE38481, GSE18312, and GSE38484 data sets were used to validate the model. Finally, hub genes linked to immune infiltration were examined. Results A total of 13 SCZ module genes and 7 hub genes linked to ferroptosis were obtained: DECR1, GJA1, EFN2L2, PSAT1, SLC7A11, SOX2, and YAP1. The GO/KEGG/GSEA study indicated that these hub genes were predominantly enriched in mitochondria and lipid metabolism, oxidative stress, immunological inflammation, ferroptosis, Hippo signaling pathway, AMP-activated protein kinase pathway, and other associated biological processes. The diagnostic model created using these hub genes was further confirmed using the data sets of three blood samples from patients with SCZ. The immune infiltration data showed that immune cell dysfunction enhanced ferroptosis and triggered SCZ. Conclusion In this study, seven critical genes that are strongly associated with ferroptosis in patients with SCZ were discovered, a valid clinical diagnostic model was built, and a novel therapeutic target for the treatment of SCZ was identified by the investigation of immune infiltration.
Collapse
Affiliation(s)
- Kun Lian
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, China
- Department of Neurosurgery, People's Hospital of Yiliang County
| | - Yongmei Li
- Department of Rehabilitation, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, China
| | - Wei Yang
- Department of Psychiatry, The Second People's Hospital of Yuxi, Yuxi, Yunnan 653100, China
| | - Jing Ye
- Sleep Medical Center, The First People's Hospital of Yunnan, Kunming, Yunnan 650101, China
| | - Hongbing Liu
- Department of Psychiatry, Lincang Psychiatric Hospital, Lincang, Yunnan 677000, China
| | - Tianlan Wang
- Department of Psychiatry, Lincang Psychiatric Hospital, Lincang, Yunnan 677000, China
| | - Guangya Yang
- Department of Psychiatry, Lincang Psychiatric Hospital, Lincang, Yunnan 677000, China
| | - Yuqi Cheng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, China
- Yunnan Clinical Research Center for Mental Disorders, Kunming, Yunnan 650000, China
| | - Xiufeng Xu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, China
| |
Collapse
|
143
|
Peterman E, Quitevis EJA, Goo CEA, Rasmussen JP. Rho-associated kinase regulates Langerhans cell morphology and responsiveness to tissue damage. Cell Rep 2024; 43:114208. [PMID: 38728139 DOI: 10.1016/j.celrep.2024.114208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/29/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Skin damage requires efficient immune cell responses to restore organ function. Epidermal-resident immune cells known as Langerhans cells use dendritic protrusions to surveil the skin microenvironment, which contains keratinocytes and peripheral axons. The mechanisms governing Langerhans cell dendrite dynamics and responses to tissue damage are poorly understood. Using skin explants from adult zebrafish, we show that Langerhans cells maintain normal surveillance following axonal degeneration and use their dendrites to engulf small axonal debris. By contrast, a ramified-to-rounded shape transition accommodates the engulfment of larger keratinocyte debris. We find that Langerhans cell dendrites are populated with actin and sensitive to a broad-spectrum actin inhibitor. We show that Rho-associated kinase (ROCK) inhibition leads to elongated dendrites, perturbed clearance of large debris, and reduced Langerhans cell migration to epidermal wounds. Our work describes the dynamics of Langerhans cells and involvement of the ROCK pathway in immune cell responses.
Collapse
Affiliation(s)
- Eric Peterman
- Department of Biology, University of Washington, Seattle, WA 98195, USA.
| | | | - Camille E A Goo
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Jeffrey P Rasmussen
- Department of Biology, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
144
|
Ma Z, Sun Y, Yu Y, Xiao W, Xiao Z, Zhong T, Xiang X, Li Z. Extracellular vesicles containing MFGE8 from colorectal cancer facilitate macrophage efferocytosis. Cell Commun Signal 2024; 22:295. [PMID: 38802814 PMCID: PMC11131254 DOI: 10.1186/s12964-024-01669-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) commonly exhibits tolerance to cisplatin treatment, but the underlying mechanisms remain unclear. Within the tumor microenvironment, macrophages play a role in resisting the cytotoxic effects of chemotherapy by engaging in efferocytosis to clear apoptotic cells induced by chemotherapeutic agents. The involvement of extracellular vesicles (EVs), an intercellular communicator within the tumor microenvironment, in regulating the efferocytosis for the promotion of drug resistance has not been thoroughly investigated. METHODS We constructed GFP fluorescent-expressing CRC cell lines (including GFP-CT26 and GFP-MC38) to detect macrophage efferocytosis through flow cytometric analysis. We isolated and purified CRC-secreted EVs using a multi-step ultracentrifugation method and identified them through electron microscopy and nanoflow cytometry. Proteomic analysis was conducted to identify the protein molecules carried by CRC-EVs. MFGE8 knockout CRC cell lines were constructed using CRISPR-Cas9, and their effects were validated through in vitro and in vivo experiments using Western blotting, immunofluorescence, and flow cytometric analysis, confirming that these EVs activate the macrophage αvβ3-Src-FAK-STAT3 signaling pathway, thereby promoting efferocytosis. RESULTS In this study, we found that CRC-derived EVs (CRC-EVs) enhanced macrophage efferocytosis of cisplatin-induced apoptotic CRC cells. Analysis of The Cancer Genome Atlas (TCGA) database revealed a high expression of the efferocytosis-associated gene MFGE8 in CRC patients, suggesting a poorer prognosis. Additionally, mass spectrometry-based proteomic analysis identified a high abundance of MFGE8 protein in CRC-EVs. Utilizing CRISPR-Cas9 gene edition system, we generated MFGE8-knockout CRC cells, demonstrating that their EVs fail to upregulate macrophage efferocytosis in vitro and in vivo. Furthermore, we demonstrated that MFGE8 in CRC-EVs stimulated macrophage efferocytosis by increasing the expression of αvβ3 on the cell surface, thereby activating the intracellular Src-FAK-STAT3 signaling pathway. CONCLUSIONS Therefore, this study highlighted a mechanism in CRC-EVs carrying MFGE8 activated the macrophage efferocytosis. This activation promoted the clearance of cisplatin-induced apoptotic CRC cells, contributing to CRC resistance against cisplatin. These findings provide novel insights into the potential synergistic application of chemotherapy drugs, EVs inhibitors, and efferocytosis antagonists for CRC treatment.
Collapse
Affiliation(s)
- Zhixin Ma
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yu Sun
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yang Yu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Wenjun Xiao
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhijie Xiao
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Tianyu Zhong
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341004, China
| | - Xi Xiang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhigang Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, 518107, China.
| |
Collapse
|
145
|
Wang Z, Zhang X, Liu Q, Hu X, Mei J, Zhou J, Zhang X, Xu D, Zhu W, Su Z, Zhu C. Balancing Bioresponsive Biofilm Eradication and Guided Tissue Repair via Pro-Efferocytosis and Bidirectional Pyroptosis Regulation during Implant Surgery. ACS NANO 2024; 18:13196-13213. [PMID: 38717096 DOI: 10.1021/acsnano.4c02157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
There is an increasingly growing demand to balance tissue repair guidance and opportunistic infection (OI) inhibition in clinical implant surgery. Herein, we developed a nanoadjuvant for all-stage tissue repair guidance and biofilm-responsive OI eradication via in situ incorporating Cobaltiprotoporphyrin (CoPP) into Prussian blue (PB) to prepare PB-CoPP nanozymes (PCZs). Released CoPP possesses a pro-efferocytosis effect for eliminating apoptotic and progressing necrotic cells in tissue trauma, thus preventing secondary inflammation. Once OIs occur, PCZs with switchable nanocatalytic capacity can achieve bidirectional pyroptosis regulation. Once reaching the acidic biofilm microenvironment, PCZs possess peroxidase (POD)-like activity that can generate reactive oxygen species (ROS) to eradicate bacterial biofilms, especially when synergized with the photothermal effect. Furthermore, generated ROS can promote macrophage pyroptosis to secrete inflammatory cytokines and antimicrobial proteins for biofilm eradication in vivo. After eradicating the biofilm, PCZs possess catalase (CAT)-like activity in a neutral environment, which can scavenge ROS and inhibit macrophage pyroptosis, thereby improving the inflammatory microenvironment. Briefly, PCZs as nanoadjuvants feature the capability of all-stage tissue repair guidance and biofilm-responsive OI inhibition that can be routinely performed in all implant surgeries, providing a wide range of application prospects and commercial translational value.
Collapse
Affiliation(s)
- Zhengxi Wang
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Department of Orthopedics, Anhui Provincial Hospital, Wannan Medical College, Wuhu, Anhui 246000, P. R. China
| | - Xudong Zhang
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Quan Liu
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xianli Hu
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Jiawei Mei
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Jun Zhou
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200233, P. R. China
| | - Xianzuo Zhang
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Dongdong Xu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, P. R. China
| | - Wanbo Zhu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200233, P. R. China
| | - Zheng Su
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Chen Zhu
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| |
Collapse
|
146
|
Chen P, Li Z, Li N. Establishment of a novel efferocytosis potential index predicts prognosis and immunotherapy response in cancers. Heliyon 2024; 10:e30337. [PMID: 38707349 PMCID: PMC11068824 DOI: 10.1016/j.heliyon.2024.e30337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024] Open
Abstract
The biological function and prognostic value of efferocytosis in cancer remains unclear. In this study, we systematically analysed the expression profiles and genetic variations of 50 efferocytosis-related regulator genes in 33 cancer types. Using data from The Cancer Genome Atlas, we established an efferocytosis potential index (EPI) model to represent the efferocytosis level in each cancer type. The relationship between the EPI and prognosis, immune-related molecules, specific pathways, and drug sensitivity was determined. We found that efferocytosis regulator genes were abnormally expressed in cancer tissue, perhaps owing to copy number variations, gene alterations, and DNA methylation. For the most part, the EPI was higher in tumour vs. normal tissues. In most of the 33 cancer types, it positively correlated with cell death- and immune-related pathway enrichment, the tumour microenvironment, immune infiltration, and drug sensitivity. For specific cancers, a high EPI may be a prognostic risk factor and, in patients treated receiving immune checkpoint therapy, a predictor of poor prognosis. Our study reveals the biological functions of efferocytosis-related regulator genes in distinct cancers and highlights the potential of efferocytosis intervention in cancer therapy.
Collapse
Affiliation(s)
- Peng Chen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Zhanzhan Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | - Na Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| |
Collapse
|
147
|
Sheng Y, Hu W, Chen S, Zhu X. Efferocytosis by macrophages in physiological and pathological conditions: regulatory pathways and molecular mechanisms. Front Immunol 2024; 15:1275203. [PMID: 38779685 PMCID: PMC11109379 DOI: 10.3389/fimmu.2024.1275203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Efferocytosis is defined as the highly effective phagocytic removal of apoptotic cells (ACs) by professional or non-professional phagocytes. Tissue-resident professional phagocytes ("efferocytes"), such as macrophages, have high phagocytic capacity and are crucial to resolve inflammation and aid in homeostasis. Recently, numerous exciting discoveries have revealed divergent (and even diametrically opposite) findings regarding metabolic immune reprogramming associated with efferocytosis by macrophages. In this review, we highlight the key metabolites involved in the three phases of efferocytosis and immune reprogramming of macrophages under physiological and pathological conditions. The next decade is expected to yield further breakthroughs in the regulatory pathways and molecular mechanisms connecting immunological outcomes to metabolic cues as well as avenues for "personalized" therapeutic intervention.
Collapse
Affiliation(s)
- Yan−Ran Sheng
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Wen−Ting Hu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Siman Chen
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xiao−Yong Zhu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, China
| |
Collapse
|
148
|
Wang Y, Rodrigues RM, Chen C, Feng D, Maccioni L, Gao B. Macrophages in necrotic liver lesion repair: opportunities for therapeutical applications. Am J Physiol Cell Physiol 2024; 326:C1556-C1562. [PMID: 38618702 PMCID: PMC11371317 DOI: 10.1152/ajpcell.00053.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/16/2024]
Abstract
Healthy livers contain 80% of body resident macrophages known as Kupffer cells. In diseased livers, the number of Kupffer cells usually drops but is compensated by infiltration of monocyte-derived macrophages, some of which can differentiate into Kupffer-like cells. Early studies suggest that Kupffer cells play important roles in both promoting liver injury and liver regeneration. Yet, the distinction between the functionalities of resident and infiltrating macrophages is not always made. By using more specific macrophage markers and targeted cell depletion and single-cell RNA sequencing, recent studies revealed several subsets of monocyte-derived macrophages that play important functions in inducing liver damage and inflammation as well as in liver repair and regeneration. In this review, we discuss the different roles that hepatic macrophages play in promoting necrotic liver lesion resolution and dead cell clearance, as well as the targeting of these cells as potential tools for the development of novel therapies for acute liver failure and acute-on-chronic liver failure.
Collapse
Affiliation(s)
- Yang Wang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, United States
| | - Robim M Rodrigues
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B1090, Brussels, Belgium
| | - Cheng Chen
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, United States
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, United States
| | - Luca Maccioni
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, United States
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, United States
| |
Collapse
|
149
|
Zhang Q, Hu C, Feng J, Long H, Wang Y, Wang P, Hu C, Yue Y, Zhang C, Liu Z, Zhou X. Anti-inflammatory mechanisms of neutrophil membrane-coated nanoparticles without drug loading. J Control Release 2024; 369:12-24. [PMID: 38508526 DOI: 10.1016/j.jconrel.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
Neutrophil membrane-coated nanoparticles (NM-NPs) are nanomedicines with traits of mimicking the surface properties and functions of neutrophils, which are the most abundant type of white blood cells in the human body. NM-NPs have been widely used as targeted drug delivery systems for various inflammatory diseases, but their intrinsic effects on inflammation are not fully characterized yet. This study found that NM-NPs could modulate inflammation by multiple mechanisms without drug loading. NM-NPs could inhibit the recruitment of neutrophils and macrophages to the inflamed site by capturing chemokines and blocking their adhesion to inflamed endothelial cells. After internalized by macrophages and other phagocytic cells, NM-NPs could alter their phenotype by phosphatidylserine and simultaneously degrade the sequestered and neutralized cytokines and chemokines by lysosomal degradation. Under these effects, NM-NPs exhibited significant anti-inflammatory effects on LPS-induced inflammatory liver injury in vivo without drug loading. Our study unveiled the anti-inflammatory effects and mechanisms of NM-NPs without drug loading, and provided new insights and evidence for understanding their biological effects and safety, as well as developing more effective and safe targeted drug delivery systems.
Collapse
Affiliation(s)
- Qing Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province 650032, China
| | - Chengyi Hu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Jinwei Feng
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Hongyan Long
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Ying Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Pan Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Chenglu Hu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yuqin Yue
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Chengyuan Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, China
| | - Zhirui Liu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing 400038, China.
| | - Xing Zhou
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, China; Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China.
| |
Collapse
|
150
|
De Meyer GRY, Zurek M, Puylaert P, Martinet W. Programmed death of macrophages in atherosclerosis: mechanisms and therapeutic targets. Nat Rev Cardiol 2024; 21:312-325. [PMID: 38163815 DOI: 10.1038/s41569-023-00957-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 01/03/2024]
Abstract
Atherosclerosis is a progressive inflammatory disorder of the arterial vessel wall characterized by substantial infiltration of macrophages, which exert both favourable and detrimental functions. Early in atherogenesis, macrophages can clear cytotoxic lipoproteins and dead cells, preventing cytotoxicity. Efferocytosis - the efficient clearance of dead cells by macrophages - is crucial for preventing secondary necrosis and stimulating the release of anti-inflammatory cytokines. In addition, macrophages can promote tissue repair and proliferation of vascular smooth muscle cells, thereby increasing plaque stability. However, advanced atherosclerotic plaques contain large numbers of pro-inflammatory macrophages that secrete matrix-degrading enzymes, induce death in surrounding cells and contribute to plaque destabilization and rupture. Importantly, macrophages in the plaque can undergo apoptosis and several forms of regulated necrosis, including necroptosis, pyroptosis and ferroptosis. Regulated necrosis has an important role in the formation and expansion of the necrotic core during plaque progression, and several triggers for necrosis are present within atherosclerotic plaques. This Review focuses on the various forms of programmed macrophage death in atherosclerosis and the pharmacological interventions that target them as a potential means of stabilizing vulnerable plaques and improving the efficacy of currently available anti-atherosclerotic therapies.
Collapse
Affiliation(s)
- Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.
| | - Michelle Zurek
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Pauline Puylaert
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|