101
|
Oktaviono YH, Hutomo SA, Al-Farabi MJ, Chouw A, Sandra F. Human umbilical cord blood-mesenchymal stem cell-derived secretome in combination with atorvastatin enhances endothelial progenitor cells proliferation and migration. F1000Res 2020; 9:537. [PMID: 34394921 PMCID: PMC8358709 DOI: 10.12688/f1000research.23547.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/13/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Human umbilical cord blood-mesenchymal stem cell (hUCB-MSC)-derived secretome is known to be able to promote neovascularization and angiogenesis, so it is also thought to have a capability to modulate endothelial progenitor cell (EPC) functions. Atorvastatin is the cornerstone of coronary artery disease (CAD) treatment which can enhance EPCs proliferation and migration. This study aims to analyze the effect of the hUCB-MSC-derived secretome and its combination with atorvastatin toward EPCs proliferation and migration. Methods: EPCs were isolated from a CAD patient's peripheral blood. Cultured EPCs were divided into a control group and treatment group of 2.5 µM atorvastatin, hUCB-MSC-derived secretome (2%, 10%, and 20% concentration) and its combination. EPCs proliferation was evaluated using an MTT cell proliferation assay, and EPC migration was evaluated using a Transwell migration assay kit. Results: This research showed that hUCB-MSC-derived secretomes significantly increase EPC proliferation and migration in a dose-dependent manner. The high concentration of hUCB-MSC-derived secretome were shown to be superior to atorvastatin in inducing EPC proliferation and migration (p<0.001). A combination of the hUCB-MSC-derived secretome and atorvastatin shown to improve EPCs proliferation and migration compared to hUCB-MSC-derived secretome treatment or atorvastatin alone (p<0.001). Conclusions: This study concluded that the hUCB-MSC-derived secretome work synergistically with atorvastatin treatment in improving EPCs proliferation and migration.
Collapse
Affiliation(s)
- Yudi Her Oktaviono
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Airlangga, Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Suryo Ardi Hutomo
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Airlangga, Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Makhyan Jibril Al-Farabi
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Airlangga, Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Angliana Chouw
- Stem Cell Division, Prodia Laboratory, Jakarta, Indonesia
| | - Ferry Sandra
- Department of Biochemistry and Molecular Biology, Faculty of Dentistry, Universitas Trisakti, Jakarta, Indonesia
| |
Collapse
|
102
|
Saleh M, Taher M, Sohrabpour AA, Vaezi AA, Nasiri Toosi M, Kavianpour M, Ghazvinian Z, Abdolahi S, Verdi J. Perspective of placenta derived mesenchymal stem cells in acute liver failure. Cell Biosci 2020; 10:71. [PMID: 32483484 PMCID: PMC7245988 DOI: 10.1186/s13578-020-00433-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/16/2020] [Indexed: 02/07/2023] Open
Abstract
Acute Liver failure (ALF) is a life-threatening disease and is determined by coagulopathy (with INR ≥ 1.5) and hepatic encephalopathy as a result of severe liver injury in patients without preexisting liver disease. Since there are problems with liver transplantation including lack of donors, use of immunosuppressive drugs, and high costs of this process, new therapeutic approaches alongside current treatments are needed. The placenta is a tissue that is normally discarded after childbirth. On the other hand, human placenta is a rich source of mesenchymal stem cells (MSCs), which is easily available, without moral problems, and its derived cells are less affected by age and environmental factors. Therefore, placenta-derived mesenchymal stem cells (PD-MSCs) can be considered as an allogeneic source for liver disease. Considering the studies on MSCs and their effects on various diseases, it can be stated that MSCs are among the most important agents to be used for novel future therapies of liver diseases. In this paper, we will investigate the effects of mesenchymal stem cells through migration and immigration to the site of injury, cell-to-cell contact, immunomodulatory effects, and secretory factors in ALF.
Collapse
Affiliation(s)
- Mahshid Saleh
- 1Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taher
- 2Gastroenterology and Hepatology, Tehran University of Medical Sciences, Imam Hospital Complex, Tehran, Iran
| | - Amir Ali Sohrabpour
- 3Gastroenterology and Hepatology, School of Medicine Shariati Hospital, Tehran University of Medical Science, Tehran, Iran
| | - Amir Abbas Vaezi
- 4Department of Internal Medicine, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohsen Nasiri Toosi
- 5Internal Medicine, School of Medicine Liver Transplantation Research Center Imam, Khomeini Hospital Tehran University of Medical Sciences, Tehran, Iran
| | - Maria Kavianpour
- 1Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Ghazvinian
- 1Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrokh Abdolahi
- 1Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Verdi
- 1Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
103
|
An update on stem cell therapy for Asherman syndrome. J Assist Reprod Genet 2020; 37:1511-1529. [PMID: 32445154 DOI: 10.1007/s10815-020-01801-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/28/2020] [Indexed: 02/06/2023] Open
Abstract
The current treatment for Asherman syndrome is limited and not very effective. The aim of this review is to summarize the most recent evidence for stem cells in the treatment of Asherman syndrome. The advent of stem cell therapy has propagated experimentation on mice and humans as a novel treatment. The consensus is that the regenerative capacity of stem cells has demonstrated improved outcomes in terms of fertility and fibrosis in both mice and humans with Asherman syndrome. Stem cells have effects on tissue repair by homing to the injured site, recruiting other cells by secreting chemokines, modulating the immune system, differentiating into other types of cells, proliferating into daughter cells, and potentially having antimicrobial activity. The studies reviewed examine different origins and administration modalities of stem cells. In preclinical models, therapeutic systemic injection of stem cells is more effective than direct intrauterine injection in regenerating the endometrium. In conjunction, bone marrow-derived stem cells have a stronger effect on uterine regeneration than uterine-derived stem cells, likely due to their broader differentiation potency. Clinical trials have demonstrated the initial safety and effectiveness profiles of menstrual, bone marrow, umbilical cord, and adipose tissue-derived stem cells in resumption of menstruation, fertility outcomes, and endometrial regeneration.
Collapse
|
104
|
Yi X, Chen F, Liu F, Peng Q, Li Y, Li S, Du J, Gao Y, Wang Y. Comparative separation methods and biological characteristics of human placental and umbilical cord mesenchymal stem cells in serum-free culture conditions. Stem Cell Res Ther 2020; 11:183. [PMID: 32430063 PMCID: PMC7238656 DOI: 10.1186/s13287-020-01690-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/03/2020] [Accepted: 04/23/2020] [Indexed: 01/08/2023] Open
Abstract
Background Mesenchymal stem cells (MSCs) are considered to be an effective tool for regenerative medicine with promising applications for clinical therapy. However, incongruent data has been reported partially owing to their functional heterogeneity. To provide sufficient and suitable clinical seed cells derived from the placenta for MSC therapy, we compared the various current isolation methods, as well as the biological characteristics, of different human placenta mesenchymal stem cells (hPMSCs). Methods We selected placentas from 35 informed donors and exploited three commonly used methods. MSCs were isolated from different parts of placental tissue including umbilical cord (UC), amniotic membrane (AM), chorionic membrane (CM), chorionic villi (CV), and deciduae (DC). The appropriate isolation methods for each type of hPMSCs were first assessed. The resulting five MSC types from the same individuals were identified based on their surface marker expression, proliferation capacity, transcriptome, differentiation, multipotency and karyotype. Results All three methods successfully isolated the five hPMSC types from placental tissues. However, the UC-MSCs were most effectively separated via the tissue explant method, while the enzymatic digestion method was found to be more suitable for separating CV-MSCs, owing to its higher output efficiency compared to the other methods. Alternatively, the perfusion method was complicated and exhibited the lowest efficiency for cell isolation and uniformity. Furthermore, we determined that UC-MSCs and CV-MSCs express a higher level of paracrine cytokines and display much stronger proliferative capacity as well as superior extraction efficiency. Finally, karyotype analysis revealed that DC-MSCs are derived from the mother, while the other cell types are derived from the fetus. Moreover, the different hPMSCs exhibited unique gene expression profiles, which may prove advantageous in treatment of a broad range of diseases. Conclusions hPMSCs from different sources are similar yet also unique. Our results describe the biological characteristics of five hPMSCs and provide insights to aide in the selection process of candidates for MSCs treatment. Overall, UC- and CV-MSCs appear to be ideal sources of primary MSCs for clinical treatment and future research.
Collapse
Affiliation(s)
- Xiao Yi
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong Province, China
| | - Feng Chen
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong Province, China
| | - Fenghua Liu
- Department of Reproductive Medicine Center, Provincial Maternal and Child Health Hospital, Guangzhou, Guangdong Province, China
| | - Qing Peng
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yang Li
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shao Li
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jiang Du
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yi Gao
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong Province, China. .,Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China. .,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China.
| | - Yifeng Wang
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong Province, China.
| |
Collapse
|
105
|
Zhang Y, Lv P, Li Y, Zhang Y, Cheng C, Hao H, Yue H. Comparison of the biological characteristics of umbilical cord mesenchymal stem cells derived from the human heterosexual twins. Differentiation 2020; 114:1-12. [PMID: 32460139 DOI: 10.1016/j.diff.2020.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/17/2020] [Accepted: 05/11/2020] [Indexed: 12/24/2022]
Abstract
Mesenchymal stromal/stem cells (MSCs) are attracting more and more attention due to their tissue regenerative properties and immunomodulatory functions. MSCs may be the most acceptable, safe, and effective source for allogeneic cell therapy, and have been used in medical treatment. However, the similarities and differences between umbilical cord-derived MSCs (UC-MSCs) of heterosexual twins remain poorly understood. In this study, we compared the biological characteristics of UC-MSCs of heterosexual twins in vitro. We found that male fetal UC-MSCs and female fetal UC-MSCs share a similar phenotype and multi-lineage differentiation potential, and male fetal UC-MSCs show a significantly higher proliferation and adipogenic ability than female fetal UC-MSCs. UC-MSCs from heterosexual twins showed significant differences in the expression levels of NANOG, OCT4, TERT, and SOX2. In addition, male MSCs are more potent in the expression of inflammatory cytokines to lipopolysaccharide (LPS)-induced inflammation. In future clinical applications using MSCs for inflammation-related diseases, these biological characteristics differences with different genders will guide our clinical methods.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Translational Medicine Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, 450007, China
| | - Pengju Lv
- Translational Medicine Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, 450007, China
| | - Yalong Li
- Stem Cell Research Center, Henan Key Laboratory of Stem Cell Differentiation and Modification Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China; People's Hospital of Henan University, Zhengzhou, Henan, 450003, China
| | - Yonghui Zhang
- Stem Cell Research Center, Henan Key Laboratory of Stem Cell Differentiation and Modification Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China; People's Hospital of Henan University, Zhengzhou, Henan, 450003, China
| | - Chaofei Cheng
- Stem Cell Research Center, Henan Key Laboratory of Stem Cell Differentiation and Modification Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China; People's Hospital of Henan University, Zhengzhou, Henan, 450003, China
| | - Hongbo Hao
- Neuroscience Initiative, Advanced Science Research Center at the Graduate Center, City University of New York, New York, 10031, USA
| | - Han Yue
- Stem Cell Research Center, Henan Key Laboratory of Stem Cell Differentiation and Modification Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China; People's Hospital of Henan University, Zhengzhou, Henan, 450003, China.
| |
Collapse
|
106
|
Potential of stem cell therapy in intracerebral hemorrhage. Mol Biol Rep 2020; 47:4671-4680. [PMID: 32415506 DOI: 10.1007/s11033-020-05457-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/11/2020] [Indexed: 01/01/2023]
Abstract
Spontaneous intracerebral hemorrhage (ICH) is a common disease associated with high mortality and morbidity. The treatment of patients with ICH includes medical and surgical interventions. New areas of surgical intervention have been focused on the evacuation of hematoma through minimally invasive neurosurgery. In contrast, there have been no significant advances in the development of medical interventions for functional recovery after ICH. Stem cells exert multiple therapeutic functions and have emerged as a promising treatment strategy. Herein, we summarized the pathophysiology of ICH and its treatment targets, and we introduced the therapeutic mechanisms of stem cells (e.g. neutrotrophy and neuroregeneration). Moreover, we reviewed and summarized the experimental designs of the preclinical studies, including the types of cells and the timing and routes of stem cell administration. We further listed and reviewed the completed/published and ongoing clinical trials supporting the safety and efficacy of stem cell therapy in ICH. The limitations of translating preclinical studies into clinical trials and the objectives of future studies were discussed. In conclusion, current literatures showed that stem cell therapy is a promising treatment in ICH and further translation research on judiciously selected group of patients is warranted before it can be extensively applied in clinical practice.
Collapse
|
107
|
Cherian DS, Bhuvan T, Meagher L, Heng TSP. Biological Considerations in Scaling Up Therapeutic Cell Manufacturing. Front Pharmacol 2020; 11:654. [PMID: 32528277 PMCID: PMC7247829 DOI: 10.3389/fphar.2020.00654] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
Cell therapeutics - using cells as living drugs - have made advances in many areas of medicine. One of the most clinically studied cell-based therapy products is mesenchymal stromal cells (MSCs), which have shown promising results in promoting tissue regeneration and modulating inflammation. However, MSC therapy requires large numbers of cells, the generation of which is not feasible via conventional planar tissue culture methods. Scale-up manufacturing methods (e.g., propagation on microcarriers in stirred-tank bioreactors), however, are not specifically tailored for MSC expansion. These processes may, in principle, alter the cell secretome, a vital component underlying the immunosuppressive properties and clinical effectiveness of MSCs. This review outlines our current understanding of MSC properties and immunomodulatory function, expansion in commercial manufacturing systems, and gaps in our knowledge that need to be addressed for effective up-scaling commercialization of MSC therapy.
Collapse
Affiliation(s)
- Darshana S Cherian
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Tejasvini Bhuvan
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Laurence Meagher
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, Australia
| | - Tracy S P Heng
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
108
|
Cao Y, Ji C, Lu L. Mesenchymal stem cell therapy for liver fibrosis/cirrhosis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:562. [PMID: 32775363 PMCID: PMC7347778 DOI: 10.21037/atm.2020.02.119] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Liver fibrosis represents a common outcome of most chronic liver diseases. Advanced fibrosis leads to cirrhosis for which no effective treatment is available except liver transplantation. Because of the limitations of liver transplantation, alternative therapeutic strategies are an urgent need to find. Recently, mesenchymal stem cells (MSCs) based therapy has been suggested as an attractive therapeutic option for liver fibrosis and cirrhosis, based on the promising results from preclinical and clinical studies. Although the precise mechanisms of MSC transplantation are still not fully understood, accumulating evidence has indicated that MSCs eliminate the progression of fibrosis due to their immune-modulatory properties. In this review, we summarise the properties of MSCs and their clinical application in the treatment of liver fibrosis and cirrhosis. We also discuss the mechanisms involved in MSC-dependent regulation of immune microenvironment in the context of liver fibrosis and cirrhosis.
Collapse
Affiliation(s)
- Yan Cao
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Chenbo Ji
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Ling Lu
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing 210029, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
109
|
Koltsova AM, Zenin VV, Turilova VI, Yakovleva TK, Poljanskaya GG. Isolation and Characterization of Mesenchymal Stem Cells from Human Gingiva. ACTA ACUST UNITED AC 2020. [DOI: 10.1134/s1990519x2001006x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
110
|
Velarde F, Castañeda V, Morales E, Ortega M, Ocaña E, Álvarez-Barreto J, Grunauer M, Eguiguren L, Caicedo A. Use of Human Umbilical Cord and Its Byproducts in Tissue Regeneration. Front Bioeng Biotechnol 2020; 8:117. [PMID: 32211387 PMCID: PMC7075856 DOI: 10.3389/fbioe.2020.00117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/06/2020] [Indexed: 12/13/2022] Open
Abstract
The fresh or cryopreserved human umbilical cord (HUC) and its byproducts, such as cells and extracts, have different uses in tissue regeneration. Defining what HUC byproduct is more effective in a particular application is a challenge. Furthermore, the methods of isolation, culture and preservation, may affect cell viability and regenerative properties. In this article, we review the HUC and its byproducts' applications in research and clinical practice. We present our results of successful use of HUC as a patch to treat gastroschisis and its potential to be applied in other conditions. Our in vitro results show an increase in proliferation and migration of human fibroblasts by using an acellular HUC extract. Our goal is to promote standardization of procedures and point out that applications of HUC and its byproducts, as well as the resulting advances in regenerative medicine, will depend on rigorous quality control and on more research in this area.
Collapse
Affiliation(s)
- Francesca Velarde
- Colegio de Ciencias de la Salud, Escuela de Medicina, Universidad San Francisco de Quito, Quito, Ecuador
- Instituto de Investigaciones en Biomedicina, Universidad San Francisco de Quito, Quito, Ecuador
| | - Verónica Castañeda
- Colegio de Ciencias de la Salud, Escuela de Medicina, Universidad San Francisco de Quito, Quito, Ecuador
- Instituto de Investigaciones en Biomedicina, Universidad San Francisco de Quito, Quito, Ecuador
- Colegio de Ciencias Biológicas y Ambientales, Escuela de Biotecnología, Universidad San Francisco de Quito, Quito, Ecuador
| | - Emilia Morales
- Colegio de Ciencias de la Salud, Escuela de Medicina, Universidad San Francisco de Quito, Quito, Ecuador
- Instituto de Investigaciones en Biomedicina, Universidad San Francisco de Quito, Quito, Ecuador
- Colegio de Ciencias Biológicas y Ambientales, Escuela de Biotecnología, Universidad San Francisco de Quito, Quito, Ecuador
| | - Mayra Ortega
- Colegio de Ciencias de la Salud, Escuela de Medicina, Universidad San Francisco de Quito, Quito, Ecuador
- Instituto de Investigaciones en Biomedicina, Universidad San Francisco de Quito, Quito, Ecuador
- Colegio de Ciencias Biológicas y Ambientales, Escuela de Biotecnología, Universidad San Francisco de Quito, Quito, Ecuador
| | - Edwin Ocaña
- Hospital Carlos Andrade Marín, Quito, Ecuador
| | - Jose Álvarez-Barreto
- Instituto para el Desarrollo de Energías y Materiales Alternativos (IDEMA), Colegio de Ciencias e Ingenierías (Politécnico), Universidad San Francisco de Quito, Quito, Ecuador
| | - Michelle Grunauer
- Colegio de Ciencias de la Salud, Escuela de Medicina, Universidad San Francisco de Quito, Quito, Ecuador
- Unidad de Cuidados Intensivos Pediátricos, Hospital de los Valles, Quito, Ecuador
| | - Luis Eguiguren
- Colegio de Ciencias de la Salud, Escuela de Medicina, Universidad San Francisco de Quito, Quito, Ecuador
- Sistemas Médicos, SIME, Universidad San Francisco de Quito, Quito, Ecuador
| | - Andrés Caicedo
- Colegio de Ciencias de la Salud, Escuela de Medicina, Universidad San Francisco de Quito, Quito, Ecuador
- Instituto de Investigaciones en Biomedicina, Universidad San Francisco de Quito, Quito, Ecuador
- Sistemas Médicos, SIME, Universidad San Francisco de Quito, Quito, Ecuador
| |
Collapse
|
111
|
Arjunan S, Gan SU, Choolani M, Raj V, Lim J, Biswas A, Bongso A, Fong CY. Inhibition of growth of Asian keloid cells with human umbilical cord Wharton's jelly stem cell-conditioned medium. Stem Cell Res Ther 2020; 11:78. [PMID: 32085797 PMCID: PMC7035736 DOI: 10.1186/s13287-020-01609-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 02/06/2023] Open
Abstract
Background Keloid formation occurs in Caucasian, African, and Asian populations and is a severe psychosocial burden on patients. There is no permanent treatment for this problem as its pathogenesis is not properly understood. Furthermore, differences in keloid behavior between ethnic groups are not known. It has been hypothesized that keloids behave like benign tumors because of their uncontrolled growth. The present study evaluated the tumoricidal properties of human Wharton’s jelly stem cell-conditioned medium (hWJSC-CM) on fresh Asian keloid cells (AKCs). Methods Human Wharton’s jelly stem cells (hWJSCs) and AKCs were isolated based on our previous methods. hWJSCs and human skin fibroblasts (HSF) (controls) were used to collect hWJSC-CM and HSF-conditioned medium (HSF-CM). AKCs were treated with hWJSC-CM and HSF-CM in vitro and in vivo in a human keloid xenograft SCID mouse model. The inhibitory effect of hWJSC-CM on AKCs was tested in vitro using various assays and in vivo for attenuation/abrogation of AKC tumors created in a xenograft mouse model. Results qRT-PCR analysis showed that the genes FN1, MMP1, and VCAN were significantly upregulated in AKCs and ANXA1, ASPN, IGFBP7, LGALS1, and PTN downregulated. AKCs exposed to hWJSC-CM in vitro showed significant decreases in cell viability and proliferation, increases in Annexin V-FITC+ cell numbers, interruptions of the cell cycle at Sub-G1 and G2/M phases, altered CD marker expression, downregulated anti-apoptotic-related genes, and upregulated pro-apoptotic and autophagy-related genes compared to controls. When AKCs were administered together with hWJSC-CM into immunodeficient mice there were no keloid tumors formed in 7 mice (n = 10) compared to the untreated control mice. When hWJSC-CM was injected directly into keloid tumors created in mice there were significant reductions in keloid tumor volumes and weights in 30 days. Conclusions hWJSC-CM inhibited the growth of AKCs in vitro and in xenograft mice, and it may be a potential novel treatment for keloids in the human. The specific molecule(s) in hWJSC-CM that induce the anti-keloid effect need to be identified, characterized, and tested separately in larger preclinical and clinical studies.
Collapse
Affiliation(s)
- Subramanian Arjunan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore
| | - Shu Uin Gan
- Department of Surgery, Kent Ridge, 119228, Singapore
| | - Mahesh Choolani
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore
| | - Vaishnevi Raj
- Department of Medicine, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore
| | - Jane Lim
- Department of Surgery, Kent Ridge, 119228, Singapore
| | - Arijit Biswas
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore
| | - Ariff Bongso
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore
| | - Chui Yee Fong
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore.
| |
Collapse
|
112
|
Shammaa R, El-Kadiry AEH, Abusarah J, Rafei M. Mesenchymal Stem Cells Beyond Regenerative Medicine. Front Cell Dev Biol 2020; 8:72. [PMID: 32133358 PMCID: PMC7040370 DOI: 10.3389/fcell.2020.00072] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are competent suitors of cellular therapy due to their therapeutic impact on tissue degeneration and immune-based pathologies. Additionally, their homing and immunomodulatory properties can be exploited in cancer malignancies to transport pharmacological entities, produce anti-neoplastic agents, or induce anti-tumor immunity. Herein, we create a portfolio for MSC properties, showcasing their distinct multiple therapeutic utilities and successes/challenges thereof in both animal studies and clinical trials. We further highlight the promising potential of MSCs not only in cancer management but also in instigating tumor-specific immunity - i.e., cancer vaccination. Finally, we reflect on the possible reasons impeding the clinical advancement of MSC-based cancer vaccines to assist in contriving novel methodologies from which a therapeutic milestone might emanate.
Collapse
Affiliation(s)
- Riam Shammaa
- Canadian Centre for Regenerative Therapy, Toronto, ON, Canada.,IntelliStem Technologies Inc., Toronto, ON, Canada.,Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| | - Abed El-Hakim El-Kadiry
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Montreal, QC, Canada.,Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada
| | - Jamilah Abusarah
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Moutih Rafei
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.,Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada.,Molecular Biology Program, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
113
|
Chu DT, Phuong TNT, Tien NLB, Tran DK, Thanh VV, Quang TL, Truong DT, Pham VH, Ngoc VTN, Chu-Dinh T, Kushekhar K. An Update on the Progress of Isolation, Culture, Storage, and Clinical Application of Human Bone Marrow Mesenchymal Stem/Stromal Cells. Int J Mol Sci 2020; 21:E708. [PMID: 31973182 PMCID: PMC7037097 DOI: 10.3390/ijms21030708] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/13/2022] Open
Abstract
Bone marrow mesenchymal stem/stromal cells (BMSCs), which are known as multipotent cells, are widely used in the treatment of various diseases via their self-renewable, differentiation, and immunomodulatory properties. In-vitro and in-vivo studies have supported the understanding mechanisms, safety, and efficacy of BMSCs therapy in clinical applications. The number of clinical trials in phase I/II is accelerating; however, they are limited in the size of subjects, regulations, and standards for the preparation and transportation and administration of BMSCs, leading to inconsistency in the input and outcome of the therapy. Based on the International Society for Cellular Therapy guidelines, the characterization, isolation, cultivation, differentiation, and applications can be optimized and standardized, which are compliant with good manufacturing practice requirements to produce clinical-grade preparation of BMSCs. This review highlights and updates on the progress of production, as well as provides further challenges in the studies of BMSCs, for the approval of BMSCs widely in clinical application.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Faculty of Biology, Hanoi National University of Education, Hanoi 100000, Vietnam
- School of Odonto Stomatology, Hanoi Medical University, Hanoi 100000, Vietnam;
| | - Thuy Nguyen Thi Phuong
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Korea
| | - Nguyen Le Bao Tien
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi 100000, Vietnam; (N.L.B.T.); (V.V.T.)
| | - Dang Khoa Tran
- Department of Anatomy, University of Medicine Pham Ngoc Thach, Ho Chi Minh City 700000, Vietnam;
| | - Vo Van Thanh
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi 100000, Vietnam; (N.L.B.T.); (V.V.T.)
- Department of Surgery, Hanoi Medical University, Hanoi 100000, Vietnam
| | - Thuy Luu Quang
- Center for Anesthesia and Surgical Intensive Care, Viet Duc Hospital, Hanoi 100000, Vietnam;
| | | | - Van Huy Pham
- AI Lab, Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Vo Truong Nhu Ngoc
- School of Odonto Stomatology, Hanoi Medical University, Hanoi 100000, Vietnam;
| | - Thien Chu-Dinh
- Institute for Research and Development, Duy Tan University, Danang 550000, Vietnam
| | - Kushi Kushekhar
- Institute of Cancer Research, Oslo University Hospital, 0310 Oslo, Norway;
| |
Collapse
|
114
|
Özmert E, Arslan U. Management of retinitis pigmentosa by Wharton's jelly derived mesenchymal stem cells: preliminary clinical results. Stem Cell Res Ther 2020; 11:25. [PMID: 31931872 PMCID: PMC6958670 DOI: 10.1186/s13287-020-1549-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/12/2019] [Accepted: 01/03/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE The aim of this study is to determine if umbilical cord Wharton's jelly derived mesenchymal stem cells implanted in sub-tenon space have beneficial effects on visual functions in retinitis pigmentosa patients by reactivating the degenerated photoreceptors in dormant phase. MATERIAL AND METHODS This prospective, open-label, phase-3 clinical trial was conducted between April of 2019 and October of 2019 at Ankara University Faculty of Medicine, Department of Ophthalmology. 32 RP patients (34 eyes) were included in the study. The patients were followed for 6 months after the Wharton's jelly derived mesenchymal stem cell administration, and evaluated with consecutive examinations. All patients underwent a complete routine ophthalmic examination, and best corrected visual acuity, optical coherens tomography angiography, visual field, multifocal and full-field electroretinography were performed. The quantitative results were obtained from a comparison of the pre-injection and final examination (6th month) values. RESULTS The mean best corrected visual acuity was 70.5 letters prior to Wharton's jelly derived mesenchymal stem cell application and 80.6 letters at the 6th month (p = 0.01). The mean visual field median deviation value was 27.3 dB before the treatment and 24.7 dB at the 6th month (p = 0.01). The mean outer retinal thickness was 100.3 μm before the treatment and 119.1 μm at 6th month (p = 0.01). In the multifocal electroretinography results, P1 amplitudes improved in ring1 from 24.8 to 39.8 nv/deg2 (p = 0.01), in ring2 from 6.8 to 13.6 nv/deg2 (p = 0.01), and in ring3 from 3.1 to 5.7 nv/deg2 (p = 0.02). P1 implicit times improved in ring1 from 44.2 to 32.4 ms (p = 0.01), in ring2 from 45.2 to 33.2 ms (p = 0.02), and in ring3 from 41.9 to 32.4 ms (p = 0.01). The mean amplitude improved in 16 Tds from 2.4 to 5.0 nv/deg2 (p = 0.01) and in 32 Tds from 2.4 to 4.8 nv/deg2 (p = 0.01) in the full-field flicker electroretinography results. Full field flicker electroretinography mean implicit time also improved in 16 Tds from 43.3 to 37.9 ms (p = 0.01). No ocular or systemic adverse events related to the two types of surgical methods and/or Wharton's jelly derived mesenchymal stem cells itself were observed during the follow-up period. CONCLUSION RP is a genetic disorder that can result in blindness with outer retinal degeneration. Regardless of the type of genetic mutation, sub-tenon Wharton's jelly derived mesenchymal stem cell administration appears to be an effective and safe option. There are no serious adverse events or ophthalmic / systemic side effects for 6 months follow-up. Although the long-term adverse effects are still unknown, as an extraocular approach, subtenon implantation of the stem cells seems to be a reasonable way to avoid the devastating side effects of intravitreal/submacular injection. Further studies that include long-term follow-up are needed to determine the duration of efficacy and the frequency of application. TRIAL REGISTRATION SHGM56733164. Redistered 28 January 2019 https://shgm.saglik.gov.tr/organ-ve-doku-nakli-koordinatorlugu/56733164/203 E.507.
Collapse
Affiliation(s)
- Emin Özmert
- Faculty of Medicine Department of Ophthalmology, Ankara University, Ankara, Turkey
| | - Umut Arslan
- Ankara University Technopolis, Neorama Ofis 55-56 Yaşam Cad, No 13/A Beştepe /Yenimahalle, Ankara, Turkey.
| |
Collapse
|
115
|
Derakhshankhah H, Sajadimajd S, Jafari S, Izadi Z, Sarvari S, Sharifi M, Falahati M, Moakedi F, Muganda WCA, Müller M, Raoufi M, Presley JF. Novel therapeutic strategies for Alzheimer's disease: Implications from cell-based therapy and nanotherapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 24:102149. [PMID: 31927133 DOI: 10.1016/j.nano.2020.102149] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/28/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disease which leads to progressive dysfunction of cognition, memory and learning in elderly people. Common therapeutic agents are not only inadequate to suppress the progression of AD pathogenesis but also produce deleterious side effects; hence, development of alternative therapies is required to specifically suppress complications of AD. The current review provides a commentary on conventional as well as novel therapeutic approaches with an emphasis on stem cell and nano-based therapies for improvement and management of AD pathogenesis. According to our overview of the current literature, AD is a multi-factorial disorder with various pathogenic trajectories; hence, a multifunctional strategy to create effective neuroprotective agents is required to treat this disorder.
Collapse
Affiliation(s)
- Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soraya Sajadimajd
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Samira Jafari
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zhila Izadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Sarvari
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Majid Sharifi
- Department of Nanotechnology, Faculty of Advance Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advance Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Faezeh Moakedi
- Health Science Center, West Virginia University, Morgantown, USA
| | | | - Mareike Müller
- Physical Chemistry I and Research Center of Micro and Nanochemistry (Cμ), University of Siegen, Siegen, Germany
| | - Mohammad Raoufi
- Physical Chemistry I and Research Center of Micro and Nanochemistry (Cμ), University of Siegen, Siegen, Germany; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - John F Presley
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada.
| |
Collapse
|
116
|
Strategy for the Generation of Engineered Bone Constructs Based on Umbilical Cord Mesenchymal Stromal Cells Expanded with Human Platelet Lysate. Stem Cells Int 2019; 2019:7198215. [PMID: 31885622 PMCID: PMC6914958 DOI: 10.1155/2019/7198215] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/05/2019] [Accepted: 09/05/2019] [Indexed: 02/06/2023] Open
Abstract
Umbilical cord mesenchymal stromal cells (UC-MSC) are promising candidates for cell therapy due to their potent multilineage differentiation, enhanced self-renewal capacity, and immediate availability for clinical use. Clinical experience has demonstrated satisfactory biosafety profiles and feasibility of UC-MSC application in the allogeneic setting. However, the use of UC-MSC for bone regeneration has not been fully established. A major challenge in the generation of successful therapeutic strategies for bone engineering lies on the combination of highly functional proosteogenic MSC populations and bioactive matrix scaffolds. To address that, in this study we proposed a new approach for the generation of bone-like constructs based on UC-MSC expanded in human platelet lysate (hPL) and evaluated its potential to induce bone structures in vivo. In order to obtain UC-MSC for potential clinical use, we first assessed parameters such as the isolation method, growth supplementation, microbiological monitoring, and cryopreservation and performed full characterization of the cell product including phenotype, growth performance, tree-lineage differentiation, and gene expression. Finally, we evaluated bone-like constructs based on the combination of stimulated UC-MSC and collagen microbeads for in vivo bone formation. UC-MSC were successfully cultured from 100% of processed UC donors, and efficient cell derivation was observed at day 14 ± 3 by the explant method. UC-MSC maintained mesenchymal cell morphology, phenotype, high cell growth performance, and probed multipotent differentiation capacity. No striking variations between donors were recorded. As expected, UC-MSC showed tree-lineage differentiation and gene expression profiles similar to bone marrow- and adipose-derived MSC. Importantly, upon osteogenic and endothelial induction, UC-MSC displayed strong proangiogenic and bone formation features. The combination of hPL-expanded MSC and collagen microbeads led to bone/vessel formation following implantation into an immune competent mouse model. Collectively, we developed a high-performance UC-MSC-based cell manufacturing bioprocess that fulfills the requirements for human application and triggers the potency and effectivity of cell-engineered scaffolds for bone regeneration.
Collapse
|
117
|
Rahmatizadeh F, Gholizadeh-Ghaleh Aziz S, Khodadadi K, Lale Ataei M, Ebrahimie E, Soleimani Rad J, Pashaiasl M. Bidirectional and Opposite Effects of Naïve Mesenchymal Stem Cells on Tumor Growth and Progression. Adv Pharm Bull 2019; 9:539-558. [PMID: 31857958 PMCID: PMC6912184 DOI: 10.15171/apb.2019.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/31/2019] [Accepted: 08/13/2019] [Indexed: 12/16/2022] Open
Abstract
Cancer has long been considered as a heterogeneous population of uncontrolled proliferation of
different transformed cell types. The recent findings concerning tumorigeneses have highlighted
the fact that tumors can progress through tight relationships among tumor cells, cellular, and
non-cellular components which are present within tumor tissues. In recent years, studies have
shown that mesenchymal stem cells (MSCs) are essential components of non-tumor cells within
the tumor tissues that can strongly affect tumor development. Several forms of MSCs have been
identified within tumor stroma. Naïve (innate) mesenchymal stem cells (N-MSCs) derived from
different sources are mostly recruited into the tumor stroma. N-MSCs exert dual and divergent
effects on tumor growth through different conditions and factors such as toll-like receptor
priming (TLR-priming), which is the primary underlying causes of opposite effects. Moreover,
MSCs also have the contrary effects by various molecular mechanisms relying on direct cellto-
cell connections and indirect communications through the autocrine, paracrine routes, and
tumor microenvironment (TME).
Overall, cell-based therapies will hold great promise to provide novel anticancer treatments.
However, the application of intact MSCs in cancer treatment can theoretically cause adverse
clinical outcomes. It is essential that to extensively analysis the effective factors and conditions
in which underlying mechanisms are adopted by MSCs when encounter with cancer.
The aim is to review the cellular and molecular mechanisms underlying the dual effects of
MSCs followed by the importance of polarization of MSCs through priming of TLRs.
Collapse
Affiliation(s)
- Faramarz Rahmatizadeh
- Department of Molecular Medicine, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Khodadad Khodadadi
- Murdoch Children's Research Institute, Royal Children's Hospital, The University of Melbourne, Melbourne, Australia
| | - Maryam Lale Ataei
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Esmaeil Ebrahimie
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.,School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, Australia
| | - Jafar Soleimani Rad
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Reproductive Biology, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran
| | - Maryam Pashaiasl
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Reproductive Biology, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran.,Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
118
|
Huang Q, Yang Y, Luo C, Wen Y, Liu R, Li S, Chen T, Sun H, Tang L. An efficient protocol to generate placental chorionic plate-derived mesenchymal stem cells with superior proliferative and immunomodulatory properties. Stem Cell Res Ther 2019; 10:301. [PMID: 31623677 PMCID: PMC6796371 DOI: 10.1186/s13287-019-1405-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/26/2019] [Accepted: 09/02/2019] [Indexed: 12/15/2022] Open
Abstract
Background Placenta-derived MSCs (P-MSCs) represent a promising tool for cell-based therapeutic applications. However, the increasing demand for P-MSCs in clinical trials makes high quality and large number of P-MSCs mandatory. Here, we aim to develop an efficient protocol for P-MSC isolation and culture. Methods The modified explant culture (MEC) method by combining an initial mild enzymatic reaction with the subsequent explant culture was developed to simultaneously produce various P-MSCs from the different regions of the placenta in serum-free medium (SFM). Its isolation efficiencies, cell yield, and proliferative capacity were compared with the conventional explant culture (EC) method. Furthermore, we determined whether functional properties of P-MSCs are affected by the used tissue-harvesting sites in terms of their proliferation, migration, and the immunomodulatory effect on macrophage. Results The MEC method achieved higher yield and shorter time in primary cell confluence in SFM compared with the conventional method. The harvested cells possessed the MSC characteristics and demonstrated significantly stronger proliferation ability. Importantly, MSCs derived from chorionic plate (CP-MSCs) were found to exhibit superior properties to the other P-MSCs in proliferation and migration capacity, maintaining the fetal origin over serial passages. Notably, CP-MSCs show stronger ability in regulating macrophage polarization from M1 to M2. Conclusion Our study developed an efficient and high-yield technique to produce high-quality P-MSCs from the placenta, hence serving as an optimal source of MSCs for clinical application.
Collapse
Affiliation(s)
- Qilin Huang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command (Chengdu Military General Hospital), Chengdu, 610083, China.,College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yi Yang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command (Chengdu Military General Hospital), Chengdu, 610083, China.,College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Chen Luo
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command (Chengdu Military General Hospital), Chengdu, 610083, China
| | - Yi Wen
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command (Chengdu Military General Hospital), Chengdu, 610083, China
| | - Ruohong Liu
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command (Chengdu Military General Hospital), Chengdu, 610083, China
| | - Shuai Li
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command (Chengdu Military General Hospital), Chengdu, 610083, China
| | - Tao Chen
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command (Chengdu Military General Hospital), Chengdu, 610083, China
| | - Hongyu Sun
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command (Chengdu Military General Hospital), Chengdu, 610083, China.
| | - Lijun Tang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command (Chengdu Military General Hospital), Chengdu, 610083, China. .,College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
119
|
Chien CW, Lo YS, Wu HY, Hsuan Y, Lin CK, Chen YJ, Lin W, Han CL. Transcriptomic and Proteomic Profiling of Human Mesenchymal Stem Cell Derived from Umbilical Cord in the Study of Preterm Birth. Proteomics Clin Appl 2019; 14:e1900024. [PMID: 31520560 DOI: 10.1002/prca.201900024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 08/10/2019] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Mesenchymal stem cells (MSCs) hold great therapeutic potential in morbidities associated with preterm birth. However, the molecular expressions of MSCs in preterm birth infants are not systematically evaluated. In this study, the dual-omics analyses of umbilical-cord (UC)-derived MSCs to identify the dysregulated cellular functions are presented. MATERIALS AND METHODS The UC-MSCs are collected from ten full-term and eight preterm birth infants for microarray and iTRAQ-based proteome profiling. RESULTS The integrative analysis of dual-omics data discovered 5615 commonly identified genes/proteins of which 29 genes/proteins show consistent up- or downregulation in preterm birth. The Gene Ontology analysis reveals that dysregulation of mitochondrial translation and cellular response to oxidative stress are mainly enriched in 290 differential expression proteins (DEPs) while the 412 differential expression genes (DEGs) are majorly involved in single-organism biosynthetic process, cellular response to stress, and mitotic cell cycle in preterm birth. Besides, a 13-protein module involving CUL2 and CUL3 is identified, which plays an important role in cullin-RING-based ubiquitin ligase complex, as potential mechanism for preterm birth. CONCLUSION The dual-omics data not only provide new insights to the molecular mechanism but also identify panel of candidate markers associated with preterm birth.
Collapse
Affiliation(s)
- Chih-Wei Chien
- Research and Development Division, Meribank Biotech Co. Ltd., Taipei, 11493, Taiwan
| | - Yu-Shu Lo
- Research and Development Division, Meribank Biotech Co. Ltd., Taipei, 11493, Taiwan
| | - Hsin-Yi Wu
- Instrumentation Center, National Taiwan University, Taipei, 10617, Taiwan
| | - Yogi Hsuan
- Meridigen Biotech Co. Ltd., Taipei, 11493, Taiwan
| | - Chi-Kang Lin
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Willie Lin
- Meridigen Biotech Co. Ltd., Taipei, 11493, Taiwan
| | - Chia-Li Han
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
| |
Collapse
|
120
|
Angelopoulos I, Allenby MC, Lim M, Zamorano M. Engineering inkjet bioprinting processes toward translational therapies. Biotechnol Bioeng 2019; 117:272-284. [DOI: 10.1002/bit.27176] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Ioannis Angelopoulos
- Department of Biomedical ResearchFoundation of Research and Technology‐Hellas, Institute of Molecular Biology and Biotechnology Ioannina Greece
| | - Mark C. Allenby
- Instiute of Health and Biomedical InnovationQueensland University of Technology Brisbane Australia
| | | | - Mauricio Zamorano
- Chemical Engineering DepartmentUniversidad de La Frontera Temuco Chile
| |
Collapse
|
121
|
Cabrera F, Ortega M, Velarde F, Parra E, Gallardo S, Barba D, Soto L, Peña G, Pedroza LA, Jorgensen C, Khoury M, Caicedo A. Primary allogeneic mitochondrial mix (PAMM) transfer/transplant by MitoCeption to address damage in PBMCs caused by ultraviolet radiation. BMC Biotechnol 2019; 19:42. [PMID: 31253149 PMCID: PMC6599354 DOI: 10.1186/s12896-019-0534-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 06/14/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Artificial Mitochondrial Transfer or Transplant (AMT/T) can be used to reduce the stress and loss of viability of damaged cells. In MitoCeption, a type of AMT/T, the isolated mitochondria and recipient cells are centrifuged together at 4 °C and then co-incubated at 37 °C in normal culture conditions, inducing the transfer. Ultraviolet radiation (UVR) can affect mitochondria and other cell structures, resulting in tissue stress, aging, and immunosuppression. AMT/T could be used to repair UVR cellular and mitochondrial damage. We studied if a mitochondrial mix from different donors (Primary Allogeneic Mitochondrial Mix, PAMM) can repair UVR damage and promote cell survival. RESULTS Using a simplified adaption of the MitoCeption protocol, we used peripheral blood mononuclear cells (PBMCs) as the recipient cell model of the PAMM in order to determine if this protocol could repair UVR damage. Our results showed that when PBMCs are exposed to UVR, there is a decrease in metabolic activity, mitochondrial mass, and mtDNA sequence stability as well as an increase in p53 expression and the percentage of dead cells. When PAMM MitoCeption was used on UVR-damaged cells, it successfully transferred mitochondria from different donors to distinct PBMCs populations and repaired the observed UVR damage. CONCLUSION Our results represent an advancement in the applications of MitoCeption and other AMT/T. We showed that PBMCs could be used as a PAMM source of mitochondria. We also showed that these mitochondria can be transferred in a mix from different donors (PAMM) to UVR-damaged, non-adherent primary cells. Additionally, we decreased the duration of the MitoCeption protocol.
Collapse
Affiliation(s)
- Francisco Cabrera
- Colegio de Ciencias de la Salud, Escuela de Medicina Veterinaria, Universidad San Francisco de Quito, 17-12-841 Quito, Ecuador
- IRMB CHU Saint Eloi, University of Montpellier, France, 80 rue Augustin Fliche, 34295 Montpellier, cedex 5 France
- Instituto de Investigaciones en Biomedicina, Universidad San Francisco de Quito, 17-12-841 Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
| | - Mayra Ortega
- Colegio de Ciencias Biológicas y Ambientales, Escuela de Biotecnología, Universidad San Francisco de Quito, 17-12-841 Quito, Ecuador
- Instituto de Investigaciones en Biomedicina, Universidad San Francisco de Quito, 17-12-841 Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
| | - Francesca Velarde
- Instituto de Investigaciones en Biomedicina, Universidad San Francisco de Quito, 17-12-841 Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
| | - Eliseo Parra
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
- Cells for Cells, Santiago, Chile
| | - Stephany Gallardo
- Colegio de Ciencias Biológicas y Ambientales, Escuela de Biotecnología, Universidad San Francisco de Quito, 17-12-841 Quito, Ecuador
| | - Diego Barba
- Colegio de Ciencias de la Salud, Escuela de Medicina, Universidad San Francisco de Quito, 17-12-841 Quito, Ecuador
| | - Lina Soto
- Colegio de Ciencias de la Salud, Escuela de Medicina, Universidad San Francisco de Quito, 17-12-841 Quito, Ecuador
| | - Gabriela Peña
- Colegio de Ciencias de la Salud, Escuela de Medicina, Universidad San Francisco de Quito, 17-12-841 Quito, Ecuador
| | - Luis Alberto Pedroza
- Colegio de Ciencias de la Salud, Escuela de Medicina, Universidad San Francisco de Quito, 17-12-841 Quito, Ecuador
- Baylor College of Medicine: Department of Pediatrics, Section of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, Houston, TX USA
| | - Christian Jorgensen
- IRMB CHU Saint Eloi, University of Montpellier, France, 80 rue Augustin Fliche, 34295 Montpellier, cedex 5 France
- Mito-Act Research Consortium, Quito, Ecuador
| | - Maroun Khoury
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
- Cells for Cells, Santiago, Chile
- Mito-Act Research Consortium, Quito, Ecuador
| | - Andrés Caicedo
- Colegio de Ciencias de la Salud, Escuela de Medicina, Universidad San Francisco de Quito, 17-12-841 Quito, Ecuador
- Instituto de Investigaciones en Biomedicina, Universidad San Francisco de Quito, 17-12-841 Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Sistemas Médicos, SIME, Universidad San Francisco de Quito, 17-12-841 Quito, Ecuador
| |
Collapse
|
122
|
Stamatopoulos A, Stamatopoulos T, Gamie Z, Kenanidis E, Ribeiro RDC, Rankin KS, Gerrand C, Dalgarno K, Tsiridis E. Mesenchymal stromal cells for bone sarcoma treatment: Roadmap to clinical practice. J Bone Oncol 2019; 16:100231. [PMID: 30956944 PMCID: PMC6434099 DOI: 10.1016/j.jbo.2019.100231] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022] Open
Abstract
Over the past few decades, there has been growing interest in understanding the molecular mechanisms of cancer pathogenesis and progression, as it is still associated with high morbidity and mortality. Current management of large bone sarcomas typically includes the complex therapeutic approach of limb salvage or sacrifice combined with pre- and postoperative multidrug chemotherapy and/or radiotherapy, and is still associated with high recurrence rates. The development of cellular strategies against specific characteristics of tumour cells appears to be promising, as they can target cancer cells selectively. Recently, Mesenchymal Stromal Cells (MSCs) have been the subject of significant research in orthopaedic clinical practice through their use in regenerative medicine. Further research has been directed at the use of MSCs for more personalized bone sarcoma treatments, taking advantage of their wide range of potential biological functions, which can be augmented by using tissue engineering approaches to promote healing of large defects. In this review, we explore the use of MSCs in bone sarcoma treatment, by analyzing MSCs and tumour cell interactions, transduction of MSCs to target sarcoma, and their clinical applications on humans concerning bone regeneration after bone sarcoma extraction.
Collapse
Key Words
- 5-FC, 5-fluorocytosine
- AAT, a1-antitrypsin
- APCs, antigen presenting cells
- ASC, adipose-derived stromal/stem cells
- Abs, antibodies
- Ang1, angiopoietin-1
- BD, bone defect
- BMMSCs, bone marrow-derived mesenchymal stromal cells
- Biology
- Bone
- CAM, cell adhesion molecules
- CCL5, chemokine ligand 5
- CCR2, chemokine receptor 2
- CD, classification determinants
- CD, cytosine deaminase
- CLUAP1, clusterin associated protein 1
- CSPG4, Chondroitin sulfate proteoglycan 4
- CX3CL1, chemokine (C-X3-C motif) ligand 1
- CXCL12/CXCR4, C-X-C chemokine ligand 12/ C-X-C chemokine receptor 4
- CXCL12/CXCR7, C-X-C chemokine ligand 12/ C-X-C chemokine receptor 7
- CXCR4, chemokine receptor type 4
- Cell
- DBM, Demineralized Bone Marrow
- DKK1, dickkopf-related protein 1
- ECM, extracellular matrix
- EMT, epithelial-mesenchymal transition
- FGF-2, fibroblast growth factors-2
- FGF-7, fibroblast growth factors-7
- GD2, disialoganglioside 2
- HER2, human epidermal growth factor receptor 2
- HGF, hepatocyte growth factor
- HMGB1/RACE, high mobility group box-1 protein/ receptor for advanced glycation end-products
- IDO, indoleamine 2,3-dioxygenase
- IFN-α, interferon alpha
- IFN-β, interferon beta
- IFN-γ, interferon gamma
- IGF-1R, insulin-like growth factor 1 receptor
- IL-10, interleukin-10
- IL-12, interleukin-12
- IL-18, interleukin-18
- IL-1b, interleukin-1b
- IL-21, interleukin-21
- IL-2a, interleukin-2a
- IL-6, interleukin-6
- IL-8, interleukin-8
- IL11RA, Interleukin 11 Receptor Subunit Alpha
- MAGE, melanoma antigen gene
- MCP-1, monocyte chemoattractant protein-1
- MMP-2, matrix metalloproteinase-2
- MMP2/9, matrix metalloproteinase-2/9
- MRP, multidrug resistance protein
- MSCs, mesenchymal stem/stromal cells
- Mesenchymal
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- OPG, osteoprotegerin
- Orthopaedic
- PBS, phosphate-buffered saline
- PDGF, platelet-derived growth factor
- PDX, patient derived xenograft
- PEDF, pigment epithelium-derived factor
- PGE2, prostaglandin E2
- PI3K/Akt, phosphoinositide 3-kinase/protein kinase B
- PTX, paclitaxel
- RANK, receptor activator of nuclear factor kappa-B
- RANKL, receptor activator of nuclear factor kappa-B ligand
- RBCs, red blood cells
- RES, reticuloendothelial system
- RNA, ribonucleic acid
- Regeneration
- SC, stem cells
- SCF, stem cells factor
- SDF-1, stromal cell-derived factor 1
- STAT-3, signal transducer and activator of transcription 3
- Sarcoma
- Stromal
- TAAs, tumour-associated antigens
- TCR, T cell receptor
- TGF-b, transforming growth factor beta
- TGF-b1, transforming growth factor beta 1
- TNF, tumour necrosis factor
- TNF-a, tumour necrosis factor alpha
- TRAIL, tumour necrosis factor related apoptosis-inducing ligand
- Tissue
- VEGF, vascular endothelial growth factor
- VEGFR, vascular endothelial growth factor receptor
- WBCs, white blood cell
- hMSCs, human mesenchymal stromal cells
- rh-TRAIL, recombinant human tumour necrosis factor related apoptosis-inducing ligand
Collapse
Affiliation(s)
- Alexandros Stamatopoulos
- Academic Orthopaedic Unit, Papageorgiou General Hospital, Aristotle University Medical School, West Ring Road of Thessaloniki, Pavlos Melas Area, N. Efkarpia, 56403 Thessaloniki, Greece
- Center of Orthopaedics and Regenerative Medicine (C.O.RE.), Center for Interdisciplinary Research and Innovation (C.I.R.I.), Aristotle University Thessaloniki, Greece
| | - Theodosios Stamatopoulos
- Academic Orthopaedic Unit, Papageorgiou General Hospital, Aristotle University Medical School, West Ring Road of Thessaloniki, Pavlos Melas Area, N. Efkarpia, 56403 Thessaloniki, Greece
- Center of Orthopaedics and Regenerative Medicine (C.O.RE.), Center for Interdisciplinary Research and Innovation (C.I.R.I.), Aristotle University Thessaloniki, Greece
| | - Zakareya Gamie
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Eustathios Kenanidis
- Academic Orthopaedic Unit, Papageorgiou General Hospital, Aristotle University Medical School, West Ring Road of Thessaloniki, Pavlos Melas Area, N. Efkarpia, 56403 Thessaloniki, Greece
- Center of Orthopaedics and Regenerative Medicine (C.O.RE.), Center for Interdisciplinary Research and Innovation (C.I.R.I.), Aristotle University Thessaloniki, Greece
| | - Ricardo Da Conceicao Ribeiro
- School of Mechanical and Systems Engineering, Stephenson Building, Claremont Road, Newcastle upon Tyne NE1 7RU, UK
| | - Kenneth Samora Rankin
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Craig Gerrand
- Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, HA7 4LP, UK
| | - Kenneth Dalgarno
- School of Mechanical and Systems Engineering, Stephenson Building, Claremont Road, Newcastle upon Tyne NE1 7RU, UK
| | - Eleftherios Tsiridis
- Academic Orthopaedic Unit, Papageorgiou General Hospital, Aristotle University Medical School, West Ring Road of Thessaloniki, Pavlos Melas Area, N. Efkarpia, 56403 Thessaloniki, Greece
- Center of Orthopaedics and Regenerative Medicine (C.O.RE.), Center for Interdisciplinary Research and Innovation (C.I.R.I.), Aristotle University Thessaloniki, Greece
| |
Collapse
|
123
|
Kim S, Kim TM. Generation of mesenchymal stem-like cells for producing extracellular vesicles. World J Stem Cells 2019; 11:270-280. [PMID: 31171955 PMCID: PMC6545523 DOI: 10.4252/wjsc.v11.i5.270] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/02/2019] [Accepted: 04/19/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent progenitor cells with therapeutic potential against autoimmune diseases, inflammation, ischemia, and metabolic disorders. Contrary to the previous conceptions, recent studies have revealed that the tissue repair and immunomodulatory functions of MSCs are largely attributed to their secretome, rather than their potential to differentiate into desired cell types. The composition of MSC secretome encompasses cytokines and growth factors, in addition to the cell-derived structures known as extracellular vesicles (EVs). EVs are membrane-enclosed nanoparticles that are capable of delivering biomolecules, and it is now believed that MSC-derived EVs are the major players that induce biological changes in the target tissues. Based on these EVs’ characteristics, the potential of EVs derived from MSC (MSC-EV) in terms of tissue regeneration and immune modulation has grown during the last decade. However, the use of MSCs for producing sufficient amount of EVs has not been satisfactory due to limitations in the cell growth and large variations among the donor cell types. In this regard, pluripotent stem cells (PSCs)-derived MSC-like cells, which can be robustly induced and expanded in vitro, have emerged as more accessible cell source that can overcome current limitations of using MSCs for EV production. In this review, we have highlighted the methods of generating MSC-like cells from PSCs and their therapeutic outcome in preclinical studies. Finally, we have also discussed future requirements for making this cell-free therapy clinically feasible.
Collapse
Affiliation(s)
- Soo Kim
- Brexogen Research Center, Brexogen Inc., Seoul, Songpa-gu 05718, South Korea
| | - Tae Min Kim
- Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology, Seoul National University, Gangwon-do, Pyeongchang 25354, South Korea
| |
Collapse
|
124
|
Ding SSL, Subbiah SK, Khan MSA, Farhana A, Mok PL. Empowering Mesenchymal Stem Cells for Ocular Degenerative Disorders. Int J Mol Sci 2019; 20:E1784. [PMID: 30974904 PMCID: PMC6480671 DOI: 10.3390/ijms20071784] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 12/24/2022] Open
Abstract
Multipotent mesenchymal stem cells (MSCs) have been employed in numerous pre-clinical and clinical settings for various diseases. MSCs have been used in treating degenerative disorders pertaining to the eye, for example, age-related macular degeneration, glaucoma, retinitis pigmentosa, diabetic retinopathy, and optic neuritis. Despite the known therapeutic role and mechanisms of MSCs, low cell precision towards the targeted area and cell survivability at tissue needing repair often resulted in a disparity in therapeutic outcomes. In this review, we will discuss the current and feasible strategy options to enhance treatment outcomes with MSC therapy. We will review the application of various types of biomaterials and advances in nanotechnology, which have been employed on MSCs to augment cellular function and differentiation for improving treatment of visual functions. In addition, several modes of gene delivery into MSCs and the types of associated therapeutic genes that are important for modulation of ocular tissue function and repair will be highlighted.
Collapse
Affiliation(s)
- Shirley Suet Lee Ding
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Suresh Kumar Subbiah
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Mohammed Safwan Ali Khan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas University, College Station, Texas 77843, USA.
| | - Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, P.O. Box 2014, Aljouf Province, Saudi Arabia.
| | - Pooi Ling Mok
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, P.O. Box 2014, Aljouf Province, Saudi Arabia.
| |
Collapse
|
125
|
Silini AR, Masserdotti A, Papait A, Parolini O. Shaping the Future of Perinatal Cells: Lessons From the Past and Interpretations of the Present. Front Bioeng Biotechnol 2019; 7:75. [PMID: 31024907 PMCID: PMC6467938 DOI: 10.3389/fbioe.2019.00075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/21/2019] [Indexed: 12/24/2022] Open
Abstract
Since their discovery and characterization, mesenchymal stromal cells (MSC) have been a topic of great interest in regenerative medicine. Over the last 10 years, detailed studies investigated the properties of MSC from perinatal tissues and have indicated that these cells may represent important tools for restoring tissue damage or promoting regeneration and repair of the tissue microenvironment. At first, perinatal tissue-derived MSC drew attention due to their potential differentiation capacities suggested by their early embryological origin. It is nowadays accepted that perinatal tissue-derived MSC are promising for a wide range of regenerative medicine applications because of their unique immune modulatory properties, rather than their differentiation ability. As a matter of fact, the activation and function of various cells of the innate and adaptive immune systems are suppressed and modulated by MSC from different perinatal tissues, such as human term placenta. However, the mechanisms by which they act on immune cells to facilitate tissue repair during pathological processes remain to be thoroughly elucidated to develop safe and efficient therapeutic approaches. In addition to immune modulatory ability, several other peculiar characteristics of placenta MSC, less explored and/or more debated, are being investigated. These include an understanding of the anti-microbial properties and the role of placental MSC in tumor progression. Moreover, a thorough investigation on preparation methods, bioactive factors, mechanisms of action of the cell secretome, and the development of potency assays to predict clinical efficacy of placenta MSC and their products, are necessary to provide a solid basis for their clinical application.
Collapse
Affiliation(s)
| | - Alice Masserdotti
- Centro di Ricerca E. Menni, Fondazione Poliambulanza, Brescia, Italy.,Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Papait
- Centro di Ricerca E. Menni, Fondazione Poliambulanza, Brescia, Italy
| | - Ornella Parolini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza, Brescia, Italy.,Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
126
|
Sallustio F, Curci C, Stasi A, De Palma G, Divella C, Gramignoli R, Castellano G, Gallone A, Gesualdo L. Role of Toll-Like Receptors in Actuating Stem/Progenitor Cell Repair Mechanisms: Different Functions in Different Cells. Stem Cells Int 2019; 2019:6795845. [PMID: 31089331 PMCID: PMC6476106 DOI: 10.1155/2019/6795845] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/19/2018] [Indexed: 02/07/2023] Open
Abstract
Toll-like receptors (TLRs) represent one of the bridges that regulate the cross-talk between the innate and adaptive immune systems. TLRs interact with molecules shared and preserved by the pathogens of origin but also with endogenous molecules (damage/danger-associated molecular patterns (DAMPs)) that derive from injured tissues. This is probably why TLRs have been found to be expressed on several kinds of stem/progenitor cells (SCs). In these cells, the role of TLRs in the regulation of the basal motility, proliferation, differentiation processes, self-renewal, and immunomodulation has been demonstrated. In this review, we analyze the many different functions that the TLRs assume in SCs, pointing out that they can have different effects, depending on the background and on the kind of ligands that they recognize. Moreover, we discuss the TLR involvement in the response of SC to specific tissue damage and in the reparative processes, as well as how the identification of molecules mediating the differential function of TLR signaling could be decisive for the development of new therapeutic strategies. Considering the available studies on TLRs in SCs, here we address the importance of TLRs in sensing an injury by stem/progenitor cells and in determining their behavior and reparative activity, which is dependent on the conditions. Therefore, it could be conceivable that SCs employed in therapy could be potentially exposed to TLR ligands, which might modulate their therapeutic potential in vivo. In this context, to modulate SC proliferation, survival, migration, and differentiation in the pathological environment, we need to better understand the mechanisms of action of TLRs on SCs and learn how to control these receptors and their downstream pathways in a precise way. In this manner, in the future, cell therapy could be improved and made safer.
Collapse
Affiliation(s)
- Fabio Sallustio
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari “Aldo Moro”, Bari 70124, Italy
- Nephrology Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, Bari 70124, Italy
| | - Claudia Curci
- Nephrology Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, Bari 70124, Italy
| | - Alessandra Stasi
- Nephrology Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, Bari 70124, Italy
| | - Giuseppe De Palma
- Nephrology Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, Bari 70124, Italy
- Institutional Biobank, Experimental Oncology and Biobank Management Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | - Chiara Divella
- Nephrology Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, Bari 70124, Italy
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Giuseppe Castellano
- Nephrology Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, Bari 70124, Italy
| | - Anna Gallone
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari “Aldo Moro”, Bari 70124, Italy
| | - Loreto Gesualdo
- Nephrology Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, Bari 70124, Italy
| |
Collapse
|
127
|
Gaggi G, Izzicupo P, Di Credico A, Sancilio S, Di Baldassarre A, Ghinassi B. Spare Parts from Discarded Materials: Fetal Annexes in Regenerative Medicine. Int J Mol Sci 2019; 20:ijms20071573. [PMID: 30934825 PMCID: PMC6479500 DOI: 10.3390/ijms20071573] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/24/2019] [Accepted: 03/26/2019] [Indexed: 12/13/2022] Open
Abstract
One of the main aims in regenerative medicine is to find stem cells that are easy to obtain and are safe and efficient in either an autologous or allogenic host when transplanted. This review provides an overview of the potential use of the fetal annexes in regenerative medicine: we described the formation of the annexes, their immunological features, the new advances in the phenotypical characterization of fetal annexes-derived stem cells, the progressions obtained in the analysis of both their differentiative potential and their secretoma, and finally, the potential use of decellularized fetal membranes. Normally discarded as medical waste, the umbilical cord and perinatal tissue not only represent a rich source of stem cells but can also be used as a scaffold for regenerative medicine, providing a suitable environment for the growth and differentiation of stem cells.
Collapse
Affiliation(s)
- Giulia Gaggi
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
| | - Pascal Izzicupo
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
| | - Andrea Di Credico
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
| | - Silvia Sancilio
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
| | - Angela Di Baldassarre
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
| | - Barbara Ghinassi
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
| |
Collapse
|
128
|
Muniswami DM, Reddy LVK, Venkatesh K, Babu S, Sen D. Neuropotency and Neurotherapeutic Potential of Human Umbilical Cord Stem Cell’s Secretome. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/s40883-019-00096-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
129
|
Gerbaud P, Murthi P, Guibourdenche J, Guimiot F, Sarazin B, Evain-Brion D, Badet J, Pidoux G. Study of Human T21 Placenta Suggests a Potential Role of Mesenchymal Spondin-2 in Placental Vascular Development. Endocrinology 2019; 160:684-698. [PMID: 30715257 DOI: 10.1210/en.2018-00826] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/25/2019] [Indexed: 12/12/2022]
Abstract
Placental development is particularly altered in trisomy of chromosome 21 (T21)-affected pregnancies. We previously described in T21-affected placentae an abnormal paracrine crosstalk between the villus mesenchymal core and villus trophoblasts. T21-affected placentae are known to be characterized by their hypovascularity. However, the causes of this anomaly remain not fully elucidated. Therefore, the hypothesis of an abnormal paracrine crosstalk between fetal mesenchymal core and placental endothelial cells (PLECs) was evocated. Villus mesenchymal cells from control (CMCs) and T21 placentae (T21MCs) were isolated and grown in culture to allow their characterization and collection of conditioned media for functional analyses (CMC-CM and T21MC-CM, respectively). Interestingly, PLEC proliferation and branching ability were less stimulated by T21MC-CM than by CMC-CM. Protein array analysis identified secreted proangiogenic growth factors in CMC-CM, which were reduced in T21MC-CM. Combined mass spectrometry and biochemical analysis identified spondin-2 as a factor decreased in T21MC-CM compared with CMC-CM. We found that exogenous spondin-2 stimulated PLEC proliferation and established that T21MC-CM supplemented with spondin-2 recovered conditioned media ability to induce PLEC proliferation and angiogenesis. Hence, this study demonstrates a crosstalk between villus mesenchymal and fetal endothelial cells, in which spondin-2 secreted from mesenchymal cells plays a central role in placental vascular functions. Furthermore, our results also suggest that a reduction in spondin-2 secretion may contribute to the pathogenesis of T21 placental hypovascularity.
Collapse
Affiliation(s)
- Pascale Gerbaud
- INSERM, UMR-S 1139, Paris, France
- INSERM, UMR-S 1180, Châtenay-Malabry, France
| | - Padma Murthi
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre, Royal Women's Hospital, University of Melbourne, Parkville, Victoria, Australia
- Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Victoria, Australia
- Department of Physiology, Monash University, Clayton, Victoria, Australia
- Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Jean Guibourdenche
- INSERM, UMR-S 1139, Paris, France
- Faculté de Pharmacie, Université Paris Descartes, Paris, France
- Service d'Hormonologie, Assistance Publique-Hôpitaux de Paris, CHU Cochin, Paris, France
- Fondation PremUP, Paris, France
| | - Fabien Guimiot
- Unité de Foetopathologie, Assistance Publique-Hôpitaux de Paris, CHU Robert Debré, Paris, France
| | | | - Danièle Evain-Brion
- INSERM, UMR-S 1139, Paris, France
- Faculté de Pharmacie, Université Paris Descartes, Paris, France
- Fondation PremUP, Paris, France
| | - Josette Badet
- INSERM, UMR-S 1139, Paris, France
- Faculté de Pharmacie, Université Paris Descartes, Paris, France
| | - Guillaume Pidoux
- INSERM, UMR-S 1139, Paris, France
- INSERM, UMR-S 1180, Châtenay-Malabry, France
| |
Collapse
|
130
|
Ji S, Wu C, Tong L, Wang L, Zhou J, Chen C, Song Y. Better therapeutic potential of bone marrow-derived mesenchymal stem cells compared with chorionic villi-derived mesenchymal stem cells in airway injury model. Regen Med 2019; 14:165-177. [PMID: 30994416 DOI: 10.2217/rme-2018-0152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Aim: To determine the efficiency of mesenchymal stem cells (MSCs) of different sources on airway epithelial cells regeneration and track where and to what extent transplanted MSCs home to injured tissues. Materials & methods: We performed DiO-labeled human bone marrow-derived MSCs (hBMSCs) or human chorionic villi-derived MSCs transplantation studies using naphthalene-induced airway injury animal models. Results: Compared with human chorionic villi-derived MSCs, hBMSCs facilitated airway epithelium regeneration faster and better from day 5 after transplantation; moreover, more transplanted hBMSCs distributed in injured lung tissues at the early stage of postinjury, which was mediated by C-X-C motif chemokine ligand 12. Conclusion: hBMSCs possessed better potential of migration to the damaged lung and promoting the repair of the injured airway epithelium.
Collapse
Affiliation(s)
- Shimeng Ji
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chaomin Wu
- Department of Pulmonary Medicine, Zhongshan Hospital, Qingpu Branch, Fudan University, Shanghai 201700, China
| | - Lin Tong
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Linlin Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jian Zhou
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Cuicui Chen
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Department of Pulmonary Medicine, Zhongshan Hospital, Qingpu Branch, Fudan University, Shanghai 201700, China.,Shanghai Public Health Clinical Center, Shanghai 201508, China.,National Clinical Research Center for Aging & Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
131
|
Zhu Z, Zhang Y, Zhang Y, Zhang H, Liu W, Zhang N, Zhang X, Zhou G, Wu L, Hua K, Ding J. Exosomes derived from human umbilical cord mesenchymal stem cells accelerate growth of VK2 vaginal epithelial cells through MicroRNAs in vitro. Hum Reprod 2019; 34:248-260. [PMID: 30576496 DOI: 10.1093/humrep/dey344] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 10/30/2018] [Indexed: 02/06/2023] Open
Abstract
STUDY QUESTION Could human umbilical cord mesenchymal stem cell-derived exosomes (hucMSC-Ex) accelerate vaginal epithelium cell (VK2) growth? SUMMARY ANSWER HucMSC-Ex play a significant role in promoting proliferation of VK2 cells by accelerating the cell cycle and inhibiting apoptosis through exosomal microRNAs in vitro. WHAT IS KNOWN ALREADY Numerous studies have reported that MSC-Ex play an important role in tissue injury repair. STUDY DESIGN, SIZE, DURATION hucMSC and exosomes isolated from their conditioned medium were used to treat a vaginal epithelial cell line (VK2). Normal human fibroblasts (HFF-1) were used as negative control to hucMSC. PARTICIPANTS/MATERIALS, SETTING, METHODS VK2 cells were co-cultured with hucMSC whose paracrine effect on the viability, cell cycle and cell apoptosis of VK2 vaginal epithelial cells was further assessed by the CCK-8 assay and flow cytometry. HucMSC-Ex isolated from culture medium by ultracentrifuge were characterized by transmission electron microscopy, nanoparticle tracking analysis and Western blot. HucMSC-Ex at different concentrations and HFF-1 exosomes were used to treat VK2 cells. High-throughput RNA sequencing was utilized to reveal the profile of microRNAs in hucMSC, hucMSC-Ex, HFF-1 and HFF-1 exosomes and GO analysis was applied to demonstrate their functions. To evaluate the function of these specific microRNAs in hucMSC-Ex, VK2 cells were treated with RNA-interfered-hucMSC-Ex (RNAi-hucMSC-Ex) and their proliferation was measured by Label-free Real-time Cellular Analysis System. MAIN RESULTS AND THE ROLE OF CHANCE The study showed that hucMSC stimulate VK2 cell growth possibly through a paracrine route by promoting cell cycle and inhibiting apoptosis. Compared with control and low dose groups, hucMSC-Ex of high concentration (more than 1000 ng/ml) significantly increased VK2's growth after treatment in a dose-depended manner (P < 0.05). HucMSC-Ex raised the proportion of cells in S-phase and reduced the percentage of apoptotic cells in VK2 cells in comparison with the HFF-1 exosomes and control groups (P < 0.05). microRNAs, including miR-100 (16.92%), miR-146a (9.21%), miR-21 (6.67%), miR-221 (6.39%) and miR-143 (4.63%), were found to be specifically enriched (P < 0.05) in hucMSC-Ex and their functions concentrated on cell cycle, development and differentiation. Collectively, our findings indicate that hucMSC-Ex may play a significant role in accelerating VK2's proliferation by promoting cell cycle and inhibiting apoptosis through exosomal microRNAs in vitro. LARGE-SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Our study did not confirm the function of hucMSC-Ex or specifically enriched exosomal microRNAs in vivo. miR-100 and miR-146a are well-known immunomodulatory miRNAs that participate in the regulation of inflammatory disorders and may enhance the therapeutic effect of hucMSC-Ex by promoting the surgical injury repair after vaginal reconstruction. But whether it acts through anti-inflammatory responses needs further study. WIDER IMPLICATIONS OF THE FINDINGS This finding supports the potential use of hucMSC-Ex as a cell-free therapy of Meyer-Rokitansky-Küster-Hauser syndrome (MRKHS) after vaginoplasty. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the Chinese National Nature Sciences Foundation (grant number 91440107, 81471416 and 81771524) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB19040102). All authors state that there is no conflict of interest to disclose.
Collapse
Affiliation(s)
- Zhongyi Zhu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yijing Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai, China
| | - Yiqun Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Hongdao Zhang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Wei Liu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Ning Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Xiaodan Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Guannan Zhou
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Ligang Wu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Keqin Hua
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Jingxin Ding
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| |
Collapse
|
132
|
Yi J, Chen Z, Xu F, Wang Z, Zhang A, Liu T, Zhao N, Xiong Y, Jiang G, Ma J, Luan X. IL-27 Promotes Human Placenta-Derived Mesenchymal Stromal Cell Ability To Induce the Generation of CD4 +IL-10 +IFN-γ + T Cells via the JAK/STAT Pathway in the Treatment of Experimental Graft-versus-Host Disease. THE JOURNAL OF IMMUNOLOGY 2019; 202:1124-1136. [PMID: 30651340 DOI: 10.4049/jimmunol.1800963] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022]
Abstract
Human mesenchymal stromal cells (MSCs) harbor immunomodulatory properties to induce the generation of suppressive T cells. MSCs have been successfully used in treating graft-versus-host disease (GVHD) accompanied by abundant inflammatory cytokines such as IL-27. This study investigated the effects of IL-27 on the human placenta-derived MSCs (hPMSCs) to induce generation of CD4+IL-10+IFN-γ+ T cells in vitro and in the humanized xenogenic GVHD NOD/SCID model. The results showed that the percentages of CD4+IL-10+IFN-γ+ T cells were significantly increased in activated human PBMC from both healthy donors and GVHD patients with hPMSCs and in the liver and spleen of hPMSC-treated GVHD mice, and the level of CD4+IL-10+IFN-γ+ T cells in the liver was greater than that in the spleen in hPMSC-treated GVHD mice. The serum level of IL-27 decreased and the symptoms abated in hPMSC-treated GVHD. Further, in vitro results showed that IL-27 promoted the regulatory effects of hPMSCs by enhancing the generation of CD4+IL-10+IFN-γ+ T cells from activated PBMC. Activation occurred through increases in the expression of programmed death ligand 2 (PDL2) in hPMSCs via the JAK/STAT signaling pathway. These findings indicated that hPMSCs could alleviate GVHD mice symptoms by upregulating the production of CD4+IL-10+IFN-γ+ T cells in the spleen and liver and downregulating serum levels of IL-27. In turn, the ability of hPMSCs to induce the generation of CD4+IL-10+IFN-γ+ T cells could be promoted by IL-27 through increases in PDL2 expression in hPMSCs. The results of this study will be of benefit for the application of hPMSCs in clinical trials.
Collapse
Affiliation(s)
- Junzhu Yi
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province 264003, China
| | - Zhenghua Chen
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong Province 264100, China
| | - Fenghuang Xu
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province 570102, China
| | - ZhuoYa Wang
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province 264003, China
| | - Aiping Zhang
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province 264003, China
| | - Tongshen Liu
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong Province 264003, China
| | - Nannan Zhao
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province 264003, China
| | - Yanlian Xiong
- Department of Anatomy, Binzhou Medical University, Yantai, Shandong Province 264003, China
| | - Guosheng Jiang
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province 264003, China
| | - Junjie Ma
- Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong Province 264000, China; and
| | - Xiying Luan
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province 264003, China; .,Taishan Scholar Immunology Program, Binzhou Medical University, Yantai, Shandong Province 264003, China
| |
Collapse
|
133
|
Kargozar S, Mozafari M, Hamzehlou S, Brouki Milan P, Kim HW, Baino F. Bone Tissue Engineering Using Human Cells: A Comprehensive Review on Recent Trends, Current Prospects, and Recommendations. APPLIED SCIENCES 2019; 9:174. [DOI: 10.3390/app9010174] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The use of proper cells for bone tissue engineering remains a major challenge worldwide. Cells play a pivotal role in the repair and regeneration of the bone tissue in vitro and in vivo. Currently, a large number of differentiated (somatic) and undifferentiated (stem) cells have been used for bone reconstruction alone or in combination with different biomaterials and constructs (e.g., scaffolds). Although the results of the cell transplantation without any supporting or adjuvant material have been very effective with regard to bone healing. Recent advances in bone scaffolding are now becoming new players affecting the osteogenic potential of cells. In the present study, we have critically reviewed all the currently used cell sources for bone reconstruction and discussed the new horizons that are opening up in the context of cell-based bone tissue engineering strategies.
Collapse
Affiliation(s)
- Saeid Kargozar
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
| | - Masoud Mozafari
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran 14155-4777, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran 144961-4535, Iran
| | - Sepideh Hamzehlou
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran 14155-6447, Iran
- Medical Genetics Network (MeGeNe), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran 144961-4535, Iran
| | - Hae-Won Kim
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Korea
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan 31116, Korea
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
134
|
Mu Y, Wu X, Hao Z. Comparative evaluation of mesenchymal stromal cells from umbilical cord and amniotic membrane in xeno-free conditions. BMC Cell Biol 2018; 19:27. [PMID: 30545286 PMCID: PMC6293527 DOI: 10.1186/s12860-018-0178-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 11/28/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Within the past years, umbilical cord (UC) and amniotic membrane (AM) expanded in human platelet lysate (PL) have been found to become increasingly candidate of mesenchymal stromal cells (MSCs) in preclinical and clinical studies. Different sources of MSCs have different properties, and lead to different therapeutic applications. However, the similarity and differences between the AMMSCs and UCMSCs in PL remain unclear. RESULTS In this study, we conduct a direct head-to-head comparison with regard to biological characteristics (morphology, immunophenotype, self-renewal capacity, and trilineage differentiation potential) and immunosuppression effects of AMMSCs and UCMSCs expanded in PL. Our results indicated that AMMSCs showed similar morphology, immunophenotype, proliferative capacity and colony efficiency with UCMSCs. Moreover, no significantly differences in osteogenic, chondrogenic and adipogenic differentiation potential were observed between the two types of cells. However, AMMSCs exhibited higher PGE2 expression and IDO activity compared with UCMSCs when primed by IFN-γ and (or) TNF-α induction, and AMMSCs showed a higher inhibitory effect on PBMCs proliferation than UCMSCs. CONCLUSION The results suggest that AMMSCs expanded in PL showed similar morphology, immunophenotype, self-renewal capacity, and trilineage differentiation potential with UCMSCs. However, AMMSCs possessed superior immunosuppression effects in comparison with UCMSCs. These results suggest that AMMSCs in PL might be more suitable than UCMSCs for treatment of immune diseases. This work provides a novel insight into choosing the appropriate source of MSCs for treatment of immune diseases.
Collapse
Affiliation(s)
- Yongxu Mu
- Department of Rheumatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Pvovince, China.,Department of Interventional Treatment, the First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Xiaoyun Wu
- Department of Technology, Stem Cell Medicine Engineering & Technology Research Center of Inner Mongolia, Huhhot, Inner Mongolia, China.,Department of Research and Development, Beijing Jingmeng Stem Cell Technology. Co. Ltd., Beijing, China
| | - Zhiming Hao
- Department of Rheumatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Pvovince, China.
| |
Collapse
|
135
|
Single-Cell Gene Expression Analysis and Evaluation of the Therapeutic Function of Murine Adipose-Derived Stromal Cells (ASCs) from the Subcutaneous and Visceral Compartment. Stem Cells Int 2018; 2018:2183736. [PMID: 30651733 PMCID: PMC6311719 DOI: 10.1155/2018/2183736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/08/2018] [Indexed: 12/21/2022] Open
Abstract
Introduction Adipose-derived stromal cells (ASCs) are a promising resource for wound healing and tissue regeneration because of their multipotent properties and cytokine secretion. ASCs are typically isolated from the subcutaneous fat compartment, but can also be obtained from visceral adipose tissue. The data on their equivalence diverges. The present study analyzes the cell-specific gene expression profiles and functional differences of ASCs derived from the subcutaneous (S-ASCs) and the visceral (V-ASCs) compartment. Material and Methods Subcutaneous and visceral ASCs were obtained from mouse inguinal fat and omentum. The transcriptional profiles of the ASCs were compared on single-cell level. S-ASCs and V-ASCs were then compared in a murine wound healing model to evaluate their regenerative functionality. Results On a single-cell level, S-ASCs and V-ASCs displayed distinct transcriptional profiles. Specifically, significant differences were detected in genes associated with neoangiogenesis and tissue remodeling (for example, Ccl2, Hif1α, Fgf7, and Igf). In addition, a different subpopulation ecology could be identified employing a cluster model. Nevertheless, both S-ASCs and V-ASCs induced accelerated healing rates and neoangiogenesis in a mouse wound healing model. Conclusion With similar therapeutic potential in vivo, the significantly different gene expression patterns of ASCs from the subcutaneous and visceral compartments suggest different signaling pathways underlying their efficacy. This study clearly demonstrates that review of transcriptional results in vivo is advisable to confirm the tentative effect of cell therapies.
Collapse
|
136
|
Naseer N, Bashir S, Latief N, Latif F, Khan SN, Riazuddin S. Human amniotic membrane as differentiating matrix for in vitro chondrogenesis. Regen Med 2018; 13:821-832. [PMID: 30299207 DOI: 10.2217/rme-2018-0017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: The aim of the present study is to use human amniotic membrane (HAM) for in vitro chondrogenesis of placenta-derived mesenchymal stem cells (MSCs) and umbilical cord-derived MSCs. Materials & methods: MSCs from the placenta and umbilical cord were isolated, characterized by immunophenotyping and after analyzing their rate of proliferation, cytotoxicity and viability, chondrogenesis was performed on plastic adherent surface and on HAM. Results: Successfully isolated and characterized placenta-derived MSCs and umbilical cord-derived MSCs revealed positive expression of MSCs markers CD90, CD73, CD105 and CD49d, while they were negative for CD45. Both types of cells in the presence of chondrogenic induction medium on plastic adherent surface and HAM showed aggregates of proteoglycan and strong expression of COL2A1 (collagen 2) and ACAN1 (aggrecan). Conclusion: HAM supported proliferation as well as chondrogenesis of MSCs and provide novelty of HAM utilization as an efficient natural delivery matrix for stem cell transplantation.
Collapse
Affiliation(s)
- Nadia Naseer
- Centre of Excellence in Molecular Biology, 87 West Canal Bank Road, Thokar Niazbaig Lahore, Punjab, 53700 Pakistan
| | - Saliha Bashir
- Centre of Excellence in Molecular Biology, 87 West Canal Bank Road, Thokar Niazbaig Lahore, Punjab, 53700 Pakistan
| | - Noreen Latief
- Centre of Excellence in Molecular Biology, 87 West Canal Bank Road, Thokar Niazbaig Lahore, Punjab, 53700 Pakistan
| | - Farzana Latif
- Ameer-ud-din Medical College, Post Graduate Medical Institute (PGMI), Lahore General Hospital, 6-Abdur Rehman Chughtai Road (Birdwood Road), Jail Road, Shadman, Lahore,54000 Pakistan
| | - Shaheen N Khan
- Centre of Excellence in Molecular Biology, 87 West Canal Bank Road, Thokar Niazbaig Lahore, Punjab, 53700 Pakistan
| | - Sheikh Riazuddin
- Centre of Excellence in Molecular Biology, 87 West Canal Bank Road, Thokar Niazbaig Lahore, Punjab, 53700 Pakistan
- Allama Iqbal Medical College, University of Health Sciences, Lahore, Jinnah hospital Moulana Shabir Ahmed Usmani Road, Faisal Town Lahore 54550 Pakistan
- Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), PIMS, G-8/3, Islamabad, 44000 Pakistan
| |
Collapse
|
137
|
Abtahi S, Asadipour M, Ghaderi A. The Legacy of Mesenchymal Stem Cells in Vindicating the Clonal Evolution Model of Cancer. Asian Pac J Cancer Prev 2018; 19:2029-2030. [PMID: 30261714 PMCID: PMC6171386 DOI: 10.22034/apjcp.2018.19.8.2029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 08/15/2018] [Indexed: 11/27/2022] Open
Affiliation(s)
- Shabnam Abtahi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | | | |
Collapse
|
138
|
Kobayashi K, Suzuki K. Mesenchymal Stem/Stromal Cell-Based Therapy for Heart Failure ― What Is the Best Source? ―. Circ J 2018; 82:2222-2232. [DOI: 10.1253/circj.cj-18-0786] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kazuya Kobayashi
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London
| | - Ken Suzuki
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London
| |
Collapse
|
139
|
Teofili L, Silini AR, Bianchi M, Valentini CG, Parolini O. Incorporating placental tissue in cord blood banking for stem cell transplantation. Expert Rev Hematol 2018; 11:649-661. [PMID: 29856650 DOI: 10.1080/17474086.2018.1483717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Human term placenta is comprised of various tissues from which different cells can be obtained, including hematopoietic stem cells and mesenchymal stem/stromal cells (MSCs). Areas covered: This review will discuss the possibility to incorporate placental tissue cells in cord blood banking. It will discuss general features of human placenta, with a brief review of the immune cells at the fetal-maternal interface and the different cell populations isolated from placenta, with a particular focus on MSCs. It will address the question as to why placenta-derived MSCs should be banked with their hematopoietic counterparts. It will discuss clinical trials which are studying safety and efficacy of placenta tissue-derived MSCs in selected diseases, and preclinical studies which have proven their therapeutic properties in other diseases. It will discuss banking of umbilical cord blood and raise several issues for improvement, and the applications of cord blood cells in non-malignant disorders. Expert commentary: Umbilical cord blood banking saves lives worldwide. The concomitant banking of non-hematopoietic cells from placenta, which could be applied therapeutically in the future, alone or in combination to their hematopoietic counterparts, could exploit current banking processes while laying the foundation for clinical trials exploring placenta-derived cell therapies in regenerative medicine.
Collapse
Affiliation(s)
- Luciana Teofili
- a Policlinico Universitario A. Gemelli IRCCS , Banca del Sangue di Cordone Ombelicale UNICATT, Università Cattolica del Sacro Cuore , Rome , Italy
| | - Antonietta R Silini
- b Centro di Ricerca "E. Menni" Fondazione Poliambulanza - Istituto Ospedaliero , Brescia , Italy
| | - Maria Bianchi
- c Policlinico Universitario A. Gemelli IRCCS, Banca del Sangue di Cordone Ombelicale UNICATT , Rome , Italy
| | | | - Ornella Parolini
- b Centro di Ricerca "E. Menni" Fondazione Poliambulanza - Istituto Ospedaliero , Brescia , Italy.,d Istituto di Anatomia Umana e Biologia Cellulare Facoltà di Medicina e chirurgia "A. Gemelli" , Università Cattolica del Sacro Cuore , Rome , Italy
| |
Collapse
|