101
|
Solaymani-Mohammadi S, Berzofsky JA. Interleukin 21 collaborates with interferon-γ for the optimal expression of interferon-stimulated genes and enhances protection against enteric microbial infection. PLoS Pathog 2019; 15:e1007614. [PMID: 30818341 PMCID: PMC6413951 DOI: 10.1371/journal.ppat.1007614] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 03/12/2019] [Accepted: 02/03/2019] [Indexed: 12/18/2022] Open
Abstract
The mucosal surface of the intestinal tract represents a major entry route for many microbes. Despite recent progress in the understanding of the IL-21/IL-21R signaling axis in the generation of germinal center B cells, the roles played by this signaling pathway in the context of enteric microbial infections is not well-understood. Here, we demonstrate that Il21r-/- mice are more susceptible to colonic microbial infection, and in the process discovered that the IL-21/IL-21R signaling axis surprisingly collaborates with the IFN-γ/IFN-γR signaling pathway to enhance the expression of interferon-stimulated genes (ISGs) required for protection, via amplifying activation of STAT1 in mucosal CD4+ T cells in a murine model of Citrobacter rodentium colitis. As expected, conditional deletion of STAT3 in CD4+ T cells indicated that STAT3 also contributed importantly to host defense against C. rodentium infection in the colon. However, the collaboration between IL-21 and IFN-γ to enhance the phosphorylation of STAT1 and upregulate ISGs was independent of STAT3. Unveiling this previously unreported crosstalk between these two cytokine networks and their downstream genes induced will provide insight into the development of novel therapeutic targets for colonic infections, inflammatory bowel disease, and promotion of mucosal vaccine efficacy.
Collapse
Affiliation(s)
- Shahram Solaymani-Mohammadi
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail: (SSM); (JAB)
| | - Jay A. Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail: (SSM); (JAB)
| |
Collapse
|
102
|
Innate Immune Responses to Avian Influenza Viruses in Ducks and Chickens. Vet Sci 2019; 6:vetsci6010005. [PMID: 30634569 PMCID: PMC6466002 DOI: 10.3390/vetsci6010005] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/26/2018] [Accepted: 01/04/2019] [Indexed: 02/06/2023] Open
Abstract
Mallard ducks are important natural hosts of low pathogenic avian influenza (LPAI) viruses and many strains circulate in this reservoir and cause little harm. Some strains can be transmitted to other hosts, including chickens, and cause respiratory and systemic disease. Rarely, these highly pathogenic avian influenza (HPAI) viruses cause disease in mallards, while chickens are highly susceptible. The long co-evolution of mallard ducks with influenza viruses has undoubtedly fine-tuned many immunological host–pathogen interactions to confer resistance to disease, which are poorly understood. Here, we compare innate responses to different avian influenza viruses in ducks and chickens to reveal differences that point to potential mechanisms of disease resistance. Mallard ducks are permissive to LPAI replication in their intestinal tissues without overtly compromising their fitness. In contrast, the mallard response to HPAI infection reflects an immediate and robust induction of type I interferon and antiviral interferon stimulated genes, highlighting the importance of the RIG-I pathway. Ducks also appear to limit the duration of the response, particularly of pro-inflammatory cytokine expression. Chickens lack RIG-I, and some modulators of the signaling pathway and may be compromised in initiating an early interferon response, allowing more viral replication and consequent damage. We review current knowledge about innate response mediators to influenza infection in mallard ducks compared to chickens to gain insight into protective immune responses, and open questions for future research.
Collapse
|
103
|
Kawashima K, Isogawa M, Hamada-Tsutsumi S, Baudi I, Saito S, Nakajima A, Tanaka Y. Type I Interferon Signaling Prevents Hepatitis B Virus-Specific T Cell Responses by Reducing Antigen Expression. J Virol 2018; 92:e01099-18. [PMID: 30209178 PMCID: PMC6232490 DOI: 10.1128/jvi.01099-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/09/2018] [Indexed: 12/27/2022] Open
Abstract
Robust virus-specific CD8+ T cell responses are required for the clearance of hepatitis B virus (HBV). However, the factors that determine the magnitude of HBV-specific CD8+ T cell responses are poorly understood. To examine the impact of genetic variations of HBV on HBV-specific CD8+ T cell responses, we introduced three HBV clones (Aa_IND [Aa], C_JPN22 [C22], and D_IND60 [D60]) that express various amounts of HBV antigens into the livers of C57BL/6 (B6) (H-2b) mice and B10.D2 (H-2d) mice. In B6 mice, clone C22 barely induced HBV-specific CD8+ T cell responses and persisted the longest, while clone D60 elicited strong HBV-specific CD8+ T cell responses and was rapidly cleared. These differences between HBV clones largely diminished in H-2d mice. Interestingly, the magnitude of HBV-specific CD8+ T cell responses in B6 mice was associated with the HB core antigen expression level during the early phase of HBV transduction. Surprisingly, robust HBV-specific CD8+ T cell responses to clone C22 were induced in interferon-α/β receptor-deficient (IFN-αβR-/-) (H-2b) mice. The induction of HBV-specific CD8+ T cell responses to C22 in IFN-αβR-/- mice reflects enhanced HBV antigen expression because the suppression of antigen expression by HBV-specific small interfering RNA (siRNA) attenuated HBV-specific T cell responses in IFN-αβR-/- mice and prolonged HBV expression. Collectively, these results suggest that HBV genetic variation and type I interferon signaling determine the magnitude of HBV-specific CD8+ T cell responses by regulating the initial antigen expression levels.IMPORTANCE Hepatitis B virus (HBV) causes acute and chronic infection, and approximately 240 million people are chronically infected with HBV worldwide. It is generally believed that virus-specific CD8+ T cell responses are required for the clearance of HBV. However, the relative contributions of genetic variation and innate immune responses to the induction of HBV-specific CD8+ T cell responses are not fully understood. In this study, we discovered that different clearance rates between HBV clones after hydrodynamic transduction were associated with the magnitude of HBV-specific CD8+ T cell responses and initial HB core antigen expression. Surprisingly, type I interferon signaling negatively regulated HBV-specific CD8+ T cell responses by reducing early HBV antigen expression. These results show that the magnitude of the HBV-specific CD8+ T cell response is regulated primarily by the initial antigen expression level.
Collapse
Affiliation(s)
- Keigo Kawashima
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, Yokohama, Japan
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masanori Isogawa
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Susumu Hamada-Tsutsumi
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Ian Baudi
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Satoru Saito
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
104
|
Suzuki H, Tsuji R, Sugamata M, Yamamoto N, Yamamoto N, Kanauchi O. Administration of plasmacytoid dendritic cell-stimulative lactic acid bacteria is effective against dengue virus infection in mice. Int J Mol Med 2018; 43:426-434. [PMID: 30365042 DOI: 10.3892/ijmm.2018.3955] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/17/2018] [Indexed: 11/06/2022] Open
Abstract
Dengue virus (DENV), a mosquito‑borne flavivirus, causes an acute febrile illness that is a major public health problem in the tropics and subtropics globally. However, methods to prevent or treat DENV infection have not been well established. It was previously demonstrated that Lactococcus lactis strain plasma (LC‑plasma) has the ability to stimulate plasmacytoid dendritic cells (pDCs). As pDCs are key immune cells that control viral infection by producing large amounts of type I interferons (IFN), the present study evaluated the effect of LC‑plasma on DENV infection using a mouse infectious DENV strain. Mice were divided into two groups and the test group was orally administered LC‑plasma for two weeks. Two weeks following administration, the mice were infected with DENV and the relative viral titers and the expression of the inflammatory genes in DENV‑infected tissue were measured using reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). The relative viral titers were notably lower in the DENV‑infected tissues compared with the control group when LC‑plasma was orally administered prior to DENV infection. Furthermore, the expression of the inflammatory genes associated with DENV infection was also reduced by LC‑plasma administration. To investigate how LC‑plasma administration controls DENV infection, the present study examined anti‑viral gene expression, which is critical for the viral clearance induced by type I IFN. Two weeks subsequent to the administration of LC‑plasma, the expression of anti‑viral gene was measured using RT‑qPCR. Oral intake of LC‑plasma enhanced anti‑viral gene expression in DENV‑infected spleen tissue. To clarify the detailed mechanism, in vitro co‑culture studies using bone‑marrow derived DC (BMDC) were performed. BMDC were stimulated with LC‑plasma in combination with anti‑IFN‑α/β antibody and the expression of anti‑viral genes was measured. In vitro studies revealed that the effect of LC‑plasma on anti‑viral genes was dependent on type I IFN. Based on these results, LC‑plasma may be effective against DENV infection by stimulating pDCs, which results in the increased production of anti‑viral factors.
Collapse
Affiliation(s)
- Hiroaki Suzuki
- Research Laboratories for Health Science and Food Technologies, Kirin Company, Ltd., Yokohama‑shi, Kanagawa 236‑0004, Japan
| | - Ryohei Tsuji
- Research Laboratories for Health Science and Food Technologies, Kirin Company, Ltd., Yokohama‑shi, Kanagawa 236‑0004, Japan
| | - Miho Sugamata
- Research Laboratories for Health Science and Food Technologies, Kirin Company, Ltd., Yokohama‑shi, Kanagawa 236‑0004, Japan
| | - Naoki Yamamoto
- National Institute of Infectious Diseases, Tokyo 162‑8640, Japan
| | - Norio Yamamoto
- Department of Infection Control Science, Graduate School of Medicine, Juntendo University, Tokyo 113‑8421, Japan
| | - Osamu Kanauchi
- Research Laboratories for Health Science and Food Technologies, Kirin Company, Ltd., Yokohama‑shi, Kanagawa 236‑0004, Japan
| |
Collapse
|
105
|
Xu C, Gamil AAA, Munang'andu HM, Evensen Ø. Apoptosis Induction by dsRNA-Dependent Protein Kinase R (PKR) in EPC Cells via Caspase 8 and 9 Pathways. Viruses 2018; 10:E526. [PMID: 30261686 PMCID: PMC6213184 DOI: 10.3390/v10100526] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/22/2018] [Accepted: 09/25/2018] [Indexed: 12/18/2022] Open
Abstract
dsRNA-dependent protein kinase R (PKR) is an interferon-inducible protein that mediates antiviral effects and induces apoptosis. We studied PKR-related apoptosis mechanisms by transfecting wild type pcDNA-carp-wtPKR, a catalytically inactive mutant pcDNA-mut-carpPKR, and empty plasmid in Epithelioma papulosum cyprini (EPC) cells, designated wtPKR, mutPKR, and pcDNA3.1, respectively. PKR was inefficiently expressed from wtPKR unlike mutPKR that produced high PKR levels detected by western blot. eIF2α phosphorylation increased in wtPKR-transfected cells, while for mutPKR, phosphorylation was not different from non-transfected controls. Flow-cytometry revealed high level of apoptosis in wtPKR transfected cells, corresponding with high cytopathic effect. mutPKR and pcDNA3.1 transfection gave significantly less apoptosis and were not different from each other. Caspase-8 and -9 were activated for wtPKR, suggesting death receptor-caspase-8 and mitochondrion-dependent caspase-9 activated pathways, similar to mammalian cells. These findings suggest that the induction of apoptosis via the caspase-8 and -9 pathways are conserved in vertebrate taxa and likely play a role in viral infections of lower vertebrates.
Collapse
Affiliation(s)
- Cheng Xu
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, PO Box 369, 0102 Oslo, Norway.
| | - Amr A A Gamil
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, PO Box 369, 0102 Oslo, Norway.
| | | | - Øystein Evensen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, PO Box 369, 0102 Oslo, Norway.
| |
Collapse
|
106
|
Abstract
Shigella is an intracellular pathogen that invades the human host cell cytosol and exploits intracellular nutrients for growth, enabling the bacterium to create its own metabolic niche. For Shigella to effectively invade and replicate within the host cytoplasm, it must sense and adapt to changing environmental conditions; however, the mechanisms and signals sensed by S. flexneri are largely unknown. We have found that the secreted Shigella metabolism by-product formate regulates Shigella intracellular virulence gene expression and its ability to spread among epithelial cells. We propose that Shigella senses formate accumulation in the host cytosol as a way to determine intracellular Shigella density and regulate secreted virulence factors accordingly, enabling spatiotemporal regulation of effectors important for dampening the host immune response. The intracellular human pathogen Shigella flexneri invades the colon epithelium, replicates to high cell density within the host cell, and then spreads to adjacent epithelial cells. When S. flexneri gains access to the host cytosol, the bacteria metabolize host cytosolic carbon using glycolysis and mixed acid fermentation, producing formate as a by-product. We show that S. flexneri infection results in the accumulation of formate within the host cell. Loss of pyruvate formate lyase (PFL; ΔpflB), which converts pyruvate to acetyl coenzyme A (CoA) and formate, eliminates S. flexneri formate production and reduces the ability of S. flexneri to form plaques in epithelial cell monolayers. This defect in PFL does not decrease the intracellular growth rate of S. flexneri; rather, it affects cell-to-cell spread. The S. flexneri ΔpflB mutant plaque defect is complemented by supplying exogenous formate; conversely, deletion of the S. flexneri formate dehydrogenase gene fdnG increases host cell formate accumulation and S. flexneri plaque size. Furthermore, exogenous formate increases plaque size of the wild-type (WT) S. flexneri strain and promotes S. flexneri cell-to-cell spread. We also demonstrate that formate increases the expression of S. flexneri virulence genes icsA and ipaJ. Intracellular S. flexneriicsA and ipaJ expression is dependent on the presence of formate, and ipaJ expression correlates with S. flexneri intracellular density during infection. Finally, consistent with elevated ipaJ, we show that formate alters S. flexneri-infected host interferon- and tumor necrosis factor (TNF)-stimulated gene expression. We propose that Shigella-derived formate is an intracellular signal that modulates virulence in response to bacterial metabolism.
Collapse
|
107
|
Norkowski S, Schmidt MA, Rüter C. The species-spanning family of LPX-motif harbouring effector proteins. Cell Microbiol 2018; 20:e12945. [PMID: 30137651 DOI: 10.1111/cmi.12945] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/09/2018] [Accepted: 08/14/2018] [Indexed: 12/13/2022]
Abstract
The delivery of effector proteins into infected eukaryotic cells represents a key virulence feature of many microbial pathogens in order to derail essential cellular processes and effectively counter the host defence system. Although bacterial effectors are truly numerous and exhibit a wide range of biochemical activities, commonalities in terms of protein structure and function shared by many bacterial pathogens exist. Recent progress has shed light on a species-spanning family of bacterial effectors containing an LPX repeat motif as a subtype of the leucine-rich repeat superfamily, partially combined with a novel E3 ubiquitin ligase domain. This review highlights the immunomodulatory effects of LPX effector proteins, with particular emphasis on the exploitation of the host ubiquitin system.
Collapse
Affiliation(s)
- Stefanie Norkowski
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - M Alexander Schmidt
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Christian Rüter
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| |
Collapse
|
108
|
Abstract
Influenza virus infections are a leading cause of morbidity and mortality worldwide. This is due in part to the continual emergence of new viral variants and to synergistic interactions with other viruses and bacteria. There is a lack of understanding about how host responses work to control the infection and how other pathogens capitalize on the altered immune state. The complexity of multi-pathogen infections makes dissecting contributing mechanisms, which may be non-linear and occur on different time scales, challenging. Fortunately, mathematical models have been able to uncover infection control mechanisms, establish regulatory feedbacks, connect mechanisms across time scales, and determine the processes that dictate different disease outcomes. These models have tested existing hypotheses and generated new hypotheses, some of which have been subsequently tested and validated in the laboratory. They have been particularly a key in studying influenza-bacteria coinfections and will be undoubtedly be useful in examining the interplay between influenza virus and other viruses. Here, I review recent advances in modeling influenza-related infections, the novel biological insight that has been gained through modeling, the importance of model-driven experimental design, and future directions of the field.
Collapse
Affiliation(s)
- Amber M Smith
- University of Tennessee Health Science CenterMemphisTNUSA
| |
Collapse
|
109
|
Ahmed-Hassan H, Abdul-Cader MS, Sabry MA, Hamza E, Abdul-Careem MF. Toll-like receptor (TLR)4 signalling induces myeloid differentiation primary response gene (MYD) 88 independent pathway in avian species leading to type I interferon production and antiviral response. Virus Res 2018; 256:107-116. [PMID: 30098398 DOI: 10.1016/j.virusres.2018.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 02/06/2023]
Abstract
Engagement of toll-like receptor (TLR)4 ligand, lipopolysaccharide (LPS) with TLR4 in mammals activates two downstream intracellular signaling routes; the myeloid differentiation primary response gene (MyD)88 dependent and independent pathways. However, existence of the later pathway leading to production of type I interferons (IFNs) in avian species has been debated due to conflicting observations. The objective of our study was to investigate whether LPS induces type I IFN production in chicken macrophages leading to antiviral response attributable to type I IFN. We found that LPS elicits type I IFN response dominated by IFN-β production. We also found that reduction in infectious laryngotracheitis virus (ILTV) replication by LPS-mediated antiviral response is attributable to type I IFNs in addition to nitric oxide (NO). Our findings imply that LPS elicits both MyD88 dependent and independent pathways in chicken macrophages consequently eliciting anti-ILTV response attributable to production of both type I IFNs and NO.
Collapse
Affiliation(s)
- Hanaa Ahmed-Hassan
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; Zoonoses Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Mohamed Sarjoon Abdul-Cader
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Maha Ahmed Sabry
- Zoonoses Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Eman Hamza
- Zoonoses Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Mohamed Faizal Abdul-Careem
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
110
|
Beidas M, Chehadeh W. Effect of Human Coronavirus OC43 Structural and Accessory Proteins on the Transcriptional Activation of Antiviral Response Elements. Intervirology 2018; 61:30-35. [PMID: 30041172 PMCID: PMC7179558 DOI: 10.1159/000490566] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/03/2018] [Indexed: 12/25/2022] Open
Abstract
Objectives The molecular mechanisms underlying the pathogenesis of human coronavirus OC43 (HCoV-OC43) infection are poorly understood. In this study, we investigated the ability of HCoV-OC43 to antagonize the transcriptional activation of antiviral response elements. Methods HCoV-OC43 structural (membrane M and nucleocapsid N) and accessory proteins (ns2a and ns5a) were expressed individually in human embryonic kidney 293 (HEK-293) cells. The transcriptional activation of antiviral response elements was assessed by measuring the levels of firefly luciferase expressed under the control of interferon (IFN)-stimulated response element (ISRE), IFN-β promoter, or nuclear factor kappa B response element (NF-κB-RE). The antiviral gene expression profile in HEK-293 cells was determined by PCR array. Results The transcriptional activity of ISRE, IFN-β promoter, and NF-κB-RE was significantly reduced in the presence of HCoV-OC43 ns2a, ns5a, M, or N protein, following the challenge of cells with Sendai virus, IFN-α or tumor necrosis factor-α. The expression of antiviral genes involved in the type I IFN and NF-κB signaling pathways was also downregulated in the presence of HCoV-OC43 structural or accessory proteins. Conclusion Both structural and accessory HCoV-OC43 proteins are able to inhibit antiviral response elements in HEK-293 cells, and to block the activation of different antiviral signaling pathways.
Collapse
Affiliation(s)
| | - Wassim Chehadeh
- *Dr. Wassim Chehadeh, Department of Microbiology, Faculty of Medicine, Kuwait University, PO Box 24923, Safat 13310 (Kuwait), E-Mail
| |
Collapse
|
111
|
Agbaria AH, Beck Rosen G, Lapidot I, Rich DH, Huleihel M, Mordechai S, Salman A, Kapelushnik J. Differential Diagnosis of the Etiologies of Bacterial and Viral Infections Using Infrared Microscopy of Peripheral Human Blood Samples and Multivariate Analysis. Anal Chem 2018; 90:7888-7895. [PMID: 29869874 DOI: 10.1021/acs.analchem.8b00017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human viral and bacterial infections are responsible for a variety of diseases that are still the main causes of death and economic burden for society across the globe. Despite the different responses of the immune system to these infections, some of them have similar symptoms, such as fever, sneezing, inflammation, vomiting, diarrhea, and fatigue. Thus, physicians usually encounter difficulties in distinguishing between viral and bacterial infections on the basis of these symptoms. Rapid identification of the etiology of infection is highly important for effective treatment and can save lives in some cases. The current methods used for the identification of the nature of the infection are mainly based on growing the infective agent in culture, which is a time-consuming (over 24 h) and usually expensive process. The main objective of this study was to evaluate the potential of the mid-infrared spectroscopic method for rapid and reliable identification of bacterial and viral infections based on simple peripheral blood samples. For this purpose, white blood cells (WBCs) and plasma were isolated from the peripheral blood samples of patients with confirmed viral or bacterial infections. The obtained spectra were analyzed by multivariate analysis: principle component analysis (PCA) followed by linear discriminant analysis (LDA), to identify the infectious agent type as bacterial or viral in a time span of about 1 h after the collection of the blood sample. Our preliminary results showed that it is possible to determine the infectious agent with high success rates of 82% for sensitivity and 80% for specificity, based on the WBC data.
Collapse
Affiliation(s)
- Adam H Agbaria
- Department of Physics , Ben-Gurion University , Beer-Sheva 84105 , Israel
| | - Guy Beck Rosen
- Department of Pediatric Hematology/Oncology , Soroka University Medical Center , Beer-Sheva 84105 , Israel
| | - Itshak Lapidot
- Department of Electrical and Electronics Engineering, ACLP-Afeka Center for Language Processing , Afeka Tel-Aviv Academic College of Engineering , Tel-Aviv 69107 , Israel
| | - Daniel H Rich
- Department of Physics , Ben-Gurion University , Beer-Sheva 84105 , Israel
| | - Mahmoud Huleihel
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences , Ben-Gurion University of the Negev , Beer-Sheva 84105 , Israel
| | - Shaul Mordechai
- Department of Physics , Ben-Gurion University , Beer-Sheva 84105 , Israel
| | - Ahmad Salman
- Department of Physics , SCE-Sami Shamoon College of Engineering , Beer-Sheva 84100 , Israel
| | - Joseph Kapelushnik
- Department of Pediatric Hematology/Oncology , Soroka University Medical Center , Beer-Sheva 84105 , Israel
| |
Collapse
|
112
|
Yang J, Yang C, Yang J, Ding J, Li X, Yu Q, Guo X, Fan Z, Wang H. RP105 alleviates myocardial ischemia reperfusion injury via inhibiting TLR4/TRIF signaling pathways. Int J Mol Med 2018; 41:3287-3295. [PMID: 29512709 PMCID: PMC5881694 DOI: 10.3892/ijmm.2018.3538] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/12/2018] [Indexed: 02/06/2023] Open
Abstract
The Toll-like receptor 4 (TLR4) signal pathway- induced inflammation is considered to be a crucial link to myocardial ischemia reperfusion injury (MIRI). Our previous study proved that radioprotective 105 kDa protein (RP105), a negative regulator of TLR4, performed a protective role in MIRI by anti-apoptosis approach. However, the mechanism of RP105 cardioprotection of anti-inflammation is still unclear. This study aimed to explore the underlying mechanism of RP105 anti-inflammation effect in MIRI. We established a rat model of MIRI induced by ligation of the left anterior descending coronary artery for 30 min followed by 2 h reperfusion. Animals were pre-infected with Ad-EGFP-RP105, Ad-EGFP or saline at the apex of the heart. All rats were sacrificed to collect blood samples and myocardial tissue and assessed by immunofluorescence, blood biochemical analysis, Evans blue/triphenyltetrazolium chloride (TTC), hematoxylin and eosin (H&E) staining, enzyme-linked immuno sorbent assay (ELISA), western blot analysis, quantitative PCR and electrophoretic mobility shift assay (EMSA). RP105 overexpression with adenovirus vectors reduced serum myocardial enzyme (CK-MB and LDH) activities, decreased myocardial infarct size, mitigated inflammatory factors interferon-β and tumor necrosis factor-α during MIRI. We also found that Ad-RP105 group exerted distinct repression of TLR4/TRIF signal pathway related proteins and mRNAs (TRIF, TBK-1, IRF3 and p-IRF3) with a low transcriptional activity of IRF3. These findings first expounded that RP105 could alleviate the ischemia reperfusion induced inflammatory status in heart via inhibiting TLR4/TRIF signaling pathway and provided a theoretical foundation of RP105 gene in MIRI.
Collapse
Affiliation(s)
- Jun Yang
- Department of Cardiology, The First College of Clinical Medical Sciences
| | - Chaojun Yang
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Jian Yang
- Department of Cardiology, The First College of Clinical Medical Sciences
| | - Jiawang Ding
- Department of Cardiology, The First College of Clinical Medical Sciences
| | - Xinxin Li
- Department of Cardiology, The First College of Clinical Medical Sciences
| | - Qinqin Yu
- Department of Cardiology, The First College of Clinical Medical Sciences
| | - Xin Guo
- Department of Cardiology, The First College of Clinical Medical Sciences
| | - Zhixing Fan
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Huibo Wang
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| |
Collapse
|
113
|
Wang B, Lam TH, Soh MK, Ye Z, Chen J, Ren EC. Influenza A Virus Facilitates Its Infectivity by Activating p53 to Inhibit the Expression of Interferon-Induced Transmembrane Proteins. Front Immunol 2018; 9:1193. [PMID: 29904383 PMCID: PMC5990591 DOI: 10.3389/fimmu.2018.01193] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/14/2018] [Indexed: 11/16/2022] Open
Abstract
Human influenza virus (IAV) are among the most common pathogens to cause human respiratory infections. A better understanding on interplay between IAV and host factors may provide clues for disease prevention and control. While many viruses are known to downregulate p53 upon entering the cell to reduce the innate host antiviral response, IAV infection is unusual in that it activates p53. However, it has not been clear whether this process has proviral or antiviral effects. In this study, using human isogenic p53 wild-type and p53null A549 cells generated from the CRISPR/Cas9 technology, we observed that p53null cells exhibit significantly reduced viral propagation when infected with influenza A virus (strain A/Puerto Rico/8/1934 H1N1). Genome-wide microarray analysis revealed that p53 regulates the expression of a large set of interferon-inducible genes, among which the interferon-induced transmembrane family members IFITM1, IFITM2, and IFITM3 were most significantly downregulated by the expression of p53. Knockdown of interferon-induced transmembrane proteins (IFITMs) by short interfering RNAs enhanced influenza virus infectivity in p53null A549 cells, while overexpressed IFITMs in A549 cells blocked virus entry. Intriguingly, regulation of IFITMs by p53 is independent of its transcriptional activity, as the p53 short isoform Δ40p53 recapitulates IFITM regulation. Taken together, these data reveal that p53 activation by IAV is an essential step in maintaining its infectivity. This novel association between human p53 and the broad spectrum antiviral proteins, the IFITMs, demonstrates a previous mechanism employed by influenza virus to enhance its propagation via p53 inhibition of IFITMs.
Collapse
Affiliation(s)
- Bei Wang
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Tze Hau Lam
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Mun Kuen Soh
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Zhiyong Ye
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Ee Chee Ren
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
114
|
Simulation Model for Dynamics of Dengue with Innate and Humoral Immune Responses. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2018; 2018:8798057. [PMID: 29849749 PMCID: PMC5925133 DOI: 10.1155/2018/8798057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/08/2018] [Accepted: 02/19/2018] [Indexed: 12/20/2022]
Abstract
Dengue virus is a mosquito borne Flavivirus and the most prevalent arbovirus in tropical and subtropical regions around the world. The incidence of dengue has increased drastically over the last few years at an alarming rate. The clinical manifestation of dengue ranges from asymptomatic infection to severe dengue. Even though the viral kinetics of dengue infection is lacking, innate immune response and humoral immune response are thought to play a major role in controlling the virus count. Here, we developed a computer simulation mathematical model including both innate and adaptive immune responses to study the within-host dynamics of dengue virus infection. A sensitivity analysis was carried out to identify key parameters that would contribute towards severe dengue. A detailed stability analysis was carried out to identify relevant range of parameters that contributes to different outcomes of the infection. This study provides a qualitative understanding of the biological factors that can explain the viral kinetics during a dengue infection.
Collapse
|
115
|
Tschurtschenthaler M, Adolph TE. The Selective Autophagy Receptor Optineurin in Crohn's Disease. Front Immunol 2018; 9:766. [PMID: 29692785 PMCID: PMC5902526 DOI: 10.3389/fimmu.2018.00766] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/27/2018] [Indexed: 12/13/2022] Open
Abstract
Autophagy is a pathway that allows cells to target organelles, protein complexes, or invading microorganisms for lysosomal degradation. The specificity of autophagic processes is becoming increasingly recognized and is conferred by selective autophagy receptors such as Optineurin (OPTN). As an autophagy receptor, OPTN controls the clearance of Salmonella infection and mediates mitochondrial turnover. Recent studies demonstrated that OPTN is critically required for pathogen clearance and an appropriate cytokine response in macrophages. Moreover, OPTN emerges as a critical regulator of inflammation emanating from epithelial cells in the intestine. OPTN directly interacts with and promotes the removal of inositol-requiring enzyme 1α, a central inflammatory signaling hub of the stressed endoplasmic reticulum (ER). Perturbations of ER and autophagy functions have been linked to inflammatory bowel disease (IBD) and specifically Crohn's disease. Collectively, these studies may explain how perturbations at the ER can be resolved by selective autophagy to restrain inflammatory processes in the intestine and turn the spotlight on OPTN as a key autophagy receptor. This review covers a timely perspective on the regulation and function of OPTN in health and IBD.
Collapse
Affiliation(s)
- Markus Tschurtschenthaler
- Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Timon Erik Adolph
- Department of Medicine I (Gastroenterology, Endocrinology and Metabolism), Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
116
|
Arnold KM, Flynn NJ, Raben A, Romak L, Yu Y, Dicker AP, Mourtada F, Sims-Mourtada J. The Impact of Radiation on the Tumor Microenvironment: Effect of Dose and Fractionation Schedules. CANCER GROWTH AND METASTASIS 2018; 11:1179064418761639. [PMID: 29551910 PMCID: PMC5846913 DOI: 10.1177/1179064418761639] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/23/2017] [Indexed: 02/06/2023]
Abstract
In addition to inducing lethal DNA damage in tumor and stromal cells, radiation can alter the interactions of tumor cells with their microenvironment. Recent technological advances in planning and delivery of external beam radiotherapy have allowed delivery of larger doses per fraction (hypofractionation) while minimizing dose to normal tissues with higher precision. The effects of radiation on the tumor microenvironment vary with dose and fractionation schedule. In this review, we summarize the effects of conventional and hypofractionated radiation regimens on the immune system and tumor stroma. We discuss how these interactions may provide therapeutic benefit in combination with targeted therapies. Understanding the differential effects of radiation dose and fractionation can have implications for choice of combination therapies.
Collapse
Affiliation(s)
- Kimberly M Arnold
- Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, DE, USA.,Department of Medical Laboratory Sciences, University of Delaware, Newark, DE, USA
| | - Nicole J Flynn
- Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, DE, USA.,Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Adam Raben
- Department of Radiation Oncology, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, DE, USA
| | - Lindsay Romak
- Department of Radiation Oncology, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, DE, USA
| | - Yan Yu
- Department of Radiation Oncology, Sidney Kimmel Medical College & Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Adam P Dicker
- Department of Radiation Oncology, Sidney Kimmel Medical College & Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Firas Mourtada
- Department of Radiation Oncology, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, DE, USA.,Department of Radiation Oncology, Sidney Kimmel Medical College & Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jennifer Sims-Mourtada
- Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, DE, USA.,Department of Medical Laboratory Sciences, University of Delaware, Newark, DE, USA.,Department of Biological Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
117
|
Gargan S, Ahmed S, Mahony R, Bannan C, Napoletano S, O'Farrelly C, Borrow P, Bergin C, Stevenson NJ. HIV-1 Promotes the Degradation of Components of the Type 1 IFN JAK/STAT Pathway and Blocks Anti-viral ISG Induction. EBioMedicine 2018; 30:203-216. [PMID: 29580840 PMCID: PMC5952252 DOI: 10.1016/j.ebiom.2018.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 02/24/2018] [Accepted: 03/07/2018] [Indexed: 01/12/2023] Open
Abstract
Anti-retroviral therapy successfully suppresses HIV-1 infection, but fails to provide a cure. During infection Type 1 IFNs normally play an essential role in viral clearance, but in vivo IFN-α only has a modest impact on HIV-1 infection, suggesting its possible targeting by HIV. Here, we report that the HIV protein, Vif, inhibits effective IFN-α signalling via degradation of essential JAK/STAT pathway components. We found that STAT1 and STAT3 are specifically reduced in HEK293T cells expressing Vif and that full length, infectious HIV-1 IIIB strain promotes their degradation in a Vif-dependent manner. HIV-1 IIIB infection of myeloid ThP-1 cells also reduced the IFN-α-mediated induction of the anti-viral gene, ISG15, but not MxA, revealing a functional consequence of this HIV-1-mediated immune evasion strategy. Interestingly, while total STAT levels were not reduced upon in vitro IIIB infection of primary human PBMCs, IFN-α-mediated phosphorylation of STAT1 and STAT3 and ISG induction were starkly reduced, with removal of Vif (IIIBΔVif), partially restoring pSTATs, ISG15 and MxB induction. Similarly, pSTAT1 and pSTAT3 expression and IFN-α-induced ISG15 were reduced in PBMCs from HIV-infected patients, compared to healthy controls. Furthermore, IFN-α pre-treatment of a CEM T lymphoblast cells significantly inhibited HIV infection/replication (measured by cellular p24), only in the absence of Vif (IIIBΔVif), but was unable to suppress full length IIIB infection. When analysing the mechanism by which Vif might target the JAK/STAT pathway, we found Vif interacts with both STAT1 and STAT3, (but not STAT2), and its expression promotes ubiquitination and MG132-sensitive, proteosomal degradation of both proteins. Vif's Elongin-Cullin-SOCS-box binding motif enables the formation of an active E3 ligase complex, which we found to be required for Vif's degradation of STAT1 and STAT3. In fact, the E3 ligase scaffold proteins, Cul5 and Rbx2, were also found to be essential for Vif-mediated proteasomal degradation of STAT1 and STAT3. These results reveal a target for HIV-1-Vif and demonstrate how HIV-1 impairs the anti-viral activity of Type 1 IFNs, possibly explaining why both endogenous and therapeutic IFN-α fail to activate more effective control over HIV infection.
Collapse
Affiliation(s)
- Siobhan Gargan
- Intracellular Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Suaad Ahmed
- Intracellular Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Rebecca Mahony
- Intracellular Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Ciaran Bannan
- Intracellular Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; School of Medicine, Trinity College Dublin, Ireland; Department of GU Medicine and Infectious Diseases, St. James's Hospital, Dublin, Ireland
| | - Silvia Napoletano
- Intracellular Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Cliona O'Farrelly
- Intracellular Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; School of Medicine, Trinity College Dublin, Ireland
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| | - Colm Bergin
- School of Medicine, Trinity College Dublin, Ireland; Department of GU Medicine and Infectious Diseases, St. James's Hospital, Dublin, Ireland
| | - Nigel J Stevenson
- Intracellular Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland.
| |
Collapse
|
118
|
Yang T, Zhang F, Zhai L, He W, Tan Z, Sun Y, Wang Y, Liu L, Ning C, Zhou W, Ao H, Wang C, Yu Y. Transcriptome of Porcine PBMCs over Two Generations Reveals Key Genes and Pathways Associated with Variable Antibody Responses post PRRSV Vaccination. Sci Rep 2018; 8:2460. [PMID: 29410429 PMCID: PMC5802836 DOI: 10.1038/s41598-018-20701-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/23/2018] [Indexed: 12/15/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a virus susceptible to antibody dependent enhancement, causing reproductive failures in sows and preweaning mortality of piglets. Modified-live virus (MLV) vaccines are used to control PRRS in swine herds. However, immunized sows and piglets often generate variable antibody levels. This study aimed to detect significant genes and pathways involved in antibody responsiveness of pregnant sows and their offspring post-PRRSV vaccination. RNA sequencing was conducted on peripheral blood-mononuclear cells (PBMCs), which were isolated from pregnant sows and their piglets with high (HA), median (MA), and low (LA) PRRS antibody levels following vaccination. 401 differentially expressed genes (DEGs) were identified in three comparisons (HA versus MA, HA versus LA, and MA versus LA) of sow PBMCs. Two novel pathways (complement and coagulation cascade pathway; and epithelial cell signaling in H. pylori infection pathway) revealed by DEGs in HA versus LA and MA versus LA were involved in chemotactic and proinflammatory responses. TNF-α, CCL4, and NFKBIA genes displayed the same expression trends in subsequent generation post-PRRS-MLV vaccination. Findings of the study suggest that two pathways and TNF-α, CCL4, and NFKBIA could be considered as key pathways and potential candidate genes for PRRSV vaccine responsiveness, respectively.
Collapse
Affiliation(s)
- Ting Yang
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, 100193, China
| | - Fengxia Zhang
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, 100193, China
| | - Liwei Zhai
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, 100193, China
| | - Weiyong He
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Zhen Tan
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, 100193, China
| | - Yangyang Sun
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, 100193, China
| | - Yuan Wang
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, 100193, China
| | - Lei Liu
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, 100193, China
| | - Chao Ning
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, 100193, China
| | - Weiliang Zhou
- Tianjin Ninghe Primary Pig Breeding Farm, Ninghe, 301500, Tianjin, China
| | - Hong Ao
- State Key Laboratory for Animal Nutrition, Key Laboratory for Domestic Animal Genetic Resources and Breeding of the Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chuduan Wang
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, 100193, China.
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
119
|
Zhang X, Cha IH, Kim KY. Highly preserved consensus gene modules in human papilloma virus 16 positive cervical cancer and head and neck cancers. Oncotarget 2017; 8:114031-114040. [PMID: 29371966 PMCID: PMC5768383 DOI: 10.18632/oncotarget.23116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/15/2017] [Indexed: 11/25/2022] Open
Abstract
In this study, we investigated the consensus gene modules in head and neck cancer (HNC) and cervical cancer (CC). We used a publicly available gene expression dataset, GSE6791, which included 42 HNC, 14 normal head and neck, 20 CC and 8 normal cervical tissue samples. To exclude bias because of different human papilloma virus (HPV) types, we analyzed HPV16-positive samples only. We identified 3824 genes common to HNC and CC samples. Among these, 977 genes showed high connectivity and were used to construct consensus modules. We demonstrated eight consensus gene modules for HNC and CC using the dissimilarity measure and average linkage hierarchical clustering methods. These consensus modules included genes with significant biological functions, including ATP binding and extracellular exosome. Eigengen network analysis revealed the consensus modules were highly preserved with high connectivity. These findings demonstrate that HPV16-positive head and neck and cervical cancers share highly preserved consensus gene modules with common potentially therapeutic targets.
Collapse
Affiliation(s)
- Xianglan Zhang
- Department of Pathology, Yanbian University Medical College, Yanji City, Jilin Province, China.,Oral Cancer Research Institute, College of Dentistry, Yonsei University, Seoul, Korea
| | - In-Ho Cha
- Oral Cancer Research Institute, College of Dentistry, Yonsei University, Seoul, Korea.,Department of Oral and Maxillofacial Surgery, College of Dentistry, Yonsei University, Seoul, Korea
| | - Ki-Yeol Kim
- Dental Education Research Center, BK21 PLUS Project, College of Dentistry, Yonsei University, Seoul, Korea
| |
Collapse
|
120
|
Yao K, Peng C, Zhang Y, Zykova TA, Lee MH, Lee SY, Rao E, Chen H, Ryu J, Wang L, Zhang Y, Gao G, He W, Ma WY, Liu K, Bode AM, Dong Z, Li B, Dong Z. RSK2 phosphorylates T-bet to attenuate colon cancer metastasis and growth. Proc Natl Acad Sci U S A 2017; 114:12791-12796. [PMID: 29133416 PMCID: PMC5715759 DOI: 10.1073/pnas.1710756114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Metastasis is a major cause of cancer-related deaths. Approximately 80% of patients with colorectal cancer develop liver metastasis and 20% develop lung metastasis. We found that at different stages of colon cancer, IFNγ secretion from peripheral blood mononuclear cells was decreased compared with healthy controls. The ribosomal S6 kinase (RSK) family of kinases has multiple cellular functions, and we examined their roles in this observed IFNγ decrease. Flow cytometry analysis of wild-type (WT) and RSK2 knockout (KO) mice revealed significantly lower levels of IFNγ in the RSK2 KO mice compared with the WT mice. Since IFNγ is a component of immunity, which contributes to protection against metastatic carcinomas, we conducted a colon cancer liver metastasis experiment. We found significantly greater metastasis in RSK2 KO mice compared with WT mice. Transcription factor T-bet can directly activate Ifnγ gene transcription. In vitro kinase assay results showed that RSK2 phosphorylated T-bet at serines 498 and 502. We show that phosphorylation of T-bet by RSK2 is required for IFNγ expression, because knockdown of RSK2 expression or overexpression of mutant T-bet reduces IFNγ mRNA expression. To verify the function of the phosphorylation sites, we overexpressed a constitutively active mutant T-bet (S498E/S502E) in bone marrow. Mutant T-bet restored the IFNγ mRNA levels and dramatically reduced the metastasis rate in these mice. Overall, these results indicate that phosphorylation of T-bet is required for the inhibition of colon cancer metastasis and growth through a positive regulation of RSK2/T-bet/IFNγ signaling.
Collapse
Affiliation(s)
- Ke Yao
- The Hormel Institute, University of Minnesota, Austin, MN 55912
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China
| | - Cong Peng
- The Hormel Institute, University of Minnesota, Austin, MN 55912
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yuwen Zhang
- The Hormel Institute, University of Minnesota, Austin, MN 55912
| | | | - Mee-Hyun Lee
- The Hormel Institute, University of Minnesota, Austin, MN 55912
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China
| | - Sung-Young Lee
- The Hormel Institute, University of Minnesota, Austin, MN 55912
| | - Enyu Rao
- The Hormel Institute, University of Minnesota, Austin, MN 55912
| | - Hanyong Chen
- The Hormel Institute, University of Minnesota, Austin, MN 55912
| | - Joohyun Ryu
- The Hormel Institute, University of Minnesota, Austin, MN 55912
| | - Lei Wang
- The Hormel Institute, University of Minnesota, Austin, MN 55912
| | - Yi Zhang
- The Hormel Institute, University of Minnesota, Austin, MN 55912
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ge Gao
- The Hormel Institute, University of Minnesota, Austin, MN 55912
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wei He
- The Hormel Institute, University of Minnesota, Austin, MN 55912
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China
| | - Wei-Ya Ma
- The Hormel Institute, University of Minnesota, Austin, MN 55912
| | - Kangdong Liu
- The Hormel Institute, University of Minnesota, Austin, MN 55912
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912
| | - Ziming Dong
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Bing Li
- The Hormel Institute, University of Minnesota, Austin, MN 55912;
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, MN 55912;
| |
Collapse
|
121
|
Bezerra Júnior RQ, Eloy ÂMX, Furtado JR, Pinheiro RR, Andrioli A, Moreno FB, Pinto Lobo MD, Monteiro-Moreira ACO, de Azevedo Moreira R, Farias Pinto TM, da Silva Teixeira MF. A panel of protein candidates for comprehensive study of Caprine Arthritis Encephalitis (CAE) infection. Trop Anim Health Prod 2017; 50:43-48. [DOI: 10.1007/s11250-017-1398-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 09/05/2017] [Indexed: 01/06/2023]
|
122
|
Petes C, Odoardi N, Gee K. The Toll for Trafficking: Toll-Like Receptor 7 Delivery to the Endosome. Front Immunol 2017; 8:1075. [PMID: 28928743 PMCID: PMC5591332 DOI: 10.3389/fimmu.2017.01075] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/18/2017] [Indexed: 01/12/2023] Open
Abstract
Toll-like receptor (TLR)-7 is an endosomal innate immune sensor capable of detecting single-stranded ribonucleic acid. TLR7-mediated induction of type I interferon and other inflammatory cytokine production is important in antiviral immune responses. Furthermore, altered TLR7 expression levels are implicated in various autoimmune disorders, indicating a key role for this receptor in modulating inflammation. This review is focused on the regulation of TLR7 expression and localization compared to that of the other endosomal TLRs: TLR3, 8, and 9. Endosomal TLR localization is a tightly controlled and intricate process with some shared components among various TLRs. However, TLR-specific mechanisms must also be in place in order to regulate the induction of pathogen- and cell-specific responses. It is known that TLR7 is shuttled from the endoplasmic reticulum to the endosome via vesicles from the Golgi. Several chaperone proteins are required for this process, most notably uncoordinated 93 homolog B1 (Caenorhabditis elegans), recently identified to also be involved in the localization of the other endosomal TLRs. Acidification of the endosome and proteolytic cleavage of TLR7 are essential for TLR7 signaling in response to ligand binding. Cleavage of TLR7 has been demonstrated to be accomplished by furin peptidases in addition to cathepsins and asparagine endopeptidases. Moreover, triggering receptor expressed on myeloid cells like 4, a protein associated with antigen presentation and apoptosis in immune cells, has been implicated in the amplification of TLR7 signaling. Understanding these and other molecular mechanisms controlling TLR7 expression and trafficking will give insight into the specific control of TLR7 activity compared to the other endosomal TLRs.
Collapse
Affiliation(s)
- Carlene Petes
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Natalya Odoardi
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
123
|
Suff N, Waddington SN. The power of bioluminescence imaging in understanding host-pathogen interactions. Methods 2017; 127:69-78. [PMID: 28694065 DOI: 10.1016/j.ymeth.2017.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/12/2017] [Accepted: 07/03/2017] [Indexed: 01/06/2023] Open
Abstract
Infectious diseases are one of the leading causes of death worldwide. Modelling and understanding human infection is imperative to developing treatments to reduce the global burden of infectious disease. Bioluminescence imaging is a highly sensitive, non-invasive technique based on the detection of light, produced by luciferase-catalysed reactions. In the study of infectious disease, bioluminescence imaging is a well-established technique; it can be used to detect, localize and quantify specific immune cells, pathogens or immunological processes. This enables longitudinal studies in which the spectrum of the disease process and its response to therapies can be monitored. Light producing transgenic rodents are emerging as key tools in the study of host response to infection. Here, we review the strategies for identifying biological processes in vivo, including the technology of bioluminescence imaging and illustrate how this technique is shedding light on the host-pathogen relationship.
Collapse
Affiliation(s)
- Natalie Suff
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, United Kingdom.
| | - Simon N Waddington
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, United Kingdom
| |
Collapse
|
124
|
Sopel N, Pflaum A, Kölle J, Finotto S. The Unresolved Role of Interferon-λ in Asthma Bronchiale. Front Immunol 2017; 8:989. [PMID: 28861088 PMCID: PMC5559474 DOI: 10.3389/fimmu.2017.00989] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/02/2017] [Indexed: 12/20/2022] Open
Abstract
Asthma bronchiale is a disease of the airways with increasing incidence, that often begins during infancy. So far, therapeutic options are mainly symptomatic and thus there is an increasing need for better treatment and/or prevention strategies. Human rhinoviruses (HRVs) are a major cause of asthma exacerbations and might cause acute wheezing associated with local production of pro-inflammatory mediators resulting in neutrophilic inflammatory response. Viral infections induce a characteristic activation of immune response, e.g., TLR3, 4, 7, 8, 9 in the endosome and their downstream targets, especially MyD88. Moreover, other cytoplasmic pattern recognition molecules (PRMs) like RIG1 and MDA5 play important roles in the activation of interferons (IFNs) of all types. Depending on the stimulation of the different PRMs, the levels of the IFNs induced might differ. Recent studies focused on Type I IFNs in samples from control and asthma patients. However, the administration of type I IFN-α was accompanied by side-effects, thus this possible therapy was abandoned. Type III IFN-λ acts more specifically, as fewer cells express the IFN-λ receptor chain 1. In addition, it has been shown that asthmatic mice treated with recombinant or adenoviral expressed IFN-λ2 (IL–28A) showed an amelioration of symptoms, indicating that treatment with IFN-λ might be beneficial for asthmatic patients.
Collapse
Affiliation(s)
- Nina Sopel
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Andreas Pflaum
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Julia Kölle
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Susetta Finotto
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
125
|
Molecular cloning, transcriptional profiling, and subcellular localization of signal transducer and activator of transcription 2 (STAT2) ortholog from rock bream, Oplegnathus fasciatus. Gene 2017; 626:95-105. [DOI: 10.1016/j.gene.2017.05.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 04/16/2017] [Accepted: 05/09/2017] [Indexed: 02/01/2023]
|
126
|
Marei H, Malliri A. Rac1 in human diseases: The therapeutic potential of targeting Rac1 signaling regulatory mechanisms. Small GTPases 2017; 8:139-163. [PMID: 27442895 PMCID: PMC5584733 DOI: 10.1080/21541248.2016.1211398] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 07/05/2016] [Accepted: 07/05/2016] [Indexed: 12/11/2022] Open
Abstract
Abnormal Rac1 signaling is linked to a number of debilitating human diseases, including cancer, cardiovascular diseases and neurodegenerative disorders. As such, Rac1 represents an attractive therapeutic target, yet the search for effective Rac1 inhibitors is still underway. Given the adverse effects associated with Rac1 signaling perturbation, cells have evolved several mechanisms to ensure the tight regulation of Rac1 signaling. Thus, characterizing these mechanisms can provide invaluable information regarding major cellular events that lead to aberrant Rac1 signaling. Importantly, this information can be utilized to further facilitate the development of effective pharmacological modulators that can restore normal Rac1 signaling. In this review, we focus on the pathological role of Rac1 signaling, highlighting the benefits and potential drawbacks of targeting Rac1 in a clinical setting. Additionally, we provide an overview of available compounds that target key Rac1 regulatory mechanisms and discuss future therapeutic avenues arising from our understanding of these mechanisms.
Collapse
Affiliation(s)
- Hadir Marei
- Cell Signaling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Angeliki Malliri
- Cell Signaling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| |
Collapse
|
127
|
Pulmonary immunity to viruses. Clin Sci (Lond) 2017; 131:1737-1762. [PMID: 28667071 DOI: 10.1042/cs20160259] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/31/2017] [Accepted: 04/06/2017] [Indexed: 12/28/2022]
Abstract
Mucosal surfaces, such as the respiratory epithelium, are directly exposed to the external environment and therefore, are highly susceptible to viral infection. As a result, the respiratory tract has evolved a variety of innate and adaptive immune defenses in order to prevent viral infection or promote the rapid destruction of infected cells and facilitate the clearance of the infecting virus. Successful adaptive immune responses often lead to a functional state of immune memory, in which memory lymphocytes and circulating antibodies entirely prevent or lessen the severity of subsequent infections with the same virus. This is also the goal of vaccination, although it is difficult to vaccinate in a way that mimics respiratory infection. Consequently, some vaccines lead to robust systemic immune responses, but relatively poor mucosal immune responses that protect the respiratory tract. In addition, adaptive immunity is not without its drawbacks, as overly robust inflammatory responses may lead to lung damage and impair gas exchange or exacerbate other conditions, such as asthma or chronic obstructive pulmonary disease (COPD). Thus, immune responses to respiratory viral infections must be strong enough to eliminate infection, but also have mechanisms to limit damage and promote tissue repair in order to maintain pulmonary homeostasis. Here, we will discuss the components of the adaptive immune system that defend the host against respiratory viral infections.
Collapse
|
128
|
Role of Interferons in the Development of Diagnostics, Vaccines, and Therapy for Tuberculosis. J Immunol Res 2017; 2017:5212910. [PMID: 28713838 PMCID: PMC5496129 DOI: 10.1155/2017/5212910] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/09/2017] [Indexed: 01/14/2023] Open
Abstract
Tuberculosis (TB) is an airborne infection caused by Mycobacterium tuberculosis (Mtb). About one-third of the world's population is latently infected with TB and 5–15% of them will develop active TB in their lifetime. It is estimated that each case of active TB may cause 10–20 new infections. Host immune response to Mtb is influenced by interferon- (IFN-) signaling pathways, particularly by type I and type II interferons (IFNs). The latter that consists of IFN-γ has been associated with the promotion of Th1 immune response which is associated with protection against TB. Although this aspect remains controversial at present due to the lack of established correlates of protection, currently, there are different prophylactic, diagnostic, and immunotherapeutic approaches in which IFNs play an important role. This review summarizes the main aspects related with the biology of IFNs, mainly associated with TB, as well as presents the main applications of these cytokines related to prophylaxis, diagnosis, and immunotherapy of TB.
Collapse
|
129
|
Snyder DT, Hedges JF, Jutila MA. Getting "Inside" Type I IFNs: Type I IFNs in Intracellular Bacterial Infections. J Immunol Res 2017; 2017:9361802. [PMID: 28529959 PMCID: PMC5424489 DOI: 10.1155/2017/9361802] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 12/23/2022] Open
Abstract
Type I interferons represent a unique and complex group of cytokines, serving many purposes during innate and adaptive immunity. Discovered in the context of viral infections, type I IFNs are now known to have myriad effects in infectious and autoimmune disease settings. Type I IFN signaling during bacterial infections is dependent on many factors including whether the infecting bacterium is intracellular or extracellular, as different signaling pathways are activated. As such, the repercussions of type I IFN induction can positively or negatively impact the disease outcome. This review focuses on type I IFN induction and downstream consequences during infection with the following intracellular bacteria: Chlamydia trachomatis, Listeria monocytogenes, Mycobacterium tuberculosis, Salmonella enterica serovar Typhimurium, Francisella tularensis, Brucella abortus, Legionella pneumophila, and Coxiella burnetii. Intracellular bacterial infections are unique because the bacteria must avoid, circumvent, and even co-opt microbial "sensing" mechanisms in order to reside and replicate within a host cell. Furthermore, life inside a host cell makes intracellular bacteria more difficult to target with antibiotics. Because type I IFNs are important immune effectors, modulating this pathway may improve disease outcomes. But first, it is critical to understand the context-dependent effects of the type I IFN pathway in intracellular bacterial infections.
Collapse
Affiliation(s)
- Deann T. Snyder
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Jodi F. Hedges
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Mark A. Jutila
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
130
|
Lee AJ, Chen B, Chew MV, Barra NG, Shenouda MM, Nham T, van Rooijen N, Jordana M, Mossman KL, Schreiber RD, Mack M, Ashkar AA. Inflammatory monocytes require type I interferon receptor signaling to activate NK cells via IL-18 during a mucosal viral infection. J Exp Med 2017; 214:1153-1167. [PMID: 28264883 PMCID: PMC5379971 DOI: 10.1084/jem.20160880] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 11/15/2016] [Accepted: 01/25/2017] [Indexed: 11/17/2022] Open
Abstract
Although type I interferon is critical for NK cell activation, the underlying mechanism is under debate and is unknown during a mucosal infection. Lee et al. have determined that type I interferon induces inflammatory monocytes to produce IL-18 to directly activate NK cells to combat viral infections. The requirement of type I interferon (IFN) for natural killer (NK) cell activation in response to viral infection is known, but the underlying mechanism remains unclear. Here, we demonstrate that type I IFN signaling in inflammatory monocytes, but not in dendritic cells (DCs) or NK cells, is essential for NK cell function in response to a mucosal herpes simplex virus type 2 (HSV-2) infection. Mice deficient in type I IFN signaling, Ifnar−/− and Irf9−/− mice, had significantly lower levels of inflammatory monocytes, were deficient in IL-18 production, and lacked NK cell–derived IFN-γ. Depletion of inflammatory monocytes, but not DCs or other myeloid cells, resulted in lower levels of IL-18 and a complete abrogation of NK cell function in HSV-2 infection. Moreover, this resulted in higher susceptibility to HSV-2 infection. Although Il18−/− mice had normal levels of inflammatory monocytes, their NK cells were unresponsive to HSV-2 challenge. This study highlights the importance of type I IFN signaling in inflammatory monocytes and the induction of the early innate antiviral response.
Collapse
Affiliation(s)
- Amanda J Lee
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Branson Chen
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Marianne V Chew
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Nicole G Barra
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Mira M Shenouda
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Tina Nham
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Nico van Rooijen
- Department of Molecular Cell Biology, Vrije University Medical Center, 1081 HV Amsterdam, Netherlands
| | - Manel Jordana
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Karen L Mossman
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | | | - Matthias Mack
- RCI Regensburg Center for Interventional Immunology, University of Regensburg, 93053 Regensburg, Germany
| | - Ali A Ashkar
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
131
|
Abstract
During viral and bacterial infections, pathogen-derived cytosolic nucleic acids are recognized by the intracellular RNA sensors retinoic acid-inducible gene I and melanoma-differentiated gene 5 and intracellular DNA sensors, including cyclic-di-GMP-AMP synthase, absent in melanoma 2, interferon (IFN)-gamma inducible protein 16, polymerase III, and so on. Binding of intracellular nucleic acids to these sensors activates downstream signaling cascades, resulting in the production of type I IFNs and pro-inflammatory cytokines to induce appropriate systematic immune responses. While these sensors also recognize endogenous nucleic acids and activate immune responses, they can discriminate between self- and non-self-nucleic acids. However, dysfunction of these sensors or failure of regulatory mechanisms causes aberrant activation of immune response and autoimmune disorders. In this review, we focus on how intracellular immune sensors recognize exogenous nucleic acids and activate the innate immune system, and furthermore, how autoimmune diseases result from dysfunction of these sensors.
Collapse
Affiliation(s)
- Daisuke Ori
- a Laboratory of Molecular Immunobiology , Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Takayama-cho , Ikoma , Nara , Japan
| | - Motoya Murase
- a Laboratory of Molecular Immunobiology , Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Takayama-cho , Ikoma , Nara , Japan
| | - Taro Kawai
- a Laboratory of Molecular Immunobiology , Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Takayama-cho , Ikoma , Nara , Japan
| |
Collapse
|
132
|
Mechanism of Protein Kinase R Inhibition by Human Cytomegalovirus pTRS1. J Virol 2017; 91:JVI.01574-16. [PMID: 27974558 DOI: 10.1128/jvi.01574-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 12/06/2016] [Indexed: 01/20/2023] Open
Abstract
Double-stranded RNAs (dsRNA) produced during human cytomegalovirus (HCMV) infection activate the antiviral kinase protein kinase R (PKR), which potently inhibits virus replication. The HCMV pTRS1 and pIRS1 proteins antagonize PKR to promote HCMV protein synthesis and replication; however, the mechanism by which pTRS1 inhibits PKR is unclear. PKR activation occurs in a three-step cascade. First, binding to dsRNA triggers PKR homodimerizaton. PKR dimers then autophosphorylate, leading to a conformational shift that exposes the binding site for the PKR substrate eIF2α. Consistent with previous in vitro studies, we found that pTRS1 bound and inhibited PKR. pTRS1 binding to PKR was not mediated by an RNA intermediate, and mutations in the pTRS1 RNA binding domain did not affect PKR binding or inhibition. Rather, mutations that disrupted the pTRS1 interaction with PKR ablated the ability of pTRS1 to antagonize PKR activation by dsRNA. pTRS1 did not block PKR dimerization and could bind and inhibit a constitutively dimerized PKR kinase domain. In addition, pTRS1 binding to PKR inhibited PKR kinase activity. Single amino acid point mutations in the conserved eIF2α binding domain of PKR disrupted pTRS1 binding and rendered PKR resistant to inhibition by pTRS1. Consistent with a critical role for the conserved eIF2α contact site in PKR binding, pTRS1 bound an additional eIF2α kinase, heme-regulated inhibitor (HRI), and inhibited eIF2α phosphorylation in response to an HRI agonist. Together our data suggest that pTRS1 inhibits PKR by binding to conserved amino acids in the PKR eIF2α binding site and blocking PKR kinase activity.IMPORTANCE The antiviral kinase PKR plays a critical role in controlling HCMV replication. This study furthered our understanding of how HCMV evades inhibition by PKR and identified new strategies for how PKR activity might be restored during infection to limit HCMV disease.
Collapse
|
133
|
Campos PC, Gomes MTR, Guimarães ES, Guimarães G, Oliveira SC. TLR7 and TLR3 Sense Brucella abortus RNA to Induce Proinflammatory Cytokine Production but They Are Dispensable for Host Control of Infection. Front Immunol 2017; 8:28. [PMID: 28167945 PMCID: PMC5253617 DOI: 10.3389/fimmu.2017.00028] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/09/2017] [Indexed: 01/18/2023] Open
Abstract
Brucella abortus is a Gram-negative, facultative intracellular bacterium that causes brucellosis, a worldwide zoonotic disease leading to undulant fever in humans and abortion in cattle. The immune response against this bacterium relies on the recognition of microbial pathogen-associated molecular patterns, such as lipoproteins, lipopolysaccharides, and DNA; however, the immunostimulatory potential of B. abortus RNA remains to be elucidated. Here, we show that dendritic cells (DCs) produce significant amounts of IL-12, IL-6, and IP-10/CXCL10, when stimulated with purified B. abortus RNA. IL-12 secretion by DCs stimulated with RNA depends on TLR7 while IL-6 depends on TLR7 and partially on TLR3. Further, only TLR7 plays a role in IL-12 production induced by B. abortus infection. Moreover, cytokine production in DCs infected with B. abortus or stimulated with bacterial RNA was reduced upon pretreatment with MAPK/NF-κB inhibitors. By confocal microscopy, we demonstrated that TLR7 is colocalized with B. abortus in LAMP-1+Brucella-containing vacuoles. Additionally, type I IFN expression and IP-10/CXCL10 secretion in DCs stimulated with bacterial RNA were dependent on TLR3 and TLR7. Our results suggest that TLR3 and TLR7 are not required to control Brucella infection in vivo, but they play an important role on sensing B. abortus RNA in vitro.
Collapse
Affiliation(s)
- Priscila C Campos
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Marco Túlio R Gomes
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Erika S Guimarães
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Gabriela Guimarães
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Sergio C Oliveira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Ministério de Ciência Tecnologia e Inovação, Salvador, Brazil
| |
Collapse
|
134
|
Robledo D, Hermida M, Rubiolo JA, Fernández C, Blanco A, Bouza C, Martínez P. Integrating genomic resources of flatfish (Pleuronectiformes) to boost aquaculture production. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 21:41-55. [PMID: 28063346 DOI: 10.1016/j.cbd.2016.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/09/2016] [Accepted: 12/13/2016] [Indexed: 12/15/2022]
Abstract
Flatfish have a high market acceptance thus representing a profitable aquaculture production. The main farmed species is the turbot (Scophthalmus maximus) followed by Japanese flounder (Paralichthys olivaceous) and tongue sole (Cynoglossus semilaevis), but other species like Atlantic halibut (Hippoglossus hippoglossus), Senegalese sole (Solea senegalensis) and common sole (Solea solea) also register an important production and are very promising for farming. Important genomic resources are available for most of these species including whole genome sequencing projects, genetic maps and transcriptomes. In this work, we integrate all available genomic information of these species within a common framework, taking as reference the whole assembled genomes of turbot and tongue sole (>210× coverage). New insights related to the genetic basis of productive traits and new data useful to understand the evolutionary origin and diversification of this group were obtained. Despite a general 1:1 chromosome syntenic relationship between species, the comparison of turbot and tongue sole genomes showed huge intrachromosomic reorganizations. The integration of available mapping information supported specific chromosome fusions along flatfish evolution and facilitated the comparison between species of previously reported genetic associations for productive traits. When comparing transcriptomic resources of the six species, a common set of ~2500 othologues and ~150 common miRNAs were identified, and specific sets of putative missing genes were detected in flatfish transcriptomes, likely reflecting their evolutionary diversification.
Collapse
Affiliation(s)
- Diego Robledo
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Biology (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Miguel Hermida
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Juan A Rubiolo
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Carlos Fernández
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Andrés Blanco
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Carmen Bouza
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Paulino Martínez
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| |
Collapse
|
135
|
Touati N, Tryfonidis K, Caramia F, Bonnefoi H, Cameron D, Slaets L, Parker BS, Loi S. Correlation between severe infection and breast cancer metastases in the EORTC 10994/BIG 1-00 trial: Investigating innate immunity as a tumour suppressor in breast cancer. Eur J Cancer 2016; 72:95-102. [PMID: 28027521 DOI: 10.1016/j.ejca.2016.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Breast cancer cells which express an innate immune signature regulated by interferon regulatory factor 7 (IRF7) have reduced metastatic potential. Infections can induce interferon signalling and may activate an anti-tumour immune response. We investigated whether 'severe infection' can be a clinical surrogate of this phenomenon and/or the presence of high levels of the IRF7 signature at diagnosis before neo-adjuvant chemotherapy (NACT) is associated with a reduced distant relapse risk, specifically in bones. METHODS Clinical data of the European Organisation for Research and Treatment of Cancer 10994/BIG 1-00 phase III trial which randomised 1856 patients treated with NACT between 2001 and 2006, were used. Severe infection was febrile neutropenia or any other grade III-IV infective adverse event during NACT. The IRF7 signature was calculated from gene expression data available for 160 patients on a pre-NACT biopsy. Cox models for distant relapse-free interval (DRFI) investigated the effect of the severe infection and IRF7. Fine and Gray models studied the occurrence of bone metastases as first distant relapse. RESULTS Median follow-up was 4.8 years. No association between severe infection and DFRI was observed in the entire population (n = 1615 eligible patients) hazard ratio [(HR] = 0.99, 90% CI, confidence interval [CI] = 0.81-1.20). For IRF7 (N = 160), a trend towards an association with DRFI was observed (HR = 0.89 for a 50 unit increase, 90% CI = 0.78-1.02, p = 0.081). Higher levels of the IRF7 signature were significantly associated with a decreased bone metastases risk: (HR = 0.76 for a 50 unit increase, 95% CI, 0.62-0.94, p = 0.012). CONCLUSIONS In this study it was shown that severe infection during NACT was not associated with decreased DRFI while high expression of the IRF7 gene signature was significantly associated with reduced bone relapse. This result may be useful for future adjuvant bisphosphonate/denosumab use.
Collapse
Affiliation(s)
- Nathan Touati
- EORTC, Statistics Department, Avenue Emmanuel Mounier 83b11, 1200 Brussels, Belgium.
| | | | - Franco Caramia
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia.
| | - Hervé Bonnefoi
- Department of Medical Oncology, Institut Bergonié Unicancer, INSERM CIC1401, Bordeaux, France.
| | - David Cameron
- Western General Hospital, Edinburgh Cancer Centre, Crewe Road South, GB Edinburgh EH4 2XU, UK.
| | - Leen Slaets
- EORTC, Statistics Department, Avenue Emmanuel Mounier 83b11, 1200 Brussels, Belgium.
| | - Belinda S Parker
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia.
| | - Sherene Loi
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
136
|
The brain parenchyma has a type I interferon response that can limit virus spread. Proc Natl Acad Sci U S A 2016; 114:E95-E104. [PMID: 27980033 DOI: 10.1073/pnas.1618157114] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The brain has a tightly regulated environment that protects neurons and limits inflammation, designated "immune privilege." However, there is not an absolute lack of an immune response. We tested the ability of the brain to initiate an innate immune response to a virus, which was directly injected into the brain parenchyma, and to determine whether this response could limit viral spread. We injected vesicular stomatitis virus (VSV), a transsynaptic tracer, or naturally occurring VSV-derived defective interfering particles (DIPs), into the caudate-putamen (CP) and scored for an innate immune response and inhibition of virus spread. We found that the brain parenchyma has a functional type I interferon (IFN) response that can limit VSV spread at both the inoculation site and among synaptically connected neurons. Furthermore, we characterized the response of microglia to VSV infection and found that infected microglia produced type I IFN and uninfected microglia induced an innate immune response following virus injection.
Collapse
|
137
|
Induction and suppression of type I interferon responses by mink enteritis virus in CRFK cells. Vet Microbiol 2016; 199:8-14. [PMID: 28110790 DOI: 10.1016/j.vetmic.2016.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 11/30/2016] [Accepted: 12/02/2016] [Indexed: 12/22/2022]
Abstract
Mink enteritis virus (MEV) is one of the most important viral pathogens causing serious disease in mink. Type I interferon (IFN) plays a critical role in antiviral innate immunity and, for successful infection, many viruses have evolved evasive strategies against it. Here, we show that MEV infection does not evoke IFN or interferon-stimulated genes (ISGs) responses in feline kidney (CRFK) cells, and that MEV suppresses IFN production in both poly I:C-stimulated and untreated cells. In CRFK cells pre-exposure to IFN, show that infection with, and replication of, MEV remain unaffected. This inhibition appears to be mediated by the MEV nonstructural protein (NS1) with its ORI-binding domain playing a major role.
Collapse
|
138
|
Wei X, Qian W, Sizhu S, Shi L, Jin M, Zhou H. Molecular cloning and functional analysis of the duck TIR domain-containing adaptor inducing IFN-β (TRIF) gene. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:369-376. [PMID: 27539203 DOI: 10.1016/j.dci.2016.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/12/2016] [Accepted: 08/12/2016] [Indexed: 06/06/2023]
Abstract
Toll-like receptors (TLRs) trigger the innate immune response by responding to specific components of microorganisms. The TIR domain-containing adaptor inducing IFN-β (TRIF) plays an essential role in mammalian TLR-mediated signaling. The role of TRIF in ducks (duTRIF) remains poorly understood. In this study, we cloned and characterized the full-length coding sequence of duTRIF from duck embryo fibroblasts (DEFs). In healthy ducks, duTRIF transcripts were broadly expressed in different tissues, with higher expression levels in the spleen and liver. Using quantitative real-time PCR (qRT-PCR), we demonstrated the upregulation of duTRIF in DEFs infected with AIV or DTMUV, and DEFs treated with Poly I:C or LPS. Overexpression of duTRIF was able to induce the NF-κB and IFN-β expression. Furthermore, the IFN induction function of duTRIF was impaired when Ala517 was mutated to Pro or His. Taken together, these results suggested that duTRIF regulated duck innate immune responses.
Collapse
Affiliation(s)
- Xiaoqin Wei
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; College of Agricultural and Animal Husbandry, Tibet University, Linzhi, 860000, PR China
| | - Wei Qian
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Suolang Sizhu
- College of Agricultural and Animal Husbandry, Tibet University, Linzhi, 860000, PR China
| | - Lijuan Shi
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Meilin Jin
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Hongbo Zhou
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
139
|
Lubaki NM, Younan P, Santos RI, Meyer M, Iampietro M, Koup RA, Bukreyev A. The Ebola Interferon Inhibiting Domains Attenuate and Dysregulate Cell-Mediated Immune Responses. PLoS Pathog 2016; 12:e1006031. [PMID: 27930745 PMCID: PMC5145241 DOI: 10.1371/journal.ppat.1006031] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/28/2016] [Indexed: 11/19/2022] Open
Abstract
Ebola virus (EBOV) infections are characterized by deficient T-lymphocyte responses, T-lymphocyte apoptosis and lymphopenia. We previously showed that disabling of interferon-inhibiting domains (IIDs) in the VP24 and VP35 proteins effectively unblocks maturation of dendritic cells (DCs) and increases the secretion of cytokines and chemokines. Here, we investigated the role of IIDs in adaptive and innate cell-mediated responses using recombinant viruses carrying point mutations, which disabled IIDs in VP24 (EBOV/VP24m), VP35 (EBOV/VP35m) or both (EBOV/VP35m/VP24m). Peripheral blood mononuclear cells (PBMCs) from cytomegalovirus (CMV)-seropositive donors were inoculated with the panel of viruses and stimulated with CMV pp65 peptides. Disabling of the VP35 IID resulted in increased proliferation and higher percentages of CD4+ T cells secreting IFNγ and/or TNFα. To address the role of aberrant DC maturation in the IID-mediated suppression of T cell responses, CMV-stimulated DCs were infected with the panel of viruses and co-cultured with autologous T-lymphocytes. Infection with EBOV/VP35m infection resulted in a significant increase, as compared to wt EBOV, in proliferating CD4+ cells secreting IFNγ, TNFα and IL-2. Experiments with expanded CMV-specific T cells demonstrated their increased activation following co-cultivation with CMV-pulsed DCs pre-infected with EBOV/VP24m, EBOV/VP35m and EBOV/VP35m/VP24m, as compared to wt EBOV. Both IIDs were found to block phosphorylation of TCR complex-associated adaptors and downstream signaling molecules. Next, we examined the effects of IIDs on the function of B cells in infected PBMC. Infection with EBOV/VP35m and EBOV/VP35m/VP24m resulted in significant increases in the percentages of phenotypically distinct B-cell subsets and plasma cells, as compared to wt EBOV, suggesting inhibition of B cell function and differentiation by VP35 IID. Finally, infection with EBOV/VP35m increased activation of NK cells, as compared to wt EBOV. These results demonstrate a global suppression of cell-mediated responses by EBOV IIDs and identify the role of DCs in suppression of T-cell responses.
Collapse
Affiliation(s)
- Ndongala Michel Lubaki
- Department of Pathology, the University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, the University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Patrick Younan
- Department of Pathology, the University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, the University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Rodrigo I. Santos
- Department of Pathology, the University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, the University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Michelle Meyer
- Department of Pathology, the University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, the University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Mathieu Iampietro
- Department of Pathology, the University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, the University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Richard A. Koup
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alexander Bukreyev
- Department of Pathology, the University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, the University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology & Immunology, the University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
140
|
Zika Virus Causes Testis Damage and Leads to Male Infertility in Mice. Cell 2016; 167:1511-1524.e10. [PMID: 27884405 DOI: 10.1016/j.cell.2016.11.016] [Citation(s) in RCA: 275] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 10/19/2016] [Accepted: 11/09/2016] [Indexed: 02/08/2023]
Abstract
Zika virus (ZIKV) persists in the semen of male patients, a first for flavivirus infection. Here, we demonstrate that ZIKV can induce inflammation in the testis and epididymidis, but not in the prostate or seminal vesicle, and can lead to damaged testes after 60 days post-infection in mice. ZIKV induces innate immune responses in Leydig, Sertoli, and epididymal epithelial cells, resulting in the production of pro-inflammatory cytokines/chemokines. However, ZIKV does not induce a rapid and abundant cytokine production in peritubular cell and spermatogonia, suggesting that these cells are vulnerable for ZIKV infection and could be the potential repositories for ZIKV. Our study demonstrates a correlation between ZIKV and testis infection/damage and suggests that ZIKV infection, under certain circumstances, can eventually lead to male infertility.
Collapse
|
141
|
Głobińska A, Pawełczyk M, Piechota-Polańczyk A, Olszewska-Ziąber A, Moskwa S, Mikołajczyk A, Jabłońska A, Zakrzewski PK, Brauncajs M, Jarzębska M, Taka S, Papadopoulos NG, Kowalski ML. Impaired virus replication and decreased innate immune responses to viral infections in nasal epithelial cells from patients with allergic rhinitis. Clin Exp Immunol 2016; 187:100-112. [PMID: 27667736 DOI: 10.1111/cei.12869] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2016] [Indexed: 12/17/2022] Open
Abstract
The aim of this study was to assess the immune response to parainfluenza virus type 3 (PIV3), rhinovirus 1B (RV1B) and intracellular Toll-like receptors (TLR) agonists in nasal epithelial cells (NECs) from patients with allergic rhinitis and healthy controls. NECs were obtained from eight patients with allergic rhinitis (AR) and 11 non-atopic healthy controls (HC) by nasal scraping, grown to confluence and exposed to PIV3, RV1B infection or TLR-3 and TLR-7/8 agonists. Interferon (IFN)-λ1, IFN-α, IFN-β and regulated on activation, normal T expressed and secreted (RANTES) release into the cell culture supernatants was assessed at 8, 24 and 48 h upon infection or 8 and 24 h after stimulation with poly(I:C) and R848. mRNA levels of IFNs, RANTES, interferon regulatory transcription factor (IRF)3, IRF7 and viral gene copy number were determined using real-time polymerase chain reaction (RT-PCR). PIV3 but not RV1B replication 48 h after infection was significantly lower (P < 0·01) in NECs from AR patients compared to HC. PIV3 infection induced significantly less IFN-λ1 (both protein and mRNA) in NECs from AR compared to HC. IFN-β mRNA expression and RANTES protein release and mRNA expression tended to be smaller in AR compared HC cells in response to both viruses. Stimulation with TLR-3 agonist [poly (I:C)] induced similar IFN-λ1 and RANTES generation in AR and HC subjects. Viral infections in NECs induced IRF7 expression, which correlated with IFN and RANTES expression. These data suggest that virus proliferation rates and the immune response profile are different in nasal epithelial cells from patients with allergic rhinitis compared to healthy individuals.
Collapse
Affiliation(s)
- A Głobińska
- Department of Immunology, Rheumatology and Allergy, Medical University of Łódź, Łódź, Poland.,Healthy Ageing Research Center, Medical University of Łódź, Łódź, Poland
| | - M Pawełczyk
- Department of Immunology, Rheumatology and Allergy, Medical University of Łódź, Łódź, Poland.,Healthy Ageing Research Center, Medical University of Łódź, Łódź, Poland
| | - A Piechota-Polańczyk
- Department of Immunology, Rheumatology and Allergy, Medical University of Łódź, Łódź, Poland.,Healthy Ageing Research Center, Medical University of Łódź, Łódź, Poland
| | - A Olszewska-Ziąber
- Department of Immunology, Rheumatology and Allergy, Medical University of Łódź, Łódź, Poland.,Healthy Ageing Research Center, Medical University of Łódź, Łódź, Poland
| | - S Moskwa
- Department of Immunology, Rheumatology and Allergy, Medical University of Łódź, Łódź, Poland.,Healthy Ageing Research Center, Medical University of Łódź, Łódź, Poland.,Microbiology and Laboratory Medical Immunology Department, Medical University of Łódź, Łódź, Poland
| | - A Mikołajczyk
- Department of Immunology, Rheumatology and Allergy, Medical University of Łódź, Łódź, Poland.,Healthy Ageing Research Center, Medical University of Łódź, Łódź, Poland
| | - A Jabłońska
- Department of Immunology, Rheumatology and Allergy, Medical University of Łódź, Łódź, Poland.,Healthy Ageing Research Center, Medical University of Łódź, Łódź, Poland
| | - P K Zakrzewski
- Department of Immunology, Rheumatology and Allergy, Medical University of Łódź, Łódź, Poland.,Healthy Ageing Research Center, Medical University of Łódź, Łódź, Poland
| | - M Brauncajs
- Microbiology and Laboratory Medical Immunology Department, Medical University of Łódź, Łódź, Poland
| | - M Jarzębska
- Department of Immunology, Rheumatology and Allergy, Medical University of Łódź, Łódź, Poland.,Healthy Ageing Research Center, Medical University of Łódź, Łódź, Poland
| | - S Taka
- Allergy Department, Second Paediatric Clinic, University of Athens, Athens, Greece
| | - N G Papadopoulos
- Allergy Department, Second Paediatric Clinic, University of Athens, Athens, Greece
| | - M L Kowalski
- Department of Immunology, Rheumatology and Allergy, Medical University of Łódź, Łódź, Poland.,Healthy Ageing Research Center, Medical University of Łódź, Łódź, Poland
| |
Collapse
|
142
|
Ahlers LRH, Bastos RG, Hiroyasu A, Goodman AG. Invertebrate Iridescent Virus 6, a DNA Virus, Stimulates a Mammalian Innate Immune Response through RIG-I-Like Receptors. PLoS One 2016; 11:e0166088. [PMID: 27824940 PMCID: PMC5100955 DOI: 10.1371/journal.pone.0166088] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/22/2016] [Indexed: 12/21/2022] Open
Abstract
Insects are not only major vectors of mammalian viruses, but are also host to insect-restricted viruses that can potentially be transmitted to mammals. While mammalian innate immune responses to arboviruses are well studied, less is known about how mammalian cells respond to viruses that are restricted to infect only invertebrates. Here we demonstrate that IIV-6, a DNA virus of the family Iridoviridae, is able to induce a type I interferon-dependent antiviral immune response in mammalian cells. Although IIV-6 is a DNA virus, we demonstrate that the immune response activated during IIV-6 infection is mediated by the RIG-I-like receptor (RLR) pathway, and not the canonical DNA sensing pathway via cGAS/STING. We further show that RNA polymerase III is required for maximal IFN-β secretion, suggesting that viral DNA is transcribed by this enzyme into an RNA species capable of activating the RLR pathway. Finally, we demonstrate that the RLR-driven mammalian innate immune response to IIV-6 is functionally capable of protecting cells from subsequent infection with the arboviruses Vesicular Stomatitis virus and Kunjin virus. These results represent a novel example of an invertebrate DNA virus activating a canonically RNA sensing pathway in the mammalian innate immune response, which reduces viral load of ensuing arboviral infection.
Collapse
Affiliation(s)
- Laura R. H. Ahlers
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
- NIH Protein Biotechnology Graduate Training Program, Washington State University, Pullman, Washington, United States of America
| | - Reginaldo G. Bastos
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Aoi Hiroyasu
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Alan G. Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
143
|
Shaabani N, Duhan V, Khairnar V, Gassa A, Ferrer-Tur R, Häussinger D, Recher M, Zelinskyy G, Liu J, Dittmer U, Trilling M, Scheu S, Hardt C, Lang PA, Honke N, Lang KS. CD169 + macrophages regulate PD-L1 expression via type I interferon and thereby prevent severe immunopathology after LCMV infection. Cell Death Dis 2016; 7:e2446. [PMID: 27809306 PMCID: PMC5260878 DOI: 10.1038/cddis.2016.350] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 12/21/2022]
Abstract
Upon infection with persistence-prone virus, type I interferon (IFN-I) mediates antiviral activity and also upregulates the expression of programmed death ligand 1 (PD-L1), and this upregulation can lead to CD8+ T-cell exhaustion. How these very diverse functions are regulated remains unknown. This study, using the lymphocytic choriomeningitis virus, showed that a subset of CD169+ macrophages in murine spleen and lymph nodes produced high amounts of IFN-I upon infection. Absence of CD169+ macrophages led to insufficient production of IFN-I, lower antiviral activity and persistence of virus. Lack of CD169+ macrophages also limited the IFN-I-dependent expression of PD-L1. Enhanced viral replication in the absence of PD-L1 led to persistence of virus and prevented CD8+ T-cell exhaustion. As a consequence, mice exhibited severe immunopathology and died quickly after infection. Therefore, CD169+ macrophages are important contributors to the IFN-I response and thereby influence antiviral activity, CD8+ T-cell exhaustion and immunopathology.
Collapse
Affiliation(s)
- Namir Shaabani
- Institute of Immunology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.,Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Vikas Duhan
- Institute of Immunology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Vishal Khairnar
- Institute of Immunology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Asmae Gassa
- Institute of Immunology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Rita Ferrer-Tur
- Institute of Immunology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Mike Recher
- Clinic for Primary Immunodeficiency, Medical Outpatient Unit and Immunodeficiency Laboratory, Department of Biomedicine, University Hospital, Basel, Switzerland
| | - Gennadiy Zelinskyy
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jia Liu
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ulf Dittmer
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Mirko Trilling
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Cornelia Hardt
- Institute of Immunology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Philipp A Lang
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Nadine Honke
- Institute of Immunology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Karl S Lang
- Institute of Immunology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
144
|
Wu Y, Yue B, Liu J. Lipopolysaccharide-induced cytokine expression pattern in peripheral blood mononuclear cells in childhood obesity. Mol Med Rep 2016; 14:5281-5287. [DOI: 10.3892/mmr.2016.5866] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 08/01/2016] [Indexed: 11/06/2022] Open
|
145
|
Kim TW, Hong S, Lin Y, Murat E, Joo H, Kim T, Pascual V, Liu YJ. Transcriptional Repression of IFN Regulatory Factor 7 by MYC Is Critical for Type I IFN Production in Human Plasmacytoid Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2016; 197:3348-3359. [PMID: 27630164 DOI: 10.4049/jimmunol.1502385] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 08/22/2016] [Indexed: 12/31/2022]
Abstract
Type I IFNs are crucial mediators of human innate and adaptive immunity and are massively produced from plasmacytoid dendritic cells (pDCs). IFN regulatory factor (IRF)7 is a critical regulator of type I IFN production when pathogens are detected by TLR 7/9 in pDC. However, hyperactivation of pDC can cause life-threatening autoimmune diseases. To avoid the deleterious effects of aberrant pDC activation, tight regulation of IRF7 is required. Nonetheless, the detailed mechanisms of how IRF7 transcription is regulated in pDC are still elusive. MYC is a well-known highly pleiotropic transcription factor; however, the role of MYC in pDC function is not well defined yet. To identify the role of transcription factor MYC in human pDC, we employed a knockdown technique using human pDC cell line, GEN2.2. When we knocked down MYC in the pDC cell line, production of IFN-stimulated genes was dramatically increased and was further enhanced by the TLR9 agonist CpGB. Interestingly, MYC is shown to be recruited to the IRF7 promoter region through interaction with nuclear receptor corepressor 2/histone deacetylase 3 for its repression. In addition, activation of TLR9-mediated NF-κB and MAPK and nuclear translocation of IRF7 were greatly enhanced by MYC depletion. Pharmaceutical inhibition of MYC recovered IRF7 expression, further confirming the negative role of MYC in the antiviral response by pDC. Therefore, our results identify the novel immunomodulatory role of MYC in human pDC and may add to our understanding of aberrant pDC function in cancer and autoimmune disease.
Collapse
Affiliation(s)
- Tae Whan Kim
- Baylor Institute for Immunology Research, Dallas, TX 75204; and
| | - Seunghee Hong
- Baylor Institute for Immunology Research, Dallas, TX 75204; and
| | - Yin Lin
- Baylor Institute for Immunology Research, Dallas, TX 75204; and
| | - Elise Murat
- Baylor Institute for Immunology Research, Dallas, TX 75204; and
| | - HyeMee Joo
- Baylor Institute for Immunology Research, Dallas, TX 75204; and
| | | | | | - Yong-Jun Liu
- Baylor Institute for Immunology Research, Dallas, TX 75204; and .,Sanofi, Cambridge, MA 02139
| |
Collapse
|
146
|
Hosking MP, Flynn CT, Whitton JL. Type I IFN Signaling Is Dispensable during Secondary Viral Infection. PLoS Pathog 2016; 12:e1005861. [PMID: 27580079 PMCID: PMC5006979 DOI: 10.1371/journal.ppat.1005861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/11/2016] [Indexed: 11/18/2022] Open
Abstract
Innate immune responses in general, and type I interferons (T1IFNs) in particular, play an important and often essential role during primary viral infections, by directly combatting the virus and by maximizing the primary adaptive immune response. Several studies have suggested that T1IFNs also contribute very substantially to the secondary (recall) response; they are thought (i) to be required to drive the early attrition of memory T cells, (ii) to support the subsequent expansion of surviving virus-specific memory cells, and (iii) to assist in the suppression and clearance of the infectious agent. However, many of these observations were predicated upon models in which T1IFN signaling was interrupted prior to a primary immune response, raising the possibility that the resulting memory cells might be intrinsically abnormal. We have directly addressed this by using an inducible-Cre model system in which the host remains genetically-intact during the primary response to infection, and in which T1IFN signaling can be effectively ablated prior to secondary viral challenge. We report that, in stark contrast to primary infection, T1IFN signaling is not required during the recall response. IFNαβR-deficient memory CD8+ and CD4+ memory T cells undergo attrition and expansion with kinetics that are indistinguishable from those of receptor-sufficient cells. Moreover, even in the absence of functional T1IFN signaling, the host's immune capacity to rapidly suppress, and then to eradicate, a secondary infection remains intact. Thus, this study shows that T1IFN signaling is dispensable during the recall response to a virus infection. Moreover, two broader implications may be drawn. First, a T cell's requirement for a cytokine is highly dependent on the cell's maturation / differentiation status. Consequently, second, these data underscore the importance of evaluating a gene's impact by modulating its expression or function in a temporally-controllable manner.
Collapse
Affiliation(s)
- Martin P. Hosking
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Claudia T. Flynn
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - J. Lindsay Whitton
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
147
|
For Better or Worse: Cytosolic DNA Sensing during Intracellular Bacterial Infection Induces Potent Innate Immune Responses. J Mol Biol 2016; 428:3372-86. [DOI: 10.1016/j.jmb.2016.04.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 01/09/2023]
|
148
|
Royer D, Carr D. A STING-dependent innate-sensing pathway mediates resistance to corneal HSV-1 infection via upregulation of the antiviral effector tetherin. Mucosal Immunol 2016; 9:1065-75. [PMID: 26627457 PMCID: PMC4889566 DOI: 10.1038/mi.2015.124] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/20/2015] [Indexed: 02/04/2023]
Abstract
Type 1 interferons (IFNs; IFNα/β) mediate immunological host resistance to numerous viral infections, including herpes simplex virus type 1 (HSV-1). The pathways responsible for IFNα/β signaling during the innate immune response to acute HSV-1 infection in the cornea are incompletely understood. Using a murine ocular infection model, we hypothesized that the stimulator of IFN genes (STING) mediates resistance to HSV-1 infection at the ocular surface and preserves the structural integrity of this mucosal site. Viral pathogenesis, tissue pathology, and host immune responses during ocular HSV-1 infection were characterized by plaque assay, esthesiometry, pachymetry, immunohistochemistry, flow cytometry, and small interfering RNA transfection in wild-type C57BL/6 (WT), STING-deficient (STING(-/-)), and IFNα/β receptor-deficient (CD118(-/-)) mice at days 3-5 postinfection. The presence of STING was critical for sustained control of HSV-1 replication in the corneal epithelium and resistance to viral neuroinvasion, but loss of STING had a negligible impact with respect to gross tissue pathology. Auxiliary STING-independent IFNα/β signaling pathways were responsible for maintenance of corneal integrity. Lymphatic vessels, mast cells, and sensory innervation were compromised in CD118(-/-) mice concurrent with increased tissue edema. STING-dependent signaling led to the upregulation of tetherin, a viral restriction factor we identify is important in containing the spread of HSV-1 in vivo.
Collapse
Affiliation(s)
| | - D.J.J. Carr
- Department of Microbiology & Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK USA.,Department of Ophthalmology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| |
Collapse
|
149
|
Porter BF, Ambrus A, Storts RW. Immunohistochemical Evaluation of Mx Protein Expression in Canine Encephalitides. Vet Pathol 2016; 43:981-7. [PMID: 17099155 DOI: 10.1354/vp.43-6-981] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Mx proteins are a group of interferon-induced GTPases whose expression has been demonstrated in a number of human viral infections and in some idiopathic inflammatory diseases. In this study, the expression of Mx protein was evaluated in known viral, nonviral, and idiopathic encephalitides in the dog via immunohistochemistry using an antibody against human MxA. All 12 cases of confirmed viral encephalitis, including 7 cases of canine distemper, 4 cases of canine herpesvirus, and 1 case of rabies, were Mx positive. In canine distemper cases, staining was particularly strong and a variety of cell types were positive, including astrocytes, macrophages/microglia, and neurons. Immunoreactivity for Mx protein was evident in a few cases of nonviral infectious encephalitis, including neosporosis (1/1), Chagas disease (2/3), aspergillosis (1/2), and encephalitozoonosis (1/1). Consistent staining was observed in most cases of idiopathic encephalitis, including granulomatous meningoencephalomyelitis (7/7), necrotizing meningoencephalitis of pug dogs (6/7), and necrotizing encephalitis of the Yorkshire Terrier (3/3) and Maltese (1/1) breeds. Mx staining was negative in 5 normal dog brains; 3 cases of cryptococcosis; and single cases of blastomycosis, protothecosis, and bacterial meningitis.
Collapse
Affiliation(s)
- B F Porter
- Texas A and M University, College of Veterinary Medicine and Biomedical Sciences, Department of Pathobiology, College Station, TX 77843-4467, USA.
| | | | | |
Collapse
|
150
|
Costa JZ, Thompson KD. Understanding the interaction between Betanodavirus and its host for the development of prophylactic measures for viral encephalopathy and retinopathy. FISH & SHELLFISH IMMUNOLOGY 2016; 53:35-49. [PMID: 26997200 DOI: 10.1016/j.fsi.2016.03.033] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/04/2016] [Accepted: 03/15/2016] [Indexed: 05/22/2023]
Abstract
Over the last three decades, the causative agent of viral encephalopathy and retinopathy (VER) disease has become a serious problem of marine finfish aquaculture, and more recently the disease has also been associated with farmed freshwater fish. The virus has been classified as a Betanodavirus within the family Nodaviridae, and the fact that Betanodaviruses are known to affect more than 120 different farmed and wild fish and invertebrate species, highlights the risk that Betanodaviruses pose to global aquaculture production. Betanodaviruses have been clustered into four genotypes, based on the RNA sequence of the T4 variable region of their capsid protein, and are named after the fish species from which they were first derived i.e. Striped Jack nervous necrosis virus (SJNNV), Tiger puffer nervous necrosis virus (TPNNV), Barfin flounder nervous necrosis virus (BFNNV) and Red-spotted grouper nervous necrosis virus (RGNNV), while an additional genotype turbot betanodavirus strain (TNV) has also been proposed. However, these genotypes tend to be associated with a particular water temperature range rather than being species-specific. Larvae and juvenile fish are especially susceptible to VER, with up to 100% mortality resulting in these age groups during disease episodes, with vertical transmission of the virus increasing the disease problem in smaller fish. A number of vaccine preparations have been tested in the laboratory and in the field e.g. inactivated virus, recombinant proteins, virus-like particles and DNA based vaccines, and their efficacy, based on relative percentage survival, has ranged from medium to high levels of protection to little or no protection. Ultimately a combination of effective prophylactic measures, including vaccination, is needed to control VER, and should also target larvae and broodstock stages of production to help the industry deal with the problem of vertical transmission. As yet there are no commercial vaccines for VER and the aquaculture industry eagerly awaits such a product. In this review we provide an overview on the current state of knowledge of the disease, the pathogen, and interactions between betanodavirus and its host, to provide a greater understanding of the multiple factors involved in the disease process. Such knowledge is needed to develop effective methods for controlling VER in the field, to protect the various aquaculture species farmed globally from the different Betanodavirus genotypes to which they are susceptible.
Collapse
Affiliation(s)
- Janina Z Costa
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Scotland, EH26 0PZ, United Kingdom.
| | - Kim D Thompson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Scotland, EH26 0PZ, United Kingdom
| |
Collapse
|