101
|
Mindos T, Dun XP, North K, Doddrell RDS, Schulz A, Edwards P, Russell J, Gray B, Roberts SL, Shivane A, Mortimer G, Pirie M, Zhang N, Pan D, Morrison H, Parkinson DB. Merlin controls the repair capacity of Schwann cells after injury by regulating Hippo/YAP activity. J Cell Biol 2017; 216:495-510. [PMID: 28137778 PMCID: PMC5294779 DOI: 10.1083/jcb.201606052] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 10/23/2016] [Accepted: 12/27/2016] [Indexed: 02/06/2023] Open
Abstract
Loss of the Merlin tumor suppressor and activation of the Hippo signaling pathway play major roles in the control of cell proliferation and tumorigenesis. We have identified completely novel roles for Merlin and the Hippo pathway effector Yes-associated protein (YAP) in the control of Schwann cell (SC) plasticity and peripheral nerve repair after injury. Injury to the peripheral nervous system (PNS) causes a dramatic shift in SC molecular phenotype and the generation of repair-competent SCs, which direct functional repair. We find that loss of Merlin in these cells causes a catastrophic failure of axonal regeneration and remyelination in the PNS. This effect is mediated by activation of YAP expression in Merlin-null SCs, and loss of YAP restores axonal regrowth and functional repair. This work identifies new mechanisms that control the regenerative potential of SCs and gives new insight into understanding the correct control of functional nerve repair in the PNS.
Collapse
Affiliation(s)
- Thomas Mindos
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth PL6 8BU, England, UK
| | - Xin-Peng Dun
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth PL6 8BU, England, UK
| | - Katherine North
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth PL6 8BU, England, UK
- University of Bath, Bath BA2 7AY, England, UK
| | - Robin D S Doddrell
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth PL6 8BU, England, UK
| | - Alexander Schulz
- Leibniz Institute for Age Research - Fritz Lipmann Institute Jena, D-07745 Jena, Germany
| | - Philip Edwards
- Department of Cellular and Anatomical Pathology, Derriford Hospital, Plymouth PL6 8DH, England, UK
| | - James Russell
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth PL6 8BU, England, UK
| | - Bethany Gray
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth PL6 8BU, England, UK
- University of Bath, Bath BA2 7AY, England, UK
| | - Sheridan L Roberts
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth PL6 8BU, England, UK
| | - Aditya Shivane
- Department of Cellular and Anatomical Pathology, Derriford Hospital, Plymouth PL6 8DH, England, UK
| | - Georgina Mortimer
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth PL6 8BU, England, UK
| | - Melissa Pirie
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth PL6 8BU, England, UK
| | - Nailing Zhang
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Duojia Pan
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Helen Morrison
- Leibniz Institute for Age Research - Fritz Lipmann Institute Jena, D-07745 Jena, Germany
| | - David B Parkinson
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth PL6 8BU, England, UK
| |
Collapse
|
102
|
Roberts SL, Dun XP, Dee G, Gray B, Mindos T, Parkinson DB. The role of p38alpha in Schwann cells in regulating peripheral nerve myelination and repair. J Neurochem 2017; 141:37-47. [PMID: 27973735 DOI: 10.1111/jnc.13929] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/22/2016] [Accepted: 11/29/2016] [Indexed: 01/02/2023]
Abstract
Myelination in the peripheral nervous system (PNS) is controlled by both positive and negative regulators within Schwann cells to ensure timely onset and correct myelin thickness for saltatory conduction by neurons. Transcription factors such as Sox10, octamer-binding transcription factor 6 (Oct6) and Krox20 form a positive regulatory network, whereas negative regulators such as cJun and Sox2 oppose myelination in Schwann cells. The role of the p38 MAPK pathway has been studied in PNS myelination, but its precise function remains unclear, with both positive and negative effects of p38 activity reported upon both myelination and processes of nerve repair. To clarify the role of p38 MAPK in the PNS, we have analysed mice with a Schwann cell-specific ablation of the major p38 isoform, p38alpha. In line with previous findings of an inhibitory role for p38 MAPK, we observe acceleration of post-natal myelination in p38alpha null nerves, a delay in myelin down-regulation following injury, together with a small increase in levels of re-myelination following injury. Finally we explored roles for p38alpha in controlling axonal regeneration and functional repair following PNS injury and observe that loss of p38alpha function in Schwann cells does not appear to affect these processes as previously reported. These studies therefore provide further proof for a role of p38 MAPK signalling in the control of myelination by Schwann cells in the PNS, but do not show an apparent role for signalling by this MAP kinase in Schwann cells controlling other elements of Wallerian degeneration and functional repair following injury. Cover Image for this issue: doi: 10.1111/jnc.13793.
Collapse
Affiliation(s)
- Sheridan L Roberts
- Plymouth University Peninsula School of Medicine and Dentistry, Derriford, Plymouth, Devon, UK
| | - Xin-Peng Dun
- Plymouth University Peninsula School of Medicine and Dentistry, Derriford, Plymouth, Devon, UK
| | - Gemma Dee
- Plymouth University Peninsula School of Medicine and Dentistry, Derriford, Plymouth, Devon, UK
| | - Bethany Gray
- Plymouth University Peninsula School of Medicine and Dentistry, Derriford, Plymouth, Devon, UK
| | - Thomas Mindos
- Plymouth University Peninsula School of Medicine and Dentistry, Derriford, Plymouth, Devon, UK
| | - David B Parkinson
- Plymouth University Peninsula School of Medicine and Dentistry, Derriford, Plymouth, Devon, UK
| |
Collapse
|
103
|
Abstract
Axonal degeneration is a pivotal feature of many neurodegenerative conditions and substantially accounts for neurological morbidity. A widely used experimental model to study the mechanisms of axonal degeneration is Wallerian degeneration (WD), which occurs after acute axonal injury. In the peripheral nervous system (PNS), WD is characterized by swift dismantling and clearance of injured axons with their myelin sheaths. This is a prerequisite for successful axonal regeneration. In the central nervous system (CNS), WD is much slower, which significantly contributes to failed axonal regeneration. Although it is well-documented that Schwann cells (SCs) have a critical role in the regenerative potential of the PNS, to date we have only scarce knowledge as to how SCs ‘sense’ axonal injury and immediately respond to it. In this regard, it remains unknown as to whether SCs play the role of a passive bystander or an active director during the execution of the highly orchestrated disintegration program of axons. Older reports, together with more recent studies, suggest that SCs mount dynamic injury responses minutes after axonal injury, long before axonal breakdown occurs. The swift SC response to axonal injury could play either a pro-degenerative role, or alternatively a supportive role, to the integrity of distressed axons that have not yet committed to degenerate. Indeed, supporting the latter concept, recent findings in a chronic PNS neurodegeneration model indicate that deactivation of a key molecule promoting SC injury responses exacerbates axonal loss. If this holds true in a broader spectrum of conditions, it may provide the grounds for the development of new glia-centric therapeutic approaches to counteract axonal loss.
Collapse
Affiliation(s)
- Keit Men Wong
- Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Elisabetta Babetto
- Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.,Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Bogdan Beirowski
- Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
104
|
Castelnovo LF, Bonalume V, Melfi S, Ballabio M, Colleoni D, Magnaghi V. Schwann cell development, maturation and regeneration: a focus on classic and emerging intracellular signaling pathways. Neural Regen Res 2017; 12:1013-1023. [PMID: 28852375 PMCID: PMC5558472 DOI: 10.4103/1673-5374.211172] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The development, maturation and regeneration of Schwann cells (SCs), the main glial cells of the peripheral nervous system, require the coordinate and complementary interaction among several factors, signals and intracellular pathways. These regulatory molecules consist of integrins, neuregulins, growth factors, hormones, neurotransmitters, as well as entire intracellular pathways including protein-kinase A, C, Akt, Erk/MAPK, Hippo, mTOR, etc. For instance, Hippo pathway is overall involved in proliferation, apoptosis, regeneration and organ size control, being crucial in cancer proliferation process. In SCs, Hippo is linked to merlin and YAP/TAZ signaling and it seems to respond to mechanic/physical challenges. Recently, among factors regulating SCs, also the signaling intermediates Src tyrosine kinase and focal adhesion kinase (FAK) proved relevant for SC fate, participating in the regulation of adhesion, motility, migration and in vitro myelination. In SCs, the factors Src and FAK are regulated by the neuroactive steroid allopregnanolone, thus corroborating the importance of this steroid in the control of SC maturation. In this review, we illustrate some old and novel signaling pathways modulating SC biology and functions during the different developmental, mature and regenerative states.
Collapse
Affiliation(s)
- Luca Franco Castelnovo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Veronica Bonalume
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Simona Melfi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Marinella Ballabio
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Deborah Colleoni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Valerio Magnaghi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
105
|
Zhang Y, Li Q, Liu D, Huang Q, Cai G, Cui S, Sun X, Chen X. GDF11 improves tubular regeneration after acute kidney injury in elderly mice. Sci Rep 2016; 6:34624. [PMID: 27703192 PMCID: PMC5050408 DOI: 10.1038/srep34624] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/09/2016] [Indexed: 01/27/2023] Open
Abstract
The GDF11 expression pattern and its effect on organ regeneration after acute injury in the elderly population are highly controversial topics. In our study, GDF11/8 expression increased after kidney ischemia–reperfusion injury (IRI), and the relatively lower level of GDF11/8 in the kidneys of aged mice was associated with a loss of proliferative capacity and a decline in renal repair, compared to young mice. In vivo, GDF11 supplementation in aged mice increased vimentin and Pax2 expression in the kidneys as well as the percentage of 5-ethynyl-2′-deoxyuridine (EdU)-positive proximal tubular epithelial cells. GDF11 improved the renal repair, recovery of renal function, and survival of elderly mice at 72 h after IRI. Moreover, the addition of recombinant GDF11 to primary renal epithelial cells increased proliferation, migration, and dedifferentiation by upregulating the ERK1/2 pathway in vitro. Our study indicates that GDF11/8 in the kidney decreases with age and that GDF11 can increase tubular cell dedifferentiation and proliferation as well as improve tubular regeneration after acute kidney injury (AKI) in old mice.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China.,Medical College, Nankai University, Tianjin, 300071, China
| | - Qinggang Li
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
| | - Dong Liu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China.,Department of Nephrology, Chinese PLA Air Force General Hospital, Beijing, 100142, China
| | - Qi Huang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
| | - Guangyan Cai
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
| | - Shaoyuan Cui
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
| | - Xuefeng Sun
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
| |
Collapse
|
106
|
Chen MS, Kim H, Jagot-Lacoussiere L, Maurel P. Cadm3 (Necl-1) interferes with the activation of the PI3 kinase/Akt signaling cascade and inhibits Schwann cell myelination in vitro. Glia 2016; 64:2247-2262. [PMID: 27658374 DOI: 10.1002/glia.23072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 08/10/2016] [Accepted: 09/08/2016] [Indexed: 11/06/2022]
Abstract
Axo-glial interactions are critical for myelination and the domain organization of myelinated fibers. Cell adhesion molecules belonging to the Cadm family, and in particular Cadm3 (axonal) and its heterophilic binding partner Cadm4 (Schwann cell), mediate these interactions along the internode. Using targeted shRNA-mediated knockdown, we show that the removal of axonal Cadm3 promotes Schwann cell myelination in the in vitro DRG neuron/Schwann cell myelinating system. Conversely, over-expressing Cadm3 on the surface of DRG neuron axons results in an almost complete inability by Schwann cells to form myelin segments. Axons of superior cervical ganglion (SCG) neurons, which do not normally support the formation of myelin segments by Schwann cells, express higher levels of Cadm3 compared to DRG neurons. Knocking down Cadm3 in SCG neurons promotes myelination. Finally, the extracellular domain of Cadm3 interferes in a dose-dependent manner with the activation of ErbB3 and of the pro-myelinating PI3K/Akt pathway, but does not interfere with the activation of the Mek/Erk1/2 pathway. While not in direct contradiction, these in vitro results shed lights on the apparent lack of phenotype that was reported from in vivo studies of Cadm3-/- mice. Our results suggest that Cadm3 may act as a negative regulator of PNS myelination, potentially through the selective regulation of the signaling cascades activated in Schwann cells by axonal contact, and in particular by type III Nrg-1. Further analyses of peripheral nerves in the Cadm-/- mice will be needed to determine the exact role of axonal Cadm3 in PNS myelination. GLIA 2016;64:2247-2262.
Collapse
Affiliation(s)
- Ming-Shuo Chen
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Hyosung Kim
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey
| | | | - Patrice Maurel
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey.
| |
Collapse
|
107
|
Cattin AL, Lloyd AC. The multicellular complexity of peripheral nerve regeneration. Curr Opin Neurobiol 2016; 39:38-46. [PMID: 27128880 DOI: 10.1016/j.conb.2016.04.005] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/31/2016] [Accepted: 04/13/2016] [Indexed: 12/20/2022]
Abstract
Peripheral nerves show a remarkable ability to regenerate following a transection injury. Downstream of the cut, the axons degenerate and so to regenerate the nerve, the severed axons need to regrow back to their targets and regain function. This requires the axons to navigate through two different environments. (1) The bridge of new tissue that forms between the two nerve stumps and (2) the distal stump of the nerve that remains associated with the target tissues. This involves distinct, complex multicellular responses that guide and sustain axonal regrowth. These processes have important implications for our understanding of the regeneration of an adult tissue and have parallels to aspects of tumour formation and spread.
Collapse
Affiliation(s)
- Anne-Laure Cattin
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Alison C Lloyd
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; UCL Cancer Institute, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
108
|
Mancuso R, Martínez-Muriana A, Leiva T, Gregorio D, Ariza L, Morell M, Esteban-Pérez J, García-Redondo A, Calvo AC, Atencia-Cibreiro G, Corfas G, Osta R, Bosch A, Navarro X. Neuregulin-1 promotes functional improvement by enhancing collateral sprouting in SOD1(G93A) ALS mice and after partial muscle denervation. Neurobiol Dis 2016; 95:168-78. [PMID: 27461051 DOI: 10.1016/j.nbd.2016.07.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 06/23/2016] [Accepted: 07/22/2016] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive degeneration of motoneurons, which is preceded by loss of neuromuscular connections in a "dying back" process. Neuregulin-1 (Nrg1) is a neurotrophic factor essential for the development and maintenance of neuromuscular junctions, and Nrg1 receptor ErbB4 loss-of-function mutations have been reported as causative for ALS. Our main goal was to investigate the role of Nrg1 type I (Nrg1-I) in SOD1(G93A) mice muscles. We overexpressed Nrg1-I by means of an adeno-associated viral (AAV) vector, and investigated its effect by means of neurophysiological techniques assessing neuromuscular function, as well as molecular approaches (RT-PCR, western blot, immunohistochemistry, ELISA) to determine the mechanisms underlying Nrg1-I action. AAV-Nrg1-I intramuscular administration promoted motor axon collateral sprouting by acting on terminal Schwann cells, preventing denervation of the injected muscles through Akt and ERK1/2 pathways. We further used a model of muscle partial denervation by transecting the L4 spinal nerve. AAV-Nrg1-I intramuscular injection enhanced muscle reinnervation by collateral sprouting, whereas administration of lapatinib (ErbB receptor inhibitor) completely blocked it. We demonstrated that Nrg1-I plays a crucial role in the collateral reinnervation process, opening a new window for developing novel ALS therapies for functional recovery rather than preservation.
Collapse
Affiliation(s)
- Renzo Mancuso
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain; Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Anna Martínez-Muriana
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Tatiana Leiva
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - David Gregorio
- Center of Animal Biotechnology and Gene Therapy and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Lorena Ariza
- Center of Animal Biotechnology and Gene Therapy and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Marta Morell
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Jesús Esteban-Pérez
- Unidad de ELA, Servicio de Neurología, Instituto de Investigación Biomédica, Hospital 12 de Octubre "i+12", Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Alberto García-Redondo
- Unidad de ELA, Servicio de Neurología, Instituto de Investigación Biomédica, Hospital 12 de Octubre "i+12", Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Ana C Calvo
- Department of Otolaryngology - Head and Neck Surgery, Kresgae Hearing Research Institute, University of Michigan, Michigan, US
| | - Gabriela Atencia-Cibreiro
- Unidad de ELA, Servicio de Neurología, Instituto de Investigación Biomédica, Hospital 12 de Octubre "i+12", Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Gabriel Corfas
- Department of Otolaryngology - Head and Neck Surgery, Kresgae Hearing Research Institute, University of Michigan, Michigan, US
| | - Rosario Osta
- Laboratorio de Genética y Bioquímica (LAGENBIO), Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Assumpció Bosch
- Center of Animal Biotechnology and Gene Therapy and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Xavier Navarro
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain.
| |
Collapse
|
109
|
Saitoh F, Wakatsuki S, Tokunaga S, Fujieda H, Araki T. Glutamate signals through mGluR2 to control Schwann cell differentiation and proliferation. Sci Rep 2016; 6:29856. [PMID: 27432639 PMCID: PMC4949416 DOI: 10.1038/srep29856] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 06/27/2016] [Indexed: 12/31/2022] Open
Abstract
Rapid saltatory nerve conduction is facilitated by myelin structure, which is produced by Schwann cells (SC) in the peripheral nervous system (PNS). Proper development and degeneration/regeneration after injury requires regulated phenotypic changes of SC. We have previously shown that glutamate can induce SC proliferation in culture. Here we show that glutamate signals through metabotropic glutamate receptor 2 (mGluR2) to induce Erk phosphorylation in SC. mGluR2-elicited Erk phosphorylation requires ErbB2/3 receptor tyrosine kinase phosphorylation to limit the signaling cascade that promotes phosphorylation of Erk, but not Akt. We found that Gβγ and Src are involved in subcellular signaling downstream of mGluR2. We also found that glutamate can transform myelinating SC to proliferating SC, while inhibition of mGluR2 signaling can inhibit demyelination of injured nerves in vivo. These data suggest pathophysiological significance of mGluR2 signaling in PNS and its possible therapeutic importance to combat demyelinating disorders including Charcot-Marie-Tooth disease.
Collapse
Affiliation(s)
- Fuminori Saitoh
- Department of Peripheral Nervous System Research National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan.,Department of Anatomy, School of Medicine, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Shuji Wakatsuki
- Department of Peripheral Nervous System Research National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | - Shinji Tokunaga
- Department of Peripheral Nervous System Research National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | - Hiroki Fujieda
- Department of Anatomy, School of Medicine, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Toshiyuki Araki
- Department of Peripheral Nervous System Research National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| |
Collapse
|
110
|
Shah M, George RL, Evancho-Chapman MM, Zhang G. Current challenges in dedifferentiated fat cells research. Organogenesis 2016; 12:119-127. [PMID: 27322672 DOI: 10.1080/15476278.2016.1197461] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Dedifferentiated fat cells show great promises as a novel cell source for stem cell research. It has many advantages when used for cell-based therapeutics including abundance, pluripotency, and safety. However, there are many obstacles researchers need to overcome to make the next big move in DFAT cells research. In this review, we summarize the current main challenges in DFAT cells research including cell culture purity, phenotypic properties, and dedifferentiation mechanisms. The common methods to produce DFAT cells as well as the cell purity issue during DFAT cell production have been introduced. Current approaches to improve DFAT cell purity have been discussed. The phenotypic profile of DFAT cells have been listed and compared with other stem cells. Further studies on elucidating the underlying dedifferentiation mechanisms will dramatically advance DFAT cell research.
Collapse
Affiliation(s)
- Mickey Shah
- a Integrated Bioscience Program , The University of Akron , Akron , OH , USA.,b Department of Biomedical Engineering , The University of Akron , Akron , OH , USA
| | - Richard L George
- c Department of Surgery , Summa Health System , Akron , OH , USA.,d Department of Surgery , Northeast Ohio Medical University , Rootstown , OH , USA
| | | | - Ge Zhang
- b Department of Biomedical Engineering , The University of Akron , Akron , OH , USA
| |
Collapse
|
111
|
Sánchez M, Ceci ML, Gutiérrez D, Anguita-Salinas C, Allende ML. Mechanosensory organ regeneration in zebrafish depends on a population of multipotent progenitor cells kept latent by Schwann cells. BMC Biol 2016; 14:27. [PMID: 27055439 PMCID: PMC4823859 DOI: 10.1186/s12915-016-0249-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/22/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Regenerating damaged tissue is a complex process, requiring progenitor cells that must be stimulated to undergo proliferation, differentiation and, often, migratory behaviors and morphological changes. Multiple cell types, both resident within the damaged tissue and recruited to the lesion site, have been shown to participate. However, the cellular and molecular mechanisms involved in the activation of progenitor cell proliferation and differentiation after injury, and their regulation by different cells types, are not fully understood. The zebrafish lateral line is a suitable system to study regeneration because most of its components are fully restored after damage. The posterior lateral line (PLL) is a mechanosensory system that develops embryonically and is initially composed of seven to eight neuromasts distributed along the trunk and tail, connected by a continuous stripe of interneuromastic cells (INCs). The INCs remain in a quiescent state owing to the presence of underlying Schwann cells. They become activated during development to form intercalary neuromasts. However, no studies have described if INCs can participate in a regenerative event, for example, after the total loss of a neuromast. RESULTS We used electroablation in transgenic larvae expressing fluorescent proteins in PLL components to completely ablate single neuromasts in larvae and adult fish. This injury results in discontinuity of the INCs, Schwann cells, and the PLL nerve. In vivo imaging showed that the INCs fill the gap left after the injury and can regenerate a new neuromast in the injury zone. Further, a single INC is able to divide and form all cell types in a regenerated neuromast and, during this process, it transiently expresses the sox2 gene, a neural progenitor cell marker. We demonstrate a critical role for Schwann cells as negative regulators of INC proliferation and neuromast regeneration, and that this inhibitory property is completely dependent on active ErbB signaling. CONCLUSIONS The potential to regenerate a neuromast after damage requires that progenitor cells (INCs) be temporarily released from an inhibitory signal produced by nearby Schwann cells. This simple yet highly effective two-component niche offers the animal robust mechanisms for organ growth and regeneration, which can be sustained throughout life.
Collapse
Affiliation(s)
- Mario Sánchez
- FONDAP Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Casilla 653, Las Palmeras 3425, Santiago, Chile
| | - Maria Laura Ceci
- FONDAP Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Casilla 653, Las Palmeras 3425, Santiago, Chile
| | - Daniela Gutiérrez
- FONDAP Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Casilla 653, Las Palmeras 3425, Santiago, Chile
| | - Consuelo Anguita-Salinas
- FONDAP Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Casilla 653, Las Palmeras 3425, Santiago, Chile
| | - Miguel L Allende
- FONDAP Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Casilla 653, Las Palmeras 3425, Santiago, Chile.
| |
Collapse
|
112
|
Martini R, Willison H. Neuroinflammation in the peripheral nerve: Cause, modulator, or bystander in peripheral neuropathies? Glia 2016; 64:475-86. [PMID: 26250643 PMCID: PMC4832258 DOI: 10.1002/glia.22899] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 12/15/2022]
Abstract
The role of innate and adaptive inflammation as a primary driver or modifier of neuropathy in premorbidly normal nerves, and as a critical player in amplifying neuropathies of other known causes (e.g., genetic, metabolic) is incompletely understood and under-researched, despite unmet clinical need. Also, cellular and humoral components of the adaptive and innate immune system are substantial disease modifying agents in the context of neuropathies and, at least in some neuropathies, there is an identified tight interrelationship between both compartments of the immune system. Additionally, the quadruple relationship between Schwann cell, axon, macrophage, and endoneurial fibroblast, with their diverse membrane bound and soluble signalling systems, forms a distinct focus for investigation in nerve diseases with inflammation secondary to Schwann cell mutations and possibly others. Identification of key immunological effector pathways that amplify neuropathic features and associated clinical symptomatology including pain should lead to realistic and timely possibilities for translatable therapeutic interventions using existing immunomodulators, alongside the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Rudolf Martini
- Department of NeurologyDevelopmental Neurobiology, University Hospital WürzburgWürzburgD‐97080Germany
| | - Hugh Willison
- Institute of Infection, Immunity and Inflammation College of Medical Veterinary and Life Sciences, Glasgow Biomedical Research Centre, University of GlasgowGlasgowG12 8TA
| |
Collapse
|
113
|
Jessen KR, Mirsky R. The repair Schwann cell and its function in regenerating nerves. J Physiol 2016; 594:3521-31. [PMID: 26864683 PMCID: PMC4929314 DOI: 10.1113/jp270874] [Citation(s) in RCA: 797] [Impact Index Per Article: 88.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/28/2015] [Indexed: 01/05/2023] Open
Abstract
Nerve injury triggers the conversion of myelin and non‐myelin (Remak) Schwann cells to a cell phenotype specialized to promote repair. Distal to damage, these repair Schwann cells provide the necessary signals and spatial cues for the survival of injured neurons, axonal regeneration and target reinnervation. The conversion to repair Schwann cells involves de‐differentiation together with alternative differentiation, or activation, a combination that is typical of cell type conversions often referred to as (direct or lineage) reprogramming. Thus, injury‐induced Schwann cell reprogramming involves down‐regulation of myelin genes combined with activation of a set of repair‐supportive features, including up‐regulation of trophic factors, elevation of cytokines as part of the innate immune response, myelin clearance by activation of myelin autophagy in Schwann cells and macrophage recruitment, and the formation of regeneration tracks, Bungner's bands, for directing axons to their targets. This repair programme is controlled transcriptionally by mechanisms involving the transcription factor c‐Jun, which is rapidly up‐regulated in Schwann cells after injury. In the absence of c‐Jun, damage results in the formation of a dysfunctional repair cell, neuronal death and failure of functional recovery. c‐Jun, although not required for Schwann cell development, is therefore central to the reprogramming of myelin and non‐myelin (Remak) Schwann cells to repair cells after injury. In future, the signalling that specifies this cell requires further analysis so that pharmacological tools that boost and maintain the repair Schwann cell phenotype can be developed.
![]()
Collapse
Affiliation(s)
- K R Jessen
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - R Mirsky
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
114
|
Effects of High Glucose on Cell Viability and Differentiation in Primary Cultured Schwann Cells: Potential Role of ERK Signaling Pathway. Neurochem Res 2016; 41:1281-90. [PMID: 26915107 DOI: 10.1007/s11064-015-1824-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/08/2015] [Accepted: 12/30/2015] [Indexed: 12/13/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is one of the most common complications of diabetes mellitus and hyperglycemia is considered to be the major factor in the development and progression of DPN. Because of the contribution of Schwann cells (SCs) to the pathology of DPN, we investigated the effects of high glucose on cell proliferation, apoptosis and differentiation in primary cultured SCs. Cell Counting Kit-8 (CCK-8) assay and Hoechst staining showed that high glucose inhibited SCs proliferation and increased apoptosis ratio in time and concentration dependent manner. Western blot and real-time quantitative PCR analysis revealed that the major myelin proteins and genes expressions including P0, MAG and Krox-20, were downregulated time dependently in SCs exposed to high glucose from 48 to 96 h. To further elucidate the underlying pathogenic mechanisms, we also explored the role of ERK signaling pathway in high glucose induced SC injury, which has been proved to drive demyelination of peripheral nerves. The western blot analysis showed that compared with control group phosphorylation level of ERK was increased by 14.3 % in SCs exposed to high glucose for 72 h (P < 0.01). Using immunocytochemistry analysis, we observed that the ERK specific inhibitor U0126 blocked the ERK activation induced by high glucose and reversed the inhibitory effect of high glucose on P0 expression. Taken together, these results suggest that high glucose can cause damage in primary cultured SCs and may exert the inhibitory effect on SC differentiation and myelination through ERK signaling activation.
Collapse
|
115
|
Transcriptome Analysis of Chemically-Induced Sensory Neuron Ablation in Zebrafish. PLoS One 2016; 11:e0148726. [PMID: 26863206 PMCID: PMC4749159 DOI: 10.1371/journal.pone.0148726] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/22/2016] [Indexed: 12/31/2022] Open
Abstract
Peripheral glia are known to have a critical role in the initial response to axon damage and degeneration. However, little is known about the cellular responses of non-myelinating glia to nerve injury. In this study, we analyzed the transcriptomes of wild-type and mutant (lacking peripheral glia) zebrafish larvae that were treated with metronidazole. This treatment allowed us to conditionally and selectively ablate cranial sensory neurons whose axons are ensheathed only by non-myelinating glia. While transcripts representing over 27,000 genes were detected by RNAseq, only a small fraction (~1% of genes) were found to be differentially expressed in response to neuronal degeneration in either line at either 2 hrs or 5 hrs of metronidazole treatment. Analysis revealed that most expression changes (332 out of the total of 458 differentially expressed genes) occurred over a continuous period (from 2 to 5 hrs of metronidazole exposure), with a small number of genes showing changes limited to only the 2 hr (55 genes) or 5 hr (71 genes) time points. For genes with continuous alterations in expression, some of the most meaningful sets of enriched categories in the wild-type line were those involving the inflammatory TNF-alpha and IL6 signaling pathways, oxidoreductase activities and response to stress. Intriguingly, these changes were not observed in the mutant line. Indeed, cluster analysis indicated that the effects of metronidazole treatment on gene expression was heavily influenced by the presence or absence of glia, indicating that the peripheral non-myelinating glia play a significant role in the transcriptional response to sensory neuron degeneration. This is the first transcriptome study of metronidazole-induced neuronal death in zebrafish and the response of non-myelinating glia to sensory neuron degeneration. We believe this study provides important insight into the mechanisms by which non-myelinating glia react to neuronal death and degeneration in sensory circuits.
Collapse
|
116
|
Hennig A, Markwart R, Wolff K, Schubert K, Cui Y, Prior IA, Esparza-Franco MA, Ladds G, Rubio I. Feedback activation of neurofibromin terminates growth factor-induced Ras activation. Cell Commun Signal 2016; 14:5. [PMID: 26861207 PMCID: PMC4746934 DOI: 10.1186/s12964-016-0128-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/03/2016] [Indexed: 02/08/2023] Open
Abstract
Background Growth factors induce a characteristically short-lived Ras activation in cells emerging from quiescence. Extensive work has shown that transient as opposed to sustained Ras activation is critical for the induction of mitogenic programs. Mitogen-induced accumulation of active Ras-GTP results from increased nucleotide exchange driven by the nucleotide exchange factor Sos. In contrast, the mechanism accounting for signal termination and prompt restoration of basal Ras-GTP levels is unclear, but has been inferred to involve feedback inhibition of Sos. Remarkably, how GTP-hydrolase activating proteins (GAPs) participate in controlling the rise and fall of Ras-GTP levels is unknown. Results Monitoring nucleotide exchange of Ras in permeabilized cells we find, unexpectedly, that the decline of growth factor-induced Ras-GTP levels proceeds in the presence of unabated high nucleotide exchange, pointing to GAP activation as a major mechanism of signal termination. Experiments with non-hydrolysable GTP analogues and mathematical modeling confirmed and rationalized the presence of high GAP activity as Ras-GTP levels decline in a background of high nucleotide exchange. Using pharmacological and genetic approaches we document a raised activity of the neurofibromatosis type I tumor suppressor Ras-GAP neurofibromin and an involvement of Rsk1 and Rsk2 in the down-regulation of Ras-GTP levels. Conclusions Our findings show that, in addition to feedback inhibition of Sos, feedback stimulation of the RasGAP neurofibromin enforces termination of the Ras signal in the context of growth-factor signaling. These findings ascribe a precise role to neurofibromin in growth factor-dependent control of Ras activity and illustrate how, by engaging Ras-GAP activity, mitogen-challenged cells play safe to ensure a timely termination of the Ras signal irrespectively of the reigning rate of nucleotide exchange. Electronic supplementary material The online version of this article (doi:10.1186/s12964-016-0128-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anne Hennig
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, University Hospital, Hans-Knöll-Str.2, 07745, Jena, Germany.
| | - Robby Markwart
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, University Hospital, Hans-Knöll-Str.2, 07745, Jena, Germany.
| | - Katharina Wolff
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, University Hospital, Hans-Knöll-Str.2, 07745, Jena, Germany.
| | - Katja Schubert
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, University Hospital, Hans-Knöll-Str.2, 07745, Jena, Germany.
| | - Yan Cui
- Leibniz Institute for Age Research - Fritz Lipmann Institute, 07745, Jena, Germany.
| | - Ian A Prior
- Division of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX, UK.
| | | | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK.
| | - Ignacio Rubio
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, University Hospital, Hans-Knöll-Str.2, 07745, Jena, Germany. .,Center for Sepsis Control and Care, University Hospital, 07747, Jena, Germany.
| |
Collapse
|
117
|
Birchmeier C, Bennett DLH. Neuregulin/ErbB Signaling in Developmental Myelin Formation and Nerve Repair. Curr Top Dev Biol 2016; 116:45-64. [PMID: 26970613 DOI: 10.1016/bs.ctdb.2015.11.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Myelin is essential for rapid and accurate conduction of electrical impulses by axons in the central and peripheral nervous system (PNS). Myelin is formed in the early postnatal period, and developmental myelination in the PNS depends on axonal signals provided by Nrg1/ErbB receptors. In addition, Nrg1 is required for effective nerve repair and remyelination in adulthood. We discuss here similarities and differences in Nrg1/ErbB functions in developmental myelination and remyelination after nerve injury.
Collapse
Affiliation(s)
- Carmen Birchmeier
- Developmental Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
| | - David L H Bennett
- The Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
| |
Collapse
|
118
|
Jang SY, Shin YK, Park SY, Park JY, Lee HJ, Yoo YH, Kim JK, Park HT. Autophagic myelin destruction by Schwann cells during Wallerian degeneration and segmental demyelination. Glia 2015; 64:730-42. [PMID: 26712109 DOI: 10.1002/glia.22957] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/26/2015] [Accepted: 12/02/2015] [Indexed: 01/17/2023]
Abstract
As lysosomal hydrolysis has long been suggested to be responsible for myelin clearance after peripheral nerve injury, in this study, we investigated the possible role of autophagolysosome formation in myelin phagocytosis by Schwann cells and its final contribution to nerve regeneration. We found that the canonical formation of autophagolysosomes was induced in demyelinating Schwann cells after injury, and the inhibition of autophagy via Schwann cell-specific knockout of the atg7 gene or pharmacological intervention of lysosomal function caused a significant delay in myelin clearance. However, Schwann cell dedifferentiation, as demonstrated by extracellular signal-regulated kinase activation and c-Jun induction, and redifferentiation were not significantly affected, and thus the entire repair program progressed normally in atg7 knockout mice. Finally, autophagic Schwann cells were also found during segmental demyelination in a mouse model of inflammatory peripheral neuropathy. Together, our findings suggest that autophagy is the self-myelin destruction mechanism of Schwann cells, but mechanistically, it is a process distinct from Schwann cell plasticity for nerve repair.
Collapse
Affiliation(s)
- So Young Jang
- Department of Physiology, Mitochondria Hub Regulation Center, Dong-a University, Busan, Korea
| | - Yoon Kyung Shin
- Department of Physiology, Mitochondria Hub Regulation Center, Dong-a University, Busan, Korea
| | - So Young Park
- Department of Pharmacology, Mitochondria Hub Regulation Center, Dong-a University, Busan, Korea
| | - Joo Youn Park
- Department of Physiology, Mitochondria Hub Regulation Center, Dong-a University, Busan, Korea
| | - Hye Jeong Lee
- Department of Pharmacology, Mitochondria Hub Regulation Center, Dong-a University, Busan, Korea
| | | | - Jong Kuk Kim
- Neurology, College of Medicine, Dong-a University, Busan, Korea
| | - Hwan Tae Park
- Department of Physiology, Mitochondria Hub Regulation Center, Dong-a University, Busan, Korea
| |
Collapse
|
119
|
Klein D, Martini R. Myelin and macrophages in the PNS: An intimate relationship in trauma and disease. Brain Res 2015; 1641:130-138. [PMID: 26631844 DOI: 10.1016/j.brainres.2015.11.033] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 01/08/2023]
Abstract
Macrophages of the peripheral nervous system belong to the so-called tissue macrophages, with multiple functions during injury and disease. Their origin during ontogeny has not yet been completely resolved, but it is clear that upon injury and disease conditions, they are supplemented by hematopoietic derivatives. In the peripheral nervous system, the most abundantly investigated scenario in which resident and infiltrating macrophages are involved is the so-called "Wallerian degeneration", a complex degenerative process where macrophages exhibit mostly beneficial functions by phagocytosing myelin and axonal remnants. Of special interest is the implication of macrophages in inflammatory nerve diseases, like acute Guillain-Barré syndromes and its permanent variant, chronic inflammatory demyelinating polyneuropathy, where macrophages are supposed to be substantial (co-)mediators of the diseases. In inherited peripheral neuropathies nerve macrophages possess a clear disease-amplifying function. In the corresponding animal models, a coordinated interplay between mutant Schwann cells, macrophages, endoneurial fibroblasts and the target structure, myelin, emerged. Along this process, a newly discovered disease mechanism mediated by macrophages is the dedifferentiation of myelinating Schwann cells. As macrophages are amplifiers of the genetically-mediated, non-curable diseases, targeting the mechanisms of their activation might be a promising strategy to treat these disorders. This article is part of a Special Issue entitled SI: Myelin Evolution.
Collapse
Affiliation(s)
- Dennis Klein
- University Hospital Würzburg, Department of Neurology, Developmental Neurobiology, Josef-Schneider Str. 11, 97080 Würzburg, Germany
| | - Rudolf Martini
- University Hospital Würzburg, Department of Neurology, Developmental Neurobiology, Josef-Schneider Str. 11, 97080 Würzburg, Germany.
| |
Collapse
|
120
|
Abstract
When nerve injury occurs, the axon and myelin fragments distal to the injury site have to be cleared away before repair. In this issue, Gomez-Sanchez et al. (2015; J. Cell Biol. http://dx.doi.org/10.1083/jcb.201503019) find that clearance of the damaged myelin within Schwann cells occurs not by phagocytosis but rather via selective autophagy, in a process they term "myelinophagy."
Collapse
Affiliation(s)
- Michael Thumm
- University Medicine, Institute of Cellular Biochemistry, University of Göttingen, D-37073 Goettingen, Germany
| | - Mikael Simons
- Department of Neurology, University of Göttingen, D-37073 Goettingen, Germany Cellular Neuroscience, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| |
Collapse
|
121
|
Park BS, Jo HW, Park C, Huh Y, Jung J, Jeong NY. A novel effect of ethyl pyruvate in Schwann cell de-differentiation and proliferation during Wallerian degeneration. Anim Cells Syst (Seoul) 2015. [DOI: 10.1080/19768354.2015.1053520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
122
|
Lin HP, Oksuz I, Hurley E, Wrabetz L, Awatramani R. Microprocessor complex subunit DiGeorge syndrome critical region gene 8 (Dgcr8) is required for schwann cell myelination and myelin maintenance. J Biol Chem 2015; 290:24294-307. [PMID: 26272614 DOI: 10.1074/jbc.m115.636407] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Indexed: 01/25/2023] Open
Abstract
We investigated the role of a key component of the Microprocessor complex, DGCR8, in the regulation of myelin formation and maintenance. We found that conditionally ablating Dgcr8 in Schwann cells (SCs) during development results in an arrest of SC differentiation. Dgcr8 conditional knock-out (cKO) SCs fail to form 1:1 relationships with axons or, having achieved this, fail to form myelin sheaths. The expression of genes normally found in immature SCs, such as sex-determining region Y-box 2 (Sox2), is increased in Dgcr8 cKO SCs, whereas the expression of myelin-related genes, including the master regulatory transcription factor early growth response 2 (Egr2), is decreased. Additionally, expression of a novel gene expression program involving sonic hedgehog (Shh), activated de novo in injured nerves, is elevated in Dgcr8 cKOs but not in Egr2 null mice, a model of SC differentiation arrest, suggesting that the injury-related gene expression program in Dgcr8 cKOs cannot be attributed to differentiation arrest. Inducible ablation of Dgcr8 in adult SCs results in gene expression changes similar to those found in cKOs, including an increase in the expression of Sox2 and Shh. Analyses of these nerves mainly reveal normal myelin thickness and axon size distribution but some dedifferentiated SCs and increased macrophage infiltration. Together our data suggest that Dgcr8 is responsible for modulation of gene expression programs underlying myelin formation and maintenance as well as suppression of an injury-related gene expression program.
Collapse
Affiliation(s)
- Hsin-Pin Lin
- From the Department of Neurology and Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611 and
| | - Idil Oksuz
- From the Department of Neurology and Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611 and
| | - Edward Hurley
- Hunter James Kelly Research Institute, University at Buffalo, State University of New York, Buffalo, New York 14203
| | - Lawrence Wrabetz
- Hunter James Kelly Research Institute, University at Buffalo, State University of New York, Buffalo, New York 14203
| | - Rajeshwar Awatramani
- From the Department of Neurology and Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611 and
| |
Collapse
|
123
|
Ydens E, Demon D, Lornet G, De Winter V, Timmerman V, Lamkanfi M, Janssens S. Nlrp6 promotes recovery after peripheral nerve injury independently of inflammasomes. J Neuroinflammation 2015; 12:143. [PMID: 26253422 PMCID: PMC4528710 DOI: 10.1186/s12974-015-0367-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 07/24/2015] [Indexed: 11/19/2022] Open
Abstract
Background NOD-like receptors (Nlrs) are key regulators of immune responses during infection and autoimmunity. A subset of Nlrs assembles inflammasomes, molecular platforms that are activated in response to endogenous danger and microbial ligands and that control release of interleukin (IL)-1β and IL-18. However, their role in response to injury in the nervous system is less understood. Methods In this study, we investigated the expression profile of major inflammasome components in the peripheral nervous system (PNS) and explored the physiological role of different Nlrs upon acute nerve injury in mice. Results While in basal conditions, predominantly members of NOD-like receptor B (Nlrb) subfamily (NLR family, apoptosis inhibitory proteins (NAIPs)) and Nlrc subfamily (ICE-protease activating factor (IPAF)/NOD) are detected in the sciatic nerve, injury causes a shift towards expression of the Nlrp family. Sterile nerve injury also leads to an increase in expression of the Nlrb subfamily, while bacteria trigger expression of the Nlrc subfamily. Interestingly, loss of Nlrp6 led to strongly impaired nerve function upon nerve crush. Loss of the inflammasome adaptor apoptosis-associated speck-like protein containing a CARD (ASC) and effector caspase-1 and caspase-11 did not affect sciatic nerve function, suggesting that Nlrp6 contributed to recovery after peripheral nerve injury independently of inflammasomes. In line with this, we did not detect release of mature IL-1β upon acute nerve injury despite potent induction of pro-IL-1β and inflammasome components Nlrp3 and Nlrp1. However, Nlrp6 deficiency was associated with increased pro-inflammatory extracellular regulated MAP kinase (ERK) signaling, suggesting that hyperinflammation in the absence of Nlrp6 exacerbated peripheral nerve injury. Conclusions Together, our observations suggest that Nlrp6 contributes to recovery from peripheral nerve injury by dampening inflammatory responses independently of IL-1β and inflammasomes.
Collapse
Affiliation(s)
- Elke Ydens
- Peripheral Neuropathy Group, Department of Molecular Genetics, VIB and University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Antwerpen, Belgium. .,Neurogenetics Laboratory, Institute Born-Bunge and University of Antwerp, Universiteitsplein 1, B-2610, Antwerpen, Belgium.
| | - Dieter Demon
- Department of Medical Protein Research, VIB, Gent, Belgium. .,Department of Biochemistry, Ghent University, Gent, Belgium.
| | - Guillaume Lornet
- Unit Immunoregulation and Mucosal Immunology, GROUP-ID Consortium, VIB Inflammation Research Centre, Technologiepark 927, B-9052, Gent, Belgium. .,Department of Internal Medicine, Ghent University, Gent, Belgium.
| | - Vicky De Winter
- Peripheral Neuropathy Group, Department of Molecular Genetics, VIB and University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Antwerpen, Belgium. .,Neurogenetics Laboratory, Institute Born-Bunge and University of Antwerp, Universiteitsplein 1, B-2610, Antwerpen, Belgium.
| | - Vincent Timmerman
- Peripheral Neuropathy Group, Department of Molecular Genetics, VIB and University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Antwerpen, Belgium. .,Neurogenetics Laboratory, Institute Born-Bunge and University of Antwerp, Universiteitsplein 1, B-2610, Antwerpen, Belgium.
| | - Mohamed Lamkanfi
- Department of Medical Protein Research, VIB, Gent, Belgium. .,Department of Biochemistry, Ghent University, Gent, Belgium.
| | - Sophie Janssens
- Unit Immunoregulation and Mucosal Immunology, GROUP-ID Consortium, VIB Inflammation Research Centre, Technologiepark 927, B-9052, Gent, Belgium. .,Department of Internal Medicine, Ghent University, Gent, Belgium.
| |
Collapse
|
124
|
Nishimoto S, Tanaka H, Okamoto M, Okada K, Murase T, Yoshikawa H. Methylcobalamin promotes the differentiation of Schwann cells and remyelination in lysophosphatidylcholine-induced demyelination of the rat sciatic nerve. Front Cell Neurosci 2015; 9:298. [PMID: 26300733 PMCID: PMC4523890 DOI: 10.3389/fncel.2015.00298] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 07/20/2015] [Indexed: 12/31/2022] Open
Abstract
Schwann cells (SCs) are constituents of the peripheral nervous system. The differentiation of SCs in injured peripheral nerves is critical for regeneration after injury. Methylcobalamin (MeCbl) is a vitamin B12 analog that is necessary for the maintenance of the peripheral nervous system. In this study, we estimated the effect of MeCbl on SCs. We showed that MeCbl downregulated the activity of Erk1/2 and promoted the expression of the myelin basic protein in SCs. In a dorsal root ganglion neuron–SC coculture system, myelination was promoted by MeCbl. In a focal demyelination rat model, MeCbl promoted remyelination and motor and sensory functional regeneration. MeCbl promoted the in vitro differentiation of SCs and in vivo myelination in a rat demyelination model and may be a novel therapy for several types of nervous disorders.
Collapse
Affiliation(s)
- Shunsuke Nishimoto
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Suita Japan
| | - Hiroyuki Tanaka
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Suita Japan
| | - Michio Okamoto
- Department of Orthopaedic Surgery, Toyonaka Municipal Hospital, Toyonaka Japan
| | - Kiyoshi Okada
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Suita Japan ; Medical Center for Translational and Clinical Research, Osaka University Hospital, Suita Japan
| | - Tsuyoshi Murase
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Suita Japan
| | - Hideki Yoshikawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Suita Japan
| |
Collapse
|
125
|
Monk KR, Feltri ML, Taveggia C. New insights on Schwann cell development. Glia 2015; 63:1376-93. [PMID: 25921593 PMCID: PMC4470834 DOI: 10.1002/glia.22852] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/13/2015] [Indexed: 12/11/2022]
Abstract
In the peripheral nervous system, Schwann cells are glial cells that are in intimate contact with axons throughout development. Schwann cells generate the insulating myelin sheath and provide vital trophic support to the neurons that they ensheathe. Schwann cell precursors arise from neural crest progenitor cells, and a highly ordered developmental sequence controls the progression of these cells to become mature myelinating or nonmyelinating Schwann cells. Here, we discuss both seminal discoveries and recent advances in our understanding of the molecular mechanisms that drive Schwann cell development and myelination with a focus on cell-cell and cell-matrix signaling events.
Collapse
Affiliation(s)
- Kelly R Monk
- Department of Developmental Biology, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri
| | - M Laura Feltri
- Department of Biochemistry and Neurology, Hunter James Kelly Research Institute, University at Buffalo, State University of New York, Buffalo, New York
| | - Carla Taveggia
- Division of Neuroscience and INSPE, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
126
|
Wang L, Yuan D, Zhang D, Zhang W, Liu C, Cheng H, Song Y, Tan Q. Ginsenoside Re Promotes Nerve Regeneration by Facilitating the Proliferation, Differentiation and Migration of Schwann Cells via the ERK- and JNK-Dependent Pathway in Rat Model of Sciatic Nerve Crush Injury. Cell Mol Neurobiol 2015; 35:827-40. [PMID: 25776135 PMCID: PMC11486245 DOI: 10.1007/s10571-015-0177-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 03/10/2015] [Indexed: 02/08/2023]
Abstract
Exploring effective drugs that are capable of promoting nerve regeneration has gained much attention. Ginsenoside Re (Re) is the main ingredient of ginseng berries and roots. Research in the area has shown that ginsenoside Re exhibits multiple pharmacological activities via different mechanisms both in vivo and in vitro. But the potential therapeutic effects of Re on sciatic nerve crush injury (SNC) have been little investigated. Herein, we investigated the protect effect of Re on peripheral nerve regeneration in a rat SNC model. Walking track analysis revealed that Re treatment significantly promoted functional recovery of crushed sciatic nerve in rats. The expression of PCNA in rat sciatic nerve was up-regulated by Re treatment, and peaked when the concentration of Re was 2.0 mg/kg. Using immunofluorescent staining, we found that Re greatly increased the expression of GAP-43 and S100 in injured rat sciatic nerve. Furthermore, we evaluated the effects of Re on proliferation, differentiation, and migration of Schwann cells in SNC rat models. Our studies reveal that Re promotes nerve regeneration is depend on ERK1/2 and JNK1/2 signaling pathway. Elevated Oct-6 expression and featured morphological changes indicated that Re facilitated the differentiation of Schwann cells following SNC. Also, transwell and wound-healing assay demonstrated that the migration capabilities of Schwann cell were significantly enhanced after Re treatment.
Collapse
Affiliation(s)
- Lei Wang
- Nanjing University of Chinese Medicine, Nanjing, 210000 China
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001 China
| | - Damin Yuan
- Department of Immunology, Medical College, Nantong University, Nantong, 226001 China
| | - Dongmei Zhang
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, 226001 China
| | - Weidong Zhang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001 China
| | - Chun Liu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, 226001 China
| | - Hongbing Cheng
- Department of Orthopaedics, Traditional Chinese Medical Hospital of Nantong City, Nantong, 226001 China
| | - Yan Song
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001 China
| | - Qian Tan
- Nanjing University of Chinese Medicine, Nanjing, 210000 China
| |
Collapse
|
127
|
NKCC1 Activation Is Required for Myelinated Sensory Neurons Regeneration through JNK-Dependent Pathway. J Neurosci 2015; 35:7414-27. [PMID: 25972170 DOI: 10.1523/jneurosci.4079-14.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
After peripheral nerve injury, axons are able to regenerate, although specific sensory reinnervation and functional recovery are usually worse for large myelinated than for small sensory axons. The mechanisms that mediate the regeneration of different sensory neuron subpopulations are poorly known. The Na(+)-K(+)-Cl(-) cotransporter 1 (NKCC1) is particularly relevant in setting the intracellular chloride concentration. After axotomy, increased NKCC1 phosphorylation has been reported to be important for neurite outgrowth of sensory neurons; however, the mechanisms underlying its effects are still unknown. In the present study we used in vitro and in vivo models to assess the differential effects of blocking NKCC1 activity on the regeneration of different types of dorsal root ganglia (DRGs) neurons after sciatic nerve injury in the rat. We observed that blocking NKCC1 activity by bumetanide administration induces a selective effect on neurite outgrowth and regeneration of myelinated fibers without affecting unmyelinated DRG neurons. To further study the mechanism underlying NKCC1 effects, we also assessed the changes in mitogen-activated protein kinase (MAPK) signaling under NKCC1 modulation. The inhibition of NKCC1 activity in vitro and in vivo modified pJNK1/2/3 expression in DRG neurons. Together, our study identifies a mechanism selectively contributing to myelinated axon regeneration, and point out the role of Cl(-) modulation in DRG neuron regeneration and in the activation of MAPKs, particularly those belonging to the JNK family.
Collapse
|
128
|
Ronchi G, Haastert-Talini K, Fornasari BE, Perroteau I, Geuna S, Gambarotta G. The Neuregulin1/ErbB system is selectively regulated during peripheral nerve degeneration and regeneration. Eur J Neurosci 2015; 43:351-64. [DOI: 10.1111/ejn.12974] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/26/2015] [Accepted: 06/02/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Giulia Ronchi
- Department of Clinical and Biological Sciences; University of Torino; Regione Gonzole 10 Orbassano 10043 Italy
- Neuroscience Institute of the ‘Cavalieri Ottolenghi’ Foundation (NICO); University of Torino; Orbassano Italy
| | - Kirsten Haastert-Talini
- Hannover Medical School; Institute of Neuroanatomy; Hannover Germany
- Center for Systems Neuroscience (ZSN); Hannover Germany
| | - Benedetta Elena Fornasari
- Department of Clinical and Biological Sciences; University of Torino; Regione Gonzole 10 Orbassano 10043 Italy
| | - Isabelle Perroteau
- Department of Clinical and Biological Sciences; University of Torino; Regione Gonzole 10 Orbassano 10043 Italy
- Neuroscience Institute of Torino (NIT); University of Torino; Orbassano Italy
| | - Stefano Geuna
- Department of Clinical and Biological Sciences; University of Torino; Regione Gonzole 10 Orbassano 10043 Italy
- Neuroscience Institute of the ‘Cavalieri Ottolenghi’ Foundation (NICO); University of Torino; Orbassano Italy
- Neuroscience Institute of Torino (NIT); University of Torino; Orbassano Italy
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences; University of Torino; Regione Gonzole 10 Orbassano 10043 Italy
- Neuroscience Institute of Torino (NIT); University of Torino; Orbassano Italy
| |
Collapse
|
129
|
Abstract
Schwann cells develop from the neural crest in a well-defined sequence of events. This involves the formation of the Schwann cell precursor and immature Schwann cells, followed by the generation of the myelin and nonmyelin (Remak) cells of mature nerves. This review describes the signals that control the embryonic phase of this process and the organogenesis of peripheral nerves. We also discuss the phenotypic plasticity retained by mature Schwann cells, and explain why this unusual feature is central to the striking regenerative potential of the peripheral nervous system (PNS).
Collapse
Affiliation(s)
- Kristján R Jessen
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | - Rhona Mirsky
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | - Alison C Lloyd
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
130
|
Fingolimod induces the transition to a nerve regeneration promoting Schwann cell phenotype. Exp Neurol 2015; 271:25-35. [PMID: 25957629 DOI: 10.1016/j.expneurol.2015.05.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/29/2015] [Accepted: 05/01/2015] [Indexed: 11/23/2022]
Abstract
Successful regeneration of injured peripheral nerves is mainly attributed to the plastic behavior of Schwann cells. Upon loss of axons, these cells trans-differentiate into regeneration promoting repair cells which provide trophic support to regrowing axons. Among others, activation of cJun was revealed to be involved in this process, initiating the stereotypic pattern of Schwann cell phenotype alterations during Wallerian degeneration. Nevertheless, the ability of Schwann cells to adapt and therefore the nerve's potential to regenerate can be limited in particular after long term denervation or in neuropathies leading to incomplete regeneration only and thus emphasizing the need for novel therapeutic approaches. Here we stimulated primary neonatal and adult rat Schwann cells with Fingolimod/FTY720P and investigated its impact on the regeneration promoting phenotype. FTY720P activated a number of de-differentiation markers including cJun and interfered with maturation marker and myelin expression. Functionally, FTY720P treated Schwann cells upregulated growth factor expression and these cells enhanced dorsal root ganglion neurite outgrowth on inhibitory substrates. Our results therefore provide strong evidence that FTY720P application supports the generation of a repair promoting cellular phenotype and suggest that Fingolimod could be used as treatment for peripheral nerve injuries and diseases.
Collapse
|
131
|
Li B, Qiu T, Iyer KS, Yan Q, Yin Y, Xie L, Wang X, Li S. PRGD/PDLLA conduit potentiates rat sciatic nerve regeneration and the underlying molecular mechanism. Biomaterials 2015; 55:44-53. [PMID: 25934451 DOI: 10.1016/j.biomaterials.2015.03.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 03/09/2015] [Accepted: 03/15/2015] [Indexed: 02/01/2023]
Abstract
Peripheral nerve injury requires optimal conditions in both macro-environment and micro-environment for reestablishment. Though various strategies have been carried out to improve the macro-environment, the underlying molecular mechanism of axon regeneration in the micro-environment provided by nerve conduit remains unclear. In this study, the rat sciatic nerve of 10 mm defect was made and bridged by PRGD/PDLLA nerve conduit. We investigated the process of nerve regeneration using histological, functional and real time PCR analyses after implantation from 7 to 35 days. Our data demonstrated that the ciliary neurotrophic factor highly expressed and up-regulated the downstream signaling pathways, in the case of activated signals, the expressions of axon sprout relative proteins, such as tubulin and growth-associated protein-43, were strongly augmented. Taken together, these data suggest a possible mechanism of axon regeneration promoted by PRGD/PDLLA conduit, which created a micro-environment for enhancement of diffusion of neurotrophic factors secreted by the injured nerve stumps, and activation of molecular signal transduction involved in growth cone, to potentiate the nerve recovery.
Collapse
Affiliation(s)
- Binbin Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China; Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, PR China
| | - Tong Qiu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China; Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, PR China.
| | - K Swaminathan Iyer
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley WA 6009, Australia
| | - Qiongjiao Yan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China; Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, PR China
| | - Yixia Yin
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China; Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, PR China
| | - Lijuan Xie
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China; Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, PR China
| | - Xinyu Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China; Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, PR China
| | - Shipu Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China; Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, PR China.
| |
Collapse
|
132
|
Xiao Y, Faucherre A, Pola-Morell L, Heddleston JM, Liu TL, Chew TL, Sato F, Sehara-Fujisawa A, Kawakami K, López-Schier H. High-resolution live imaging reveals axon-glia interactions during peripheral nerve injury and repair in zebrafish. Dis Model Mech 2015; 8:553-64. [PMID: 26035865 PMCID: PMC4457030 DOI: 10.1242/dmm.018184] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 03/24/2015] [Indexed: 12/22/2022] Open
Abstract
Neural damage is a devastating outcome of physical trauma. The glia are one of the main effectors of neuronal repair in the nervous system, but the dynamic interactions between peripheral neurons and Schwann cells during injury and regeneration remain incompletely characterized. Here, we combine laser microsurgery, genetic analysis, high-resolution intravital imaging and lattice light-sheet microscopy to study the interaction between Schwann cells and sensory neurons in a zebrafish model of neurotrauma. We found that chronic denervation by neuronal ablation leads to Schwann-cell death, whereas acute denervation by axonal severing does not affect the overall complexity and architecture of the glia. Neuronal-circuit regeneration begins when Schwann cells extend bridging processes to close the injury gap. Regenerating axons grow faster and directionally after the physiological clearing of distal debris by the Schwann cells. This might facilitate circuit repair by ensuring that axons are guided through unoccupied spaces within bands of Büngner towards their original peripheral target. Accordingly, in the absence of Schwann cells, regenerating axons are misrouted, impairing the re-innervation of sensory organs. Our results indicate that regenerating axons use haptotaxis as a directional cue during the reconstitution of a neural circuit. These findings have implications for therapies aimed at neurorepair, which will benefit from preserving the architecture of the peripheral glia during periods of denervation. Summary: Schwann cells are important components of the peripheral glia. We use microsurgery and high-resolution live imaging to show how Schwann cells control the regeneration of a sensorineural circuit.
Collapse
Affiliation(s)
- Yan Xiao
- Research Unit Sensory Biology & Organogenesis, Helmholtz Zentrum München, 85764 Munich, Germany
| | - Adèle Faucherre
- Cell & Developmental Biology, Centre for Genomic Regulation, 08003 Barcelona, Spain
| | - Laura Pola-Morell
- Cell & Developmental Biology, Centre for Genomic Regulation, 08003 Barcelona, Spain
| | - John M Heddleston
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Tsung-Li Liu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Teng-Leong Chew
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Fuminori Sato
- Institute for Frontier Medical Sciences, Kyoto University, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Atsuko Sehara-Fujisawa
- Institute for Frontier Medical Sciences, Kyoto University, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, The Graduate University for Advanced Studies (Sokendai), 1111 Yata, Mishima, Shizuoka 411-8540, Japan Department of Genetics, The Graduate University for Advanced Studies (Sokendai), 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Hernán López-Schier
- Research Unit Sensory Biology & Organogenesis, Helmholtz Zentrum München, 85764 Munich, Germany Cell & Developmental Biology, Centre for Genomic Regulation, 08003 Barcelona, Spain
| |
Collapse
|
133
|
Chernov AV, Dolkas J, Hoang K, Angert M, Srikrishna G, Vogl T, Baranovskaya S, Strongin AY, Shubayev VI. The calcium-binding proteins S100A8 and S100A9 initiate the early inflammatory program in injured peripheral nerves. J Biol Chem 2015; 290:11771-84. [PMID: 25792748 DOI: 10.1074/jbc.m114.622316] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Indexed: 11/06/2022] Open
Abstract
To shed light on the early immune response processes in severed peripheral nerves, we performed genome-wide transcriptional profiling and bioinformatics analyses of the proximal (P, regenerating) and distal (D, degenerating) nerve stumps on day 1 in the sciatic nerve axotomy model in rats. Multiple cell death-related pathways were activated in the degenerating D stump, whereas activation of the cytoskeletal motility and gluconeogenesis/glycolysis pathways was most prominent in the P stump of the axotomized nerve. Our bioinformatics analyses also identified the specific immunomodulatory genes of the chemokine, IL, TNF, MHC, immunoglobulin-binding Fc receptor, calcium-binding S100, matrix metalloproteinase, tissue inhibitor of metalloproteinase, and ion channel families affected in both the P and D segments. S100a8 and S100a9 were the top up-regulated genes in both the P and D segments. Stimulation of cultured Schwann cells using the purified S100A8/A9 heterodimer recapitulated activation of the myeloid cell and phagocyte chemotactic genes and pathways, which we initially observed in injured nerves. S100A8/A9 heterodimer injection into the intact nerve stimulated macrophage infiltration. We conclude that, following peripheral nerve injury, an immediate acute immune response occurs both distal and proximal to the lesion site and that the rapid transcriptional activation of the S100a8 and S100a9 genes results in S100A8/A9 hetero- and homodimers, which stimulate the release of chemokines and cytokines by activated Schwann cells and generate the initial chemotactic gradient that guides the transmigration of hematogenous immune cells into the injured nerve.
Collapse
Affiliation(s)
- Andrei V Chernov
- From the Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Jennifer Dolkas
- the Department of Anesthesiology, University of California, San Diego, La Jolla, California 92093, the Veterans Affairs San Diego Healthcare System, La Jolla, California 92037
| | - Khang Hoang
- the Department of Anesthesiology, University of California, San Diego, La Jolla, California 92093, the Veterans Affairs San Diego Healthcare System, La Jolla, California 92037
| | - Mila Angert
- the Department of Anesthesiology, University of California, San Diego, La Jolla, California 92093, the Veterans Affairs San Diego Healthcare System, La Jolla, California 92037
| | - Geetha Srikrishna
- From the Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Thomas Vogl
- the Institute of Immunology, University of Münster, D-48149 Münster, Germany, and
| | | | - Alex Y Strongin
- From the Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Veronica I Shubayev
- the Department of Anesthesiology, University of California, San Diego, La Jolla, California 92093, the Veterans Affairs San Diego Healthcare System, La Jolla, California 92037,
| |
Collapse
|
134
|
Hung HA, Sun G, Keles S, Svaren J. Dynamic regulation of Schwann cell enhancers after peripheral nerve injury. J Biol Chem 2015; 290:6937-50. [PMID: 25614629 PMCID: PMC4358118 DOI: 10.1074/jbc.m114.622878] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/31/2014] [Indexed: 12/20/2022] Open
Abstract
Myelination of the peripheral nervous system is required for axonal function and long term stability. After peripheral nerve injury, Schwann cells transition from axon myelination to a demyelinated state that supports neuronal survival and ultimately remyelination of axons. Reprogramming of gene expression patterns during development and injury responses is shaped by the actions of distal regulatory elements that integrate the actions of multiple transcription factors. We used ChIP-seq to measure changes in histone H3K27 acetylation, a mark of active enhancers, to identify enhancers in myelinating rat peripheral nerve and their dynamics after demyelinating nerve injury. Analysis of injury-induced enhancers identified enriched motifs for c-Jun, a transcription factor required for Schwann cells to support nerve regeneration. We identify a c-Jun-bound enhancer in the gene for Runx2, a transcription factor induced after nerve injury, and we show that Runx2 is required for activation of other induced genes. In contrast, enhancers that lose H3K27ac after nerve injury are enriched for binding sites of the Sox10 and early growth response 2 (Egr2/Krox20) transcription factors, which are critical determinants of Schwann cell differentiation. Egr2 expression is lost after nerve injury, and many Egr2-binding sites lose H3K27ac after nerve injury. However, the majority of Egr2-bound enhancers retain H3K27ac, indicating that other transcription factors maintain active enhancer status after nerve injury. The global epigenomic changes in H3K27ac deposition pinpoint dynamic changes in enhancers that mediate the effects of transcription factors that control Schwann cell myelination and peripheral nervous system responses to nerve injury.
Collapse
Affiliation(s)
- Holly A Hung
- From the Waisman Center, Cellular and Molecular Pathology Graduate Program, and
| | - Guannan Sun
- Departments of Biostatistics and Medical Informatics and
| | - Sunduz Keles
- Departments of Biostatistics and Medical Informatics and
| | - John Svaren
- From the Waisman Center, Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin 53705
| |
Collapse
|
135
|
Grigoryan T, Birchmeier W. Molecular signaling mechanisms of axon-glia communication in the peripheral nervous system. Bioessays 2015; 37:502-13. [PMID: 25707700 DOI: 10.1002/bies.201400172] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this article we discuss the molecular signaling mechanisms that coordinate interactions between Schwann cells and the neurons of the peripheral nervous system. Such interactions take place perpetually during development and in adulthood, and are critical for the homeostasis of the peripheral nervous system (PNS). Neurons provide essential signals to control Schwann cell functions, whereas Schwann cells promote neuronal survival and allow efficient transduction of action potentials. Deregulation of neuron-Schwann cell interactions often results in developmental abnormalities and diseases. Recent investigations have shown that during development, neuronally provided signals, such as Neuregulin, Jagged, and Wnt interact to fine-tune the Schwann cell lineage progression. In adult, the signal exchange between neurons and Schwann cells ensures proper nerve function and regeneration. Identification of the mechanisms of neuron-Schwann cell interactions is therefore essential for our understanding of the development, function and pathology of the peripheral nervous system as a whole.
Collapse
Affiliation(s)
- Tamara Grigoryan
- Max-Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | | |
Collapse
|
136
|
Song XM, Xu XH, Zhu J, Guo Z, Li J, He C, Burnstock G, Yuan H, Xiang Z. Up-regulation of P2X7 receptors mediating proliferation of Schwann cells after sciatic nerve injury. Purinergic Signal 2015; 11:203-13. [PMID: 25682129 DOI: 10.1007/s11302-015-9445-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/26/2015] [Indexed: 01/25/2023] Open
Abstract
Peripheral nerve injury (PNI) is a common disease, which results in a partial or total loss of motor, sensory and autonomic functions, leading to a decrease in quality of life. Schwann cells play a vital role in maintaining the peripheral nervous system and in injury and repair. Using immunohistochemistry, Western blot, calcium assay and bromodeoxyuridine (BrdU) proliferation assay, the present study clearly demonstrated that P2X7 receptors (R) were expressed in myelinating and non-myelinating Schwann cells in longitudinal sections of sciatic nerves. After sciatic nerve injury (SNI), P2X7R expression in Schwann cells of injured sciatic nerves was significantly up-regulated during the early days of SNI. Double immunofluorescence of proliferating cell nuclear antigen (PCNA) and P2X7R implied that P2X7R may be involved in proliferation of Schwann cells. Further experiments on primary cultures of Schwann cells showed that P2X7R are functionally expressed in Schwann cells of rat sciatic nerves; ATP via P2X7R can promote Schwann cell proliferation, possibly via the MAPK/ERK intracellular signalling pathway. Other possible roles of P2X7R on Schwann cells are discussed.
Collapse
Affiliation(s)
- Xian-min Song
- Department of Neurobiology, Second Military Medical University, 200433, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Mitochondrial alarmins released by degenerating motor axon terminals activate perisynaptic Schwann cells. Proc Natl Acad Sci U S A 2015; 112:E497-505. [PMID: 25605902 DOI: 10.1073/pnas.1417108112] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
An acute and highly reproducible motor axon terminal degeneration followed by complete regeneration is induced by some animal presynaptic neurotoxins, representing an appropriate and controlled system to dissect the molecular mechanisms underlying degeneration and regeneration of peripheral nerve terminals. We have previously shown that nerve terminals exposed to spider or snake presynaptic neurotoxins degenerate as a result of calcium overload and mitochondrial failure. Here we show that toxin-treated primary neurons release signaling molecules derived from mitochondria: hydrogen peroxide, mitochondrial DNA, and cytochrome c. These molecules activate isolated primary Schwann cells, Schwann cells cocultured with neurons and at neuromuscular junction in vivo through the MAPK pathway. We propose that this inter- and intracellular signaling is involved in triggering the regeneration of peripheral nerve terminals affected by other forms of neurodegenerative diseases.
Collapse
|
138
|
Mechanisms underlying vertebrate limb regeneration: lessons from the salamander. Biochem Soc Trans 2015; 42:625-30. [PMID: 24849229 DOI: 10.1042/bst20140002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Limb regeneration in adult salamanders proceeds by formation of a mound of progenitor cells called the limb blastema. It provides several pointers for regenerative medicine. These include the role of differentiated cells in the origin of the blastema, the role of regenerating axons of peripheral nerves and the importance of cell specification in conferring morphogenetic autonomy on the blastema. One aspect of regeneration that has received less attention is the ability to undergo multiple episodes without detectable change in the outcome, and with minimal effect of aging. We suggest that, although such pointers are valuable, it is important to understand why salamanders are the only adult tetrapod vertebrates able to regenerate their limbs. Although this remains a controversial issue, the existence of salamander-specific genes that play a significant role in the mechanism of regeneration provides evidence for the importance of local evolution, rather than a purely ancestral mechanism. The three-finger protein called Prod1 is discussed in the present article as an exemplar of this approach.
Collapse
|
139
|
McGarvey PB, Suzek BE, Baraniuk JN, Rao S, Conkright B, Lababidi S, Sutherland A, Forshee R, Madhavan S. In silico analysis of autoimmune diseases and genetic relationships to vaccination against infectious diseases. BMC Immunol 2014; 15:61. [PMID: 25486901 PMCID: PMC4266212 DOI: 10.1186/s12865-014-0061-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/01/2014] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Near universal administration of vaccines mandates intense pharmacovigilance for vaccine safety and a stringently low tolerance for adverse events. Reports of autoimmune diseases (AID) following vaccination have been challenging to evaluate given the high rates of vaccination, background incidence of autoimmunity, and low incidence and variable times for onset of AID after vaccinations. In order to identify biologically plausible pathways to adverse autoimmune events of vaccine-related AID, we used a systems biology approach to create a matrix of innate and adaptive immune mechanisms active in specific diseases, responses to vaccine antigens, adjuvants, preservatives and stabilizers, for the most common vaccine-associated AID found in the Vaccine Adverse Event Reporting System. RESULTS This report focuses on Guillain-Barre Syndrome (GBS), Rheumatoid Arthritis (RA), Systemic Lupus Erythematosus (SLE), and Idiopathic (or immune) Thrombocytopenic Purpura (ITP). Multiple curated databases and automated text mining of PubMed literature identified 667 genes associated with RA, 448 with SLE, 49 with ITP and 73 with GBS. While all data sources provided valuable and unique gene associations, text mining using natural language processing (NLP) algorithms provided the most information but required curation to remove incorrect associations. Six genes were associated with all four AIDs. Thirty-three pathways were shared by the four AIDs. Classification of genes into twelve immune system related categories identified more "Th17 T-cell subtype" genes in RA than the other AIDs, and more "Chemokine plus Receptors" genes associated with RA than SLE. Gene networks were visualized and clustered into interconnected modules with specific gene clusters for each AID, including one in RA with ten C-X-C motif chemokines. The intersection of genes associated with GBS, GBS peptide auto-antigens, influenza A infection, and influenza vaccination created a subnetwork of genes that inferred a possible role for the MAPK signaling pathway in influenza vaccine related GBS. CONCLUSIONS Results showing unique and common gene sets, pathways, immune system categories and functional clusters of genes in four autoimmune diseases suggest it is possible to develop molecular classifications of autoimmune and inflammatory events. Combining this information with cellular and other disease responses should greatly aid in the assessment of potential immune-mediated adverse events following vaccination.
Collapse
Affiliation(s)
- Peter B McGarvey
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, 2115 Wisconsin Ave NW, Suite 110, Washington, DC, 20007, USA. .,Protein Information Resource, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, 3300 Whitehaven Street NW, Suite 1200, Washington, DC, 20007, USA.
| | - Baris E Suzek
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, 2115 Wisconsin Ave NW, Suite 110, Washington, DC, 20007, USA. .,Protein Information Resource, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, 3300 Whitehaven Street NW, Suite 1200, Washington, DC, 20007, USA. .,Department of Computer Engineering, Muğla Sıtkı Koçman University, Muğla, Turkey.
| | - James N Baraniuk
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Georgetown University Medical Center, 3800 Reservoir Road, NW, Washington, DC, 20007, USA.
| | - Shruti Rao
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, 2115 Wisconsin Ave NW, Suite 110, Washington, DC, 20007, USA.
| | - Brian Conkright
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, 2115 Wisconsin Ave NW, Suite 110, Washington, DC, 20007, USA.
| | - Samir Lababidi
- Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA.
| | - Andrea Sutherland
- Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA. .,Department of International Health, Johns Hopkins School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA.
| | - Richard Forshee
- Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA.
| | - Subha Madhavan
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, 2115 Wisconsin Ave NW, Suite 110, Washington, DC, 20007, USA.
| |
Collapse
|
140
|
Sanz-Moreno A, Fuhrmann D, Zankel A, Reingruber H, Kern L, Meijer D, Niemann A, Elsässer HP. Late onset neuropathy with spontaneous clinical remission in mice lacking the POZ domain of the transcription factor Myc-interacting zinc finger protein 1 (Miz1) in Schwann cells. J Biol Chem 2014; 290:727-43. [PMID: 25416780 DOI: 10.1074/jbc.m114.605931] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The transcription factor Miz1 (Myc-interacting zinc finger 1) is a known regulator of the cell cycle but also has cell cycle-independent functions. Here we analyzed the role of Miz1 in the peripheral nervous system, using an early embryonic conditional knock-out model in which the Miz1 POZ domain is ablated in Schwann cells. Although the development of myelinated nerve fibers was not impaired, Miz1ΔPOZ mice acquired behavioral signs of a peripheral neuropathy at the age of 3 months. At this time, ultrastructural analysis of the sciatic nerve showed de- and dysmyelination of fibers, with massive outfoldings and a focal infiltration of macrophages. Although the expression of genes encoding structural myelin proteins, such as periaxin, myelin basic protein, and myelin protein zero, was decreased, genes associated with a negative regulation of myelination, including c-Jun, Sox2, and Id2, were up-regulated in Miz1ΔPOZ mice compared with controls. In animals older than 4 months, the motor disabilities vanished, and the ultrastructure of the sciatic nerve exhibited numerous tomacula and remyelinated fibers, as indicated by thinner myelin. No second acute attack was observed up to the age of 1 year. Thus, the deletion of the Miz1 POZ domain in Schwann cells induces an acute neuropathy with a subsequent regeneration in which there is ongoing balancing between de- and remyelination. Miz1ΔPOZ mice are impaired in the maintenance of myelinated fibers and are a promising model for studying remyelination in adult peripheral nerves.
Collapse
Affiliation(s)
- Adrián Sanz-Moreno
- From the Department of Cytobiology and Cytopathobiology, Philipps University of Marburg, Robert-Koch-Strasse 6, 35033 Marburg, Germany
| | - David Fuhrmann
- From the Department of Cytobiology and Cytopathobiology, Philipps University of Marburg, Robert-Koch-Strasse 6, 35033 Marburg, Germany
| | - Armin Zankel
- Graz University of Technology, 8010 Graz, Austria
| | | | - Lara Kern
- From the Department of Cytobiology and Cytopathobiology, Philipps University of Marburg, Robert-Koch-Strasse 6, 35033 Marburg, Germany
| | - Dies Meijer
- Erasmus Medical Center, 3015GE Rotterdam, Netherlands, and
| | | | - Hans-Peter Elsässer
- From the Department of Cytobiology and Cytopathobiology, Philipps University of Marburg, Robert-Koch-Strasse 6, 35033 Marburg, Germany,
| |
Collapse
|
141
|
Abstract
Disrupted differentiation of Schwann cells contributes to axonal loss in a rat model of Charcot-Marie-Tooth 1A neuropathy. Early neuregulin-1 treatment promotes Schwann cell differentiation, preserves axons and restores nerve function in this model.
Collapse
|
142
|
Park HT, Feltri ML. Rac1 GTPase controls myelination and demyelination. BIOARCHITECTURE 2014; 1:110-113. [PMID: 21922040 DOI: 10.4161/bioa.1.3.16985] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 06/18/2011] [Indexed: 12/29/2022]
Abstract
After peripheral nerve injuries, Wallerian degeneration starts with a stereotypic fragmentation of myelin sheath into myelin ovoids, which occur near Schmidt-Lantermann incisures (SLI). This demyelination process requires a dramatic change in cytoskeletal structures in Schwann cells. We have recently shown that actin polymerization around SLI is an important step for cleavage of the myelin sheath. We described that Rac1 GTP ase regulates actin polymerization in SLI after injury. It has been previously reported that Rac-dependent cytoskeletal reorganization also plays an important role in myelination during the development of peripheral nerves. Thus, our findings suggest that Rac-dependent actin polymerization controls both myelination and demyelination in the peripheral nerves. We further discuss our new findings in relation to Schwann cell dedifferentiation and segmental demyelination.
Collapse
Affiliation(s)
- Hwan Tae Park
- Department of Physiology; Mitochondria Hub Regulation Center (MHRC); College of Medicine; Dong-A University; Busan, South Korea
| | | |
Collapse
|
143
|
Ceci ML, Mardones-Krsulovic C, Sánchez M, Valdivia LE, Allende ML. Axon-Schwann cell interactions during peripheral nerve regeneration in zebrafish larvae. Neural Dev 2014; 9:22. [PMID: 25326036 PMCID: PMC4214607 DOI: 10.1186/1749-8104-9-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 09/29/2014] [Indexed: 01/13/2023] Open
Abstract
Background Peripheral nerve injuries can severely affect the way that animals perceive signals from the surrounding environment. While damage to peripheral axons generally has a better outcome than injuries to central nervous system axons, it is currently unknown how neurons re-establish their target innervations to recover function after injury, and how accessory cells contribute to this task. Here we use a simple technique to create reproducible and localized injury in the posterior lateral line (pLL) nerve of zebrafish and follow the fate of both neurons and Schwann cells. Results Using pLL single axon labeling by transient transgene expression, as well as transplantation of glial precursor cells in zebrafish larvae, we individualize different components in this system and characterize their cellular behaviors during the regenerative process. Neurectomy is followed by loss of Schwann cell differentiation markers that is reverted after nerve regrowth. We show that reinnervation of lateral line hair cells in neuromasts during pLL nerve regeneration is a highly dynamic process with promiscuous yet non-random target recognition. Furthermore, Schwann cells are required for directional extension and fasciculation of the regenerating nerve. We provide evidence that these cells and regrowing axons are mutually dependant during early stages of nerve regeneration in the pLL. The role of ErbB signaling in this context is also explored. Conclusion The accessibility of the pLL nerve and the availability of transgenic lines that label this structure and their synaptic targets provides an outstanding in vivo model to study the different events associated with axonal extension, target reinnervation, and the complex cellular interactions between glial cells and injured axons during nerve regeneration.
Collapse
Affiliation(s)
| | | | | | | | - Miguel L Allende
- FONDAP Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile.
| |
Collapse
|
144
|
Simons M, Misgeld T, Kerschensteiner M. A unified cell biological perspective on axon-myelin injury. ACTA ACUST UNITED AC 2014; 206:335-45. [PMID: 25092654 PMCID: PMC4121977 DOI: 10.1083/jcb.201404154] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Demyelination and axon loss are pathological hallmarks of the neuroinflammatory disorder multiple sclerosis (MS). Although we have an increasingly detailed understanding of how immune cells can damage axons and myelin individually, we lack a unified view of how the axon-myelin unit as a whole is affected by immune-mediated attack. In this review, we propose that as a result of the tight cell biological interconnection of axons and myelin, damage to either can spread, which might convert a local inflammatory disease process early in MS into the global progressive disorder seen during later stages. This mode of spreading could also apply to other neurological disorders.
Collapse
Affiliation(s)
- Mikael Simons
- Cellular Neuroscience, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany Department of Neurology, University of Göttingen, 37075 Göttingen, Germany
| | - Thomas Misgeld
- Institute of Neuronal Cell Biology, Technical University Munich, 80802 Munich, Germany German Center for Neurodegenerative Diseases, 80336 Munich, Germany Munich Cluster for Systems Neurology (SyNergy), 80336 Munich, Germany
| | - Martin Kerschensteiner
- Munich Cluster for Systems Neurology (SyNergy), 80336 Munich, Germany Institute of Clinical Neuroimmunology, Ludwig Maximilian University Munich, 81377 Munich, Germany
| |
Collapse
|
145
|
Park BS, Kim HW, Rhyu IJ, Park C, Yeo SG, Huh Y, Jeong NY, Jung J. Hydrogen sulfide is essential for Schwann cell responses to peripheral nerve injury. J Neurochem 2014; 132:230-42. [PMID: 25123509 DOI: 10.1111/jnc.12932] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 08/06/2014] [Accepted: 08/08/2014] [Indexed: 11/29/2022]
Abstract
Hydrogen sulfide (H2 S) functions as a physiological gas transmitter in both normal and pathophysiological cellular events. H2 S is produced from substances by three enzymes: cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (MST). In human tissues, these enzymes are involved in tissue-specific biochemical pathways for H2 S production. For example, CBS and cysteine aminotransferase/MST are present in the brain, but CSE is not. Thus, we examined the expression of H2 S production-related enzymes in peripheral nerves. Here, we found that CSE and MST/cysteine aminotransferase, but not CBS, were present in normal peripheral nerves. In addition, injured sciatic nerves in vivo up-regulated CSE in Schwann cells during Wallerian degeneration (WD); however, CSE was not up-regulated in peripheral axons. Using an ex vivo sciatic nerve explant culture, we found that the inhibition of H2 S production broadly prevented the process of nerve degeneration, including myelin fragmentation, axonal degradation, Schwann cell dedifferentiation, and Schwann cell proliferation in vitro and in vivo. Thus, these results indicate that H2 S signaling is essential for Schwann cell responses to peripheral nerve injury. Hydrogen sulfide (H2 S) functions as a physiological gas transmitter in both normal and pathophysiological cellular events. H2 S is produced from cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfur transferase (MST). Here, we found that CSE and MST/CAT were present in normal peripheral nerves. Injured static nerves in vivo up-regulated CSE in Schwann cells during Wallerian degeneration, but CSE was not up-regulated in peripheral axons.
Collapse
Affiliation(s)
- Byung Sun Park
- Department of Anatomy and Neurobiology, School of Medicine, Biomedical Science Institution, Kyung Hee University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
146
|
Shakhbazau A, Archibald SJ, Shcharbin D, Bryszewska M, Midha R. Aligned collagen-GAG matrix as a 3D substrate for Schwann cell migration and dendrimer-based gene delivery. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:1979-1989. [PMID: 24801062 DOI: 10.1007/s10856-014-5224-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 04/21/2014] [Indexed: 06/03/2023]
Abstract
The development of artificial off-the-shelf conduits that facilitate effective nerve regeneration and recovery after repair of traumatic nerve injury gaps is of fundamental importance. Collagen-glycosaminoglycan (GAG) matrix mimicking Schwann cell (SC) basal lamina has been proposed as a suitable and biologically rational substrate for nerve regeneration. In the present study, we have focused on the permissiveness of this matrix type for SC migration and repopulation, as these events play an essential role in nerve remodeling. We have also demonstrated that SCs cultured within collagen-GAG matrix are compatible with non-viral dendrimer-based gene delivery, that may allow conditioning of matrix-embedded cells for future gene therapy applications.
Collapse
Affiliation(s)
- Antos Shakhbazau
- Department of Clinical Neuroscience, Faculty of Medicine, University of Calgary, HMRB 109-3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada,
| | | | | | | | | |
Collapse
|
147
|
ATP release through lysosomal exocytosis from peripheral nerves: the effect of lysosomal exocytosis on peripheral nerve degeneration and regeneration after nerve injury. BIOMED RESEARCH INTERNATIONAL 2014; 2014:936891. [PMID: 25101301 PMCID: PMC4101216 DOI: 10.1155/2014/936891] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 05/29/2014] [Accepted: 06/16/2014] [Indexed: 01/18/2023]
Abstract
Studies have shown that lysosomal activation increases in Schwann cells after nerve injury. Lysosomal activation is thought to promote the engulfment of myelin debris or fragments of injured axons in Schwann cells during Wallerian degeneration. However, a recent interpretation of lysosomal activation proposes a different view of the phenomenon. During Wallerian degeneration, lysosomes become secretory vesicles and are activated for lysosomal exocytosis. The lysosomal exocytosis triggers adenosine 5′-triphosphate (ATP) release from peripheral neurons and Schwann cells during Wallerian degeneration. Exocytosis is involved in demyelination and axonal degradation, which facilitate nerve regeneration following nerve degeneration. At this time, released ATP may affect the communication between cells in peripheral nerves. In this review, our description of the relationship between lysosomal exocytosis and Wallerian degeneration has implications for the understanding of peripheral nerve degenerative diseases and peripheral neuropathies, such as Charcot-Marie-Tooth disease or Guillain-Barré syndrome.
Collapse
|
148
|
Yun MH, Gates PB, Brockes JP. Sustained ERK activation underlies reprogramming in regeneration-competent salamander cells and distinguishes them from their mammalian counterparts. Stem Cell Reports 2014; 3:15-23. [PMID: 25068118 PMCID: PMC4110794 DOI: 10.1016/j.stemcr.2014.05.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 05/12/2014] [Accepted: 05/14/2014] [Indexed: 12/22/2022] Open
Abstract
In regeneration-competent vertebrates, such as salamanders, regeneration depends on the ability of various differentiated adult cell types to undergo natural reprogramming. This ability is rarely observed in regeneration-incompetent species such as mammals, providing an explanation for their poor regenerative potential. To date, little is known about the molecular mechanisms mediating natural reprogramming during regeneration. Here, we have identified the extent of extracellular signal-regulated kinase (ERK) activation as a key component of such mechanisms. We show that sustained ERK activation following serum induction is required for re-entry into the cell cycle of postmitotic salamander muscle cells, partially by promoting the downregulation of p53 activity. Moreover, ERK activation induces epigenetic modifications and downregulation of muscle-specific genes such as Sox6. Remarkably, while long-term ERK activation is found in salamander myotubes, only transient activation is seen in their mammalian counterparts, suggesting that the extent of ERK activation could underlie differences in regenerative competence between species. Sustained ERK activation is required for serum reprogramming of salamander cells Only transient ERK activation is observed in their mammalian counterparts Constant ERK activation promotes expression of S phase genes in mammalian myotubes The extent of ERK activation could underlie differences in regenerative competence
Collapse
Affiliation(s)
- Maximina H Yun
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Phillip B Gates
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Jeremy P Brockes
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
149
|
Lee HJ, Shin YK, Park HT. Mitogen Activated Protein Kinase Family Proteins and c-jun Signaling in Injury-induced Schwann Cell Plasticity. Exp Neurobiol 2014; 23:130-7. [PMID: 24963277 PMCID: PMC4065826 DOI: 10.5607/en.2014.23.2.130] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 05/21/2014] [Accepted: 05/21/2014] [Indexed: 12/31/2022] Open
Abstract
Schwann cells (SCs) in the peripheral nerves myelinate axons during postnatal development to allow saltatory conduction of nerve impulses. Well-organized structures of myelin sheathes are maintained throughout life unless nerves are insulted. After peripheral nerve injury, unidentified signals from injured nerves drive SC dedifferentiation into an immature state. Dedifferentiated SCs participate in axonal regeneration by producing neurotrophic factors and removing degenerating nerve debris. In this review, we focus on the role of mitogen activated protein kinase family proteins (MAP kinases) in SC dedifferentiation. In addition, we will highlight neuregulin 1 and the transcription factor c-jun as upstream and downstream signals for MAP kinases in SC responses to nerve injury.
Collapse
Affiliation(s)
- Hye Jeong Lee
- Department of Pharmacology, Mitochondria Hub Regulation Center (MHRC), College of Medicine, Dong-A University, Busan 602-714, Korea
| | - Yoon Kyung Shin
- Department of Physiology, Mitochondria Hub Regulation Center (MHRC), College of Medicine, Dong-A University, Busan 602-714, Korea
| | - Hwan Tae Park
- Department of Physiology, Mitochondria Hub Regulation Center (MHRC), College of Medicine, Dong-A University, Busan 602-714, Korea
| |
Collapse
|
150
|
Schmid D, Zeis T, Schaeren-Wiemers N. Transcriptional regulation induced by cAMP elevation in mouse Schwann cells. ASN Neuro 2014; 6:137-57. [PMID: 24641305 PMCID: PMC4834722 DOI: 10.1042/an20130031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 01/16/2014] [Accepted: 02/05/2014] [Indexed: 12/23/2022] Open
Abstract
In peripheral nerves, Schwann cell development is regulated by a variety of signals. Some of the aspects of Schwann cell differentiation can be reproduced in vitro in response to forskolin, an adenylyl cyclase activator elevating intracellular cAMP levels. Herein, the effect of forskolin treatment was investigated by a comprehensive genome-wide expression study on primary mouse Schwann cell cultures. Additional to myelin-related genes, many so far unconsidered genes were ascertained to be modulated by forskolin. One of the strongest differentially regulated gene transcripts was the transcription factor Olig1 (oligodendrocyte transcription factor 1), whose mRNA expression levels were reduced in treated Schwann cells. Olig1 protein was localized in myelinating and nonmyelinating Schwann cells within the sciatic nerve as well as in primary Schwann cells, proposing it as a novel transcription factor of the Schwann cell lineage. Data analysis further revealed that a number of differentially expressed genes in forskolin-treated Schwann cells were associated with the ECM (extracellular matrix), underlining its importance during Schwann cell differentiation in vitro. Comparison of samples derived from postnatal sciatic nerves and from both treated and untreated Schwann cell cultures showed considerable differences in gene expression between in vivo and in vitro, allowing us to separate Schwann cell autonomous from tissue-related changes. The whole data set of the cell culture microarray study is provided to offer an interactive search tool for genes of interest.
Collapse
Key Words
- camp
- forskolin
- in vitro
- microarray
- schwann cell differentiation
- bmp, bone morphogenetic protein
- camp, cyclic adenosine monophosphate
- cns, central nervous system
- creb, camp-response-element-binding protein
- david, database for annotation, visualization and integrated discovery
- dgc, dystrophin–glycoprotein complex
- ecm, extracellular matrix
- fdr, false discovery rate
- go, gene ontology
- ipa, ingenuity pathway analysis
- mag, myelin-associated glycoprotein
- mapk, mitogen-activated protein kinase
- mbp, myelin basic protein
- mpz/p0, myelin protein zero
- nf-κb, nuclear factor κb
- olig1, oligodendrocyte transcription factor 1
- pca, principal component analysis
- pfa, paraformaldehyde
- pka, protein kinase a
- pns, peripheral nervous system
- qrt–pcr, quantitative rt–pcr
- s.d., standard deviation
Collapse
Affiliation(s)
- Daniela Schmid
- *Neurobiology, Department of Biomedicine, University Hospital Basel,
University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| | - Thomas Zeis
- *Neurobiology, Department of Biomedicine, University Hospital Basel,
University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| | - Nicole Schaeren-Wiemers
- *Neurobiology, Department of Biomedicine, University Hospital Basel,
University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| |
Collapse
|